WO2010073908A1 - Biological information signal processing apparatus, biological information signal processing method and biological information measuring apparatus - Google Patents

Biological information signal processing apparatus, biological information signal processing method and biological information measuring apparatus Download PDF

Info

Publication number
WO2010073908A1
WO2010073908A1 PCT/JP2009/070616 JP2009070616W WO2010073908A1 WO 2010073908 A1 WO2010073908 A1 WO 2010073908A1 JP 2009070616 W JP2009070616 W JP 2009070616W WO 2010073908 A1 WO2010073908 A1 WO 2010073908A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
component
biological information
noise component
noise
Prior art date
Application number
PCT/JP2009/070616
Other languages
French (fr)
Japanese (ja)
Inventor
謙治 蛤
Original Assignee
コニカミノルタセンシング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタセンシング株式会社 filed Critical コニカミノルタセンシング株式会社
Priority to JP2010518660A priority Critical patent/JP4613261B2/en
Publication of WO2010073908A1 publication Critical patent/WO2010073908A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02438Detecting, measuring or recording pulse rate or heart rate with portable devices, e.g. worn by the patient

Definitions

  • the present invention relates to a biological information signal processing device, a biological information signal processing method, and a biological information measuring device that remove noise components from time-series signals.
  • the above signal processing device is called a biological information measuring device.
  • the biological information measuring device is a device that non-invasively detects biological information from biological tissue, specifically, a measuring device called a pulse wave meter and a pulse oximeter that measures the pulse waveform and pulse rate of a living body called a photoelectric pulse wave meter. It is a measuring device or the like that measures the arterial blood oxygen saturation concentration.
  • the principle of these measuring devices is that a living body such as the concentration of a light-absorbing substance in blood is obtained based on a signal component obtained by receiving light transmitted or reflected through a living tissue and corresponding to fluctuations due to pulsation of the living tissue. It seeks information.
  • FIG. 1 is a diagram illustrating an example of data necessary for detection of biological information obtained by receiving light transmitted or reflected through a biological tissue.
  • the horizontal axis in FIG. 1 is time, and the vertical axis is the intensity of light transmitted or reflected through the living tissue.
  • the noise component is mainly due to body movement such as movement of the body when the biological information measuring device is used.
  • noise components due to body movement or the like are not superimposed on the signal components at the beginning, but the noise components are superimposed on the signal components from a predetermined time.
  • a noise component is superimposed on a signal component, it becomes an error factor in calculation of biological information. For this reason, it is desired to remove noise components.
  • a technique has been proposed in which biological information is calculated based on a direct current to alternating current ratio in the intensity of light transmitted or reflected through a living tissue when a living body is irradiated with a plurality of lights having different wavelengths.
  • the DC / AC ratio for each wavelength is represented by the signal component and the noise component.
  • Patent Document 1 the DC / AC ratio for each wavelength is obtained, the noise component is included above a predetermined frequency, and the ratio of the noise component according to the wavelength is constant over the entire frequency range. Under the assumption, the ratio of the noise component depending on the wavelength is calculated, and the noise component removal waveform is calculated by using the cross-correlation between the signal component and the noise component. Further, for example, in Patent Document 2, the ratio by the wavelength of the signal component and the ratio by the wavelength of the noise component that obtain the maximum power of the signal component are obtained under the condition that the correlation between the signal component and the noise component is small. Thus, the noise component is removed.
  • the biological information measuring device is not only for operating rooms, intensive care units, etc., but also for respiratory failure patients, home oxygen therapy patients in daily life respiratory data collection and management, sleep apnea syndrome screening, It is being used even for sportswear such as mountain climbing that can be worn at all times. Even in view of such a situation, the biological information measuring apparatus is also required to be reduced in size, weight, power saving, price reduction, and the like.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a biological information signal processing device, a biological information signal processing method, and a biological information measurement device that reduce the amount of signal processing and further reduce power consumption. Is to provide.
  • a first time-series signal including a first signal component having a periodicity and a first noise component, a second signal component having a predetermined relationship with the first signal component, and the Based on the second time-series signal including the second noise component having a predetermined relationship with the first noise component, and the predetermined relationship between the first noise component and the second noise component, the first A signal including the first signal component is generated from the time-series signal and the second time-series signal, and the first noise in the predetermined time range is generated using periodicity of the generated signal in the predetermined time range.
  • the predetermined relationship between a component and the second noise component is estimated. Thereby, the amount of signal processing required for noise component removal can be reduced as compared with the prior art.
  • FIG. 1 It is a figure which shows an example of the data required for the detection of biological information obtained by receiving the light which permeate
  • FIG. 1 It is a block diagram which shows the structure of the biological information measuring device in one Embodiment of this invention. It is a flowchart which calculates the initial value in the said biological information measuring device. It is a flowchart which calculates the arterial blood oxygen saturation in the said biological information measuring device. It is a flowchart which calculates the pulse rate in the said biological information measuring device. It is a figure which shows the waveform of R-kv * IR by the measurement data shown by FIG.
  • a biological information measuring device is taken as an example of signal processing devices, but the present invention is applicable not only to a biological information measuring device but also to a signal processing device that removes noise components.
  • the ratio between the alternating current component and the direct current component in the intensity of light having a certain wavelength transmitted or reflected through the living tissue is approximated to be equal to the change in absorbance of the living tissue at that wavelength.
  • the infrared orthogonal ratio IR_signal which is the ratio of the direct current component and the alternating current component of the transmitted or reflected light intensity for the infrared wavelength IR
  • the red orthogonal ratio R_signal which is the ratio of the direct current component to the alternating current component of the intensity of transmitted light or reflected light for the red wavelength R
  • the red orthogonal ratio R_signal may also be regarded as equal to the change in the absorbance of the living tissue for the wavelength R. it can.
  • the infrared orthogonal ratio IR_signal is expressed as in equation (1).
  • s is a signal component corresponding to a change in absorbance
  • n is a noise component superimposed on the signal component
  • the red orthogonal ratio R_signal is expressed by equation (2).
  • k_a is the ratio of the signal component s of the absorbance change at the wavelength IR to the signal component of the absorbance change at the wavelength R
  • k_v is the noise component n and the wavelength superimposed on the signal component of the wavelength IR. This is the ratio of the noise component superimposed on the R signal component.
  • k_a in formula (2) and blood oxygen saturation correspond one-to-one, and blood oxygen saturation can be obtained by obtaining k_a.
  • equation (3) is obtained by multiplying the equation (1) by k_v, and the following equation (4) is obtained by subtracting the equation (2) from the equation (3).
  • equation (5) is obtained by multiplying the above equation (1) by k_a, and the following equation (6) is obtained by subtracting equation (2) from equation (5).
  • Equation (8) is obtained by correlating equations 4) and (6).
  • is the sum for a short time such that k_a and k_v are constant.
  • i is the data number of the time-series data IR_signal and R_signal corresponding to the change in the intensity of light
  • the measurement time interval of the data is ⁇ t
  • the measurement start time is t0
  • t ⁇ t * i + t0 Tied. Since equation (8) contains two unknowns k_v and k_a, k_a and k_v cannot be obtained from equation (8) alone.
  • FIG. 2 is a block diagram illustrating a configuration of the biological information measurement device according to the embodiment.
  • the solid line in the figure represents the flow between each block of the electric signal component corresponding to the time-series data of the pulse group described later.
  • This biological information measuring device 30 uses time-series data of the intensity of light transmitted or reflected through the living body of the measurement target (subject) in order to measure biological information from which the influence of noise components due to body movement or the like is removed.
  • it is a measuring device that measures biological information such as blood oxygen saturation, for example, based on time-series data from which the influence on the biological information measurement value due to body movement or the like to be measured is removed and the noise component is removed.
  • the biological information measuring device main body of the biological information measuring device 30 is obtained by irradiating the living body with a plurality of lights having different wavelengths and receiving each light transmitted or reflected through the living body.
  • the biological information of the living body is measured based on the measured data.
  • the biological information measuring device main body extracts a noise component that is a component excluding the signal component by using periodicity from data including a signal component having periodicity generated based on the measurement data, and the noise component is extracted from the data.
  • a measurement unit 10 that measures biological information of a living body based on data that has been removed and from which noise components have been removed is provided.
  • the biological information measuring device 30 includes a data acquisition unit 1 that acquires each measurement data by irradiating a living body with a plurality of lights having different wavelengths and receiving or transmitting each light that is transmitted or reflected through the living body.
  • the living body information measuring apparatus main body for measuring living body information of the living body based on each measurement data obtained by the acquisition unit 1.
  • the noise component is extracted by using the periodicity, so that the amount of calculation processing necessary for removing the noise component can be reduced as compared with the prior art. it can. For this reason, it becomes possible to reduce the power consumption accompanying the calculation of the noise component by reducing the amount of calculation processing.
  • the measurement unit 10 extracts the noise component from the data by using a ratio of the direct current component to the alternating current component of the measurement data for two predetermined wavelengths among the plurality of wavelengths.
  • the variable is determined so that the relational expression obtained by subtracting the DC / AC ratio for the remaining one wavelength from the DC / AC ratio for the one wavelength obtained by calculating a certain DC / AC ratio and multiplying the variable having information on the noise component has periodicity.
  • the biological information measurement device 30 includes, for example, a data acquisition unit 1, a measurement unit 10, and an output unit 20, as shown in FIG.
  • the data acquisition unit 1 is a device for acquiring time series data related to pulsation of a living body, which is measured at a predetermined time interval necessary for measurement of biological information in the measuring unit 10.
  • a method for detecting pulsation various methods can be adopted.
  • a method using the light absorption characteristic of hemoglobin in a living tissue can be preferably employed.
  • oxygen is carried by hemoglobin to each cell in the living body, but hemoglobin combines with oxygen in the lung to become oxygenated hemoglobin, and returns to hemoglobin when oxygen is consumed by cells in the living body.
  • Oxygen saturation refers to the proportion of oxygenated hemoglobin in the blood.
  • hemoglobins and the absorbance of oxyhemoglobin are wavelength-dependent.For example, hemoglobin absorbs more light than oxyhemoglobin for red light with a wavelength R in the red region, but the wavelength in the infrared region. It absorbs less light than oxyhemoglobin for IR infrared light.
  • This method obtains biological information such as blood oxygen saturation and pulse rate by utilizing the difference in absorption characteristics of hemoglobin and oxyhemoglobin with respect to red light and infrared light. For example, as shown in FIG.
  • the data acquisition unit 1 includes a light emitting element (R) that irradiates a predetermined biological tissue with red light (hereinafter, R), and a light emitting element (R) that is irradiated with the light emitting element (R).
  • a sensor (R) unit 2 including a light receiving element (R) that receives light transmitted or reflected through a biological tissue, and a light emitting element (IR) that irradiates the predetermined biological tissue with infrared light (hereinafter, IR);
  • a reflective or transmissive sensor including a sensor (IR) unit 3 having a light receiving element (IR) that receives each light that has been irradiated with the light emitting element (IR) and transmitted or reflected through the biological tissue to be measured.
  • the data acquisition unit 1 having such a configuration is set in a predetermined living tissue, monitors each received light amount by the light receiving element (R, IR), and converts each received light into an electrical signal according to the light intensity.
  • Each time series data related to the pulse wave is acquired by performing photoelectric conversion.
  • the data acquisition unit 1 may be a device that includes a pressure sensor or the like and acquires pulse wave data as the time-series data by directly detecting the pulse pressure due to the blood vessel pulsation.
  • the data acquisition unit 1 is connected to the measurement unit 10 and outputs these time series data to an AC / DC (R) unit 11 described later.
  • the output unit 20 is connected to the measurement unit 10 and is a device for outputting measurement values of biological information related to the living body measured by the measurement unit 10.
  • the output unit 20 includes, for example, a display device such as a liquid crystal display device (LCD), a 7-segment LED, an organic photoluminescence display device, a CRT (Cathode Ray Tube) display device and a plasma display device, a microphone and a speaker.
  • a sound output device such as a printer or a printing device such as a printer.
  • various pieces of measurement information such as data analysis results of pulse wave data are output in an arbitrary form such as light lighting (including turning on / off and blinking), characters, images, sounds, and printing.
  • the output unit 20 includes, for example, a SpO2 output unit 22, a pulse rate output unit 23, and a reliability output unit 24 as shown in FIG.
  • the SpO2 output unit 22 is a device for outputting the blood oxygen saturation calculated by the SvO2 estimation SpO2 determination unit 19 described later.
  • the pulse rate output unit 23 is a device for outputting the pulse rate calculated by the pulse rate calculation unit 20 described later.
  • the reliability output unit 24 is a device for outputting the reliability calculated by the reliability calculation unit 21 described later.
  • the measuring unit 10 is functionally an AC / DC (R) conversion unit 11, an AC / DC (IR) conversion unit 12, a BPF (R) unit 13, and a BPF (IR).
  • R AC / DC
  • IR AC / DC
  • R BPF
  • IR BPF
  • Unit 14 ⁇ R_signal * IR_signal calculation unit 15, ⁇ R_signal 2 calculation unit 16, ⁇ IR_signal 2 calculation unit 17, initial value calculation unit 18, SvO2 estimation SpO2 determination unit 19, pulse rate calculation unit 20, and reliability calculation unit 21, and
  • the data acquisition unit 1 and the output unit 20 are controlled according to the function.
  • the measurement unit 10 calculates initial values required for noise component removal and biological information calculation after performing predetermined preprocessing on the time-series data of the pulse wave acquired by the data acquisition unit 1, Using the initial value, noise component removal processing is performed to remove the noise component included in the time series data of the pulse wave, and the biological information is measured based on the time series data of the pulse wave after the noise component is removed. It is a device that outputs a measurement value of biological information to the output unit 20.
  • the measurement unit 10 includes, for example, a ROM (Read Only Memory) that stores arithmetic processing programs for performing arithmetic processing to be described later, a RAM (Random Access Memory) that functions as a so-called working memory, and temporarily stores data.
  • a central processing unit (CPU) that reads a processing program from the ROM and executes it, and its peripheral circuits.
  • the AC / DC (R) conversion unit 11 converts the red light (R) time-series data input from the sensor (R) unit 2 of the data acquisition unit 1 into data that is a ratio of a direct current component and an alternating current component. It is a circuit to convert. In the present embodiment, the AC / DC (R) conversion unit 11 performs dark processing for removing components due to dark current as the preprocessing.
  • the BPF (R) unit 13 receives time-series data of red light (R) from the AC / DC (R) conversion unit 11 and removes noise components to obtain frequency components for red light (R). It is a band pass filter (BPF).
  • the BPF (R) unit 13 outputs R_signal, which is time-series data after filtering, to the ⁇ R_signal * IR_signal calculation unit 15, the ⁇ R_signal 2 calculation unit 16, and the SvO2 estimation SpO2 determination unit 19, respectively.
  • the AC / DC (IR) conversion unit 12 is data that is a ratio of a DC component to an AC component with respect to time series data of infrared light (IR) input from the sensor (IR) unit 3 of the data acquisition unit 1. It is a circuit to convert to. In the present embodiment, the AC / DC (IR) conversion unit 12 performs dark processing for removing components due to dark current as the preprocessing.
  • the BPF (IR) unit 14 receives time series data of infrared light (IR) from the AC / DC (IR) conversion unit 12 and removes noise components to obtain frequency components for infrared light (IR). This is a bandpass filter for the purpose.
  • the BPF (IR) unit 14 outputs IR_signal, which is time-series data after filtering, to the ⁇ R_signal * IR_signal calculation unit 15, the ⁇ IR_signal 2 calculation unit 17, and the SvO2 estimation SpO2 determination unit 19, respectively.
  • the ⁇ R_signal * IR_signal calculation unit 15 includes time-series data of red light (R) input from the BPF (R) unit 13 and time-series data of infrared light (IR) input from the BPF (IR) unit 14. Is used to calculate the cross-correlation ⁇ R_signal * IR_signal and output the calculated cross-correlation ⁇ R_signal * IR_signal to the initial value calculation unit 18.
  • the ⁇ R_signal 2 calculation unit 16 calculates autocorrelation ⁇ R_signal 2 using the time series data of red light (R) input from the BPF (R) unit 13, and calculates the calculated autocorrelation ⁇ R_signal 2 as an initial value calculation unit 18.
  • the circuit that outputs to The ⁇ R_signal 2 calculation unit 16 calculates autocorrelation ⁇ R_signal 2 using the time series data of red light (R) input from the BPF (R) unit 13, and calculates the calculated autocorrelation ⁇ R_signal 2 as an initial value calculation unit 18.
  • the circuit that outputs to The ⁇ IR_signal 2 calculation unit 17 calculates autocorrelation ⁇ IR_signal 2 using time series data of infrared light (IR) input from the BPF (IR) unit 14, and calculates the calculated autocorrelation ⁇ IR_signal 2 as an initial value calculation unit.
  • 18 is a circuit that outputs the data.
  • the initial value calculation unit 18 is a circuit that calculates an initial value, and more specifically, the cross-correlation ⁇ R_signal * IR_signal input from the ⁇ R_signal * IR_signal calculation unit 15 and the autocorrelation ⁇ R_signal input from the ⁇ R_signal 2 calculation unit 16. 2 and the autocorrelation ⁇ IR_signal 2 input from the ⁇ IR_signal 2 calculation unit 17, the initial value is calculated, and the calculated initial value is output to the SvO 2 estimation SpO 2 determination unit 19.
  • the SvO2 estimation SpO2 determination unit 19 removes the noise component superimposed on the signal component using the periodicity from the time series data including the signal component having periodicity, and based on the time series data from which the noise component is removed, This is a circuit for calculating the blood oxygen saturation level.
  • the SvO2 estimation SpO2 determination unit 19 corresponds to the signal generation unit and the estimation unit disclosed in the means for solving the problem. More specifically, the SvO2 estimation SpO2 determination unit 19 determines the initial value from the time series data R_signal input from the BPF (R) unit 13 and the time series data IR_signal input from the BPF (IR) unit 14.
  • This is a circuit that calculates the blood oxygen saturation level of the artery based on the initial value calculated by the value calculation unit 18, calculates the blood oxygen saturation level of the vein based on the noise component as necessary, and calculates the calculated blood
  • the medium oxygen saturation is output to the SpO2 output unit 22.
  • the pulse rate calculation unit 20 is a circuit that calculates the pulse rate based on the time-series data from which the noise component is removed by the SvO2 estimation SpO2 determination unit 19 and outputs the calculated pulse rate to the pulse rate output unit 23.
  • the reliability calculation unit 21 is a circuit that calculates a reliability indicating the degree of error for the measured biological information, and outputs the calculated reliability to the reliability output unit 24.
  • the biological information measuring device 30 may further include an external storage unit (not shown) as necessary.
  • the external storage unit is, for example, a memory card, flexible disk, CD-ROM (Compact Disc Read Only Memory), CD-R (Compact Disc Recordable), DVD-R (Digital Versatile Disc Recordable), and Blu-ray Disc (Blue-ray Disc).
  • a memory card interface a flexible disk drive, a CD-ROM drive, a CD-R drive, a DVD-R drive, and a Blu-ray disc drive.
  • the biological information measurement device 30 is installed in the measurement unit 10 via the external storage unit from a recording medium that records the program or the like. You may be comprised so that. Alternatively, the biological information measuring device 30 may be configured such that data such as detected biological information is recorded on a recording medium via the external storage unit.
  • FIG. 3 is a flowchart for calculating an initial value in the biological information measuring apparatus according to the embodiment.
  • FIG. 4 is a flowchart for calculating arterial oxygen saturation in the biological information measuring apparatus according to the embodiment.
  • FIG. 5 is a flowchart for calculating the pulse rate in the biological information measuring apparatus according to the embodiment.
  • the biological information measuring device 30 executes the arithmetic processing program by, for example, its activation. By executing this arithmetic processing program, the units 11 to 21 of the measuring unit 10 are functionally configured.
  • the biological information measuring apparatus 30 measures biological information such as blood oxygen saturation with reduced noise components based on the time-series data acquired by the data acquisition unit 1 by the following operation.
  • the flowcharts (steps S1 to S15) shown in FIGS. 3 and 4 are roughly composed of an initial value calculation flow in steps S1 to S7 and a blood oxygen saturation detection flow in steps S8 to S15.
  • the flowchart (steps S16 to S20) shown in FIG. 5 is a pulse rate detection flow.
  • step S ⁇ b> 1 the component R_dark due to the dark current of the sensor (R) unit 2 and the component IR_dark due to the dark current of the sensor (IR) unit 3 are input from the data acquisition unit 1 to the measurement unit 10. .
  • R_signal_and_dark (i) and IR_signal_and_dark (i) which are data time series related to the intensity change of the light with the wavelength IR and the wavelength R transmitted or reflected through the living tissue, are input from the data acquisition unit 1 to the measurement unit 10.
  • i represents the i-th time series data from 1 to N, and the correspondence between i and time is as described in the principle of the invention.
  • the data R_signal_and_dark related to the wavelength R includes the component R_dark due to the dark current of the sensor (R) unit 2, and the data IR_signal_and_dark related to the wavelength IR includes the component IR_dark due to the dark current of the sensor (IR) unit 3. .
  • step S2 the AC / DC (R) unit 11 performs a dark process of subtracting R_dark from R_signal_and_dark.
  • the AC / DC (IR) unit 12 performs dark processing by subtracting IR_dark from IR_signal_and_dark.
  • step S3 the dark-processed signal of each wavelength is converted into a ratio between the DC component and the AC component (AC component / DC component). More specifically, the IR_dark component is removed from IR_signal_and_dark, and IR_signal, which is the ratio of the direct current component consisting only of the intensity of light derived from the living body to the alternating current component, is calculated. Similarly, the R_dark component is removed from R_signal_and_dark, and R_signal, which is the ratio of the direct current component consisting only of the intensity of light derived from the living body to the alternating current component, is calculated.
  • step S4 the BPF (R) unit 13 performs processing for filtering R_signal and removing unnecessary frequency components to obtain only desired frequency components.
  • the BPF (IR) unit 14 performs processing for filtering IR_signal and removing unnecessary frequency components to obtain a desired frequency component signal component.
  • step S5 with respect to the data R_signal and IR_signal extracted in step S4, the ⁇ R_signal * IR_signal calculation unit 15, the ⁇ R_signal 2 calculation unit 16, and the ⁇ IR_signal 2 calculation unit 17 perform cross correlation ⁇ R_signal * IR_signal and wavelength R calculating autocorrelation Shigumaaru_signal 2 and autocorrelation ShigumaIR_signal 2 for the wavelength IR respectively.
  • is the sum taken from 1 to N with respect to i, and it is assumed that k_v and k_a are constant over a short time interval.
  • step S6 the initial value calculation unit 18 substitutes an appropriate value such as k_v obtained last time for k_v_0 which is the initial value of k_v.
  • step S7 ⁇ R_signal * IR_signal determined in step S5 and step S6, using ⁇ R_signal 2, ⁇ IR_signal 2 and K_v_0, the initial value calculation section 18 is required in blood oxygen saturation detection flow, k_a Initial values k_a_0 and k_ns_0 which are initial values of k_ns are calculated.
  • k_ns is an index for determining whether or not to extract a noise component, and is represented by a ratio between the intensity of the noise component and the intensity of the signal component, for example, as shown in Expression (9).
  • n_square which is a value related to the intensity of the noise component
  • s_square which is a value related to the intensity of the signal component
  • the initial value calculation unit 18 stores k_a_0 in advance in a memory or the like (not shown) (step S7).
  • the initial value calculation unit 18 stores ⁇ R_signal * IR_signal, ⁇ R_signal 2 , ⁇ IR_signal 2 , k_v_0, k_a_0, and k_ns_0 in advance in the memory or the like (not shown).
  • step S8 the SvO2 estimation SpO2 determination unit 19 first determines the noise component state by comparing k_ns_0, which is an index of the noise component, with a predetermined value. Processing is divided into the following two types according to the determination result.
  • the predetermined value is appropriately selected according to the level of the noise component to be removed, and is, for example, 0.05 in this embodiment.
  • Equation (14) is a method for obtaining the average value of the ratio of the signal component corresponding to the change in absorbance of R and the signal component corresponding to the change in absorbance at wavelength R (step S9), and then to step S14. Is executed.
  • Step S10 is executed to calculate the periodicity.
  • k_v selected so that q corresponding to the left side of Expression (4) (refer to Expression (15) below) has the strongest periodicity is the optimal k_v.
  • Equation (4) represents a value for the left side of Equation (4), which is the i-th data series, for a certain k_v.
  • FIG. 6 is a diagram showing an R-kv * IR waveform based on the measurement data used in FIG.
  • FIG. 6A shows a waveform according to the data sequence given by equation (15) for k_v when k_v is given by a value smaller than the optimum value, and FIG. 6B shows that k_v is approximated to the optimum value.
  • FIG. 6C shows an equation for k_v when k_v is given by a value larger than the optimum value (FIG. 6C).
  • the waveform by the data series given by 15) is shown. Note that the waveform is interpolated between the data of the time series data. 6A to 6C, these horizontal axes are predetermined short times (corresponding to data series from 1 to N in the data series number i), and the vertical axis is q in Expression 15. .
  • the periodicity of the equation (15) is detected. More specifically, in the present embodiment, the period of q given by Expression (15) is calculated. That is, in step S10, the initial value of k_v is set to k_v_0, and k given by equation (15) obtained by sequentially changing k_v within a predetermined range (for example, k_v_0 ⁇ 0.5 ⁇ k_v ⁇ k_v_0 + 0.5) is 2 By converting into a value, the width of the waveform is calculated.
  • the threshold value for binarization may be stored in the measurement unit 10 in advance, or the measurement unit 10 may appropriately determine from the amplitude characteristics of the data such as 40 percent of the maximum amplitude of the data, for example. Good.
  • Binarization is a process of converting a value equal to or greater than a predetermined threshold into a constant (for example, 1) and converting a value less than the threshold to another constant (for example, 0). Note that an appropriate value (for example, 0) is selected as the binarization threshold, but the threshold is not limited to this, and can be changed as appropriate.
  • the constant is used, after q in Expression (15) is binarized, it takes a value of 1 or zero, but paying attention to adjacent 1 and zero, adjacent 1 and zero
  • the period in which the set is repeated is the period of the waveform to be calculated. For adjacent 1s and zeros, calculate the period of all waveforms.
  • This predetermined amplitude may be stored in the measurement unit 10 in advance, or the measurement unit 10 may determine from the amplitude characteristics of the data.
  • step S11 the SvO2 estimation SpO2 determination unit 19 sequentially changes each k_v obtained in step S10 from the initial value k_v_0 within a predetermined range (for example, k_v_0 ⁇ 0.5 ⁇ k_v ⁇ k_v_0 + 0.5). A variation in the width of the obtained waveform is calculated, and k_v that minimizes the variation is determined.
  • a predetermined range for example, k_v_0 ⁇ 0.5 ⁇ k_v ⁇ k_v_0 + 0.5.
  • step S10 and step S11 the peak and valley periods of the waveform after binarization processing are used as an index for obtaining k_v such that Equation (15) has periodicity.
  • the present invention is not limited to this. Is not to be done.
  • As another index in the waveform after the binarization processing only the period in which the peaks are repeated or only the period in which the valleys are repeated may be used.
  • the maximum value of peak period-minimum value of peak period, maximum value of peak period-minimum value of peak period, standard deviation of peak period, standard deviation of peak period, maximum value of peak width -Minimum peak width, maximum valley width-Minimum valley width, standard deviation of peak width, standard deviation of valley width may be used.
  • the maximum-minimum amplitude or the standard deviation obtained from the maximum and minimum values of the R_signal-k_v * IR_signal waveform may be used as an index.
  • threshold value 1 and threshold value 2 are provided, and threshold value 1> 0 and threshold value 2 ⁇ 0. If equation (15)> threshold 1, +1, equation (15) ⁇ 1 if threshold 2, and threshold 1 ⁇ equation (15) ⁇ 0 if threshold 2, and +1 pulse width and pulse cycle variation (The maximum value k_v that minimizes the variation of the pulse width or pulse period (maximum value-minimum value or standard deviation) of -1 and the maximum value-minimum value or standard deviation may be obtained as the optimum value.
  • the above-mentioned various periodicity indexes are obtained for a pulse binarized depending on whether the signal corresponding to the equation (15) exceeds the threshold value 1 and a pulse binarized depending on whether the signal exceeds the threshold value 2.
  • the optimal value may be k_v that is calculated and minimizes the average value (including simple average, harmonic average, and geometric average).
  • three or more threshold values are provided, and the above-mentioned various periodicity indexes are obtained for each of three or more binarized pulses binarized depending on whether or not the signal corresponding to the equation (15) exceeds each threshold value.
  • k_v that minimizes the average value may be set as the optimal value. Increasing the number of thresholds increases the amount of calculation, but has the advantage of improving the accuracy of periodicity evaluation.
  • k_v that minimizes the variation of the index within a predetermined time may be obtained from the standard deviation of the index or the difference between the maximum value and the minimum value of the index.
  • k_v that minimizes each index may be different.
  • the harmonic average value of k_v that minimizes each index is set as the optimum value.
  • the average value may be a simple average value or a geometric average value.
  • the closest k_v among the plurality of k_v that minimize the plurality of indices may be employed.
  • an average value of a plurality of indexes (simple average value, harmonic average value, geometric average value, etc.) may be evaluated as an index.
  • step S10 and step S11 as an example of using periodicity, an example in which k_v is obtained so that the left side of equation (15) satisfies the periodicity is given, but the present invention is not limited to equation (15).
  • K_v may be used in place of equation (15) as long as it is an equation represented by signal components.
  • step S12 the SvO2 estimation SpO2 determination unit 19 calculates k_a by substituting k_v obtained in step S11 into equation (8) and solving this equation.
  • Expression (8) may be obtained by replacing R_signal and IR_signal with respective time differences.
  • step S10 and step S11 when a plurality of k_v is obtained according to a plurality of indices, k_a is calculated for each k_v so that the equal sign of equation (8) is established. Also good.
  • the method of determining the final k_a from a plurality of k_a may be an average value (simple average value, harmonic average value, geometric average value, etc.) of the plurality of k_a as the final k_a, The one closest to the final k_a may be the final k_a this time, or the average value of the plurality of k_a excluding the maximum and minimum may be the final k_a.
  • the load average may be applied by applying a weight corresponding to the absolute value of the difference from the previous k_a.
  • k_v is determined by the above method for about 200 sets of R_signal and IR_signal, and when obtaining k_a, 200 sets of data are divided into four, for example, and four sets of equations (8) are solved to calculate four k_a. Then, those average values (simple average, harmonic average, geometric average value, load average value weighted by the absolute value of the difference from the previous k_a, etc.) may be obtained. You may further average the average value of k_a calculated
  • step S10 and step S11 when a plurality of k_vs are obtained from a plurality of indices according to each, the median value of the continuous k_v range or the immediately preceding arterial oxygen saturation calculation is obtained. A value closest to k_v may be set as the optimum value.
  • R_signal-k_v * IR_signal has a strong periodicity over a wide range of k_v, but even in this case, the value obtained by multiplying the above-mentioned various indicators by the absolute value of the difference between the previous k_v and k_v Since the optimal value of k_v is almost the same as the previous k_v, a value sufficiently close to true k_a can be obtained even if the same processing as when the noise index is large is performed. When importance is attached to the simplification of the program rather than the calculation speed, the processing may not be divided depending on the size of the noise index.
  • step S ⁇ b> 13 the SvO2 estimation SpO2 determination unit 19 calculates k_ns that serves as an index of the noise component using Expression (9). For calculating k_ns, ⁇ R_signal * IR_signal, ⁇ R_signal 2 and ⁇ IR_signal 2 stored in the memory in step S7 are used.
  • step S14 the SvO2 estimation SpO2 determination unit 19 calculates the reliability of k_a or the reliability of k_v, and calculates the blood oxygen saturation based on k_a.
  • the reliability of k_a is a value representing the degree of error included in k_a.
  • the reliability of k_v is a value indicating the degree of error included in k_v.
  • step S15 the SvO2 estimation SpO2 determination unit 19 stores k_v as k_v_0 in preparation for the next measurement.
  • the SpO2 output unit 22 and the reliability output unit 24 output the blood oxygen saturation level and the k_a reliability level detected in step S14, respectively.
  • the reliability output unit 24 may output the reliability of k_v instead of the reliability of k_a.
  • the measurement unit 10 compares k_ns calculated in step S13 with the first predetermined value, and when k_ns exceeds the first predetermined value, the fact that k_ns has exceeded the first predetermined value. Is output to the SpO2 output unit 22.
  • the measurement unit 10 compares the reliability of k_a with a second predetermined value, and if k_a exceeds the second predetermined value, a warning indicating that k_a has exceeded the second predetermined value. May be further output to the reliability output unit 24. Further, the measurement unit 10 compares the reliability of k_v with the third predetermined value using the reliability of k_v instead of the reliability of k_a, and when k_v exceeds the third predetermined value May further output a warning indicating that k_v exceeds the third predetermined value to the reliability output unit 24.
  • the predetermined value of k_ns is changed as follows.
  • the predetermined value of k_ns is set to a small value when the arterial oxygen saturation is smaller than the predetermined arterial oxygen saturation (when k_a and k_v are large and the venous blood oxygen saturation is small)
  • the predetermined value of k_ns is set to be large. Good.
  • k_ns By changing the predetermined value of k_ns according to the value of arterial oxygen saturation calculated in this way, for example, when arterial oxygen saturation is large, the threshold value is increased, and when arterial oxygen saturation is small, Warning and output prohibition can be performed with the same value.
  • values determined based on past measurement data may be stored in the measurement unit 10 in advance. Alternatively, it may be appropriately changed according to the living body or the state of the living body.
  • a value z given by any one of Equations (16) to (21) may be used as an index of the reliability of the obtained k_a or k_v. When the absolute value of z is large, the reliability of k_a is low. Further, when the absolute value of z is large, the reliability of k_v is low.
  • the variation of the value w given by the following equation (22) (standard deviation, maximum value ⁇ minimum value, etc.) may be used.
  • a small variation in the value w indicates that the reliability of the obtained k_a is high.
  • the reliability of k_a may be evaluated from the variation of y with respect to the regression line (x, y) where R_signal is y and IR_signal is x, the difference between the maximum value and the minimum value, and the like.
  • ⁇ Pulse rate detection flow (S16 to S20)>
  • the pulse rate calculation unit 20 starts a pulse rate detection flow.
  • the pulse rate calculation unit 20 obtains a pulse waveform from which the noise component has been removed from k_v calculated in step S11 of the blood oxygen saturation flow.
  • the pulse rate calculation unit 20 performs binarization processing on the pulse wave waveform from which the noise component has been removed, similarly to the binarization processing performed in step S10.
  • the threshold value in this case may be 0, or may be the threshold value used when determining the k_v.
  • step S19 the pulse rate is calculated.
  • the pulse rate may be calculated from the Fourier transform of R_signal (i) ⁇ k_v * IR_signal (i) or the frequency that gives the peak of its absolute value.
  • step S20 the pulse rate calculation unit 20 outputs the calculated pulse rate to the pulse rate output unit 23, and the pulse rate detection flow ends.
  • the biological information measuring device 30 measures the oxygen saturation and the pulse rate by the oxygen saturation detection flow and the pulse rate detection flow.
  • the noise component is removed by utilizing the periodicity of the signal component, so that the arithmetic processing can be simplified and the amount of arithmetic processing can be reduced compared to the prior art. . Therefore, it is possible to suppress power consumption associated with arithmetic processing.
  • a battery can be used for the biological information measuring device 30, and a small and lightweight biological information measuring device convenient for carrying can be provided. For this reason, for example, even if a mountain climber or a home oxygen therapy patient always carries, a physical burden can be reduced.
  • the biological information measuring apparatus 30 determines whether to extract a noise component based on an index having information on the ratio between the intensity of the signal component and the intensity of the noise component, When the noise component is negligibly small, the calculation for removing the noise component can be omitted, so that the calculation time for obtaining biological information is shortened, and the battery operating time is lengthened by suppressing power consumption. In addition, the biological information can be obtained more quickly.
  • the biological information measuring device 30 since the biological information measuring device 30 according to the present embodiment outputs biological information, signal reliability, and noise reliability by voice, characters, light, and the like, it is possible to easily check these. Furthermore, the biological information measuring device 30 according to the present embodiment outputs a warning indicating that the index exceeds a predetermined value, or a warning indicating a decrease in signal reliability or noise reliability. It is also possible to alert a person or the like regarding the handling of biological information. The handling of the calculated biological information can be changed according to the index, the noise reliability, and the signal reliability. For example, remeasurement or the like can be performed based on the index.
  • the biological information measuring apparatus 30 can reduce erroneous measurement due to, for example, a double peak by using a binarized waveform when calculating the pulse rate.
  • the biological information measuring method can calculate biological information in an earlier calculation time with the same calculation resource (hardware resource).
  • the biological information measuring apparatus 30 that detects a change in the intensity of light having two wavelengths with periodicity and obtains blood oxygen saturation is illustrated.
  • pulse based on changes in the intensity of light of one wavelength with periodicity, pulse, arrhythmia (atrial fibrillation / extrasystole) detection, defibrillation monitoring, autonomic nerve damage, blood vessel age, etc.
  • arrhythmia atrial fibrillation / extrasystole
  • defibrillation monitoring autonomic nerve damage, blood vessel age, etc.
  • the present invention can also be applied to a biological information measuring device to be performed.
  • the present invention can also be applied to a device that measures biological information such as electrocardiogram.
  • the periodicity of the signal component is used when calculating k_v.
  • Equation (23) obtained by Fourier transforming q given by Equation (15) is used. It may be used.
  • F is a Fourier transform
  • is a frequency.
  • may be used as an index, and k_v may be obtained from ⁇ that maximizes the peak height / peak width.
  • An index indicating whether k_v is optimal may be obtained by multiplying this index by the absolute value of the difference between k_v and the previous k_v.
  • the pulse rate may be obtained by multiplying ⁇ giving the peak of F ( ⁇ ) when the optimum k_v is obtained by multiplying 60, or the pulse rate is obtained from the period of R_signal ⁇ k_v * IR_signal using the optimum k_v. May be.
  • the periodicity of the signal component is used to calculate k_v.
  • q given by equation (15) is changed from the square of q to q You may use Formula (24) which is the Fourier transform of the signal which subtracted the time average of a square.
  • P is the Fourier transform and ⁇ is the frequency.
  • the peak height / peak width of P ( ⁇ ) may be used as an index, and k_v may be obtained from ⁇ that maximizes the peak height / peak width.
  • An index indicating whether k_v is optimal may be obtained by multiplying this index by the absolute value of the difference between k_v and the previous k_v.
  • a value obtained by multiplying ⁇ giving the peak of P ( ⁇ ) when the optimum k_v is obtained by 30 times can be used as the pulse rate.
  • k_a may be obtained using any one of the following equations (25) to (34) instead of equation (14).
  • Expression (25) and Expression (26) are expressions for obtaining k_a from the ratio of time differences between R_signal and IR_signal.
  • Expressions (27) to (29) are expressions for obtaining k_a from the ratio between the autocorrelation and cross-correlation of R_signal and IR_signal.
  • Expression (30) is an expression for obtaining k_a from the slope of the regression line of R_signal and IR_signal. Note that ⁇ in the following formulas (30) to (34) represents a time difference of each data series.
  • the novel biological information signal processing apparatus includes the first time-series signal including the first signal component having the periodicity and the first noise component, and the first signal component having a predetermined relationship with the first signal component. Based on a second time-series signal including two signal components and a second noise component having a predetermined relationship with the first noise component, and the predetermined relationship between the first noise component and the second noise component.
  • a signal generator that generates a signal including the first signal component from the first time-series signal and the second time-series signal, and a periodicity of the generated signal in a first predetermined time range
  • an estimation unit for estimating the predetermined relationship between the first noise component and the second noise component in the first predetermined time range.
  • the signal generation unit further generates a binarized signal by performing binarization processing on the generated signal, and the estimation unit generates a cycle of the binarized signal. It is preferable to estimate the period of the generated signal using the property.
  • the estimation unit calculates at least any one of a pulse width variation and a pulse cycle variation of the binarized signal in order to calculate the periodicity of the binarized signal. It is preferable to use these.
  • the estimation unit calculates a plurality of maximum values and / or a plurality of minimum values of the generated signal in a first predetermined time range, and fluctuations in the plurality of maximum values. It is preferable to calculate the period of the generated signal using fluctuations in the plurality of minimum values.
  • the estimation unit calculates the period of the generated signal based on a plurality of indexes having information on the period of the generated signal.
  • the signal generation unit further generates a Fourier signal by performing Fourier transform on the generation signal in the first predetermined time range
  • the estimation unit It is preferable to estimate the predetermined relationship between the first noise component and the second noise component in the first predetermined time range based on a peak width of a Fourier signal.
  • the estimation unit further calculates the period of the first signal component or the period of the second signal component using the periodicity of the generated signal.
  • the estimation unit includes the predetermined relationship between the first noise component and the second noise component in the first predetermined time range, and the first predetermined time.
  • the predetermined relationship between the first signal component and the second signal component is further estimated using the first signal component and the first noise component being independent in range.
  • the estimation unit includes the predetermined relationship between the first noise component and the second noise component in the first predetermined time range, and a second predetermined time range. And further estimating the predetermined relationship between the first signal component and the second signal component in the second predetermined time range using the first signal component and the first noise component being independent of each other. It is preferable to do this.
  • the second predetermined time range is plural, and the estimation unit includes the first signal component and the second signal component for each second predetermined time range. It is preferable to estimate each of the predetermined relationships.
  • the estimation unit uses the predetermined relationship between the first signal component and the second signal component for each second predetermined time range, and uses the first signal. It is preferable to calculate an average value of the predetermined relationship between a component and the second signal component.
  • the estimation unit includes the predetermined relationship between the first signal component and the second signal component in the first predetermined time range, and the second predetermined time.
  • an average value of the predetermined relationship between the first signal component and the second signal component is calculated using the predetermined relationship between the first signal component and the second signal component for each range.
  • the average value is preferably a value obtained by weighted average.
  • the estimation unit relates to a ratio between the first noise component and the first signal component as an index for determining whether or not to remove the first noise component. If it is determined that the first noise component is to be removed by further calculating the index having information and comparing the index with a first predetermined value, the first time-series signal and the first Preferably, the predetermined relationship between the first signal component and the second signal component is estimated based on two time series signals.
  • the noise component is removed by using the periodicity, the amount of signal processing necessary for removing the noise component can be reduced as compared with the conventional technique. For this reason, by reducing the signal processing amount, it is possible to suppress the power consumption accompanying the calculation of noise component removal. Further, by performing signal processing according to the index, unnecessary signal processing is not required, so that signal processing can be speeded up.
  • the estimation unit further calculates a signal reliability indicating a degree of error included in the predetermined relationship between the first signal component and the second signal component, It is preferable to further include an output unit that outputs the signal reliability.
  • the estimation unit further calculates a noise reliability indicating a degree of error included in the predetermined relationship between the first noise component and the second noise component, It is preferable to further include an output unit that outputs noise reliability.
  • the estimation unit compares the signal reliability with a second predetermined value, and when the signal reliability exceeds the second predetermined value, Preferably, the output unit further outputs a warning indicating that the signal reliability has exceeded the second predetermined value.
  • the estimation unit compares the noise reliability with a third predetermined value, and when the noise reliability exceeds the third predetermined value, Preferably, the output unit further outputs a warning indicating that the noise reliability has exceeded the third predetermined value.
  • the biological information signal processing device having such a configuration, it is possible to recognize the degree of error included in the predetermined relationship estimated by the estimation unit by referring to the noise reliability or the signal reliability. It becomes.
  • the novel biological information signal processing method includes a first time-series signal including a first signal component having a periodicity and a first noise component in a first predetermined time range, and the first signal.
  • a second time-series signal including a second signal component having a predetermined relationship with a component and a second noise component having a predetermined relationship with the first noise component; and the first noise component and the second noise component Based on the predetermined relationship, a signal generation step of generating a signal including the first signal component from the first time-series signal and the second time-series signal, and using the periodicity of the generated signal And an estimating step for estimating the predetermined relationship between the first noise component and the second noise component.
  • a binarization signal is further generated by performing binarization processing on the generation signal, and in the estimation step, a cycle of the binarization signal is generated. It is preferable to estimate the period of the generated signal using the property.
  • the generated signal is compared with at least two threshold values, and at least two types are determined based on whether the generated signal exceeds the threshold value.
  • the above binarized signal is further generated, and in the estimation step, the period of the generated signal is estimated using the periodicity of the at least two types of binarized signals.
  • the binarization processing compares the generated signal with a positive threshold value and a negative threshold value that serve as a reference for binarization, and the generated signal exceeds the positive threshold value.
  • the generated signal is converted to a positive first constant, and if the generated signal is less than a negative threshold, the generated signal is converted to a negative second constant, and the generated signal is negative It is preferable that the generated signal is converted to zero when the threshold value is greater than or equal to the threshold value and less than or equal to the positive threshold value.
  • the period of the binarized signal is calculated based on at least one of a pulse width variation and a pulse cycle variation of the binarized signal. It is preferable to do this.
  • a plurality of maximum values and / or a plurality of minimum values of the generated signal are further calculated, and fluctuations in the plurality of maximum values and / or a plurality of minimum values are calculated. It is preferable to calculate the period of the generated signal using fluctuation.
  • the estimation step in the estimation step, the first noise component and the second noise in the first predetermined time range using a plurality of indexes representing the periodicity of the generated signal. It is preferable to estimate the predetermined relationship with components.
  • the estimation step further estimates an amount corresponding to the period of the first signal component or the second signal component using the periodicity of the generated signal.
  • the noise component is removed by using the periodicity, the amount of signal processing necessary for removing the noise component can be reduced as compared with the prior art. For this reason, by reducing the amount of signal processing, it is possible to suppress power consumption associated with signal processing for noise component removal.
  • the novel biological information measuring device receives at least the first measurement data or the second data obtained by irradiating the living body with a plurality of lights having different wavelengths and receiving the lights transmitted or reflected by the living body.
  • a biological information measuring apparatus for measuring biological information of the living body based on measurement data, wherein the first measuring unit measures first measurement data including a first signal component having a periodicity and a first noise component;
  • a second measurement unit for measuring second measurement data including a second signal component having a predetermined relationship with the first signal component and a second noise component having a predetermined relationship with the first noise component; and the first measurement data And the first measurement data and the second measurement data based on the second measurement data and the predetermined relationship between the first noise component and the second noise component.
  • a signal generation unit that generates a signal including a signal component, and an estimation unit that estimates the predetermined relationship between the first noise component and the second noise component using the periodicity of the generated signal. .
  • the estimation unit estimates the predetermined relationship between the first noise component and the second noise component using the periodicity of the generated signal.
  • the estimation unit is independent of the predetermined relationship between the first noise component and the second noise component, and the first signal component and the first noise component. It is preferable to further estimate the predetermined relationship between the first signal component and the second signal component.
  • the period of the first signal component or the period of the second signal component is due to pulsation of arterial blood, and the first noise component or the second noise component is the biological body. It is preferable that the period includes information on the pulse rate.
  • the predetermined relationship between the first signal component and the second signal component includes information on arterial oxygen saturation.
  • the living body information measuring apparatus having such a configuration, it is possible to provide a living body information measuring apparatus that measures the blood oxygen saturation of a living body with reduced calculation processing amount and reduced power consumption.

Abstract

A biological information signal processing apparatus comprises: a signal generating unit that generates, from first and second time series signals, a signal including a first signal component, based on the first time series signal including both the first signal component having a periodicity and a first noise component, based on a second time series signal including both a second signal component having a predetermined relationship with the first signal component and a second noise component having a predetermined relationship with the first noise component, and based on the predetermined relationship between the first and second noise components; and an estimating unit that uses the periodicity of the generated signal within a first predetermined time range to estimate the predetermined relationship between the first and second noise components within the first predetermined time range.

Description

生体情報信号処理装置、生体情報信号処理方法および生体情報測定装置Biological information signal processing device, biological information signal processing method, and biological information measuring device
 本発明は、時系列信号からノイズ成分を除去する生体情報信号処理装置、生体情報信号処理方法および生体情報測定装置に関する。 The present invention relates to a biological information signal processing device, a biological information signal processing method, and a biological information measuring device that remove noise components from time-series signals.
 従来、ノイズ成分が重畳した時系列データからノイズ成分を除去する信号処理に関する技術が、様々な信号処理装置に応用されてきた。特に時系列データが生体情報に関する情報を含んでいる場合には、上記の信号処理装置は、生体情報測定装置と呼ばれている。生体情報測定装置は、生体組織から生体情報を非侵襲で検出する装置であり、具体的には光電脈波計と呼ばれる生体の脈波波形および脈拍数を測定する測定装置や、パルスオキシメータと呼ばれる動脈血中酸素飽和濃度を測定する測定装置等である。これらの測定装置の原理は、生体組織を透過または反射した光を受光することによって得られる、生体組織の脈動による変動分に対応した信号成分に基づいて、血中における吸光物質の濃度等の生体情報を求めるものである。 Conventionally, techniques related to signal processing for removing noise components from time-series data on which noise components are superimposed have been applied to various signal processing apparatuses. In particular, when the time-series data includes information related to biological information, the above signal processing device is called a biological information measuring device. The biological information measuring device is a device that non-invasively detects biological information from biological tissue, specifically, a measuring device called a pulse wave meter and a pulse oximeter that measures the pulse waveform and pulse rate of a living body called a photoelectric pulse wave meter. It is a measuring device or the like that measures the arterial blood oxygen saturation concentration. The principle of these measuring devices is that a living body such as the concentration of a light-absorbing substance in blood is obtained based on a signal component obtained by receiving light transmitted or reflected through a living tissue and corresponding to fluctuations due to pulsation of the living tissue. It seeks information.
 一般に、生体組織を透過または反射した光を受光することによって得られる、生体情報の検出に必要なデータには様々なノイズ成分が重畳されている。図1は、生体組織を透過または反射した光を受光することによって得られる、生体情報の検出に必要なデータの一例を示す図である。図1の横軸は、時間であり、その縦軸は、生体組織を透過または反射した光の強度である。ノイズ成分は、主に、生体情報測定装置を使用している際に、生体が体を動かす等の体動を行うことによるものである。図1に示す例では、当初、体動等に起因するノイズ成分が信号成分に重畳していないが、所定の時間から信号成分にノイズ成分が重畳している。このようにノイズ成分が信号成分に重畳すると生体情報の算出において誤差要因となる。このため、ノイズ成分を除去することが望まれている。 Generally, various noise components are superimposed on data necessary for detection of biological information obtained by receiving light transmitted or reflected through biological tissue. FIG. 1 is a diagram illustrating an example of data necessary for detection of biological information obtained by receiving light transmitted or reflected through a biological tissue. The horizontal axis in FIG. 1 is time, and the vertical axis is the intensity of light transmitted or reflected through the living tissue. The noise component is mainly due to body movement such as movement of the body when the biological information measuring device is used. In the example shown in FIG. 1, noise components due to body movement or the like are not superimposed on the signal components at the beginning, but the noise components are superimposed on the signal components from a predetermined time. Thus, if a noise component is superimposed on a signal component, it becomes an error factor in calculation of biological information. For this reason, it is desired to remove noise components.
 互いに波長の異なる複数の光を生体にそれぞれ照射した場合に、生体組織を透過または反射した光の強度における直流交流比に基づいて、生体情報を算出する技術が提案されてきた。特に、信号成分にノイズ成分が重畳している場合には、各波長についての直流交流比は、信号成分とノイズ成分とで表される。このように表されたノイズ成分を算出する技術として、信号成分とノイズ成分との相互相関を用いた手法が挙げられる。例えば、ノイズ成分の除去にあたって、特許文献1では、各波長についての直流交流比が求められ、所定周波数以上にはノイズ成分が含まれるとともに全周波数領域にわたってノイズ成分の波長による比は一定であるという仮定の下に、ノイズ成分の波長による比が算出され、信号成分とノイズ成分との相互相関を用いることによってノイズ成分除去波形が算出されている。また、例えば、特許文献2では、信号成分とノイズ成分との相関が小さいという条件の下に、信号成分のパワーが最大になるような信号成分の波長による比およびノイズ成分の波長による比を求めることによってノイズ成分が除去されている。 A technique has been proposed in which biological information is calculated based on a direct current to alternating current ratio in the intensity of light transmitted or reflected through a living tissue when a living body is irradiated with a plurality of lights having different wavelengths. In particular, when a noise component is superimposed on a signal component, the DC / AC ratio for each wavelength is represented by the signal component and the noise component. As a technique for calculating the noise component represented in this way, there is a technique using a cross-correlation between a signal component and a noise component. For example, in the removal of noise components, in Patent Document 1, the DC / AC ratio for each wavelength is obtained, the noise component is included above a predetermined frequency, and the ratio of the noise component according to the wavelength is constant over the entire frequency range. Under the assumption, the ratio of the noise component depending on the wavelength is calculated, and the noise component removal waveform is calculated by using the cross-correlation between the signal component and the noise component. Further, for example, in Patent Document 2, the ratio by the wavelength of the signal component and the ratio by the wavelength of the noise component that obtain the maximum power of the signal component are obtained under the condition that the correlation between the signal component and the noise component is small. Thus, the noise component is removed.
日本国特許第3627214号公報Japanese Patent No. 3627214 米国特許第7254433号明細書US Pat. No. 7,254,433
 ところで、特許文献1および特許文献2の技術では、演算処理量が比較的多いため、消費電力が大きくなってしまう。このことは、特に、携帯用の生体情報測定装置では、通常、電池で駆動されるため、消費電力の点で重大な問題となる。 By the way, in the techniques of Patent Document 1 and Patent Document 2, since the amount of calculation processing is relatively large, power consumption increases. This is a serious problem in terms of power consumption, especially in portable biological information measuring devices, which are usually driven by batteries.
 また、生体情報測定装置は、手術室、集中治療室等の病棟のみならず、呼吸不全患者、在宅酸素療法患者の日常生活中の呼吸状態のデータ収集や管理、睡眠時無呼吸症候群のスクリーニング、登山等のスポーツ分野等常時身に着ける用途にまで用いられつつある。このような状況に鑑みても、生体情報測定装置には、小型化、軽量化、省電力化および低価格化等も求められている。 In addition, the biological information measuring device is not only for operating rooms, intensive care units, etc., but also for respiratory failure patients, home oxygen therapy patients in daily life respiratory data collection and management, sleep apnea syndrome screening, It is being used even for sportswear such as mountain climbing that can be worn at all times. Even in view of such a situation, the biological information measuring apparatus is also required to be reduced in size, weight, power saving, price reduction, and the like.
 例として取りあげた生体情報測定装置に限らず、一般に、時系列データからノイズ成分を除去する信号処理を行う信号処理装置においても、ノイズ成分を除去する信号処理は消費電力の点で重大な問題といえる。 In addition to the biological information measuring device taken up as an example, in general, in signal processing devices that perform signal processing for removing noise components from time-series data, signal processing for removing noise components is a serious problem in terms of power consumption. I can say that.
 本発明は、上述の事情に鑑みて為された発明であり、その目的は、信号処理量を低減し消費電力をより抑えた生体情報信号処理装置、生体情報信号処理方法および生体情報測定装置を提供することである。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a biological information signal processing device, a biological information signal processing method, and a biological information measurement device that reduce the amount of signal processing and further reduce power consumption. Is to provide.
 本発明の一態様によれば、周期性を有する第1信号成分と第1ノイズ成分とを含む第1の時系列信号と、前記第1信号成分と所定の関係を有する第2信号成分および前記第1ノイズ成分と所定の関係を有する第2ノイズ成分を含む第2の時系列信号と、前記第1ノイズ成分と前記第2ノイズ成分との前記所定の関係とに基づいて、前記第1の時系列信号と前記第2の時系列信号とから前記第1信号成分を含む信号を生成し、所定時間範囲での前記生成信号の周期性を用いて、前記所定時間範囲での前記第1ノイズ成分と前記第2ノイズ成分との前記所定の関係を推定する。これにより、ノイズ成分除去のために必要な信号処理量を従来技術より低減することができる。 According to one aspect of the present invention, a first time-series signal including a first signal component having a periodicity and a first noise component, a second signal component having a predetermined relationship with the first signal component, and the Based on the second time-series signal including the second noise component having a predetermined relationship with the first noise component, and the predetermined relationship between the first noise component and the second noise component, the first A signal including the first signal component is generated from the time-series signal and the second time-series signal, and the first noise in the predetermined time range is generated using periodicity of the generated signal in the predetermined time range. The predetermined relationship between a component and the second noise component is estimated. Thereby, the amount of signal processing required for noise component removal can be reduced as compared with the prior art.
生体組織を透過または反射した光を受光することによって得られる、生体情報の検出に必要なデータの一例を示す図である。It is a figure which shows an example of the data required for the detection of biological information obtained by receiving the light which permeate | transmitted or reflected the biological tissue. 本発明の一実施形態における生体情報測定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the biological information measuring device in one Embodiment of this invention. 前記生体情報測定装置における初期値を算出するフローチャートである。It is a flowchart which calculates the initial value in the said biological information measuring device. 前記生体情報測定装置における動脈血酸素飽和度を算出するフローチャートである。It is a flowchart which calculates the arterial blood oxygen saturation in the said biological information measuring device. 前記生体情報測定装置における脈拍数を算出するフローチャートである。It is a flowchart which calculates the pulse rate in the said biological information measuring device. 図1で示された測定データによるR-kv*IRの波形を示す図である。It is a figure which shows the waveform of R-kv * IR by the measurement data shown by FIG.
 本発明の原理および実施の形態について述べる。なお、便宜上、信号処理装置のうち、特に生体情報測定装置を例として取りあげるが、生体情報測定装置のみならず、ノイズ成分を除去する信号処理装置にも本発明は適用可能である。 The principle and embodiment of the present invention will be described. For convenience, a biological information measuring device is taken as an example of signal processing devices, but the present invention is applicable not only to a biological information measuring device but also to a signal processing device that removes noise components.
(本発明の原理)
 まず、本発明の原理について説明する。この説明するにあたり、一例として、互いに波長IR、Rの異なる複数の光を生体へそれぞれ照射して前記生体を透過または反射した各光をそれぞれ受光することによって得られた各測定データに基づいて前記生体の生体情報として血中酸素飽和度を測定する場合について説明する。
(Principle of the present invention)
First, the principle of the present invention will be described. In this description, as an example, based on each measurement data obtained by irradiating a living body with a plurality of lights having different wavelengths IR and R, respectively, and receiving or receiving each light transmitted or reflected by the living body. A case where blood oxygen saturation is measured as biological information of a living body will be described.
 ランバート・ベールの法則によって、生体組織を透過または反射したある波長の光の強度における交流成分と直流成分との比は、その波長での生体組織の吸光度の変化分に等しいと近似される。 According to Lambert-Beer's law, the ratio between the alternating current component and the direct current component in the intensity of light having a certain wavelength transmitted or reflected through the living tissue is approximated to be equal to the change in absorbance of the living tissue at that wavelength.
 上記ランバート・ベールの法則による近似を用いることによって、赤外波長IRについての、透過光または反射光の強度の直流成分と交流成分との比である赤外直交比IR_signalは、波長IRについての生体組織の吸光度の変化分と等しいと見なすことができる。同様に、赤色波長Rについての、透過光または反射光の強度の直流成分と交流成分との比である赤色直交比R_signalも、波長Rについての生体組織の吸光度の変化分と等しいと見なすことができる。 By using the Lambert-Beer law approximation described above, the infrared orthogonal ratio IR_signal, which is the ratio of the direct current component and the alternating current component of the transmitted or reflected light intensity for the infrared wavelength IR, It can be regarded as equal to the change in the absorbance of the tissue. Similarly, the red orthogonal ratio R_signal, which is the ratio of the direct current component to the alternating current component of the intensity of transmitted light or reflected light for the red wavelength R, may also be regarded as equal to the change in the absorbance of the living tissue for the wavelength R. it can.
 前記赤外直交比IR_signalは、(1)式のように表される。
Figure JPOXMLDOC01-appb-I000001
The infrared orthogonal ratio IR_signal is expressed as in equation (1).
Figure JPOXMLDOC01-appb-I000001
 ここで、sは、吸光度の変化分の信号成分で、nは、信号成分に重畳しているノイズ成分である。 Here, s is a signal component corresponding to a change in absorbance, and n is a noise component superimposed on the signal component.
 そして、前記赤色直交比R_signalは、(2)式で表される。
Figure JPOXMLDOC01-appb-I000002
The red orthogonal ratio R_signal is expressed by equation (2).
Figure JPOXMLDOC01-appb-I000002
 ここで、k_aは、波長IRにおける吸光度の変化分の信号成分sと波長Rの吸光度の変化分の信号成分との比であり、k_vは、波長IRの信号成分に重畳したノイズ成分nと波長Rの信号成分に重畳したノイズ成分との比である。 Where k_a is the ratio of the signal component s of the absorbance change at the wavelength IR to the signal component of the absorbance change at the wavelength R, and k_v is the noise component n and the wavelength superimposed on the signal component of the wavelength IR. This is the ratio of the noise component superimposed on the R signal component.
 式(2)のk_aと血中酸素飽和度とは、一対一に対応することが知られており、k_aを求めることによって、血中酸素飽和度を求めることができる。 It is known that k_a in formula (2) and blood oxygen saturation correspond one-to-one, and blood oxygen saturation can be obtained by obtaining k_a.
 また、(1)式にk_vを乗算することによって(3)式が得られ、(3)式から(2)式を減算することによって、以下の(4)式が得られる。
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000004
Further, the equation (3) is obtained by multiplying the equation (1) by k_v, and the following equation (4) is obtained by subtracting the equation (2) from the equation (3).
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000004
 同様に、上の(1)式にk_aを乗算することによって(5)式が得られ、(5)式から(2)式を減算することによって、以下の(6)式が得られる。
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000006
Similarly, equation (5) is obtained by multiplying the above equation (1) by k_a, and the following equation (6) is obtained by subtracting equation (2) from equation (5).
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000006
 ここで、信号成分sとノイズ成分nは、独立であるという関係、すなわち以下の関係式(7)を用い、かつ、短い時間内では、k_aおよびk_vが一定という条件の下で、上の(4)式と(6)式の相関をとることによって、式(8)が得られる。
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000008
Here, the relationship that the signal component s and the noise component n are independent, that is, the following relational expression (7) is used, and under the condition that k_a and k_v are constant within a short time ( Equation (8) is obtained by correlating equations 4) and (6).
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000008
 ここで、Σは、k_aおよびk_vが一定であるような短い時間に関しての総和である。iは、光の強度の変化分の時系列データIR_signal、R_signalのデータ番号であり、データの測定時間間隔をΔt、測定開始時刻をt0として、t=Δt*i+t0という関係で時間tと結ばれている。(8)式にはk_vとk_aという未知数が2つ含まれているため、(8)式のみからk_aとk_vとを求めることができない。 Here, Σ is the sum for a short time such that k_a and k_v are constant. i is the data number of the time-series data IR_signal and R_signal corresponding to the change in the intensity of light, and the measurement time interval of the data is Δt, the measurement start time is t0, and t = Δt * i + t0 Tied. Since equation (8) contains two unknowns k_v and k_a, k_a and k_v cannot be obtained from equation (8) alone.
 ここで、k_vを求めるために(4)式の右辺は、ほぼ周期的であることに着目し、(4)式の左辺が周期性をもつようなk_vを求める。 Here, in order to obtain k_v, paying attention to the fact that the right side of equation (4) is almost periodic, k_v is obtained such that the left side of equation (4) has periodicity.
 このように求められたk_vを(8)式に代入して、(8)式を満たす場合のk_aを求める。このk_aに基づいて、ノイズ成分を低減した血中酸素飽和度を求めることができる。そして、上述の演算方法では、例えば、演算処理量が比較的大きなフーリエ変換等を用いる必要がないので、演算処理量をより低減することが可能となる。 * Substituting k_v obtained in this way into equation (8) to obtain k_a when equation (8) is satisfied. Based on this k_a, the blood oxygen saturation with reduced noise components can be determined. In the above-described calculation method, for example, it is not necessary to use a Fourier transform or the like having a relatively large calculation processing amount, so that the calculation processing amount can be further reduced.
(実施の形態)
 以下、本発明に係る実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成要素は、同一の構成及び機能を有するものであることを示し、適宜、その説明を省略する。
(Embodiment)
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, an embodiment of the invention will be described with reference to the drawings. In addition, the component which attached | subjected the same code | symbol in each figure shows having the same structure and function, The description is abbreviate | omitted suitably.
 まず、本発明の実施形態の構成について説明する。図2は、実施形態における生体情報測定装置の構成を示すブロック図である。なお、図中の実線は、後述する脈派の時系列データに相当する電気信号成分の各ブロック間での流れを表す。 First, the configuration of the embodiment of the present invention will be described. FIG. 2 is a block diagram illustrating a configuration of the biological information measurement device according to the embodiment. In addition, the solid line in the figure represents the flow between each block of the electric signal component corresponding to the time-series data of the pulse group described later.
 この生体情報測定装置30は、例えば体動等によるノイズ成分の影響を除去した生体情報を測定するために、測定対象(被験体)の生体を透過または反射した光の強度の時系列データを用いて測定対象の体動等による生体情報測定値への影響を除去し、ノイズ成分が除去された時系列データに基づいて、例えば血中酸素飽和度等の生体情報を測定する測定装置である。 This biological information measuring device 30 uses time-series data of the intensity of light transmitted or reflected through the living body of the measurement target (subject) in order to measure biological information from which the influence of noise components due to body movement or the like is removed. Thus, it is a measuring device that measures biological information such as blood oxygen saturation, for example, based on time-series data from which the influence on the biological information measurement value due to body movement or the like to be measured is removed and the noise component is removed.
 より具体的に言えば、生体情報測定装置30の生体情報測定装置本体は、互いに波長の異なる複数の光を生体へそれぞれ照射して生体を透過または反射した各光をそれぞれ受光することによって得られた各測定データに基づいて生体の生体情報を測定する。該生体情報測定装置本体は、測定データに基づいて生成され周期性を有する信号成分を含むデータから、周期性を用いることによって信号成分を除く成分であるノイズ成分を抽出し、データからノイズ成分を除去し、ノイズ成分を除去したデータに基づいて生体の生体情報を測定する測定部10を備える。 More specifically, the biological information measuring device main body of the biological information measuring device 30 is obtained by irradiating the living body with a plurality of lights having different wavelengths and receiving each light transmitted or reflected through the living body. The biological information of the living body is measured based on the measured data. The biological information measuring device main body extracts a noise component that is a component excluding the signal component by using periodicity from data including a signal component having periodicity generated based on the measurement data, and the noise component is extracted from the data. A measurement unit 10 that measures biological information of a living body based on data that has been removed and from which noise components have been removed is provided.
 すなわち、生体情報測定装置30は、互いに波長の異なる複数の光を生体へそれぞれ照射して生体を透過または反射した各光をそれぞれ受光することによって各測定データを取得するデータ取得部1と、データ取得部1で得られた各測定データに基づいて生体の生体情報を測定する該生体情報測定装置本体とを備える。 That is, the biological information measuring device 30 includes a data acquisition unit 1 that acquires each measurement data by irradiating a living body with a plurality of lights having different wavelengths and receiving or transmitting each light that is transmitted or reflected through the living body. The living body information measuring apparatus main body for measuring living body information of the living body based on each measurement data obtained by the acquisition unit 1.
 このような構成の生体情報測定装置本体および生体情報測定装置30では、周期性を用いることによってノイズ成分を抽出するので、ノイズ成分除去のために必要な演算処理量を従来技術より低減することができる。このため、演算処理量の低減により、ノイズ成分の演算に伴う消費電力も抑制することが可能となる。 In the biological information measuring apparatus main body and the biological information measuring apparatus 30 configured as described above, the noise component is extracted by using the periodicity, so that the amount of calculation processing necessary for removing the noise component can be reduced as compared with the prior art. it can. For this reason, it becomes possible to reduce the power consumption accompanying the calculation of the noise component by reducing the amount of calculation processing.
 また、上述の生体情報測定装置30において、測定部10は、データからノイズ成分を抽出するために、複数の波長のうちの所定の2波長について、測定データの直流成分と交流成分との比である直流交流比を求め、ノイズ成分に関する情報を有する変数を乗算した1波長についての直流交流比から残りの1波長についての直流交流比を減算した関係式が周期性をもつように、変数を決定する。 Moreover, in the above-described biological information measuring apparatus 30, the measurement unit 10 extracts the noise component from the data by using a ratio of the direct current component to the alternating current component of the measurement data for two predetermined wavelengths among the plurality of wavelengths. The variable is determined so that the relational expression obtained by subtracting the DC / AC ratio for the remaining one wavelength from the DC / AC ratio for the one wavelength obtained by calculating a certain DC / AC ratio and multiplying the variable having information on the noise component has periodicity. To do.
 このような構成によれば、上記変数を上記関係式から求めて、ノイズ成分の抽出を行うため、ノイズ成分の抽出に伴う演算処理量を従来技術より効果的に減少することができる。このため、演算処理量の低減により、ノイズ成分の演算に伴う消費電力も効果的に抑制することが可能となる。 According to such a configuration, since the variable is obtained from the relational expression and the noise component is extracted, the amount of calculation processing accompanying the extraction of the noise component can be effectively reduced as compared with the prior art. For this reason, it is possible to effectively suppress the power consumption accompanying the calculation of the noise component by reducing the calculation processing amount.
 以下、より詳細に、この生体情報測定装置30の構成について述べる。生体情報測定装置30は、例えば、図2に示すように、データ取得部1と、測定部10と、出力部20とを備える。 Hereinafter, the configuration of the biological information measuring device 30 will be described in more detail. The biological information measurement device 30 includes, for example, a data acquisition unit 1, a measurement unit 10, and an output unit 20, as shown in FIG.
 データ取得部1は、測定部10での生体情報の測定に必要な、所定の時間間隔で測定され、生体の脈動に関する時系列データを取得するための装置である。ここで、脈動を検出する方法としては、各種の方法が採用可能であるが、例えば生体組織のヘモグロビンの吸光特性を利用する方法を好適に採用することができる。周知の通り、酸素は、ヘモグロビンによって生体の各細胞に運ばれるが、ヘモグロビンは、肺で酸素と結合して酸化ヘモグロビンとなり、生体の細胞で酸素が消費されるとヘモグロビンに戻る。酸素飽和度は、血中の酸化ヘモグロビンの割合をいう。これらヘモグロビンの吸光度および酸化ヘモグロビンの吸光度は、波長依存性を有しており、例えば、ヘモグロビンは、赤色領域の波長Rの赤色光に対し酸化ヘモグロビンよりも光を多く吸収するが、赤外線領域の波長IRの赤外光に対しては酸化ヘモグロビンよりも光の吸収が少ない。この方法は、このようなヘモグロビンと酸化ヘモグロビンとの赤色光と赤外光とに対する吸光特性の違いを利用して例えば血中酸素飽和度や脈拍数等の生体情報を求めるものである。データ取得部1は、例えば、図2に示すように、赤色光(以下、R)を所定の生体組織に照射する発光素子(R)、および、前記発光素子(R)で照射され測定対象の生体組織を透過または反射した光を受光する受光素子(R)を備えたセンサ(R)部2と、赤外光(以下、IR)を前記所定の生体組織に照射する発光素子(IR)、および、前記発光素子(IR)で照射され測定対象の生体組織を透過または反射した各光を受光する受光素子(IR)を備えたセンサ(IR)部3とを含む反射型若しくは透過型センサである。このような構成のデータ取得部1は、所定の生体組織にセットされ、前記受光素子(R、IR)によって各受光量をそれぞれモニタして、これら受光された各光を光強度に従って電気信号へそれぞれ光電変換することによって脈波に関する前記各時系列データをそれぞれ取得する。なお、データ取得部1は、この他、圧力センサ等を備え、血管脈動による脈圧を直接検出することで、前記時系列データとして脈波データを取得する装置であっても良い。データ取得部1は、測定部10に接続され、これら各時系列データを後述するAC/DC(R)部11へ出力する。 The data acquisition unit 1 is a device for acquiring time series data related to pulsation of a living body, which is measured at a predetermined time interval necessary for measurement of biological information in the measuring unit 10. Here, as a method for detecting pulsation, various methods can be adopted. For example, a method using the light absorption characteristic of hemoglobin in a living tissue can be preferably employed. As is well known, oxygen is carried by hemoglobin to each cell in the living body, but hemoglobin combines with oxygen in the lung to become oxygenated hemoglobin, and returns to hemoglobin when oxygen is consumed by cells in the living body. Oxygen saturation refers to the proportion of oxygenated hemoglobin in the blood. The absorbance of these hemoglobins and the absorbance of oxyhemoglobin are wavelength-dependent.For example, hemoglobin absorbs more light than oxyhemoglobin for red light with a wavelength R in the red region, but the wavelength in the infrared region. It absorbs less light than oxyhemoglobin for IR infrared light. This method obtains biological information such as blood oxygen saturation and pulse rate by utilizing the difference in absorption characteristics of hemoglobin and oxyhemoglobin with respect to red light and infrared light. For example, as shown in FIG. 2, the data acquisition unit 1 includes a light emitting element (R) that irradiates a predetermined biological tissue with red light (hereinafter, R), and a light emitting element (R) that is irradiated with the light emitting element (R). A sensor (R) unit 2 including a light receiving element (R) that receives light transmitted or reflected through a biological tissue, and a light emitting element (IR) that irradiates the predetermined biological tissue with infrared light (hereinafter, IR); And a reflective or transmissive sensor including a sensor (IR) unit 3 having a light receiving element (IR) that receives each light that has been irradiated with the light emitting element (IR) and transmitted or reflected through the biological tissue to be measured. is there. The data acquisition unit 1 having such a configuration is set in a predetermined living tissue, monitors each received light amount by the light receiving element (R, IR), and converts each received light into an electrical signal according to the light intensity. Each time series data related to the pulse wave is acquired by performing photoelectric conversion. In addition, the data acquisition unit 1 may be a device that includes a pressure sensor or the like and acquires pulse wave data as the time-series data by directly detecting the pulse pressure due to the blood vessel pulsation. The data acquisition unit 1 is connected to the measurement unit 10 and outputs these time series data to an AC / DC (R) unit 11 described later.
 出力部20は、測定部10に接続され、測定部10で測定された生体に関する生体情報の測定値等を出力するための装置である。出力部20は、例えば、液晶表示装置(LCD;Liquid Crystal Display)、7セグメントLED、有機フォトルミネセンス表示装置、CRT(Cathode Ray Tube)表示装置およびプラズマ表示装置等の表示装置や、マイクやスピーカー等の音出力装置や、プリンタ等の印刷装置等である。例えば、脈波データのデータ解析結果等の各種測定情報は、光点灯(点消灯、点滅を含む)、文字、画像、音声あるいは印刷等の適宜に任意の形態で出力される。 The output unit 20 is connected to the measurement unit 10 and is a device for outputting measurement values of biological information related to the living body measured by the measurement unit 10. The output unit 20 includes, for example, a display device such as a liquid crystal display device (LCD), a 7-segment LED, an organic photoluminescence display device, a CRT (Cathode Ray Tube) display device and a plasma display device, a microphone and a speaker. A sound output device such as a printer or a printing device such as a printer. For example, various pieces of measurement information such as data analysis results of pulse wave data are output in an arbitrary form such as light lighting (including turning on / off and blinking), characters, images, sounds, and printing.
 この出力部20は、例えば、図2に示すように、SpO2出力部22と、脈拍数出力部23と、信頼度出力部24とを備える。SpO2出力部22は、後述するSvO2推定SpO2決定部19で算出された血中酸素飽和度を出力するための装置である。脈拍数出力部23は、後述する脈拍数算出部20で算出された脈拍数を出力するための装置である。そして、信頼度出力部24は、後述する信頼度算出部21で算出された信頼度を出力するための装置である。 The output unit 20 includes, for example, a SpO2 output unit 22, a pulse rate output unit 23, and a reliability output unit 24 as shown in FIG. The SpO2 output unit 22 is a device for outputting the blood oxygen saturation calculated by the SvO2 estimation SpO2 determination unit 19 described later. The pulse rate output unit 23 is a device for outputting the pulse rate calculated by the pulse rate calculation unit 20 described later. The reliability output unit 24 is a device for outputting the reliability calculated by the reliability calculation unit 21 described later.
 この測定部10は、例えば、図2に示すように、機能的に、AC/DC(R)変換部11、AC/DC(IR)変換部12、BPF(R)部13、BPF(IR)部14、ΣR_signal*IR_signal算出部15、ΣR_signal2算出部16、ΣIR_signal2算出部17、初期値算出部18、SvO2推定SpO2決定部19、脈拍数算出部20および信頼度算出部21を備え、そして、予め記憶された制御プログラムに従い、データ取得部1および出力部20を当該機能に応じてそれぞれ制御する。 For example, as shown in FIG. 2, the measuring unit 10 is functionally an AC / DC (R) conversion unit 11, an AC / DC (IR) conversion unit 12, a BPF (R) unit 13, and a BPF (IR). Unit 14, ΣR_signal * IR_signal calculation unit 15, ΣR_signal 2 calculation unit 16, ΣIR_signal 2 calculation unit 17, initial value calculation unit 18, SvO2 estimation SpO2 determination unit 19, pulse rate calculation unit 20, and reliability calculation unit 21, and In accordance with the control program stored in advance, the data acquisition unit 1 and the output unit 20 are controlled according to the function.
 測定部10は、データ取得部1によって取得された脈波の時系列データに対して、所定の前処理を行った後に、ノイズ成分の除去および生体情報の演算に必要な初期値を算出し、前記初期値を用いて、脈波の時系列データに含まれるノイズ成分を除去するノイズ成分除去処理を行い、ノイズ成分除去後の脈波の時系列データに基づき、生体情報等を測定し、その生体情報の測定値を出力部20へ出力する装置である。測定部10は、例えば、後述する演算処理を行う各演算処理プログラム等を記憶するROM(Read Only Memory)、いわゆるワーキングメモリとして機能し一時的にデータを格納するRAM(Random Access Memory)および前記演算処理プログラム等を前記ROMから読み出して実行する中央処理装置(CPU)およびその周辺回路等である。 The measurement unit 10 calculates initial values required for noise component removal and biological information calculation after performing predetermined preprocessing on the time-series data of the pulse wave acquired by the data acquisition unit 1, Using the initial value, noise component removal processing is performed to remove the noise component included in the time series data of the pulse wave, and the biological information is measured based on the time series data of the pulse wave after the noise component is removed. It is a device that outputs a measurement value of biological information to the output unit 20. The measurement unit 10 includes, for example, a ROM (Read Only Memory) that stores arithmetic processing programs for performing arithmetic processing to be described later, a RAM (Random Access Memory) that functions as a so-called working memory, and temporarily stores data. A central processing unit (CPU) that reads a processing program from the ROM and executes it, and its peripheral circuits.
 AC/DC(R)変換部11は、データ取得部1のセンサ(R)部2から入力される赤色光(R)の時系列データに対し、直流成分と交流成分との比であるデータに変換する回路である。なお、本実施形態では、AC/DC(R)変換部11は、前記前処理として、暗電流による成分を除去するダーク処理を行う。 The AC / DC (R) conversion unit 11 converts the red light (R) time-series data input from the sensor (R) unit 2 of the data acquisition unit 1 into data that is a ratio of a direct current component and an alternating current component. It is a circuit to convert. In the present embodiment, the AC / DC (R) conversion unit 11 performs dark processing for removing components due to dark current as the preprocessing.
 BPF(R)部13は、AC/DC(R)変換部11から赤色光(R)の時系列データが入力され、ノイズ成分を除去して赤色光(R)についての周波数成分を得るためのバンドパスフィルタ(BPF)である。BPF(R)部13は、フィルタリング後の時系列データであるR_signalをΣR_signal*IR_signal算出部15、ΣR_signal2算出部16およびSvO2推定SpO2決定部19へそれぞれ出力する。 The BPF (R) unit 13 receives time-series data of red light (R) from the AC / DC (R) conversion unit 11 and removes noise components to obtain frequency components for red light (R). It is a band pass filter (BPF). The BPF (R) unit 13 outputs R_signal, which is time-series data after filtering, to the ΣR_signal * IR_signal calculation unit 15, the ΣR_signal 2 calculation unit 16, and the SvO2 estimation SpO2 determination unit 19, respectively.
 AC/DC(IR)変換部12は、データ取得部1のセンサ(IR)部3から入力される赤外光(IR)の時系列データに対し、直流成分と交流成分との比であるデータに変換する回路である。なお、本実施形態では、AC/DC(IR)変換部12は、前記前処理として、暗電流による成分を除去するダーク処理を行う。 The AC / DC (IR) conversion unit 12 is data that is a ratio of a DC component to an AC component with respect to time series data of infrared light (IR) input from the sensor (IR) unit 3 of the data acquisition unit 1. It is a circuit to convert to. In the present embodiment, the AC / DC (IR) conversion unit 12 performs dark processing for removing components due to dark current as the preprocessing.
 BPF(IR)部14は、AC/DC(IR)変換部12から赤外光(IR)の時系列データが入力され、ノイズ成分を除去して赤外光(IR)についての周波数成分を得るためのバンドパスフィルタである。BPF(IR)部14は、フィルタリング後の時系列データであるIR_signalをΣR_signal*IR_signal算出部15、ΣIR_signal2算出部17およびSvO2推定SpO2決定部19へそれぞれ出力する。 The BPF (IR) unit 14 receives time series data of infrared light (IR) from the AC / DC (IR) conversion unit 12 and removes noise components to obtain frequency components for infrared light (IR). This is a bandpass filter for the purpose. The BPF (IR) unit 14 outputs IR_signal, which is time-series data after filtering, to the ΣR_signal * IR_signal calculation unit 15, the ΣIR_signal 2 calculation unit 17, and the SvO2 estimation SpO2 determination unit 19, respectively.
 ΣR_signal*IR_signal算出部15は、BPF(R)部13から入力される赤色光(R)の時系列データと、BPF(IR)部14から入力される赤外光(IR)の時系列データとを用いて、相互相関ΣR_signal*IR_signalを算出し、算出した相互相関ΣR_signal*IR_signalを初期値算出部18に出力する回路である。ΣR_signal2算出部16は、BPF(R)部13から入力される赤色光(R)の時系列データを用いて、自己相関ΣR_signal2を算出し、算出した自己相関ΣR_signal2を初期値算出部18に出力する回路である。ΣR_signal2算出部16は、BPF(R)部13から入力される赤色光(R)の時系列データを用いて、自己相関ΣR_signal2を算出し、算出した自己相関ΣR_signal2を初期値算出部18に出力する回路である。ΣIR_signal2算出部17は、BPF(IR)部14から入力される赤外光(IR)の時系列データを用いて、自己相関ΣIR_signal2を算出し、算出した自己相関ΣIR_signal2を初期値算出部18に出力する回路である。初期値算出部18は、初期値を算出する回路であり、より具体的には、ΣR_signal*IR_signal算出部15から入力される相互相関ΣR_signal*IR_signal、ΣR_signal2算出部16から入力される自己相関ΣR_signal2、および、ΣIR_signal2算出部17から入力される自己相関ΣIR_signal2を用いて、初期値を算出し、算出した初期値をSvO2推定SpO2決定部19へ出力する。 The ΣR_signal * IR_signal calculation unit 15 includes time-series data of red light (R) input from the BPF (R) unit 13 and time-series data of infrared light (IR) input from the BPF (IR) unit 14. Is used to calculate the cross-correlation ΣR_signal * IR_signal and output the calculated cross-correlation ΣR_signal * IR_signal to the initial value calculation unit 18. The ΣR_signal 2 calculation unit 16 calculates autocorrelation ΣR_signal 2 using the time series data of red light (R) input from the BPF (R) unit 13, and calculates the calculated autocorrelation ΣR_signal 2 as an initial value calculation unit 18. The circuit that outputs to The ΣR_signal 2 calculation unit 16 calculates autocorrelation ΣR_signal 2 using the time series data of red light (R) input from the BPF (R) unit 13, and calculates the calculated autocorrelation ΣR_signal 2 as an initial value calculation unit 18. The circuit that outputs to The ΣIR_signal 2 calculation unit 17 calculates autocorrelation ΣIR_signal 2 using time series data of infrared light (IR) input from the BPF (IR) unit 14, and calculates the calculated autocorrelation ΣIR_signal 2 as an initial value calculation unit. 18 is a circuit that outputs the data. The initial value calculation unit 18 is a circuit that calculates an initial value, and more specifically, the cross-correlation ΣR_signal * IR_signal input from the ΣR_signal * IR_signal calculation unit 15 and the autocorrelation ΣR_signal input from the ΣR_signal 2 calculation unit 16. 2 and the autocorrelation ΣIR_signal 2 input from the ΣIR_signal 2 calculation unit 17, the initial value is calculated, and the calculated initial value is output to the SvO 2 estimation SpO 2 determination unit 19.
 SvO2推定SpO2決定部19は、周期性を有する信号成分を含む時系列データから、周期性を用いて信号成分に重畳したノイズ成分を除去し、ノイズ成分を除去した時系列データに基づいて、動脈の血中酸素飽和度を算出する回路である。SvO2推定SpO2決定部19は、課題を解決するための手段で開示した信号生成部および推定部に相当する。SvO2推定SpO2決定部19決定部19は、より具体的には、BPF(R)部13から入力される時系列データR_signal、およびBPF(IR)部14から入力される時系列データIR_signalから、初期値算出部18で算出された初期値を基に、動脈の血中酸素飽和度を算出する回路であり、必要に応じてノイズ成分に基づき静脈の血中酸素飽和度を算出し、算出した血中酸素飽和度をSpO2出力部22へ出力する。脈拍数算出部20は、SvO2推定SpO2決定部19でノイズ成分を除去した時系列データに基づいて、脈拍数を算出し、算出した脈拍数を脈拍数出力部23へ出力する回路である。信頼度算出部21は、測定した生体情報について、誤差の度合いを表す信頼度を算出する回路であり、算出した信頼度を信頼度出力部24へ出力する。 The SvO2 estimation SpO2 determination unit 19 removes the noise component superimposed on the signal component using the periodicity from the time series data including the signal component having periodicity, and based on the time series data from which the noise component is removed, This is a circuit for calculating the blood oxygen saturation level. The SvO2 estimation SpO2 determination unit 19 corresponds to the signal generation unit and the estimation unit disclosed in the means for solving the problem. More specifically, the SvO2 estimation SpO2 determination unit 19 determines the initial value from the time series data R_signal input from the BPF (R) unit 13 and the time series data IR_signal input from the BPF (IR) unit 14. This is a circuit that calculates the blood oxygen saturation level of the artery based on the initial value calculated by the value calculation unit 18, calculates the blood oxygen saturation level of the vein based on the noise component as necessary, and calculates the calculated blood The medium oxygen saturation is output to the SpO2 output unit 22. The pulse rate calculation unit 20 is a circuit that calculates the pulse rate based on the time-series data from which the noise component is removed by the SvO2 estimation SpO2 determination unit 19 and outputs the calculated pulse rate to the pulse rate output unit 23. The reliability calculation unit 21 is a circuit that calculates a reliability indicating the degree of error for the measured biological information, and outputs the calculated reliability to the reliability output unit 24.
 なお、必要に応じて生体情報測定装置30は、図略の外部記憶部をさらに備えてもよい。外部記憶部は、例えば、メモリカード、フレキシブルディスク、CD-ROM(Compact Disc Read Only Memory)、CD-R(Compact Disc Recordable),DVD-R(Digital Versatile Disc Recordable)およびブルーレイディスク(Blue-ray Disc)等の記憶媒体との間でデータを読み込みおよび/または書き込みを行う装置であり、例えば、メモリカードインタフェース、フレキシブルディスクドライブ、CD-ROMドライブ、CD-Rドライブ、DVD-Rドライブおよびブルーレイディスクドライブ等である。 Note that the biological information measuring device 30 may further include an external storage unit (not shown) as necessary. The external storage unit is, for example, a memory card, flexible disk, CD-ROM (Compact Disc Read Only Memory), CD-R (Compact Disc Recordable), DVD-R (Digital Versatile Disc Recordable), and Blu-ray Disc (Blue-ray Disc). For example, a memory card interface, a flexible disk drive, a CD-ROM drive, a CD-R drive, a DVD-R drive, and a Blu-ray disc drive. Etc.
 ここで、生体情報測定装置30は、測定部10に演算処理プログラム等が格納されていない場合には、これらプログラム等を記録した記録媒体から、前記外部記憶部を介して測定部10にインストールされるように構成されてもよい。あるいは、生体情報測定装置30は、検出された生体情報等のデータが前記外部記憶部を介して記録媒体に記録されるように構成されてもよい。 Here, when an arithmetic processing program or the like is not stored in the measurement unit 10, the biological information measurement device 30 is installed in the measurement unit 10 via the external storage unit from a recording medium that records the program or the like. You may be comprised so that. Alternatively, the biological information measuring device 30 may be configured such that data such as detected biological information is recorded on a recording medium via the external storage unit.
 次に、本実施形態の動作について説明する。図3は、実施形態における生体情報測定装置における初期値を算出するフローチャートである。図4は、実施形態における生体情報測定装置における動脈血中酸素飽和度を算出するフローチャートである。図5は、実施形態における生体情報測定装置における脈拍数を算出するフローチャートである。 Next, the operation of this embodiment will be described. FIG. 3 is a flowchart for calculating an initial value in the biological information measuring apparatus according to the embodiment. FIG. 4 is a flowchart for calculating arterial oxygen saturation in the biological information measuring apparatus according to the embodiment. FIG. 5 is a flowchart for calculating the pulse rate in the biological information measuring apparatus according to the embodiment.
 生体情報測定装置30は、例えば、その起動によって演算処理プログラムを実行する。この演算処理プログラムの実行によって、測定部10の各部11~21が機能的に構成される。そして、生体情報測定装置30は、以下の動作によって、データ取得部1で取得された時系列データに基づいて、ノイズ成分を低減した例えば血中酸素飽和度等の生体情報を測定する。 The biological information measuring device 30 executes the arithmetic processing program by, for example, its activation. By executing this arithmetic processing program, the units 11 to 21 of the measuring unit 10 are functionally configured. The biological information measuring apparatus 30 measures biological information such as blood oxygen saturation with reduced noise components based on the time-series data acquired by the data acquisition unit 1 by the following operation.
 この図3および図4に示すフローチャート(ステップS1~S15)は、大きく分けてステップS1~S7の初期値算出フローと、ステップS8~S15の血中酸素飽和度検出フローとから構成されている。図5に示すフローチャート(ステップS16~S20)は、脈拍数検出フローである。 The flowcharts (steps S1 to S15) shown in FIGS. 3 and 4 are roughly composed of an initial value calculation flow in steps S1 to S7 and a blood oxygen saturation detection flow in steps S8 to S15. The flowchart (steps S16 to S20) shown in FIG. 5 is a pulse rate detection flow.
 <初期値算出フロー(S1~S7)>
初期値算出フローでは、データの前処理(ステップS1~ステップS4)を行った後に、初期値を算出する(ステップS5~ステップS7)。
<Initial value calculation flow (S1 to S7)>
In the initial value calculation flow, after data preprocessing (steps S1 to S4) is performed, initial values are calculated (steps S5 to S7).
 まず、ステップS1では、測定部10には、データ取得部1から、センサ(R)部2の暗電流による成分R_dark、および、センサ(IR)部3の暗電流による成分IR_darkがそれぞれ入力される。そして、測定部10には、データ取得部1から、生体組織を透過または反射した波長IRおよび波長Rの光の強度変化に関するデータ時系列であるR_signal_and_dark(i)およびIR_signal_and_dark(i)がそれぞれ入力される。ここで、iは、1からN個まである時系列データのi番目であることを表し、iと時間との対応は、前記発明の原理で述べた通りである。Nは、酸素飽和度の算出に必要なデータ数が選ばれ、例えば200等の値が用いられる。簡便のため、以降は、時系列データのiを省略して記載する。なお、波長Rに関するデータR_signal_and_darkには、センサ(R)部2の暗電流による成分R_darkが、波長IRに関するデータIR_signal_and_darkには、センサ(IR)部3の暗電流による成分IR_darkがそれぞれ含まれている。 First, in step S <b> 1, the component R_dark due to the dark current of the sensor (R) unit 2 and the component IR_dark due to the dark current of the sensor (IR) unit 3 are input from the data acquisition unit 1 to the measurement unit 10. . Then, R_signal_and_dark (i) and IR_signal_and_dark (i), which are data time series related to the intensity change of the light with the wavelength IR and the wavelength R transmitted or reflected through the living tissue, are input from the data acquisition unit 1 to the measurement unit 10. The Here, i represents the i-th time series data from 1 to N, and the correspondence between i and time is as described in the principle of the invention. As N, the number of data necessary for calculating the oxygen saturation is selected, and a value such as 200 is used. For the sake of simplicity, hereinafter, i in the time series data is omitted. The data R_signal_and_dark related to the wavelength R includes the component R_dark due to the dark current of the sensor (R) unit 2, and the data IR_signal_and_dark related to the wavelength IR includes the component IR_dark due to the dark current of the sensor (IR) unit 3. .
 次に、ステップS2において、AC/DC(R)部11は、R_signal_and_darkからR_darkを差し引くダーク処理を行う。同様に、AC/DC(IR)部12は、IR_signal_and_darkからIR_darkを差し引くダーク処理を行う。次に、ステップS3において、ダーク処理された各波長の信号を直流成分と交流成分との比(交流成分/直流成分)にそれぞれ変換する。より具体的には、IR_signal_and_darkからIR_dark成分が除去され、生体由来の光の強度のみからなる直流成分と交流成分との比であるIR_signalが算出される。同様にR_signal_and_darkからR_dark成分が除去され、生体由来の光の強度のみからなる直流成分と交流成分との比であるR_signalが算出される。 Next, in step S2, the AC / DC (R) unit 11 performs a dark process of subtracting R_dark from R_signal_and_dark. Similarly, the AC / DC (IR) unit 12 performs dark processing by subtracting IR_dark from IR_signal_and_dark. Next, in step S3, the dark-processed signal of each wavelength is converted into a ratio between the DC component and the AC component (AC component / DC component). More specifically, the IR_dark component is removed from IR_signal_and_dark, and IR_signal, which is the ratio of the direct current component consisting only of the intensity of light derived from the living body to the alternating current component, is calculated. Similarly, the R_dark component is removed from R_signal_and_dark, and R_signal, which is the ratio of the direct current component consisting only of the intensity of light derived from the living body to the alternating current component, is calculated.
 次に、ステップS4において、BPF(R)部13は、R_signalをフィルタリングし、不要な周波数成分を除去して所望の周波数成分のみを得るための処理を行う。同様にBPF(IR)部14は、IR_signalをフィルタリングし、不要な周波数成分を除去して所望の周波数成分信号成分を得るための処理を行う。 Next, in step S4, the BPF (R) unit 13 performs processing for filtering R_signal and removing unnecessary frequency components to obtain only desired frequency components. Similarly, the BPF (IR) unit 14 performs processing for filtering IR_signal and removing unnecessary frequency components to obtain a desired frequency component signal component.
 次に、ステップS5において、ステップS4で取り出されたデータR_signal、IR_signalに対し、ΣR_signal*IR_signal算出部15、ΣR_signal2算出部16、ΣIR_signal2算出部17は、相互相関ΣR_signal*IR_signal、波長Rについての自己相関ΣR_signal2および波長IRについての自己相関ΣIR_signal2をそれぞれ算出する。なお、上述の発明の原理で説明したように、Σはiに関して1からNまで取られる総和であり、短い時間間隔で、k_vとk_aは、一定であるという仮定が成り立つ。 Next, in step S5, with respect to the data R_signal and IR_signal extracted in step S4, the ΣR_signal * IR_signal calculation unit 15, the ΣR_signal 2 calculation unit 16, and the ΣIR_signal 2 calculation unit 17 perform cross correlation ΣR_signal * IR_signal and wavelength R calculating autocorrelation Shigumaaru_signal 2 and autocorrelation ShigumaIR_signal 2 for the wavelength IR respectively. As described in the principle of the invention described above, Σ is the sum taken from 1 to N with respect to i, and it is assumed that k_v and k_a are constant over a short time interval.
 次に、ステップS6において、初期値算出部18は、k_vの初期値であるk_v_0に、前回求められたk_v等の適当な値を代入する。 Next, in step S6, the initial value calculation unit 18 substitutes an appropriate value such as k_v obtained last time for k_v_0 which is the initial value of k_v.
 次に、ステップS7において、ステップS5およびステップS6で求めたΣR_signal*IR_signal、ΣR_signal2、ΣIR_signal2およびk_v_0を用いて、初期値算出部18は、血中酸素飽和度検出フローで必要となる、k_aの初期値k_a_0およびk_nsの初期値であるk_ns_0をそれぞれ算出する。 Next, in step S7, ΣR_signal * IR_signal determined in step S5 and step S6, using ΣR_signal 2, ΣIR_signal 2 and K_v_0, the initial value calculation section 18 is required in blood oxygen saturation detection flow, k_a Initial values k_a_0 and k_ns_0 which are initial values of k_ns are calculated.
 k_nsは、ノイズ成分を抽出するか否かを判定するための指標であり、ノイズ成分の強度と信号成分の強度との比等で表され、例えば、式(9)のように表される。
Figure JPOXMLDOC01-appb-I000009
k_ns is an index for determining whether or not to extract a noise component, and is represented by a ratio between the intensity of the noise component and the intensity of the signal component, for example, as shown in Expression (9).
Figure JPOXMLDOC01-appb-I000009
 ここで、ノイズ成分の強度に関する値であるn_squareと信号成分の強度に関する値であるs_squareは、式(8)にk_v_0を代入して等号が成り立つか否かによって異なる式で与えられる。 Here, n_square, which is a value related to the intensity of the noise component, and s_square, which is a value related to the intensity of the signal component, are given by different expressions depending on whether or not an equal sign holds by substituting k_v_0 into Expression (8).
 式(8)にk_v_0を代入して、等号が成り立つ(すなわち左辺がゼロに等しくなる)ようなk_aの値が求められた場合には、そのk_aの値がk_a_0とされ、以下の式(10)と式(11)と(9)を用いてk_ns_0が算出される。
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000011
When k_v_0 is substituted into equation (8) and the value of k_a such that the equal sign holds (that is, the left side becomes equal to zero) is obtained, the value of k_a is set to k_a_0, and the following equation ( 10) and equations (11) and (9) are used to calculate k_ns_0.
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000011
 一方、式(8)にk_v_0を代入し、等号が成り立たない(すなわち左辺がゼロではない)ようなk_aが求まらない場合には、前回のk_aなど適当なk_aをk_a_0とし、以下の式(12)と式(13)と式(9)を用いてk_ns_0が算出される。また、動脈血と静脈血の酸素飽和度の差として例えば10%と仮定して、それに相当する値をk_v_0から差し引いた値をk_a_0としても良い。
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-I000013
On the other hand, if k_v_0 is substituted into equation (8) and k_a is not obtained where the equal sign does not hold (that is, the left side is not zero), an appropriate k_a such as the previous k_a is set to k_a_0, and K_ns_0 is calculated using Expression (12), Expression (13), and Expression (9). Further, assuming that the difference in oxygen saturation between arterial blood and venous blood is 10%, for example, a value obtained by subtracting a corresponding value from k_v_0 may be k_a_0.
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-I000013
 なお、初期値算出部18は、k_a_0を、メモリ等(図示せず)に予め記憶する(ステップS7)。初期値算出部18は、ΣR_signal*IR_signal、ΣR_signal2、ΣIR_signal2、 k_v_0、k_a_0およびk_ns_0を前記メモリ等(図示せず)に予め記憶する。 The initial value calculation unit 18 stores k_a_0 in advance in a memory or the like (not shown) (step S7). The initial value calculation unit 18 stores ΣR_signal * IR_signal, ΣR_signal 2 , ΣIR_signal 2 , k_v_0, k_a_0, and k_ns_0 in advance in the memory or the like (not shown).
 <血中酸素飽和度検出フロー(S8~S15)>
上記のステップにより初期値算出が終了した後、血中酸素飽和度検出フローが実行される。
<Blood oxygen saturation detection flow (S8 to S15)>
After the initial value calculation is completed by the above steps, the blood oxygen saturation detection flow is executed.
 ステップS8において、SvO2推定SpO2決定部19は、はじめに、ノイズ成分の指標であるk_ns_0と所定の値とを比較することにより、ノイズ成分状態を判定する。この判定結果により次の2通りに処理が分かれる。なお、所定の値は、除去すべきノイズ成分のレベルに応じて適宜に選定され、例えば、この実施例では0.05等である。 In step S8, the SvO2 estimation SpO2 determination unit 19 first determines the noise component state by comparing k_ns_0, which is an index of the noise component, with a predetermined value. Processing is divided into the following two types according to the determination result. The predetermined value is appropriately selected according to the level of the noise component to be removed, and is, for example, 0.05 in this embodiment.
 ノイズ成分の指標がゼロ、もしくは小さい(例えば、|k_ns_0|<0.05)とSvO2推定SpO2決定部19が判定した場合(No)には、例えば、従来の技術として知られている、k_aを波長IRの吸光度の変化分の信号成分と波長Rの吸光度の変化分の信号成分との比の平均値として求める方法である式(14)を用いてk_aが算出され(ステップS9)、続いてステップS14が実行される。
Figure JPOXMLDOC01-appb-I000014
If the SvO2 estimation SpO2 determination unit 19 determines that the noise component index is zero or small (for example, | k_ns_0 | <0.05) (No), for example, k_a is known as the prior art, and the wavelength IR is known. K_a is calculated using Equation (14), which is a method for obtaining the average value of the ratio of the signal component corresponding to the change in absorbance of R and the signal component corresponding to the change in absorbance at wavelength R (step S9), and then to step S14. Is executed.
Figure JPOXMLDOC01-appb-I000014
 一方、ステップS8において、ノイズ成分の指標が大きい(例えば|k_ns_0|≧0.05)とSvO2推定SpO2決定部19が判定した場合(Yes)には、ステップS10が実行され、周期性が算出される。 On the other hand, if the SvO2 estimation SpO2 determination unit 19 determines that the noise component index is large (for example, | k_ns_0 | ≧ 0.05) in Step S8 (Yes), Step S10 is executed to calculate the periodicity.
 本発明の原理で説明したように、式(4)の左辺に相当するq(以下の式(15参照)が最も強く周期性を持つように選択されたk_vが、最適なk_vである。
Figure JPOXMLDOC01-appb-I000015
As described in the principle of the present invention, k_v selected so that q corresponding to the left side of Expression (4) (refer to Expression (15) below) has the strongest periodicity is the optimal k_v.
Figure JPOXMLDOC01-appb-I000015
 ここで、qは、あるk_vに対する、i番目のデータ系列である式(4)の左辺についての値を表す。 Here, q represents a value for the left side of Equation (4), which is the i-th data series, for a certain k_v.
 より具体的に、k_vの値に応じて、式(15)は、どのように変化するかについて、図6を用いて以下に説明する。 More specifically, how the equation (15) changes according to the value of k_v will be described below with reference to FIG.
 図6は、図1で用いた測定データによるR-kv*IRの波形を示す図である。図6(a)は、k_vを最適値より小さい値で与えた場合の、k_vに対する式(15)で与えられるデータ系列による波形を示し、図6(b)は、k_vを最適値に近似される値で与えた場合の、k_vに対する式(15)で与えられるデータ系列による波形を示し、そして、図6(c)は、k_vを最適値より大きい値で与えた場合の、k_vに対する式(15)で与えられるデータ系列による波形を示す。なお、波形は、時系列データのデータ間で補間している。図6(a)から(c)において、これら横軸は、所定の短い時間(データ系列の番号iでは1からNまでのデータ系列に相当)であり、縦軸は、式15のqである。 FIG. 6 is a diagram showing an R-kv * IR waveform based on the measurement data used in FIG. FIG. 6A shows a waveform according to the data sequence given by equation (15) for k_v when k_v is given by a value smaller than the optimum value, and FIG. 6B shows that k_v is approximated to the optimum value. FIG. 6C shows an equation for k_v when k_v is given by a value larger than the optimum value (FIG. 6C). The waveform by the data series given by 15) is shown. Note that the waveform is interpolated between the data of the time series data. 6A to 6C, these horizontal axes are predetermined short times (corresponding to data series from 1 to N in the data series number i), and the vertical axis is q in Expression 15. .
 最適値より小さいk_vを式(15)に与えた場合には、図6(a)に示す波形で、最適値に近似される値k_vを式(15)に与えた場合には、図6(b)に示す波形となっている。これら2つの図を比較すると分かるように、最適値に近似される値k_vが代入されている場合(図6(b)では、信号成分にノイズ成分が重畳している場合でも波形に強い周期性が認められるが、最適値より小さいk_vを式(15)に与えた場合には、信号成分にノイズ成分が重畳していると、波形は、乱れ、周期性が弱い。そして、最適値より大きいk_vを式(15)に与えた場合には、図6(c)に示す波形となっている。この図6(c)を図6(b)と比較すると分かるように、最適値より大きいk_vを式(15)に与えた場合(図6(c))には、信号成分にノイズ成分が重畳していると、波形は、乱れ、周期性が弱い。 When k_v smaller than the optimum value is given to equation (15), when the value k_v approximated to the optimum value is given to equation (15) with the waveform shown in FIG. The waveform is as shown in b). As can be seen from a comparison of these two figures, when the value k_v approximated to the optimum value is substituted (in FIG. 6B), the waveform has strong periodicity even when the noise component is superimposed on the signal component. However, when k_v smaller than the optimum value is given in Equation (15), if the noise component is superimposed on the signal component, the waveform is disturbed and the periodicity is weak, and is larger than the optimum value. When k_v is given in equation (15), the waveform is as shown in Fig. 6 (c), and as can be seen by comparing Fig. 6 (c) with Fig. 6 (b), k_v larger than the optimum value is obtained. Is given to the equation (15) (FIG. 6C), if a noise component is superimposed on a signal component, the waveform is disturbed and the periodicity is weak.
 以上のk_vに対する式(15)の変化を利用するため、式(15)の周期性が検出される。より具体的には、本実施形態では、式(15)で与えられるqの周期が算出される。すなわち、ステップS10では、k_vの初期値をk_v_0として、k_vを所定の範囲内(例えば、k_v_0-0.5<k_v<k_v_0+0.5)で逐次変化させて得られる式(15)で与えられるqを2値化することによって、波形の幅が算出される。なお、2値化する際の閾値は、予め測定部10に記憶されてもよいし、測定部10が例えばデータの最大振幅に対する40パーセント等のようにデータの振幅特性から適宜に決定してもよい。 In order to use the change of the equation (15) with respect to the above k_v, the periodicity of the equation (15) is detected. More specifically, in the present embodiment, the period of q given by Expression (15) is calculated. That is, in step S10, the initial value of k_v is set to k_v_0, and k given by equation (15) obtained by sequentially changing k_v within a predetermined range (for example, k_v_0−0.5 <k_v <k_v_0 + 0.5) is 2 By converting into a value, the width of the waveform is calculated. Note that the threshold value for binarization may be stored in the measurement unit 10 in advance, or the measurement unit 10 may appropriately determine from the amplitude characteristics of the data such as 40 percent of the maximum amplitude of the data, for example. Good.
 2値化した波形の幅を算出する具体的な手順を簡単に説明する。2値化は、所定の閾値以上の値を定数(例えば、1)に変換すると共に、前記閾値未満の値を他の定数(例えば、0)に変換する処理である。なお、2値化の閾値は、適当な値(例えば、0)が選ばれるが、これに限定されるものではなく、適宜変更可能である。 A simple procedure for calculating the binarized waveform width will be briefly described. Binarization is a process of converting a value equal to or greater than a predetermined threshold into a constant (for example, 1) and converting a value less than the threshold to another constant (for example, 0). Note that an appropriate value (for example, 0) is selected as the binarization threshold, but the threshold is not limited to this, and can be changed as appropriate.
 例えば、前記定数を用いれば、式(15)のqが2値化処理をされた後には、1またはゼロの値を取るが、隣り合う1とゼロとに着目し、隣り合う1とゼロとの組みが繰り返される周期が算出すべき波形の周期である。隣り合う1とゼロとに関して、すべての波形の周期を算出する。また例えば、細かいサブピークを除去するために、式(15)のqが増加(または減少)する間において所定の振幅以上のレベルとなる時刻をプロットし、この隣接するプロットにおける時刻の差の平均値を周期としてもよい。この所定の振幅は、測定部10に予め記憶されてもよいし、測定部10がデータの振幅特性から決定してもよい。 For example, if the constant is used, after q in Expression (15) is binarized, it takes a value of 1 or zero, but paying attention to adjacent 1 and zero, adjacent 1 and zero The period in which the set is repeated is the period of the waveform to be calculated. For adjacent 1s and zeros, calculate the period of all waveforms. In addition, for example, in order to remove fine sub-peaks, the time when the level of the predetermined amplitude or more is plotted while q in Equation (15) increases (or decreases), and the average value of the time differences in the adjacent plots It is good also as a period. This predetermined amplitude may be stored in the measurement unit 10 in advance, or the measurement unit 10 may determine from the amplitude characteristics of the data.
 ステップS11では、SvO2推定SpO2決定部19は、ステップS10で得られた、各k_vを初期値であるk_v_0から所定の範囲内(例えば、k_v_0-0.5<k_v<k_v_0+0.5)で逐次変化させて得られた波形の幅のばらつきを算出し、ばらつきが最小になるようなk_vを決定する。 In step S11, the SvO2 estimation SpO2 determination unit 19 sequentially changes each k_v obtained in step S10 from the initial value k_v_0 within a predetermined range (for example, k_v_0−0.5 <k_v <k_v_0 + 0.5). A variation in the width of the obtained waveform is calculated, and k_v that minimizes the variation is determined.
 なお、ステップS10とステップS11とにおいて、式(15)が周期性を持つようなk_vを求めるための指標として、2値化処理後の波形の山と谷の周期を用いたが、これに限定されるものではない。2値化処理後の波形における、他の指標として、山が繰り返される周期のみ、谷が繰り返される周期のみを用いてもよい。また、山の周期の最大値-山の周期の最小値、谷の周期の最大値-谷の周期の最小値、山の周期の標準偏差、谷の周期の標準偏差、山の幅の最大値-山の幅の最小値、谷の幅の最大値-谷の幅の最小値、山の幅の標準偏差、谷の幅の標準偏差を用いても良い。さらに、指標として、R_signal-k_v*IR_signalの波形の極大値と極小値から求められる振幅の最大-最小や標準偏差等を用いてもよい。 In step S10 and step S11, the peak and valley periods of the waveform after binarization processing are used as an index for obtaining k_v such that Equation (15) has periodicity. However, the present invention is not limited to this. Is not to be done. As another index in the waveform after the binarization processing, only the period in which the peaks are repeated or only the period in which the valleys are repeated may be used. Also, the maximum value of peak period-minimum value of peak period, maximum value of peak period-minimum value of peak period, standard deviation of peak period, standard deviation of peak period, maximum value of peak width -Minimum peak width, maximum valley width-Minimum valley width, standard deviation of peak width, standard deviation of valley width may be used. Further, the maximum-minimum amplitude or the standard deviation obtained from the maximum and minimum values of the R_signal-k_v * IR_signal waveform may be used as an index.
 上記では閾値をひとつ設けるとして説明したが、閾値を複数設定しても良い。例えば、閾値1および閾値2を設け、閾値1>0、閾値2<0とする。式(15)>閾値1の場合は+1、式(15)<閾値2の場合は-1、閾値1≦式(15)≦閾値2の場合は0として+1のパルス幅やパルス周期のバラツキ(最大値-最小値や標準偏差)および/または-1のパルス幅やパルス周期のバラツキ(最大値-最小値や標準偏差)を最小にするk_vを最適値として求めても良い。また、式(15)に対応した信号が閾値1を超えるか否かで2値化したパルスと、閾値2を超えるか否かで2値化したパルスそれぞれについて前記の種々の周期性の指標を算出して、その平均値(単純平均、調和平均、相乗平均を含む)を最小にするk_vを最適値としてもよい。さらに、3つ以上の閾値を設け、式(15)に対応した信号がそれぞれの閾値を超えるか否かで2値化した3種以上の2値化パルスそれぞれについて前記の種々の周期性の指標を算出して、その平均値(単純平均、調和平均、相乗平均を含む)を最小にするk_vを最適値としてもよい。閾値の数を多くすると計算量は増えるが、周期性の評価の精度が向上する利点がある。 In the above description, one threshold is provided. However, a plurality of thresholds may be set. For example, threshold value 1 and threshold value 2 are provided, and threshold value 1> 0 and threshold value 2 <0. If equation (15)> threshold 1, +1, equation (15) <− 1 if threshold 2, and threshold 1 ≦ equation (15) ≦ 0 if threshold 2, and +1 pulse width and pulse cycle variation ( The maximum value k_v that minimizes the variation of the pulse width or pulse period (maximum value-minimum value or standard deviation) of -1 and the maximum value-minimum value or standard deviation may be obtained as the optimum value. Further, the above-mentioned various periodicity indexes are obtained for a pulse binarized depending on whether the signal corresponding to the equation (15) exceeds the threshold value 1 and a pulse binarized depending on whether the signal exceeds the threshold value 2. The optimal value may be k_v that is calculated and minimizes the average value (including simple average, harmonic average, and geometric average). Further, three or more threshold values are provided, and the above-mentioned various periodicity indexes are obtained for each of three or more binarized pulses binarized depending on whether or not the signal corresponding to the equation (15) exceeds each threshold value. And k_v that minimizes the average value (including simple average, harmonic average, and geometric average) may be set as the optimal value. Increasing the number of thresholds increases the amount of calculation, but has the advantage of improving the accuracy of periodicity evaluation.
 いずれの指標においても、指標の標準偏差や指標の最大値と最小値との差等から、所定の時間内で、最も指標のばらつきが最小となるようなk_vを求めてもよい。複数の指標を用いた場合、それぞれの指標を最小にするk_vが異なる場合がある。その場合はそれぞれの指標を最小にするk_vの調和平均値を最適値とする。平均値としては単純平均値、相乗平均値でもよい。また、複数の指標を最小にする複数のk_vのうち前回のk_vに最も近いものを採用しても良い。また、複数の指標の平均値(単純平均値、調和平均値、相乗平均値など)を指標として評価しても良い。k_vは急激に変化することはないので、k_vを変えて前記の指標を評価する際に、それらに前回のk_v最適値とk_vの差の絶対値またはそれに対応した係数を掛けた値を指標として評価しても良い。 In any index, k_v that minimizes the variation of the index within a predetermined time may be obtained from the standard deviation of the index or the difference between the maximum value and the minimum value of the index. When a plurality of indices are used, k_v that minimizes each index may be different. In that case, the harmonic average value of k_v that minimizes each index is set as the optimum value. The average value may be a simple average value or a geometric average value. Alternatively, the closest k_v among the plurality of k_v that minimize the plurality of indices may be employed. Further, an average value of a plurality of indexes (simple average value, harmonic average value, geometric average value, etc.) may be evaluated as an index. Since k_v does not change abruptly, when evaluating the above index by changing k_v, the value obtained by multiplying the previous k_v optimum value and the absolute value of the difference between k_v or the corresponding coefficient is used as the index. You may evaluate.
 なお、ステップS10とステップS11では、周期性を利用する一例として、式(15)の左辺が周期性を満たすようにk_vを求める例を挙げたが、式(15)に限定されるものではなく、k_vが信号成分で表される数式であれば、式(15)に代えて用いてもよい。 In step S10 and step S11, as an example of using periodicity, an example in which k_v is obtained so that the left side of equation (15) satisfies the periodicity is given, but the present invention is not limited to equation (15). , K_v may be used in place of equation (15) as long as it is an equation represented by signal components.
 次に、ステップS12において、SvO2推定SpO2決定部19は、ステップS11で求めたk_vを式(8)に代入してこの方程式を解くことでk_aを算出する。式(8)はR_signal、IR_signalをそれぞれの時間差分に置き換えたものでも良い。 Next, in step S12, the SvO2 estimation SpO2 determination unit 19 calculates k_a by substituting k_v obtained in step S11 into equation (8) and solving this equation. Expression (8) may be obtained by replacing R_signal and IR_signal with respective time differences.
 なお、ステップS10とステップS11とにおいて、複数の指標に応じて複数のk_vを求めた場合には、各k_vに対して、式(8)の等号が成立するようなk_aをおのおの算出しても良い。複数のk_aから最終的なk_aを決める方法は、複数のk_aの平均値(単純平均値、調和平均値、相乗平均値など)を最終的なk_aとしてもよいし、複数のk_aのうち前回の最終的なk_aに最も近いものを今回の最終的なk_aとしてもよいし、複数のk_aのうち最大と最小を除いたものの平均値を最終的なk_aとしてもよい。さらに、前回のk_aとの差の絶対値に対応した重みを掛けて荷重平均しても良い。また、k_vはおよそ200組のR_signal、IR_signalについて前記の方法で決定し、k_aを求める際は200組のデータを例えば4分割して4組の式(8)を解いて4個のk_aを算出してそれらの平均値(単純平均、調和平均、相乗平均値、前回k_aとの差の絶対値を重みとする荷重平均値など)を求めても良い。200組のデータ全体で求めたk_aと前記の4個のk_aの平均値をさらに平均しても良い。 In step S10 and step S11, when a plurality of k_v is obtained according to a plurality of indices, k_a is calculated for each k_v so that the equal sign of equation (8) is established. Also good. The method of determining the final k_a from a plurality of k_a may be an average value (simple average value, harmonic average value, geometric average value, etc.) of the plurality of k_a as the final k_a, The one closest to the final k_a may be the final k_a this time, or the average value of the plurality of k_a excluding the maximum and minimum may be the final k_a. Furthermore, the load average may be applied by applying a weight corresponding to the absolute value of the difference from the previous k_a. In addition, k_v is determined by the above method for about 200 sets of R_signal and IR_signal, and when obtaining k_a, 200 sets of data are divided into four, for example, and four sets of equations (8) are solved to calculate four k_a. Then, those average values (simple average, harmonic average, geometric average value, load average value weighted by the absolute value of the difference from the previous k_a, etc.) may be obtained. You may further average the average value of k_a calculated | required with the whole 200 sets of data, and said 4 k_a.
 この他、ステップS10とステップS11において、複数の指標からそれぞれに応じて複数のk_vが求められた場合には、連続するk_vの範囲の中央値、または直前の動脈血酸素飽和度演算で得られたk_vに最も近い値を最適値としてもよい。なお、今までの説明ではノイズ成分の指標がゼロ、もしくは小さいときは式(14)など従来の方法によりk_aを算出しているが、式(8)に前回のk_v(=k_v_0)を代入してk_aを求めても良い。ノイズが小さい場合は式(8)の左辺はΣ{IR_signal*k_v-R_signal}*{IR_signal*k_a-R_signal}≒(k_v-k_a)*ΣIR_signal*{IR_signal*k_a-R_signal}≒(k_v-k_a)*{ΣIR_signal2*k_a-ΣIR_signal*R_signal}なので、k_v としてk_aとは異なる値を代入すれば、方程式はΣIR_signal2*k_a-ΣIR_signal*R_signal=0と等価である。この解はk_a=ΣIR_signal*R_signal/ΣIR_signal2が得られる。ノイズが小さいときはR_signal≒真のk_a*IR_signalなので、上式の右辺は真のk_aになる。したがって、式(8)に前回のk_vなどk_aとは異なると思われる値を代入して解くことにより、真のk_aに十分近い値を得ることができる。また、ノイズが小さいときはR_signal-k_v*IR_signalは広い範囲のk_vに対して強い周期性を持つが、その場合でも前回のk_vとk_vの差の絶対値を前記の種々の指標に掛けた値を評価すれば、k_vの最適値はほぼ前回のk_vに近い値になるので、ノイズの指標が大きいときと同様の処理を行っても真のk_aに十分近い値を得ることができる。計算速度よりもプログラムの簡素化を重視する場合はノイズ指標の大きさによって処理を分けなくても良い。 In addition, in step S10 and step S11, when a plurality of k_vs are obtained from a plurality of indices according to each, the median value of the continuous k_v range or the immediately preceding arterial oxygen saturation calculation is obtained. A value closest to k_v may be set as the optimum value. In the above description, when the noise component index is zero or small, k_a is calculated by a conventional method such as Expression (14). However, the previous k_v (= k_v_0) is substituted into Expression (8). K_a may be obtained. When the noise is small, the left side of equation (8) is Σ {IR_signal * k_v−R_signal} * {IR_signal * k_a−R_signal} ≈ (k_v−k_a) * ΣIR_signal * {IR_signal * k_a−R_signal} ≈ (k_v−k_a) * {ΣIR_signal 2 * k_a−ΣIR_signal * R_signal}, so if a value different from k_a is substituted for k_v, the equation is equivalent to ΣIR_signal 2 * k_a−ΣIR_signal * R_signal = 0. This solution gives k_a = ΣIR_signal * R_signal / ΣIR_signal 2 . When noise is small, R_signal≈true k_a * IR_signal, so the right side of the above equation is true k_a. Therefore, a value sufficiently close to true k_a can be obtained by substituting a value that seems to be different from k_a, such as the previous k_v, into Equation (8). Also, when noise is small, R_signal-k_v * IR_signal has a strong periodicity over a wide range of k_v, but even in this case, the value obtained by multiplying the above-mentioned various indicators by the absolute value of the difference between the previous k_v and k_v Since the optimal value of k_v is almost the same as the previous k_v, a value sufficiently close to true k_a can be obtained even if the same processing as when the noise index is large is performed. When importance is attached to the simplification of the program rather than the calculation speed, the processing may not be divided depending on the size of the noise index.
 次に、ステップS13において、SvO2推定SpO2決定部19は、式(9)を用いて、ノイズ成分の指標となるk_nsを算出する。k_nsの算出には、ステップS7で前記メモリに記憶されたΣR_signal*IR_signal、ΣR_signal2およびΣIR_signal2が用いられる。 Next, in step S <b> 13, the SvO2 estimation SpO2 determination unit 19 calculates k_ns that serves as an index of the noise component using Expression (9). For calculating k_ns, ΣR_signal * IR_signal, ΣR_signal 2 and ΣIR_signal 2 stored in the memory in step S7 are used.
 次に、ステップS14において、SvO2推定SpO2決定部19は、k_aの信頼度又はk_vの信頼度を算出し、k_aに基づき、血中酸素飽和度を算出する。ここで、k_aの信頼度とは、k_aに含まれる誤差の度合いを表す値である。同様に、k_vの信頼度とは、k_vに含まれる誤差の度合いを表す値である。 Next, in step S14, the SvO2 estimation SpO2 determination unit 19 calculates the reliability of k_a or the reliability of k_v, and calculates the blood oxygen saturation based on k_a. Here, the reliability of k_a is a value representing the degree of error included in k_a. Similarly, the reliability of k_v is a value indicating the degree of error included in k_v.
 次に、ステップS15において、SvO2推定SpO2決定部19は、次回の測定に備えて、k_vを、k_v_0として記憶する。SpO2出力部22と信頼度出力部24とは、それぞれステップS14で検出した血中酸素飽和度とk_aの信頼度とを出力する。信頼度出力部24は、k_aの信頼度に代えてk_vの信頼度を出力してもよい。また、測定部10は、ステップS13で算出したk_nsと第1の所定の値とを比較し、k_nsが第1の所定値を超えた場合には、k_nsが第1の所定値を超えた旨を警告するための警告をSpO2出力部22に出力する。さらに、測定部10は、k_aの信頼度と第2の所定値とを比較し、k_aが第2の所定値を超えた場合には、k_aが第2の所定値を超えた旨を示す警告をさらに信頼度出力部24に出力してもよい。また、測定部10は、k_aの信頼度に代えてk_vの信頼度を用いて、k_vの信頼度と第3の所定の値とを比較し、k_vが第3の所定の値を超えた場合には、k_vが第3の所定値を超えた旨を示す警告をさらに信頼度出力部24に出力してもよい。 Next, in step S15, the SvO2 estimation SpO2 determination unit 19 stores k_v as k_v_0 in preparation for the next measurement. The SpO2 output unit 22 and the reliability output unit 24 output the blood oxygen saturation level and the k_a reliability level detected in step S14, respectively. The reliability output unit 24 may output the reliability of k_v instead of the reliability of k_a. In addition, the measurement unit 10 compares k_ns calculated in step S13 with the first predetermined value, and when k_ns exceeds the first predetermined value, the fact that k_ns has exceeded the first predetermined value. Is output to the SpO2 output unit 22. Further, the measurement unit 10 compares the reliability of k_a with a second predetermined value, and if k_a exceeds the second predetermined value, a warning indicating that k_a has exceeded the second predetermined value. May be further output to the reliability output unit 24. Further, the measurement unit 10 compares the reliability of k_v with the third predetermined value using the reliability of k_v instead of the reliability of k_a, and when k_v exceeds the third predetermined value May further output a warning indicating that k_v exceeds the third predetermined value to the reliability output unit 24.
 一般に、算出された動脈血酸素飽和度の値の大小によって、それに含まれる誤差は異なることが知られており、例えば、動脈血酸素飽和度が約95%の場合と70%の場合とでは動脈血酸素飽和度の誤差の大きさが異なる。そこで、k_nsの所定値は、以下のように変化させる。k_nsの所定値は、動脈血酸素飽和度が所定の動脈血酸素飽和度より小さい場合(k_aとk_vとは大きく、静脈の血中酸素飽和度が小さい場合に相当)にはk_nsの所定値を小さく設定し、一方、逆に動脈血酸素飽和度が所定の動脈血酸素飽和度より大きい場合(k_aとk_vとは小さく、静脈の血中酸素飽和度が大きい場合に相当)にはk_nsの所定値を大きく設定するとよい。このように算出された動脈血酸素飽和度の値に応じて、k_nsの所定値を変化させることで、例えば、動脈血酸素飽和度が大きい場合は閾値を大きくし、動脈血酸素飽和度が小さい場合とほぼ同じ値で警告や出力禁止を行うことができる。ここで、所定の動脈血酸素飽和度および所定の動脈血酸素飽和度に応じたk_nsの所定値は、過去の測定データを元にして決定した値を測定部10に予め記憶しておいてもよいし、生体や生体の状態に応じて適宜に変化させてもよい。求められたk_a又はk_vの信頼度の指標として前記k_ns以外に、例えば、式(16)から式(21)の何れかの式で与えられる値zを用いてもよい。zの絶対値が大きいと、k_aの信頼度は低い。また、zの絶対値が大きいと、k_vの信頼度は低い。
Figure JPOXMLDOC01-appb-I000016
Figure JPOXMLDOC01-appb-I000017
Figure JPOXMLDOC01-appb-I000018
Figure JPOXMLDOC01-appb-I000019
Figure JPOXMLDOC01-appb-I000020
Figure JPOXMLDOC01-appb-I000021
In general, it is known that the error contained therein varies depending on the value of the calculated arterial oxygen saturation, for example, the arterial oxygen saturation is approximately 95% and 70%. The magnitude of the degree error is different. Therefore, the predetermined value of k_ns is changed as follows. The predetermined value of k_ns is set to a small value when the arterial oxygen saturation is smaller than the predetermined arterial oxygen saturation (when k_a and k_v are large and the venous blood oxygen saturation is small) On the other hand, if the arterial oxygen saturation is greater than the predetermined arterial oxygen saturation (k_a and k_v are small, corresponding to the case where the venous blood oxygen saturation is large), the predetermined value of k_ns is set to be large. Good. By changing the predetermined value of k_ns according to the value of arterial oxygen saturation calculated in this way, for example, when arterial oxygen saturation is large, the threshold value is increased, and when arterial oxygen saturation is small, Warning and output prohibition can be performed with the same value. Here, for the predetermined arterial blood oxygen saturation and the predetermined value of k_ns corresponding to the predetermined arterial oxygen saturation, values determined based on past measurement data may be stored in the measurement unit 10 in advance. Alternatively, it may be appropriately changed according to the living body or the state of the living body. In addition to k_ns, for example, a value z given by any one of Equations (16) to (21) may be used as an index of the reliability of the obtained k_a or k_v. When the absolute value of z is large, the reliability of k_a is low. Further, when the absolute value of z is large, the reliability of k_v is low.
Figure JPOXMLDOC01-appb-I000016
Figure JPOXMLDOC01-appb-I000017
Figure JPOXMLDOC01-appb-I000018
Figure JPOXMLDOC01-appb-I000019
Figure JPOXMLDOC01-appb-I000020
Figure JPOXMLDOC01-appb-I000021
 さらに、k_aの信頼度の指標の代わりとして、以下の式(22)で与えられる値wのバラツキ(標準偏差、最大値-最小値など)を用いてもよい。値wのバラツキが小さいことは、求めたk_aの信頼度は高いことを示している。
Figure JPOXMLDOC01-appb-I000022
Further, as a substitute for the reliability index of k_a, the variation of the value w given by the following equation (22) (standard deviation, maximum value−minimum value, etc.) may be used. A small variation in the value w indicates that the reliability of the obtained k_a is high.
Figure JPOXMLDOC01-appb-I000022
 この他、R_signalをy、IR_signalをxとした場合における(x,y)の回帰直線に対するyのバラツキや最大値と最小値との差等からk_aの信頼性を評価してもよい。 In addition, the reliability of k_a may be evaluated from the variation of y with respect to the regression line (x, y) where R_signal is y and IR_signal is x, the difference between the maximum value and the minimum value, and the like.
 <脈拍数検出フロー(S16~S20)>
図5において、ステップS16から、脈拍数算出部20は、脈拍数検出フローを開始する。ステップS17において、脈拍数算出部20は、血中酸素飽和度フローのステップS11で算出したk_vから、ノイズ成分を除去した脈波波形を求める。脈拍数算出部20は、ステップS10で行った2値化処理と同様に、ノイズ成分を除去した脈波波形に対し、2値化処理を行う。この場合の閾値は0でも良いし、前記のk_vを決めるときに用いた閾値でも良い。
<Pulse rate detection flow (S16 to S20)>
In FIG. 5, from step S16, the pulse rate calculation unit 20 starts a pulse rate detection flow. In step S17, the pulse rate calculation unit 20 obtains a pulse waveform from which the noise component has been removed from k_v calculated in step S11 of the blood oxygen saturation flow. The pulse rate calculation unit 20 performs binarization processing on the pulse wave waveform from which the noise component has been removed, similarly to the binarization processing performed in step S10. The threshold value in this case may be 0, or may be the threshold value used when determining the k_v.
 次に、ステップS18において、脈拍数算出部20は、R_signal(i)-k_v*IR_signal(i)の所定時間内の周期T(j)の平均値T_ave(T_ave=1/N(ΣT(j)))を算出する。 Next, in step S18, the pulse rate calculator 20 calculates an average value T_ave (T_ave = 1 / N (ΣT (j)) of the period T (j) within a predetermined time of R_signal (i) −k_v * IR_signal (i). )) Is calculated.
 次に、ステップS19において、脈拍数を算出する。脈拍数は、前記周期の逆数として求められる。すなわち、脈拍数をPulse(回/min)として、Pulse=60/T_aveで表される。R_signal(i)-k_v*IR_signal(i)のフーリエ変換またはその絶対値のピークを与える周波数から脈拍数を算出しても良い。 Next, in step S19, the pulse rate is calculated. The pulse rate is obtained as the reciprocal of the period. That is, it is expressed as Pulse = 60 / T_ave, where the pulse rate is Pulse (times / min). The pulse rate may be calculated from the Fourier transform of R_signal (i) −k_v * IR_signal (i) or the frequency that gives the peak of its absolute value.
 次に、ステップS20において、脈拍数算出部20は、算出した脈拍数を脈拍数出力部23に出力し、脈拍数検出フローを終了する。 Next, in step S20, the pulse rate calculation unit 20 outputs the calculated pulse rate to the pulse rate output unit 23, and the pulse rate detection flow ends.
 このように動作することによって、生体情報測定装置30は、酸素飽和度検出フローおよび脈拍数検出フローにより、酸素飽和度と脈拍数とを測定する。 By operating in this way, the biological information measuring device 30 measures the oxygen saturation and the pulse rate by the oxygen saturation detection flow and the pulse rate detection flow.
 以上のような実施形態によれば、信号成分の周期性を利用してノイズ成分を除去しているので、従来技術より演算処理を簡単化することができ、演算処理量を低減することができる。そのため、演算処理に伴う消費電力を抑制することができる。この結果、生体情報測定装置30に電池を使用することが可能となり、携帯に便利な小型軽量な生体情報測定装置を提供することができる。このため、例えば、登山者や在宅酸素療法患者が常時携帯しても体力的な負担を低下させることができる。 According to the embodiment as described above, the noise component is removed by utilizing the periodicity of the signal component, so that the arithmetic processing can be simplified and the amount of arithmetic processing can be reduced compared to the prior art. . Therefore, it is possible to suppress power consumption associated with arithmetic processing. As a result, a battery can be used for the biological information measuring device 30, and a small and lightweight biological information measuring device convenient for carrying can be provided. For this reason, for example, even if a mountain climber or a home oxygen therapy patient always carries, a physical burden can be reduced.
 また、本実施形態に係る生体情報測定装置30は、信号成分の強度と前記ノイズ成分の強度との比に関する情報を有する指標に基づいて、ノイズ成分を抽出するか否かの判断を行うので、ノイズ成分が無視できるほど小さい場合においては、このノイズ成分の除去を行う演算を省略することができるので、生体情報を得るための演算時間が短縮され、消費電力を抑えて電池動作時間をより長くできるとともに、より早く生体情報を得ることができる。 Moreover, since the biological information measuring apparatus 30 according to the present embodiment determines whether to extract a noise component based on an index having information on the ratio between the intensity of the signal component and the intensity of the noise component, When the noise component is negligibly small, the calculation for removing the noise component can be omitted, so that the calculation time for obtaining biological information is shortened, and the battery operating time is lengthened by suppressing power consumption. In addition, the biological information can be obtained more quickly.
 また、本実施形態に係る生体情報測定装置30は、音声、文字および光等によって生体情報、信号信頼度およびノイズ信頼度を出力するので、これらを容易に確認することが可能となる。さらに、本実施形態に係る生体情報測定装置30は、指標が所定の値を超えたことを示す警告、あるいは信号信頼度またはノイズ信頼度の低下を示す警告を出力するので、測定対象者や測定者等に生体情報の取り扱いに関して注意を喚起することもできる。そして、前記指標、前記ノイズ信頼度および前記信号信頼度に応じて、演算された生体情報の取り扱いを変更することが可能となり、例えば、指標を基に再計測等を行うことができる。 In addition, since the biological information measuring device 30 according to the present embodiment outputs biological information, signal reliability, and noise reliability by voice, characters, light, and the like, it is possible to easily check these. Furthermore, the biological information measuring device 30 according to the present embodiment outputs a warning indicating that the index exceeds a predetermined value, or a warning indicating a decrease in signal reliability or noise reliability. It is also possible to alert a person or the like regarding the handling of biological information. The handling of the calculated biological information can be changed according to the index, the noise reliability, and the signal reliability. For example, remeasurement or the like can be performed based on the index.
 また、本実施形態に係る生体情報測定装置30は、脈拍数を算出する際に、2値化した波形を用いることで、例えばダブルピーク等による誤測定を低減することができる。 In addition, the biological information measuring apparatus 30 according to the present embodiment can reduce erroneous measurement due to, for example, a double peak by using a binarized waveform when calculating the pulse rate.
 また、本実施形態に係る生体情報測定方法は、同じ計算資源(ハードウェア資源)において、生体情報をより早い計算時間で算出することできる。 In addition, the biological information measuring method according to the present embodiment can calculate biological information in an earlier calculation time with the same calculation resource (hardware resource).
 上記実施形態では、一例として、周期性をもつ2波長の光の強度変化を検出して血中酸素飽和度を求める生体情報測定装置30を例示した。この他、周期性をもつ1波長の光の強度変化に基づき、脈拍、不整脈(心房細動・期外収縮)の検出、除細動時のモニタ、自律神経障害、血管年齢等の診断等を行う生体情報測定装置にも本発明を適用することができる。さらに、脈波波形以外に、心電等の生体情報を測定対象とする装置にも適用することができる。 In the above-described embodiment, as an example, the biological information measuring apparatus 30 that detects a change in the intensity of light having two wavelengths with periodicity and obtains blood oxygen saturation is illustrated. In addition, based on changes in the intensity of light of one wavelength with periodicity, pulse, arrhythmia (atrial fibrillation / extrasystole) detection, defibrillation monitoring, autonomic nerve damage, blood vessel age, etc. The present invention can also be applied to a biological information measuring device to be performed. Furthermore, in addition to the pulse wave waveform, the present invention can also be applied to a device that measures biological information such as electrocardiogram.
 なお、上記実施形態では、k_vを算出する際に、信号成分の周期性を利用したが、ステップS11とステップS12に代えて、式(15)で与えられるqをフーリエ変換した式(23)を用いてもよい。
Figure JPOXMLDOC01-appb-I000023
In the above embodiment, the periodicity of the signal component is used when calculating k_v. However, instead of Step S11 and Step S12, Equation (23) obtained by Fourier transforming q given by Equation (15) is used. It may be used.
Figure JPOXMLDOC01-appb-I000023
ここで、Fは、フーリエ変換、ωは、周波数である。|F(ω)|のピーク高さ/ピーク幅を指標としてそれを最大にするωからk_vを求めてもよい。この指標にk_vと前回のk_vとの差の絶対値を掛けたものをk_vが最適かどうかの指標にしても良い。最適なk_vが得られたときのF(ω)のピークを与えるωを60倍して脈拍数を求めても良いし、最適なk_vを用いてR_signal-k_v*IR_signalの周期から脈拍数を求めても良い。 Here, F is a Fourier transform, and ω is a frequency. The peak height / peak width of | F (ω) | may be used as an index, and k_v may be obtained from ω that maximizes the peak height / peak width. An index indicating whether k_v is optimal may be obtained by multiplying this index by the absolute value of the difference between k_v and the previous k_v. The pulse rate may be obtained by multiplying ω giving the peak of F (ω) when the optimum k_v is obtained by multiplying 60, or the pulse rate is obtained from the period of R_signal−k_v * IR_signal using the optimum k_v. May be.
 この他、上記実施形態では、k_vを算出するのにあたり、信号成分の周期性を利用したが、ステップS11とステップS12に代えて、式(15)で与えられるqについて、qの二乗からqの二乗の時間平均を減算した信号のフーリエ変換である式(24)を用いてもよい。
Figure JPOXMLDOC01-appb-I000024
In addition, in the above embodiment, the periodicity of the signal component is used to calculate k_v. However, instead of step S11 and step S12, q given by equation (15) is changed from the square of q to q You may use Formula (24) which is the Fourier transform of the signal which subtracted the time average of a square.
Figure JPOXMLDOC01-appb-I000024
 ここで、Pは、フーリエ変換、ωは、周波数である。P(ω)のピーク高さ/ピーク幅を指標としてそれを最大にするωからk_vを求めても良い。この指標にk_vと前回のk_vとの差の絶対値を掛けたものをk_vが最適かどうかの指標にしても良い。最適なk_vが得られたときのP(ω)のピークを与えるωを30倍した値を脈拍数とすることもできる。 Where P is the Fourier transform and ω is the frequency. The peak height / peak width of P (ω) may be used as an index, and k_v may be obtained from ω that maximizes the peak height / peak width. An index indicating whether k_v is optimal may be obtained by multiplying this index by the absolute value of the difference between k_v and the previous k_v. A value obtained by multiplying ω giving the peak of P (ω) when the optimum k_v is obtained by 30 times can be used as the pulse rate.
 なお、上記実施形態のステップS9において、式(14)に代えて以下の式(25)から式(34)の何れかの式を用いて、k_aを求めてもよい。 In step S9 of the above embodiment, k_a may be obtained using any one of the following equations (25) to (34) instead of equation (14).
 ここで、式(25)と式(26)は、R_signalとIR_signalとの時間差分の比からk_aを求める式である。
Figure JPOXMLDOC01-appb-I000025
Figure JPOXMLDOC01-appb-I000026
Here, Expression (25) and Expression (26) are expressions for obtaining k_a from the ratio of time differences between R_signal and IR_signal.
Figure JPOXMLDOC01-appb-I000025
Figure JPOXMLDOC01-appb-I000026
 式(27)から式(29)は、R_signalとIR_signalの自己相関と相互相関との比からk_aを求める式である。
Figure JPOXMLDOC01-appb-I000027
Figure JPOXMLDOC01-appb-I000028
Figure JPOXMLDOC01-appb-I000029
Expressions (27) to (29) are expressions for obtaining k_a from the ratio between the autocorrelation and cross-correlation of R_signal and IR_signal.
Figure JPOXMLDOC01-appb-I000027
Figure JPOXMLDOC01-appb-I000028
Figure JPOXMLDOC01-appb-I000029
 式(30)は、R_signalとIR_signalの回帰直線の傾きからk_aを求める式である。なお、以下の式(30)から式(34)中のΔは、各データ系列の時間差分を表す。
Figure JPOXMLDOC01-appb-I000030
Figure JPOXMLDOC01-appb-I000031
Figure JPOXMLDOC01-appb-I000032
Figure JPOXMLDOC01-appb-I000033
Figure JPOXMLDOC01-appb-I000034
Expression (30) is an expression for obtaining k_a from the slope of the regression line of R_signal and IR_signal. Note that Δ in the following formulas (30) to (34) represents a time difference of each data series.
Figure JPOXMLDOC01-appb-I000030
Figure JPOXMLDOC01-appb-I000031
Figure JPOXMLDOC01-appb-I000032
Figure JPOXMLDOC01-appb-I000033
Figure JPOXMLDOC01-appb-I000034
 上述のように、新規な生体情報信号処理装置は、周期性を有する第1信号成分と第1ノイズ成分とを含む第1の時系列信号と、前記第1信号成分と所定の関係を有する第2信号成分および前記第1ノイズ成分と所定の関係を有する第2ノイズ成分を含む第2の時系列信号と、前記第1ノイズ成分と前記第2ノイズ成分との前記所定の関係とに基づいて、前記第1の時系列信号と前記第2の時系列信号とから前記第1信号成分を含む信号を生成する信号生成部と、第1の所定時間範囲での該生成信号の周期性を用いて、前記第1の所定時間範囲での前記第1ノイズ成分と前記第2ノイズ成分との前記所定の関係を推定する推定部とを備えている。 As described above, the novel biological information signal processing apparatus includes the first time-series signal including the first signal component having the periodicity and the first noise component, and the first signal component having a predetermined relationship with the first signal component. Based on a second time-series signal including two signal components and a second noise component having a predetermined relationship with the first noise component, and the predetermined relationship between the first noise component and the second noise component. A signal generator that generates a signal including the first signal component from the first time-series signal and the second time-series signal, and a periodicity of the generated signal in a first predetermined time range And an estimation unit for estimating the predetermined relationship between the first noise component and the second noise component in the first predetermined time range.
 また、上述の生体情報信号処理装置において、前記信号生成部は、前記生成信号に2値化処理を行うことで2値化信号をさらに生成し、前記推定部は、前記2値化信号の周期性を用いて前記生成信号の周期を推定するのが好ましい。 Moreover, in the above-described biological information signal processing device, the signal generation unit further generates a binarized signal by performing binarization processing on the generated signal, and the estimation unit generates a cycle of the binarized signal. It is preferable to estimate the period of the generated signal using the property.
 また、上述の生体情報信号処理装置において、前記推定部は、前記2値化信号の周期性を算出するために、前記2値化信号のパルス幅の変動およびパルス周期の変動のうち、少なくとも何れかを用いるのが好ましい。 Further, in the above-described biological information signal processing device, the estimation unit calculates at least any one of a pulse width variation and a pulse cycle variation of the binarized signal in order to calculate the periodicity of the binarized signal. It is preferable to use these.
 また、上述の生体情報信号処理装置において、前記推定部は、第1の所定時間範囲での、前記生成信号の複数の極大値及び/又は複数の極小値を算出し、複数の極大値における変動及び/又は複数の極小値における変動を用いて、前記生成信号の周期を算出するのが好ましい。 Further, in the above-described biological information signal processing device, the estimation unit calculates a plurality of maximum values and / or a plurality of minimum values of the generated signal in a first predetermined time range, and fluctuations in the plurality of maximum values. It is preferable to calculate the period of the generated signal using fluctuations in the plurality of minimum values.
 また、上述の生体情報信号処理装置において、前記推定部は、前記生成信号の周期に関する情報を有する複数の指標に基づき、前記生成信号の周期を算出するのが好ましい。 Moreover, in the above-described biological information signal processing device, it is preferable that the estimation unit calculates the period of the generated signal based on a plurality of indexes having information on the period of the generated signal.
 また、上述の生体情報信号処理装置において、前記信号生成部は、前記第1の所定時間範囲での前記生成信号にフーリエ変換を行うことで、フーリエ信号をさらに生成し、前記推定部は、前記フーリエ信号のピーク幅に基づいて、前記第1の所定時間範囲での前記第1ノイズ成分と前記第2ノイズ成分との前記所定の関係を推定するのが好ましい。 Moreover, in the above-described biological information signal processing device, the signal generation unit further generates a Fourier signal by performing Fourier transform on the generation signal in the first predetermined time range, and the estimation unit It is preferable to estimate the predetermined relationship between the first noise component and the second noise component in the first predetermined time range based on a peak width of a Fourier signal.
 また、上述の生体情報信号処理装置において、前記推定部は、前記生成信号の周期性を用いて、前記第1信号成分の周期または前記第2信号成分の周期をさらに算出するのが好ましい。 In the above-described biological information signal processing device, it is preferable that the estimation unit further calculates the period of the first signal component or the period of the second signal component using the periodicity of the generated signal.
 また、上述の生体情報信号処理装置において、前記推定部は、前記第1の所定時間範囲での前記第1ノイズ成分と前記第2ノイズ成分との前記所定の関係と、前記第1の所定時間範囲で前記第1信号成分と前記第1ノイズ成分とは独立であることとを用いて前記第1信号成分と前記第2信号成分との前記所定の関係をさらに推定するのが好ましい。 Further, in the above-described biological information signal processing device, the estimation unit includes the predetermined relationship between the first noise component and the second noise component in the first predetermined time range, and the first predetermined time. Preferably, the predetermined relationship between the first signal component and the second signal component is further estimated using the first signal component and the first noise component being independent in range.
 また、上述の生体情報信号処理装置において、前記推定部は、前記第1の所定時間範囲での前記第1ノイズ成分と前記第2ノイズ成分との前記所定の関係と、第2の所定時間範囲で第1信号成分および第1ノイズ成分とは独立であることとを用いて、前記第2の所定時間範囲での前記第1信号成分と前記第2信号成分との前記所定の関係をさらに推定するのが好ましい。 Further, in the above-described biological information signal processing device, the estimation unit includes the predetermined relationship between the first noise component and the second noise component in the first predetermined time range, and a second predetermined time range. And further estimating the predetermined relationship between the first signal component and the second signal component in the second predetermined time range using the first signal component and the first noise component being independent of each other. It is preferable to do this.
 また、上述の生体情報信号処理装置において、前記第2の所定時間範囲は複数であって、前記推定部は、前記第2の所定時間範囲毎に前記第1信号成分と前記第2信号成分との前記所定の関係をそれぞれ推定するのが好ましい。 In the above-described biological information signal processing device, the second predetermined time range is plural, and the estimation unit includes the first signal component and the second signal component for each second predetermined time range. It is preferable to estimate each of the predetermined relationships.
 また、上述の生体情報信号処理装置において、前記推定部は、前記第2の所定時間範囲毎の前記第1信号成分と前記第2信号成分との前記所定の関係を用いて、前記第1信号成分と前記第2信号成分との前記所定の関係の平均値を算出するのが好ましい。 Further, in the above-described biological information signal processing device, the estimation unit uses the predetermined relationship between the first signal component and the second signal component for each second predetermined time range, and uses the first signal. It is preferable to calculate an average value of the predetermined relationship between a component and the second signal component.
 また、上述の生体情報信号処理装置において、前記推定部は、前記第1の所定時間範囲での前記第1信号成分と前記第2信号成分との前記所定の関係と、前記第2の所定時間範囲毎の前記第1信号成分と前記第2信号成分との前記所定の関係を用いて、前記第1信号成分と前記第2信号成分との前記所定の関係の平均値を算出するのが好ましい。 Further, in the above-described biological information signal processing device, the estimation unit includes the predetermined relationship between the first signal component and the second signal component in the first predetermined time range, and the second predetermined time. Preferably, an average value of the predetermined relationship between the first signal component and the second signal component is calculated using the predetermined relationship between the first signal component and the second signal component for each range. .
 また、上述の生体情報信号処理装置において、前記平均値は加重平均によって求めた値であるのが好ましい。 In the above-described biological information signal processing apparatus, the average value is preferably a value obtained by weighted average.
 また、上述の生体情報信号処理装置において、前記推定部は、前記第1ノイズ成分を除去するか否かを判定するための指標として、前記第1ノイズ成分と前記第1信号成分との比に関する情報を有する前記指標をさらに算出し、前記指標と第1の所定の値とを比較することで、前記第1ノイズ成分を除去すると判定した場合には、前記第1の時系列信号と前記第2の時系列信号とに基づいて、前記第1信号成分と前記第2信号成分との前記所定の関係を推定するのが好ましい。 Further, in the above-described biological information signal processing device, the estimation unit relates to a ratio between the first noise component and the first signal component as an index for determining whether or not to remove the first noise component. If it is determined that the first noise component is to be removed by further calculating the index having information and comparing the index with a first predetermined value, the first time-series signal and the first Preferably, the predetermined relationship between the first signal component and the second signal component is estimated based on two time series signals.
 このような構成の生体情報信号処理装置では、前記周期性を用いることによってノイズ成分を除去するので、ノイズ成分除去のために必要な信号処理量を従来技術より低減することができる。このため、信号処理量の低減により、ノイズ成分除去の演算に伴う消費電力も抑制することが可能となる。さらに、前記指標に応じて信号処理を行うことによって不要な信号処理が行う必要がなくなる結果、信号処理を速くすることができる。 In the biological information signal processing apparatus having such a configuration, since the noise component is removed by using the periodicity, the amount of signal processing necessary for removing the noise component can be reduced as compared with the conventional technique. For this reason, by reducing the signal processing amount, it is possible to suppress the power consumption accompanying the calculation of noise component removal. Further, by performing signal processing according to the index, unnecessary signal processing is not required, so that signal processing can be speeded up.
 また、上述の生体情報信号処理装置において、前記推定部は、前記第1信号成分と前記第2信号成分との前記所定の関係に含まれる誤差の度合いを表す信号信頼度をさらに算出し、前記信号信頼度を出力する出力部をさらに備えるのが好ましい。 Further, in the above-described biological information signal processing device, the estimation unit further calculates a signal reliability indicating a degree of error included in the predetermined relationship between the first signal component and the second signal component, It is preferable to further include an output unit that outputs the signal reliability.
 また、上述の生体情報信号処理装置において、前記推定部は、前記第1ノイズ成分と前記第2ノイズ成分との前記所定の関係に含まれる誤差の度合いを表すノイズ信頼度をさらに算出し、前記ノイズ信頼度を出力する出力部をさらに備えるのが好ましい。 Further, in the above-described biological information signal processing device, the estimation unit further calculates a noise reliability indicating a degree of error included in the predetermined relationship between the first noise component and the second noise component, It is preferable to further include an output unit that outputs noise reliability.
 また、上述の生体情報信号処理装置において、前記推定部は、前記信号信頼度と第2の所定の値とを比較し、前記信号信頼度が前記第2の所定の値を超えた場合に、前記出力部は、前記信号信頼度が前記第2の所定の値を超えたことを示す警告をさらに出力するのが好ましい。 Further, in the above-described biological information signal processing device, the estimation unit compares the signal reliability with a second predetermined value, and when the signal reliability exceeds the second predetermined value, Preferably, the output unit further outputs a warning indicating that the signal reliability has exceeded the second predetermined value.
 また、上述の生体情報信号処理装置において、前記推定部は、前記ノイズ信頼度と第3の所定の値とを比較し、前記ノイズ信頼度が前記第3の所定の値を超えた場合に、前記出力部は、前記ノイズ信頼度が前記第3の所定の値を超えたことを示す警告をさらに出力するのが好ましい。 Further, in the above-described biological information signal processing device, the estimation unit compares the noise reliability with a third predetermined value, and when the noise reliability exceeds the third predetermined value, Preferably, the output unit further outputs a warning indicating that the noise reliability has exceeded the third predetermined value.
 このような構成の生体情報信号処理装置によれば、前記ノイズ信頼度または前記信号信頼度を参照することによって、前記推定部で推定した所定の関係に含まれる誤差の度合いを認識することが可能となる。 According to the biological information signal processing device having such a configuration, it is possible to recognize the degree of error included in the predetermined relationship estimated by the estimation unit by referring to the noise reliability or the signal reliability. It becomes.
 また、新規な生体情報信号処理方法は、第1の所定の時間範囲での、周期性を有する第1信号成分と第1ノイズ成分とを含む第1の時系列信号と、前記第1の信号成分と所定の関係を有する第2信号成分および前記第1ノイズ成分と所定の関係を有する第2ノイズ成分を含む第2の時系列信号と、前記第1ノイズ成分と前記第2ノイズ成分との前記所定の関係とに基づいて、前記第1の時系列信号と前記第2の時系列信号とから前記第1信号成分を含む信号を生成する信号生成ステップと、該生成信号の周期性を用いて、前記第1ノイズ成分と前記第2ノイズ成分との前記所定の関係を推定する推定ステップとを備える。 The novel biological information signal processing method includes a first time-series signal including a first signal component having a periodicity and a first noise component in a first predetermined time range, and the first signal. A second time-series signal including a second signal component having a predetermined relationship with a component and a second noise component having a predetermined relationship with the first noise component; and the first noise component and the second noise component Based on the predetermined relationship, a signal generation step of generating a signal including the first signal component from the first time-series signal and the second time-series signal, and using the periodicity of the generated signal And an estimating step for estimating the predetermined relationship between the first noise component and the second noise component.
 また、上述の生体情報信号処理方法において、前記信号生成ステップでは、前記生成信号に2値化処理を行うことで2値化信号をさらに生成し、前記推定ステップでは、前記2値化信号の周期性を用いて、前記生成信号の周期を推定するのが好ましい。 In the biological information signal processing method described above, in the signal generation step, a binarization signal is further generated by performing binarization processing on the generation signal, and in the estimation step, a cycle of the binarization signal is generated. It is preferable to estimate the period of the generated signal using the property.
 また、上述の生体情報信号処理方法において、前記信号生成ステップでは、前記生成信号と少なくとも2個以上の閾値とを比較し、前記生成信号が前記閾値を超えるか否かに基づいて、少なくとも2種以上の2値化信号をさらに生成し、前記推定ステップでは、前記少なくとも2種以上の2値化信号の周期性を用いて、前記生成信号の周期を推定するのが好ましい。 Further, in the above-described biological information signal processing method, in the signal generation step, the generated signal is compared with at least two threshold values, and at least two types are determined based on whether the generated signal exceeds the threshold value. Preferably, the above binarized signal is further generated, and in the estimation step, the period of the generated signal is estimated using the periodicity of the at least two types of binarized signals.
 また、上述の生体情報信号処理方法において、前記2値化処理は、前記生成信号と2値化の基準となる正の閾値および負の閾値とを比較し、前記生成信号が正の閾値を超える場合には前記生成信号を正の第1の定数に変換し、前記生成信号が負の閾値未満である場合には前記生成信号を負の第2の定数に変換し、前記生成信号が負の閾値以上かつ正の閾値以下である場合には前記生成信号をゼロに変換する処理であるのが好ましい。 Further, in the above-described biological information signal processing method, the binarization processing compares the generated signal with a positive threshold value and a negative threshold value that serve as a reference for binarization, and the generated signal exceeds the positive threshold value. The generated signal is converted to a positive first constant, and if the generated signal is less than a negative threshold, the generated signal is converted to a negative second constant, and the generated signal is negative It is preferable that the generated signal is converted to zero when the threshold value is greater than or equal to the threshold value and less than or equal to the positive threshold value.
 また、上述の生体情報信号処理方法において、前記推定ステップでは、前記2値化信号のパルス幅の変動およびパルス周期の変動のうち、少なくとも何れかに基づいて、前記2値化信号の周期を算出するのが好ましい。 In the biological information signal processing method described above, in the estimation step, the period of the binarized signal is calculated based on at least one of a pulse width variation and a pulse cycle variation of the binarized signal. It is preferable to do this.
 また、上述の生体情報信号処理方法において、前記推定ステップでは、前記生成信号の複数の極大値及び/又は複数の極小値をさらに算出し、複数の極大値における変動及び/又は複数の極小値における変動を用いて、前記生成信号の周期を算出するのが好ましい。 In the above-described biological information signal processing method, in the estimation step, a plurality of maximum values and / or a plurality of minimum values of the generated signal are further calculated, and fluctuations in the plurality of maximum values and / or a plurality of minimum values are calculated. It is preferable to calculate the period of the generated signal using fluctuation.
 また、上述の生体情報信号処理方法において、前記推定ステップでは、前記生成信号の周期性を表す複数の指標を用いて、前記第1の所定時間範囲での前記第1ノイズ成分と前記第2ノイズ成分との前記所定の関係とを推定するのが好ましい。 Further, in the above-described biological information signal processing method, in the estimation step, the first noise component and the second noise in the first predetermined time range using a plurality of indexes representing the periodicity of the generated signal. It is preferable to estimate the predetermined relationship with components.
 また、上述の生体情報信号処理方法において、前記推定ステップでは、前記生成信号の周期性を用いて、前記第1信号成分又は前記第2信号成分の周期に対応した量をさらに推定するのが好ましい。 In the above-described biological information signal processing method, it is preferable that the estimation step further estimates an amount corresponding to the period of the first signal component or the second signal component using the periodicity of the generated signal. .
 このような構成の生体情報信号処理方法では、前記周期性を用いることによってノイズ成分を除去するので、ノイズ成分除去のために必要な信号処理量を従来技術より低減することができる。このため、信号処理量の低減により、ノイズ成分除去の信号処理に伴う消費電力も抑制することが可能となる。 In the biological information signal processing method having such a configuration, since the noise component is removed by using the periodicity, the amount of signal processing necessary for removing the noise component can be reduced as compared with the prior art. For this reason, by reducing the amount of signal processing, it is possible to suppress power consumption associated with signal processing for noise component removal.
 さらに、新規な生体情報測定装置は、互いに波長の異なる複数の光を生体へそれぞれ照射して前記生体を透過または反射した各光をそれぞれ受光することによって得られた少なくとも第1測定データまたは第2測定データに基づいて、前記生体の生体情報を測定する生体情報測定装置であって、周期性を有する第1信号成分と第1ノイズ成分からなる第1測定データを測定する第1測定部と、前記第1信号成分と所定の関係を有する第2信号成分および第1ノイズ成分と所定の関係を有する第2ノイズ成分を含む第2測定データを測定する第2測定部と、前記第1測定データと、前記第2測定データと、前記第1ノイズ成分と前記第2ノイズ成分との前記所定の関係とに基づいて、前記第1測定データと前記第2測定データとから前記第1信号成分を含む信号を生成する信号生成部と、該生成信号の周期性を用いて、前記第1ノイズ成分と前記第2ノイズ成分との前記所定の関係を推定する推定部とを備えている。 Furthermore, the novel biological information measuring device receives at least the first measurement data or the second data obtained by irradiating the living body with a plurality of lights having different wavelengths and receiving the lights transmitted or reflected by the living body. A biological information measuring apparatus for measuring biological information of the living body based on measurement data, wherein the first measuring unit measures first measurement data including a first signal component having a periodicity and a first noise component; A second measurement unit for measuring second measurement data including a second signal component having a predetermined relationship with the first signal component and a second noise component having a predetermined relationship with the first noise component; and the first measurement data And the first measurement data and the second measurement data based on the second measurement data and the predetermined relationship between the first noise component and the second noise component. A signal generation unit that generates a signal including a signal component, and an estimation unit that estimates the predetermined relationship between the first noise component and the second noise component using the periodicity of the generated signal. .
 また、上述の生体情報測定装置において、前記推定部は、前記生成信号の周期性を用いて、前記第1ノイズ成分と前記第2ノイズ成分との前記所定の関係を推定するのが好ましい。 Moreover, in the above-described biological information measurement device, it is preferable that the estimation unit estimates the predetermined relationship between the first noise component and the second noise component using the periodicity of the generated signal.
 また、上述の生体情報測定装置において、前記推定部は、前記第1ノイズ成分と前記第2ノイズ成分との前記所定の関係と、前記第1信号成分と前記第1ノイズ成分とは独立であることとに基づいて、前記第1信号成分と前記第2信号成分との前記所定の関係をさらに推定するのが好ましい。 Further, in the above-described biological information measuring device, the estimation unit is independent of the predetermined relationship between the first noise component and the second noise component, and the first signal component and the first noise component. It is preferable to further estimate the predetermined relationship between the first signal component and the second signal component.
 また、上述の生体情報測定装置において、前記第1信号成分の周期または前記第2信号成分の周期は動脈血の拍動によるものであって、前記第1ノイズ成分または前記第2ノイズ成分は前記生体の体動によるものであって、前記周期は脈拍数に関する情報を含むのが好ましい。 In the above-described biological information measuring device, the period of the first signal component or the period of the second signal component is due to pulsation of arterial blood, and the first noise component or the second noise component is the biological body. It is preferable that the period includes information on the pulse rate.
 また、上述の生体情報測定装置において、前記第1信号成分と前記第2信号成分との前記所定の関係は、動脈血酸素飽和度に関する情報を含むのが好ましい。 Further, in the above-described biological information measuring device, it is preferable that the predetermined relationship between the first signal component and the second signal component includes information on arterial oxygen saturation.
 このような構成の生体情報測定装置によれば、演算処理量を低減し消費電力を抑制した生体の血中酸素飽和度を測定する生体情報測定装置を提供することができる。 According to the living body information measuring apparatus having such a configuration, it is possible to provide a living body information measuring apparatus that measures the blood oxygen saturation of a living body with reduced calculation processing amount and reduced power consumption.
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been properly and fully described through the embodiments with reference to the drawings. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that this is possible. Accordingly, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not covered by the claims. It is interpreted that it is included in

Claims (31)

  1.  周期性を有する第1信号成分と第1ノイズ成分とを含む生体情報に関する第1の時系列信号と、前記第1信号成分と所定の関係を有する第2信号成分および前記第1ノイズ成分と所定の関係を有する第2ノイズ成分を含む生体情報に関する第2の時系列信号と、前記第1ノイズ成分と前記第2ノイズ成分との前記所定の関係とに基づいて、前記第1の時系列信号と前記第2の時系列信号とから前記第1信号成分を含む信号を生成する信号生成部と、
     第1の所定時間範囲での該生成信号の周期性を用いて、前記第1の所定時間範囲での前記第1ノイズ成分と前記第2ノイズ成分との前記所定の関係を推定する推定部とを備えることを特徴とする生体情報信号処理装置。
    A first time-series signal related to biological information including a first signal component having a periodicity and a first noise component, a second signal component having a predetermined relationship with the first signal component, and a predetermined relationship with the first noise component The first time-series signal based on the second time-series signal related to the biological information including the second noise component having the relationship and the predetermined relationship between the first noise component and the second noise component And a signal generator that generates a signal including the first signal component from the second time-series signal,
    An estimation unit that estimates the predetermined relationship between the first noise component and the second noise component in the first predetermined time range by using the periodicity of the generated signal in the first predetermined time range; A biological information signal processing apparatus comprising:
  2.  請求項1に記載の生体情報信号処理装置において、前記信号生成部は、前記生成信号に2値化処理を行うことで2値化信号を生成し、前記推定部は、前記2値化信号の周期性を用いて前記生成信号の周期を推定する。 The biological information signal processing apparatus according to claim 1, wherein the signal generation unit generates a binarized signal by performing binarization processing on the generated signal, and the estimation unit is configured to output the binarized signal. The period of the generated signal is estimated using periodicity.
  3.  請求項2に記載の生体情報信号処理装置において、前記推定部は、前記2値化信号の周期性を算出するために、前記2値化信号のパルス幅の変動およびパルス周期の変動のうち、少なくとも何れかを用いる。 The biological information signal processing apparatus according to claim 2, wherein the estimation unit calculates a periodicity of the binarized signal among a pulse width variation and a pulse cycle variation of the binarized signal. At least one of them is used.
  4.  請求項1に記載の生体情報信号処理装置において、前記推定部は、第1の所定時間範囲での、前記生成信号の複数の極大値及び/又は複数の極小値を算出し、複数の極大値における変動及び/又は複数の極小値における変動を用いて、前記生成信号の周期を算出する。 The biological information signal processing device according to claim 1, wherein the estimation unit calculates a plurality of maximum values and / or a plurality of minimum values of the generated signal in a first predetermined time range, and a plurality of maximum values. The period of the generated signal is calculated using fluctuations in and / or fluctuations in a plurality of minimum values.
  5.  請求項1に記載の生体情報信号処理装置において、前記推定部は、前記生成信号の周期に関する情報を有する複数の指標に基づき、前記生成信号の周期を算出する。 2. The biological information signal processing apparatus according to claim 1, wherein the estimation unit calculates a cycle of the generated signal based on a plurality of indexes having information on the cycle of the generated signal.
  6.  請求項1に記載の生体情報信号処理装置において、前記信号生成部は、前記第1の所定時間範囲での前記生成信号にフーリエ変換を行うことで、フーリエ信号を生成し、前記推定部は、前記フーリエ信号のピーク幅に基づいて、前記第1の所定時間範囲での前記第1ノイズ成分と前記第2ノイズ成分との前記所定の関係を推定する。 The biological information signal processing device according to claim 1, wherein the signal generation unit generates a Fourier signal by performing Fourier transform on the generation signal in the first predetermined time range, and the estimation unit includes: The predetermined relationship between the first noise component and the second noise component in the first predetermined time range is estimated based on the peak width of the Fourier signal.
  7.  請求項1に記載の生体情報信号処理装置において、前記推定部は、前記生成信号の周期性を用いて、前記第1信号成分の周期または前記第2信号成分の周期を算出する。 2. The biological information signal processing apparatus according to claim 1, wherein the estimation unit calculates a period of the first signal component or a period of the second signal component using the periodicity of the generated signal.
  8.  請求項1に記載の生体情報信号処理装置において、前記推定部は、前記第1の所定時間範囲での前記第1ノイズ成分と前記第2ノイズ成分との前記所定の関係と、前記第1の所定時間範囲で前記第1信号成分と前記第1ノイズ成分とは独立であることとを用いて前記第1信号成分と前記第2信号成分との前記所定の関係を推定する。 2. The biological information signal processing apparatus according to claim 1, wherein the estimation unit includes the predetermined relationship between the first noise component and the second noise component in the first predetermined time range; The predetermined relationship between the first signal component and the second signal component is estimated using the fact that the first signal component and the first noise component are independent in a predetermined time range.
  9.  請求項7に記載の生体情報信号処理装置において、前記推定部は、前記第1の所定時間範囲での前記第1ノイズ成分と前記第2ノイズ成分との前記所定の関係と、第2の所定時間範囲で第1信号成分および第1ノイズ成分とは独立であることとを用いて、前記第2の所定時間範囲での前記第1信号成分と前記第2信号成分との前記所定の関係を推定する。 The biological information signal processing device according to claim 7, wherein the estimation unit includes a second predetermined predetermined relationship between the first noise component and the second noise component in the first predetermined time range. The predetermined relationship between the first signal component and the second signal component in the second predetermined time range is obtained by using the first signal component and the first noise component independent of each other in the time range. presume.
  10.  請求項9に記載の生体情報信号処理装置において、前記第2の所定時間範囲は複数であって、前記推定部は、前記第2の所定時間範囲毎に前記第1信号成分と前記第2信号成分との前記所定の関係をそれぞれ推定する。 The biological information signal processing device according to claim 9, wherein the second predetermined time range is plural, and the estimation unit performs the first signal component and the second signal for each second predetermined time range. Each of the predetermined relationships with components is estimated.
  11.  請求項10に記載の生体情報信号処理装置において、前記推定部は、前記第2の所定時間範囲毎の前記第1信号成分と前記第2信号成分との前記所定の関係を用いて、前記第1信号成分と前記第2信号成分との前記所定の関係の平均値を算出する。 The biological information signal processing apparatus according to claim 10, wherein the estimation unit uses the predetermined relationship between the first signal component and the second signal component for each second predetermined time range. An average value of the predetermined relationship between one signal component and the second signal component is calculated.
  12.  請求項10に記載の生体情報信号処理装置において、前記推定部は、前記第1の所定時間範囲での前記第1信号成分と前記第2信号成分との前記所定の関係と、前記第2の所定時間範囲毎の前記第1信号成分と前記第2信号成分との前記所定の関係を用いて、前記第1信号成分と前記第2信号成分との前記所定の関係の平均値を算出する。 The biological information signal processing device according to claim 10, wherein the estimation unit includes the predetermined relationship between the first signal component and the second signal component in the first predetermined time range, and the second signal component. An average value of the predetermined relationship between the first signal component and the second signal component is calculated using the predetermined relationship between the first signal component and the second signal component for each predetermined time range.
  13.  請求項12に記載の生体情報信号処理装置において、前記平均値は加重平均によって求めた値である。 The biological information signal processing apparatus according to claim 12, wherein the average value is a value obtained by weighted average.
  14.  請求項9に記載の生体情報信号処理装置において、前記推定部は、前記第1ノイズ成分を除去するか否かを判定するための指標として、前記第1ノイズ成分と前記第1信号成分との比に関する情報を有する前記指標を算出し、前記指標と第1の所定の値とを比較することで、前記第1ノイズ成分を除去すると判定した場合には、前記第1の時系列信号と前記第2の時系列信号とに基づいて、前記第1信号成分と前記第2信号成分との前記所定の関係を推定する。 The biological information signal processing device according to claim 9, wherein the estimation unit uses the first noise component and the first signal component as an index for determining whether or not to remove the first noise component. When it is determined that the first noise component is to be removed by calculating the index having information relating to the ratio and comparing the index with a first predetermined value, the first time-series signal and the Based on the second time series signal, the predetermined relationship between the first signal component and the second signal component is estimated.
  15.  請求項14に記載の生体情報信号処理装置において、前記推定部は、前記第1信号成分と前記第2信号成分との前記所定の関係に含まれる誤差の度合いを表す信号信頼度を算出し、前記信号信頼度を出力する出力部をさらに備える。 The biological information signal processing device according to claim 14, wherein the estimation unit calculates a signal reliability indicating a degree of error included in the predetermined relationship between the first signal component and the second signal component, An output unit for outputting the signal reliability is further provided.
  16.  請求項14に記載の生体情報信号処理装置において、前記推定部は、前記第1ノイズ成分と前記第2ノイズ成分との前記所定の関係に含まれる誤差の度合いを表すノイズ信頼度を算出し、前記ノイズ信頼度を出力する出力部をさらに備える。 The biological information signal processing device according to claim 14, wherein the estimation unit calculates a noise reliability indicating a degree of error included in the predetermined relationship between the first noise component and the second noise component, An output unit for outputting the noise reliability is further provided.
  17.  請求項15に記載の生体情報信号処理装置において、前記推定部は、前記信号信頼度と第2の所定の値とを比較し、前記信号信頼度が前記第2の所定の値を超えた場合に、前記出力部は、前記信号信頼度が前記第2の所定の値を超えたことを示す警告を出力する。 16. The biological information signal processing device according to claim 15, wherein the estimation unit compares the signal reliability with a second predetermined value, and the signal reliability exceeds the second predetermined value. In addition, the output unit outputs a warning indicating that the signal reliability exceeds the second predetermined value.
  18.  請求項16に記載の生体情報信号処理装置において、前記推定部は、前記ノイズ信頼度と第3の所定の値とを比較し、前記ノイズ信頼度が前記第3の所定の値を超えた場合に、前記出力部は、前記ノイズ信頼度が前記第3の所定の値を超えたことを示す警告を出力する。 17. The biological information signal processing device according to claim 16, wherein the estimation unit compares the noise reliability with a third predetermined value, and the noise reliability exceeds the third predetermined value. In addition, the output unit outputs a warning indicating that the noise reliability has exceeded the third predetermined value.
  19.  第1の所定の時間範囲での、周期性を有する第1信号成分と第1ノイズ成分とを含む生体情報に関する第1の時系列信号と、前記第1の信号成分と所定の関係を有する第2信号成分および前記第1ノイズ成分と所定の関係を有する第2ノイズ成分を含む生体情報に関する第2の時系列信号と、前記第1ノイズ成分と前記第2ノイズ成分との前記所定の関係とに基づいて、前記第1の時系列信号と前記第2の時系列信号とから前記第1信号成分を含む信号を生成する信号生成ステップと、
     該生成信号の周期性を用いて、前記第1ノイズ成分と前記第2ノイズ成分との前記所定の関係を推定する推定ステップとを備えることを特徴とする生体情報信号処理方法。
    A first time-series signal relating to biological information including a first signal component having periodicity and a first noise component in a first predetermined time range, and a first time-series signal having a predetermined relationship with the first signal component. A second time-series signal related to biological information including two signal components and a second noise component having a predetermined relationship with the first noise component; and the predetermined relationship between the first noise component and the second noise component. A signal generation step of generating a signal including the first signal component from the first time-series signal and the second time-series signal,
    A biological information signal processing method comprising: an estimation step of estimating the predetermined relationship between the first noise component and the second noise component using the periodicity of the generated signal.
  20.  請求項19に記載の生体情報信号処理方法において、前記信号生成ステップでは、前記生成信号に2値化処理を行うことで2値化信号を生成し、前記推定ステップでは、前記2値化信号の周期性を用いて、前記生成信号の周期を推定する。 The biological information signal processing method according to claim 19, wherein in the signal generation step, a binarization signal is generated by performing binarization processing on the generation signal, and in the estimation step, the binarization signal The period of the generated signal is estimated using periodicity.
  21.  請求項19に記載の生体情報信号処理方法において、前記信号生成ステップでは、前記生成信号と少なくとも2個以上の閾値とを比較し、前記生成信号が前記閾値を超えるか否かに基づいて、少なくとも2種以上の2値化信号を生成し、前記推定ステップでは、前記少なくとも2種以上の2値化信号の周期性を用いて、前記生成信号の周期を推定する。 The biological information signal processing method according to claim 19, wherein in the signal generation step, the generated signal is compared with at least two threshold values, and at least based on whether the generated signal exceeds the threshold value or not. Two or more types of binarized signals are generated, and in the estimation step, the period of the generated signal is estimated using the periodicity of the at least two types of binarized signals.
  22.  請求項20に記載の生体情報信号処理方法において、前記2値化処理は、前記生成信号と2値化の基準となる正の閾値および負の閾値とを比較し、前記生成信号が正の閾値を超える場合には前記生成信号を正の第1の定数に変換し、前記生成信号が負の閾値未満である場合には前記生成信号を負の第2の定数に変換し、前記生成信号が負の閾値以上かつ正の閾値以下である場合には前記生成信号をゼロに変換する処理である。 21. The biological information signal processing method according to claim 20, wherein the binarization processing compares the generated signal with a positive threshold and a negative threshold serving as a binarization reference, and the generated signal is a positive threshold. The generated signal is converted to a positive first constant, and if the generated signal is less than a negative threshold, the generated signal is converted to a negative second constant, and the generated signal is This is a process of converting the generated signal to zero when it is not less than the negative threshold and not more than the positive threshold.
  23.  請求項20に記載の生体情報信号処理方法において、前記推定ステップでは、前記2値化信号のパルス幅の変動およびパルス周期の変動のうち、少なくとも何れかに基づいて、前記2値化信号の周期を算出する。 21. The biological information signal processing method according to claim 20, wherein in the estimation step, a cycle of the binarized signal is based on at least one of a pulse width variation and a pulse cycle variation of the binarized signal. Is calculated.
  24.  請求項19に記載の生体情報信号処理方法において、前記推定ステップでは、前記生成信号の複数の極大値及び/又は複数の極小値を算出し、複数の極大値における変動及び/又は複数の極小値における変動を用いて、前記生成信号の周期を算出する。 The biological information signal processing method according to claim 19, wherein in the estimation step, a plurality of maximum values and / or a plurality of minimum values of the generated signal are calculated, and fluctuations in the plurality of maximum values and / or a plurality of minimum values are calculated. The period of the generated signal is calculated using the fluctuation in.
  25.  請求項19に記載の生体情報信号処理方法において、前記推定ステップでは、前記生成信号の周期性を表す複数の指標を用いて、前記第1の所定時間範囲での前記第1ノイズ成分と前記第2ノイズ成分との前記所定の関係とを推定する。 20. The biological information signal processing method according to claim 19, wherein in the estimation step, the first noise component and the first noise in the first predetermined time range using a plurality of indices representing the periodicity of the generated signal. The predetermined relationship with two noise components is estimated.
  26.  請求項19に記載の生体情報信号処理方法において、前記推定ステップでは、前記生成信号の周期性を用いて、前記第1信号成分又は前記第2信号成分の周期に対応した量を推定する。 20. The biological information signal processing method according to claim 19, wherein in the estimation step, an amount corresponding to a period of the first signal component or the second signal component is estimated using a periodicity of the generated signal.
  27.  互いに波長の異なる複数の光を生体へそれぞれ照射して前記生体を透過または反射した各光をそれぞれ受光することによって得られた少なくとも第1測定データまたは第2測定データに基づいて、前記生体の生体情報を測定する生体情報測定装置であって、
     周期性を有する第1信号成分と第1ノイズ成分からなる第1測定データを測定する第1測定部と、
     前記第1信号成分と所定の関係を有する第2信号成分および第1ノイズ成分と所定の関係を有する第2ノイズ成分を含む第2測定データを測定する第2測定部と、
     前記第1測定データと、前記第2測定データと、前記第1ノイズ成分と前記第2ノイズ成分との前記所定の関係とに基づいて、前記第1測定データと前記第2測定データとから前記第1信号成分を含む信号を生成する信号生成部と、
     該生成信号の周期性を用いて、前記第1ノイズ成分と前記第2ノイズ成分との前記所定の関係を推定する推定部とを備えたことを特徴とする生体情報測定装置。
    Based on at least the first measurement data or the second measurement data obtained by irradiating the living body with a plurality of lights having different wavelengths and receiving the light transmitted or reflected through the living body, respectively, the living body of the living body A biological information measuring device for measuring information,
    A first measurement unit that measures first measurement data including a first signal component having a periodicity and a first noise component;
    A second measurement unit for measuring second measurement data including a second signal component having a predetermined relationship with the first signal component and a second noise component having a predetermined relationship with the first noise component;
    Based on the first measurement data, the second measurement data, and the predetermined relationship between the first noise component and the second noise component, from the first measurement data and the second measurement data, the A signal generator for generating a signal including the first signal component;
    A biological information measuring apparatus comprising: an estimation unit that estimates the predetermined relationship between the first noise component and the second noise component using the periodicity of the generated signal.
  28.  請求項27に記載の生体情報測定装置において、前記推定部は、前記生成信号の周期性を用いて、前記第1ノイズ成分と前記第2ノイズ成分との前記所定の関係を推定する。 28. The biological information measuring apparatus according to claim 27, wherein the estimation unit estimates the predetermined relationship between the first noise component and the second noise component using periodicity of the generated signal.
  29.  請求項27に記載の生体情報測定装置において、前記推定部は、前記第1ノイズ成分と前記第2ノイズ成分との前記所定の関係と、前記第1信号成分と前記第1ノイズ成分とは独立であることとに基づいて、前記第1信号成分と前記第2信号成分との前記所定の関係を推定する。 28. The biological information measuring apparatus according to claim 27, wherein the estimation unit is independent of the predetermined relationship between the first noise component and the second noise component, and the first signal component and the first noise component. The predetermined relationship between the first signal component and the second signal component is estimated.
  30.  請求項29に記載の生体情報測定装置において、前記第1信号成分の周期または前記第2信号成分の周期は動脈血の拍動によるものであって、前記第1ノイズ成分または前記第2ノイズ成分は前記生体の体動によるものであって、前記周期は脈拍数に関する情報を含む。 30. The biological information measuring apparatus according to claim 29, wherein the period of the first signal component or the period of the second signal component is due to pulsation of arterial blood, and the first noise component or the second noise component is The cycle includes information related to the pulse rate.
  31.  請求項30に記載の生体情報測定装置において、前記第1信号成分と前記第2信号成分との前記所定の関係は、動脈血酸素飽和度に関する情報を含む。 31. The biological information measuring apparatus according to claim 30, wherein the predetermined relationship between the first signal component and the second signal component includes information related to arterial oxygen saturation.
PCT/JP2009/070616 2008-12-26 2009-12-09 Biological information signal processing apparatus, biological information signal processing method and biological information measuring apparatus WO2010073908A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010518660A JP4613261B2 (en) 2008-12-26 2009-12-09 Biological information signal processing device, biological information signal processing method, and biological information measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008335017 2008-12-26
JP2008-335017 2008-12-26

Publications (1)

Publication Number Publication Date
WO2010073908A1 true WO2010073908A1 (en) 2010-07-01

Family

ID=42287524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070616 WO2010073908A1 (en) 2008-12-26 2009-12-09 Biological information signal processing apparatus, biological information signal processing method and biological information measuring apparatus

Country Status (2)

Country Link
JP (1) JP4613261B2 (en)
WO (1) WO2010073908A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012235890A (en) * 2011-05-11 2012-12-06 Konica Minolta Optics Inc Signal processing unit, signal processing method, and biological information measuring apparatus
JP2013103094A (en) * 2011-11-16 2013-05-30 Sony Corp Measurement device, measurement method, program, and recording medium
WO2013128825A1 (en) 2012-02-28 2013-09-06 コニカミノルタ株式会社 Bioinformation processing apparatus and signal processing method
EP3062697A4 (en) * 2013-11-01 2017-06-28 Cardiio, Inc. Method and system for screening of atrial fibrillation
JP2019080873A (en) * 2017-10-31 2019-05-30 旭化成株式会社 Detection device and driver monitoring system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101413853B1 (en) 2012-06-20 2014-07-01 고려대학교 산학협력단 Method and apparatus for measuring physiological signal usuing infrared image
JPWO2015049963A1 (en) 2013-10-03 2017-03-09 コニカミノルタ株式会社 Biological information measuring apparatus and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003235819A (en) * 2001-12-14 2003-08-26 Nippon Koden Corp Signal processing method and pulse wave signal processing method
JP2004528913A (en) * 2001-05-15 2004-09-24 マシモ・コーポレイション Pulse oximetry data reliability indicator
JP2005095581A (en) * 2003-06-30 2005-04-14 Nippon Koden Corp Method of signal processing and pulse photometer applying the same
JP2007203090A (en) * 1992-10-23 2007-08-16 Nellcor Inc Method and device for reducing influence of peripheral noise in electronic monitor equipment
JP2008188216A (en) * 2007-02-05 2008-08-21 Konica Minolta Sensing Inc Biological information measurement apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007203090A (en) * 1992-10-23 2007-08-16 Nellcor Inc Method and device for reducing influence of peripheral noise in electronic monitor equipment
JP2004528913A (en) * 2001-05-15 2004-09-24 マシモ・コーポレイション Pulse oximetry data reliability indicator
JP2003235819A (en) * 2001-12-14 2003-08-26 Nippon Koden Corp Signal processing method and pulse wave signal processing method
JP2005095581A (en) * 2003-06-30 2005-04-14 Nippon Koden Corp Method of signal processing and pulse photometer applying the same
JP2008188216A (en) * 2007-02-05 2008-08-21 Konica Minolta Sensing Inc Biological information measurement apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012235890A (en) * 2011-05-11 2012-12-06 Konica Minolta Optics Inc Signal processing unit, signal processing method, and biological information measuring apparatus
JP2013103094A (en) * 2011-11-16 2013-05-30 Sony Corp Measurement device, measurement method, program, and recording medium
WO2013128825A1 (en) 2012-02-28 2013-09-06 コニカミノルタ株式会社 Bioinformation processing apparatus and signal processing method
CN104159504A (en) * 2012-02-28 2014-11-19 柯尼卡美能达株式会社 Bioinformation processing apparatus and signal processing method
EP2821008A4 (en) * 2012-02-28 2015-11-25 Konica Minolta Inc Bioinformation processing apparatus and signal processing method
EP3062697A4 (en) * 2013-11-01 2017-06-28 Cardiio, Inc. Method and system for screening of atrial fibrillation
US9913587B2 (en) 2013-11-01 2018-03-13 Cardiio, Inc. Method and system for screening of atrial fibrillation
US9913588B2 (en) 2013-11-01 2018-03-13 Cardiio, Inc. Method and system for screening of atrial fibrillation
JP2019080873A (en) * 2017-10-31 2019-05-30 旭化成株式会社 Detection device and driver monitoring system

Also Published As

Publication number Publication date
JPWO2010073908A1 (en) 2012-06-14
JP4613261B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
US10987007B2 (en) Method of processing electrophysiological signals and corresponding system, vehicle, and computer program product
JP4613261B2 (en) Biological information signal processing device, biological information signal processing method, and biological information measuring device
CN106413534B (en) Continuous blood pressure measuring device, measuring model establishing method and system
KR100455289B1 (en) Method of diagnosing using a ray and apparatus thereof
Li et al. On an automatic delineator for arterial blood pressure waveforms
EP0335357B1 (en) Improved method and apparatus for detecting optical pulses
US9060746B2 (en) Systems and methods for detecting arrhythmia from a physiological signal
KR100954817B1 (en) System and method for testing blood vessel&#39;s health and stress through signal analysis of pluse wave
US20150105666A1 (en) Narrow band feature extraction from cardiac signals
JP2015521075A (en) Extraction of respiratory rate from cardiac signal
EP3307162B1 (en) Pulse oximetry
JP2004202190A (en) Biological information measuring device
JP2004321807A (en) Apparatus and method for diagnosing sleep apnea
WO2009118737A2 (en) Diagnosis of periodic breathing
Vadrevu et al. Real-time quality-aware PPG waveform delineation and parameter extraction for effective unsupervised and IoT health monitoring systems
CN104055496B (en) A kind of method of estimation of the sports load level based on heart source property signal
JP2008188216A (en) Biological information measurement apparatus
Ferro et al. Automated detection of the onset and systolic peak in the pulse wave using Hilbert transform
Verma et al. A robust algorithm for derivation of heart rate variability spectra from ECG and PPG signals
Tun Photoplethysmography (PPG) scheming system based on finite impulse response (FIR) filter design in biomedical applications
Reddy et al. Unified quality-aware compression and pulse-respiration rates estimation framework for reducing energy consumption and false alarms of wearable PPG monitoring devices
US20200337574A1 (en) Systems and methods for power reduction for wearable biometric monitoring devices using signal quality metrics
Aarthi et al. Fingertip based estimation of heart rate using photoplethysmography
Cherif et al. Detection of artifacts on photoplethysmography signals using random distortion testing
JP5691815B2 (en) Signal processing apparatus, signal processing method, and biological information measuring apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2010518660

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834711

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09834711

Country of ref document: EP

Kind code of ref document: A1