WO2010073765A1 - Driver for vehicle - Google Patents

Driver for vehicle Download PDF

Info

Publication number
WO2010073765A1
WO2010073765A1 PCT/JP2009/062653 JP2009062653W WO2010073765A1 WO 2010073765 A1 WO2010073765 A1 WO 2010073765A1 JP 2009062653 W JP2009062653 W JP 2009062653W WO 2010073765 A1 WO2010073765 A1 WO 2010073765A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
electromagnetic
hydraulic pressure
vehicle drive
hydraulic
Prior art date
Application number
PCT/JP2009/062653
Other languages
French (fr)
Japanese (ja)
Inventor
治樹 白坂
紀之 谷
優児 岩鶴
正義 加藤
卓司 秋山
秀一 竹田
正泰 伊藤
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Priority to JP2010543945A priority Critical patent/JPWO2010073765A1/en
Priority to DE112009002282T priority patent/DE112009002282T5/en
Priority to CN2009801368889A priority patent/CN102159842A/en
Priority to US12/637,193 priority patent/US8282532B2/en
Publication of WO2010073765A1 publication Critical patent/WO2010073765A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/06Smoothing ratio shift by controlling rate of change of fluid pressure
    • F16H61/061Smoothing ratio shift by controlling rate of change of fluid pressure using electric control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • F16D48/066Control of fluid pressure, e.g. using an accumulator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0206Layout of electro-hydraulic control circuits, e.g. arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • F16D2048/0203Control by fluid pressure with an accumulator; Details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/306Signal inputs from the engine
    • F16D2500/3069Engine ignition switch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70452Engine parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2312/00Driving activities
    • F16H2312/14Going to, or coming from standby operation, e.g. for engine start-stop operation at traffic lights
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2312/00Driving activities
    • F16H2312/20Start-up or shut-down
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • F16H61/684Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive
    • F16H61/686Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive with orbital gears

Definitions

  • the present invention is for a vehicle capable of quickly supplying a hydraulic pressure to a hydraulic servo at the time of restarting an engine (vehicle drive source), for example, to quickly engage a friction engagement element capable of starting the vehicle.
  • the present invention relates to a driving device.
  • a vehicle equipped with a function that automatically stops the engine when a predetermined condition is satisfied during driving has been put into practical use.
  • a function that automatically stops the engine when a predetermined condition is satisfied during driving has been put into practical use.
  • the engine is stopped when all of the conditions such as vehicle speed zero, accelerator off, and brake on are satisfied.
  • the oil pump generally connected to the engine also stops.
  • the oil supplied to the forward clutch (hydraulic servo) to be engaged during forward travel also escapes from the oil passage, and the forward clutch has been released from its engaged state. turn into.
  • Patent Document 1 discloses an oil pump that generates hydraulic pressure, a forward clutch that is controlled by hydraulic pressure, an accumulator that branches and is installed in an oil passage that connects the oil pump and the forward clutch, and that accumulates hydraulic pressure, and an accumulator Is a normally closed type electromagnetic on-off valve that opens or closes the oil passage and opens the electromagnetic on-off valve when the engine is restarted to supply the hydraulic pressure stored in the accumulator to the forward clutch. It is disclosed. According to this technique, since the hydraulic pressure stored in the accumulator is supplied to the forward clutch when the engine is restarted, it is possible to quickly engage the forward clutch and prevent the occurrence of an engagement shock.
  • the electromagnetic on-off valve is opened simultaneously with the restart of the engine. That is, an engine return command and an on-off valve opening command are simultaneously issued by a vehicle control device (ECU).
  • ECU vehicle control device
  • the opening of the electromagnetic on-off valve is delayed. If the opening of the electromagnetic on-off valve is delayed in this way, the hydraulic pressure stored in the accumulator cannot be quickly supplied to the forward clutch. As a result, there has been a problem that it is not possible to appropriately prevent the engagement shock of the forward clutch.
  • An object of the present invention is to provide a vehicular drive device.
  • a vehicle drive device includes an oil pump that generates hydraulic pressure, and a hydraulic servo that is connected to the oil pump via an oil path and can be controlled by hydraulic pressure.
  • An accumulator that stores hydraulic pressure generated by the oil pump through a branch oil passage branched from the oil passage, and an electromagnetic wave that is installed in the branch oil passage and maintains the hydraulic pressure of the accumulator while the oil pump is stopped
  • the “oil pump” may be a mechanical pump that operates in conjunction with a vehicle drive
  • the hydraulic pressure generated while the oil pump is driven is stored in the accumulator.
  • the hydraulic pressure of the accumulator is held by the electromagnetic on-off valve.
  • the on-off valve control means before the restart of the vehicle driving source is started, the electromagnetic on-off valve Is opened and the hydraulic pressure stored in the accumulator is supplied to the hydraulic servo.
  • the electromagnetic valve can be opened before a large current is supplied to the starter or the like.
  • the current required for opening the electromagnetic on-off valve can be reliably ensured, and the electromagnetic on-off valve can be reliably opened when the vehicle drive source is restarted.
  • the hydraulic pressure of the accumulator can be reliably supplied to the hydraulic servo, and the engagement shock of the hydraulic servo can be prevented appropriately.
  • the electromagnetic on-off valve is installed to maintain the hydraulic pressure rather than the time during which the electromagnetic on-off valve is opened. There was a fact that it took longer to keep the valve closed.
  • the electromagnetic on-off valve be a normally closed type that opens when energized and closes when de-energized.
  • the accumulator pressure can be maintained without supplying power to the electromagnetic on / off valve. That is, it is possible to efficiently control the electromagnetic on-off valve and reduce the electric power necessary for driving the electromagnetic on-off valve.
  • the on-off valve control means opens the electromagnetic on-off valve only for a predetermined time during steady operation of the vehicle drive source in order to store hydraulic pressure in the accumulator.
  • the “steady operation of the vehicle drive source” refers to an operation when it is determined that it is not necessary to control the engagement state between the complete engagement and release of the clutch.
  • the accumulator can be hydraulically operated while the engagement state between the complete engagement and the release of the clutch is stable. Accumulate pressure. Thereby, the hydraulic pressure can be accumulated in the accumulator while solving the problem that the clutch pressure is not properly controlled.
  • restart of the vehicle drive source is started after the opening / closing of the electromagnetic on / off valve by the on / off valve control means is completed.
  • the vehicle drive device is not particularly limited, but the vehicle drive source restarts after, for example, 50 ms from the start of opening of the electromagnetic on-off valve.
  • the embodiment to be illustrated can be illustrated.
  • the restart of the vehicle drive source is started, so that the current is supplied to the starter and the like while the electromagnetic on / off valve is reliably opened Will be supplied. That is, when the vehicle drive source is restarted, the electromagnetic on-off valve can be reliably opened and the hydraulic pressure of the accumulator can be reliably supplied by the hydraulic servo. Thus, when the vehicle drive source is restarted, the hydraulic pressure can be reliably supplied by the hydraulic servo, and the engagement shock of the hydraulic servo can be more appropriately prevented.
  • an input shaft to which power of the vehicle drive source is input an output shaft that shifts and outputs power input to the input shaft, and a pair of sheaves provided on the input shaft
  • a first pulley comprising a pair of sheaves provided on the output shaft, a groove between the sheaves of the first pulley, and a groove between the sheaves of the second pulley.
  • a belt-type continuously variable transmission that shifts power continuously and outputs from the output shaft is provided, and the hydraulic servo transmits power from the vehicle drive source to the input shaft when supplied with hydraulic pressure.
  • the second hydraulic cylinder is connected to the oil pump via an oil passage, and the oil passage connecting the second hydraulic cylinder and the oil pump is connected to the second hydraulic cylinder.
  • a mode in which a second electromagnetic on-off valve that selectively holds the hydraulic pressure of the hydraulic cylinder is provided can be exemplified.
  • the hydraulic pressure of the second hydraulic cylinder can be selectively held by the second electromagnetic on-off valve provided in the oil passage connecting the second hydraulic cylinder and the oil pump.
  • the second electromagnetic on-off valve provided in the oil passage connecting the second hydraulic cylinder and the oil pump.
  • the vehicle drive device includes second on-off valve control means for controlling opening and closing of the second electromagnetic on-off valve, and the second on-off valve control means is provided when the vehicle drive source is idling.
  • the on-off valve control means is stopped and the electromagnetic on-off valve is closed to hold the hydraulic pressure stored in the accumulator, the second electromagnetic on-off valve is closed to turn on the second hydraulic cylinder. It is desirable to open the second electromagnetic on-off valve to release the hydraulic pressure of the second hydraulic cylinder while the vehicle drive source is stopped and the vehicle drive source is not idling.
  • the second on-off valve control means when the vehicle drive source is idling and the on-off valve control means is closing the electromagnetic on-off valve and holding the hydraulic pressure stored in the accumulator, the second on-off valve control means performs the first operation.
  • the second electromagnetic opening / closing valve is closed to maintain the hydraulic pressure of the second hydraulic cylinder. Accordingly, it is possible to prevent oil leakage from the second hydraulic cylinder and stop air from entering the cylinder while the vehicle drive source is stopped when idling. Further, when the hydraulic pressure is supplied from the oil pump to the second hydraulic cylinder when the vehicle drive source is restarted, it is possible to prevent air from entering the second hydraulic cylinder.
  • the gear ratio can be adjusted by changing the groove width between the sheaves of the second pulley.
  • a gear (low gear) having a relatively low speed ratio can be formed by the biasing force of the return spring.
  • each of the first hydraulic cylinder and the second hydraulic cylinder includes a seal member that holds the hydraulic pressure inside each cylinder when no hydraulic pressure is supplied from the oil pump. In preparation, it is desirable that the sealing member of the first hydraulic cylinder has higher sealing performance than the sealing member of the second hydraulic cylinder.
  • the sealing performance of the first hydraulic cylinder can be improved using a simple configuration. Can be secured. Also, according to this aspect, when the vehicle drive source is stopped and the vehicle is towed, the centrifugal force is applied to the oil remaining in the first hydraulic cylinder using the rotation of the input shaft during towing. Can do. By utilizing the hydraulic pressure generated by this centrifugal force, the groove width between the sheaves of the first pulley can be narrowed (that is, the belt winding radius can be increased) to form a high gear. Thus, by forming the high gear when the vehicle is towed, the seizure of the pulley can be prevented.
  • the electromagnetic on / off valve can be reliably opened when the engine is restarted to appropriately prevent the hydraulic servo engagement shock.
  • FIG. 1 is a diagram showing a schematic configuration of a vehicle drive system according to an embodiment. It is a perspective view which shows the mode of the primary pulley and the secondary pulley at the time of low gear formation of a continuously variable transmission. It is a perspective view which shows the mode of the primary pulley and the secondary pulley at the time of high gear formation of a continuously variable transmission. It is a figure which shows the hydraulic circuit with which a continuously variable transmission is equipped. It is a flowchart which shows the content of the process at the time of vehicle steady running by a control part. It is a flowchart which shows the content of the engine stop process by a control part. It is a flowchart which shows the content of the engine restart process by a control part. It is a time chart which shows an example of the behavior of C-1 pressure and Acc pressure. It is a figure which shows the hydraulic circuit which concerns on 2nd Embodiment.
  • FIG. 1 is a diagram illustrating a schematic configuration of a vehicle drive system according to an embodiment.
  • the drive system includes an engine 10, a continuously variable transmission 30, a control unit 40 that comprehensively controls the system, an engine 10, and a continuously variable transmission 30. And various sensors for detecting the state of the vehicle and the like.
  • the engine 10 of the present embodiment corresponds to a “vehicle drive source” of the present invention.
  • the engine 10 is provided with an injector 11, a starter 12, and an igniter 13.
  • a continuously variable transmission 30 is connected to the output shaft of the engine 10.
  • An intake manifold 15 and an exhaust manifold 16 are connected to each cylinder of the engine 10.
  • the intake manifold 15 is provided with a throttle valve 17 that interlocks with an accelerator pedal.
  • the throttle valve 17 is provided with a throttle position sensor 17a for detecting the opening degree and an idle switch 17b for detecting a fully closed state.
  • the injector 11 is connected to the control unit 40 via a fuel relay 21, the starter 12 is connected via a starter relay 22, and the igniter 13 is connected via an ignition relay 23.
  • FIG. 2 is a perspective view showing a state of the primary pulley and the secondary pulley when the low gear is formed in the continuously variable transmission.
  • FIG. 3 is a perspective view showing the state of the primary pulley and the secondary pulley when the high gear of the continuously variable transmission is formed.
  • FIG. 4 is a diagram illustrating a hydraulic circuit provided in the continuously variable transmission.
  • the continuously variable transmission 30 includes an input shaft 115 to which the power of the engine 10 is input via a torque converter 38 (see FIG. 4) and a forward / reverse switching clutch, and the input shaft 115.
  • An output shaft 125 that is arranged and outputs power to the drive wheel side, a primary pulley 31 provided on the input shaft 115, a secondary pulley 32 provided on the output shaft 125, and a primary pulley 31 and a secondary pulley 32.
  • a passed V belt 130, a hydraulic cylinder 102 (see FIG. 4) provided in the primary pulley 31, and a hydraulic cylinder 103 (see FIG. 4) provided in the secondary pulley 32 are provided.
  • the power of the engine 10 input to the input shaft 115 is transmitted to the output shaft 125 via the primary pulley 31, the V belt 130 and the secondary pulley 32.
  • the primary pulley 31 includes a fixed sheave 111 fixed to the input shaft 115 and a movable sheave 112 provided on the input shaft 115 so as to be slidable in the axial direction.
  • the movable sheave 112 is slid in the axial direction by the hydraulic cylinder 102.
  • the opposing surfaces of the fixed sheave 111 and the movable sheave 112 are conical surfaces.
  • a V-shaped groove 113 having a V-shaped cross section is formed between the fixed sheave 111 and the movable sheave 112.
  • a V belt 130 is sandwiched between the V grooves 113.
  • the primary pulley 31 of this embodiment corresponds to the “first pulley” of the present invention.
  • the secondary pulley 32 includes a fixed sheave 121 fixed to the output shaft 125 and a movable sheave 122 provided on the output shaft 125 so as to be slidable in the axial direction.
  • the movable sheave 122 is slid in the axial direction by the hydraulic cylinder 103.
  • the opposing surfaces of the fixed sheave 121 and the movable sheave 122 are conical surfaces.
  • a V-shaped groove 123 having a V-shaped cross section is formed between the fixed sheave 121 and the movable sheave 122.
  • a V-belt 130 is sandwiched between the V-grooves 123.
  • the secondary pulley 32 of the present embodiment corresponds to a “second pulley” of the present invention.
  • the groove width D1 of the V groove 113 of the primary pulley 31 and the groove width D2 of the V groove 123 of the secondary pulley 32 are changed using the hydraulic cylinder 102 and the hydraulic cylinder 103.
  • the power input from the engine 10 to the input shaft 115 can be steplessly shifted and output from the output shaft 125.
  • the winding radius of the V belt 130 around the primary pulley 31 is smaller than the winding radius of the V belt 130 around the secondary pulley 32.
  • a low gear is formed by a return spring (not shown) provided on the primary pulley 31.
  • the movable sheave 112 of the primary pulley 31 is slid by the hydraulic cylinder 102 to narrow the groove width D ⁇ b> 1 of the V groove 113, and the movable sheave of the secondary pulley 32 by the hydraulic cylinder 103. 122 is slid to widen the groove width D2 of the V-groove 123.
  • This increases the winding radius of the V belt 130 around the primary pulley 31 and decreases the winding radius of the V belt 130 around the secondary pulley 32.
  • the rotational speed of the output shaft 125 with respect to the input shaft 115 is increased, and a high gear is formed.
  • the continuously variable transmission 30 includes a shift position switch 35 that detects a shift position (range) set by a driver's operation, and a continuously variable transmission 30 connected to the propulsion shaft.
  • a vehicle speed sensor 36 for detecting the vehicle speed based on the rotational speed of the output shaft 125 is provided.
  • the continuously variable transmission 30 is provided with an oil temperature sensor 37 that detects the temperature of oil in the transmission.
  • the control unit 40 includes a CPU that controls various devices, a ROM in which various numerical values and programs are written in advance, and a RAM in which numerical values and flags of calculation processes are written in a predetermined area. Note that programs such as an engine stop process and an engine restart process, which will be described later, are written in advance in a ROM in the control unit 40.
  • the control unit 40 corresponds to “open / close valve control means” and “restart determination means” of the present invention.
  • the control unit 40 includes an ignition primary coil 13a of the igniter 13, a crank position sensor 14, a throttle position sensor 17a, an idle switch 17b, an ignition switch 18, a shift position switch 35, a vehicle speed sensor 36, a CVT oil temperature sensor 37, and a G sensor 19a.
  • a water temperature sensor 19b, a battery voltage sensor 19c, a brake pedal switch 19d, a brake master cylinder pressure sensor 19e, an intake air temperature sensor 19f, an intake air amount sensor 19g, and the like are connected. Further, as will be described later, an electromagnetic on-off valve 57 and a hydraulic pressure sensor 59 provided in the continuously variable transmission 30 are connected to the control unit 40.
  • the control unit 40 executes various calculations based on signals from various switches and sensors, and outputs an ignition cut and ignition signal, a fuel cut and fuel injection signal, a starter drive signal, a drive signal for the electromagnetic on-off valve 57, and the like. It is supposed to be.
  • the hydraulic circuit 50 includes an oil pump 51, a line pressure regulator valve 52, a clutch pressure control valve 53, a clutch control valve 54, a shift valve 55, a manual valve 56, and an electromagnetic opening / closing.
  • a valve 57, an accumulator 58, a cutoff valve 60, a shift control valve 65, and a secondary sheave pressure control valve 66 are provided.
  • Such a hydraulic circuit 50 is connected to the forward clutch C 1, the reverse brake B 1, the torque converter 38, and the primary pulley 31 and the secondary pulley 32.
  • the forward clutch C1 corresponds to the “hydraulic servo” of the present invention.
  • the oil pump 51 is a mechanical pump that operates in conjunction with the engine 10, and serves as a hydraulic pressure source for the entire continuously variable transmission 30.
  • the line pressure regulator valve 52 controls the hydraulic pressure generated by the oil pump 51 to a predetermined pressure in order to control the pulley positions of the primary pulley 31 and the secondary pulley 32.
  • the clutch pressure control valve 53 controls the hydraulic pressure (line pressure) regulated by the line pressure regulator valve 52 to a predetermined pressure for operating the forward clutch C1 and the reverse brake B1.
  • the clutch control valve 54 controls the engagement state between the complete engagement and release of the clutch, for example, when the neutral control is performed, the hydraulic pressure adjusted by the clutch pressure control valve 53 and the forward clutch C1. The pressure is controlled to a predetermined pressure for operation.
  • the shift valve 55 selects the hydraulic pressure supplied to the forward clutch C1 or the reverse brake B1 from either the hydraulic pressure adjusted by the clutch pressure control valve 53 or the hydraulic pressure adjusted by the clutch control valve 54. It is.
  • the operations of these valves 52 to 55 are controlled by solenoids, and the operation of the valves is controlled by controlling the current supplied to the solenoids.
  • the manual valve 56 switches the oil passage in conjunction with the driver's shift position operation.
  • the accumulator 58 temporarily stores the hydraulic pressure generated by the oil pump 51 and regulated by the clutch pressure control valve 53.
  • an oil pump 51 and a line pressure regulator valve 52 are connected by an oil passage 70. Further, the line pressure regulator valve 52 and the torque converter 38 are connected by an oil passage 81. Further, the line pressure regulator valve 52 and the clutch pressure control valve 53 are connected by an oil passage 71.
  • the oil passage 71 is branched into oil passages 82 and 83, and each oil passage 82 and 83 is connected to the primary pulley 31 or the secondary pulley 32, respectively. More specifically, the oil passage 82 is connected to the primary pulley 31 via the shift control valve 65, and the oil passage 83 is connected to the secondary pulley 32 via the secondary sheave pressure control valve 66.
  • the oil path 83 is provided with a one-way valve 93 that allows oil to flow only from the line pressure regulator valve 52 to the secondary pulley 32 on the upstream side of the secondary sheave pressure control valve 66.
  • a one-way valve 93 that allows oil to flow only from the line pressure regulator valve 52 to the secondary pulley 32 on the upstream side of the secondary sheave pressure control valve 66.
  • the oil passage 82 is provided with a one-way valve 95 that allows oil to flow only from the oil passage 71 to the primary pulley 31 on the upstream side of the shift control valve 65.
  • the oil passage 71 is also branched into an oil passage 85, and the oil passage 85 is connected to the hydraulic chamber 63 of the shutoff valve 60. As a result, the line pressure is supplied to the hydraulic chamber 63 of the shutoff valve 60.
  • the clutch pressure control valve 53 and the clutch control valve 54 are connected by an oil passage 72, and the clutch control valve 54 and the shift valve 55 are connected by an oil passage 74. Further, the clutch pressure control valve 53 is connected to the shift control valve 65 via an oil passage 84.
  • An oil passage 73 is formed by branching from the oil passage 72, and the oil passage 73 is connected to the shift valve 55. That is, the oil passage 73 is provided so as to bypass the clutch control valve 54.
  • the shift valve 55 and the manual valve 56 are connected by an oil passage 75.
  • the manual valve 56 and the forward clutch C 1 are connected by an oil passage 79, and the manual valve 56 and the reverse brake B 1 are connected by an oil passage 80.
  • the oil passage 75 and the oil passage 79 are communicated, and the oil passage 80 and the drain EX are connected.
  • the manual valve 56 is set to the reverse position (R range)
  • the oil passage 75 and the oil passage 80 communicate with each other, and the oil passage 79 and the drain EX are connected.
  • the manual valve 56 when the manual valve 56 is set to the neutral position (N range) and the parking position (P range), the oil passage 75 is blocked from both the oil passages 79 and 80, and the oil passages 79 and 80 and the drain are connected. EX is connected. Accordingly, when the manual valve 56 is in a position where hydraulic pressure is not required for the forward clutch C1 (other than the D range), the hydraulic pressure acting on the forward clutch C1 is released from the drain EX, and the hydraulic pressure is applied to the reverse brake B1. At an unnecessary position (other than the R range), the hydraulic pressure acting on the reverse brake B1 is released from the drain EX.
  • a branch oil passage 77 having one end connected to the accumulator 58 is connected to the oil passage 75 at a connection point 77a.
  • the oil passage 75 is provided with a shut-off valve 60 that can shut off the oil passage 75 between a connection point 77 a with the branch oil passage 77 and the shift valve 55.
  • the shutoff valve 60 is provided with a slidable valve body 62 in the valve body 61 for switching the oil passage 75 between the communication state and the shutoff state.
  • a compressed spring 64 is provided on one side of the valve body 62, and a hydraulic chamber 63 is provided on the other side.
  • valve body 62 is moved by the force relationship between the urging force from the spring 64 and the hydraulic pressure supplied to the hydraulic chamber 63, and the oil passage 75 is switched between the communication state and the cutoff state. That is, the shutoff valve 60 shuts off the oil passage 75 when hydraulic pressure is not supplied to the hydraulic chamber 63, and allows the oil passage 75 to communicate when hydraulic pressure is supplied to the hydraulic chamber 63.
  • the oil passage 75 is provided with a branch oil passage 76.
  • One end of the branch oil passage 76 is connected between the shift valve 55 and the shut-off valve 60 and the other end is connected between the shut-off valve 60 and the connection point 77a so as to bypass the shut-off valve 60.
  • a one-way valve 92 that allows oil to flow only in the direction from the shift valve 55 to the connection point 77a is disposed.
  • the branch oil passage 77 is provided with an electromagnetic on-off valve 57 between the accumulator 58 and the contact point 77a.
  • the electromagnetic on-off valve 57 is a normally closed type that opens when energized and closes when de-energized.
  • the electromagnetic opening / closing valve 57 is controlled to open / close by the control unit 40, and is opened when the oil pump 51 is driven, and is closed when the oil pump 51 is stopped. That is, the branch oil passage 77 is communicated / blocked by opening / closing the electromagnetic opening / closing valve 57.
  • a hydraulic oil pressure sensor 59 that detects the hydraulic pressure stored in the accumulator 58 is provided in the branch oil passage 77 between the accumulator 58 and the electromagnetic on-off valve 57.
  • branch oil passage 77 is provided with an orifice 94 between the connection point 77 a with the oil passage 75 and the electromagnetic on-off valve 57.
  • a branch oil passage 78 is provided so as to bypass the orifice 94.
  • a one-way valve 91 that allows oil to flow only in the direction from the accumulator 58 to the oil passage 75 is disposed in the branch oil passage 78.
  • the oil pump 51 is driven by the driving force of the engine 10 when the vehicle is traveling, and the hydraulic pressure is supplied to the hydraulic circuit 50. At this time, the hydraulic pressure generated by the oil pump 51 is supplied to the accumulator 58 through the oil passages 70 to 75 and 77 in addition to the continuously variable transmission 30.
  • FIG. 5 is a flowchart showing the contents of the process during steady vehicle running by the control unit.
  • step S1 the control unit 40 determines whether or not the vehicle speed is equal to or higher than a predetermined value. Specifically, the control unit 40 makes this determination based on the vehicle speed signal detected from the vehicle speed sensor 36. When the vehicle speed is equal to or higher than the predetermined value (S1: YES), the control unit 40 proceeds to step S2. On the other hand, when the vehicle speed is not equal to or higher than the predetermined value (S1: NO), the control unit 40 ends this processing routine.
  • step S2 the control unit 40 determines whether or not the vehicle is in steady operation. Specifically, the control unit 40 makes this determination based on each signal detected from the vehicle speed sensor 36 or the like. When it is determined that the vehicle is in steady operation (S2: YES), the control unit 40 proceeds to step S3. On the other hand, when it is determined that the vehicle is not in steady operation (S2: NO), the control unit 40 ends this processing routine.
  • step S3 the control unit 40 opens the electromagnetic opening / closing valve 57 (ON state). Specifically, the control unit 40 supplies power to the electromagnetic on-off valve 57 to energize it.
  • the electromagnetic on-off valve 57 of this embodiment is a normally closed type, the energization opens the electromagnetic on-off valve 57.
  • the branch oil passage 77 is in a communicating state, and the hydraulic pressure of the oil pump 51 is stored in the accumulator 58. And the control part 40 transfers a process to step S4.
  • step S4 the control unit 40 stops the process until a predetermined time elapses.
  • a predetermined time a time until the hydraulic pressure in the accumulator 58 becomes equal to or more than a necessary value may be set, and is determined according to the capacity of the accumulator 58. Note that it may be determined whether or not a predetermined hydraulic pressure is stored in the accumulator 58 based on a hydraulic pressure signal from the hydraulic pressure sensor 59. And the control part 40 transfers a process to step S5, after predetermined time passes.
  • step S5 the electromagnetic on-off valve 57 is closed (OFF state). Specifically, the control unit 40 stops energization of the electromagnetic opening / closing valve 57.
  • the electromagnetic on-off valve 57 is a normally closed type, when the energization to the electromagnetic on-off valve 57 is stopped, the electromagnetic on-off valve 57 is closed. As a result, the branch oil passage 77 is cut off, and the hydraulic pressure accumulated in the accumulator 58 is maintained. Then, the control unit 40 ends the subsequent processing. As described above, the hydraulic pressure necessary for the accumulator 58 is accumulated during steady running of the vehicle.
  • the engine 10 is temporarily stopped (idling stop) by the control unit 40 when a predetermined condition is satisfied.
  • the engine stop process will be described with reference to FIG.
  • FIG. 6 is a flowchart showing the contents of the engine stop process by the control unit.
  • step S11 the control unit 40 determines whether or not the vehicle speed is equal to or lower than a predetermined value. Specifically, the control unit 40 makes this determination based on a vehicle speed signal detected from the vehicle speed sensor 36. And when it is judged that a vehicle speed is below a predetermined value (S11: YES), the control part 40 transfers a process to step S12. On the other hand, when it is determined that the vehicle speed is not less than or equal to the predetermined value (S11: NO), the control unit 40 ends this processing routine.
  • step S12 the control unit 40 determines whether or not the Acc pressure (accumulated pressure in the accumulator 58) is equal to or greater than a predetermined value. Specifically, the control unit 40 makes this determination based on the oil pressure detected by the oil pressure sensor 59. And when it is judged that Acc pressure is more than predetermined value (S12: YES), control part 40 shifts processing to Step S13. On the other hand, when it is determined that the Acc pressure is not equal to or higher than the predetermined value (S12: NO), the control unit 40 proceeds to step S21.
  • step S13 the control unit 40 determines whether or not the vehicle speed is zero. Specifically, the control unit 40 makes this determination based on a vehicle speed signal detected from the vehicle speed sensor 36. And when it judges that a vehicle speed is zero (S13: YES), the control part 40 transfers a process to step S14. On the other hand, when it is determined that the vehicle speed is not zero (S13: NO), the control unit 40 ends this processing routine.
  • step S14 the control unit 40 determines whether or not the rotation speed (rotation speed) of the engine 10 is equal to or lower than a predetermined rotation speed. Specifically, the control unit 40 makes this determination based on the engine speed signal detected from the crank position sensor 14.
  • examples of the predetermined rotational speed include a rotational speed slightly higher than the idle rotational speed.
  • the control part 40 transfers a process to step S15.
  • the control unit 40 ends this processing routine.
  • step S15 the control unit 40 determines whether or not the accelerator opening is zero. Specifically, the control unit 40 makes this determination based on the accelerator opening signal detected from the throttle position sensor 17a. And when it is judged that the accelerator opening is zero (S15: YES), the control part 40 transfers a process to step S16. On the other hand, when it is determined that the accelerator opening is not zero (S15: NO), the control unit 40 ends this processing routine.
  • step S16 the control unit 40 determines whether or not the brake switch is ON. Specifically, the control unit 40 makes this determination based on a signal detected from the brake pedal switch 19d. In order to more accurately determine whether or not the brake pedal switch 19d is turned on, that is, whether or not the vehicle brake device is operating, the detection signal from the brake master cylinder pressure sensor 19e is also considered. You may do it. In this case, for example, it is determined that the brake switch is turned on only when the brake pedal switch is turned on and the pressure detected by the brake master cylinder pressure sensor 19e is equal to or higher than a predetermined value. That's fine. And when it is judged that a brake switch is ON (S16: YES), the control part 40 transfers a process to step S17. On the other hand, when it is determined that the brake switch is not ON (S16: NO), the control unit 40 ends this processing routine.
  • step S17 the control unit 40 determines again whether or not the Acc pressure is equal to or higher than a predetermined value. This determination is also made based on the oil pressure detected by the oil pressure sensor 59. When it is determined that the Acc pressure is equal to or higher than the predetermined value (S17: YES), the control unit 40 proceeds to step S18. On the other hand, when it is determined that the Acc pressure is not equal to or greater than the predetermined value (S17: NO), the control unit 40 proceeds to step S21. Since it is determined that the Acc pressure is equal to or higher than the predetermined value in step S12, it is considered that there are few cases where it is determined in step S17 that the Acc pressure is not higher than the predetermined value. However, by confirming the accumulated pressure of the accumulator 58 again in this step S17, the hydraulic pressure required for the accumulator 58 can be more reliably accumulated before the engine is stopped.
  • step S18 the control unit 40 determines whether or not other engine stop conditions are satisfied.
  • other engine stop conditions for example, climbing / inclination determination based on an output signal from the G sensor 19a (condition is established when the inclination angle is equal to or smaller than a predetermined value), engine based on an output signal from the water temperature sensor 19b Water temperature determination (condition is satisfied when the water temperature is within a predetermined range), battery voltage determination based on the output signal of the battery voltage sensor 19c (condition is satisfied when the battery voltage is equal to or higher than a predetermined value), based on the output signal from the oil temperature sensor 37 CVT oil temperature determination (condition is satisfied when CVT oil temperature is within a predetermined range), elapsed time since the previous engine start (condition is satisfied when it is longer than a predetermined time), vehicle speed history (condition is satisfied when it is higher than a predetermined value), etc.
  • step S19 the control unit 40 stops the engine 10. Specifically, the control unit 40 outputs a fuel cut signal, an ignition cut signal, and the like that constitute an engine stop signal to the fuel relay 21, the ignition relay 23, and the like. As a result, high voltage is not supplied from the igniter 13 to the spark plug, and fuel is not injected from the injector 11 to stop the engine 10 (idling stop). Then, the control unit 40 ends the subsequent processing.
  • the oil pump 51 is also stopped when the engine 10 is stopped, the hydraulic pressure is not supplied to the hydraulic circuit 50. At this time, the electromagnetic on-off valve 57 is closed (OFF state) and the branch oil passage 77 is shut off. Therefore, the hydraulic pressure of the accumulator 58 is maintained.
  • step S21 the control unit 40 opens the electromagnetic opening / closing valve 57 (ON state). That is, the control unit 40 opens the electromagnetic on-off valve 57 by supplying power to the electromagnetic on-off valve 57 and energizing it as described above. As a result, the branch oil passage 77 is in a communicating state, so that the hydraulic pressure of the oil pump 51 is stored in the accumulator 58. And the control part 40 transfers a process to step S22.
  • step S22 the control unit 40 increases the line pressure of the hydraulic circuit 50. Specifically, the controller 40 increases the line pressure by changing the amount of current supplied to the solenoid that controls the operation of the clutch pressure control valve 54 and the like. And the control part 40 transfers a process to step S23.
  • step S23 the control unit 40 stops the process until a predetermined time elapses.
  • the predetermined time the time until the hydraulic pressure in the accumulator 58 becomes a required value or more is set as described above.
  • the control part 40 transfers a process to step S24, after predetermined time passes.
  • step S24 the control unit 40 determines whether or not the Acc pressure is greater than or equal to a predetermined value. That is, the control unit 40 makes this determination based on the hydraulic pressure detected by the hydraulic sensor 59 as described above. And when it is judged that Acc pressure is more than predetermined value (S24: YES), control part 40 shifts processing to Step S25. On the other hand, when it is determined that the Acc pressure is not equal to or higher than the predetermined value (S24: NO), the control unit 40 proceeds to step S31.
  • step S25 the controller 40 closes the electromagnetic open / close valve 57 (OFF state). That is, the control unit 40 closes the electromagnetic on-off valve 57 by stopping energization of the electromagnetic on-off valve 57. Then, the control unit 40 ends the subsequent processing.
  • step S31 the control unit 40 increases the engine speed.
  • the oil pump 51 is a mechanical pump that operates in conjunction with the engine 10
  • the rotational speed of the oil pump 51 is increased by increasing the engine rotational speed.
  • the control unit 40 may gradually increase the engine speed, or may increase the engine speed to a predetermined speed and maintain the speed. In this way, by increasing the rotational speed of the oil pump 51 and storing the hydraulic pressure in the accumulator 58, the hydraulic pressure required for the accumulator 58 can be reliably stored in a shorter time before the engine 10 is stopped.
  • the control part 40 transfers a process to step S24. That is, the control unit 40 does not shift the process to step S25 until the hydraulic pressure necessary for the accumulator 58 is accumulated.
  • FIG. 7 is a flowchart showing the contents of the engine restart process by the control unit.
  • step S42 the control unit 40 determines whether a restart condition for the engine 10 is satisfied.
  • the engine restart condition include a vehicle speed being zero, a brake switch being OFF, and an accelerator opening being not zero. And when it is judged that the restart conditions of the engine 10 are satisfied (S42: YES), the control part 40 transfers a process to step S43. On the other hand, when it is determined that the restart condition of the engine 10 is not satisfied (S42: NO), the control unit 40 ends this processing routine.
  • step S43 the control unit 40 opens the electromagnetic opening / closing valve 57 (ON state). That is, the controller 40 opens the electromagnetic on-off valve 57 by energizing the electromagnetic on-off valve 57 as described above. As a result, the branch oil passage 77 is in a communicating state, and the hydraulic pressure stored in the accumulator 58 is supplied to the forward clutch C1. And the control part 40 transfers a process to step S44.
  • step S44 the control unit 40 stops the process until a predetermined time elapses.
  • the predetermined time is not particularly limited, but about 50 ms can be exemplified in consideration of the time required to complete the opening of the electromagnetic on-off valve 57. And the control part 40 transfers a process to step S44.
  • step S45 the control unit 40 starts the starter 12. Specifically, the control unit 40 outputs a starter drive signal constituting an engine restart signal to the starter relay 22. And the control part 40 transfers a process to step S46. In step S46, the control unit 40 outputs a fuel injection signal, an ignition signal, etc. constituting other engine restart signals to the fuel relay 21, the ignition relay 23, etc., respectively. As described above, the starter 12 is driven, a high voltage is supplied from the igniter 13 to the spark plug, and fuel is injected from the injector 11. Thus, the engine 10 is restarted.
  • the electromagnetic on-off valve 57 is opened before the restart of the engine 10 and a predetermined time elapses, whereby the electromagnetic on-off valve 57 is supplied before a large current is supplied to the starter 12 or the like. Can be opened. Thereby, the current required for opening the electromagnetic on-off valve 57 can be ensured, and the electromagnetic on-off valve 57 can be reliably opened when the engine 10 is restarted. As a result, when the engine 10 is restarted, the hydraulic pressure of the accumulator 58 can be reliably supplied to the forward clutch C1.
  • FIG. 8 is a time chart showing an example of the behavior of the C-1 pressure and the Acc pressure.
  • step S12 the control unit 40 determines whether or not the Acc pressure has reached the necessary pressure P1 (step S12). This example corresponds to the case where the Acc pressure has not reached the required pressure P1 (S12: NO). Therefore, the control unit 40 opens the electromagnetic opening / closing valve 57 as shown in (g) (step S21). At this time, the control unit 40 also increases the line pressure as shown in (d) (step S22).
  • the control unit 40 As the line pressure increases, the C-1 pressure and the Acc pressure also increase as shown in (e) and (f). In this example, as shown in (f), since the Acc pressure reaches the necessary pressure P1 at time t4 (S24: YES), the control unit 40, as shown in (g), 57 is closed (step S25).
  • the engine speed may be increased as indicated by a broken line in (c).
  • the control unit 40 stops the vehicle as shown in (b) at time t4, and stops the engine 10 as shown in (c) at time t5 (step S19).
  • a starter signal is output from the control unit 40 as shown in (h), and the engine speed (E / G speed) is shown in (c). It begins to rise (steps S44 to S46).
  • the control unit 40 closes the electromagnetic on-off valve 57 as shown in (g) and stops the output of the starter signal as shown in (h).
  • the electromagnetic on-off valve 57 Since the time required for the accumulator 58 to store the hydraulic pressure is generally several seconds, the electromagnetic on-off valve 57 is opened (ON) to store the hydraulic pressure, as shown in FIG. There is a situation in which the time for which the electromagnetic on-off valve 57 is closed (OFF) in order to maintain the hydraulic pressure is longer than the time for which the pressure is kept.
  • a normally closed type is adopted as the electromagnetic on-off valve 57.
  • the electromagnetic on-off valve 57 can be efficiently controlled, and the electric power required for driving the electromagnetic on-off valve 57 can be reduced.
  • the hydraulic pressure generated while the oil pump 51 is driven is stored in the accumulator 58.
  • the hydraulic pressure of the accumulator 58 is held by the electromagnetic on-off valve 57.
  • the control unit 40 determines that the engine 10 is to be restarted after the engine 10 is temporarily stopped, the electromagnetic on-off valve 57 is opened before the restart of the engine 10 is started, and the accumulator 58 is opened.
  • the stored hydraulic pressure is supplied to the forward clutch C1.
  • the current required for opening the electromagnetic on-off valve 57 can be ensured, and the electromagnetic on-off valve 57 can be reliably opened when the engine 10 is restarted.
  • the hydraulic pressure of the accumulator 58 can be reliably supplied to the forward clutch C1, and the engagement shock of the forward clutch C1 can be appropriately prevented.
  • the electromagnetic on-off valve 57 since the control unit 40 has started the restart of the engine 10 after completing the opening of the electromagnetic on-off valve 57 (after a predetermined time has elapsed), the electromagnetic on-off valve 57 The current is supplied to the starter or the like with the valve opened reliably. That is, when the engine 10 is restarted, the electromagnetic on-off valve 57 can be reliably opened to reliably supply the hydraulic pressure of the accumulator 58 to the forward clutch C1.
  • FIG. 9 is a diagram illustrating a hydraulic circuit according to the second embodiment.
  • symbol is attached
  • the vehicle drive device differs from the first embodiment in the configuration of the hydraulic circuit and the structure of the hydraulic cylinder.
  • an electromagnetic on-off valve 101 that holds the hydraulic pressure of the hydraulic cylinder 105 is provided instead of the one-way valve 93 (see FIG. 4).
  • the electromagnetic on-off valve 101 of the present embodiment corresponds to the “second electromagnetic on-off valve” of the present invention.
  • the electromagnetic on-off valve 101 is a normally open type that closes when energized and opens when de-energized.
  • the electromagnetic on-off valve 101 is provided in an oil passage 83 that connects the hydraulic cylinder 105 and the oil pump 51. More specifically, the electromagnetic on-off valve 101 is provided on the upstream side of the secondary sheave pressure control valve 66 provided in the oil passage 83.
  • the hydraulic pressure supplied from the oil pump 51 is regulated by the line regulator 52, passes through the electromagnetic on-off valve 101 and the secondary sheave pressure control valve 66 through the oil passage 83, and is supplied to the hydraulic cylinder 105. It has become so.
  • an oil passage 82 branched in the oil passage 83 on the upstream side of the electromagnetic on-off valve 101 is connected to the hydraulic cylinder 104 via the shift control valve 65. Accordingly, the hydraulic pressure supplied from the oil pump 51 is regulated by the line regulator 52, then passes through the shift control valve 65 via the oil passage 82 branched from the oil passage 83, and is also supplied to the hydraulic cylinder 104. It has become so.
  • Each of the hydraulic cylinder 104 and the hydraulic cylinder 105 includes a seal member that holds the hydraulic pressure inside each cylinder when the hydraulic pressure is not supplied from the oil pump 51.
  • a member having higher sealing performance than the sealing member of the hydraulic cylinder 105 is employed as the sealing member of the hydraulic cylinder 104.
  • a mode in which the sealing member of the hydraulic cylinder 104 is double sealed can be exemplified.
  • the hydraulic cylinder 104 can be used with a simple configuration without providing an electromagnetic on-off valve in the hydraulic cylinder 104. It is possible to ensure the necessary sealing performance.
  • the hydraulic cylinder 104 of the present embodiment corresponds to a “first hydraulic cylinder” of the present invention
  • the hydraulic cylinder 105 of the present embodiment corresponds to a “second hydraulic cylinder” of the present invention.
  • the control unit 40 energizes the electromagnetic on-off valve 101 only when the engine 10 is stopped when idling and the electromagnetic on-off valve 57 is closed and the hydraulic pressure stored in the accumulator 58 is held.
  • the electromagnetic on-off valve 101 is a normally open type, the electromagnetic on-off valve 101 is closed only at this time, and the electromagnetic on-off valve 101 is opened at other times. According to such control, the energization time of the electromagnetic on-off valve 101 can be shortened to reduce power consumption.
  • the controller 40 opens the electromagnetic on-off valve 57 and supplies the hydraulic pressure stored in the accumulator 58 to the forward clutch C1 due to the restriction of the energization time to the electromagnetic on-off valve 101, the control on / off valve 101 is controlled.
  • the valve is open.
  • the hydraulic pressure of the oil pump 51 by restarting the engine 10 can be supplied to the hydraulic cylinder 105 while quickly supplying the hydraulic pressure of the accumulator 58 to the forward clutch C1.
  • control unit 40 restricts the energization time to the electromagnetic on-off valve 101 as described above.
  • the engine key is not in the ignition ON position when the engine 10 is stopped other than when the engine 10 is idling, and the driver is The electromagnetic on-off valve 101 is opened even when there is no intention to travel by driving.
  • the oil pump 51 is also stopped while the engine 10 is stopped, the oil is discharged from the hydraulic cylinder 105.
  • the hydraulic cylinder 104 has a higher sealing performance than the hydraulic cylinder 105. For this reason, a larger amount of oil remains in the hydraulic cylinder 104 than in the hydraulic cylinder 105.
  • the oil pressure remaining in the hydraulic cylinder 104 can be generated by the centrifugal force using the rotation of the input shaft 115 during towing.
  • the movable sheave 112 of the primary pulley 31 can be slid to narrow the groove width D1 of the V groove 113.
  • the winding radius of the primary pulley 31 can be made larger than the winding radius of the secondary pulley 32.
  • a high gear is formed when the vehicle is towed.
  • the electromagnetic on-off valve 101 is closed to prevent oil leakage from the hydraulic cylinder 105 while the engine 10 is stopped when idling. can do. Thereby, it is possible to prevent air from entering the cylinder. Further, when hydraulic pressure is supplied from the oil pump 51 to the hydraulic cylinder 105 when the engine 10 is restarted, it is possible to prevent air from entering the hydraulic cylinder 105. Thus, the hydraulic performance when the engine 10 is restarted can be improved. Further, since the high gear is formed by using the oil remaining in the hydraulic cylinder 104 when the vehicle is towed, it is possible to prevent the seizure of the pulley at the time of towing the vehicle.
  • the mechanical oil pump 51 connected to the engine 10 is illustrated, but the present invention is also applied to a vehicle drive system including an electric oil pump that is not connected to the engine 10. Can be applied.
  • the normally closed type is adopted as the electromagnetic on-off valve 57
  • the normally open type may be adopted as the electromagnetic on-off valve 57.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)
  • Transmissions By Endless Flexible Members (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Abstract

Provided is a driver for a vehicle wherein engagement shock of a hydraulic servo can be prevented appropriately by opening a solenoid on/off valve certainly when an engine is restarted.  A driver for a vehicle comprises an oil pump (51) generating hydraulic pressure, a forward clutch (C1) connected with the oil pump (51) through an oil path and can be controlled by hydraulic pressure, an accumulator (58) for accumulating hydraulic pressure generated by the oil pump (51) through a branch oil path (77) branched from the oil path, a solenoid on/off valve (57) installed in the branch oil path (77) and maintaining the hydraulic pressure of the accumulator (58) when the oil pump (51) is stopping, and a control section (40) for controlling on/off of the solenoid on/off valve (57) and determining whether to restart an engine (10) from a stopping state or not, wherein the solenoid on/off valve (57) is opened before the engine (10) is restarted if it is determined that the engine (10) is to be restarted, and hydraulic pressure accumulated in the accumulator (58) is supplied to the forward clutch (C1).

Description

車両用駆動装置Vehicle drive device
 本発明は、エンジン(車両駆動源)の再始動時に油圧サーボに対して油圧を迅速に供給して、例えば、車両発進を可能とする摩擦係合要素を速やかに係合させることができる車両用駆動装置に関する。 The present invention is for a vehicle capable of quickly supplying a hydraulic pressure to a hydraulic servo at the time of restarting an engine (vehicle drive source), for example, to quickly engage a friction engagement element capable of starting the vehicle. The present invention relates to a driving device.
 従来から、燃料の節約、排気エミッションの低減、あるいは騒音の低減等を図るために、走行中において所定の条件が成立したときにエンジンを自動停止させる機能(アイドリングストップ機能)を備える車両が実用化されている。このような車両では、例えば車速ゼロ、アクセルオフ、ブレーキオン等の条件がすべて成立すると、エンジンが停止されるようになっている。 Conventionally, in order to save fuel, reduce exhaust emissions, reduce noise, etc., a vehicle equipped with a function (idling stop function) that automatically stops the engine when a predetermined condition is satisfied during driving has been put into practical use. Has been. In such a vehicle, for example, the engine is stopped when all of the conditions such as vehicle speed zero, accelerator off, and brake on are satisfied.
 ここで、エンジンが停止すると、一般にエンジンと連結されているオイルポンプも停止する。このため、例えば、前進走行時に係合されるべき前進用クラッチ(油圧サーボ)に供給されているオイルも油路から抜けてしまい、前進用クラッチはその係合状態が解かれてしまった状態となってしまう。 Here, when the engine stops, the oil pump generally connected to the engine also stops. For this reason, for example, the oil supplied to the forward clutch (hydraulic servo) to be engaged during forward travel also escapes from the oil passage, and the forward clutch has been released from its engaged state. turn into.
 そして、運転者がアクセルペダルを踏んだ場合など、所定の再始動条件が成立すると停止したエンジンが再始動され、オイルポンプも再始動する。このとき、エンジンの再始動とともに前進用クラッチが速やかに係合されないと、エンジンが吹き上がった状態で前進用クラッチが係合するため係合ショックが発生してしまう。 Then, when a predetermined restart condition is satisfied, such as when the driver steps on the accelerator pedal, the stopped engine is restarted and the oil pump is also restarted. At this time, if the forward clutch is not quickly engaged as the engine is restarted, an engagement shock occurs because the forward clutch is engaged with the engine blown up.
 そこで、このような係合ショックを発生させないようにするための技術が種々提案されている。
 例えば、特許文献1には、油圧を発生させるオイルポンプと、油圧により制御される前進用クラッチと、オイルポンプと前進用クラッチとを結ぶ油路に分岐・設置され油圧を蓄圧するアキュムレータと、アキュムレータと油路とを開通又は遮断するノーマルクローズタイプの電磁開閉弁とを備え、エンジンの再始動時に電磁開閉弁を開弁させることにより、アキュムレータに蓄えられた油圧を前進用クラッチに供給する技術が開示されている。この技術によれば、エンジンの再始動時に、アキュムレータに蓄えられた油圧が前進用クラッチへ供給されるので、前進用クラッチを速やかに係合させて係合ショックの発生を防止することができる。
Therefore, various techniques for preventing such an engagement shock from occurring have been proposed.
For example, Patent Document 1 discloses an oil pump that generates hydraulic pressure, a forward clutch that is controlled by hydraulic pressure, an accumulator that branches and is installed in an oil passage that connects the oil pump and the forward clutch, and that accumulates hydraulic pressure, and an accumulator Is a normally closed type electromagnetic on-off valve that opens or closes the oil passage and opens the electromagnetic on-off valve when the engine is restarted to supply the hydraulic pressure stored in the accumulator to the forward clutch. It is disclosed. According to this technique, since the hydraulic pressure stored in the accumulator is supplied to the forward clutch when the engine is restarted, it is possible to quickly engage the forward clutch and prevent the occurrence of an engagement shock.
特開2000-313252号公報JP 2000-313252 A
 ところで、上記した特許文献1に記載の技術では、エンジンの再始動と同時に電磁開閉弁を開弁させている。つまり、車両の制御装置(ECU)により、エンジン復帰指令と開閉弁開弁指令とが同時になされている。
 しかしながら、エンジンの再始動時には、始動用のスタータ等に大電流を供給する必要があるため、電磁開閉弁に十分な電流を供給することができないおそれがあった。そのため、電磁開閉弁の開弁が遅れるおそれがあった。このように電磁開閉弁の開弁が遅れると、アキュムレータに蓄えられた油圧を速やかに前進用クラッチに供給することができなくなってしまう。その結果、前進用クラッチの係合ショックの発生を適切に防止することができないという問題があった。
Incidentally, in the technique described in Patent Document 1 described above, the electromagnetic on-off valve is opened simultaneously with the restart of the engine. That is, an engine return command and an on-off valve opening command are simultaneously issued by a vehicle control device (ECU).
However, when the engine is restarted, it is necessary to supply a large current to a starter or the like for starting, so there is a possibility that a sufficient current cannot be supplied to the electromagnetic on-off valve. For this reason, there is a possibility that the opening of the electromagnetic on-off valve is delayed. If the opening of the electromagnetic on-off valve is delayed in this way, the hydraulic pressure stored in the accumulator cannot be quickly supplied to the forward clutch. As a result, there has been a problem that it is not possible to appropriately prevent the engagement shock of the forward clutch.
 そこで、本発明は上記した問題点を解決するためになされたものであり、車両駆動源の再始動時に電磁開閉弁を確実に開弁させて油圧サーボの係合ショックを適切に防止することができる車両用駆動装置を提供することを目的とする。 Accordingly, the present invention has been made to solve the above-described problems, and it is possible to reliably prevent the engagement shock of the hydraulic servo by reliably opening the electromagnetic on-off valve when the vehicle drive source is restarted. An object of the present invention is to provide a vehicular drive device.
 上記問題点を解決するためになされた本発明の一態様における車両用駆動装置は、油圧を発生させるオイルポンプと、前記オイルポンプに油路を介して接続され、油圧により制御可能な油圧サーボと、前記油路から分岐した分岐油路を介して前記オイルポンプにより発生させた油圧を蓄えるアキュムレータと、前記分岐油路に設置されて、前記オイルポンプの停止中に前記アキュムレータの油圧を保持する電磁開閉弁と、前記電磁開閉弁の開閉を制御する開閉弁制御手段と、車両駆動源を停止状態から再始動させるか否かを判断する再始動判断手段とを備え、前記開閉弁制御手段は、前記再始動判断手段により前記車両駆動源を再始動させると判断された場合に、前記車両駆動源の再始動開始前に前記電磁開閉弁を開弁させ、前記アキュムレータに蓄えられた油圧を前記油圧サーボへ供給することを特徴とする。
 ここで、上記「オイルポンプ」としては、車両駆動源に連動して作動する機械式ポンプであってもよく、車両駆動源には直接連動せずに電力供給により作動する電動式ポンプであってもよい。
In order to solve the above problems, a vehicle drive device according to an aspect of the present invention includes an oil pump that generates hydraulic pressure, and a hydraulic servo that is connected to the oil pump via an oil path and can be controlled by hydraulic pressure. An accumulator that stores hydraulic pressure generated by the oil pump through a branch oil passage branched from the oil passage, and an electromagnetic wave that is installed in the branch oil passage and maintains the hydraulic pressure of the accumulator while the oil pump is stopped An on-off valve, an on-off valve control means for controlling opening and closing of the electromagnetic on-off valve, and a restart judgment means for judging whether or not to restart the vehicle drive source from a stopped state, the on-off valve control means, When it is determined by the restart determining means that the vehicle drive source is restarted, the electromagnetic on-off valve is opened before the vehicle drive source is restarted, and the accumulator And supplying the hydraulic pressure accumulated in the capacitor to the hydraulic servo.
Here, the “oil pump” may be a mechanical pump that operates in conjunction with a vehicle drive source, or an electric pump that operates by power supply without directly interlocking with the vehicle drive source. Also good.
 この車両用駆動装置では、オイルポンプの駆動中に発生した油圧がアキュムレータに蓄えられる。一方、オイルポンプの停止中には、電磁開閉弁によりアキュムレータの油圧が保持される。そして、車両駆動源が一旦停止した後、再始動判断手段により車両駆動源を再始動させると判断された場合には、開閉弁制御手段により車両駆動源の再始動が開始する前に電磁開閉弁を開弁させて、アキュムレータに蓄えられた油圧を油圧サーボへ供給する。このように、車両駆動源の再始動開始前に電磁開閉弁を開弁させることにより、スタータ等に大電流が供給される前に電磁弁を開弁させることができる。これにより、電磁開閉弁の開弁に必要な電流を確実に確保して、車両駆動源の再始動時には電磁開閉弁を確実に開弁させることができる。その結果、車両駆動源の始動時には、アキュムレータの油圧を油圧サーボに確実に供給して、油圧サーボの係合ショックを適切に防止することができる。 In this vehicle drive device, the hydraulic pressure generated while the oil pump is driven is stored in the accumulator. On the other hand, when the oil pump is stopped, the hydraulic pressure of the accumulator is held by the electromagnetic on-off valve. When the vehicle driving source is temporarily stopped and then the restart determining means determines that the vehicle driving source is restarted, the on-off valve control means before the restart of the vehicle driving source is started, the electromagnetic on-off valve Is opened and the hydraulic pressure stored in the accumulator is supplied to the hydraulic servo. As described above, by opening the electromagnetic on-off valve before the restart of the vehicle drive source is started, the electromagnetic valve can be opened before a large current is supplied to the starter or the like. As a result, the current required for opening the electromagnetic on-off valve can be reliably ensured, and the electromagnetic on-off valve can be reliably opened when the vehicle drive source is restarted. As a result, when the vehicle drive source is started, the hydraulic pressure of the accumulator can be reliably supplied to the hydraulic servo, and the engagement shock of the hydraulic servo can be prevented appropriately.
 ところで、アキュムレータが油圧を蓄えるのに必要な時間は一般的に数秒程度であるため、車両駆動装置では、電磁開閉弁を開弁させておく時間よりも、油圧を保持するために電磁開閉弁を閉弁させておく時間のほうが長いという実情があった。 By the way, since the time required for the accumulator to store the hydraulic pressure is generally about several seconds, in the vehicle drive device, the electromagnetic on-off valve is installed to maintain the hydraulic pressure rather than the time during which the electromagnetic on-off valve is opened. There was a fact that it took longer to keep the valve closed.
 そこで、上述の車両用駆動装置において、前記電磁開閉弁は、通電時に開弁して非通電時に閉弁するノーマルクローズタイプであることが望ましい。 Therefore, in the vehicle drive device described above, it is desirable that the electromagnetic on-off valve be a normally closed type that opens when energized and closes when de-energized.
 このように、電磁開閉弁としてノーマルクローズタイプのものを採用することにより、電磁開閉弁に電力供給することなくアキュムレータの蓄圧を保持することができる。つまり、電磁開閉弁を効率よく制御して、電磁開閉弁の駆動に必要な電力を低減させることができる。 Thus, by adopting a normally closed type electromagnetic on / off valve, the accumulator pressure can be maintained without supplying power to the electromagnetic on / off valve. That is, it is possible to efficiently control the electromagnetic on-off valve and reduce the electric power necessary for driving the electromagnetic on-off valve.
 上述の車両用駆動装置において、前記開閉弁制御手段は、前記アキュムレータに油圧を蓄えるために前記車両駆動源の定常運転中にて所定時間のみ前記電磁開閉弁を開弁させることが望ましい。
 ここで、「車両駆動源の定常運転」とは、クラッチの完全係合と開放との間の係合状態をコントロールする必要がないと判断される場合の運転をいうものとする。
In the vehicle drive device described above, it is desirable that the on-off valve control means opens the electromagnetic on-off valve only for a predetermined time during steady operation of the vehicle drive source in order to store hydraulic pressure in the accumulator.
Here, the “steady operation of the vehicle drive source” refers to an operation when it is determined that it is not necessary to control the engagement state between the complete engagement and release of the clutch.
 このように、車両駆動源の定常運転中にて所定時間のみ電磁開閉弁を開弁させることにより、クラッチの完全係合と開放との係合状態が安定している間に、アキュムレータに油圧を蓄圧することができる。これにより、クラッチ圧のコントロールが適正に行われないという課題を解決しつつ、アキュムレータに油圧を蓄圧することができる。 In this way, by opening the electromagnetic on-off valve only for a predetermined time during the steady operation of the vehicle drive source, the accumulator can be hydraulically operated while the engagement state between the complete engagement and the release of the clutch is stable. Accumulate pressure. Thereby, the hydraulic pressure can be accumulated in the accumulator while solving the problem that the clutch pressure is not properly controlled.
 上述の車両用駆動装置において、前記開閉弁制御手段による前記電磁開閉弁の開弁が完了した後に、前記車両駆動源の再始動が開始されることが望ましい。
 ここで、電磁開閉弁の開弁完了に要する時間を考慮すると、この車両用駆動装置としては、特に限定されないが、電磁開閉弁の開弁開始から例えば50ms経過後に車両駆動源の再始動が開始される態様を例示できる。
In the vehicle drive device described above, it is preferable that restart of the vehicle drive source is started after the opening / closing of the electromagnetic on / off valve by the on / off valve control means is completed.
Here, considering the time required to complete the opening of the electromagnetic on-off valve, the vehicle drive device is not particularly limited, but the vehicle drive source restarts after, for example, 50 ms from the start of opening of the electromagnetic on-off valve. The embodiment to be illustrated can be illustrated.
 このように、開閉弁制御手段による電磁開閉弁の開弁が完了した後に、車両駆動源の再始動が開始されることにより、電磁開閉弁を確実に開弁させた状態でスタータ等に電流が供給されるようになる。つまり、車両駆動源の再始動時には、電磁開閉弁を確実に開弁させてアキュムレータの油圧を油圧サーボにより確実に供給することができる。これにより、車両駆動源の再始動時には、油圧サーボにより確実に油圧を供給して、油圧サーボの係合ショックをより適切に防止することができる。 As described above, after the opening / closing of the electromagnetic on / off valve by the on / off valve control means is completed, the restart of the vehicle drive source is started, so that the current is supplied to the starter and the like while the electromagnetic on / off valve is reliably opened Will be supplied. That is, when the vehicle drive source is restarted, the electromagnetic on-off valve can be reliably opened and the hydraulic pressure of the accumulator can be reliably supplied by the hydraulic servo. Thus, when the vehicle drive source is restarted, the hydraulic pressure can be reliably supplied by the hydraulic servo, and the engagement shock of the hydraulic servo can be more appropriately prevented.
 上述の車両用駆動装置において、前記車両駆動源の動力が入力される入力軸と、前記入力軸に入力される動力を変速して出力する出力軸と、前記入力軸に設けられた一対のシーブからなる第1のプーリと、前記出力軸に設けられた一対のシーブからなる第2のプーリと、前記第1のプーリのシーブ間の溝と、前記第2のプーリのシーブ間の溝とに架け渡されたベルトと、前記第1のプーリのシーブ間の溝幅を変更可能な第1の油圧シリンダと、前記第2のプーリのシーブ間の溝幅を変更可能な第2の油圧シリンダとを有するとともに、前記第1の油圧シリンダ及び前記第2の油圧シリンダを用いて前記第1のプーリのシーブ間の溝幅及び前記第2のプーリのシーブ間の溝幅を変更することにより、前記車両駆動源から前記入力軸に入力される動力を無段階に変速して前記出力軸から出力するベルト式無段変速機を備え、前記油圧サーボは、油圧の供給を受けたときに、前記車両駆動源から前記入力軸へと動力を伝達させるものであり、前記第2の油圧シリンダは、油路を介して前記オイルポンプに接続されており、前記第2の油圧シリンダと前記オイルポンプとを接続する油路には、前記第2の油圧シリンダの油圧を選択的に保持する第2の電磁開閉弁が設けられている態様を例示できる。 In the vehicle drive device described above, an input shaft to which power of the vehicle drive source is input, an output shaft that shifts and outputs power input to the input shaft, and a pair of sheaves provided on the input shaft A first pulley comprising a pair of sheaves provided on the output shaft, a groove between the sheaves of the first pulley, and a groove between the sheaves of the second pulley. A spanned belt, a first hydraulic cylinder capable of changing a groove width between sheaves of the first pulley, and a second hydraulic cylinder capable of changing a groove width between sheaves of the second pulley; And changing the groove width between sheaves of the first pulley and the groove width between sheaves of the second pulley by using the first hydraulic cylinder and the second hydraulic cylinder, Input from the vehicle drive source to the input shaft A belt-type continuously variable transmission that shifts power continuously and outputs from the output shaft is provided, and the hydraulic servo transmits power from the vehicle drive source to the input shaft when supplied with hydraulic pressure. The second hydraulic cylinder is connected to the oil pump via an oil passage, and the oil passage connecting the second hydraulic cylinder and the oil pump is connected to the second hydraulic cylinder. A mode in which a second electromagnetic on-off valve that selectively holds the hydraulic pressure of the hydraulic cylinder is provided can be exemplified.
 この態様によれば、第2の油圧シリンダとオイルポンプとを接続する油路に設けられた第2の電磁開閉弁により、第2の油圧シリンダの油圧を選択的に保持することができる。これにより、例えば車両駆動源が停止してオイルポンプから第2の油圧シリンダに油圧が供給されていないときであっても、第2の油圧シリンダからのオイル漏れを防止して、シリンダ内に空気が侵入するのを防止することができる。また、車両駆動源の再始動時にオイルポンプから第2の油圧シリンダに油圧を供給する際、第2の油圧シリンダに空気が混入するのを防止することができる。 According to this aspect, the hydraulic pressure of the second hydraulic cylinder can be selectively held by the second electromagnetic on-off valve provided in the oil passage connecting the second hydraulic cylinder and the oil pump. Thus, for example, even when the vehicle drive source is stopped and no hydraulic pressure is supplied from the oil pump to the second hydraulic cylinder, oil leakage from the second hydraulic cylinder is prevented, and air is discharged into the cylinder. Can be prevented from entering. Further, when the hydraulic pressure is supplied from the oil pump to the second hydraulic cylinder when the vehicle drive source is restarted, it is possible to prevent air from entering the second hydraulic cylinder.
 この態様に係る車両用駆動装置において、前記第2の電磁開閉弁の開閉を制御する第2の開閉弁制御手段を備え、前記第2の開閉弁制御手段は、前記車両駆動源のアイドリング時の停止中であって、前記開閉弁制御手段が前記電磁開閉弁を閉じてアキュムレータに蓄えられた油圧を保持している時には、前記第2の電磁開閉弁を閉弁して前記第2の油圧シリンダの油圧を保持し、前記車両駆動源のアイドリング時以外の停止中には、前記第2の電磁開閉弁を開弁して前記第2の油圧シリンダの油圧を開放することが望ましい。 The vehicle drive device according to this aspect includes second on-off valve control means for controlling opening and closing of the second electromagnetic on-off valve, and the second on-off valve control means is provided when the vehicle drive source is idling. When the on-off valve control means is stopped and the electromagnetic on-off valve is closed to hold the hydraulic pressure stored in the accumulator, the second electromagnetic on-off valve is closed to turn on the second hydraulic cylinder. It is desirable to open the second electromagnetic on-off valve to release the hydraulic pressure of the second hydraulic cylinder while the vehicle drive source is stopped and the vehicle drive source is not idling.
 この態様では、車両駆動源のアイドリング時の停止中であって、開閉弁制御手段が電磁開閉弁を閉じてアキュムレータに蓄えられた油圧を保持している時に、第2の開閉弁制御手段により第2の電磁開閉弁を閉弁して、第2の油圧シリンダの油圧が保持される。これにより、車両駆動源のアイドリング時の停止中に、第2の油圧シリンダからのオイル漏れを防止して、シリンダ内に空気が侵入するのを防止することができる。また、車両駆動源の再始動時にオイルポンプから第2の油圧シリンダに油圧を供給する際、第2の油圧シリンダに空気が混入するのを防止することができる。
 一方、車両駆動源のアイドリング時以外の停止中には、第2の開閉弁制御手段により第2の電磁開閉弁を開弁して、第2の油圧シリンダの油圧が開放される。これにより、第2のプーリのシーブ間の溝幅を変更して変速比を調節することができる。例えば、一般的な無段変速機では、第2の油圧シリンダの油圧を開放した場合、リターンスプリングの付勢力により相対的に低い変速比のギヤ(ローギヤ)を形成することができる。
In this aspect, when the vehicle drive source is idling and the on-off valve control means is closing the electromagnetic on-off valve and holding the hydraulic pressure stored in the accumulator, the second on-off valve control means performs the first operation. The second electromagnetic opening / closing valve is closed to maintain the hydraulic pressure of the second hydraulic cylinder. Accordingly, it is possible to prevent oil leakage from the second hydraulic cylinder and stop air from entering the cylinder while the vehicle drive source is stopped when idling. Further, when the hydraulic pressure is supplied from the oil pump to the second hydraulic cylinder when the vehicle drive source is restarted, it is possible to prevent air from entering the second hydraulic cylinder.
On the other hand, when the vehicle drive source is stopped other than when idling, the second electromagnetic on-off valve is opened by the second on-off valve control means, and the hydraulic pressure of the second hydraulic cylinder is released. Thereby, the gear ratio can be adjusted by changing the groove width between the sheaves of the second pulley. For example, in a general continuously variable transmission, when the hydraulic pressure of the second hydraulic cylinder is released, a gear (low gear) having a relatively low speed ratio can be formed by the biasing force of the return spring.
 この態様に係る車両用駆動装置において、前記第1の油圧シリンダ及び前記第2の油圧シリンダは、前記オイルポンプから油圧が供給されていないときに前記各シリンダ内部の油圧を保持するシール部材をそれぞれに備え、前記第1の油圧シリンダのシール部材は、前記第2の油圧シリンダのシール部材よりシール性が高いものであることが望ましい。 In the vehicle drive device according to this aspect, each of the first hydraulic cylinder and the second hydraulic cylinder includes a seal member that holds the hydraulic pressure inside each cylinder when no hydraulic pressure is supplied from the oil pump. In preparation, it is desirable that the sealing member of the first hydraulic cylinder has higher sealing performance than the sealing member of the second hydraulic cylinder.
 この態様のように、第1の油圧シリンダのシール部材を、第2の油圧シリンダのシール部材よりシール性の高いものとすることにより、簡易な構成を用いて第1の油圧シリンダのシール性を確保することができる。また、この態様によれば、車両駆動源を停止させて車両を牽引する場合に、牽引時における入力軸の回転を利用して第1の油圧シリンダ内に残った油に遠心力を作用させることができる。この遠心力により生じた油圧を利用して、第1のプーリのシーブ間の溝幅を狭くし(つまりベルトの巻き掛け半径を大きくし)、ハイギヤを形成することができる。このように、車両牽引時にハイギヤを形成することにより、プーリの焼き付き等を防止することができる。 As in this aspect, by making the sealing member of the first hydraulic cylinder higher in sealing performance than the sealing member of the second hydraulic cylinder, the sealing performance of the first hydraulic cylinder can be improved using a simple configuration. Can be secured. Also, according to this aspect, when the vehicle drive source is stopped and the vehicle is towed, the centrifugal force is applied to the oil remaining in the first hydraulic cylinder using the rotation of the input shaft during towing. Can do. By utilizing the hydraulic pressure generated by this centrifugal force, the groove width between the sheaves of the first pulley can be narrowed (that is, the belt winding radius can be increased) to form a high gear. Thus, by forming the high gear when the vehicle is towed, the seizure of the pulley can be prevented.
 本発明に係る車両用駆動装置によれば、上記した通り、エンジンの再始動時に電磁開閉弁を確実に開弁させて油圧サーボの係合ショックを適切に防止することができる。 According to the vehicle drive device of the present invention, as described above, the electromagnetic on / off valve can be reliably opened when the engine is restarted to appropriately prevent the hydraulic servo engagement shock.
実施の形態に係る車両駆動システムの概略構成を示す図である。1 is a diagram showing a schematic configuration of a vehicle drive system according to an embodiment. 無段変速機のローギヤ形成時におけるプライマリプーリ及びセカンダリプーリの様子を示す斜視図である。It is a perspective view which shows the mode of the primary pulley and the secondary pulley at the time of low gear formation of a continuously variable transmission. 無段変速機のハイギア形成時におけるプライマリプーリ及びセカンダリプーリの様子を示す斜視図である。It is a perspective view which shows the mode of the primary pulley and the secondary pulley at the time of high gear formation of a continuously variable transmission. 無段変速機に備わる油圧回路を示す図である。It is a figure which shows the hydraulic circuit with which a continuously variable transmission is equipped. 制御部による車両定常走行時の処理の内容を示すフローチャートである。It is a flowchart which shows the content of the process at the time of vehicle steady running by a control part. 制御部によるエンジン停止処理の内容を示すフローチャートである。It is a flowchart which shows the content of the engine stop process by a control part. 制御部によるエンジン再始動処理の内容を示すフローチャートである。It is a flowchart which shows the content of the engine restart process by a control part. C-1圧及びAcc圧の挙動の一例を示すタイムチャートである。It is a time chart which shows an example of the behavior of C-1 pressure and Acc pressure. 第2実施形態に係る油圧回路を示す図である。It is a figure which shows the hydraulic circuit which concerns on 2nd Embodiment.
 以下、本発明の車両用駆動装置を具体化した好適な実施の形態について、図面に基づき詳細に説明する。ここでは、本発明を無段変速機(CVT)を備える車両駆動システムに適用したものを例示する。そこで、実施の形態に係る車両駆動システムについて、図1を参照しながら説明する。図1は、実施の形態に係る車両駆動システムの概略構成を示す図である。 Hereinafter, preferred embodiments of the vehicle drive device of the present invention will be described in detail with reference to the drawings. Here, what applied this invention to the vehicle drive system provided with a continuously variable transmission (CVT) is illustrated. A vehicle drive system according to the embodiment will be described with reference to FIG. FIG. 1 is a diagram illustrating a schematic configuration of a vehicle drive system according to an embodiment.
[第1実施形態]
 第1の実施の形態に係る駆動システムは、図1に示すように、エンジン10と、無段変速機30と、システムを統括的に制御する制御部40と、エンジン10、無段変速機30及び車両の状態などを検出するための各種センサとを備えている。なお、本実施形態のエンジン10が、本発明の「車両駆動源」に相当する。
[First Embodiment]
As shown in FIG. 1, the drive system according to the first embodiment includes an engine 10, a continuously variable transmission 30, a control unit 40 that comprehensively controls the system, an engine 10, and a continuously variable transmission 30. And various sensors for detecting the state of the vehicle and the like. The engine 10 of the present embodiment corresponds to a “vehicle drive source” of the present invention.
 エンジン10には、インジェクタ11、スタータ12、イグナイタ13が設けられている。そして、エンジン10の出力軸に、無段変速機30が接続されている。
 エンジン10の各気筒には、インテークマニホールド15およびエキゾーストマニホールド16が接続されている。そして、インテークマニホールド15には、アクセルペダルと連動するスロットルバルブ17が設けられている。スロットルバルブ17には、その開度を検出するスロットル位置センサ17aと、全閉状態を検出するアイドルスイッチ17bとが設けられている。また、インジェクタ11は、燃料リレー21を介して、スタータ12はスタータリレー22を介して、イグナイタ13は点火リレー23を介してそれぞれ制御部40に接続されている。
The engine 10 is provided with an injector 11, a starter 12, and an igniter 13. A continuously variable transmission 30 is connected to the output shaft of the engine 10.
An intake manifold 15 and an exhaust manifold 16 are connected to each cylinder of the engine 10. The intake manifold 15 is provided with a throttle valve 17 that interlocks with an accelerator pedal. The throttle valve 17 is provided with a throttle position sensor 17a for detecting the opening degree and an idle switch 17b for detecting a fully closed state. The injector 11 is connected to the control unit 40 via a fuel relay 21, the starter 12 is connected via a starter relay 22, and the igniter 13 is connected via an ignition relay 23.
 続いて、無段変速機30の構成について、図2~図4を参照しながら説明する。図2は、無段変速機のローギヤ形成時におけるプライマリプーリ及びセカンダリプーリの様子を示す斜視図である。図3は、無段変速機のハイギア形成時におけるプライマリプーリ及びセカンダリプーリの様子を示す斜視図である。図4は、無段変速機に備わる油圧回路を示す図である。 Subsequently, the configuration of the continuously variable transmission 30 will be described with reference to FIGS. FIG. 2 is a perspective view showing a state of the primary pulley and the secondary pulley when the low gear is formed in the continuously variable transmission. FIG. 3 is a perspective view showing the state of the primary pulley and the secondary pulley when the high gear of the continuously variable transmission is formed. FIG. 4 is a diagram illustrating a hydraulic circuit provided in the continuously variable transmission.
 無段変速機30は、図2に示すように、エンジン10の動力がトルクコンバータ38(図4参照)及び前後進切替クラッチ等を介して入力される入力軸115と、入力軸115と平行に配置されて駆動輪側へ動力を出力する出力軸125と、入力軸115に設けられたプライマリプーリ31と、出力軸125に設けられたセカンダリプーリ32と、プライマリプーリ31とセカンダリプーリ32とに架け渡されたVベルト130と、プライマリプーリ31に設けられた油圧シリンダ102(図4参照)と、セカンダリプーリ32に設けられた油圧シリンダ103(図4参照)とを備えている。入力軸115に入力されたエンジン10の動力は、プライマリプーリ31、Vベルト130及びセカンダリプーリ32を介して、出力軸125に伝達されるようになっている。 As shown in FIG. 2, the continuously variable transmission 30 includes an input shaft 115 to which the power of the engine 10 is input via a torque converter 38 (see FIG. 4) and a forward / reverse switching clutch, and the input shaft 115. An output shaft 125 that is arranged and outputs power to the drive wheel side, a primary pulley 31 provided on the input shaft 115, a secondary pulley 32 provided on the output shaft 125, and a primary pulley 31 and a secondary pulley 32. A passed V belt 130, a hydraulic cylinder 102 (see FIG. 4) provided in the primary pulley 31, and a hydraulic cylinder 103 (see FIG. 4) provided in the secondary pulley 32 are provided. The power of the engine 10 input to the input shaft 115 is transmitted to the output shaft 125 via the primary pulley 31, the V belt 130 and the secondary pulley 32.
 プライマリプーリ31は、入力軸115に固定された固定シーブ111と、入力軸115に軸方向へスライド可能に設けられた可動シーブ112とから構成されている。可動シーブ112は、油圧シリンダ102により軸方向へスライドさせられるようになっている。固定シーブ111と可動シーブ112との対向面は、それぞれ円錐面となっている。これにより、固定シーブ111と可動シーブ112との間に、断面V字型のV溝113が形成されている。このV溝113には、Vベルト130が挟み込まれている。なお、本実施形態のプライマリプーリ31が、本発明の「第1のプーリ」に相当する。 The primary pulley 31 includes a fixed sheave 111 fixed to the input shaft 115 and a movable sheave 112 provided on the input shaft 115 so as to be slidable in the axial direction. The movable sheave 112 is slid in the axial direction by the hydraulic cylinder 102. The opposing surfaces of the fixed sheave 111 and the movable sheave 112 are conical surfaces. As a result, a V-shaped groove 113 having a V-shaped cross section is formed between the fixed sheave 111 and the movable sheave 112. A V belt 130 is sandwiched between the V grooves 113. The primary pulley 31 of this embodiment corresponds to the “first pulley” of the present invention.
 セカンダリプーリ32は、出力軸125に固定された固定シーブ121と、出力軸125に軸方向へスライド可能に設けられた可動シーブ122とから構成されている。可動シーブ122は、油圧シリンダ103により軸方向へスライドさせられるようになっている。固定シーブ121と可動シーブ122との対向面は、それぞれ円錐面となっている。これにより、固定シーブ121と可動シーブ122との間に、断面V字型のV溝123が形成されている。このV溝123には、Vベルト130が挟み込まれている。なお、本実施形態のセカンダリプーリ32が、本発明の「第2のプーリ」に相当する。 The secondary pulley 32 includes a fixed sheave 121 fixed to the output shaft 125 and a movable sheave 122 provided on the output shaft 125 so as to be slidable in the axial direction. The movable sheave 122 is slid in the axial direction by the hydraulic cylinder 103. The opposing surfaces of the fixed sheave 121 and the movable sheave 122 are conical surfaces. As a result, a V-shaped groove 123 having a V-shaped cross section is formed between the fixed sheave 121 and the movable sheave 122. A V-belt 130 is sandwiched between the V-grooves 123. Note that the secondary pulley 32 of the present embodiment corresponds to a “second pulley” of the present invention.
 このベルト式無段変速機30では、油圧シリンダ102及び油圧シリンダ103を用いてプライマリプーリ31のV溝113の溝幅D1及びセカンダリプーリ32のV溝123の溝幅D2が変更される。これにより、エンジン10から入力軸115に入力される動力を、無段階に変速して出力軸125から出力できるようになっている。例えば、ローギヤ形成時には、図2に示すように、Vベルト130におけるプライマリプーリ31への巻き掛け半径が、Vベルト130におけるセカンダリプーリ32への巻き掛け半径より小さくなる。なお、エンジン10が停止した初期では、プライマリプーリ31に設けられたリターンスプリング(図示略)により、ローギヤが形成されるようになっている。 In the belt type continuously variable transmission 30, the groove width D1 of the V groove 113 of the primary pulley 31 and the groove width D2 of the V groove 123 of the secondary pulley 32 are changed using the hydraulic cylinder 102 and the hydraulic cylinder 103. As a result, the power input from the engine 10 to the input shaft 115 can be steplessly shifted and output from the output shaft 125. For example, when the low gear is formed, as shown in FIG. 2, the winding radius of the V belt 130 around the primary pulley 31 is smaller than the winding radius of the V belt 130 around the secondary pulley 32. When the engine 10 is stopped, a low gear is formed by a return spring (not shown) provided on the primary pulley 31.
 そして、ハイギヤ形成時には、図3に示すように、油圧シリンダ102によりプライマリプーリ31の可動シーブ112をスライドさせてV溝113の溝幅D1を狭くするとともに、油圧シリンダ103によりセカンダリプーリ32の可動シーブ122をスライドさせてV溝123の溝幅D2を広くする。これにより、Vベルト130におけるプライマリプーリ31への巻き掛け半径を大きくするとともに、Vベルト130におけるセカンダリプーリ32への巻き掛け半径を小さくする。こうして、入力軸115に対する出力軸125の回転数を上昇させ、ハイギヤが形成されるようになっている。 When the high gear is formed, as shown in FIG. 3, the movable sheave 112 of the primary pulley 31 is slid by the hydraulic cylinder 102 to narrow the groove width D <b> 1 of the V groove 113, and the movable sheave of the secondary pulley 32 by the hydraulic cylinder 103. 122 is slid to widen the groove width D2 of the V-groove 123. This increases the winding radius of the V belt 130 around the primary pulley 31 and decreases the winding radius of the V belt 130 around the secondary pulley 32. Thus, the rotational speed of the output shaft 125 with respect to the input shaft 115 is increased, and a high gear is formed.
 さらに、無段変速機30には、図1に示すように、運転者の操作により設定されたシフトポジション(レンジ)を検知するシフトポジションスイッチ35と、推進軸に連結される無段変速機30の出力軸125の回転速度に基づき車速を検出する車速センサ36とが設けられている。また、無段変速機30には、変速機内のオイルの温度を検出する油温センサ37が設けられている。 Further, as shown in FIG. 1, the continuously variable transmission 30 includes a shift position switch 35 that detects a shift position (range) set by a driver's operation, and a continuously variable transmission 30 connected to the propulsion shaft. A vehicle speed sensor 36 for detecting the vehicle speed based on the rotational speed of the output shaft 125 is provided. Further, the continuously variable transmission 30 is provided with an oil temperature sensor 37 that detects the temperature of oil in the transmission.
 制御部40は、各種機器を制御するCPU、予め各種の数値やプログラムが書き込まれたROM、及び演算過程の数値やフラグが所定の領域に書き込まれるRAMなどを備えている。なお、後述するエンジン停止処理やエンジン再始動処理等のプログラムは、制御部40内のROMに予め書き込まれている。この制御部40が、本発明の「開閉弁制御手段」及び「再始動判断手段」に相当する。 The control unit 40 includes a CPU that controls various devices, a ROM in which various numerical values and programs are written in advance, and a RAM in which numerical values and flags of calculation processes are written in a predetermined area. Note that programs such as an engine stop process and an engine restart process, which will be described later, are written in advance in a ROM in the control unit 40. The control unit 40 corresponds to “open / close valve control means” and “restart determination means” of the present invention.
 制御部40には、イグナイタ13の点火一次コイル13a、クランクポジションセンサ14、スロットル位置センサ17a、アイドルスイッチ17b、イグニッションスイッチ18、シフトポジションスイッチ35、車速センサ36、CVT油温センサ37、Gセンサ19a、水温センサ19b、バッテリ電圧センサ19c、ブレーキペダルスイッチ19d、ブレーキマスタシリンダ圧センサ19e、吸気温センサ19f、吸入空気量センサ19g等が接続されている。また、制御部40には、後述するように無段変速機30に設けられた電磁開閉弁57及び油圧センサ59が接続されている。そして、制御部40では、各種スイッチ及びセンサからの信号に基づいて各種演算を実行し、点火カット及び点火信号、燃料カット及び燃料噴射信号、スタータ駆動信号、電磁開閉弁57の駆動信号などを出力するようになっている。 The control unit 40 includes an ignition primary coil 13a of the igniter 13, a crank position sensor 14, a throttle position sensor 17a, an idle switch 17b, an ignition switch 18, a shift position switch 35, a vehicle speed sensor 36, a CVT oil temperature sensor 37, and a G sensor 19a. A water temperature sensor 19b, a battery voltage sensor 19c, a brake pedal switch 19d, a brake master cylinder pressure sensor 19e, an intake air temperature sensor 19f, an intake air amount sensor 19g, and the like are connected. Further, as will be described later, an electromagnetic on-off valve 57 and a hydraulic pressure sensor 59 provided in the continuously variable transmission 30 are connected to the control unit 40. The control unit 40 executes various calculations based on signals from various switches and sensors, and outputs an ignition cut and ignition signal, a fuel cut and fuel injection signal, a starter drive signal, a drive signal for the electromagnetic on-off valve 57, and the like. It is supposed to be.
 続いて、無段変速機30に備わる油圧回路50について、図4を参照しながら説明する。図4に示すように、油圧回路50には、オイルポンプ51と、ライン圧レギュレータバルブ52と、クラッチ圧制御バルブ53と、クラッチコントロールバルブ54と、シフトバルブ55と、マニュアルバルブ56と、電磁開閉弁57と、アキュムレータ58と、遮断弁60と、シフトコントロールバルブ65と、セカンダリシーブ圧コントロールバルブ66とが備わっている。そして、このような油圧回路50が、前進用クラッチC1、後進用ブレーキB1、トルクコンバータ38、及びプライマリプーリ31とセカンダリプーリ32に接続されている。この前進用クラッチC1が、本発明の「油圧サーボ」に相当する。 Next, the hydraulic circuit 50 provided in the continuously variable transmission 30 will be described with reference to FIG. As shown in FIG. 4, the hydraulic circuit 50 includes an oil pump 51, a line pressure regulator valve 52, a clutch pressure control valve 53, a clutch control valve 54, a shift valve 55, a manual valve 56, and an electromagnetic opening / closing. A valve 57, an accumulator 58, a cutoff valve 60, a shift control valve 65, and a secondary sheave pressure control valve 66 are provided. Such a hydraulic circuit 50 is connected to the forward clutch C 1, the reverse brake B 1, the torque converter 38, and the primary pulley 31 and the secondary pulley 32. The forward clutch C1 corresponds to the “hydraulic servo” of the present invention.
 オイルポンプ51は、エンジン10に連動して作動する機械式ポンプであり、無段変速機30全体の油圧源となっている。ライン圧レギュレータバルブ52は、オイルポンプ51で発生した油圧をプライマリプーリ31及びセカンダリプーリ32のプーリ位置を制御するために所定圧に制御するものである。クラッチ圧制御バルブ53は、ライン圧レギュレータバルブ52で調圧された油圧(ライン圧)を、前進用クラッチC1及び後進用ブレーキB1を作動させるための所定圧に制御するものである。クラッチコントロールバルブ54は、クラッチの完全係合と開放との間の係合状態をコントロールする時、例えば、ニュートラル制御実施時に、クラッチ圧制御バルブ53で調圧された油圧を、前進用クラッチC1を作動させるための所定圧に制御するものである。シフトバルブ55は、前進用クラッチC1又は後進用ブレーキB1に供給する油圧を、クラッチ圧制御バルブ53で調圧された油圧、あるいはクラッチコントロールバルブ54で調圧された油圧のいずれかを選択するものである。
 これらのバルブ52~55は、それぞれソレノイドにより作動が制御されており、ソレノイドに供給する電流を制御することによってバルブの作動が制御されるようになっている。
The oil pump 51 is a mechanical pump that operates in conjunction with the engine 10, and serves as a hydraulic pressure source for the entire continuously variable transmission 30. The line pressure regulator valve 52 controls the hydraulic pressure generated by the oil pump 51 to a predetermined pressure in order to control the pulley positions of the primary pulley 31 and the secondary pulley 32. The clutch pressure control valve 53 controls the hydraulic pressure (line pressure) regulated by the line pressure regulator valve 52 to a predetermined pressure for operating the forward clutch C1 and the reverse brake B1. The clutch control valve 54 controls the engagement state between the complete engagement and release of the clutch, for example, when the neutral control is performed, the hydraulic pressure adjusted by the clutch pressure control valve 53 and the forward clutch C1. The pressure is controlled to a predetermined pressure for operation. The shift valve 55 selects the hydraulic pressure supplied to the forward clutch C1 or the reverse brake B1 from either the hydraulic pressure adjusted by the clutch pressure control valve 53 or the hydraulic pressure adjusted by the clutch control valve 54. It is.
The operations of these valves 52 to 55 are controlled by solenoids, and the operation of the valves is controlled by controlling the current supplied to the solenoids.
 また、マニュアルバルブ56は、運転者のシフトポジション操作に連動して油路を切り替えるものである。そして、アキュムレータ58は、オイルポンプ51で発生してクラッチ圧制御バルブ53により調圧された油圧を一時的に蓄えるものである。 The manual valve 56 switches the oil passage in conjunction with the driver's shift position operation. The accumulator 58 temporarily stores the hydraulic pressure generated by the oil pump 51 and regulated by the clutch pressure control valve 53.
 この油圧回路50においては、オイルポンプ51とライン圧レギュレータバルブ52とが、油路70によって接続されている。また、ライン圧レギュレータバルブ52とトルクコンバータ38とが、油路81によって接続されている。さらに、ライン圧レギュレータバルブ52とクラッチ圧制御バルブ53とが、油路71によって接続されている。ここで、油路71は、油路82,83に分岐しており、各油路82,83は、それぞれプライマリプーリ31又はセカンダリプーリ32に接続されている。より詳細には、油路82は、シフトコントロールバルブ65を介してプライマリプーリ31に接続されており、油路83は、セカンダリシーブ圧コントロールバルブ66を介してセカンダリプーリ32に接続されている。 In this hydraulic circuit 50, an oil pump 51 and a line pressure regulator valve 52 are connected by an oil passage 70. Further, the line pressure regulator valve 52 and the torque converter 38 are connected by an oil passage 81. Further, the line pressure regulator valve 52 and the clutch pressure control valve 53 are connected by an oil passage 71. Here, the oil passage 71 is branched into oil passages 82 and 83, and each oil passage 82 and 83 is connected to the primary pulley 31 or the secondary pulley 32, respectively. More specifically, the oil passage 82 is connected to the primary pulley 31 via the shift control valve 65, and the oil passage 83 is connected to the secondary pulley 32 via the secondary sheave pressure control valve 66.
 油路83には、セカンダリシーブ圧コントロールバルブ66の上流側に、ライン圧レギュレータバルブ52からセカンダリプーリ32の方向へのみオイルを流す一方向弁93が設けられている。これにより、オイルポンプ51が停止しているときに、セカンダリプーリ32からライン圧レギュレータバルブ52へのオイル漏れを防止することができる。したがって、セカンダリプーリ32における油漏れを防止し、空気の侵入を防止することができる。よって、エンジンの再始動後、オイルポンプにより供給された油に空気が混じることを防止することができるため、エンジン再始動後の油圧性能を向上することができる。 The oil path 83 is provided with a one-way valve 93 that allows oil to flow only from the line pressure regulator valve 52 to the secondary pulley 32 on the upstream side of the secondary sheave pressure control valve 66. Thereby, when the oil pump 51 is stopped, oil leakage from the secondary pulley 32 to the line pressure regulator valve 52 can be prevented. Therefore, oil leakage in the secondary pulley 32 can be prevented, and air can be prevented from entering. Therefore, after the engine is restarted, air can be prevented from being mixed with the oil supplied by the oil pump, so that the hydraulic performance after the engine restart can be improved.
 油路82には、シフトコントロールバルブ65の上流側に、油路71からプライマリプーリ31の方向へのみオイルを流す一方向弁95が設けられている。これにより、オイルポンプ51が停止しているときに、プライマリプーリ31から油路71へのオイル漏れを防止することができる。したがって、プライマリプーリ31における油漏れを防止し、空気の侵入を防止することができる。よって、エンジンの再始動後、オイルポンプにより供給された油に空気が混じることを防止することができるため、エンジン再始動後の油圧性能を向上することができる。 The oil passage 82 is provided with a one-way valve 95 that allows oil to flow only from the oil passage 71 to the primary pulley 31 on the upstream side of the shift control valve 65. Thereby, when the oil pump 51 is stopped, oil leakage from the primary pulley 31 to the oil passage 71 can be prevented. Therefore, oil leakage in the primary pulley 31 can be prevented, and air can be prevented from entering. Therefore, after the engine is restarted, air can be prevented from being mixed with the oil supplied by the oil pump, so that the hydraulic performance after the engine restart can be improved.
 油路71は、油路85にも分岐しており、この油路85は、遮断弁60の油圧室63に接続されている。これにより、遮断弁60の油圧室63にライン圧が供給されるようになっている。 The oil passage 71 is also branched into an oil passage 85, and the oil passage 85 is connected to the hydraulic chamber 63 of the shutoff valve 60. As a result, the line pressure is supplied to the hydraulic chamber 63 of the shutoff valve 60.
 また、クラッチ圧制御バルブ53とクラッチコントロールバルブ54とが油路72によって接続され、クラッチコントロールバルブ54とシフトバルブ55とが油路74によって接続されている。さらに、クラッチ圧制御バルブ53は、シフトコントロールバルブ65に油路84を介して接続されている。そして、油路72から分岐して油路73が形成され、その油路73はシフトバルブ55に接続されている。つまり、油路73はクラッチコントロールバルブ54をバイパスするように設けられている。 Further, the clutch pressure control valve 53 and the clutch control valve 54 are connected by an oil passage 72, and the clutch control valve 54 and the shift valve 55 are connected by an oil passage 74. Further, the clutch pressure control valve 53 is connected to the shift control valve 65 via an oil passage 84. An oil passage 73 is formed by branching from the oil passage 72, and the oil passage 73 is connected to the shift valve 55. That is, the oil passage 73 is provided so as to bypass the clutch control valve 54.
 また、シフトバルブ55とマニュアルバルブ56とが、油路75によって接続されている。そして、マニュアルバルブ56と前進用クラッチC1とが油路79によって接続され、マニュアルバルブ56と後進用ブレーキB1とが油路80によって接続されている。これにより、マニュアルバルブ56が前進ポジション(Dレンジ)に設定されている場合には、油路75と油路79とが連通し、油路80とドレンEXとが接続されるようになっている。また、マニュアルバルブ56が後進ポジション(Rレンジ)に設定されている場合には、油路75と油路80とが連通し、油路79とドレンEXとが接続されるようになっている。さらに、マニュアルバルブ56がニュートラルポジション(Nレンジ),駐車ポジション(Pレンジ)に設定されている場合には、油路75が油路79,80のいずれとも遮断され、油路79,80とドレンEXとが接続されるようになっている。これにより、マニュアルバルブ56によって、前進用クラッチC1に油圧が不要となるポジション(Dレンジ以外)のときには、前進用クラッチC1に作用している油圧がドレンEXから抜け、後進用ブレーキB1に油圧が不要となるポジション(Rレンジ以外)のときには、後進用ブレーキB1に作用している油圧がドレンEXから抜けるようになっている。 Further, the shift valve 55 and the manual valve 56 are connected by an oil passage 75. The manual valve 56 and the forward clutch C 1 are connected by an oil passage 79, and the manual valve 56 and the reverse brake B 1 are connected by an oil passage 80. Thereby, when the manual valve 56 is set to the forward position (D range), the oil passage 75 and the oil passage 79 are communicated, and the oil passage 80 and the drain EX are connected. . When the manual valve 56 is set to the reverse position (R range), the oil passage 75 and the oil passage 80 communicate with each other, and the oil passage 79 and the drain EX are connected. Further, when the manual valve 56 is set to the neutral position (N range) and the parking position (P range), the oil passage 75 is blocked from both the oil passages 79 and 80, and the oil passages 79 and 80 and the drain are connected. EX is connected. Accordingly, when the manual valve 56 is in a position where hydraulic pressure is not required for the forward clutch C1 (other than the D range), the hydraulic pressure acting on the forward clutch C1 is released from the drain EX, and the hydraulic pressure is applied to the reverse brake B1. At an unnecessary position (other than the R range), the hydraulic pressure acting on the reverse brake B1 is released from the drain EX.
 そして、油路75には、一端がアキュムレータ58に接続されている分岐油路77が接続点77aで接続されている。そして、油路75には、分岐油路77との接続点77aとシフトバルブ55との間に、油路75を遮断可能な遮断弁60が設けられている。この遮断弁60には、弁ボディ61内に油路75を連通状態/遮断状態に切り替えるための弁体62が摺動可能に設けられている。この弁体62の一方側には縮設されたスプリング64が設けられて、他方側には油圧室63が設けられている。これにより、弁体62はスプリング64からの付勢力と油圧室63に供給される油圧との力関係によって移動して、油路75を連通状態と遮断状態とに切り替えようになっている。すなわち、遮断弁60は、油圧室63に油圧が供給されていない状態では油路75を遮断し、油圧室63に油圧が供給されている状態では油路75を連通させる。 A branch oil passage 77 having one end connected to the accumulator 58 is connected to the oil passage 75 at a connection point 77a. The oil passage 75 is provided with a shut-off valve 60 that can shut off the oil passage 75 between a connection point 77 a with the branch oil passage 77 and the shift valve 55. The shutoff valve 60 is provided with a slidable valve body 62 in the valve body 61 for switching the oil passage 75 between the communication state and the shutoff state. A compressed spring 64 is provided on one side of the valve body 62, and a hydraulic chamber 63 is provided on the other side. Thereby, the valve body 62 is moved by the force relationship between the urging force from the spring 64 and the hydraulic pressure supplied to the hydraulic chamber 63, and the oil passage 75 is switched between the communication state and the cutoff state. That is, the shutoff valve 60 shuts off the oil passage 75 when hydraulic pressure is not supplied to the hydraulic chamber 63, and allows the oil passage 75 to communicate when hydraulic pressure is supplied to the hydraulic chamber 63.
 また、油路75には分岐油路76が設けられている。この分岐油路76は、遮断弁60をバイパスするように、一端がシフトバルブ55と遮断弁60との間に接続され、他端が遮断弁60と接続点77aとの間に接続されている。そして、分岐油路76には、シフトバルブ55から接続点77aへの方向にのみオイルを流す一方向弁92が配置されている。これにより、遮断弁60がフェールして油路75が遮断されたままになったとしても、オイルポンプ51で発生させた油圧を油路76を介して前進用クラッチC1又は後進用ブレーキB1に供給できるようになっている。 Further, the oil passage 75 is provided with a branch oil passage 76. One end of the branch oil passage 76 is connected between the shift valve 55 and the shut-off valve 60 and the other end is connected between the shut-off valve 60 and the connection point 77a so as to bypass the shut-off valve 60. . In the branch oil passage 76, a one-way valve 92 that allows oil to flow only in the direction from the shift valve 55 to the connection point 77a is disposed. As a result, even if the shutoff valve 60 fails and the oil passage 75 remains blocked, the hydraulic pressure generated by the oil pump 51 is supplied to the forward clutch C1 or the reverse brake B1 via the oil passage 76. It can be done.
 一方、分岐油路77には、アキュムレータ58と接点77aとの間に電磁開閉弁57が設けられている。電磁開閉弁57は、通電時に開弁して非通電時に閉弁するノーマルクローズタイプである。この電磁開閉弁57は、制御部40によって開閉制御されており、オイルポンプ51が駆動しているときに開状態とされ、オイルポンプ51が停止しているときに閉状態とされる。つまり、分岐油路77は、電磁開閉弁57の開閉により連通・遮断されるようになっている。そして、アキュムレータ58と電磁開閉弁57との間の分岐油路77には、アキュムレータ58に蓄えられた油圧を検出する油圧センサ59が設けられている。 On the other hand, the branch oil passage 77 is provided with an electromagnetic on-off valve 57 between the accumulator 58 and the contact point 77a. The electromagnetic on-off valve 57 is a normally closed type that opens when energized and closes when de-energized. The electromagnetic opening / closing valve 57 is controlled to open / close by the control unit 40, and is opened when the oil pump 51 is driven, and is closed when the oil pump 51 is stopped. That is, the branch oil passage 77 is communicated / blocked by opening / closing the electromagnetic opening / closing valve 57. A hydraulic oil pressure sensor 59 that detects the hydraulic pressure stored in the accumulator 58 is provided in the branch oil passage 77 between the accumulator 58 and the electromagnetic on-off valve 57.
 また、分岐油路77には、油路75との接続点77aと電磁開閉弁57との間にオリフィス94が設けられている。そして、オリフィス94をバイパスするように分岐油路78が設けられている。この分岐油路78には、アキュムレータ58から油路75への方向にのみオイルを流す一方向弁91が配置されている。これにより、アキュムレータ58に油圧が蓄えられるときには、オリフィス94を通過し、アキュムレータ58から蓄えられた油圧を供給するときには、オイルが分岐油路78を通過するようになっている。 Further, the branch oil passage 77 is provided with an orifice 94 between the connection point 77 a with the oil passage 75 and the electromagnetic on-off valve 57. A branch oil passage 78 is provided so as to bypass the orifice 94. A one-way valve 91 that allows oil to flow only in the direction from the accumulator 58 to the oil passage 75 is disposed in the branch oil passage 78. Thereby, when the hydraulic pressure is stored in the accumulator 58, the oil passes through the orifice 94, and when supplying the hydraulic pressure stored from the accumulator 58, the oil passes through the branch oil passage 78.
 続いて、上記のような構成を備える車両駆動システムの動作について説明する。本実施の形態に係る車両駆動システムでは、車両の走行時にエンジン10の駆動力によってオイルポンプ51が駆動され、油圧回路50に油圧が供給される。このとき、オイルポンプ51で発生した油圧は、無段変速機30の他、油路70~75,77を通じてアキュムレータ58に供給されている。 Subsequently, the operation of the vehicle drive system having the above configuration will be described. In the vehicle drive system according to the present embodiment, the oil pump 51 is driven by the driving force of the engine 10 when the vehicle is traveling, and the hydraulic pressure is supplied to the hydraulic circuit 50. At this time, the hydraulic pressure generated by the oil pump 51 is supplied to the accumulator 58 through the oil passages 70 to 75 and 77 in addition to the continuously variable transmission 30.
 本実施の形態に係る車両駆動システムでは、車両の定常走行中に、オイルポンプ51の駆動により発生した油圧がアキュムレータ58に蓄えられる。この車両定常走行中に制御部40が行う処理について、図5を参照しながら説明する。図5は、制御部による車両定常走行時の処理の内容を示すフローチャートである。 In the vehicle drive system according to the present embodiment, the hydraulic pressure generated by driving the oil pump 51 is stored in the accumulator 58 during steady running of the vehicle. The processing performed by the control unit 40 during the steady vehicle traveling will be described with reference to FIG. FIG. 5 is a flowchart showing the contents of the process during steady vehicle running by the control unit.
 図5に示すように、ステップS1において、制御部40は、車速が所定値以上であるか否かを判断する。具体的には、制御部40は、車速センサ36から検出された車速信号に基づいてこの判断を行う。そして、車速が所定値以上である場合(S1:YES)に、制御部40は、処理をステップS2へ移行する。一方、車速が所定値以上でない場合(S1:NO)に、制御部40は、この処理ルーチンを終了する。 As shown in FIG. 5, in step S1, the control unit 40 determines whether or not the vehicle speed is equal to or higher than a predetermined value. Specifically, the control unit 40 makes this determination based on the vehicle speed signal detected from the vehicle speed sensor 36. When the vehicle speed is equal to or higher than the predetermined value (S1: YES), the control unit 40 proceeds to step S2. On the other hand, when the vehicle speed is not equal to or higher than the predetermined value (S1: NO), the control unit 40 ends this processing routine.
 ステップS2において、制御部40は、車両が定常運転中であるか否かを判断する。具体的には、制御部40は、車速センサ36等から検出された各信号に基づいてこの判断を行う。そして、車両が定常運転中であると判断された場合(S2:YES)に、制御部40は、処理をステップS3へ移行する。一方、車両が定常運転中でないと判断された場合(S2:NO)に、制御部40は、この処理ルーチンを終了する。 In step S2, the control unit 40 determines whether or not the vehicle is in steady operation. Specifically, the control unit 40 makes this determination based on each signal detected from the vehicle speed sensor 36 or the like. When it is determined that the vehicle is in steady operation (S2: YES), the control unit 40 proceeds to step S3. On the other hand, when it is determined that the vehicle is not in steady operation (S2: NO), the control unit 40 ends this processing routine.
 ステップS3において、制御部40は、電磁開閉弁57を開弁状態(ON状態)にする。具体的には、制御部40は、電磁開閉弁57に電力を供給して通電させる。ここで、本実施形態の電磁開閉弁57は、ノーマルクローズタイプであるため、この通電により電磁開閉弁57が開弁する。これにより、分岐油路77が連通状態となり、アキュムレータ58にオイルポンプ51の油圧が蓄えられる。そして、制御部40は、処理をステップS4に移行する。 In step S3, the control unit 40 opens the electromagnetic opening / closing valve 57 (ON state). Specifically, the control unit 40 supplies power to the electromagnetic on-off valve 57 to energize it. Here, since the electromagnetic on-off valve 57 of this embodiment is a normally closed type, the energization opens the electromagnetic on-off valve 57. As a result, the branch oil passage 77 is in a communicating state, and the hydraulic pressure of the oil pump 51 is stored in the accumulator 58. And the control part 40 transfers a process to step S4.
 ステップS4において、制御部40は、所定時間が経過するまで処理を停止させる。ここで、所定時間としては、アキュムレータ58内の油圧が必要値以上になるまでの時間を設定すればよく、アキュムレータ58の容量に応じて決定される。なお、油圧センサ59からの油圧信号に基づき、アキュムレータ58に所定の油圧が蓄えられた否かを判断するようにしてもよい。そして、制御部40は、所定時間が経過した後、処理をステップS5へ移行する。 In step S4, the control unit 40 stops the process until a predetermined time elapses. Here, as the predetermined time, a time until the hydraulic pressure in the accumulator 58 becomes equal to or more than a necessary value may be set, and is determined according to the capacity of the accumulator 58. Note that it may be determined whether or not a predetermined hydraulic pressure is stored in the accumulator 58 based on a hydraulic pressure signal from the hydraulic pressure sensor 59. And the control part 40 transfers a process to step S5, after predetermined time passes.
 ステップS5において、電磁開閉弁57を閉弁状態(OFF状態)にする。具体的には、制御部40は、電磁開閉弁57への通電を停止する。ここで、上記したように、電磁開閉弁57は、ノーマルクローズタイプであるため、電磁開閉弁57への通電が停止されると、電磁開閉弁57は閉弁する。これにより、分岐油路77が遮断状態となり、アキュムレータ58に蓄圧された油圧が保持される。そして、制御部40は、その後の処理を終了する。
 以上のようにして、車両の定常走行中に、アキュムレータ58に必要な油圧が蓄圧される。
In step S5, the electromagnetic on-off valve 57 is closed (OFF state). Specifically, the control unit 40 stops energization of the electromagnetic opening / closing valve 57. Here, as described above, since the electromagnetic on-off valve 57 is a normally closed type, when the energization to the electromagnetic on-off valve 57 is stopped, the electromagnetic on-off valve 57 is closed. As a result, the branch oil passage 77 is cut off, and the hydraulic pressure accumulated in the accumulator 58 is maintained. Then, the control unit 40 ends the subsequent processing.
As described above, the hydraulic pressure necessary for the accumulator 58 is accumulated during steady running of the vehicle.
 そして、本実施の形態に係る車両駆動システムでは、所定の条件が満たされると、制御部40によりエンジン10が一時的に停止(アイドリングストップ)される。このエンジン停止処理について、図6を参照しながら説明する。図6は、制御部によるエンジン停止処理の内容を示すフローチャートである。 In the vehicle drive system according to the present embodiment, the engine 10 is temporarily stopped (idling stop) by the control unit 40 when a predetermined condition is satisfied. The engine stop process will be described with reference to FIG. FIG. 6 is a flowchart showing the contents of the engine stop process by the control unit.
 図6に示すように、ステップS11において、制御部40は、車速が所定値以下であるか否かを判断する。具体的には、制御部40は、車速センサ36から検出される車速信号に基づいてこの判断を行う。そして、車速が所定値以下であると判断された場合(S11:YES)に、制御部40は、処理をステップS12へ移行する。一方、車速が所定値以下でないと判断された場合(S11:NO)に、制御部40は、この処理ルーチンを終了する。 As shown in FIG. 6, in step S11, the control unit 40 determines whether or not the vehicle speed is equal to or lower than a predetermined value. Specifically, the control unit 40 makes this determination based on a vehicle speed signal detected from the vehicle speed sensor 36. And when it is judged that a vehicle speed is below a predetermined value (S11: YES), the control part 40 transfers a process to step S12. On the other hand, when it is determined that the vehicle speed is not less than or equal to the predetermined value (S11: NO), the control unit 40 ends this processing routine.
 ステップS12において、制御部40は、Acc圧(アキュムレータ58の蓄圧)が所定値以上であるか否かを判断する。具体的に、制御部40は、油圧センサ59により検出される油圧に基づいてこの判断を行う。そして、Acc圧が所定値以上であると判断された場合(S12:YES)に、制御部40は、処理をステップS13へ移行する。一方、Acc圧が所定値以上でないと判断された場合(S12:NO)に、制御部40は、処理をステップS21へ移行する。 In step S12, the control unit 40 determines whether or not the Acc pressure (accumulated pressure in the accumulator 58) is equal to or greater than a predetermined value. Specifically, the control unit 40 makes this determination based on the oil pressure detected by the oil pressure sensor 59. And when it is judged that Acc pressure is more than predetermined value (S12: YES), control part 40 shifts processing to Step S13. On the other hand, when it is determined that the Acc pressure is not equal to or higher than the predetermined value (S12: NO), the control unit 40 proceeds to step S21.
 ステップS13において、制御部40は、車速がゼロであるか否かを判断する。具体的には、制御部40は、車速センサ36から検出される車速信号に基づきこの判断を行う。そして、車速がゼロであると判断した場合(S13:YES)に、制御部40は、処理をステップS14へ移行する。一方、車速がゼロでないと判断した場合(S13:NO)に、制御部40は、この処理ルーチンを終了する。 In step S13, the control unit 40 determines whether or not the vehicle speed is zero. Specifically, the control unit 40 makes this determination based on a vehicle speed signal detected from the vehicle speed sensor 36. And when it judges that a vehicle speed is zero (S13: YES), the control part 40 transfers a process to step S14. On the other hand, when it is determined that the vehicle speed is not zero (S13: NO), the control unit 40 ends this processing routine.
 ステップS14において、制御部40は、エンジン10の回転速度(回転数)が所定回転速度以下であるか否かを判断する。具体的には、制御部40は、クランクポジションセンサ14から検出されるエンジン回転数信号に基づいてこの判断を行う。ここで、所定回転数としては、例えば、アイドル回転数よりも少し高い回転数が挙げられる。そして、エンジン10の回転数が所定回転数以下であると判断された場合(S14:YES)に、制御部40は、処理をステップS15へ移行する。一方、エンジン10の回転数が所定回転数以下でないと判断された場合(S14:NO)に、制御部40は、この処理ルーチンを終了する。 In step S14, the control unit 40 determines whether or not the rotation speed (rotation speed) of the engine 10 is equal to or lower than a predetermined rotation speed. Specifically, the control unit 40 makes this determination based on the engine speed signal detected from the crank position sensor 14. Here, examples of the predetermined rotational speed include a rotational speed slightly higher than the idle rotational speed. And when it is judged that the rotation speed of the engine 10 is below a predetermined rotation speed (S14: YES), the control part 40 transfers a process to step S15. On the other hand, when it is determined that the rotational speed of the engine 10 is not less than or equal to the predetermined rotational speed (S14: NO), the control unit 40 ends this processing routine.
 ステップS15において、制御部40は、アクセル開度がゼロであるか否かを判断する。具体的には、制御部40は、スロットル位置センサ17aから検出されるアクセル開度信号に基づきこの判断を行う。そして、アクセル開度がゼロであると判断した場合(S15:YES)に、制御部40は、処理をステップS16へ移行する。一方、アクセル開度がゼロでないと判断した場合(S15:NO)に、制御部40は、この処理ルーチンを終了する。 In step S15, the control unit 40 determines whether or not the accelerator opening is zero. Specifically, the control unit 40 makes this determination based on the accelerator opening signal detected from the throttle position sensor 17a. And when it is judged that the accelerator opening is zero (S15: YES), the control part 40 transfers a process to step S16. On the other hand, when it is determined that the accelerator opening is not zero (S15: NO), the control unit 40 ends this processing routine.
 ステップS16において、制御部40は、ブレーキスイッチがONであるか否かを判断する。具体的には、制御部40は、ブレーキペダルスイッチ19dから検出される信号に基づいてこの判断を行う。なお、ブレーキペダルスイッチ19dがONされているか否か、つまり車両のブレーキ装置が作動しているか否かの判断をより正確に行うために、ブレーキマスタシリンダ圧センサ19eからの検出信号をも考慮するようにしてもよい。この場合には例えば、ブレーキペダルスイッチがONされており、かつブレーキマスタシリンダ圧センサ19eにより検出される圧力が所定値以上である場合にのみ、ブレーキスイッチがONされていると判断するようにすればよい。そして、ブレーキスイッチがONであると判断した場合(S16:YES)に、制御部40は、処理をステップS17へ移行する。一方、ブレーキスイッチがONでないと判断した場合(S16:NO)に、制御部40は、この処理ルーチンを終了する。 In step S16, the control unit 40 determines whether or not the brake switch is ON. Specifically, the control unit 40 makes this determination based on a signal detected from the brake pedal switch 19d. In order to more accurately determine whether or not the brake pedal switch 19d is turned on, that is, whether or not the vehicle brake device is operating, the detection signal from the brake master cylinder pressure sensor 19e is also considered. You may do it. In this case, for example, it is determined that the brake switch is turned on only when the brake pedal switch is turned on and the pressure detected by the brake master cylinder pressure sensor 19e is equal to or higher than a predetermined value. That's fine. And when it is judged that a brake switch is ON (S16: YES), the control part 40 transfers a process to step S17. On the other hand, when it is determined that the brake switch is not ON (S16: NO), the control unit 40 ends this processing routine.
 ステップS17において、制御部40は、再びAcc圧が所定値以上であるか否かを判断する。この判断も、油圧センサ59により検出される油圧に基づいて行われる。そして、Acc圧が所定値以上であると判断した(S17:YES)場合に、制御部40は、処理をステップS18へ移行する。一方、Acc圧が所定値以上でないと判断した場合(S17:NO)に、制御部40は、処理をステップS21へ移行する。
 なお、一度、ステップS12でAcc圧が所定値以上であると判断されているため、このステップS17においてAcc圧が所定値以上でないと判断される場合は少ないと考えられる。しかしながら、このステップS17で再度アキュムレータ58の蓄圧を確認することにより、エンジン停止前にアキュムレータ58に必要な油圧をより確実に蓄圧することができる。
In step S17, the control unit 40 determines again whether or not the Acc pressure is equal to or higher than a predetermined value. This determination is also made based on the oil pressure detected by the oil pressure sensor 59. When it is determined that the Acc pressure is equal to or higher than the predetermined value (S17: YES), the control unit 40 proceeds to step S18. On the other hand, when it is determined that the Acc pressure is not equal to or greater than the predetermined value (S17: NO), the control unit 40 proceeds to step S21.
Since it is determined that the Acc pressure is equal to or higher than the predetermined value in step S12, it is considered that there are few cases where it is determined in step S17 that the Acc pressure is not higher than the predetermined value. However, by confirming the accumulated pressure of the accumulator 58 again in this step S17, the hydraulic pressure required for the accumulator 58 can be more reliably accumulated before the engine is stopped.
 ステップS18において、制御部40は、その他のエンジン停止条件が成立しているか否かを判断する。ここで、その他のエンジン停止条件としては、例えば、Gセンサ19aからの出力信号に基づく登坂・傾斜判定(傾斜角が所定値以下の場合に条件成立)、水温センサ19bからの出力信号に基づくエンジン水温判定(水温が所定範囲の場合に条件成立)、バッテリ電圧センサ19cの出力信号に基づくバッテリ電圧判定(バッテリ電圧が所定値以上の場合に条件成立)、油温センサ37からの出力信号に基づくCVT油温判定(CVT油温が所定範囲の場合に条件成立)、前回のエンジン始動からの経過時間(所定時間以上の場合に条件成立)、車速履歴(所定値以上の場合に条件成立)などを挙げることができる。そして、その他のエンジン停止条件が成立していると判断した場合(S18:YES)に、制御部40は、処理をステップS19へ移行する。一方、その他のエンジン停止条件が成立していないと判断した場合(S18:NO)に、制御部40は、この処理ルーチンを終了する。 In step S18, the control unit 40 determines whether or not other engine stop conditions are satisfied. Here, as other engine stop conditions, for example, climbing / inclination determination based on an output signal from the G sensor 19a (condition is established when the inclination angle is equal to or smaller than a predetermined value), engine based on an output signal from the water temperature sensor 19b Water temperature determination (condition is satisfied when the water temperature is within a predetermined range), battery voltage determination based on the output signal of the battery voltage sensor 19c (condition is satisfied when the battery voltage is equal to or higher than a predetermined value), based on the output signal from the oil temperature sensor 37 CVT oil temperature determination (condition is satisfied when CVT oil temperature is within a predetermined range), elapsed time since the previous engine start (condition is satisfied when it is longer than a predetermined time), vehicle speed history (condition is satisfied when it is higher than a predetermined value), etc. Can be mentioned. And when it is judged that the other engine stop conditions are satisfied (S18: YES), the control part 40 transfers a process to step S19. On the other hand, when it is determined that other engine stop conditions are not satisfied (S18: NO), the control unit 40 ends this processing routine.
 ステップS19において、制御部40は、エンジン10を停止させる。具体的には、制御部40は、エンジン停止信号を構成する燃料カット信号及び点火カット信号等を、燃料リレー21、点火リレー23等にそれぞれ出力する。これにより、イグナイタ13から点火プラグに高電圧が供給されないようにするとともに、インジェクタ11から燃料が噴射されないようにして、エンジン10を停止させる(アイドリングストップ)。そして、制御部40は、その後の処理を終了する。ここで、エンジン10の停止によりオイルポンプ51も停止するため、油圧回路50に油圧が供給されなくなるが、このときには電磁開閉弁57が閉弁状態(OFF状態)とされて分岐油路77が遮断されているため、アキュムレータ58の油圧は保持される。 In step S19, the control unit 40 stops the engine 10. Specifically, the control unit 40 outputs a fuel cut signal, an ignition cut signal, and the like that constitute an engine stop signal to the fuel relay 21, the ignition relay 23, and the like. As a result, high voltage is not supplied from the igniter 13 to the spark plug, and fuel is not injected from the injector 11 to stop the engine 10 (idling stop). Then, the control unit 40 ends the subsequent processing. Here, since the oil pump 51 is also stopped when the engine 10 is stopped, the hydraulic pressure is not supplied to the hydraulic circuit 50. At this time, the electromagnetic on-off valve 57 is closed (OFF state) and the branch oil passage 77 is shut off. Therefore, the hydraulic pressure of the accumulator 58 is maintained.
[ステップS12,ステップS17でAcc圧が所定値以上でないと判断した場合(S12:NO,S17:NO)]
 ステップS21において、制御部40は、電磁開閉弁57を開弁状態(ON状態)にする。すなわち、制御部40は、上記したように電磁開閉弁57に電力を供給して通電させることにより、電磁開閉弁57を開弁させる。これにより、分岐油路77が連通状態となるため、アキュムレータ58にオイルポンプ51の油圧が蓄えられる。そして、制御部40は、処理をステップS22へ移行する。
[When it is determined in steps S12 and S17 that the Acc pressure is not equal to or higher than the predetermined value (S12: NO, S17: NO)]
In step S21, the control unit 40 opens the electromagnetic opening / closing valve 57 (ON state). That is, the control unit 40 opens the electromagnetic on-off valve 57 by supplying power to the electromagnetic on-off valve 57 and energizing it as described above. As a result, the branch oil passage 77 is in a communicating state, so that the hydraulic pressure of the oil pump 51 is stored in the accumulator 58. And the control part 40 transfers a process to step S22.
 ステップS22において、制御部40は、油圧回路50のライン圧を上昇させる。具体的には、制御部40は、クラッチ圧コントロールバルブ54等の作動を制御するソレノイドへの供給電流量を変更してライン圧を上昇させる。そして、制御部40は、処理をステップS23へ移行する。 In step S22, the control unit 40 increases the line pressure of the hydraulic circuit 50. Specifically, the controller 40 increases the line pressure by changing the amount of current supplied to the solenoid that controls the operation of the clutch pressure control valve 54 and the like. And the control part 40 transfers a process to step S23.
 ステップS23において、制御部40は、所定時間が経過するまで処理を停止させる。なお、所定時間としては、上記同様にアキュムレータ58内の油圧が必要値以上になるまでの時間が設定される。ここでは、油圧回路50のライン圧を上昇させてアキュムレータ58に油圧を蓄えることにより、エンジン10の停止前にアキュムレータ58に必要な油圧をより短時間で確実に蓄圧することができる。そして、制御部40は、所定時間が経過した後、処理をステップS24へ移行する。 In step S23, the control unit 40 stops the process until a predetermined time elapses. As the predetermined time, the time until the hydraulic pressure in the accumulator 58 becomes a required value or more is set as described above. Here, by increasing the line pressure of the hydraulic circuit 50 and storing the hydraulic pressure in the accumulator 58, the hydraulic pressure required for the accumulator 58 can be reliably stored in a shorter time before the engine 10 is stopped. And the control part 40 transfers a process to step S24, after predetermined time passes.
 ステップS24において、制御部40は、Acc圧が所定値以上であるか否かを判断する。すなわち、制御部40は、上記同様に油圧センサ59により検出される油圧に基づいてこの判断を行う。そして、Acc圧が所定値以上であると判断した場合(S24:YES)に、制御部40は、処理をステップS25へ移行する。一方、Acc圧が所定値以上でないと判断した場合(S24:NO)に、制御部40は、処理をステップS31へ移行する。 In step S24, the control unit 40 determines whether or not the Acc pressure is greater than or equal to a predetermined value. That is, the control unit 40 makes this determination based on the hydraulic pressure detected by the hydraulic sensor 59 as described above. And when it is judged that Acc pressure is more than predetermined value (S24: YES), control part 40 shifts processing to Step S25. On the other hand, when it is determined that the Acc pressure is not equal to or higher than the predetermined value (S24: NO), the control unit 40 proceeds to step S31.
 ステップS25において、制御部40は、電磁開閉弁57を閉弁状態(OFF状態)にする。すわわち、制御部40は、電磁開閉弁57への通電を停止させることにより、電磁開閉弁57を閉弁させる。そして、制御部40は、その後の処理を終了する。 In step S25, the controller 40 closes the electromagnetic open / close valve 57 (OFF state). That is, the control unit 40 closes the electromagnetic on-off valve 57 by stopping energization of the electromagnetic on-off valve 57. Then, the control unit 40 ends the subsequent processing.
[ステップS24でAcc圧が所定値以上でないと判断した場合(S24:NO)]
 ステップS31において、制御部40は、エンジン回転数を上昇させる。本実施形態では、オイルポンプ51がエンジン10に連動して作動する機械式ポンプであるため、エンジン回転数を上昇させることにより、オイルポンプ51の回転数も上昇する。これにより、油圧回路50全体のオイルの流量を上昇させることができる。なお、制御部40は、エンジン回転数を徐々に上昇させてもよく、所定回転数まで上昇させてその回転数を維持するようにしてもよい。このように、オイルポンプ51の回転数を上昇させてアキュムレータ58に油圧を蓄えることにより、エンジン10の停止前にアキュムレータ58に必要な油圧をより短時間で確実に蓄圧することができる。そして、制御部40は、処理をステップS24へ移行する。すなわち、制御部40は、アキュムレータ58に必要な油圧が蓄圧されるまで、処理をステップS25へ移行させない。
[When it is determined in step S24 that the Acc pressure is not equal to or higher than the predetermined value (S24: NO)]
In step S31, the control unit 40 increases the engine speed. In the present embodiment, since the oil pump 51 is a mechanical pump that operates in conjunction with the engine 10, the rotational speed of the oil pump 51 is increased by increasing the engine rotational speed. Thereby, the oil flow rate of the entire hydraulic circuit 50 can be increased. The control unit 40 may gradually increase the engine speed, or may increase the engine speed to a predetermined speed and maintain the speed. In this way, by increasing the rotational speed of the oil pump 51 and storing the hydraulic pressure in the accumulator 58, the hydraulic pressure required for the accumulator 58 can be reliably stored in a shorter time before the engine 10 is stopped. And the control part 40 transfers a process to step S24. That is, the control unit 40 does not shift the process to step S25 until the hydraulic pressure necessary for the accumulator 58 is accumulated.
 そして、上記のようにエンジン10が一時停止されると、制御部40において、アイドリングストップ後におけるエンジン10の再始動処理ルーチンが実行される。
 そこで、このエンジン10のアイドリングストップ(一時停止)後における再始動処理について、図7を参照しながら説明する。図7は、制御部によるエンジン再始動処理の内容を示すフローチャートである。
When the engine 10 is temporarily stopped as described above, the control unit 40 executes a restart processing routine of the engine 10 after idling stop.
A restart process after idling stop (temporary stop) of the engine 10 will be described with reference to FIG. FIG. 7 is a flowchart showing the contents of the engine restart process by the control unit.
 ステップS42において、制御部40は、エンジン10の再始動条件が成立しているか否かを判断する。ここで、エンジン再始動条件としては、例えば、車速がゼロであること、ブレーキスイッチがOFFであること、アクセル開度がゼロでないこと等が挙げられる。そして、エンジン10の再始動条件が成立していると判断された場合(S42:YES)に、制御部40は、処理をステップS43に移行する。一方、エンジン10の再始動条件が成立していないと判断された場合(S42:NO)に、制御部40は、この処理ルーチンを終了する。 In step S42, the control unit 40 determines whether a restart condition for the engine 10 is satisfied. Here, examples of the engine restart condition include a vehicle speed being zero, a brake switch being OFF, and an accelerator opening being not zero. And when it is judged that the restart conditions of the engine 10 are satisfied (S42: YES), the control part 40 transfers a process to step S43. On the other hand, when it is determined that the restart condition of the engine 10 is not satisfied (S42: NO), the control unit 40 ends this processing routine.
 ステップS43において、制御部40は、電磁開閉弁57を開弁状態(ON状態)にする。すなわち、制御部40は、上記したように電磁開閉弁57へ通電することにより、電磁開閉弁57を開弁する。これにより、分岐油路77が連通状態となり、アキュムレータ58に蓄えられた油圧が前進用クラッチC1に供給される。そして、制御部40は、処理をステップS44に移行する。 In step S43, the control unit 40 opens the electromagnetic opening / closing valve 57 (ON state). That is, the controller 40 opens the electromagnetic on-off valve 57 by energizing the electromagnetic on-off valve 57 as described above. As a result, the branch oil passage 77 is in a communicating state, and the hydraulic pressure stored in the accumulator 58 is supplied to the forward clutch C1. And the control part 40 transfers a process to step S44.
 ステップS44において、制御部40は、所定時間が経過するまで処理を停止する。ここで、所定時間としては、特に限定されないが、電磁開閉弁57の開弁完了に要する時間を考慮して、50ms程度を例示できる。そして、制御部40は、処理をステップS44に移行する。 In step S44, the control unit 40 stops the process until a predetermined time elapses. Here, the predetermined time is not particularly limited, but about 50 ms can be exemplified in consideration of the time required to complete the opening of the electromagnetic on-off valve 57. And the control part 40 transfers a process to step S44.
 ステップS45において、制御部40は、スタータ12を始動させる。具体的には、制御部40は、エンジン再始動信号を構成するスタータ駆動信号を、スタータリレー22に出力する。そして、制御部40は、処理をステップS46へ移行する。
 ステップS46において、制御部40は、他のエンジン再始動信号を構成する燃料噴射信号、点火信号等を、燃料リレー21、点火リレー23等にそれぞれ出力する。
 以上のようにして、スタータ12が駆動され、イグナイタ13から点火プラグに高電圧が供給されるとともに、インジェクタ11から燃料が噴射される。こうして、エンジン10が再始動される。
In step S45, the control unit 40 starts the starter 12. Specifically, the control unit 40 outputs a starter drive signal constituting an engine restart signal to the starter relay 22. And the control part 40 transfers a process to step S46.
In step S46, the control unit 40 outputs a fuel injection signal, an ignition signal, etc. constituting other engine restart signals to the fuel relay 21, the ignition relay 23, etc., respectively.
As described above, the starter 12 is driven, a high voltage is supplied from the igniter 13 to the spark plug, and fuel is injected from the injector 11. Thus, the engine 10 is restarted.
 本実施形態では、上記のようにエンジン10の再始動開始前に電磁開閉弁57を開弁させて所定時間を経過させることにより、スタータ12等に大電流が供給される前に電磁開閉弁57の開弁を完了させることができる。これにより、電磁開閉弁57の開弁に必要な電流を確実に確保して、エンジン10の再始動時には電磁開閉弁57を確実に開弁させることができる。その結果、エンジン10の再始動時には、アキュムレータ58の油圧を前進用クラッチC1に確実に供給することができる。 In the present embodiment, as described above, the electromagnetic on-off valve 57 is opened before the restart of the engine 10 and a predetermined time elapses, whereby the electromagnetic on-off valve 57 is supplied before a large current is supplied to the starter 12 or the like. Can be opened. Thereby, the current required for opening the electromagnetic on-off valve 57 can be ensured, and the electromagnetic on-off valve 57 can be reliably opened when the engine 10 is restarted. As a result, when the engine 10 is restarted, the hydraulic pressure of the accumulator 58 can be reliably supplied to the forward clutch C1.
 続いて、上記した制御部40の制御により、C-1圧(前進用クラッチC1に作用する油圧)及びAcc圧が示す挙動の一例について、図8を参照しながら説明する。図8は、C-1圧及びAcc圧の挙動の一例を示すタイムチャートである。 Subsequently, an example of behavior indicated by the C-1 pressure (hydraulic pressure acting on the forward clutch C1) and the Acc pressure under the control of the control unit 40 will be described with reference to FIG. FIG. 8 is a time chart showing an example of the behavior of the C-1 pressure and the Acc pressure.
[車両定常走行時の挙動]
 図8において、時刻t1では、(b)に示すように、車速が所定値で一定となっている(S1:YES,S2:YES)。このとき、制御部40は、(g)に示すように、電磁開閉弁57を開弁する(ステップS3)。これにより、分岐油路77が連通状態とされるため、(f)に示すように、Acc圧が次第に上昇していく。そして、所定時間が経過すると、制御部40は、(g)に示すように、電磁開閉弁57を閉弁する(ステップS4,ステップS5)。その結果、(f)に示すように、アキュムレータ58には、所定の油圧が保持される。なお、このとき、図8に示す例では、Acc圧が、必要圧P1に達していない。
[Behavior during steady driving]
In FIG. 8, at time t1, as shown in (b), the vehicle speed is constant at a predetermined value (S1: YES, S2: YES). At this time, as shown in (g), the control unit 40 opens the electromagnetic on-off valve 57 (step S3). As a result, the branch oil passage 77 is brought into a communication state, so that the Acc pressure gradually increases as shown in (f). And when predetermined time passes, the control part 40 will close the electromagnetic on-off valve 57, as shown to (g) (step S4, step S5). As a result, as shown in (f), the accumulator 58 holds a predetermined hydraulic pressure. At this time, in the example shown in FIG. 8, the Acc pressure does not reach the necessary pressure P1.
[エンジン停止時の挙動]
 そして、時刻がt2になると、(a)に示すように、車両の運転者によりブレーキスイッチが踏まれる。これにより、車速は、(b)に示すように、次第に低下していく。そして、時刻t3にて車速が所定値(例えば5~10km/h)まで低下すると、制御部40は、Acc圧が必要圧P1に達しているかを判断する(ステップS12)。この例では、Acc圧が必要圧P1に達していない場合に該当する(S12:NO)。したがって、制御部40は、(g)に示すように、電磁開閉弁57を開弁する(ステップS21)。このとき、制御部40は、(d)に示すように、ライン圧も上昇させる(ステップS22)。このライン圧の上昇に伴って、(e)及び(f)に示すように、C-1圧及びAcc圧も上昇する。そして、この例では、(f)に示すように、時刻t4になるとAcc圧が必要圧P1に到達するため(S24:YES)、制御部40は、(g)に示すように、電磁開閉弁57を閉弁する(ステップS25)。なお、Acc圧が必要圧P1に達しない場合やより短時間に蓄圧したい場合には、(c)に破線で示すように、エンジン回転数を上昇させてもよい。これにより、オイルポンプ51の回転数を上昇させることができるので、油圧回路50全体を流れるオイルの流量を増加させることができる。その結果、より短時間で確実にAcc圧を必要圧P1に到達させることができる。そして、制御部40は、時刻t4にて、(b)に示すように車両を停止させ、時刻t5になると、(c)に示すように、エンジン10を停止させる(ステップS19)。
[Behavior when the engine is stopped]
When the time reaches t2, as shown in (a), the brake switch is stepped on by the driver of the vehicle. As a result, the vehicle speed gradually decreases as shown in FIG. When the vehicle speed decreases to a predetermined value (for example, 5 to 10 km / h) at time t3, the control unit 40 determines whether or not the Acc pressure has reached the necessary pressure P1 (step S12). This example corresponds to the case where the Acc pressure has not reached the required pressure P1 (S12: NO). Therefore, the control unit 40 opens the electromagnetic opening / closing valve 57 as shown in (g) (step S21). At this time, the control unit 40 also increases the line pressure as shown in (d) (step S22). As the line pressure increases, the C-1 pressure and the Acc pressure also increase as shown in (e) and (f). In this example, as shown in (f), since the Acc pressure reaches the necessary pressure P1 at time t4 (S24: YES), the control unit 40, as shown in (g), 57 is closed (step S25). When the Acc pressure does not reach the required pressure P1 or when it is desired to accumulate pressure in a shorter time, the engine speed may be increased as indicated by a broken line in (c). Thereby, since the rotation speed of the oil pump 51 can be raised, the flow volume of the oil which flows through the hydraulic circuit 50 whole can be increased. As a result, the Acc pressure can reliably reach the required pressure P1 in a shorter time. Then, the control unit 40 stops the vehicle as shown in (b) at time t4, and stops the engine 10 as shown in (c) at time t5 (step S19).
[エンジン再始動時の挙動]
 続いて、時刻がt6になると、(a)に示すように、ブレーキがOFFとされ、時刻t7にて再始動条件が成立する(ステップS41,ステップS42)。このため、制御部40は、(g)に示すように、電磁開閉弁57を開弁させる(ステップS43)。この電磁開閉弁57の開弁に伴って、前進用クラッチC1にアキュムレータ58の油圧が供給されるため、(e)に示すようにC-1圧が上昇し、(f)に示すようにAcc圧が低下する。そして、時刻t7から例えば50ms経過後の時刻t8になると、(h)に示すように制御部40からスタータ信号が出力され、(c)に示すようにエンジン回転数(E/G回転数)が上昇し始める(ステップS44~ステップS46)。そして、時刻t9にて、制御部40は、(g)に示すように、電磁開閉弁57を閉弁させるとともに、(h)に示すように、スタータ信号の出力を停止する。
[Behavior at engine restart]
Subsequently, when the time reaches t6, as shown in (a), the brake is turned off, and the restart condition is satisfied at time t7 (step S41, step S42). For this reason, the control part 40 opens the electromagnetic on-off valve 57 as shown to (g) (step S43). As the electromagnetic on-off valve 57 is opened, the hydraulic pressure of the accumulator 58 is supplied to the forward clutch C1, so that the C-1 pressure increases as shown in (e), and the Acc as shown in (f). The pressure drops. Then, at time t8 after elapse of 50 ms from time t7, for example, a starter signal is output from the control unit 40 as shown in (h), and the engine speed (E / G speed) is shown in (c). It begins to rise (steps S44 to S46). At time t9, the control unit 40 closes the electromagnetic on-off valve 57 as shown in (g) and stops the output of the starter signal as shown in (h).
 なお、アキュムレータ58が油圧を蓄えるのに必要な時間は一般的に数秒程度であるため、図8の(g)に示すように、油圧を蓄圧するために電磁開閉弁57を開弁(ON)させておく時間よりも、油圧を保持するために電磁開閉弁57を閉弁(OFF)させておく時間のほうが長いという実情がある。これに対して、本実施形態では、電磁開閉弁57として、ノーマルクローズタイプが採用されている。これにより、電磁開閉弁57に電力供給することなくアキュムレータ58の蓄圧を保持することができる。その結果、電磁開閉弁57を効率よく制御して、電磁開閉弁57の駆動に必要な電力を低減することができる。 Since the time required for the accumulator 58 to store the hydraulic pressure is generally several seconds, the electromagnetic on-off valve 57 is opened (ON) to store the hydraulic pressure, as shown in FIG. There is a situation in which the time for which the electromagnetic on-off valve 57 is closed (OFF) in order to maintain the hydraulic pressure is longer than the time for which the pressure is kept. On the other hand, in this embodiment, a normally closed type is adopted as the electromagnetic on-off valve 57. As a result, the accumulated pressure in the accumulator 58 can be maintained without supplying power to the electromagnetic opening / closing valve 57. As a result, the electromagnetic on-off valve 57 can be efficiently controlled, and the electric power required for driving the electromagnetic on-off valve 57 can be reduced.
 以上、詳細に説明したように本実施の形態に係る車両駆動システムでは、オイルポンプ51の駆動中に発生した油圧がアキュムレータ58に蓄えられる。一方、オイルポンプ51の停止中には、電磁開閉弁57によりアキュムレータ58の油圧が保持される。そして、エンジン10が一旦停止した後、制御部40がエンジン10を再始動させると判断した場合には、エンジン10の再始動が開始する前に電磁開閉弁57を開弁させて、アキュムレータ58に蓄えられた油圧を前進用クラッチC1へ供給する。このように、エンジン10の再始動開始前に電磁開閉弁57を開弁させることにより、スタータ等に大電流が供給される前に電磁弁を開弁させることができる。これにより、電磁開閉弁57の開弁に必要な電流を確実に確保して、エンジン10の再始動時には電磁開閉弁57を確実に開弁させることができる。その結果、エンジン10の再始動時には、アキュムレータ58の油圧を前進用クラッチC1に確実に供給して、前進用クラッチC1の係合ショックを適切に防止することができる。 As described above in detail, in the vehicle drive system according to the present embodiment, the hydraulic pressure generated while the oil pump 51 is driven is stored in the accumulator 58. On the other hand, when the oil pump 51 is stopped, the hydraulic pressure of the accumulator 58 is held by the electromagnetic on-off valve 57. When the control unit 40 determines that the engine 10 is to be restarted after the engine 10 is temporarily stopped, the electromagnetic on-off valve 57 is opened before the restart of the engine 10 is started, and the accumulator 58 is opened. The stored hydraulic pressure is supplied to the forward clutch C1. Thus, by opening the electromagnetic on-off valve 57 before the restart of the engine 10 is started, the electromagnetic valve can be opened before a large current is supplied to the starter or the like. Thereby, the current required for opening the electromagnetic on-off valve 57 can be ensured, and the electromagnetic on-off valve 57 can be reliably opened when the engine 10 is restarted. As a result, when the engine 10 is restarted, the hydraulic pressure of the accumulator 58 can be reliably supplied to the forward clutch C1, and the engagement shock of the forward clutch C1 can be appropriately prevented.
 また、この車両駆動システムでは、制御部40が、電磁開閉弁57の開弁を完了させた後(所定時間の経過後)に、エンジン10の再始動を開始しているので、電磁開閉弁57を確実に開弁させた状態でスタータ等に電流が供給されるようになる。つまり、エンジン10の再始動時には、電磁開閉弁57を確実に開弁させてアキュムレータ58の油圧を前進用クラッチC1に確実に供給することができる。 Further, in this vehicle drive system, since the control unit 40 has started the restart of the engine 10 after completing the opening of the electromagnetic on-off valve 57 (after a predetermined time has elapsed), the electromagnetic on-off valve 57 The current is supplied to the starter or the like with the valve opened reliably. That is, when the engine 10 is restarted, the electromagnetic on-off valve 57 can be reliably opened to reliably supply the hydraulic pressure of the accumulator 58 to the forward clutch C1.
[第2実施形態]
 次に、本発明の車両用駆動装置を具体化した第2の実施の形態に係る駆動システムについて、図9を参照しながら詳細に説明する。図9は、第2実施形態に係る油圧回路を示す図である。なお、上記第1実施形態と同一の構成品については、図面に同符号を付してその説明を適宜省略し、以下では相違点を中心に説明する。
[Second Embodiment]
Next, a drive system according to a second embodiment that embodies the vehicle drive device of the present invention will be described in detail with reference to FIG. FIG. 9 is a diagram illustrating a hydraulic circuit according to the second embodiment. In addition, about the component same as the said 1st Embodiment, the same code | symbol is attached | subjected to drawing, the description is abbreviate | omitted suitably, and it demonstrates centering on difference below.
 第2実施形態に係る車両駆動装置は、油圧回路の構成及び油圧シリンダの構造において、上記第1実施形態と相違する。本実施形態の油圧回路100では、図9に示すように、一方向弁93(図4参照)の代わりに、油圧シリンダ105の油圧を保持する電磁開閉弁101が設けられている。なお、本実施形態の電磁開閉弁101が本発明の「第2の電磁開閉弁」に相当する。 The vehicle drive device according to the second embodiment differs from the first embodiment in the configuration of the hydraulic circuit and the structure of the hydraulic cylinder. In the hydraulic circuit 100 of the present embodiment, as shown in FIG. 9, an electromagnetic on-off valve 101 that holds the hydraulic pressure of the hydraulic cylinder 105 is provided instead of the one-way valve 93 (see FIG. 4). The electromagnetic on-off valve 101 of the present embodiment corresponds to the “second electromagnetic on-off valve” of the present invention.
 電磁開閉弁101は、通電時に閉弁して非通電時に開弁するノーマルオープンタイプである。この電磁開閉弁101は、油圧シリンダ105とオイルポンプ51とを接続する油路83に設けられている。より詳細には、電磁開閉弁101は、油路83に設けられたセカンダリシーブ圧コントロールバルブ66の上流側に設けられている。そして、オイルポンプ51から供給される油圧は、ラインレギュレータ52により調圧された後、油路83を介して電磁開閉弁101及びセカンダリシーブ圧コントロールバルブ66を通過し、油圧シリンダ105へと供給されるようになっている。また、油路83において電磁開閉弁101の上流側で分岐した油路82は、シフトコントロールバルブ65を介して油圧シリンダ104へと接続されている。したがって、オイルポンプ51から供給される油圧は、ラインレギュレータ52により調圧された後、油路83から分岐した油路82を介して、シフトコントロールバルブ65を通過し、油圧シリンダ104へも供給されるようになっている。 The electromagnetic on-off valve 101 is a normally open type that closes when energized and opens when de-energized. The electromagnetic on-off valve 101 is provided in an oil passage 83 that connects the hydraulic cylinder 105 and the oil pump 51. More specifically, the electromagnetic on-off valve 101 is provided on the upstream side of the secondary sheave pressure control valve 66 provided in the oil passage 83. The hydraulic pressure supplied from the oil pump 51 is regulated by the line regulator 52, passes through the electromagnetic on-off valve 101 and the secondary sheave pressure control valve 66 through the oil passage 83, and is supplied to the hydraulic cylinder 105. It has become so. In addition, an oil passage 82 branched in the oil passage 83 on the upstream side of the electromagnetic on-off valve 101 is connected to the hydraulic cylinder 104 via the shift control valve 65. Accordingly, the hydraulic pressure supplied from the oil pump 51 is regulated by the line regulator 52, then passes through the shift control valve 65 via the oil passage 82 branched from the oil passage 83, and is also supplied to the hydraulic cylinder 104. It has become so.
 油圧シリンダ104及び油圧シリンダ105は、オイルポンプ51から油圧が供給されていないときに各シリンダ内部の油圧を保持するシール部材をそれぞれに備えている。また、油圧シリンダ104のシール部材としては、油圧シリンダ105のシール部材よりシール性が高いものが採用されている。具体的には、油圧シリンダ104のシール部材を、2重にシールする構造とした態様を例示することができる。
 このように、油圧シリンダ104のシール部材を、油圧シリンダ105のシール部材よりシール性の高いものとすることにより、油圧シリンダ104に電磁開閉弁を設けることなく、簡易な構成を用いて油圧シリンダ104に必要なシール性を確保することができる。なお、本実施形態の油圧シリンダ104が本発明の「第1の油圧シリンダ」に相当し、本実施形態の油圧シリンダ105が本発明の「第2の油圧シリンダ」に相当する。
Each of the hydraulic cylinder 104 and the hydraulic cylinder 105 includes a seal member that holds the hydraulic pressure inside each cylinder when the hydraulic pressure is not supplied from the oil pump 51. Further, as the sealing member of the hydraulic cylinder 104, a member having higher sealing performance than the sealing member of the hydraulic cylinder 105 is employed. Specifically, a mode in which the sealing member of the hydraulic cylinder 104 is double sealed can be exemplified.
In this way, by making the sealing member of the hydraulic cylinder 104 higher in sealing performance than the sealing member of the hydraulic cylinder 105, the hydraulic cylinder 104 can be used with a simple configuration without providing an electromagnetic on-off valve in the hydraulic cylinder 104. It is possible to ensure the necessary sealing performance. The hydraulic cylinder 104 of the present embodiment corresponds to a “first hydraulic cylinder” of the present invention, and the hydraulic cylinder 105 of the present embodiment corresponds to a “second hydraulic cylinder” of the present invention.
 続いて、本実施形態に係る制御部40が行う制御内容について説明する。なお、本実施形態に係る制御部40による電磁開閉弁57の制御内容は、上記第1実施形態の場合と同様であるため、以下では電磁開閉弁101の制御内容を中心に説明する。 Then, the control content which the control part 40 which concerns on this embodiment performs is demonstrated. In addition, since the control content of the electromagnetic on-off valve 57 by the control part 40 which concerns on this embodiment is the same as that of the said 1st Embodiment, it demonstrates below centering on the control content of the electromagnetic on-off valve 101. FIG.
 制御部40は、エンジン10のアイドリング時の停止中であって、電磁開閉弁57を閉じてアキュムレータ58に蓄えられた油圧を保持している時にのみ、電磁開閉弁101に通電する。ここで、電磁開閉弁101はノーマルオープンタイプであるため、この時にのみ電磁開閉弁101は閉弁し、それ以外の時に電磁開閉弁101は開弁した状態となる。こうした制御によれば、電磁開閉弁101の通電時間を短くして消費電力を低減することができる。 The control unit 40 energizes the electromagnetic on-off valve 101 only when the engine 10 is stopped when idling and the electromagnetic on-off valve 57 is closed and the hydraulic pressure stored in the accumulator 58 is held. Here, since the electromagnetic on-off valve 101 is a normally open type, the electromagnetic on-off valve 101 is closed only at this time, and the electromagnetic on-off valve 101 is opened at other times. According to such control, the energization time of the electromagnetic on-off valve 101 can be shortened to reduce power consumption.
 制御部40は、上記した電磁開閉弁101への通電時間の制限により、電磁開閉弁57を開弁してアキュムレータ58に蓄えられた油圧を前進用クラッチC1へ供給する際、電磁開閉弁101を開弁させている。これにより、アキュムレータ58の油圧を速やかに前進用クラッチC1へ供給しつつ、エンジン10の再始動によるオイルポンプ51の油圧を油圧シリンダ105へ供給することができる。 When the controller 40 opens the electromagnetic on-off valve 57 and supplies the hydraulic pressure stored in the accumulator 58 to the forward clutch C1 due to the restriction of the energization time to the electromagnetic on-off valve 101, the control on / off valve 101 is controlled. The valve is open. As a result, the hydraulic pressure of the oil pump 51 by restarting the engine 10 can be supplied to the hydraulic cylinder 105 while quickly supplying the hydraulic pressure of the accumulator 58 to the forward clutch C1.
 また、制御部40は、上記した電磁開閉弁101への通電時間の制限により、エンジン10のアイドリング時以外の停止中、具体的にはエンジンキーがイグニッションONの位置になく、運転者がエンジン10を駆動して走行する意思がない場合にも、電磁開閉弁101を開弁させている。そして、エンジン10の停止中にはオイルポンプ51も停止するため、油圧シリンダ105からは油が排出される。ここで、油圧シリンダ104は、油圧シリンダ105より高いシール性を有している。このため、油圧シリンダ104には、油圧シリンダ105より多量の油が残っている。したがって、例えばエンジン10の停止中に車両を牽引した場合には、牽引時における入力軸115の回転を利用して、油圧シリンダ104内に残った油に遠心力による油圧を発生させることができる。この油圧により、プライマリプーリ31の可動シーブ112をスライドさせて、V溝113の溝幅D1を狭くすることができる。これにより、プライマリプーリ31の巻き掛け半径を、セカンダリプーリ32の巻き掛け半径より大きくすることができる。こうして、車両牽引時にはハイギヤが形成されるようになっている。 Further, the control unit 40 restricts the energization time to the electromagnetic on-off valve 101 as described above. Specifically, the engine key is not in the ignition ON position when the engine 10 is stopped other than when the engine 10 is idling, and the driver is The electromagnetic on-off valve 101 is opened even when there is no intention to travel by driving. Since the oil pump 51 is also stopped while the engine 10 is stopped, the oil is discharged from the hydraulic cylinder 105. Here, the hydraulic cylinder 104 has a higher sealing performance than the hydraulic cylinder 105. For this reason, a larger amount of oil remains in the hydraulic cylinder 104 than in the hydraulic cylinder 105. Therefore, for example, when the vehicle is towed while the engine 10 is stopped, the oil pressure remaining in the hydraulic cylinder 104 can be generated by the centrifugal force using the rotation of the input shaft 115 during towing. With this hydraulic pressure, the movable sheave 112 of the primary pulley 31 can be slid to narrow the groove width D1 of the V groove 113. Thereby, the winding radius of the primary pulley 31 can be made larger than the winding radius of the secondary pulley 32. Thus, a high gear is formed when the vehicle is towed.
 以上、詳細に説明したように第2実施形態に係る車両用駆動装置によれば、エンジン10のアイドリング時の停止中に、電磁開閉弁101を閉弁して油圧シリンダ105からのオイル漏れを防止することができる。これにより、シリンダ内に空気が侵入するのを防止することができる。また、エンジン10の再始動時にオイルポンプ51から油圧シリンダ105に油圧を供給する際、油圧シリンダ105に空気が混入するのを防止することができる。こうして、エンジン10の再始動時における油圧性能を向上させることができる。
 また、車両牽引時には油圧シリンダ104内に残った油を利用してハイギヤが形成されるため、車両牽引時におけるプーリの焼き付き等を防止することができる。
As described above in detail, according to the vehicle drive device of the second embodiment, the electromagnetic on-off valve 101 is closed to prevent oil leakage from the hydraulic cylinder 105 while the engine 10 is stopped when idling. can do. Thereby, it is possible to prevent air from entering the cylinder. Further, when hydraulic pressure is supplied from the oil pump 51 to the hydraulic cylinder 105 when the engine 10 is restarted, it is possible to prevent air from entering the hydraulic cylinder 105. Thus, the hydraulic performance when the engine 10 is restarted can be improved.
Further, since the high gear is formed by using the oil remaining in the hydraulic cylinder 104 when the vehicle is towed, it is possible to prevent the seizure of the pulley at the time of towing the vehicle.
 なお、上記した実施の形態は単なる例示にすぎず、本発明を何ら限定するものではなく、その要旨を逸脱しない範囲内で種々の改良、変形が可能であることはもちろんである。 It should be noted that the above-described embodiment is merely an example, and does not limit the present invention in any way, and various improvements and modifications can be made without departing from the scope of the invention.
 例えば、上記した実施の形態では、エンジン10と連結されている機械式のオイルポンプ51を例示したが、エンジン10に連結されていない電動式のオイルポンプを備える車両駆動システムに対しても本発明を適用することができる。 For example, in the above-described embodiment, the mechanical oil pump 51 connected to the engine 10 is illustrated, but the present invention is also applied to a vehicle drive system including an electric oil pump that is not connected to the engine 10. Can be applied.
 また、上記した実施の形態では、あらかじめ車両の定常走行中にもアキュムレータ58に油圧を蓄圧する場合を例示したが、車両の減速からエンジン10の停止を予測した場合にのみ、アキュムレータ58に油圧を蓄圧するようにしてもよい。 In the above-described embodiment, the case where the hydraulic pressure is accumulated in the accumulator 58 in advance during steady running of the vehicle is exemplified. However, the hydraulic pressure is applied to the accumulator 58 only when the stop of the engine 10 is predicted from the deceleration of the vehicle. You may make it accumulate pressure.
 また、上記した実施の形態では、電磁開閉弁57としてノーマルクローズタイプのものを採用した場合を例示したが、電磁開閉弁57としてノーマルオープンタイプのものを採用してもよい。 Further, in the above-described embodiment, the case where the normally closed type is adopted as the electromagnetic on-off valve 57 is exemplified, but the normally open type may be adopted as the electromagnetic on-off valve 57.
10  エンジン(車両駆動源)
11  インジェクタ
12  スタータ
13  イグナイタ
14  クランクポジションセンサ
17  スロットルバルブ
17a スロットル位置センサ
18  イグニッションスイッチ
19d ブレーキペダルスイッチ
21  燃料リレー
22  スタータリレー
23  点火リレー
30  無段変速機(CVT)
31  プライマリプーリ(第1のプーリ)
32  セカンダリプーリ(第2のプーリ)
35  シフトポジションスイッチ
36  車速センサ
37  油温センサ 
40  制御部(開閉弁制御手段,再始動判断手段、第2の開閉制御手段)
50  油圧回路
51  オイルポンプ
52  ライン圧レギュレータバルブ
53  クラッチ圧制御バルブ
54  クラッチコントロールバルブ
55  シフトバルブ
56  マニュアルバルブ
57  電磁開閉弁
58  アキュムレータ
59  油圧センサ
60  遮断弁
65  シフトコントロールバルブ
66  セカンダリシーブ圧コントロールバルブ
70~85 油路
100 油圧回路
101 電磁開閉弁(第2の電磁開閉弁)
102 油圧シリンダ
103 油圧シリンダ
104 油圧シリンダ(第1の油圧シリンダ)
105 油圧シリンダ(第2の油圧シリンダ)
111 固定シーブ
112 可動シーブ
113 V溝
115 入力軸
121 固定シーブ
122 可動シーブ
123 V溝
125 出力軸
130 Vベルト
C1  前進用クラッチ(油圧サーボ)
D1  溝幅
D2  溝幅
P1  必要圧
 
10 Engine (vehicle drive source)
11 Injector 12 Starter 13 Igniter 14 Crank position sensor 17 Throttle valve 17a Throttle position sensor 18 Ignition switch 19d Brake pedal switch 21 Fuel relay 22 Starter relay 23 Ignition relay 30 Continuously variable transmission (CVT)
31 Primary pulley (first pulley)
32 Secondary pulley (second pulley)
35 Shift position switch 36 Vehicle speed sensor 37 Oil temperature sensor
40 control unit (open / close valve control means, restart determination means, second open / close control means)
50 Hydraulic circuit 51 Oil pump 52 Line pressure regulator valve 53 Clutch pressure control valve 54 Clutch control valve 55 Shift valve 56 Manual valve 57 Electromagnetic on-off valve 58 Accumulator 59 Hydraulic sensor 60 Shut-off valve 65 Shift control valve 66 Secondary sheave pressure control valve 70- 85 Oil passage 100 Hydraulic circuit 101 Electromagnetic on-off valve (second electromagnetic on-off valve)
102 Hydraulic cylinder 103 Hydraulic cylinder 104 Hydraulic cylinder (first hydraulic cylinder)
105 Hydraulic cylinder (second hydraulic cylinder)
111 fixed sheave 112 movable sheave 113 V groove 115 input shaft 121 fixed sheave 122 movable sheave 123 V groove 125 output shaft 130 V belt C1 forward clutch (hydraulic servo)
D1 Groove width D2 Groove width P1 Required pressure

Claims (7)

  1.  油圧を発生させるオイルポンプと、
     前記オイルポンプに油路を介して接続され、油圧により制御可能な油圧サーボと、
     前記油路から分岐した分岐油路を介して前記オイルポンプにより発生させた油圧を蓄えるアキュムレータと、
     前記分岐油路に設置されて、前記オイルポンプの停止中に前記アキュムレータの油圧を保持する電磁開閉弁と、
     前記電磁開閉弁の開閉を制御する開閉弁制御手段と、
     車両駆動源を停止状態から再始動させるか否かを判断する再始動判断手段とを備え、
     前記開閉弁制御手段は、前記再始動判断手段により前記車両駆動源を再始動させると判断された場合に、前記車両駆動源の再始動開始前に前記電磁開閉弁を開弁させ、前記アキュムレータに蓄えられた油圧を前記油圧サーボへ供給する
    ことを特徴とする車両用駆動装置。
    An oil pump that generates hydraulic pressure;
    A hydraulic servo connected to the oil pump via an oil passage and controllable by hydraulic pressure;
    An accumulator for storing the hydraulic pressure generated by the oil pump through a branched oil passage branched from the oil passage;
    An electromagnetic on-off valve that is installed in the branch oil passage and holds the hydraulic pressure of the accumulator while the oil pump is stopped;
    On-off valve control means for controlling opening and closing of the electromagnetic on-off valve;
    Restart determination means for determining whether to restart the vehicle drive source from a stopped state,
    The on-off valve control means opens the electromagnetic on-off valve before starting the restart of the vehicle drive source when the restart judgment means judges that the vehicle drive source is to be restarted, and causes the accumulator to A vehicle drive device that supplies the hydraulic pressure stored to the hydraulic servo.
  2. 請求項1に記載する車両用駆動装置において、
     前記電磁開閉弁は、通電時に開弁して非通電時に閉弁するノーマルクローズタイプである
    ことを特徴とする車両用駆動装置。
    The vehicle drive device according to claim 1,
    The vehicle drive device according to claim 1, wherein the electromagnetic on-off valve is a normally closed type that opens when energized and closes when not energized.
  3. 請求項1又は請求項2に記載する車両用駆動装置において、
     前記開閉弁制御手段は、前記アキュムレータに油圧を蓄えるために前記車両駆動源の定常運転中にて所定時間のみ前記電磁開閉弁を開弁させる
    ことを特徴とする車両用駆動装置。
    In the vehicle drive device according to claim 1 or 2,
    The on-off valve control means opens the electromagnetic on-off valve only for a predetermined time during steady operation of the vehicle drive source in order to store hydraulic pressure in the accumulator.
  4. 請求項1~請求項3のいずれか一項に記載する車両用駆動装置において、
     前記開閉弁制御手段による前記電磁開閉弁の開弁が完了した後に、前記車両駆動源の再始動が開始される
    ことを特徴とする車両用駆動装置。
    The vehicle drive device according to any one of claims 1 to 3,
    The vehicle drive device restarts after the opening / closing of the electromagnetic on / off valve by the on / off valve control means is completed.
  5. 請求項1~請求項4のいずれか一項に記載する車両用駆動装置において、
     前記車両駆動源の動力が入力される入力軸と、
     前記入力軸に入力される動力を変速して出力する出力軸と、
     前記入力軸に設けられた一対のシーブからなる第1のプーリと、
     前記出力軸に設けられた一対のシーブからなる第2のプーリと、
     前記第1のプーリのシーブ間の溝と、前記第2のプーリのシーブ間の溝とに架け渡されたベルトと、
     前記第1のプーリのシーブ間の溝幅を変更可能な第1の油圧シリンダと、
     前記第2のプーリのシーブ間の溝幅を変更可能な第2の油圧シリンダとを有するとともに、
     前記第1の油圧シリンダ及び前記第2の油圧シリンダを用いて前記第1のプーリのシーブ間の溝幅及び前記第2のプーリのシーブ間の溝幅を変更することにより、前記車両駆動源から前記入力軸に入力される動力を無段階に変速して前記出力軸から出力するベルト式無段変速機を備え、
     前記油圧サーボは、油圧の供給を受けたときに、前記車両駆動源から前記入力軸へと動力を伝達させるものであり、
     前記第2の油圧シリンダは、油路を介して前記オイルポンプに接続されており、
     前記第2の油圧シリンダと前記オイルポンプとを接続する油路には、前記第2の油圧シリンダの油圧を選択的に保持する第2の電磁開閉弁が設けられている
    ことを特徴とする車両用駆動装置。
    In the vehicle drive device according to any one of claims 1 to 4,
    An input shaft to which power of the vehicle drive source is input;
    An output shaft that shifts and outputs power input to the input shaft;
    A first pulley comprising a pair of sheaves provided on the input shaft;
    A second pulley comprising a pair of sheaves provided on the output shaft;
    A belt spanned between a groove between the sheaves of the first pulley and a groove between the sheaves of the second pulley;
    A first hydraulic cylinder capable of changing a groove width between sheaves of the first pulley;
    A second hydraulic cylinder capable of changing a groove width between sheaves of the second pulley,
    By changing the groove width between the sheaves of the first pulley and the groove width between the sheaves of the second pulley by using the first hydraulic cylinder and the second hydraulic cylinder, A belt-type continuously variable transmission that continuously shifts the power input to the input shaft and outputs the power from the output shaft;
    The hydraulic servo transmits power from the vehicle drive source to the input shaft when supplied with hydraulic pressure,
    The second hydraulic cylinder is connected to the oil pump via an oil passage;
    A vehicle characterized in that a second electromagnetic on-off valve for selectively holding the hydraulic pressure of the second hydraulic cylinder is provided in an oil passage connecting the second hydraulic cylinder and the oil pump. Drive device.
  6. 請求項5に記載する車両用駆動装置において、
     前記第2の電磁開閉弁の開閉を制御する第2の開閉弁制御手段を備え、
     前記第2の開閉弁制御手段は、
      前記車両駆動源のアイドリング時の停止中であって、前記開閉弁制御手段が前記電磁開閉弁を閉じてアキュムレータに蓄えられた油圧を保持している時には、前記第2の電磁開閉弁を閉弁して前記第2の油圧シリンダの油圧を保持し、
      前記車両駆動源のアイドリング時以外の停止中には、前記第2の電磁開閉弁を開弁して前記第2の油圧シリンダの油圧を開放する
    ことを特徴とする車両用駆動装置。
    In the vehicle drive device according to claim 5,
    A second opening / closing valve control means for controlling opening / closing of the second electromagnetic opening / closing valve;
    The second on-off valve control means includes
    When the vehicle drive source is stopped at idling and the on-off valve control means closes the electromagnetic on-off valve and holds the hydraulic pressure stored in the accumulator, the second electromagnetic on-off valve is closed. And holding the hydraulic pressure of the second hydraulic cylinder,
    When the vehicle drive source is stopped other than during idling, the second electromagnetic on-off valve is opened to release the hydraulic pressure of the second hydraulic cylinder.
  7. 請求項6に記載する車両用駆動装置において、
     前記第1の油圧シリンダ及び前記第2の油圧シリンダは、前記オイルポンプから油圧が供給されていないときに前記各シリンダ内部の油圧を保持するシール部材をそれぞれに備え、
     前記第1の油圧シリンダのシール部材は、前記第2の油圧シリンダのシール部材よりシール性が高いものである
    ことを特徴とする車両用駆動装置。
    The vehicle drive device according to claim 6,
    Each of the first hydraulic cylinder and the second hydraulic cylinder includes a seal member that holds the hydraulic pressure inside each cylinder when hydraulic pressure is not supplied from the oil pump.
    The vehicular drive apparatus according to claim 1, wherein the sealing member of the first hydraulic cylinder has higher sealing performance than the sealing member of the second hydraulic cylinder.
PCT/JP2009/062653 2008-12-25 2009-07-13 Driver for vehicle WO2010073765A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010543945A JPWO2010073765A1 (en) 2008-12-25 2009-07-13 Vehicle drive device
DE112009002282T DE112009002282T5 (en) 2008-12-25 2009-07-13 Vehicle driving apparatus
CN2009801368889A CN102159842A (en) 2008-12-25 2009-07-13 Driver for vehicle
US12/637,193 US8282532B2 (en) 2008-12-25 2009-12-14 Vehicle drive apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-330213 2008-12-25
JP2008330213 2008-12-25

Publications (1)

Publication Number Publication Date
WO2010073765A1 true WO2010073765A1 (en) 2010-07-01

Family

ID=42287393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062653 WO2010073765A1 (en) 2008-12-25 2009-07-13 Driver for vehicle

Country Status (4)

Country Link
JP (1) JPWO2010073765A1 (en)
CN (1) CN102159842A (en)
DE (1) DE112009002282T5 (en)
WO (1) WO2010073765A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2428702A3 (en) * 2010-09-10 2012-10-24 Jatco Ltd Hydraulic control device, control method of thereof and automatic transmission
US9567963B2 (en) 2012-04-09 2017-02-14 Toyota Jidosha Kabushiki Kaisha Vehicle control device
US10835972B2 (en) 2018-03-16 2020-11-17 Milwaukee Electric Tool Corporation Blade clamp for power tool
US11034354B2 (en) 2018-09-26 2021-06-15 Honda Motor Co., Ltd. Start control device, start control method, and vehicle

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9249844B2 (en) * 2012-05-01 2016-02-02 Gm Global Technology Operations, Llc Latching clutch control system
CN104704265B (en) * 2012-10-09 2016-11-09 丰田自动车株式会社 The hydraulic control device of vehicle
CN105074258B (en) * 2013-03-08 2017-07-04 本田技研工业株式会社 Hydraulic pressure feeding mechanism
DE102014107215B4 (en) 2013-05-31 2023-07-13 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) METHOD OF CONTROLLING AN ELECTRO-HYDRAULIC CONTROL SYSTEM OF A CONTINUOUSLY TRANSMISSION TO PERFORM AN AUTOMATIC STOP/START EVENT
EP3081832A4 (en) * 2013-12-11 2017-11-08 Jatco Ltd Control device for continuously variable transmission
DE102015120796B4 (en) * 2014-12-15 2019-07-18 Hyundai Autron Co., Ltd. Shift control method and shift control device for a vehicle
JP6551545B2 (en) * 2016-01-28 2019-07-31 アイシン・エィ・ダブリュ株式会社 Transmission

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000313252A (en) * 1999-04-30 2000-11-14 Toyota Motor Corp Controller for restarting of vehicle engine
JP2002115755A (en) * 2000-10-06 2002-04-19 Toyota Motor Corp Hydraulic control device of vehicle
JP2002130449A (en) * 2000-10-27 2002-05-09 Toyota Motor Corp Vehicular hydraulic control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000313252A (en) * 1999-04-30 2000-11-14 Toyota Motor Corp Controller for restarting of vehicle engine
JP2002115755A (en) * 2000-10-06 2002-04-19 Toyota Motor Corp Hydraulic control device of vehicle
JP2002130449A (en) * 2000-10-27 2002-05-09 Toyota Motor Corp Vehicular hydraulic control device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2428702A3 (en) * 2010-09-10 2012-10-24 Jatco Ltd Hydraulic control device, control method of thereof and automatic transmission
US9163722B2 (en) 2010-09-10 2015-10-20 Jatco Ltd Hydraulic control device, control method of thereof, and automatic transmission
US9567963B2 (en) 2012-04-09 2017-02-14 Toyota Jidosha Kabushiki Kaisha Vehicle control device
DE112012006205B4 (en) * 2012-04-09 2020-08-20 Toyota Jidosha Kabushiki Kaisha Vehicle control device
DE112012006205B8 (en) * 2012-04-09 2020-10-15 Toyota Jidosha Kabushiki Kaisha Vehicle control device
US10835972B2 (en) 2018-03-16 2020-11-17 Milwaukee Electric Tool Corporation Blade clamp for power tool
US11034354B2 (en) 2018-09-26 2021-06-15 Honda Motor Co., Ltd. Start control device, start control method, and vehicle

Also Published As

Publication number Publication date
JPWO2010073765A1 (en) 2012-06-14
DE112009002282T5 (en) 2011-11-24
CN102159842A (en) 2011-08-17

Similar Documents

Publication Publication Date Title
WO2010073765A1 (en) Driver for vehicle
JP5012789B2 (en) Vehicle drive device
US8282532B2 (en) Vehicle drive apparatus
US8070650B2 (en) Hydraulic control system
US8016718B2 (en) Vehicle drive unit
JP6203887B2 (en) Vehicle control device
WO2013128598A1 (en) Vehicle control device
US20140228172A1 (en) Hydraulic pressure control device for transmission
JP2010151238A (en) Vehicle drive device
JP4573796B2 (en) Hydraulic control device for automatic transmission
JP5620948B2 (en) Vehicle control device
WO2014057531A1 (en) Vehicle oil pressure control device
JP2009144874A (en) Vehicle driving device
US9890856B2 (en) Hydraulic pressure supply apparatus for vehicle
JP2013181408A (en) Control device for vehicle
JP2010151229A (en) Vehicle drive device
JP4106792B2 (en) Idle stop vehicle
JP2012062921A (en) Vehicle control device
US20150119195A1 (en) Control apparatus for vehicle
JP5464951B2 (en) Control device for idle stop car
JP2009144873A (en) Vehicle driving device
JP6203888B2 (en) Vehicle control device
JP4672252B2 (en) Control device for vehicle
JP6114161B2 (en) Hydraulic supply device
JP6120697B2 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980136888.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834571

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010543945

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09834571

Country of ref document: EP

Kind code of ref document: A1