WO2010073393A1 - Liquid crystal display device, liquid crystal display element driving circuit, color image generation method, and liquid crystal display element driving method - Google Patents

Liquid crystal display device, liquid crystal display element driving circuit, color image generation method, and liquid crystal display element driving method Download PDF

Info

Publication number
WO2010073393A1
WO2010073393A1 PCT/JP2008/073816 JP2008073816W WO2010073393A1 WO 2010073393 A1 WO2010073393 A1 WO 2010073393A1 JP 2008073816 W JP2008073816 W JP 2008073816W WO 2010073393 A1 WO2010073393 A1 WO 2010073393A1
Authority
WO
WIPO (PCT)
Prior art keywords
video signal
color
correction
signal
liquid crystal
Prior art date
Application number
PCT/JP2008/073816
Other languages
French (fr)
Japanese (ja)
Inventor
中西 秀一
加藤 厚志
飯坂 英仁
宏行 保坂
拓 北川
Original Assignee
Necディスプレイソリューションズ株式会社
セイコーエプソン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necディスプレイソリューションズ株式会社, セイコーエプソン株式会社 filed Critical Necディスプレイソリューションズ株式会社
Priority to JP2010543725A priority Critical patent/JP5376678B2/en
Priority to PCT/JP2008/073816 priority patent/WO2010073393A1/en
Publication of WO2010073393A1 publication Critical patent/WO2010073393A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0235Field-sequential colour display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0242Compensation of deficiencies in the appearance of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0285Improving the quality of display appearance using tables for spatial correction of display data
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/04Changes in size, position or resolution of an image
    • G09G2340/0407Resolution change, inclusive of the use of different resolutions for different screen areas
    • G09G2340/0428Gradation resolution change
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/06Colour space transformation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones

Definitions

  • the present invention relates to a liquid crystal display device, a liquid crystal display element driving circuit, a color image generation method, and a liquid crystal display element driving method.
  • the FSC Field Sequential Color
  • one frame period constituting one screen is divided into a plurality of color field periods according to the color of the irradiation light.
  • an image corresponding to the color of the color field is formed on one monochrome liquid crystal display element, and light having the color of the color field is irradiated to the liquid crystal display element.
  • the light irradiated to the liquid crystal display element is modulated and output by an image formed on the liquid crystal display element.
  • liquid crystal display devices have the following characteristics.
  • the liquid crystal display element has a slow optical response (change in light transmittance).
  • the response characteristic of the light transmittance is different between a change from black to white and a change from white to black.
  • the response characteristic of the light transmittance varies depending on the wavelength.
  • the feature [1] is that the FSC method often deteriorates the image quality even for a still image.
  • the image quality deteriorates when the level of the voltage applied to the same pixel is different in multiple color fields, that is, when a non-achromatic color is displayed. It is.
  • the feature [1] is that, in the FSC system, the gradation reproducibility is deteriorated when displaying a single primary color, and the color tone is deviated from the original color when displaying a mixed color and a chromatic color. Cause a phenomenon.
  • FIG. 1 is an explanatory diagram for explaining a malfunction phenomenon in the FSC method due to the feature [1].
  • one frame has three colors including a field R (Field-R: red field), a field G (Field-G: green field), and a field B (Field-B: blue field). It is divided into fields.
  • the image data is image information (video information) corresponding to each of the R color (red), G color (green), and B color (blue) that can be associated with the pixels of the liquid crystal display element. It is the data shown.
  • LCD light transmittance indicates the light transmittance of the liquid crystal display element.
  • R-color LED light source lighting control, G-color LED light source lighting control, and G-color LED light source lighting control emit an R-color light LED (Light Emitting Diode) and a G-color light.
  • FIG. 1 shows an example in which a normally white liquid crystal display element (structure that displays white when no electric field is applied) is used as the liquid crystal display element (LCD).
  • LCD liquid crystal display element
  • Example (1) in FIG. 1 is an operation example when displaying a blue image on the entire surface.
  • An example (2) in FIG. 1 is an operation example in the case of displaying a full-color cyan image.
  • Example (1) due to low light transmittance of LCD when B color LED is lit.
  • Example (2) have the same set gradation level of 100 [%] the light transmittance is different.
  • b in Example (2) and c in Example (2) have the same set gradation level 100 [%], but the light transmittance is different.
  • the defect caused by the feature [1] shown in the example (1) and the example (2) is that the light transmittance depends on the liquid crystal state of the previous field, that is, the liquid crystal state of the previous field changes to the liquid crystal state of the next field. It is also due to the influence.
  • feature [2] is due to the fact that the response characteristics of the liquid crystal differ depending on the applied electric field.
  • the change from black to white is slower than the change from white to black. For this reason, when the liquid crystal display element has a normally white structure, the moving image quality deteriorates particularly when a dark image changes to a bright image. On the other hand, when the liquid crystal display element has a normally black structure, the moving image quality deteriorates particularly when the light image changes to a dark image.
  • feature [2] also deteriorates the quality of still images in the FSC system.
  • the primary color when the liquid crystal display element is normally white, the primary color is not bright, and when the liquid crystal display element is normally black, the complementary color of the primary color is whitish.
  • the FSC system when displaying mixed colors and chromatic colors, it becomes difficult to reproduce depending on the display color.
  • Liquid crystal display elements include TN mode, IPS (In-Plane Switching) mode, VA (Vertical Aligned) mode, and OCB (Optically Compensated Bend) mode.
  • TN mode In-Plane Switching
  • VA Very Aligned
  • OCB Optically Compensated Bend
  • the liquid crystal display device controls the liquid crystal for each pixel.
  • the circuit for controlling the pixels has a matrix structure, and sequentially controls each pixel. Therefore, when attention is paid to a certain pixel, the pixel is accessed only during a part of a predetermined period. During the partial period, a voltage V for controlling the liquid crystal is applied to the pixel.
  • the pixel has a capacitive component C. Therefore, by applying the control voltage V to the pixel, the charge Q corresponding to the control voltage V is supplied to the pixel electrode.
  • the pixel capacitance C has a property of changing depending on the orientation (director) of the liquid crystal of the pixel.
  • a so-called overdrive method is known as a method for solving the problem that a desired charge amount cannot be supplied by one access (see Patent Document 1).
  • Overdrive applies the desired amount of charge by applying an excessive voltage to the pixel that is different from the voltage when the director is in the desired director state, depending on which state the director is changed from to which state. This is a method of supplying the pixel.
  • overdrive also has an aspect of improving the slow response due to the viscoelasticity of the liquid crystal, that is, the defect caused by the feature [1].
  • Patent Document 2 describes a liquid crystal display device in which a color image is generated by the FSC method, and a level correction circuit provided for each color corrects a video signal of a color corresponding to the own circuit.
  • This level correction circuit corrects the video signal of the color corresponding to itself in order to correct the response characteristic of the light transmittance depending on the wavelength, that is, the feature [3].
  • the liquid crystal display device described in Patent Document 2 includes level correction circuits 32R, 32G, and 32B.
  • the level correction circuit 32R receives the red video signal and corrects the red video signal according to the red response characteristic.
  • the level correction circuit 32G receives the green video signal and corrects the green video signal according to the green response characteristic.
  • the level correction circuit 32B receives the blue video signal and corrects the blue video signal according to the blue response characteristic.
  • Patent Document 3 describes a liquid crystal display device that generates a color image by the FSC method and performs a kind of overdrive.
  • This liquid crystal display device corrects R image data using G and B image data from which part of the data has not been deleted, and uses B and R image data from which part of the data has not been deleted. G image data is corrected, and B image data is corrected using R and G image data from which part of the data is not deleted.
  • Patent Document 1 does not mention that overdrive is used in an FSC liquid crystal display device.
  • the level correction circuit described in Patent Document 2 specifically, a level correction circuit that accepts only a video signal of a color corresponding to its own circuit and corrects the video signal of that color is an FSC type liquid crystal display device. Then, it cannot be used as a correction circuit for overdrive.
  • the liquid crystal display device described in Patent Document 3 generates a color image by the FSC method, and corrects image data of each color by using image data of other colors from which part of the data is not deleted. Yes.
  • Patent Documents 1 and 2 a technology that is a premise for causing the above problem, specifically, a color image is generated by the FSC method, and image data of one color is transferred to another color. A technique for correcting using image data is not described.
  • An object of the present invention is to provide a liquid crystal display device, a liquid crystal display element driving circuit, a color image generation method, and a liquid crystal display element driving method capable of solving the above-described problems.
  • the liquid crystal display device of the present invention has a one-to-one correspondence with a plurality of video signals corresponding to a plurality of colors and receives a corresponding video signal corresponding to itself among the plurality of video signals, A plurality of correction means for outputting a correction signal obtained by correcting the signal, an output control means for sequentially outputting the correction signals output from each of the plurality of correction means, and the correction from the output control means.
  • a plurality of correction means for outputting a correction signal obtained by correcting the signal
  • an output control means for sequentially outputting the correction signals output from each of the plurality of correction means, and the correction from the output control means.
  • a liquid crystal display element that modulates the output light according to the correction signal and outputs the modulated light, and at least one of the plurality of correction means includes the corresponding video signal and a correction signal obtained by correcting the corresponding video signal.
  • the corresponding video signal is corrected based on a part of the other video signal.
  • the corrected video signal is output as the correction signal.
  • the drive circuit for a liquid crystal display element of the present invention is a drive circuit for a liquid crystal display element that, when receiving a drive signal, modulates and outputs light of a color corresponding to the drive signal in accordance with the drive signal.
  • the corrected video signal corrected on the basis of the corresponding image signal to a part of the other video signal is output as the correction signal.
  • the color image generation method of the present invention is a color image generation method performed by an FSC-type liquid crystal display device that displays a color image by sequentially displaying a plurality of color images corresponding to a plurality of video signals, When each of the plurality of correction units corresponding to the plurality of video signals on a one-to-one basis receives a corresponding video signal corresponding to itself among the plurality of video signals, a correction signal obtained by correcting the corresponding video signal is output.
  • the correction signals are sequentially output one by one, and each time the correction signals are sequentially output one by one, light of a color corresponding to the video signal that is the source of the correction signal is emitted, Each time a correction signal is output one by one in sequence, the light is modulated and output according to the correction signal, and at least one of the plurality of correction means includes the corresponding video signal and the corresponding video signal.
  • the corresponding video signal is corrected based on a part of the other video signal.
  • a corrected video signal is output as the correction signal.
  • the liquid crystal display element driving method of the present invention is a method for driving a liquid crystal display element that, when receiving a driving signal, modulates and outputs light of a color corresponding to the driving signal in accordance with the driving signal,
  • a correction signal obtained by correcting the corresponding video signal The correction signals are output one by one in order, and at least one of the plurality of correction means is output immediately before or after the corresponding video signal and the correction signal obtained by correcting the corresponding video signal.
  • a corrected video signal obtained by correcting the corresponding video signal based on a part of the other video signal is output as the correction signal.
  • the present invention it is possible to reduce the amount of data used when generating a correction signal of a video signal corresponding to a plurality of colors in order to perform overdrive by the FSC method, thereby reducing the circuit scale. Can do.
  • FIG. 1 is a block diagram illustrating a liquid crystal display device 1 according to a first embodiment of the present invention.
  • 3 is a block diagram illustrating an example of a color correction unit 3.
  • FIG. FIG. 6 is a block diagram showing a color correction unit 3A, which is another example of the color correction unit 3 shown in FIG. It is the block diagram which showed the color correction part 3B which is another example of the color correction part 3 shown in FIG.
  • FIG. 11 is a block diagram showing a color correction unit 3C, which is still another example of the color correction unit 3 shown in FIG. It is the block diagram which showed liquid crystal display device 1A of the 2nd Embodiment of this invention.
  • FIG. 2 is a block diagram showing the liquid crystal display device 1 according to the first embodiment of the present invention.
  • the liquid crystal display device 1 includes a liquid crystal display element 2, a color correction unit 3, a data rearrangement unit 4, and an irradiation unit 5.
  • the data rearrangement unit 4 includes a frame memory 4a and a memory control unit 4b.
  • the irradiation unit 5 includes an illumination unit 5a and a timing control unit 5b.
  • the liquid crystal display device 1 receives a plurality of video signals corresponding to each of a plurality of colors on a one-to-one basis (hereinafter simply referred to as “a plurality of video signals”).
  • the liquid crystal display device 1 is an FSC liquid crystal display device that displays a color image by sequentially displaying a plurality of color images corresponding to a plurality of video signals.
  • the liquid crystal display element 2 has a plurality of pixels.
  • the liquid crystal display element 2 uses a plurality of pixels, modulates the light applied to the liquid crystal display element 2 according to the drive signal, and outputs light for forming an image.
  • the liquid crystal display device 1 When the liquid crystal display device 1 is a projector (projection display device), the light modulated and output by the liquid crystal display element 2 is magnified by a projection optical system (not shown) and is applied to a screen (not shown). Projected. When the liquid crystal display device 1 is a direct view display device, the light modulated and output by the liquid crystal display element 2 reaches the eyes of the user.
  • a projection optical system not shown
  • a screen not shown
  • the color correction unit 3 inputs video signals of a plurality of colors synchronized with a timing signal indicating the synchronization timing of the input frame, and outputs a plurality of correction signals corresponding to the plurality of colors on a one-to-one basis.
  • the color correction unit 3 receives a plurality of video signals each time a timing signal generated every frame period is received, and a plurality of correction signals corresponding one-to-one to the plurality of video signals. Is output.
  • the color correction unit 3 includes, as a plurality of video signals, an R color video signal (video signal (R)) corresponding to red and a G color video signal (video signal (G)) corresponding to green. And a B color video signal (video signal (B)) corresponding to blue.
  • Each of the R color video signal, G color video signal, and B color video signal is an 8-bit signal. Note that the number of bits of each of the R color video signal, the G color video signal, and the B color video signal is not limited to 8 bits and can be changed as appropriate.
  • the color correction unit 3 outputs an R color correction signal corresponding to red, a G color correction signal corresponding to green, and a B color correction signal corresponding to blue as a plurality of correction signals.
  • the color correction unit 3 generates an R color correction signal based on the R color video signal, generates a G color correction signal based on the G color video signal, and generates a B color correction signal based on the B color video signal. Is generated.
  • Each of the R color correction signal, G color correction signal, and B color correction signal is a 10-bit signal.
  • the number of bits of each of the R color correction signal, the G color correction signal, and the B color correction signal is not limited to 10 bits, and can be changed as appropriate.
  • the function of the color correction unit 3 is based on the application of overdrive in the FSC system and the applied voltage based on the VT characteristic representing the relationship between the applied voltage (drive voltage) and the light transmittance in the liquid crystal display element 2. (Drive voltage) is corrected.
  • the number of output bits of the color correction unit 3 is smaller than the number of input bits of the color correction unit 3 in order to prevent the gradation reproducibility from being deteriorated while performing correction based on nonlinear VT characteristics. There are also many.
  • the data rearrangement unit 4 can be generally called output control means.
  • the data rearrangement unit 4 outputs the plurality of correction signals output from the color correction unit 3 to the liquid crystal display element 2 one by one as a drive signal.
  • the data rearrangement unit 4 uses the R color correction signal, the G color correction signal, and the B color correction signal as drive signals in the order of the R color correction signal, the G color correction signal, and the B color correction signal. Output to the liquid crystal display element 2. This order can be changed as appropriate.
  • the frame memory 4a is used as a buffer for rearranging a plurality of correction signals functioning as video signals.
  • the memory control unit 4b rearranges the plurality of correction signals output from the color correction unit 3 in the order of output to the liquid crystal display element 2 on the frame memory 4a.
  • the memory control unit 4b performs the R color correction signal, the G color correction signal, and the B color correction signal in the order of the R color correction signal, the G color correction signal, and the B color correction signal on the frame memory 4a. Rearrange.
  • the memory control unit 4b outputs the R color correction signal, the G color correction signal, and the B color correction signal on the frame memory 4a to the liquid crystal display element 2 as drive signals one by one in the arrangement order. .
  • the irradiation unit 5 can be generally called irradiation means.
  • the irradiating unit 5 becomes a source of the correction signal output to the liquid crystal display element 2 every time one of the plurality of correction signals output from the color correction unit 3 is output to the liquid crystal display element 2 as a drive signal.
  • the liquid crystal display element 2 is irradiated with light of a color corresponding to the received video signal.
  • the irradiation unit 5 adjusts the light irradiation timing (period and phase) in consideration of the response of the light transmittance after the drive signal is output to the liquid crystal display element 2.
  • the illumination unit 5a includes an R color LED that emits red light, a G color LED that emits green light, and a B color LED that emits blue light.
  • the timing control unit 5b receives a timing signal indicating the synchronization timing of the input frame (hereinafter referred to as “input frame synchronization timing”), and outputs the synchronization timing of the output field (hereinafter referred to as “color frame period”).
  • a timing signal indicating "output field synchronization timing" is generated.
  • the input frame synchronization timing and the output field synchronization timing are synchronized, but they may be asynchronous.
  • the memory control unit 4 b receives the two types (not shown) of timing signals (a timing signal indicating the input frame synchronization timing and a timing signal indicating the output field synchronization timing) from the timing control unit 5 b.
  • timing signals a timing signal indicating the input frame synchronization timing and a timing signal indicating the output field synchronization timing
  • Writing to the frame memory 4a is controlled in synchronization with the frame synchronization timing, and reading from the frame memory 4a is controlled in synchronization with the output field synchronization timing.
  • the memory control unit 4b applies the R color correction signal, the G color correction signal, and the B color correction signal on the frame memory 4a to the liquid crystal display element 2 as drive signals one by one in the arrangement order. Output.
  • the liquid crystal display element 2 sequentially receives the R color correction signal, the G color correction signal, and the B color correction signal sequentially output from the data rearrangement unit 4 in synchronization with the output field synchronization timing by the timing signal from the timing control unit 5b. input. Then, the liquid crystal display element 2 sequentially controls the liquid crystal orientation (director) of each pixel in accordance with each color correction signal for each color, modulates each color light sequentially irradiated for each color, and outputs an image of each color. Are sequentially generated.
  • the illumination unit 5a lights up the R color LED, the G color LED, and the B color LED one by one in this order in synchronization with the output field synchronization timing by the timing signal from the timing control unit 5b.
  • the liquid crystal display device 1 operates as follows.
  • the illumination unit 5a turns on the R color LED and irradiates the liquid crystal display element 2 with the R color light.
  • the illumination unit 5a turns on the G color LED and irradiates the liquid crystal display element 2 with the G color light.
  • the illumination unit 5a turns on the B color LED and irradiates the liquid crystal display element 2 with B color light.
  • FIG. 3 is a block diagram illustrating an example of the color correction unit 3.
  • the color correction unit 3 has an input bit number of 24 bits and an output bit number of 30 bits (RGB each 10 bits).
  • the color correction unit 3 includes an R color correction LUT (Look-up Table) storage unit 3R1, a G color correction LUT storage unit 3G1, and a B color correction LUT storage unit 3B1.
  • R color correction LUT Look-up Table
  • Each of the R color correction LUT storage unit 3R1, the G color correction LUT storage unit 3G1, and the B color correction LUT storage unit 3B1 can be generally referred to as correction means or storage means.
  • the color correction unit 3 includes a plurality of correction means (storage means).
  • each of the R color correction LUT storage unit 3R1, the G color correction LUT storage unit 3G1, and the B color correction LUT storage unit 3B1 has an input bit number of 12 bits and an output bit number of 10 bits.
  • the R color correction LUT storage unit 3R1 corresponds to the R color video signal on a one-to-one basis.
  • the R color correction LUT storage unit 3R1 receives an R color video signal (corresponding video signal) corresponding to itself and at least a part of the B color video signal (other video signals) among the plurality of video signals.
  • the R color correction signal obtained by correcting the R color video signal based on at least a part of the B color video signal is output.
  • the B color video signal is a video signal that is the source of the B color correction signal (other correction signal) output from the data rearrangement unit 4 immediately before the R color correction signal obtained by correcting the R color video signal. is there.
  • the R color correction LUT storage unit 3R1 inputs the upper 4 bits of the B color video signal and all 8 bits of the R color video signal, and outputs a 10 bit R color correction signal.
  • the R color correction LUT storage unit 3R1 corrects the upper 4 bits of the B color video signal, all 8 bits of the R color video signal, and all 8 bits of the R color video signal based on the upper 4 bits of the B color video signal.
  • the LUT that stores the corrected video signal in association with each other is stored.
  • the R color correction LUT storage unit 3R1 When the R color correction LUT storage unit 3R1 receives the upper 4 bits of the B color video signal and all 8 bits of the R color video signal, the R color correction associated with the upper 4 bits of the B color video signal and the 8 bits of the R color video signal.
  • the video signal is output as an R color correction signal.
  • the color reproducibility depends on how quickly the liquid crystal director shifts to a desired state, but since the change of the liquid crystal director is slow, it also affects how the state immediately before the liquid crystal director is controlled.
  • the R color reproducibility can be improved by using the B color video signal of the previous field related to the state of the liquid crystal director immediately before the R color.
  • the gradation level of the R color correction video signal is Based on the gradation level of 10% of the B color video signal, if it is set to 70%, which is excessively higher than the gradation level of 50% of the R color video signal, the state of the liquid crystal director can be brought closer to the desired state more quickly. it can.
  • the R color corrected video signal with the gradation level set to 70% is output.
  • overdrive can be applied in the FSC method.
  • the gradation level of the R color correction video signal is set. Is set to 45%, which is an excessive level from the gradation level of 50% of the R color video signal when viewed from the gradation level of the B color video signal of 90%, and the liquid crystal director state is changed to a desired state faster. You can get closer.
  • the R color corrected video signal with the gradation level set to 45% is output.
  • the R color correction LUT storage unit 3R1 is set, overdrive can be applied in the FSC method.
  • the response of light transmittance is faster when changing from white to black than when changing from black (small gradation level) to white (high gradation level). Since the response speed varies depending on the history of the liquid crystal state, the degree of overdrive is adjusted in consideration of this.
  • overdrive is performed by correcting the gradation level of the R color video signal based on the relationship between the gradation level of the B color video signal and the gradation level of the R color video signal.
  • the R color correction video signal is set, and the R color correction video signal is stored in the R color correction LUT storage unit 3R1.
  • the number of bits of the video signal of the color of the previous field can be reduced at the time of correction, and the amount of information necessary for correction can be reduced.
  • the G color correction LUT storage unit 3G1 corresponds to the G color video signal on a one-to-one basis.
  • the B color correction LUT storage unit 3B1 corresponds to the B color video signal on a one-to-one basis.
  • R color correction LUT storage unit 3R1 For the detailed description of the B color correction LUT storage unit 3B1, in the above description of the R color correction LUT storage unit 3R1, “R color correction LUT storage unit 3R1” is replaced with “B color correction LUT storage unit 3B1”. , Read the corresponding video signal from “R color video signal” to “B color video signal”, read the other video signal from “B color video signal” to “G color video signal”, and change "R color correction signal” to " This can be done by replacing it with “B color correction signal” and replacing “R color correction video signal” with “B color correction video signal”.
  • each of the LUT storage units 3R1, 3G1, and 3B1 is configured using a RAM (Random Access Memory)
  • the total 12 bits of the input video signal is the RAM address
  • the data in the RAM is the corrected video signal 10 bits. To do.
  • the R color correction LUT storage unit 3R1 receives the upper 4 bits of the B color video signal and all 8 bits of the R color video signal in synchronization with the timing signal indicating the input frame synchronization timing, and receives the B color video signal.
  • the R color correction video signal associated with the upper 4 bits and the 8 bits of the R color video signal are output to the memory control unit 4b as the R color correction signal.
  • the G color correction LUT storage unit 3G1 receives the upper 4 bits of the R color video signal and all 8 bits of the G color video signal in synchronization with the timing signal indicating the input frame synchronization timing, and receives the upper 4 bits of the R color video signal.
  • the G color correction video signal associated with all 8 bits of the G color video signal is output to the memory control unit 4b as the G color correction signal.
  • the B color correction LUT storage unit 3B1 receives the upper 4 bits of the G color video signal and all 8 bits of the B color video signal in synchronization with the timing signal indicating the input frame synchronization timing, and receives the upper 4 bits of the G color video signal.
  • the B color correction video signal associated with all 8 bits of the B color video signal is output to the memory control unit 4b as the B color correction signal.
  • the memory control unit 4b When the memory control unit 4b receives the R color correction signal, the G color correction signal, and the B color correction signal, the memory control unit 4b converts the R color correction signal, the G color correction signal, and the B color correction signal into the R color on the frame memory 4a.
  • the correction signal, the G color correction signal, and the B color correction signal are rearranged in this order.
  • the timing control unit 5b receives a timing signal indicating the input frame synchronization timing, generates a timing signal indicating the output field synchronization timing obtained by dividing one frame period into three color field periods, and the data rearrangement unit 4 To the liquid crystal display element 2 and the illumination unit 5a.
  • the memory control unit 4b uses the two types of timing signals (a timing signal indicating the input frame synchronization timing and a timing signal indicating the output field synchronization timing) from the timing control unit 5b to change the input frame synchronization timing.
  • the writing to the frame memory 4a is controlled in synchronization, and the reading from the frame memory 4a is controlled in synchronization with the output field synchronization timing.
  • the R color correction signal, the G color correction signal, and the B color correction signal on the frame memory 4a are output to the liquid crystal display element 2 as drive signals one by one in the arrangement order.
  • the liquid crystal display element 2 receives the R color correction signal, the G color correction signal, and the B color correction signal sequentially output from the data rearrangement unit 4 in synchronization with the output field synchronization timing by the timing signal from the timing control unit 5b. To do. Then, the liquid crystal display element 2 sequentially controls the liquid crystal orientation (director) of each pixel in accordance with each color correction signal for each color, modulates each color light sequentially irradiated for each color, and outputs an image of each color. Are sequentially generated.
  • the illumination unit 5a lights up the R color LED, the G color LED, and the B color LED one by one in this order in synchronization with the output field synchronization timing by the timing signal from the timing control unit 5b.
  • the illumination unit 5a lights the R color LED, and the liquid crystal display element 2 is illuminated with the R color light.
  • the illumination unit 5a lights the G color LED and irradiates the liquid crystal display element 2 with the G color light.
  • the illumination unit 5a turns on the B color LED and irradiates the liquid crystal display element 2 with the B color light.
  • each of the R color correction LUT storage unit 3R1, the G color correction LUT storage unit 3G1, and the B color correction LUT storage unit 3B1 includes a corresponding video signal corresponding to itself and a correction signal obtained by correcting the corresponding video signal.
  • the corresponding video signal is converted into at least a part of the other video signal. A correction signal corrected based on the output is output.
  • the liquid crystal display element 2 receives the correction signals one by one in order, and forms an image according to the received correction signal.
  • overdrive can be realized in an FSC liquid crystal display device.
  • By realizing overdrive it becomes possible to improve the quality of moving images, the improvement of gradation reproduction of a single primary color, and the color reproduction of mixed colors and chromatic colors in an FSC liquid crystal display device.
  • At least one of the R color correction LUT storage unit 3R1, the G color correction LUT storage unit 3G1, and the B color correction LUT storage unit 3B1 includes a corresponding video signal and a part of another video signal (predetermined data). Is received, the correction signal (corrected video signal) obtained by correcting the corresponding video signal based on a part of the other video signal is output.
  • the number of bits of other video signals can be reduced and the amount of data used for correction can be reduced compared to the case where other video signals from which data has not been deleted are input.
  • each of the R color correction LUT storage unit 3R1, the G color correction LUT storage unit 3G1, and the B color correction LUT storage unit 3B1 receives the corresponding video signal, a part of the other video signal, and the corresponding video signal.
  • the corrected video signal corrected based on a part of the video signal is stored in association with each other, and when the corresponding video signal and a part of the other video signal are received, the corresponding video signal and a part of the other video signal are stored.
  • the associated corrected video signal is output as a correction signal.
  • each of the R color correction LUT storage unit 3R1, the G color correction LUT storage unit 3G1, and the B color correction LUT storage unit 3B1 receives not all of the other video signals but a part of the other video signals. .
  • the number of bits of other video signals can be reduced compared to the case where all other video signals are input, and the R color correction LUT storage unit 3R1, the G color correction LUT storage unit 3G1, and the B color correction LUT are stored.
  • Each memory size of the unit 3B1 can be reduced. Therefore, the circuit scale of the liquid crystal display device 1 can be reduced.
  • the color correction unit 3 is not limited to the configuration shown in FIG.
  • FIG. 4 is a block diagram showing a color correction unit 3A, which is another example of the color correction unit 3 shown in FIG.
  • the color correction unit 3A has an input bit number of 24 bits and an output bit number of 30 bits (RGB each 10 bits).
  • the color correction unit 3A includes an R color correction LUT storage unit 3R2, a G color correction LUT storage unit 3G2, and a B color correction LUT storage unit 3B2.
  • Each of the R color correction LUT storage unit 3R2, the G color correction LUT storage unit 3G2, and the B color correction LUT storage unit 3B2 can be generally referred to as correction means or storage means.
  • the color correction unit 3A has a plurality of correction means (storage means).
  • the R color correction LUT storage unit 3R2, the G color correction LUT storage unit 3G2, and the B color correction LUT storage unit 3B2 each have an input bit number of 11 bits and an output bit number of 10 bits.
  • the R color correction LUT storage unit 3R2 has a one-to-one correspondence with the R color video signal.
  • the R color correction LUT storage unit 3R2 When the R color correction LUT storage unit 3R2 receives an R color video signal corresponding to itself and at least a part of the G color video signal among the plurality of video signals, the R color correction LUT storage unit 3R2 converts the R color video signal into the G color video signal. An R color correction signal corrected based on at least a part is output.
  • the G color video signal is a video signal that is the source of the G color correction signal (other correction signal) output from the data rearrangement unit 4 immediately after the R color correction signal obtained by correcting the R color video signal. is there.
  • the R color correction LUT storage unit 3R2 inputs the upper 3 bits of the G color video signal and all 8 bits of the R color video signal, and outputs a 10 bit R color correction signal.
  • the R color correction LUT storage unit 3R2 corrects the upper 3 bits of the G color video signal, all 8 bits of the R color video signal, and all 8 bits of the R color video signal based on the upper 3 bits of the G color video signal.
  • the LUT that stores the corrected video signal in association with each other is stored.
  • the R color correction LUT storage unit 3R2 When the R color correction LUT storage unit 3R2 receives the upper 3 bits of the G color video signal and all 8 bits of the R color video signal, the R color correction associated with the upper 3 bits of the G color video signal and all 8 bits of the R color video signal.
  • the video signal is output as an R color correction signal.
  • the G color reproducibility can be improved by correcting the R color video signal using the G color video signal of the next field.
  • the gradation level of the R color correction video signal is If the level is 70% close to the next color (G color), the state of the liquid crystal director of the next color can be brought closer to the desired state more quickly.
  • the R color corrected video signal with the gradation level set to 70% is output.
  • overdrive can be applied in the FSC method.
  • the gradation level of the R color correction video signal is If the level is 45% close to the next color (G color), the state of the liquid crystal director of the next color can be brought closer to the desired state more quickly.
  • the R color corrected video signal with the gradation level set to 45% is output.
  • overdrive can be applied in the FSC method.
  • the response of light transmittance is faster when changing from white to black than when changing from black (small gradation level) to white (high gradation level). Since the response speed varies depending on the history of the liquid crystal state, the degree of overdrive is adjusted in consideration of this.
  • overdrive is executed by correcting the gradation level of the R color video signal based on the relationship between the gradation level of the G color video signal and the gradation level of the R color video signal.
  • the R color correction video signal is set and stored in the R color correction LUT storage unit 3R1.
  • the accuracy of the influence of the video signal of the next field color is coarser than the accuracy of the influence of the self-color video signal. For this reason, at the time of correction, the number of bits of the video signal of the color of the next field can be reduced. Therefore, the amount of information necessary for correction can be reduced.
  • the G color correction LUT storage unit 3G2 has a one-to-one correspondence with the G color video signal.
  • the B color correction LUT storage unit 3B2 has a one-to-one correspondence with the B color video signal.
  • each LUT storage unit 3R2, 3G2, and 3B3 is configured using a RAM, a total of 11 bits of the input video signal is used as the RAM address, and the RAM data is output as the corrected video signal 10 bits.
  • the color correction unit 3 that corrects the video signal of the own color using the video signal of the color of the previous field has a gradation level of the own color of 100% or 0%. In this case, the slow response of the liquid crystal cannot be improved.
  • the color correction unit 3A that corrects the video signal of the own color using the video signal of the color of the next field
  • the gradation level of the color of the next field is 100% or Even in the case of 0%, the slow response of the liquid crystal can be improved.
  • Each of the R color correction LUT storage unit 3R2, the G color correction LUT storage unit 3G2, and the B color correction LUT storage unit 3B2 immediately before or immediately after the corresponding video signal corresponding to itself and the correction signal obtained by correcting the corresponding video signal.
  • the corresponding video signal is corrected based on at least a part of the other video signal. Output a signal.
  • each of the R color correction LUT storage unit 3R2, the G color correction LUT storage unit 3G2, and the B color correction LUT storage unit 3B2 is not all of the other video signals, but part of other video signals (predetermined portion of data). The other video signal from which is deleted is input.
  • the number of bits of other video signals can be reduced as compared with the case where all other video signals are input, and the R color correction LUT storage unit 3R2, the G color correction LUT storage unit 3G2, and the B color correction LUT are stored.
  • Each memory size of the unit 3B2 can be reduced. Therefore, the circuit scale of the liquid crystal display device 1 can be reduced.
  • FIG. 5 is a block diagram showing a color correction unit 3B, which is still another example of the color correction unit 3 shown in FIG.
  • the configuration shown in FIG. 5 is a combination of the configurations shown in FIGS.
  • the color correction unit 3B has an input bit number of 24 bits and an output bit number of 30 bits (RGB each 10 bits).
  • the color correction unit 3B includes an R color correction LUT storage unit 3R3, a G color correction LUT storage unit 3G3, and a B color correction LUT storage unit 3B3.
  • Each of the R color correction LUT storage unit 3R3, the G color correction LUT storage unit 3G3, and the B color correction LUT storage unit 3B3 can be generally referred to as correction means or storage means. Therefore, the color correction unit 3B has a plurality of correction means (storage means).
  • the R color correction LUT storage unit 3R3, the G color correction LUT storage unit 3G3, and the B color correction LUT storage unit 3B3 each have an input bit number of 15 bits and an output bit number of 10 bits.
  • the R color correction LUT storage unit 3R3 corresponds to the R color video signal on a one-to-one basis.
  • R color correction LUT storage unit 3R3 When the R color correction LUT storage unit 3R3 receives an R color video signal corresponding to itself, a part of the B color video signal, and a part of the G color video signal among the plurality of video signals, An R color correction signal obtained by correcting the video signal based on a part of the B color video signal and a part of the G color video signal is output.
  • the R color correction LUT storage unit 3R3 inputs the upper 4 bits of the B color video signal, the entire 8 bits of the R color video signal, and the upper 3 bits of the G color video signal, and inputs 10 bits of R color. Output a correction signal.
  • the R color correction LUT storage unit 3R3 includes the upper 4 bits of the B color video signal, the upper 8 bits of the R color video signal, the upper 3 bits of the G color video signal, and the upper 8 bits of the R color video signal.
  • a LUT that stores the R color video correction signal corrected based on the 4 bits and the upper 3 bits of the G color video signal in association with each other is stored.
  • the R color correction LUT storage unit 3R3 Upon receiving the upper 4 bits of the B color video signal, all 8 bits of the R color video signal, and the upper 3 bits of the G color video signal, the R color correction LUT storage unit 3R3 receives the upper 4 bits of the B color video signal and all of the R color video signal.
  • the R color correction video signal associated with the 8 bits and the upper 3 bits of the G color video signal is output as an R color correction signal.
  • the R color video correction signal in the R color correction LUT storage unit 3R3 is created by correcting the R color video signal by referring to the B color video signal of the previous field and the G color video signal of the next field.
  • the R color video correction signal in the R color correction LUT storage unit 3R3 is created by correcting the R color video signal by referring to the B color video signal of the previous field and the G color video signal of the previous field. May be.
  • the G color correction LUT storage unit 3G3 has a one-to-one correspondence with the G color video signal.
  • R color correction LUT storage unit 3R3 is replaced with “G color correction LUT storage unit 3G3”.
  • the corresponding video signal is read from “R color video signal” to “G color video signal”, and other video signals are read from “B color video signal” and “G color video signal” to “R color video signal” and “B color”. It can be performed by replacing “video signal”, “R color correction signal” with “G color correction signal”, and “R color correction video signal” with “G color correction video signal”.
  • the B color correction LUT storage unit 3B3 corresponds to the B color video signal on a one-to-one basis.
  • R color correction LUT storage unit 3R3 is replaced with “B color correction LUT storage unit 3B3”.
  • the corresponding video signal is read from “R color video signal” to “B color video signal”, and other video signals are read from “B color video signal” and “G color video signal” to “G color video signal” and “R color”. This can be performed by replacing “video signal”, “R color correction signal” with “B color correction signal”, and “R color correction video signal” with “B color correction video signal”.
  • each of the LUT storage units 3R3, 3G3, and 3B3 is configured using a RAM
  • the total 15 bits of the input video signal is used as the RAM address
  • the RAM data is output as the corrected video signal 10 bits.
  • Each of the R color correction LUT storage unit 3R3, the G color correction LUT storage unit 3G3, and the B color correction LUT storage unit 3B3 arranges data immediately before the corresponding video signal corresponding to itself and the correction signal obtained by correcting the corresponding video signal. Another correction signal output from the data rearrangement unit 4 immediately after the correction signal obtained by correcting the corresponding video signal and a part of the other correction signal output from the replacement unit 4 When a part of the other video signal that is the source of the video signal is received, a correction signal obtained by correcting the corresponding video signal based on a part of the other video signal is output.
  • each of the R color correction LUT storage unit 3R3, the G color correction LUT storage unit 3G3, and the B color correction LUT storage unit 3B3 receives not all of the other video signals but a part of the other video signals.
  • the number of bits of other video signals can be reduced compared to the case where all other video signals are input, and the R color correction LUT storage unit 3R3, the G color correction LUT storage unit 3G3, and the B color correction LUT storage.
  • Each memory size of the unit 3B3 can be reduced. Therefore, the circuit scale of the liquid crystal display device 1 can be reduced.
  • FIG. 6 is a block diagram showing a color correction unit 3C, which is still another example of the color correction unit 3 shown in FIG.
  • the color correction unit 3C is obtained by changing the configuration of the correction LUT storage unit for each color.
  • the liquid crystal display element 2 has wavelength dependency in light transmittance.
  • the transmittance on the long wavelength side R color side
  • the temporal response characteristic of the transmittance also has wavelength dependency.
  • the configuration of the correction LUT storage unit is changed for each color in consideration of the temporal response characteristic and wavelength dependency of the transmittance.
  • each of the R color correction LUT storage unit 3R3, the G color correction LUT storage unit 3G1, and the B color correction LUT storage unit 3B2 in the color correction unit 3C has a difference in response characteristics for each color in the liquid crystal display element 2. Based on this, a part of the other video signal is set.
  • the color correction unit 3C has an input bit number of 24 bits and an output bit number of 30 bits (RGB each 10 bits).
  • the color correction unit 3C includes an R color correction LUT storage unit 3R3, a G color correction LUT storage unit 3G1, and a B color correction LUT storage unit 3B2.
  • the R color correction LUT storage unit 3R3 inputs the upper 4 bits of the B color video signal, all 8 bits of the R color video signal, and the upper 3 bits of the G color video signal, and outputs a 10-bit R color correction signal.
  • the B color video signal of the previous field is displayed in advance.
  • a signal obtained by correcting the R color video signal using the G color video signal of the field is used as the R color correction signal.
  • the G color correction LUT storage unit 3G1 inputs the upper 4 bits of the R color video signal and all 8 bits of the G color video signal, and outputs a 10 bit G color correction signal.
  • the G color correction LUT storage unit 3G1 uses the R color video signal of the previous field in order to improve the color reproducibility of the G color having the medium transmittance response among the R color, the G color, and the B color.
  • a signal obtained by correcting the G color video signal is used as the G color correction signal.
  • the B color correction LUT storage unit 3B2 outputs the B color correction video signal by using all 8 bits of the B color video signal and the upper 3 bits of the R color video signal as inputs.
  • the B color correction LUT storage unit 3B2 uses the R color video signal of the next field in order to improve the color reproducibility of the R color having a slower transmittance response than the other colors (G color and B color). A signal obtained by correcting the B color video signal is used as the B color correction signal.
  • each of the R color correction LUT storage unit 3R3, the G color correction LUT storage unit 3G1, and the B color correction LUT storage unit 3B2 in the color correction unit 3C has a response characteristic for each color in the liquid crystal display element 2. Based on the difference, a part of the video signal (other video signal) used for correcting the corresponding video signal is set.
  • FIG. 7 is a block diagram showing a liquid crystal display device 1A according to the second embodiment of the present invention.
  • the same components as those shown in FIG. 7 are identical to those shown in FIG. 7;
  • the liquid crystal display device 1 ⁇ / b> A has a VT characteristic correction unit 7 added, and the number of output bits is 8 bits for each RGB instead of the color correction unit 3.
  • the color correction unit 31 is used, and the number of output bits of the data rearrangement unit 4 is changed to 8 bits for each RGB.
  • the color correction unit 3 shown in FIG. 3 (however, the number of output bits is 24 bits) is used as the color correction unit 31.
  • the color correction unit 31 is not limited to the color correction unit 3 shown in FIG.
  • the color correction unit 3A shown in FIG. 4 (where the number of output bits is 24 bits), the color correction unit 3B shown in FIG. 5 (where the number of output bits is 24 bits), or FIG.
  • the illustrated color correction unit 3C (however, the number of output bits is 24 bits) may be used.
  • the data rearrangement unit 4 and the VT characteristic correction unit 7 are included in the output control unit 6.
  • the output control unit 6 can generally be called output control means or output correction control means.
  • the output control unit 6 includes correction signals (number of output bits: 8 bits) output from each of the R color correction LUT storage unit 3R1, the G color correction LUT storage unit 3G1, and the B color correction LUT storage unit 3B1 in the color correction unit 31. Is received, the correction signal is corrected in accordance with the relationship between the drive voltage of the liquid crystal display element 2 and the light transmittance (VT characteristic), and a characteristic correction signal is output.
  • correction signals number of output bits: 8 bits
  • the output control unit 6 outputs the characteristic correction signals to the liquid crystal display element 2 as drive signals one by one instead of the correction signal.
  • the data rearrangement unit 4 When the data rearrangement unit 4 receives each 8-bit correction signal (R color correction signal, G color correction signal, B color correction signal) output from the color correction unit 31, the data rearrangement unit 4 sequentially outputs the correction signals one by one. , Output to the VT characteristic correction unit 7.
  • the VT characteristic correction unit 7 corrects the correction signal in accordance with the relationship between the drive voltage of the liquid crystal display element 2 and the light transmittance (VT characteristic).
  • the characteristic correction signal is output to the liquid crystal display element 2 as a drive signal.
  • the color correction unit 3 has a role of improving color reproducibility and gradation reproducibility in the FSC method, that is, a role of performing correction for overdrive in the FSC method, It plays the role of correcting the applied voltage (drive voltage) based on the VT characteristic representing the relationship between the applied voltage (drive voltage) of the liquid crystal display element 2 and the light transmittance.
  • the color correction unit 31 has a role of improving color reproducibility and gradation reproducibility in the FSC method, that is, a role of performing correction for overdrive in the FSC method.
  • the VT characteristic correction unit 7 plays a role of correcting the applied voltage (drive voltage) based on the non-linear VT characteristic.
  • the number of output bits of the color correction unit 31 can be reduced from 30 bits to 24 bits.
  • the memory size of the LUT in the color correction unit 31 can be set to 8/10 that of the color correction unit 3, and the size of the frame memory 4a in the liquid crystal display device 1A can be set in the liquid crystal display device 1. 8/10 of the frame memory 4a.
  • the number of circuits increases due to the addition of the VT characteristic correction unit 7.
  • the total memory size of the color correction unit 31 and the VT characteristic correction unit 7 is 120 kbit.
  • ⁇ 8/10 + 2.5 kbit 98.5 kbit, which is smaller than the memory size 120 kbit of the color correction unit 3 (the number of output bits is 30 bits) shown in FIG.
  • the total memory size of the color correction unit 31 and the VT characteristic correction unit 7 is 60 kbit.
  • ⁇ 8/10 + 2.5 kbit 50.5 kbit, which is smaller than the memory size of 60 kbit of the color correction unit 3A (where the number of output bits is 30 bits) shown in FIG.
  • the total memory size of the color correction unit 31 and the VT characteristic correction unit 7 is 960 kbits.
  • X8 / 10 + 2.5 kbit 770.5 kbit, which is smaller than the memory size 960 kbit of the color correction unit 3B (however, the number of output bits is 30 bits) shown in FIG.
  • the total memory size of the color correction unit 31 and the VT characteristic correction unit 7 is 380 kbit.
  • X8 / 10 + 2.5 kbit 306.5 kbit, which is smaller than the memory size 380 kbit of the color correction unit 3C (however, the number of output bits is 30 bits) shown in FIG.
  • the VT characteristic correction unit 7 affects the liquid crystal display device using the juxtaposed (parallel) additive color mixture or the color display method using the simultaneous additive color mixture, and the FSC method. This is different from the case of the liquid crystal display device.
  • a liquid crystal display device of a color display system using juxtaposed (parallel) additive color mixture is a pixel that performs color display by arranging sub-pixels (sub-pixels) having R, G, and B color filters in close proximity.
  • a liquid crystal display device of a color display system using simultaneous additive color mixing has three liquid crystal display elements that separately modulate each of R, G, and B colors, and the modulated image light of each color is received.
  • This is a liquid crystal display device that displays images in an overlapping manner.
  • This type of projection type liquid crystal display device such as a projector is common and is called a so-called three-plate type.
  • the pixel When paying attention to a certain pixel, in the former, specifically, a liquid crystal display device of a color display system using juxtaposed (parallel) additive color mixture or simultaneous additive color mixture, the pixel always displays the same color.
  • the characteristic correction signal possessed by the VT characteristic correction unit 7 can be uniquely created for each color.
  • the color displayed by the pixel is not one, and the state of the liquid crystal director often does not converge even when displaying a still image. .
  • the characteristic correction signal possessed by the VT characteristic correction unit 7 cannot be easily created uniquely using only the own color video signal. Therefore, it is proper to include a VT characteristic correction function in the color correction unit 31 that receives video signals of a plurality of colors.
  • the present embodiment provides a method for effectively operating the function of correcting the VT characteristic while the function of correcting the non-linear VT characteristic is separated from the color correction unit 31. To do.
  • the state of the liquid crystal director does not converge, but there is also an image in which the state of the liquid crystal director converges. That is, when the gradation levels of the R, G, and B colors are equal to each other, that is, an achromatic image.
  • the state of the liquid crystal director converges, so that the characteristic correction signal of the VT characteristic correction unit 7 can be uniquely created.
  • the video signal having achromatic image data bypasses the color correction unit 31.
  • VT characteristic correction unit 7 when creating the characteristic correction signal used in the VT characteristic correction unit 7, it is avoided to use an image that is a driving condition unique to the FSC method, so that juxtaposed (parallel) additive color mixing or simultaneous additive color mixing is performed.
  • a correction data creation method for VT characteristics in the used color display method can be used, and the adjustment process can be simplified.
  • VT characteristic correction unit 7 a non-linear VT characteristic correction function representing the relationship between the applied voltage of the liquid crystal display element 2 and the light transmittance is assigned to the VT characteristic correction unit 7 separate from the color correction unit 31.
  • the characteristics of the color correction unit 31 can be made closer to linear. Therefore, the number of output bits of the color correction unit 31 can be reduced.
  • a plurality of VT characteristic correction units 7 may be provided for each color, and the VT characteristic correction unit 7 to be used may be switched depending on the color to be displayed.
  • the correction data in this case may be generated by using a video signal of an achromatic image, constantly illuminating the liquid crystal display element with monochromatic light, and measuring the VT characteristics. By doing so, the color dependence of the transmittance characteristic of the liquid crystal display element 2 can be corrected more accurately.
  • the color correction unit 32 shown in FIG. 8 is used as the color correction unit 3 of the liquid crystal display device 1 shown in FIG.
  • the color conversion unit 8 is provided.
  • the color correction unit 32 shown in FIG. 8 is used as the color correction unit 31 of the liquid crystal display device 1A shown in FIG.
  • a color conversion unit 8 may be provided in the preceding stage.
  • the color conversion unit 8 in the previous stage of the color correction unit 32 can be generally referred to as generation means.
  • the color conversion unit 8 extracts five images corresponding to M (magenta), R, G, B, and Y (yellow) from three image signals of R, G, and B, respectively. Signals, specifically, an M color video signal, an R color video signal, a G color video signal, a B color video signal, and a Y color video signal are generated.
  • the color correction unit 32 When the color correction unit 32 receives a plurality of video signals, the color correction unit 32 outputs a plurality of correction signals corresponding to the plurality of colors on a one-to-one basis.
  • the color correction unit 32 receives an M color video signal, an R color video signal, a G color video signal, a B color video signal, and a Y color video signal as a plurality of video signals.
  • Each of the M color video signal, the R color video signal, the G color video signal, the B color video signal, and the Y color video signal is an 8-bit signal. Note that the number of bits of each of the R color video signal, the G color video signal, the B color video signal, and the Y color video signal is not limited to 8 bits and can be changed as appropriate.
  • the color correction unit 32 uses a plurality of correction signals as an M color correction signal corresponding to magenta, an R color correction signal, a G color correction signal, a B color correction signal, and a Y color correction corresponding to yellow. Signal.
  • the color correction unit 32 generates an M color correction signal based on the M color video signal, generates an R color correction signal based on the R color video signal, and generates a G color correction signal based on the G color video signal. And a B color correction signal is generated based on the B color video signal, and a Y color correction signal is generated based on the Y color video signal.
  • the data rearrangement unit 4 converts the M color correction signal, the R color correction signal, the G color correction signal, the B color correction signal, and the Y color correction signal into an M color correction signal, an R color correction signal, and a G color correction signal.
  • the color correction signal, the B color correction signal, and the Y color correction signal are output to the liquid crystal display element 2 as drive signals in the order. This order can be changed as appropriate.
  • the illumination unit 5a irradiates the liquid crystal display element 2 with light of each color of M color, R color, G color, B color, and Y color.
  • the R-color and G-color LEDs may be turned on simultaneously.
  • the G and B LEDs can be turned on simultaneously. If W (white) light is required, the R, G, and B colors can be used. Just turn on the colored LEDs at the same time.
  • the color correction unit 32 includes an M color correction LUT storage unit 3M4, an R color correction LUT storage unit 3R4, a G color correction LUT storage unit 3G4, a B color correction LUT storage unit 3B4, and a Y color correction LUT storage unit 3Y4. ,including.
  • Each of the M color correction LUT storage unit 3M4, the R color correction LUT storage unit 3R4, the G color correction LUT storage unit 3G4, the B color correction LUT storage unit 3B4, and the Y color correction LUT storage unit 3Y4 generally includes correction means or It can be called storage means. Therefore, the color correction unit 32 has a plurality of correction means (storage means).
  • the M color correction LUT storage unit 3M4 has a one-to-one correspondence with the M color video signal.
  • the M color correction LUT storage unit 3M4 is an M color video signal corresponding to itself, a part of the Y color video signal, a part of the B color video signal, and one of the R color video signals.
  • the M color correction signal obtained by correcting the M color video signal based on a part of the Y color video signal, a part of the B color video signal, and a part of the R color video signal is output.
  • the Y color video signal is a video signal based on the Y color correction signal (other correction signal) output from the data rearrangement unit 4 immediately before the M color correction signal obtained by correcting the M color video signal.
  • the B color video signal is a video signal based on the B color correction signal (other correction signal) output from the data rearrangement unit 4 immediately before the Y color correction signal obtained by correcting the Y color video signal.
  • the R color video signal is a video signal that is the source of the R color correction signal (other correction signal) output from the data rearrangement unit 4 immediately after the M color correction signal obtained by correcting the M color video signal.
  • the M color correction LUT storage unit 3M4 includes the upper 2 bits of the B color video signal, the upper 4 bits of the Y color video signal, all 8 bits of the M color video signal, and the upper 3 bits of the R color video signal. To output the M color correction signal.
  • the M color correction LUT storage unit 3M4 includes the upper 2 bits of the B color video signal, the upper 4 bits of the Y color video signal, all 8 bits of the M color video signal, the upper 3 bits of the R color video signal, and all of the M color video signal.
  • An LUT that stores 8 bits of the M color corrected video signal corrected based on the upper 2 bits of the B color video signal, the upper 4 bits of the Y color video signal, and the upper 3 bits of the R color video signal in association with each other is stored.
  • the M color correction LUT storage unit 3M4 When the M color correction LUT storage unit 3M4 receives the upper 2 bits of the B color video signal, the upper 4 bits of the Y color video signal, all 8 bits of the M color video signal, and the upper 3 bits of the R color video signal, The M color correction video signal associated with the upper 2 bits, the upper 4 bits of the Y color video signal, all 8 bits of the M color video signal, and the upper 3 bits of the R color video signal is output as an M color correction signal.
  • the M color correction LUT storage unit 3M4 corrects the M color video signal by referring to the B color video signal of the previous field, the Y color video signal of the previous field, and the R color video signal of the next field.
  • the R color correction LUT storage unit 3R4 corresponds to the R color video signal on a one-to-one basis.
  • the G color correction LUT storage unit 3G4 has a one-to-one correspondence with the G color video signal.
  • the B color correction LUT storage unit 3B4 has a one-to-one correspondence with the B color video signal.
  • the Y color correction LUT storage unit 3Y4 has a one-to-one correspondence with the Y color video signal.
  • the color conversion unit 8 generates five video signals from the three video signals, and the color correction unit 32 corrects each of the five video signals.
  • the color correction unit 33 shown in FIG. 9 is used as the color correction unit 3 of the liquid crystal display device 1 shown in FIG.
  • the color correction unit 33 shown in FIG. 9 may be used as the color correction unit 31 of the liquid crystal display device 1A shown in FIG.
  • the data rearrangement unit 4 displays the B color correction signal, the G color correction signal, and the R color correction signal as a drive signal in the order of the B color correction signal, the G color correction signal, and the R color correction signal. Output to element 2. This order can be changed as appropriate.
  • the feature of the present embodiment is that the correction signal is used for correcting the color of the next field, and that the reference of the correction signal used for the correction does not become an infinite loop, and also extends across frames. That is, the color video signal is not referred to.
  • the color correction unit 33 includes a B color correction LUT storage unit 3B5, a G color correction LUT storage unit 3G5, and an R color correction LUT storage unit 3R5.
  • the B color correction LUT storage unit 3B5 can generally be referred to as correction means or storage means.
  • the B color correction LUT storage unit 3B5 has a one-to-one correspondence with the B color video signal.
  • the B color correction LUT storage unit 3B5 corrects the B color video signal so that the G color reproducibility of the next field is improved.
  • the B color correction LUT storage unit 3B5 inputs all 8 bits of the B color video signal and the upper 3 bits of the G color video signal, and outputs a B color correction signal.
  • the B color correction LUT storage unit 3B5 corrects all 8 bits of the B color video signal, the upper 3 bits of the G color video signal, and all 8 bits of the B color video signal based on the upper 3 bits of the G color video signal.
  • the LUT that stores the corrected video signal in association with each other is stored.
  • the B color correction LUT storage unit 3B5 When the B color correction LUT storage unit 3B5 receives all 8 bits of the B color video signal and the upper 3 bits of the G color video signal, the B color correction associated with all 8 bits of the B color video signal and the upper 3 bits of the G color video signal.
  • the video signal is output as a B color correction signal.
  • the G color correction LUT storage unit 3G5 can generally be referred to as correction means, storage means, or video signal correction means.
  • the G color correction LUT storage unit 3G5 has a one-to-one correspondence with the G color video signal.
  • the G color correction LUT storage unit 3G5 refers to the B color correction signal of the previous field to improve the G color reproducibility, and refers to the R color video signal of the next field to improve the R color reproducibility.
  • the G color video signal is corrected so as to improve.
  • the G color correction LUT storage unit 3G5 inputs the upper 4 bits of the B color correction signal, all 8 bits of the G color video signal, and the upper 3 bits of the R color video signal, and outputs the G color correction signal.
  • the G color correction LUT storage unit 3G5 includes the upper 4 bits of the B color correction signal, all 8 bits of the G color video signal, the upper 3 bits of the R color video signal, and all 8 bits of the G color video signal.
  • a LUT that stores 4 bits and the G color corrected video signal corrected based on the upper 3 bits of the R color video signal in association with each other is stored.
  • the G color correction LUT storage unit 3G5 Upon receiving the upper 4 bits of the B color correction signal, all 8 bits of the G color video signal, and the upper 3 bits of the R color video signal, the G color correction LUT storage unit 3G5 receives the upper 4 bits of the B color correction signal and all of the G color video signal. A G color correction video signal associated with 8 bits and the upper 3 bits of the R color video signal is output as a G color correction signal.
  • the R color correction LUT storage unit 3R5 can generally be referred to as correction means, storage means, or video signal correction means.
  • the R color correction LUT storage unit 3R5 has a one-to-one correspondence with the R color video signal.
  • the R color correction LUT storage unit 3R5 corrects the R color video signal so that the reproducibility of the R color is improved with reference to the G color correction signal of the previous field.
  • the R color correction LUT storage unit 3R5 inputs the upper 4 bits of the G color correction signal and all 8 bits of the R color video signal, and outputs an R color correction signal.
  • the R color correction LUT storage unit 3R5 corrects the upper 4 bits of the G color correction signal, all 8 bits of the R color video signal, and all 8 bits of the R color video signal based on the upper 4 bits of the G color correction signal.
  • the LUT that stores the corrected video signal in association with each other is stored.
  • the R color correction LUT storage unit 3R5 When the R color correction LUT storage unit 3R5 receives the upper 4 bits of the G color correction signal and all 8 bits of the R color video signal, the R color correction associated with the upper 4 bits of the G color correction signal and all 8 bits of the R color video signal.
  • the video signal is output as an R color correction signal.
  • each of the G color correction LUT storage unit 3G5 and the R color correction LUT storage unit 3R5 uses the correction signal for correcting the color of the next field. Can improve sex.
  • the B color correction LUT storage unit 3B5 refers to the R color video signal of the previous field, it refers to the video signal of the previous frame. become.
  • each of the B color correction LUT storage unit 3B5, the G color correction LUT storage unit 3G5, and the R color correction LUT storage unit 3R5 does not refer to a video signal of a color across frames. For this reason, the color reproducibility and gradation reproducibility when displaying a moving image can be improved.
  • the color fields in the FSC system are B, G, and R colors, but the color fields in the FSC system are Y, B, G, R, and M colors.
  • the color conversion unit 8 shown in FIG. 8 is provided in front of the color correction unit 33, and the color correction unit 33 may further include an M color correction LUT storage unit 3M4 and a Y color correction LUT storage unit 3Y4.
  • the color correction unit 34 shown in FIG. 10 is used as the color correction unit 3 of the liquid crystal display device 1 shown in FIG.
  • the color correction unit 34 shown in FIG. 10 may be used as the color correction unit 31 of the liquid crystal display device 1A shown in FIG.
  • the data rearrangement unit 4 displays the B color correction signal, the G color correction signal, and the R color correction signal as a drive signal in the order of the B color correction signal, the G color correction signal, and the R color correction signal. Output to element 2. This order can be changed as appropriate.
  • the feature of this embodiment is that the correction signal is used for the correction of the color of the next field, the reference of the correction signal used for the correction does not become an infinite loop, and When referring to the data, it means that the frame buffer is used, and the data of the next frame is not referred to.
  • the color correction unit 34 includes a frame buffer 34a, a B color correction LUT storage unit 3B6, a G color correction LUT storage unit 3G6, and an R color correction LUT storage unit 3R6.
  • the frame buffer 34a can be generally referred to as storage means.
  • the frame buffer 34a is a video signal that is the source of the correction signal that is finally output from the data rearrangement unit 4 among a plurality of video signals that constitute one frame before the update.
  • the R color video signal is stored.
  • the frame buffer 34a stores a correction signal (R color correction signal in this embodiment) output last from the data rearrangement unit 4 among a plurality of video signals constituting one frame before update. Also good.
  • the B color correction LUT storage unit 3B6 can be generally referred to as correction means, storage means, or color video signal correction means.
  • the B color correction LUT storage unit 3B6 has a one-to-one correspondence with the B color video signal.
  • the B color correction LUT storage unit 3B6 refers to the R color video signal of the previous field (previous frame) or the R color correction signal of the same frame to improve the reproducibility of the B color, and the G color of the next field
  • the B color video signal is corrected so that the G color reproducibility is improved by referring to the video signal.
  • the B color correction LUT storage unit 3B6 inputs the upper 4 bits of the R color video signal one frame before in the frame buffer 34a, all 8 bits of the B color video signal, and the upper 3 bits of the G color video signal. Outputs a B color correction signal.
  • the B color correction LUT storage unit 3B6 includes the upper 4 bits of the R color video signal one frame before, all 8 bits of the B color video signal, the upper 3 bits of the G color video signal, and all 8 bits of the B color video signal in one frame.
  • An LUT for storing the B color corrected video signal corrected based on the upper 4 bits of the previous R color video signal and the upper 3 bits of the G color video signal in association with each other is stored.
  • the B color correction LUT storage unit 3B6 When the B color correction LUT storage unit 3B6 receives the upper 4 bits of the R color video signal of the previous frame, all 8 bits of the B color video signal, and the upper 3 bits of the G color video signal, the higher level of the R color video signal of the previous frame
  • the B color correction video signal associated with 4 bits and all 8 bits of the B color video signal and the upper 3 bits of the G color video signal is output as a B color correction signal.
  • the G color correction LUT storage unit 3G6 has the same configuration as the G color correction LUT storage unit 3G5 shown in FIG.
  • the R color correction LUT storage unit 3R6 can generally be referred to as correction means, storage means, or video signal correction means.
  • the R color correction LUT storage unit 3R6 has a one-to-one correspondence with the R color video signal.
  • the R color correction LUT storage unit 3R6 corrects the R color correction signal so that the reproducibility of the R color is improved with reference to the B color correction signal of the previous field and the G color correction signal of the previous field.
  • the R color correction LUT storage unit 3R6 inputs the upper 3 bits of the B color correction signal, the upper 4 bits of the G color correction signal, and all 8 bits of the R color video signal, and outputs an R color correction signal.
  • the R color correction LUT storage unit 3R6 includes the upper 3 bits of the B color correction signal, the upper 4 bits of the G color correction signal, all 8 bits of the R color video signal, and all 8 bits of the R color video signal.
  • An LUT that stores 3 bits and the R color corrected video signal corrected based on the upper 4 bits of the G color correction signal in association with each other is stored.
  • the R color correction LUT storage unit 3R5 When receiving the upper 3 bits of the B color correction signal, the upper 4 bits of the G color correction signal, and all 8 bits of the R color video signal, the R color correction LUT storage unit 3R5 receives the upper 3 bits of the B color correction signal and the higher order of the G color correction signal. An R color correction video signal associated with 4 bits and all 8 bits of the R color video signal is output as an R color correction signal.
  • the corrected color video signal that is, the correction signal is used for correcting the color of the next field, so that color reproducibility or gradation reproducibility can be improved.
  • the B color correction LUT storage unit 3B6 refers to the video signal or the correction signal in the frame buffer 34a, and the previous field color data in the current frame. Since it is not referred to (actually, the color data of the field one after another), it is possible to improve color reproducibility and gradation reproducibility when the image of the previous frame and the image of the current frame are greatly different.
  • data for one field in the previous frame is buffered and referenced.
  • more fields of data may be buffered and referenced. By doing so, color reproducibility and gradation reproducibility can be improved more accurately.
  • the color fields in the FSC system are B, G, and R colors, but the color fields in the FSC system are Y, B, G, R, and M colors.
  • the color conversion unit 8 shown in FIG. 8 is provided in front of the color correction unit 34, and the color correction unit 34 may further include an M color correction LUT storage unit 3M4 and a Y color correction LUT storage unit 3Y4.
  • At least one of a plurality of correction LUT storage units (for example, the correction LUT storage unit corresponding to the slowest red color) is exceeded.
  • a correction signal for driving is output, and another correction LUT storage unit does not output a correction signal for overdrive (for example, a correction LUT that outputs a correction signal corrected based on the VT characteristic) Storage unit).
  • each color correction LUT storage unit is provided separately, but one color correction LUT storage unit may be shared in time division for several colors. Also in this case, a plurality of color correction LUT storage units are provided. In this case, the memory size can be reduced.
  • each correction LUT storage unit has been described so as to realize color correction only by the LUT.
  • each correction LUT storage unit may perform color correction by combining the LUT and the calculation.
  • each correction LUT storage unit may correct the upper bits of the video signal using an LUT and correct the lower bits of the video signal using interpolation.
  • each color correction calculation unit functions as a correction unit and corresponds to each video signal one to one.
  • Each of the above embodiments can be applied to the liquid crystal display element 2 having a normally white configuration or a normally black configuration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

A liquid crystal display device comprises: a plurality of correction means (3R1, 3G1, 3B1) for, when receiving corresponding image signals corresponding one-on-one to a plurality of image signals corresponding to a plurality of colors and corresponding to themselves among the plurality of image signals, outputting correction signals in which the corresponding image signals are corrected; an output control means for outputting, one by one in sequence, the correction signals outputted from the respective plurality of correction means (3R1, 3G1, 3B1); an irradiation means for, every time when the correction signals are outputted from the output control means, emitting light of colors corresponding to image signals from which the correction signals have been generated; and a liquid crystal display element for, every time when the correction signals are outputted from the output control means, modulating and outputting the light emitted from the irradiation means according to the correction signals. The plurality of correction means (3R1, 3G1, 3B1) output, as the correction signals, correction image signals in which the corresponding image signals are corrected based on the upper bits of the other image signals.

Description

液晶表示装置、液晶表示素子の駆動回路、カラー画像生成方法、および、液晶表示素子の駆動方法Liquid crystal display device, liquid crystal display element drive circuit, color image generation method, and liquid crystal display element drive method
 本発明は、液晶表示装置、液晶表示素子の駆動回路、カラー画像生成方法、および、液晶表示素子の駆動方法に関する。 The present invention relates to a liquid crystal display device, a liquid crystal display element driving circuit, a color image generation method, and a liquid crystal display element driving method.
 プロジェクタまたは直視型のディスプレイなどの液晶表示装置でのカラー表示方式の1つとして、FSC(Field Sequential Color:フィールドシーケンシャルカラー)方式が知られている。 As one of the color display methods in a liquid crystal display device such as a projector or a direct-view display, the FSC (Field Sequential Color) method is known.
 FSC方式では、異なる色の光が、1つのモノクロの液晶表示素子に順次照射されると共に、光(色)の切り替えに同期して、液晶表示素子の表示画像が、照射光の色に応じた画像に切り替えられる。 In the FSC method, light of different colors is sequentially irradiated to one monochrome liquid crystal display element, and the display image of the liquid crystal display element corresponds to the color of the irradiation light in synchronization with the switching of light (color). Switch to image.
 以下、FSC方式について説明する。 The following describes the FSC method.
 FSC方式では、1画面を構成する1フレームの期間が、照射光の色に応じた複数のカラーフィールドの期間に分割される。 In the FSC system, one frame period constituting one screen is divided into a plurality of color field periods according to the color of the irradiation light.
 カラーフィールドごとに、カラーフィールドの色に対応する画像が、1つのモノクロの液晶表示素子に形成され、かつ、カラーフィールドの色を有する光が、その液晶表示素子に照射される。 For each color field, an image corresponding to the color of the color field is formed on one monochrome liquid crystal display element, and light having the color of the color field is irradiated to the liquid crystal display element.
 液晶表示素子に照射された光は、液晶表示素子に形成された画像によって変調され出力される。 The light irradiated to the liquid crystal display element is modulated and output by an image formed on the liquid crystal display element.
 FSC方式では、フィールドの切り替えタイミングが1フレームの期間よりも短いため、液晶表示素子から順次出力される複数の変調された光は、人間の目には、1つのカラー画像として認識される。 In the FSC method, since the field switching timing is shorter than the period of one frame, a plurality of modulated lights sequentially output from the liquid crystal display element are recognized as one color image by human eyes.
 FSC方式では、1フレームよりも短い期間である1フィールドごとに、液晶表示素子の表示画像を切り替える必要がある。このため、液晶表示素子には、速い応答が必要とされる。 In the FSC system, it is necessary to switch the display image of the liquid crystal display element for each field that is a period shorter than one frame. For this reason, a quick response is required for the liquid crystal display element.
 多くの液晶表示装置は、次のような特徴を有する。
[1]液晶表示素子は、光学的応答(光の透過率の変化)が遅い。
[2]光の透過率の応答特性が、黒から白への変化と、白から黒への変化とで、異なる。
[3]光の透過率の応答特性が、波長によって異なる。
Many liquid crystal display devices have the following characteristics.
[1] The liquid crystal display element has a slow optical response (change in light transmittance).
[2] The response characteristic of the light transmittance is different between a change from black to white and a change from white to black.
[3] The response characteristic of the light transmittance varies depending on the wavelength.
 特徴[1]は、動画品質を悪くする。 Feature [1] deteriorates video quality.
 また、特徴[1]は、FSC方式では、静止画であっても画質を悪くする場合が多い。FSC方式において、静止画であっても画質が悪くなる場合は、複数のカラーフィールドで、同一画素に印加される電圧のレベルが異なる場合であり、つまりは、無彩色でない色が表示される場合である。 Also, the feature [1] is that the FSC method often deteriorates the image quality even for a still image. In the FSC system, even if it is a still image, the image quality deteriorates when the level of the voltage applied to the same pixel is different in multiple color fields, that is, when a non-achromatic color is displayed. It is.
 また、特徴[1]は、FSC方式では、原色の単色を表示する場合は、階調再現性が悪くなり、混色かつ有彩色を表示する場合は、色味が本来からずれてしまう、という不具合現象を生じる。 In addition, the feature [1] is that, in the FSC system, the gradation reproducibility is deteriorated when displaying a single primary color, and the color tone is deviated from the original color when displaying a mixed color and a chromatic color. Cause a phenomenon.
 図1は、特徴[1]に起因するFSC方式での不具合現象を説明するための説明図である。 FIG. 1 is an explanatory diagram for explaining a malfunction phenomenon in the FSC method due to the feature [1].
 図1において、1フレーム(Frame)は、フィールドR(Field-R:赤色フィールド)、フィールドG(Field-G:緑色フィールド)、および、フィールドB(Field-B:青色フィールド)からなる3つのカラーフィールドに分割されている。 In FIG. 1, one frame (Frame) has three colors including a field R (Field-R: red field), a field G (Field-G: green field), and a field B (Field-B: blue field). It is divided into fields.
 画像データは、液晶表示素子の画素に対応づけることができる、R色(赤色)、G色(緑色)およびB色(青色)のそれぞれに対応する画像情報(映像情報)であり、階調を示すデータである。 The image data is image information (video information) corresponding to each of the R color (red), G color (green), and B color (blue) that can be associated with the pixels of the liquid crystal display element. It is the data shown.
 LCDの光透過率は、液晶表示素子における光の透過率を示す。 LCD light transmittance indicates the light transmittance of the liquid crystal display element.
 R色LED光源点灯制御、G色LED光源点灯制御、および、G色LED光源点灯制御は、R色の光を発することができる LED(Light Emitting Diode:発光ダイオード)と、G色の光を発することができる LEDと、B色の光を発することができる LEDと、を具備する光源(照明装置を構成する光源)を用いた、各色のLEDの発光制御である。 R-color LED light source lighting control, G-color LED light source lighting control, and G-color LED light source lighting control emit an R-color light LED (Light Emitting Diode) and a G-color light. This is light emission control of each color LED using a light source (light source constituting a lighting device) including an LED capable of emitting light of B color and an LED capable of emitting light of B color.
 なお、図1は、液晶表示素子(LCD)としてノーマリホワイト(電界を印加しないときに白を表示する構造)の液晶表示素子が用いられた例を示している。 FIG. 1 shows an example in which a normally white liquid crystal display element (structure that displays white when no electric field is applied) is used as the liquid crystal display element (LCD).
 図1中の例(1)は、全面青色(Blue)の画像を表示する場合の動作例である。図1中の例(2)は、全面シアン色(Cyan)の画像を表示する場合の動作例である。 Example (1) in FIG. 1 is an operation example when displaying a blue image on the entire surface. An example (2) in FIG. 1 is an operation example in the case of displaying a full-color cyan image.
 図1に示すように、液晶の光の透過率応答が遅いため、以下の不具合現象が発生する。 As shown in FIG. 1, since the light transmittance response of the liquid crystal is slow, the following malfunction occurs.
 原色の単色が暗くなる(例(1)で、B色LED点灯時に、LCDの光透過率が低いことに起因する)。例(1)のaと例(2)のbは、同じ設定階調レベル100[%]であるが、光の透過率が異なってしまう。また、例(2)のbと例(2)のcは、同じ設定階調レベル100[%]であるが、光の透過率が異なってしまう。 Primary color is dark (example (1) due to low light transmittance of LCD when B color LED is lit). Although a in Example (1) and b in Example (2) have the same set gradation level of 100 [%], the light transmittance is different. Further, b in Example (2) and c in Example (2) have the same set gradation level 100 [%], but the light transmittance is different.
 例(1)および例(2)で示した特徴[1]に起因する不具合は、光の透過率が前フィールドの液晶状態に依存する、つまり、前フィールドの液晶状態が次フィールドの液晶状態に影響することにも起因する。 The defect caused by the feature [1] shown in the example (1) and the example (2) is that the light transmittance depends on the liquid crystal state of the previous field, that is, the liquid crystal state of the previous field changes to the liquid crystal state of the next field. It is also due to the influence.
 次に、特徴[2]は、液晶の応答特性が印加電界によって異なることに起因する。 Next, feature [2] is due to the fact that the response characteristics of the liquid crystal differ depending on the applied electric field.
 例えば、TN(Twisted Nematic)モード液晶の場合、印加電界を強めて液晶の向きを変化させるときと、印加電界を弱めて液晶の粘弾性によって液晶の向きを変化させるときとでは、後者の方が、液晶の応答特性が遅い。 For example, in the case of a TN (Twisted Nematic) mode liquid crystal, when the applied electric field is increased to change the direction of the liquid crystal and when the applied electric field is weakened to change the direction of the liquid crystal due to the viscoelasticity of the liquid crystal, the latter is Liquid crystal response characteristics are slow.
 このため、液晶表示素子がノーマリホワイトの構造の場合、白から黒への変化より、黒から白への変化の方が遅い。このことから、液晶表示素子がノーマリホワイトの構造の場合、特に、暗い画像から明るい画像に変化する際に、動画品質が悪くなる。一方、液晶表示素子がノーマリブラックの構造の場合、特に明るい画像から暗い画像に変化する際に、動画品質が悪くなる。 Therefore, when the liquid crystal display element has a normally white structure, the change from black to white is slower than the change from white to black. For this reason, when the liquid crystal display element has a normally white structure, the moving image quality deteriorates particularly when a dark image changes to a bright image. On the other hand, when the liquid crystal display element has a normally black structure, the moving image quality deteriorates particularly when the light image changes to a dark image.
 また、特徴[2]は、FSC方式では、静止画の品質も悪くする。 Also, feature [2] also deteriorates the quality of still images in the FSC system.
 例えば、FSC方式では、液晶表示素子がノーマリホワイトの場合は、原色の単色は明るくならず、液晶表示素子がノーマリブラックの場合は、原色単色の補色は白っぽくなる。また、FSC方式では、混色かつ有彩色の表示を行う場合、表示色によっては再現困難になってしまう。 For example, in the FSC system, when the liquid crystal display element is normally white, the primary color is not bright, and when the liquid crystal display element is normally black, the complementary color of the primary color is whitish. In addition, in the FSC system, when displaying mixed colors and chromatic colors, it becomes difficult to reproduce depending on the display color.
 液晶表示素子には、 TNモード、 IPS(In-Plane Switching)モード、 VA(Vertically Aligned)モード、 OCB(Optically Compensated Bend)モード、といった液晶モードがある。いずれの場合でも、印加電界によって液晶の向き(ダイレクタ)を変えて複屈折の程度を制御し、液晶内を通過する光の偏光状態が変化させられる。 Liquid crystal display elements include TN mode, IPS (In-Plane Switching) mode, VA (Vertical Aligned) mode, and OCB (Optically Compensated Bend) mode. In either case, the direction of the liquid crystal (director) is changed by the applied electric field to control the degree of birefringence, and the polarization state of the light passing through the liquid crystal can be changed.
 偏光状態の変化の度合いは、光の波長に依存する。したがって、特徴[3]が生じる。特徴[3]が、色再現性をさらに悪化させる要因になる。 The degree of change in the polarization state depends on the wavelength of light. Therefore, feature [3] occurs. Feature [3] is a factor that further deteriorates the color reproducibility.
 液晶表示装置は、画素毎に液晶を制御する。画素を制御する回路は、多くの場合、マトリックス構造になっていて、各画素を、順次に制御する。よって、ある画素に注目すると、その画素は、所定の周期の一部の期間しかアクセスされない。その一部の期間に、液晶を制御する電圧Vが、画素に印加される。 The liquid crystal display device controls the liquid crystal for each pixel. In many cases, the circuit for controlling the pixels has a matrix structure, and sequentially controls each pixel. Therefore, when attention is paid to a certain pixel, the pixel is accessed only during a part of a predetermined period. During the partial period, a voltage V for controlling the liquid crystal is applied to the pixel.
 画素は、容量成分Cを有する。このため、画素に制御電圧Vを印加することによって、画素電極に、制御電圧Vに応じた電荷Qが供給される。 The pixel has a capacitive component C. Therefore, by applying the control voltage V to the pixel, the charge Q corresponding to the control voltage V is supplied to the pixel electrode.
 一般的に次式が成り立つ。 Generally, the following equation holds.
 Q=C×V ...式[1]
 画素の容量Cは、画素の液晶の向き(ダイレクタ)によって変化するという性質を持つ。
Q = C × V. . . Formula [1]
The pixel capacitance C has a property of changing depending on the orientation (director) of the liquid crystal of the pixel.
 もし、液晶の向きの変化が落ち着くまで電圧をかけ続けられる場合、容量が変化すると電荷が供給される。 If the voltage continues to be applied until the change in the liquid crystal orientation has settled, charge is supplied when the capacitance changes.
 ところが、画素にアクセスした期間内に液晶の向きの変化が収束しない場合、電荷の供給が途絶えた後の液晶の向きの変化によって、容量が変化する。したがって、画素内の液晶にかかる電圧が、アクセス時点に印加した電圧から変化してしまう。 However, when the change in the orientation of the liquid crystal does not converge within the period when the pixel is accessed, the capacitance changes due to the change in the orientation of the liquid crystal after the supply of charges is interrupted. Therefore, the voltage applied to the liquid crystal in the pixel changes from the voltage applied at the time of access.
 一回のアクセスで、所望の電荷量を供給できないという課題を解決する方法として、いわゆる、オーバードライブ、という方法が知られている(特許文献1参照)。 A so-called overdrive method is known as a method for solving the problem that a desired charge amount cannot be supplied by one access (see Patent Document 1).
 オーバードライブは、ダイレクタを、どの状態からどの状態へ変化させるかに応じて、所望のダイレクタの状態になったときの電圧とは異なる過度の電圧を画素に印加することによって、所望の電荷量を画素に供給する方法である。 Overdrive applies the desired amount of charge by applying an excessive voltage to the pixel that is different from the voltage when the director is in the desired director state, depending on which state the director is changed from to which state. This is a method of supplying the pixel.
 また、オーバードライブは、液晶の粘弾性による応答の遅さ、つまり、特徴[1]に起因する不具合を改善するという側面もある。 In addition, overdrive also has an aspect of improving the slow response due to the viscoelasticity of the liquid crystal, that is, the defect caused by the feature [1].
 特許文献2には、FSC方式でカラー画像の生成を行い、かつ、色ごとに設けられたレベル補正回路が自回路に対応する色の映像信号を補正する、液晶表示装置が記載されている。 Patent Document 2 describes a liquid crystal display device in which a color image is generated by the FSC method, and a level correction circuit provided for each color corrects a video signal of a color corresponding to the own circuit.
 このレベル補正回路は、光の透過率の応答特性が波長によって異なること、つまり、特徴[3]を補正するために、自己に対応する色の映像信号を補正する。 This level correction circuit corrects the video signal of the color corresponding to itself in order to correct the response characteristic of the light transmittance depending on the wavelength, that is, the feature [3].
 具体的には、特許文献2に記載の液晶表示装置は、レベル補正回路32R、32Gおよび32Bを有する。レベル補正回路32Rは、赤色用映像信号を受け付け、赤色用映像信号を、赤色の応答特性に応じて補正する。レベル補正回路32Gは、緑色用映像信号を受け付け、緑色用映像信号を、緑色の応答特性に応じて補正する。レベル補正回路32Bは、青色用映像信号を受け付け、青色用映像信号を、青色の応答特性に応じて補正する。 Specifically, the liquid crystal display device described in Patent Document 2 includes level correction circuits 32R, 32G, and 32B. The level correction circuit 32R receives the red video signal and corrects the red video signal according to the red response characteristic. The level correction circuit 32G receives the green video signal and corrects the green video signal according to the green response characteristic. The level correction circuit 32B receives the blue video signal and corrects the blue video signal according to the blue response characteristic.
 特許文献3には、FSC方式でカラー画像の生成を行い、かつ、一種のオーバードライブを行う液晶表示装置が記載されている。 Patent Document 3 describes a liquid crystal display device that generates a color image by the FSC method and performs a kind of overdrive.
 この液晶表示装置は、データの一部が削除されていないGおよびBの画像データを用いてRの画像データを補正し、データの一部が削除されていないBおよびRの画像データを用いてGの画像データを補正し、データの一部が削除されていないRおよびGの画像データを用いてBの画像データを補正する。
特開2002-351409号公報 特開2002-148584号公報 特開2006-227458号公報
This liquid crystal display device corrects R image data using G and B image data from which part of the data has not been deleted, and uses B and R image data from which part of the data has not been deleted. G image data is corrected, and B image data is corrected using R and G image data from which part of the data is not deleted.
JP 2002-351409 A JP 2002-148484 A JP 2006-227458 A
 特許文献1には、FSC方式の液晶表示装置でオーバードライブを用いる旨の記載はない。 Patent Document 1 does not mention that overdrive is used in an FSC liquid crystal display device.
 FSC方式の液晶表示装置で特許文献1に示されたようなオーバードライブを適用する場合、ある画素に注目すると、その画素が表示する色は一つではないため、色の切り替え周期であるフィールドの切り替え時の液晶ダイレクタの状態遷移に応じて、オーバードライブが行われることになる。 When an overdrive such as that disclosed in Patent Document 1 is applied to an FSC type liquid crystal display device, attention is paid to a certain pixel, so that the color displayed by the pixel is not one. Overdrive is performed according to the state transition of the liquid crystal director at the time of switching.
 したがって、FSC方式の液晶表示装置でオーバードライブを適用する場合、ある色の映像信号を補正するために、他の色の映像信号を用いる必要がある。 Therefore, when applying overdrive in an FSC liquid crystal display device, it is necessary to use a video signal of another color in order to correct a video signal of a certain color.
 このため、特許文献2に記載のレベル補正回路、具体的には、自回路に対応する色の映像信号のみを受け付け、その色の映像信号を補正するレベル補正回路は、FSC方式の液晶表示装置では、オーバードライブ用の補正回路として使用できない。 For this reason, the level correction circuit described in Patent Document 2, specifically, a level correction circuit that accepts only a video signal of a color corresponding to its own circuit and corrects the video signal of that color is an FSC type liquid crystal display device. Then, it cannot be used as a correction circuit for overdrive.
 特許文献3に記載の液晶表示装置は、FSC方式でカラー画像の生成を行い、また、各色の画像データを、データの一部が削除されていない他の色の画像データを用いて補正している。 The liquid crystal display device described in Patent Document 3 generates a color image by the FSC method, and corrects image data of each color by using image data of other colors from which part of the data is not deleted. Yes.
 しかしながら、特許文献3に記載の液晶表示装置は、1つの色の画像データを、データの一部が削除されていない他の色の画像データを用いて補正するため、補正の際に用いるデータ量が多いという課題があった。 However, since the liquid crystal display device described in Patent Document 3 corrects image data of one color using image data of another color from which part of the data has not been deleted, the amount of data used for correction There was a problem that there were many.
 なお、特許文献1および2には、上記課題が生じるための前提となる技術、具体的には、FSC方式でカラー画像の生成を行い、かつ、1つの色の画像データを、他の色の画像データを用いて補正する技術が、記載されていない。 In Patent Documents 1 and 2, a technology that is a premise for causing the above problem, specifically, a color image is generated by the FSC method, and image data of one color is transferred to another color. A technique for correcting using image data is not described.
 このため、特許文献1および2に記載の技術では、当然のことながら、上記課題、具体的には、1つの色の画像データを、データの一部が削除されていない他の色の画像データを用いて補正するため、補正の際に用いるデータ量が多いという課題は解決されていない。 
 本発明の目的は、上述した課題を解決可能な、液晶表示装置、液晶表示素子の駆動回路、カラー画像生成方法、および、液晶表示素子の駆動方法を提供することにある。
For this reason, in the techniques described in Patent Documents 1 and 2, as a matter of course, the above problem, specifically, image data of one color is replaced with image data of another color from which part of the data is not deleted. The problem that a large amount of data is used for correction has not been solved.
An object of the present invention is to provide a liquid crystal display device, a liquid crystal display element driving circuit, a color image generation method, and a liquid crystal display element driving method capable of solving the above-described problems.
 本発明の液晶表示装置は、複数の色に対応する複数の映像信号と1対1で対応し、かつ、前記複数の映像信号のうち、自己に対応する対応映像信号を受け付けると、前記対応映像信号を補正した補正信号を出力する、複数の補正手段と、前記複数の補正手段のそれぞれから出力された補正信号を、1つずつ順番に出力する出力制御手段と、前記出力制御手段から前記補正信号が出力されるごとに、当該補正信号の元になった映像信号に対応する色の光を発する照射手段と、前記出力制御手段から前記補正信号が出力されるごとに、前記照射手段から発せられた光を、当該補正信号に応じて変調して出力する液晶表示素子と、を含み、前記複数の補正手段の少なくとも1つは、前記対応映像信号と、当該対応映像信号を補正した補正信号の直前または直後に前記出力制御手段から出力される他の補正信号の元になった他の映像信号の一部と、を受け付けると、前記対応映像信号を前記他の映像信号の一部に基づいて補正した補正映像信号を、前記補正信号として出力する。 When the liquid crystal display device of the present invention has a one-to-one correspondence with a plurality of video signals corresponding to a plurality of colors and receives a corresponding video signal corresponding to itself among the plurality of video signals, A plurality of correction means for outputting a correction signal obtained by correcting the signal, an output control means for sequentially outputting the correction signals output from each of the plurality of correction means, and the correction from the output control means. Each time a signal is output, an irradiation unit that emits light of a color corresponding to the video signal that is the source of the correction signal, and each time the correction signal is output from the output control unit, the irradiation unit emits light. A liquid crystal display element that modulates the output light according to the correction signal and outputs the modulated light, and at least one of the plurality of correction means includes the corresponding video signal and a correction signal obtained by correcting the corresponding video signal. Straight Or, immediately after receiving a part of another video signal that is the basis of another correction signal output from the output control means, the corresponding video signal is corrected based on a part of the other video signal. The corrected video signal is output as the correction signal.
 本発明の液晶表示素子の駆動回路は、駆動信号を受け付けると当該駆動信号に対応する色の光を前記駆動信号に応じて変調して出力する液晶表示素子の駆動回路であって、複数の色に対応する複数の映像信号と1対1で対応し、かつ、前記複数の映像信号のうち、自己に対応する対応映像信号を受け付けると、前記対応映像信号を補正した補正信号を出力する、複数の補正手段と、前記複数の補正手段のそれぞれから出力された補正信号を、1つずつ順番に、前記駆動信号として前記液晶表示素子に出力する出力制御手段と、を含み、前記複数の補正手段の少なくとも1つは、前記対応映像信号と、当該対応映像信号を補正した補正信号の直前または直後に前記出力制御手段から出力される他の補正信号の元になった他の映像信号の一部と、を受け付けると、前記対応映像信号を前記他の映像信号の一部に基づいて補正した補正映像信号を、前記補正信号として出力する。 The drive circuit for a liquid crystal display element of the present invention is a drive circuit for a liquid crystal display element that, when receiving a drive signal, modulates and outputs light of a color corresponding to the drive signal in accordance with the drive signal. A plurality of video signals corresponding to the one-to-one correspondence, and when a corresponding video signal corresponding to itself is received among the plurality of video signals, a correction signal obtained by correcting the corresponding video signal is output. A plurality of correction means, and output control means for outputting the correction signals output from each of the plurality of correction means to the liquid crystal display element as the drive signals one by one in order. At least one of the corresponding video signal and a part of another video signal that is a source of another correction signal output from the output control unit immediately before or after the correction signal obtained by correcting the corresponding video signal. When When receiving the, the corrected video signal corrected on the basis of the corresponding image signal to a part of the other video signal is output as the correction signal.
 本発明のカラー画像生成方法は、複数の映像信号に対応する複数の色の画像を順番に表示することにより、カラー画像を表示するFSC方式の液晶表示装置が行うカラー画像生成方法であって、前記複数の映像信号と1対1で対応する複数の補正手段のそれぞれが、前記複数の映像信号のうち、自己に対応する対応映像信号を受け付けると、前記対応映像信号を補正した補正信号を出力し、前記補正信号を、1つずつ順番に出力し、前記補正信号が1つずつ順番に出力されるごとに、当該補正信号の元になった映像信号に対応する色の光を発し、前記補正信号が1つずつ順番に出力されるごとに、前記光を、当該補正信号に応じて変調して出力し、前記複数の補正手段の少なくとも1つが、前記対応映像信号と、当該対応映像信号を補正した補正信号の直前または直後に出力される他の補正信号の元になった他の映像信号の一部と、を受け付けると、前記対応映像信号を前記他の映像信号の一部に基づいて補正した補正映像信号を、前記補正信号として出力する。 The color image generation method of the present invention is a color image generation method performed by an FSC-type liquid crystal display device that displays a color image by sequentially displaying a plurality of color images corresponding to a plurality of video signals, When each of the plurality of correction units corresponding to the plurality of video signals on a one-to-one basis receives a corresponding video signal corresponding to itself among the plurality of video signals, a correction signal obtained by correcting the corresponding video signal is output. The correction signals are sequentially output one by one, and each time the correction signals are sequentially output one by one, light of a color corresponding to the video signal that is the source of the correction signal is emitted, Each time a correction signal is output one by one in sequence, the light is modulated and output according to the correction signal, and at least one of the plurality of correction means includes the corresponding video signal and the corresponding video signal. To correct When receiving a part of another video signal that is the source of another correction signal output immediately before or after the correction signal, the corresponding video signal is corrected based on a part of the other video signal. A corrected video signal is output as the correction signal.
 本発明の液晶表示素子の駆動方法は、駆動信号を受け付けると当該駆動信号に対応する色の光を前記駆動信号に応じて変調して出力する液晶表示素子の駆動方法であって、複数の色に対応する複数の映像信号と1対1で対応する複数の補正手段のそれぞれが、前記複数の映像信号のうち、自己に対応する対応映像信号を受け付けると、前記対応映像信号を補正した補正信号を出力し、前記補正信号を、1つずつ順番に出力し、前記複数の補正手段の少なくとも1つが、前記対応映像信号と、当該対応映像信号を補正した補正信号の直前または直後に出力される他の補正信号の元になった他の映像信号の一部と、を受け付けると、前記対応映像信号を前記他の映像信号の一部に基づいて補正した補正映像信号を、前記補正信号として出力する。 The liquid crystal display element driving method of the present invention is a method for driving a liquid crystal display element that, when receiving a driving signal, modulates and outputs light of a color corresponding to the driving signal in accordance with the driving signal, When each of the plurality of correction means corresponding to the plurality of video signals corresponding to the one receives a corresponding video signal corresponding to itself among the plurality of video signals, a correction signal obtained by correcting the corresponding video signal The correction signals are output one by one in order, and at least one of the plurality of correction means is output immediately before or after the corresponding video signal and the correction signal obtained by correcting the corresponding video signal. When a part of another video signal that is the basis of another correction signal is received, a corrected video signal obtained by correcting the corresponding video signal based on a part of the other video signal is output as the correction signal. Do
 本発明によれば、FSC方式でオーバードライブを行うために複数の色に対応する映像信号の補正信号を生成する際に使用するデータ量を少なくすることが可能になり、回路規模を低減することができる。 According to the present invention, it is possible to reduce the amount of data used when generating a correction signal of a video signal corresponding to a plurality of colors in order to perform overdrive by the FSC method, thereby reducing the circuit scale. Can do.
FSC方式での不具合現象を説明するための説明図である。It is explanatory drawing for demonstrating the malfunction phenomenon in a FSC system. 本発明の第1の実施の形態の液晶表示装置1を示したブロック図である。1 is a block diagram illustrating a liquid crystal display device 1 according to a first embodiment of the present invention. 色補正部3の一例を示したブロック図である。3 is a block diagram illustrating an example of a color correction unit 3. FIG. 図2に示した色補正部3の他の例である色補正部3Aを示したブロック図である。FIG. 6 is a block diagram showing a color correction unit 3A, which is another example of the color correction unit 3 shown in FIG. 図2に示した色補正部3のさらに他の例である色補正部3Bを示したブロック図である。It is the block diagram which showed the color correction part 3B which is another example of the color correction part 3 shown in FIG. 図2に示した色補正部3のさらに他の例である色補正部3Cを示したブロック図である。FIG. 11 is a block diagram showing a color correction unit 3C, which is still another example of the color correction unit 3 shown in FIG. 本発明の第2の実施の形態の液晶表示装置1Aを示したブロック図である。It is the block diagram which showed liquid crystal display device 1A of the 2nd Embodiment of this invention. 本発明の第3の実施の形態の要部を示したブロック図である。It is the block diagram which showed the principal part of the 3rd Embodiment of this invention. 本発明の第4の実施の形態の要部を示したブロック図である。It is the block diagram which showed the principal part of the 4th Embodiment of this invention. 本発明の第5の実施の形態の要部を示したブロック図である。It is the block diagram which showed the principal part of the 5th Embodiment of this invention.
符号の説明Explanation of symbols
 1、1A 液晶表示装置
 2 液晶表示素子
 3、3A、3B、3C、31、32、33、34 色補正部
 3R1、3R2、3R3、3R4、3R5、3R6 R色補正LUT格納部
 3G1、3G2、3G3、3G4、3G5、3G6 G色補正LUT格納部
 3B1、3B2、3B3、3B4、3B5、3B6 B色補正LUT格納部
 3M4 M色補正LUT格納部
 3Y4 Y色補正LUT格納部
 34a フレームバッファ
 4 データ並べ替え部
 4a フレームメモリ
 4b メモリ制御部
 5 照射部
 5a、5aA 照明部
 5b タイミング制御部
 6 出力制御部
 7 V-T特性補正部
 8 色変換部
1, 1A Liquid crystal display device 2 Liquid crystal display element 3, 3A, 3B, 3C, 31, 32, 33, 34 Color correction unit 3R1, 3R2, 3R3, 3R4, 3R5, 3R6 R color correction LUT storage unit 3G1, 3G2, 3G3 3G4, 3G5, 3G6 G color correction LUT storage unit 3B1, 3B2, 3B3, 3B4, 3B5, 3B6 B color correction LUT storage unit 3M4 M color correction LUT storage unit 3Y4 Y color correction LUT storage unit 34a Frame buffer 4 Data rearrangement 4a Frame memory 4b Memory control unit 5 Irradiation unit 5a, 5aA Illumination unit 5b Timing control unit 6 Output control unit 7 VT characteristic correction unit 8 Color conversion unit
 以下、本発明の実施の形態について図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 [第1の実施の形態]
 図2は、本発明の第1の実施の形態の液晶表示装置1を示したブロック図である。
[First Embodiment]
FIG. 2 is a block diagram showing the liquid crystal display device 1 according to the first embodiment of the present invention.
 図2において、液晶表示装置1は、液晶表示素子2と、色補正部3と、データ並べ替え部4と、照射部5と、を含む。データ並べ替え部4は、フレームメモリ(Frame Memory)4aと、メモリ制御部4bと、を含む。照射部5は、照明部5aと、タイミング制御部5bと、を含む。 2, the liquid crystal display device 1 includes a liquid crystal display element 2, a color correction unit 3, a data rearrangement unit 4, and an irradiation unit 5. The data rearrangement unit 4 includes a frame memory 4a and a memory control unit 4b. The irradiation unit 5 includes an illumination unit 5a and a timing control unit 5b.
 液晶表示装置1は、複数の色のそれぞれに1対1で対応する複数の映像信号(以下、単に「複数の映像信号」と称する)を受け付ける。 The liquid crystal display device 1 receives a plurality of video signals corresponding to each of a plurality of colors on a one-to-one basis (hereinafter simply referred to as “a plurality of video signals”).
 液晶表示装置1は、複数の映像信号に対応する複数の色の画像を順番に表示することにより、カラー画像を表示するFSC方式の液晶表示装置である。 The liquid crystal display device 1 is an FSC liquid crystal display device that displays a color image by sequentially displaying a plurality of color images corresponding to a plurality of video signals.
 液晶表示素子2は、複数の画素を有する。液晶表示素子2は、駆動信号を受け付けると、複数の画素を用いて、その駆動信号に応じて、自己に照射された光を変調し、画像を形成する光を出力する。 The liquid crystal display element 2 has a plurality of pixels. When the liquid crystal display element 2 receives the drive signal, the liquid crystal display element 2 uses a plurality of pixels, modulates the light applied to the liquid crystal display element 2 according to the drive signal, and outputs light for forming an image.
 なお、液晶表示装置1がプロジェクタ(投写型表示装置)である場合、液晶表示素子2にて変調されて出力された光は、投写光学系(不図示)によって拡大され、スクリーン(不図示)に投写される。また、液晶表示装置1が直視型表示装置である場合、液晶表示素子2にて変調されて出力された光は、使用者の目に到達する。 When the liquid crystal display device 1 is a projector (projection display device), the light modulated and output by the liquid crystal display element 2 is magnified by a projection optical system (not shown) and is applied to a screen (not shown). Projected. When the liquid crystal display device 1 is a direct view display device, the light modulated and output by the liquid crystal display element 2 reaches the eyes of the user.
 色補正部3は、 入力フレームの同期タイミングを示すタイミング信号に同期した複数の色の映像信号を入力し、複数の色のそれぞれに1対1で対応する複数の補正信号を出力する。 The color correction unit 3 inputs video signals of a plurality of colors synchronized with a timing signal indicating the synchronization timing of the input frame, and outputs a plurality of correction signals corresponding to the plurality of colors on a one-to-one basis.
 本実施形態では、色補正部3は、1フレーム期間ごとに発生するタイミング信号を受け付けるたびに、複数の映像信号を受け付け、その複数の映像信号のそれぞれに1対1で対応する複数の補正信号を出力する。 In the present embodiment, the color correction unit 3 receives a plurality of video signals each time a timing signal generated every frame period is received, and a plurality of correction signals corresponding one-to-one to the plurality of video signals. Is output.
 本実施形態では、色補正部3は、複数の映像信号として、赤色に対応するR色映像信号(映像信号(R))と、緑色に対応するG色映像信号(映像信号(G))と、青色に対応するB色映像信号(映像信号(B))と、を受け付ける。 In the present embodiment, the color correction unit 3 includes, as a plurality of video signals, an R color video signal (video signal (R)) corresponding to red and a G color video signal (video signal (G)) corresponding to green. And a B color video signal (video signal (B)) corresponding to blue.
 R色映像信号とG色映像信号とB色映像信号のそれぞれは、8bit(ビット)の信号である。なお、R色映像信号とG色映像信号とB色映像信号のそれぞれのbit数は、8bitに限らず適宜変更可能である。 Each of the R color video signal, G color video signal, and B color video signal is an 8-bit signal. Note that the number of bits of each of the R color video signal, the G color video signal, and the B color video signal is not limited to 8 bits and can be changed as appropriate.
 また、色補正部3は、複数の補正信号として、赤色に対応するR色補正信号と、緑色に対応するG色補正信号と、青色に対応するB色補正信号と、を出力する。色補正部3は、R色映像信号を元にしてR色補正信号を生成し、G色映像信号を元にしてG色補正信号を生成し、B色映像信号を元にしてB色補正信号を生成する。 The color correction unit 3 outputs an R color correction signal corresponding to red, a G color correction signal corresponding to green, and a B color correction signal corresponding to blue as a plurality of correction signals. The color correction unit 3 generates an R color correction signal based on the R color video signal, generates a G color correction signal based on the G color video signal, and generates a B color correction signal based on the B color video signal. Is generated.
 R色補正信号とG色補正信号とB色補正信号のそれぞれは、10bitの信号である。なお、R色補正信号とG色補正信号とB色補正信号のそれぞれのbit数は、10bitに限らず適宜変更可能である。 Each of the R color correction signal, G color correction signal, and B color correction signal is a 10-bit signal. The number of bits of each of the R color correction signal, the G color correction signal, and the B color correction signal is not limited to 10 bits, and can be changed as appropriate.
 色補正部3の働きは、FSC方式においてオーバードライブを適用することと、液晶表示素子2における印加電圧(駆動電圧)と光の透過率との関係を表すV-T特性に基づいて、印加電圧(駆動電圧)の補正を行うこと、の2つである。 The function of the color correction unit 3 is based on the application of overdrive in the FSC system and the applied voltage based on the VT characteristic representing the relationship between the applied voltage (drive voltage) and the light transmittance in the liquid crystal display element 2. (Drive voltage) is corrected.
 本実施形態では、非線形なV-T特性に基づく補正を行いつつ、階調再現性を低下させないようにするために、色補正部3の出力bit数は、色補正部3の入力bit数よりも多くしてある。 In the present embodiment, the number of output bits of the color correction unit 3 is smaller than the number of input bits of the color correction unit 3 in order to prevent the gradation reproducibility from being deteriorated while performing correction based on nonlinear VT characteristics. There are also many.
 データ並べ替え部4は、一般的に出力制御手段と呼ぶことができる。 The data rearrangement unit 4 can be generally called output control means.
 データ並べ替え部4は、色補正部3が出力した複数の補正信号を、1つずつ順番に、駆動信号として、液晶表示素子2に出力する。 The data rearrangement unit 4 outputs the plurality of correction signals output from the color correction unit 3 to the liquid crystal display element 2 one by one as a drive signal.
 本実施形態では、データ並べ替え部4は、R色補正信号とG色補正信号とB色補正信号を、R色補正信号、G色補正信号、B色補正信号の順番で、駆動信号として、液晶表示素子2に出力する。なお、この順番は適宜変更可能である。 In this embodiment, the data rearrangement unit 4 uses the R color correction signal, the G color correction signal, and the B color correction signal as drive signals in the order of the R color correction signal, the G color correction signal, and the B color correction signal. Output to the liquid crystal display element 2. This order can be changed as appropriate.
 フレームメモリ4aは、映像信号として機能する複数の補正信号を並べ替えるためのバッファとして用いられる。 The frame memory 4a is used as a buffer for rearranging a plurality of correction signals functioning as video signals.
 メモリ制御部4bは、色補正部3が出力した複数の補正信号を、フレームメモリ4a上で、液晶表示素子2への出力順に並べ替える。 The memory control unit 4b rearranges the plurality of correction signals output from the color correction unit 3 in the order of output to the liquid crystal display element 2 on the frame memory 4a.
 本実施形態では、メモリ制御部4bは、R色補正信号とG色補正信号とB色補正信号とを、フレームメモリ4a上で、R色補正信号、G色補正信号、B色補正信号の順に並べ替える。 In this embodiment, the memory control unit 4b performs the R color correction signal, the G color correction signal, and the B color correction signal in the order of the R color correction signal, the G color correction signal, and the B color correction signal on the frame memory 4a. Rearrange.
 メモリ制御部4bは、フレームメモリ4a上の、R色補正信号、G色補正信号およびB色補正信号を、その並び順で、1つずつ順番に、駆動信号として、液晶表示素子2に出力する。 The memory control unit 4b outputs the R color correction signal, the G color correction signal, and the B color correction signal on the frame memory 4a to the liquid crystal display element 2 as drive signals one by one in the arrangement order. .
 照射部5は、一般的に照射手段と呼ぶことができる。 The irradiation unit 5 can be generally called irradiation means.
 照射部5は、色補正部3から出力された複数の補正信号のいずれかが、駆動信号として液晶表示素子2へ出力されるごとに、液晶表示素子2へ出力された補正信号の元になった映像信号に対応する色の光を、液晶表示素子2に照射する。ただし、照射部5は、光を照射するタイミング(期間と位相)を、液晶表示素子2に駆動信号が出力されてからの光透過率の応答の程度を考慮して調整する。 The irradiating unit 5 becomes a source of the correction signal output to the liquid crystal display element 2 every time one of the plurality of correction signals output from the color correction unit 3 is output to the liquid crystal display element 2 as a drive signal. The liquid crystal display element 2 is irradiated with light of a color corresponding to the received video signal. However, the irradiation unit 5 adjusts the light irradiation timing (period and phase) in consideration of the response of the light transmittance after the drive signal is output to the liquid crystal display element 2.
 照明部5aは、赤色の光を発するR色LEDと、緑色の光を発するG色LEDと、青色の光を発するB色LEDと、を含む。 The illumination unit 5a includes an R color LED that emits red light, a G color LED that emits green light, and a B color LED that emits blue light.
 タイミング制御部5bは、入力フレームの同期タイミング(以下「入力フレーム同期タイミング」と称する)を示すタイミング信号を入力し、1フレーム期間を3つのカラーフィールド期間に分割した出力フィールドの同期タイミング(以下「出力フィールド同期タイミング」と称する)を示すタイミング信号を生成する。なお、本実施形態では、入力フレーム同期タイミングと出力フィールド同期タイミングとは同期しているが、非同期であってもかまわない。 The timing control unit 5b receives a timing signal indicating the synchronization timing of the input frame (hereinafter referred to as “input frame synchronization timing”), and outputs the synchronization timing of the output field (hereinafter referred to as “color frame period”). A timing signal indicating "output field synchronization timing" is generated. In the present embodiment, the input frame synchronization timing and the output field synchronization timing are synchronized, but they may be asynchronous.
 データ並べ替え部4では、タイミング制御部5bからの2種類(不図示)のタイミング信号(入力フレーム同期タイミングを示すタイミング信号と出力フィールド同期タイミングを示すタイミング信号)によって、メモリ制御部4bは、入力フレーム同期タイミングに同期してフレームメモリ4aへの書込みを制御し、出力フィールド同期タイミングに同期してフレームメモリ4aからの読出しを制御する。そして、メモリ制御部4bは、フレームメモリ4a上の、R色補正信号、G色補正信号およびB色補正信号を、その並び順で、1つずつ順番に、駆動信号として、液晶表示素子2に出力する。 In the data rearrangement unit 4, the memory control unit 4 b receives the two types (not shown) of timing signals (a timing signal indicating the input frame synchronization timing and a timing signal indicating the output field synchronization timing) from the timing control unit 5 b. Writing to the frame memory 4a is controlled in synchronization with the frame synchronization timing, and reading from the frame memory 4a is controlled in synchronization with the output field synchronization timing. Then, the memory control unit 4b applies the R color correction signal, the G color correction signal, and the B color correction signal on the frame memory 4a to the liquid crystal display element 2 as drive signals one by one in the arrangement order. Output.
 液晶表示素子2は、タイミング制御部5bからのタイミング信号によって、出力フィールド同期タイミングに同期してデータ並べ替え部4から順次出力されたR色補正信号、G色補正信号およびB色補正信号を順次入力する。そして、液晶表示素子2は、色毎に順次に各色補正信号に応じて各画素の液晶の向き(ダイレクタ)を制御し、色毎に順次に照射された各色光を変調して、各色の画像を形成する光を順次生成する。 The liquid crystal display element 2 sequentially receives the R color correction signal, the G color correction signal, and the B color correction signal sequentially output from the data rearrangement unit 4 in synchronization with the output field synchronization timing by the timing signal from the timing control unit 5b. input. Then, the liquid crystal display element 2 sequentially controls the liquid crystal orientation (director) of each pixel in accordance with each color correction signal for each color, modulates each color light sequentially irradiated for each color, and outputs an image of each color. Are sequentially generated.
 照明部5aは、タイミング制御部5bからのタイミング信号によって、出力フィールド同期タイミングに同期して、R色LEDと、G色LEDと、B色LEDとを、この順番で1つずつ点灯する。 The illumination unit 5a lights up the R color LED, the G color LED, and the B color LED one by one in this order in synchronization with the output field synchronization timing by the timing signal from the timing control unit 5b.
 このため、本実施形態では、液晶表示装置1は、以下のように動作する。 Therefore, in this embodiment, the liquid crystal display device 1 operates as follows.
 液晶表示素子2がR色補正信号に応じた画像を形成している際に、照明部5aが、R色LEDを点灯して液晶表示素子2をR色の光で照射する。 When the liquid crystal display element 2 is forming an image corresponding to the R color correction signal, the illumination unit 5a turns on the R color LED and irradiates the liquid crystal display element 2 with the R color light.
 その後、液晶表示素子2がG色補正信号に応じた画像を形成している際に、照明部5aが、G色LEDを点灯して液晶表示素子2をG色の光で照射する。 Thereafter, when the liquid crystal display element 2 is forming an image corresponding to the G color correction signal, the illumination unit 5a turns on the G color LED and irradiates the liquid crystal display element 2 with the G color light.
 その後、液晶表示素子2がB色補正信号に応じた画像を形成している際に、照明部5aが、B色LEDを点灯して液晶表示素子2をB色の光で照射する。 Thereafter, when the liquid crystal display element 2 forms an image corresponding to the B color correction signal, the illumination unit 5a turns on the B color LED and irradiates the liquid crystal display element 2 with B color light.
 図3は、色補正部3の一例を示したブロック図である。 FIG. 3 is a block diagram illustrating an example of the color correction unit 3.
 図3において、色補正部3は、入力bit数が24bit、出力bit数が30bit(RGB各10bit)である。 In FIG. 3, the color correction unit 3 has an input bit number of 24 bits and an output bit number of 30 bits (RGB each 10 bits).
 色補正部3は、R色補正LUT(Look-up Table、参照テーブル)格納部3R1と、G色補正LUT格納部3G1と、B色補正LUT格納部3B1と、を含む。 The color correction unit 3 includes an R color correction LUT (Look-up Table) storage unit 3R1, a G color correction LUT storage unit 3G1, and a B color correction LUT storage unit 3B1.
 R色補正LUT格納部3R1とG色補正LUT格納部3G1とB色補正LUT格納部3B1とのそれぞれは、一般的に補正手段または格納手段と呼ぶことができる。このため、色補正部3は、複数の補正手段(格納手段)を有することになる。 Each of the R color correction LUT storage unit 3R1, the G color correction LUT storage unit 3G1, and the B color correction LUT storage unit 3B1 can be generally referred to as correction means or storage means. For this reason, the color correction unit 3 includes a plurality of correction means (storage means).
 本実施形態では、R色補正LUT格納部3R1とG色補正LUT格納部3G1とB色補正LUT格納部3B1とのそれぞれは、入力bit数が12bitであり、出力bit数が10bitである。 In this embodiment, each of the R color correction LUT storage unit 3R1, the G color correction LUT storage unit 3G1, and the B color correction LUT storage unit 3B1 has an input bit number of 12 bits and an output bit number of 10 bits.
 R色補正LUT格納部3R1は、R色映像信号と1対1で対応する。 The R color correction LUT storage unit 3R1 corresponds to the R color video signal on a one-to-one basis.
 R色補正LUT格納部3R1は、複数の映像信号のうち、自己に対応するR色映像信号(対応映像信号)と、B色映像信号(他の映像信号)の少なくとも一部と、を受け付けると、R色映像信号をB色映像信号の少なくとも一部に基づいて補正したR色補正信号を出力する。 When the R color correction LUT storage unit 3R1 receives an R color video signal (corresponding video signal) corresponding to itself and at least a part of the B color video signal (other video signals) among the plurality of video signals. The R color correction signal obtained by correcting the R color video signal based on at least a part of the B color video signal is output.
 なお、B色映像信号は、R色映像信号を補正したR色補正信号の直前に、データ並べ替え部4から出力されるB色補正信号(他の補正信号)の元になった映像信号である。 The B color video signal is a video signal that is the source of the B color correction signal (other correction signal) output from the data rearrangement unit 4 immediately before the R color correction signal obtained by correcting the R color video signal. is there.
 本実施形態では、R色補正LUT格納部3R1は、B色映像信号の上位4bitと、R色映像信号の全8bitと、を入力して、10bitのR色補正信号を出力する。 In this embodiment, the R color correction LUT storage unit 3R1 inputs the upper 4 bits of the B color video signal and all 8 bits of the R color video signal, and outputs a 10 bit R color correction signal.
 例えば、R色補正LUT格納部3R1は、B色映像信号の上位4bitおよびR色映像信号の全8bitと、R色映像信号の全8bitをB色映像信号の上位4bitに基づいて補正したR色補正映像信号と、を互いに関連づけて格納するLUTを格納する。 For example, the R color correction LUT storage unit 3R1 corrects the upper 4 bits of the B color video signal, all 8 bits of the R color video signal, and all 8 bits of the R color video signal based on the upper 4 bits of the B color video signal. The LUT that stores the corrected video signal in association with each other is stored.
 R色補正LUT格納部3R1は、B色映像信号の上位4bitおよびR色映像信号の全8bitを受け付けると、B色映像信号の上位4bitおよびR色映像信号の全8bitに関連づけられたR色補正映像信号を、R色補正信号として出力する。 When the R color correction LUT storage unit 3R1 receives the upper 4 bits of the B color video signal and all 8 bits of the R color video signal, the R color correction associated with the upper 4 bits of the B color video signal and the 8 bits of the R color video signal. The video signal is output as an R color correction signal.
 ここで、R色補正映像信号の設定方法の一例を説明する。 Here, an example of the setting method of the R color correction video signal will be described.
 色再現性は、液晶ダイレクタが所望の状態にいかに速く移行するかによるが、液晶ダイレクタの変化は遅いため、液晶ダイレクタの制御直前の状態がどうであるかも影響する。 The color reproducibility depends on how quickly the liquid crystal director shifts to a desired state, but since the change of the liquid crystal director is slow, it also affects how the state immediately before the liquid crystal director is controlled.
 したがって、R色再現性は、R色の直前の液晶ダイレクタの状態に関係する前フィールドのB色映像信号を用いることで改善することができる。 Therefore, the R color reproducibility can be improved by using the B color video signal of the previous field related to the state of the liquid crystal director immediately before the R color.
 例えば、B色映像信号の階調レベルが10%、R色映像信号の階調レベルが50%の状況で、R色補正映像信号を設定する際、R色補正映像信号の階調レベルを、B色映像信号の階調レベル10%に基づいて、R色映像信号の階調レベル50%よりも過度の70%に設定すれば、液晶ダイレクタの状態を、より速く所望の状態に近づけることができる。 For example, when setting the R color correction video signal in the situation where the gradation level of the B color video signal is 10% and the gradation level of the R color video signal is 50%, the gradation level of the R color correction video signal is Based on the gradation level of 10% of the B color video signal, if it is set to 70%, which is excessively higher than the gradation level of 50% of the R color video signal, the state of the liquid crystal director can be brought closer to the desired state more quickly. it can.
 よって、B色映像信号の階調レベルが10%、R色映像信号の階調レベルが50%の状況のときに、階調レベルが70%に設定されたR色補正映像信号が出力されるように、R色補正LUT格納部3R1が設定されれば、FSC方式において、オーバードライブを適用することができる。 Therefore, when the gradation level of the B color video signal is 10% and the gradation level of the R color video signal is 50%, the R color corrected video signal with the gradation level set to 70% is output. As described above, if the R color correction LUT storage unit 3R1 is set, overdrive can be applied in the FSC method.
 また、例えば、B色映像信号の階調レベルが90%、R色映像信号の階調レベルが50%の状況で、R色補正映像信号を設定する際、R色補正映像信号の階調レベルを、B色映像信号の階調レベル90%からみて、R色映像信号の階調レベル50%よりも過度のレベルの45%に設定すれば、液晶ダイレクタの状態を、より速く所望の状態に近づけることができる。 Also, for example, when setting the R color correction video signal when the gradation level of the B color video signal is 90% and the gradation level of the R color video signal is 50%, the gradation level of the R color correction video signal is set. Is set to 45%, which is an excessive level from the gradation level of 50% of the R color video signal when viewed from the gradation level of the B color video signal of 90%, and the liquid crystal director state is changed to a desired state faster. You can get closer.
 よって、B色映像信号の階調レベルが90%、R色映像信号の階調レベルが50%の状況のときに、階調レベルが45%に設定されたR色補正映像信号が出力されるように、R色補正LUT格納部3R1が設定されれば、FSC方式において、オーバードライブを適用することができる。 Therefore, when the gradation level of the B color video signal is 90% and the gradation level of the R color video signal is 50%, the R color corrected video signal with the gradation level set to 45% is output. As described above, if the R color correction LUT storage unit 3R1 is set, overdrive can be applied in the FSC method.
 なお、ノーマリホワイト構造の液晶表示素子の場合、光透過率の応答は、黒(階調レベル小)から白(階調レベル大)への変化より白から黒への変化の方が速いなど、液晶の状態の履歴によって応答速度が異なるので、このことを考慮してオーバードライブの程度は調節される。 In the case of a normally white liquid crystal display element, the response of light transmittance is faster when changing from white to black than when changing from black (small gradation level) to white (high gradation level). Since the response speed varies depending on the history of the liquid crystal state, the degree of overdrive is adjusted in consideration of this.
 本実施形態では、B色映像信号の階調レベルとR色映像信号の階調レベルとの関係に基づいて、R色映像信号の階調レベルを補正することによって、オーバードライブを実行するためのR色補正映像信号が設定され、そのR色補正映像信号が、R色補正LUT格納部3R1に格納される。 In the present embodiment, overdrive is performed by correcting the gradation level of the R color video signal based on the relationship between the gradation level of the B color video signal and the gradation level of the R color video signal. The R color correction video signal is set, and the R color correction video signal is stored in the R color correction LUT storage unit 3R1.
 なお、補正の際に、前フィールドの色の映像信号のbit数を削減することは、本実施形態の1つの特徴である。この特徴は、前フィールドの色の映像信号の影響の精度は、自色の映像信号の影響の精度よりも粗い、という現象を考慮して得られたものである。 Note that reducing the number of bits of the video signal of the color of the previous field at the time of correction is one feature of the present embodiment. This feature is obtained in consideration of the phenomenon that the accuracy of the influence of the video signal of the previous field color is coarser than the accuracy of the influence of the self-color video signal.
 このため、補正の際に、前フィールドの色の映像信号のbit数を削減でき、補正に必要な情報量を少なくすることが可能になる。 For this reason, the number of bits of the video signal of the color of the previous field can be reduced at the time of correction, and the amount of information necessary for correction can be reduced.
 G色補正LUT格納部3G1は、G色映像信号と1対1で対応する。 The G color correction LUT storage unit 3G1 corresponds to the G color video signal on a one-to-one basis.
 なお、G色補正LUT格納部3G1についての詳しい説明は、上述したR色補正LUT格納部3R1の説明のうち、「R色補正LUT格納部3R1」を「G色補正LUT格納部3G1」に読み替え、対応映像信号を「R色映像信号」から「G色映像信号」に読み替え、他の映像信号を「B色映像信号」から「R色映像信号」に読み替え、「R色補正信号」を「G色補正信号」に読み替え、「R色補正映像信号」を「G色補正映像信号」に読み替えることによって行うことができる。 For the detailed description of the G color correction LUT storage unit 3G1, in the above description of the R color correction LUT storage unit 3R1, “R color correction LUT storage unit 3R1” is replaced with “G color correction LUT storage unit 3G1”. , Read the corresponding video signal from "R color video signal" to "G color video signal", read the other video signal from "B color video signal" to "R color video signal", and change "R color correction signal" to " This can be done by replacing it with “G color correction signal” and replacing “R color correction video signal” with “G color correction video signal”.
 B色補正LUT格納部3B1は、B色映像信号と1対1で対応する。 The B color correction LUT storage unit 3B1 corresponds to the B color video signal on a one-to-one basis.
 なお、B色補正LUT格納部3B1についての詳しい説明は、上述したR色補正LUT格納部3R1の説明のうち、「R色補正LUT格納部3R1」を「B色補正LUT格納部3B1」に読み替え、対応映像信号を「R色映像信号」から「B色映像信号」に読み替え、他の映像信号を「B色映像信号」から「G色映像信号」に読み替え、「R色補正信号」を「B色補正信号」に読み替え、「R色補正映像信号」を「B色補正映像信号」に読み替えることによって行うことができる。 For the detailed description of the B color correction LUT storage unit 3B1, in the above description of the R color correction LUT storage unit 3R1, “R color correction LUT storage unit 3R1” is replaced with “B color correction LUT storage unit 3B1”. , Read the corresponding video signal from "R color video signal" to "B color video signal", read the other video signal from "B color video signal" to "G color video signal", and change "R color correction signal" to " This can be done by replacing it with “B color correction signal” and replacing “R color correction video signal” with “B color correction video signal”.
 なお、各LUT格納部3R1、3G1および3B1をRAM(Random Access Memory)を用いて構成する場合、入力される映像信号の計12bitをRAMのアドレスとし、RAM内のデータを、補正映像信号10bitとする。 When each of the LUT storage units 3R1, 3G1, and 3B1 is configured using a RAM (Random Access Memory), the total 12 bits of the input video signal is the RAM address, and the data in the RAM is the corrected video signal 10 bits. To do.
 RAMに補正映像信号を保存することによって、入力映像信号に応じて補正された対応映像信号である補正信号を出力することができる。 By storing the corrected video signal in the RAM, it is possible to output a correction signal that is a corresponding video signal corrected according to the input video signal.
 図3に示す例では、色補正部3のメモリサイズは、(2^12)×10bit×3=120kbit(なお、1kbit=(2^10)bitとする)となり、実用的なサイズまで小さくできる。 In the example shown in FIG. 3, the memory size of the color correction unit 3 is (2 ^ 12) × 10 bits × 3 = 120 kbit (note that 1 kbit = (2 ^ 10) bits), which can be reduced to a practical size. .
 一方、例えば、色補正部3の中に3つのLUT格納部を設けない場合、具体的には、色補正部3が、入力が24bitであり出力が30bitであるメモリである場合、色補正部3のメモリサイズは、(2^24)×30bit=480Mbit(なお、1Mbit=(2^20)bitとする)となり、図3に示す例に比べてかなり大きい。 On the other hand, for example, when three LUT storage units are not provided in the color correction unit 3, specifically, when the color correction unit 3 is a memory having an input of 24 bits and an output of 30 bits, the color correction unit The memory size of 3 is (2 ^ 24) × 30 bits = 480 Mbit (note that 1 Mbit = (2 ^ 20) bits), which is considerably larger than the example shown in FIG.
 次に、動作を説明する。 Next, the operation will be described.
 色補正部3では、R色補正LUT格納部3R1は、入力フレーム同期タイミングを示すタイミング信号に同期して、B色映像信号の上位4bitおよびR色映像信号の全8bitを受け付け、B色映像信号の上位4bitおよびR色映像信号の全8bitに関連づけられたR色補正映像信号を、R色補正信号として、メモリ制御部4bに出力する。 In the color correction unit 3, the R color correction LUT storage unit 3R1 receives the upper 4 bits of the B color video signal and all 8 bits of the R color video signal in synchronization with the timing signal indicating the input frame synchronization timing, and receives the B color video signal. The R color correction video signal associated with the upper 4 bits and the 8 bits of the R color video signal are output to the memory control unit 4b as the R color correction signal.
 また、G色補正LUT格納部3G1は、入力フレーム同期タイミングを示すタイミング信号に同期して、R色映像信号の上位4bitおよびG色映像信号の全8bitを受け付け、R色映像信号の上位4bitおよびG色映像信号の全8bitに関連づけられたG色補正映像信号を、G色補正信号として、メモリ制御部4bに出力する。 The G color correction LUT storage unit 3G1 receives the upper 4 bits of the R color video signal and all 8 bits of the G color video signal in synchronization with the timing signal indicating the input frame synchronization timing, and receives the upper 4 bits of the R color video signal. The G color correction video signal associated with all 8 bits of the G color video signal is output to the memory control unit 4b as the G color correction signal.
 また、B色補正LUT格納部3B1は、入力フレーム同期タイミングを示すタイミング信号に同期して、G色映像信号の上位4bitおよびB色映像信号の全8bitを受け付け、G色映像信号の上位4bitおよびB色映像信号の全8bitに関連づけられたB色補正映像信号を、B色補正信号として、メモリ制御部4bに出力する。 The B color correction LUT storage unit 3B1 receives the upper 4 bits of the G color video signal and all 8 bits of the B color video signal in synchronization with the timing signal indicating the input frame synchronization timing, and receives the upper 4 bits of the G color video signal. The B color correction video signal associated with all 8 bits of the B color video signal is output to the memory control unit 4b as the B color correction signal.
 メモリ制御部4bは、R色補正信号とG色補正信号とB色補正信号とを受け付けると、R色補正信号とG色補正信号とB色補正信号とを、フレームメモリ4a上で、R色補正信号、G色補正信号、B色補正信号の順に並べ替える。 When the memory control unit 4b receives the R color correction signal, the G color correction signal, and the B color correction signal, the memory control unit 4b converts the R color correction signal, the G color correction signal, and the B color correction signal into the R color on the frame memory 4a. The correction signal, the G color correction signal, and the B color correction signal are rearranged in this order.
 一方、タイミング制御部5bは、入力フレーム同期タイミングを示すタイミング信号を入力し、1フレーム期間を3つのカラーフィールド期間に分割した出力フィールド同期タイミングを示すタイミング信号を生成し、データ並べ替え部4と、液晶表示素子2と、照明部5aと、に出力する。 On the other hand, the timing control unit 5b receives a timing signal indicating the input frame synchronization timing, generates a timing signal indicating the output field synchronization timing obtained by dividing one frame period into three color field periods, and the data rearrangement unit 4 To the liquid crystal display element 2 and the illumination unit 5a.
 データ並べ替え部4では、タイミング制御部5bからの2種類のタイミング信号(入力フレーム同期タイミングを示すタイミング信号と出力フィールド同期タイミングを示すタイミング信号)によって、メモリ制御部4bは、入力フレーム同期タイミングに同期してフレームメモリ4aへの書込みを制御し、出力フィールド同期タイミングに同期してフレームメモリ4aからの読出しを制御する。そして、フレームメモリ4a上の、R色補正信号、G色補正信号およびB色補正信号を、その並び順で、1つずつ順番に、駆動信号として、液晶表示素子2に出力する。 In the data rearrangement unit 4, the memory control unit 4b uses the two types of timing signals (a timing signal indicating the input frame synchronization timing and a timing signal indicating the output field synchronization timing) from the timing control unit 5b to change the input frame synchronization timing. The writing to the frame memory 4a is controlled in synchronization, and the reading from the frame memory 4a is controlled in synchronization with the output field synchronization timing. Then, the R color correction signal, the G color correction signal, and the B color correction signal on the frame memory 4a are output to the liquid crystal display element 2 as drive signals one by one in the arrangement order.
 液晶表示素子2は、タイミング制御部5bからのタイミング信号によって、出力フィールド同期タイミングに同期してデータ並べ替え部4から順次出力されたR色補正信号、G色補正信号およびB色補正信号を入力する。そして、液晶表示素子2は、色毎に順次に各色補正信号に応じて各画素の液晶の向き(ダイレクタ)を制御し、色毎に順次に照射された各色光を変調して、各色の画像を形成する光を順次生成する。 The liquid crystal display element 2 receives the R color correction signal, the G color correction signal, and the B color correction signal sequentially output from the data rearrangement unit 4 in synchronization with the output field synchronization timing by the timing signal from the timing control unit 5b. To do. Then, the liquid crystal display element 2 sequentially controls the liquid crystal orientation (director) of each pixel in accordance with each color correction signal for each color, modulates each color light sequentially irradiated for each color, and outputs an image of each color. Are sequentially generated.
 照明部5aは、タイミング制御部5bからのタイミング信号によって、出力フィールド同期タイミングに同期して、R色LEDと、G色LEDと、B色LEDとを、この順番で1つずつ点灯する。 The illumination unit 5a lights up the R color LED, the G color LED, and the B color LED one by one in this order in synchronization with the output field synchronization timing by the timing signal from the timing control unit 5b.
 このため、本実施形態では、液晶表示素子2がR色補正信号に応じた画像を形成している際に、照明部5aがR色LEDを点灯して液晶表示素子2をR色の光で照射し、液晶表示素子2がG色補正信号に応じた画像を形成している際に、照明部5aがG色LEDを点灯して液晶表示素子2をG色の光で照射し、液晶表示素子2がB色補正信号に応じた画像を形成している際に、照明部5aがB色LEDを点灯して液晶表示素子2をB色の光で照射する。 For this reason, in the present embodiment, when the liquid crystal display element 2 forms an image corresponding to the R color correction signal, the illumination unit 5a lights the R color LED, and the liquid crystal display element 2 is illuminated with the R color light. When the liquid crystal display element 2 forms an image corresponding to the G color correction signal, the illumination unit 5a lights the G color LED and irradiates the liquid crystal display element 2 with the G color light. When the element 2 is forming an image corresponding to the B color correction signal, the illumination unit 5a turns on the B color LED and irradiates the liquid crystal display element 2 with the B color light.
 本実施形態では、R色補正LUT格納部3R1、G色補正LUT格納部3G1およびB色補正LUT格納部3B1のそれぞれは、自己に対応する対応映像信号と、その対応映像信号を補正した補正信号の直前または直後にデータ並べ替え部4から出力される他の補正信号の元になった他の映像信号の少なくとも一部と、を受け付けると、対応映像信号を他の映像信号の少なくとも一部に基づいて補正した補正信号を出力する。 In this embodiment, each of the R color correction LUT storage unit 3R1, the G color correction LUT storage unit 3G1, and the B color correction LUT storage unit 3B1 includes a corresponding video signal corresponding to itself and a correction signal obtained by correcting the corresponding video signal. When at least a part of the other video signal that is the source of the other correction signal output from the data rearrangement unit 4 immediately before or after is received, the corresponding video signal is converted into at least a part of the other video signal. A correction signal corrected based on the output is output.
 このため、オーバードライブ用の駆動信号として機能する補正信号を、並列的に出力することが可能になる。よって、FSC方式でオーバードライブを行うために補正信号を生成する際に、複数の色に対応する映像信号を受け付けてから、複数の補正信号を出力するまでの時間を短くすることが可能になる。 For this reason, it becomes possible to output correction signals that function as drive signals for overdrive in parallel. Therefore, when generating a correction signal to perform overdrive by the FSC method, it is possible to shorten the time from receiving a video signal corresponding to a plurality of colors until outputting a plurality of correction signals. .
 液晶表示素子2は、補正信号を順番に1つずつ受け付け、受け付けた補正信号に応じた画像を形成する。 The liquid crystal display element 2 receives the correction signals one by one in order, and forms an image according to the received correction signal.
 このため、FSC方式の液晶表示装置においてオーバードライブを実現できる。そして、オーバードライブの実現により、FSC方式の液晶表示装置における、動画質の改善、原色の単色の階調再現性の改善、混色かつ有彩色の色再現性を改善することが可能になる。 For this reason, overdrive can be realized in an FSC liquid crystal display device. By realizing overdrive, it becomes possible to improve the quality of moving images, the improvement of gradation reproduction of a single primary color, and the color reproduction of mixed colors and chromatic colors in an FSC liquid crystal display device.
 本実施形態では、R色補正LUT格納部3R1、G色補正LUT格納部3G1およびB色補正LUT格納部3B1の少なくとも1つは、対応映像信号と、他の映像信号の一部(データの所定部分が削除された他の映像信号)と、を受け付けると、対応映像信号を他の映像信号の一部に基づいて補正した補正信号(補正映像信号)を出力する。 In the present embodiment, at least one of the R color correction LUT storage unit 3R1, the G color correction LUT storage unit 3G1, and the B color correction LUT storage unit 3B1 includes a corresponding video signal and a part of another video signal (predetermined data). Is received, the correction signal (corrected video signal) obtained by correcting the corresponding video signal based on a part of the other video signal is output.
 このため、データが削除されていない他の映像信号を入力とした場合に比べて、他の映像信号のbit数を削減でき、補正の際に用いるデータ量を少なくすることが可能になる。 For this reason, the number of bits of other video signals can be reduced and the amount of data used for correction can be reduced compared to the case where other video signals from which data has not been deleted are input.
 本実施形態では、R色補正LUT格納部3R1、G色補正LUT格納部3G1およびB色補正LUT格納部3B1のそれぞれは、対応映像信号および他の映像信号の一部と、対応映像信号を他の映像信号の一部に基づいて補正した補正映像信号と、を互いに関連づけて格納し、対応映像信号および他の映像信号の一部を受け付けると、対応映像信号および他の映像信号の一部に関連づけられた補正映像信号を、補正信号として出力する。 In the present embodiment, each of the R color correction LUT storage unit 3R1, the G color correction LUT storage unit 3G1, and the B color correction LUT storage unit 3B1 receives the corresponding video signal, a part of the other video signal, and the corresponding video signal. The corrected video signal corrected based on a part of the video signal is stored in association with each other, and when the corresponding video signal and a part of the other video signal are received, the corresponding video signal and a part of the other video signal are stored. The associated corrected video signal is output as a correction signal.
 この場合、R色補正LUT格納部3R1、G色補正LUT格納部3G1およびB色補正LUT格納部3B1のそれぞれは、他の映像信号の全てではなく、他の映像信号の一部を入力とする。 In this case, each of the R color correction LUT storage unit 3R1, the G color correction LUT storage unit 3G1, and the B color correction LUT storage unit 3B1 receives not all of the other video signals but a part of the other video signals. .
 このため、他の映像信号の全てを入力とした場合に比べて、他の映像信号のbit数を削減でき、R色補正LUT格納部3R1、G色補正LUT格納部3G1およびB色補正LUT格納部3B1のそれぞれのメモリサイズを小さくすることが可能になる。よって、液晶表示装置1の回路規模を小さくすることができる。 For this reason, the number of bits of other video signals can be reduced compared to the case where all other video signals are input, and the R color correction LUT storage unit 3R1, the G color correction LUT storage unit 3G1, and the B color correction LUT are stored. Each memory size of the unit 3B1 can be reduced. Therefore, the circuit scale of the liquid crystal display device 1 can be reduced.
 なお、本実施形態において、色補正部3は、図3に示した構成に限らず適宜変更可能である。例えば、色補正部3として、図4に示した色補正部3Aを用いてもよい。 In the present embodiment, the color correction unit 3 is not limited to the configuration shown in FIG. For example, the color correcting unit 3A shown in FIG.
 図4は、図2に示した色補正部3の他の例である色補正部3Aを示したブロック図である。 FIG. 4 is a block diagram showing a color correction unit 3A, which is another example of the color correction unit 3 shown in FIG.
 図4において、色補正部3Aは、入力bit数が24bit、出力bit数が30bit(RGB各10bit)である。 4, the color correction unit 3A has an input bit number of 24 bits and an output bit number of 30 bits (RGB each 10 bits).
 色補正部3Aは、R色補正LUT格納部3R2と、G色補正LUT格納部3G2と、B色補正LUT格納部3B2と、を含む。 The color correction unit 3A includes an R color correction LUT storage unit 3R2, a G color correction LUT storage unit 3G2, and a B color correction LUT storage unit 3B2.
 R色補正LUT格納部3R2とG色補正LUT格納部3G2とB色補正LUT格納部3B2とのそれぞれは、一般的に補正手段または格納手段と呼ぶことができる。このため、色補正部3Aは、複数の補正手段(格納手段)を有することになる。 Each of the R color correction LUT storage unit 3R2, the G color correction LUT storage unit 3G2, and the B color correction LUT storage unit 3B2 can be generally referred to as correction means or storage means. For this reason, the color correction unit 3A has a plurality of correction means (storage means).
 R色補正LUT格納部3R2とG色補正LUT格納部3G2とB色補正LUT格納部3B2とのそれぞれは、入力bit数が11bit、出力bit数が10bitである。 The R color correction LUT storage unit 3R2, the G color correction LUT storage unit 3G2, and the B color correction LUT storage unit 3B2 each have an input bit number of 11 bits and an output bit number of 10 bits.
 R色補正LUT格納部3R2は、R色映像信号と1対1で対応する。 The R color correction LUT storage unit 3R2 has a one-to-one correspondence with the R color video signal.
 R色補正LUT格納部3R2は、複数の映像信号のうち、自己に対応するR色映像信号と、G色映像信号の少なくとも一部と、を受け付けると、R色映像信号をG色映像信号の少なくとも一部に基づいて補正したR色補正信号を出力する。 When the R color correction LUT storage unit 3R2 receives an R color video signal corresponding to itself and at least a part of the G color video signal among the plurality of video signals, the R color correction LUT storage unit 3R2 converts the R color video signal into the G color video signal. An R color correction signal corrected based on at least a part is output.
 なお、G色映像信号は、R色映像信号を補正したR色補正信号の直後に、データ並べ替え部4から出力されるG色補正信号(他の補正信号)の元になった映像信号である。 The G color video signal is a video signal that is the source of the G color correction signal (other correction signal) output from the data rearrangement unit 4 immediately after the R color correction signal obtained by correcting the R color video signal. is there.
 R色補正LUT格納部3R2は、G色映像信号の上位3bitと、R色映像信号の全8bitと、を入力して、10bitのR色補正信号を出力する。 The R color correction LUT storage unit 3R2 inputs the upper 3 bits of the G color video signal and all 8 bits of the R color video signal, and outputs a 10 bit R color correction signal.
 例えば、R色補正LUT格納部3R2は、G色映像信号の上位3bitおよびR色映像信号の全8bitと、R色映像信号の全8bitをG色映像信号の上位3bitに基づいて補正したR色補正映像信号と、を互いに関連づけて格納するLUTを格納する。 For example, the R color correction LUT storage unit 3R2 corrects the upper 3 bits of the G color video signal, all 8 bits of the R color video signal, and all 8 bits of the R color video signal based on the upper 3 bits of the G color video signal. The LUT that stores the corrected video signal in association with each other is stored.
 R色補正LUT格納部3R2は、G色映像信号の上位3bitおよびR色映像信号の全8bitを受け付けると、G色映像信号の上位3bitおよびR色映像信号の全8bitに関連づけられたR色補正映像信号を、R色補正信号として出力する。 When the R color correction LUT storage unit 3R2 receives the upper 3 bits of the G color video signal and all 8 bits of the R color video signal, the R color correction associated with the upper 3 bits of the G color video signal and all 8 bits of the R color video signal. The video signal is output as an R color correction signal.
 ここで、R色補正LUT格納部3R2内のR色補正映像信号の設定方法の一例を説明する。 Here, an example of a method for setting the R color correction video signal in the R color correction LUT storage unit 3R2 will be described.
 液晶ダイレクタの変化が遅いために、自フィールドの液晶ダイレクタの状態が次フィールドの色再現性に影響する。 Since the change of the liquid crystal director is slow, the state of the liquid crystal director in its own field affects the color reproducibility of the next field.
 したがって、次フィールドのG色映像信号を用いて、R色映像信号を補正することによって、G色の再現性を改善することができる。 Therefore, the G color reproducibility can be improved by correcting the R color video signal using the G color video signal of the next field.
 例えば、R色映像信号の階調レベルが50%、G色映像信号の階調レベルが90%の状況で、R色補正映像信号を設定する際、R色補正映像信号の階調レベルを、次色(G色)寄りのレベル70%にすれば、次色の液晶ダイレクタの状態を、より速く所望の状態に近づけることができる。 For example, when setting the R color correction video signal in the situation where the gradation level of the R color video signal is 50% and the gradation level of the G color video signal is 90%, the gradation level of the R color correction video signal is If the level is 70% close to the next color (G color), the state of the liquid crystal director of the next color can be brought closer to the desired state more quickly.
 よって、R色映像信号の階調レベルが50%、G色映像信号の階調レベルが90%の状況のときに、階調レベルが70%に設定されたR色補正映像信号が出力されるように、R色補正LUT格納部3R1が設定されれば、FSC方式において、オーバードライブを適用することができる。 Therefore, when the gradation level of the R color video signal is 50% and the gradation level of the G color video signal is 90%, the R color corrected video signal with the gradation level set to 70% is output. As described above, if the R color correction LUT storage unit 3R1 is set, overdrive can be applied in the FSC method.
 例えば、R色映像信号の階調レベルが50%、G色映像信号の階調レベルが10%の状況で、R色補正映像信号を設定する際、R色補正映像信号の階調レベルを、次色(G色)寄りのレベル45%にすれば、次色の液晶ダイレクタの状態を、より速く所望の状態に近づけることができる。 For example, when setting the R color correction video signal in the situation where the gradation level of the R color video signal is 50% and the gradation level of the G color video signal is 10%, the gradation level of the R color correction video signal is If the level is 45% close to the next color (G color), the state of the liquid crystal director of the next color can be brought closer to the desired state more quickly.
 よって、R色映像信号の階調レベルが50%、G色映像信号の階調レベルが10%の状況のときに、階調レベルが45%に設定されたR色補正映像信号が出力されるように、R色補正LUT格納部3R1が設定されれば、FSC方式において、オーバードライブを適用することができる。 Therefore, when the gradation level of the R color video signal is 50% and the gradation level of the G color video signal is 10%, the R color corrected video signal with the gradation level set to 45% is output. As described above, if the R color correction LUT storage unit 3R1 is set, overdrive can be applied in the FSC method.
 なお、ノーマリホワイト構造の液晶表示素子の場合、光透過率の応答は、黒(階調レベル小)から白(階調レベル大)への変化より白から黒への変化の方が速いなど、液晶の状態の履歴によって応答速度が異なるので、このことを考慮してオーバードライブの程度は調節される。 In the case of a normally white liquid crystal display element, the response of light transmittance is faster when changing from white to black than when changing from black (small gradation level) to white (high gradation level). Since the response speed varies depending on the history of the liquid crystal state, the degree of overdrive is adjusted in consideration of this.
 色補正部3Aの場合、G色映像信号の階調レベルとR色映像信号の階調レベルとの関係に基づいて、R色映像信号の階調レベルを補正することによって、オーバードライブを実行するためのR色補正映像信号が設定され、R色補正LUT格納部3R1に格納される。 In the case of the color correction unit 3A, overdrive is executed by correcting the gradation level of the R color video signal based on the relationship between the gradation level of the G color video signal and the gradation level of the R color video signal. The R color correction video signal is set and stored in the R color correction LUT storage unit 3R1.
 なお、次フィールドの色の映像信号の影響の精度は、自色の映像信号の影響の精度よりも粗い。このため、補正の際に、次フィールドの色の映像信号のbit数を削減することができる。よって、補正に必要な情報量を少なくすることが可能になる。 Note that the accuracy of the influence of the video signal of the next field color is coarser than the accuracy of the influence of the self-color video signal. For this reason, at the time of correction, the number of bits of the video signal of the color of the next field can be reduced. Therefore, the amount of information necessary for correction can be reduced.
 G色補正LUT格納部3G2は、G色映像信号と1対1で対応する。 The G color correction LUT storage unit 3G2 has a one-to-one correspondence with the G color video signal.
 なお、G色補正LUT格納部3G2についての詳しい説明は、上述したR色補正LUT格納部3R2の説明のうち、「R色補正LUT格納部3R2」を「G色補正LUT格納部3G2」に読み替え、対応映像信号を「R色映像信号」から「G色映像信号」に読み替え、他の映像信号を「G色映像信号」から「B色映像信号」に読み替え、「R色補正信号」を「G色補正信号」に読み替え、「R色補正映像信号」を「G色補正映像信号」に読み替えることによって行うことができる。 For the detailed description of the G color correction LUT storage unit 3G2, in the description of the R color correction LUT storage unit 3R2, the “R color correction LUT storage unit 3R2” is replaced with “G color correction LUT storage unit 3G2”. , Read the corresponding video signal from "R color video signal" to "G color video signal", read the other video signal from "G color video signal" to "B color video signal", and change "R color correction signal" to " This can be done by replacing it with “G color correction signal” and replacing “R color correction video signal” with “G color correction video signal”.
 B色補正LUT格納部3B2は、B色映像信号と1対1で対応する。 The B color correction LUT storage unit 3B2 has a one-to-one correspondence with the B color video signal.
 なお、B色補正LUT格納部3B2についての詳しい説明は、上述したR色補正LUT格納部3R2の説明のうち、「R色補正LUT格納部3R2」を「B色補正LUT格納部3B2」に読み替え、対応映像信号を「R色映像信号」から「B色映像信号」に読み替え、他の映像信号を「G色映像信号」から「R色映像信号」に読み替え、「R色補正信号」を「B色補正信号」に読み替え、「R色補正映像信号」を「B色補正映像信号」に読み替えることによって行うことができる。 For the detailed description of the B color correction LUT storage unit 3B2, in the description of the R color correction LUT storage unit 3R2, the “R color correction LUT storage unit 3R2” is replaced with “B color correction LUT storage unit 3B2”. , Read the corresponding video signal from "R color video signal" to "B color video signal", read the other video signal from "G color video signal" to "R color video signal", and change "R color correction signal" to " This can be done by replacing it with “B color correction signal” and replacing “R color correction video signal” with “B color correction video signal”.
 各LUT格納部3R2、3G2および3B3を、RAMを用いて構成する場合、入力される映像信号の計11bitをRAMのアドレスとし、 RAMのデータを、補正映像信号10bitとして出力する。 When each LUT storage unit 3R2, 3G2, and 3B3 is configured using a RAM, a total of 11 bits of the input video signal is used as the RAM address, and the RAM data is output as the corrected video signal 10 bits.
 図4に示す例では、色補正部3Aのメモリサイズは、(2^11)×10bit×3=60kbitとなり、実用的なサイズまで小さくできる。 In the example shown in FIG. 4, the memory size of the color correction unit 3A is (2 ^ 11) × 10 bits × 3 = 60 kbit, which can be reduced to a practical size.
 なお、図3に示した構成、具体的には、前フィールドの色の映像信号を用いて自色の映像信号を補正する色補正部3は、自色の階調レベルが100%または0%の場合は、液晶の応答の遅さを改善できない。 Note that the configuration shown in FIG. 3, specifically, the color correction unit 3 that corrects the video signal of the own color using the video signal of the color of the previous field has a gradation level of the own color of 100% or 0%. In this case, the slow response of the liquid crystal cannot be improved.
 一方、図4に示した構成、具体的には、次フィールドの色の映像信号を用いて自色の映像信号を補正する色補正部3Aは、次フィールドの色の階調レベルが100%または0%の場合でも、液晶の応答の遅さを改善できる。 On the other hand, in the configuration shown in FIG. 4, specifically, the color correction unit 3A that corrects the video signal of the own color using the video signal of the color of the next field, the gradation level of the color of the next field is 100% or Even in the case of 0%, the slow response of the liquid crystal can be improved.
 R色補正LUT格納部3R2、G色補正LUT格納部3G2およびB色補正LUT格納部3B2のそれぞれは、自己に対応する対応映像信号と、その対応映像信号を補正した補正信号の直前または直後にデータ並べ替え部4から出力される他の補正信号の元になった他の映像信号の少なくとも一部と、を受け付けると、対応映像信号を他の映像信号の少なくとも一部に基づいて補正した補正信号を出力する。 Each of the R color correction LUT storage unit 3R2, the G color correction LUT storage unit 3G2, and the B color correction LUT storage unit 3B2 immediately before or immediately after the corresponding video signal corresponding to itself and the correction signal obtained by correcting the corresponding video signal. When at least a part of another video signal that is a source of another correction signal output from the data rearrangement unit 4 is received, the corresponding video signal is corrected based on at least a part of the other video signal. Output a signal.
 このため、オーバードライブ用の駆動信号として機能する補正信号を、並列的に出力することが可能になる。よって、FSC方式でオーバードライブを行うために補正信号を生成する際に、複数の色に対応する映像信号を受け付けてから、複数の補正信号を出力するまでの時間を短くすることが可能になる。 For this reason, it becomes possible to output correction signals that function as drive signals for overdrive in parallel. Therefore, when generating a correction signal to perform overdrive by the FSC method, it is possible to shorten the time from receiving a video signal corresponding to a plurality of colors until outputting a plurality of correction signals. .
 また、R色補正LUT格納部3R2、G色補正LUT格納部3G2およびB色補正LUT格納部3B2のそれぞれは、他の映像信号の全てではなく、他の映像信号の一部(データの所定部分が削除された他の映像信号)を入力とする。 In addition, each of the R color correction LUT storage unit 3R2, the G color correction LUT storage unit 3G2, and the B color correction LUT storage unit 3B2 is not all of the other video signals, but part of other video signals (predetermined portion of data). The other video signal from which is deleted is input.
 このため、他の映像信号の全てを入力とした場合に比べて、他の映像信号のbit数を削減でき、R色補正LUT格納部3R2、G色補正LUT格納部3G2およびB色補正LUT格納部3B2のそれぞれのメモリサイズを小さくすることが可能になる。よって、液晶表示装置1の回路規模を小さくすることができる。 Therefore, the number of bits of other video signals can be reduced as compared with the case where all other video signals are input, and the R color correction LUT storage unit 3R2, the G color correction LUT storage unit 3G2, and the B color correction LUT are stored. Each memory size of the unit 3B2 can be reduced. Therefore, the circuit scale of the liquid crystal display device 1 can be reduced.
 図5は、図2に示した色補正部3のさらに他の例である色補正部3Bを示したブロック図である。 FIG. 5 is a block diagram showing a color correction unit 3B, which is still another example of the color correction unit 3 shown in FIG.
 図5に示す構成は、図3および図4に示す構成を組み合わせたようなものである。 The configuration shown in FIG. 5 is a combination of the configurations shown in FIGS.
 図5において、色補正部3Bは、入力bit数が24bit、出力bit数が30bit(RGB各10bit)である。 In FIG. 5, the color correction unit 3B has an input bit number of 24 bits and an output bit number of 30 bits (RGB each 10 bits).
 色補正部3Bは、R色補正LUT格納部3R3と、G色補正LUT格納部3G3と、B色補正LUT格納部3B3と、を含む。 The color correction unit 3B includes an R color correction LUT storage unit 3R3, a G color correction LUT storage unit 3G3, and a B color correction LUT storage unit 3B3.
 R色補正LUT格納部3R3とG色補正LUT格納部3G3とB色補正LUT格納部3B3とのそれぞれは、一般的に補正手段または格納手段と呼ぶことができる。このため、色補正部3Bは、複数の補正手段(格納手段)を有することになる。 Each of the R color correction LUT storage unit 3R3, the G color correction LUT storage unit 3G3, and the B color correction LUT storage unit 3B3 can be generally referred to as correction means or storage means. Therefore, the color correction unit 3B has a plurality of correction means (storage means).
 R色補正LUT格納部3R3とG色補正LUT格納部3G3とB色補正LUT格納部3B3とのそれぞれは、入力bit数が15bit、出力bit数が10bitである。 The R color correction LUT storage unit 3R3, the G color correction LUT storage unit 3G3, and the B color correction LUT storage unit 3B3 each have an input bit number of 15 bits and an output bit number of 10 bits.
 R色補正LUT格納部3R3は、R色映像信号と1対1で対応する。 The R color correction LUT storage unit 3R3 corresponds to the R color video signal on a one-to-one basis.
 R色補正LUT格納部3R3は、複数の映像信号のうち、自己に対応するR色映像信号と、B色映像信号の一部と、G色映像信号の一部と、を受け付けると、R色映像信号をB色映像信号の一部およびG色映像信号の一部に基づいて補正したR色補正信号を出力する。 When the R color correction LUT storage unit 3R3 receives an R color video signal corresponding to itself, a part of the B color video signal, and a part of the G color video signal among the plurality of video signals, An R color correction signal obtained by correcting the video signal based on a part of the B color video signal and a part of the G color video signal is output.
 本実施形態では、R色補正LUT格納部3R3は、B色映像信号の上位4bitと、R色映像信号の全8bitと、G色映像信号の上位3bitと、を入力して、10bitのR色補正信号を出力する。 In this embodiment, the R color correction LUT storage unit 3R3 inputs the upper 4 bits of the B color video signal, the entire 8 bits of the R color video signal, and the upper 3 bits of the G color video signal, and inputs 10 bits of R color. Output a correction signal.
 例えば、R色補正LUT格納部3R3は、B色映像信号の上位4bit、R色映像信号の全8bitおよびG色映像信号の上位3bitと、R色映像信号の全8bitをB色映像信号の上位4bitおよびG色映像信号の上位3bitに基づいて補正したR色映像補正信号と、を互いに関連づけて格納するLUTを格納する。 For example, the R color correction LUT storage unit 3R3 includes the upper 4 bits of the B color video signal, the upper 8 bits of the R color video signal, the upper 3 bits of the G color video signal, and the upper 8 bits of the R color video signal. A LUT that stores the R color video correction signal corrected based on the 4 bits and the upper 3 bits of the G color video signal in association with each other is stored.
 R色補正LUT格納部3R3は、B色映像信号の上位4bit、R色映像信号の全8bitおよびG色映像信号の上位3bitを受け付けると、B色映像信号の上位4bit、R色映像信号の全8bitおよびG色映像信号の上位3bitに関連づけられたR色補正映像信号を、R色補正信号として出力する。 Upon receiving the upper 4 bits of the B color video signal, all 8 bits of the R color video signal, and the upper 3 bits of the G color video signal, the R color correction LUT storage unit 3R3 receives the upper 4 bits of the B color video signal and all of the R color video signal. The R color correction video signal associated with the 8 bits and the upper 3 bits of the G color video signal is output as an R color correction signal.
 なお、R色補正LUT格納部3R3内のR色映像補正信号は、前フィールドのB色映像信号と次フィールドのG色映像信号を参照することによってR色映像信号を補正するという方法で作成される。 The R color video correction signal in the R color correction LUT storage unit 3R3 is created by correcting the R color video signal by referring to the B color video signal of the previous field and the G color video signal of the next field. The
 なお、R色補正LUT格納部3R3内のR色映像補正信号は、前フィールドのB色映像信号と前々フィールドのG色映像信号を参照することによってR色映像信号を補正するという方法で作成されてもよい。 The R color video correction signal in the R color correction LUT storage unit 3R3 is created by correcting the R color video signal by referring to the B color video signal of the previous field and the G color video signal of the previous field. May be.
 G色補正LUT格納部3G3は、G色映像信号と1対1で対応する。 The G color correction LUT storage unit 3G3 has a one-to-one correspondence with the G color video signal.
 なお、G色補正LUT格納部3G3についての詳しい説明は、上述したR色補正LUT格納部3R3の説明のうち、「R色補正LUT格納部3R3」を「G色補正LUT格納部3G3」に読み替え、対応映像信号を「R色映像信号」から「G色映像信号」に読み替え、他の映像信号を「B色映像信号」および「G色映像信号」から「R色映像信号」および「B色映像信号」に読み替え、「R色補正信号」を「G色補正信号」に読み替え、「R色補正映像信号」を「G色補正映像信号」に読み替えることによって行うことができる。 For the detailed description of the G color correction LUT storage unit 3G3, in the description of the R color correction LUT storage unit 3R3 described above, “R color correction LUT storage unit 3R3” is replaced with “G color correction LUT storage unit 3G3”. The corresponding video signal is read from “R color video signal” to “G color video signal”, and other video signals are read from “B color video signal” and “G color video signal” to “R color video signal” and “B color”. It can be performed by replacing “video signal”, “R color correction signal” with “G color correction signal”, and “R color correction video signal” with “G color correction video signal”.
 B色補正LUT格納部3B3は、B色映像信号と1対1で対応する。 The B color correction LUT storage unit 3B3 corresponds to the B color video signal on a one-to-one basis.
 なお、B色補正LUT格納部3B3についての詳しい説明は、上述したR色補正LUT格納部3R3の説明のうち、「R色補正LUT格納部3R3」を「B色補正LUT格納部3B3」に読み替え、対応映像信号を「R色映像信号」から「B色映像信号」に読み替え、他の映像信号を「B色映像信号」および「G色映像信号」から「G色映像信号」および「R色映像信号」に読み替え、「R色補正信号」を「B色補正信号」に読み替え、「R色補正映像信号」を「B色補正映像信号」に読み替えることによって行うことができる。 For the detailed description of the B color correction LUT storage unit 3B3, in the description of the R color correction LUT storage unit 3R3 described above, “R color correction LUT storage unit 3R3” is replaced with “B color correction LUT storage unit 3B3”. The corresponding video signal is read from “R color video signal” to “B color video signal”, and other video signals are read from “B color video signal” and “G color video signal” to “G color video signal” and “R color”. This can be performed by replacing “video signal”, “R color correction signal” with “B color correction signal”, and “R color correction video signal” with “B color correction video signal”.
 なお、各LUT格納部3R3、3G3および3B3を、RAMを用いて構成する場合、入力される映像信号の計15bitをRAMのアドレスとし、 RAMのデータを、補正映像信号10bitとして出力する。 When each of the LUT storage units 3R3, 3G3, and 3B3 is configured using a RAM, the total 15 bits of the input video signal is used as the RAM address, and the RAM data is output as the corrected video signal 10 bits.
 図5に示す例では、色補正部3Bのメモリサイズは、(2^15)×10bit×3=960kbitとなり、実用的なサイズまで小さくできる。 In the example shown in FIG. 5, the memory size of the color correction unit 3B is (2 15) × 10 bits × 3 = 960 kbits, which can be reduced to a practical size.
 R色補正LUT格納部3R3、G色補正LUT格納部3G3およびB色補正LUT格納部3B3のそれぞれは、自己に対応する対応映像信号と、その対応映像信号を補正した補正信号の直前にデータ並べ替え部4から出力される他の補正信号の元になった他の映像信号の一部と、その対応映像信号を補正した補正信号の直後にデータ並べ替え部4から出力される他の補正信号の元になった他の映像信号の一部と、を受け付けると、対応映像信号をそれら他の映像信号の一部に基づいて補正した補正信号を出力する。 Each of the R color correction LUT storage unit 3R3, the G color correction LUT storage unit 3G3, and the B color correction LUT storage unit 3B3 arranges data immediately before the corresponding video signal corresponding to itself and the correction signal obtained by correcting the corresponding video signal. Another correction signal output from the data rearrangement unit 4 immediately after the correction signal obtained by correcting the corresponding video signal and a part of the other correction signal output from the replacement unit 4 When a part of the other video signal that is the source of the video signal is received, a correction signal obtained by correcting the corresponding video signal based on a part of the other video signal is output.
 このため、オーバードライブ用の駆動信号として機能する補正信号を、並列的に出力することが可能になる。よって、FSC方式でオーバードライブを行うために補正信号を生成する際に、複数の色に対応する映像信号を受け付けてから、複数の補正信号を出力するまでの時間を短くすることが可能になる。 For this reason, it becomes possible to output correction signals that function as drive signals for overdrive in parallel. Therefore, when generating a correction signal to perform overdrive by the FSC method, it is possible to shorten the time from receiving a video signal corresponding to a plurality of colors until outputting a plurality of correction signals. .
 また、R色補正LUT格納部3R3、G色補正LUT格納部3G3およびB色補正LUT格納部3B3のそれぞれは、他の映像信号の全てではなく、他の映像信号の一部を入力とする。 Further, each of the R color correction LUT storage unit 3R3, the G color correction LUT storage unit 3G3, and the B color correction LUT storage unit 3B3 receives not all of the other video signals but a part of the other video signals.
 このため、他の映像信号の全てを入力とした場合に比べて、他の映像信号のbit数を削減でき、R色補正LUT格納部3R3、G色補正LUT格納部3G3およびB色補正LUT格納部3B3のそれぞれのメモリサイズを小さくすることが可能になる。よって、液晶表示装置1の回路規模を小さくすることができる。 For this reason, the number of bits of other video signals can be reduced compared to the case where all other video signals are input, and the R color correction LUT storage unit 3R3, the G color correction LUT storage unit 3G3, and the B color correction LUT storage. Each memory size of the unit 3B3 can be reduced. Therefore, the circuit scale of the liquid crystal display device 1 can be reduced.
 図6は、図2に示した色補正部3のさらに他の例である色補正部3Cを示したブロック図である。なお、図6において、図4または図5に示したものと同一構成のものには同一符号を付してある。 FIG. 6 is a block diagram showing a color correction unit 3C, which is still another example of the color correction unit 3 shown in FIG. In FIG. 6, the same components as those shown in FIG. 4 or FIG.
 色補正部3Cは、色ごとに、補正LUT格納部の構成を変えたものである。 The color correction unit 3C is obtained by changing the configuration of the correction LUT storage unit for each color.
 液晶表示素子2は、光の透過率に波長依存性がある。液晶の粘弾性に起因する応答遅さを改善するために液晶層を薄くすると、同じ液晶ダイレクタの状態において、概して長波長側(R色側)の透過率が低下する。したがって、透過率の時間的応答特性も波長依存性をもつことになる。 The liquid crystal display element 2 has wavelength dependency in light transmittance. When the liquid crystal layer is thinned in order to improve the response delay due to the viscoelasticity of the liquid crystal, the transmittance on the long wavelength side (R color side) is generally lowered in the same liquid crystal director state. Therefore, the temporal response characteristic of the transmittance also has wavelength dependency.
 色補正部3Cでは、透過率の時間的応答特性と波長依存性とを考慮して、補正LUT格納部の構成を色ごとに変えてある。 In the color correction unit 3C, the configuration of the correction LUT storage unit is changed for each color in consideration of the temporal response characteristic and wavelength dependency of the transmittance.
 換言すると、色補正部3C内の、R色補正LUT格納部3R3とG色補正LUT格納部3G1とB色補正LUT格納部3B2のそれぞれでは、液晶表示素子2での色ごとの応答特性の違いに基づいて、他の映像信号の一部が設定されている。 In other words, each of the R color correction LUT storage unit 3R3, the G color correction LUT storage unit 3G1, and the B color correction LUT storage unit 3B2 in the color correction unit 3C has a difference in response characteristics for each color in the liquid crystal display element 2. Based on this, a part of the other video signal is set.
 図6において、色補正部3Cは、入力bit数が24bit、出力bit数が30bit(RGB各10bit)である。 In FIG. 6, the color correction unit 3C has an input bit number of 24 bits and an output bit number of 30 bits (RGB each 10 bits).
 色補正部3Cは、R色補正LUT格納部3R3と、G色補正LUT格納部3G1と、B色補正LUT格納部3B2と、を含む。 The color correction unit 3C includes an R color correction LUT storage unit 3R3, a G color correction LUT storage unit 3G1, and a B color correction LUT storage unit 3B2.
 R色補正LUT格納部3R3は、 B色映像信号の上位4bitと、R色映像信号の全8bitと、G色映像信号上位3bitと、を入力して、10bitのR色補正信号を出力する。 The R color correction LUT storage unit 3R3 inputs the upper 4 bits of the B color video signal, all 8 bits of the R color video signal, and the upper 3 bits of the G color video signal, and outputs a 10-bit R color correction signal.
 つまり、R色補正LUT格納部3R3では、透過率応答が他の色(G色およびB色)よりも遅いR色の色再現性を改善するために、前フィールドのB色映像信号と前々フィールドのG色映像信号とを用いてR色映像信号を補正した信号が、R色補正信号として用いられる。 That is, in the R color correction LUT storage unit 3R3, in order to improve the color reproducibility of the R color whose transmittance response is slower than that of the other colors (G color and B color), the B color video signal of the previous field is displayed in advance. A signal obtained by correcting the R color video signal using the G color video signal of the field is used as the R color correction signal.
 G色補正LUT格納部3G1は、 R色映像信号の上位4bitと、G色映像信号の全8bitと、を入力して、10bitのG色補正信号を出力する。 The G color correction LUT storage unit 3G1 inputs the upper 4 bits of the R color video signal and all 8 bits of the G color video signal, and outputs a 10 bit G color correction signal.
 つまり、G色補正LUT格納部3G1では、R色とG色とB色の中で透過率応答が中くらいのG色の色再現性を改善するために、前フィールドのR色映像信号を用いてG色映像信号を補正した信号が、G色補正信号として用いられる。 That is, the G color correction LUT storage unit 3G1 uses the R color video signal of the previous field in order to improve the color reproducibility of the G color having the medium transmittance response among the R color, the G color, and the B color. A signal obtained by correcting the G color video signal is used as the G color correction signal.
 B色補正LUT格納部3B2は、 B色映像信号の全8bitと、R色映像信号の上位3bitを入力として用いることによって、B色補正映像信号を出力する。 The B color correction LUT storage unit 3B2 outputs the B color correction video signal by using all 8 bits of the B color video signal and the upper 3 bits of the R color video signal as inputs.
 つまり、B色補正LUT格納部3B2では、他の色(G色とB色)よりも透過率応答の遅いR色の色再現性を改善するために、次フィールドのR色映像信号を用いてB色映像信号を補正した信号が、B色補正信号として用いられる。 That is, the B color correction LUT storage unit 3B2 uses the R color video signal of the next field in order to improve the color reproducibility of the R color having a slower transmittance response than the other colors (G color and B color). A signal obtained by correcting the B color video signal is used as the B color correction signal.
 この場合、色補正部3C内の、R色補正LUT格納部3R3とG色補正LUT格納部3G1とB色補正LUT格納部3B2とのそれぞれでは、液晶表示素子2での色ごとの応答特性の違いに基づいて、対応映像信号を補正するために用いる映像信号(他の映像信号)の一部が設定されている。 In this case, each of the R color correction LUT storage unit 3R3, the G color correction LUT storage unit 3G1, and the B color correction LUT storage unit 3B2 in the color correction unit 3C has a response characteristic for each color in the liquid crystal display element 2. Based on the difference, a part of the video signal (other video signal) used for correcting the corresponding video signal is set.
 このため、メモリサイズを削減しつつ、効果的に色再現性を改善することができる。 Therefore, color reproducibility can be effectively improved while reducing the memory size.
 なお、図6に示す例では、色補正部3Cのメモリサイズは、((2^15)+(2^12)+(2^11))×10bit=380kbit(なお、1kbit=(2^10)bitとする)となり、図5に示す例よりサイズを小さくできる。 In the example shown in FIG. 6, the memory size of the color correction unit 3C is ((2 ^ 15) + (2 ^ 12) + (2 ^ 11)) × 10 bit = 380 kbit (note that 1 kbit = (2 ^ 10 ) bit), and the size can be made smaller than the example shown in FIG.
 [第2の実施の形態]
 図7は、本発明の第2の実施の形態の液晶表示装置1Aを示したブロック図である。図7において、図2に示したものと同一構成のものには同一符号を付してある。
[Second Embodiment]
FIG. 7 is a block diagram showing a liquid crystal display device 1A according to the second embodiment of the present invention. In FIG. 7, the same components as those shown in FIG.
 液晶表示装置1Aは、図2に示した液晶表示装置1と比較して、V-T特性補正部7が追加され、また、色補正部3の代わりに、出力bit数がRGB各8bitである色補正部31が用いられ、また、データ並べ替え部4の出力bit数がRGB各8bitに変更されている。 Compared with the liquid crystal display device 1 shown in FIG. 2, the liquid crystal display device 1 </ b> A has a VT characteristic correction unit 7 added, and the number of output bits is 8 bits for each RGB instead of the color correction unit 3. The color correction unit 31 is used, and the number of output bits of the data rearrangement unit 4 is changed to 8 bits for each RGB.
 液晶表示装置1Aでは、色補正部31として、図3に示した色補正部3(ただし、出力bit数が24bit)が用いられているものとする。なお、色補正部31は、図3に示した色補正部3に限らない。例えば、色補正部31として、図4に示した色補正部3A(ただし、出力bit数が24bit)、図5に示した色補正部3B(ただし、出力bit数が24bit)または、図6に示した色補正部3C(ただし、出力bit数が24bit)が用いられてもよい。 In the liquid crystal display device 1A, the color correction unit 3 shown in FIG. 3 (however, the number of output bits is 24 bits) is used as the color correction unit 31. The color correction unit 31 is not limited to the color correction unit 3 shown in FIG. For example, as the color correction unit 31, the color correction unit 3A shown in FIG. 4 (where the number of output bits is 24 bits), the color correction unit 3B shown in FIG. 5 (where the number of output bits is 24 bits), or FIG. The illustrated color correction unit 3C (however, the number of output bits is 24 bits) may be used.
 データ並べ替え部4とV-T特性補正部7は、出力制御部6に含まれる。 The data rearrangement unit 4 and the VT characteristic correction unit 7 are included in the output control unit 6.
 出力制御部6は、一般的に出力制御手段または出力補正制御手段と呼ぶことができる。 The output control unit 6 can generally be called output control means or output correction control means.
 出力制御部6は、色補正部31内のR色補正LUT格納部3R1、G色補正LUT格納部3G1およびB色補正LUT格納部3B1のそれぞれから出力された補正信号(出力bit数が8bit)を受け付けると、その補正信号を、液晶表示素子2が有する駆動電圧と光の透過率との関係(V-T特性)に応じて補正した、特性補正信号を出力する。 The output control unit 6 includes correction signals (number of output bits: 8 bits) output from each of the R color correction LUT storage unit 3R1, the G color correction LUT storage unit 3G1, and the B color correction LUT storage unit 3B1 in the color correction unit 31. Is received, the correction signal is corrected in accordance with the relationship between the drive voltage of the liquid crystal display element 2 and the light transmittance (VT characteristic), and a characteristic correction signal is output.
 出力制御部6は、補正信号の代わりに、特性補正信号を、1つずつ順番に、駆動信号として、液晶表示素子2に出力する。 The output control unit 6 outputs the characteristic correction signals to the liquid crystal display element 2 as drive signals one by one instead of the correction signal.
 データ並べ替え部4は、色補正部31が出力した各8bitの補正信号(R色補正信号、G色補正信号、B色補正信号)を受け付けると、それらの補正信号を、1つずつ順番に、V-T特性補正部7に出力する。 When the data rearrangement unit 4 receives each 8-bit correction signal (R color correction signal, G color correction signal, B color correction signal) output from the color correction unit 31, the data rearrangement unit 4 sequentially outputs the correction signals one by one. , Output to the VT characteristic correction unit 7.
 V-T特性補正部7は、各8bitの補正信号を受け付けるごとに、その補正信号を液晶表示素子2が有する駆動電圧と光の透過率との関係(V-T特性)に応じて補正した特性補正信号を、駆動信号として、液晶表示素子2に出力する。 Each time the 8-bit correction signal is received, the VT characteristic correction unit 7 corrects the correction signal in accordance with the relationship between the drive voltage of the liquid crystal display element 2 and the light transmittance (VT characteristic). The characteristic correction signal is output to the liquid crystal display element 2 as a drive signal.
 図2に示した液晶表示装置1では、色補正部3は、 FSC方式における色再現性および階調再現性を改善する役割、つまり、FSC方式においてオーバードライブを行うための補正を行う役割と、液晶表示素子2の印加電圧(駆動電圧)と光の透過率との関係を表すV-T特性に基づいて、印加電圧(駆動電圧)の補正を行う役割を担っている。 In the liquid crystal display device 1 shown in FIG. 2, the color correction unit 3 has a role of improving color reproducibility and gradation reproducibility in the FSC method, that is, a role of performing correction for overdrive in the FSC method, It plays the role of correcting the applied voltage (drive voltage) based on the VT characteristic representing the relationship between the applied voltage (drive voltage) of the liquid crystal display element 2 and the light transmittance.
 一方、図7に示した液晶表示装置1Aでは、色補正部31は、 FSC方式における色再現性および階調再現性を改善する役割、つまり、FSC方式においてオーバードライブを行うための補正を行う役割のみを担い、非線形なV-T特性に基づき印加電圧(駆動電圧)を補正する役割は、V-T特性補正部7が担う。 On the other hand, in the liquid crystal display device 1A shown in FIG. 7, the color correction unit 31 has a role of improving color reproducibility and gradation reproducibility in the FSC method, that is, a role of performing correction for overdrive in the FSC method. The VT characteristic correction unit 7 plays a role of correcting the applied voltage (drive voltage) based on the non-linear VT characteristic.
 このため、色補正部31の出力bit数を30bitから24bitに削減できる。この場合、色補正部31の内部のLUTのメモリサイズを、色補正部3の8/10にすることができ、また、液晶表示装置1A内のフレームメモリ4aのサイズを、液晶表示装置1内のフレームメモリ4aの8/10にすることができる。 Therefore, the number of output bits of the color correction unit 31 can be reduced from 30 bits to 24 bits. In this case, the memory size of the LUT in the color correction unit 31 can be set to 8/10 that of the color correction unit 3, and the size of the frame memory 4a in the liquid crystal display device 1A can be set in the liquid crystal display device 1. 8/10 of the frame memory 4a.
 一方、液晶表示装置1Aでは、V-T特性補正部7の追加によって、回路が増えてしまう。なお、V-T特性補正部7を、LUTを用いて実現する場合、そのメモリサイズは、(2^8)×10bit=2.5kbitとなる。 On the other hand, in the liquid crystal display device 1A, the number of circuits increases due to the addition of the VT characteristic correction unit 7. When the VT characteristic correction unit 7 is realized using an LUT, the memory size is (2 ^ 8) × 10 bits = 2.5 kbit.
 ここで、色補正部31とV-T特性補正部7との両方を用いることによるメモリサイズの変化について説明する。 Here, a change in memory size by using both the color correction unit 31 and the VT characteristic correction unit 7 will be described.
 図3に示した色補正部3(ただし、出力bit数が24bit)を、色補正部31に適用した場合、色補正部31とV-T特性補正部7との合計のメモリサイズは、120kbit×8/10+2.5kbit=98.5kbitとなり、図3に示した色補正部3(ただし、出力bit数が30bit)のメモリサイズ120kbitよりも小さくなる。 When the color correction unit 3 shown in FIG. 3 (however, the number of output bits is 24 bits) is applied to the color correction unit 31, the total memory size of the color correction unit 31 and the VT characteristic correction unit 7 is 120 kbit. × 8/10 + 2.5 kbit = 98.5 kbit, which is smaller than the memory size 120 kbit of the color correction unit 3 (the number of output bits is 30 bits) shown in FIG.
 図4に示した色補正部3A(ただし、出力bit数が24bit)を、色補正部31に適用した場合、色補正部31とV-T特性補正部7との合計のメモリサイズは、60kbit×8/10+2.5kbit=50.5kbitとなり、図4に示した色補正部3A(ただし、出力bit数が30bit)のメモリサイズ60kbitよりも小さくなる。 When the color correction unit 3A shown in FIG. 4 (however, the number of output bits is 24 bits) is applied to the color correction unit 31, the total memory size of the color correction unit 31 and the VT characteristic correction unit 7 is 60 kbit. × 8/10 + 2.5 kbit = 50.5 kbit, which is smaller than the memory size of 60 kbit of the color correction unit 3A (where the number of output bits is 30 bits) shown in FIG.
 図5に示した色補正部3B(ただし、出力bit数が24bit)を、色補正部31に適用した場合、色補正部31とV-T特性補正部7との合計のメモリサイズは、960kbit×8/10+2.5kbit=770.5kbitとなり、図5に示した色補正部3B(ただし、出力bit数が30bit)のメモリサイズ960kbitよりも小さくなる。 When the color correction unit 3B shown in FIG. 5 (the number of output bits is 24 bits) is applied to the color correction unit 31, the total memory size of the color correction unit 31 and the VT characteristic correction unit 7 is 960 kbits. X8 / 10 + 2.5 kbit = 770.5 kbit, which is smaller than the memory size 960 kbit of the color correction unit 3B (however, the number of output bits is 30 bits) shown in FIG.
 図6に示した色補正部3C(ただし、出力bit数が24bit)を、色補正部31に適用した場合、色補正部31とV-T特性補正部7との合計のメモリサイズは、380kbit×8/10+2.5kbit=306.5kbitとなり、図6に示した色補正部3C(ただし、出力bit数が30bit)のメモリサイズ380kbitよりも小さくなる。 When the color correction unit 3C shown in FIG. 6 (however, the number of output bits is 24 bits) is applied to the color correction unit 31, the total memory size of the color correction unit 31 and the VT characteristic correction unit 7 is 380 kbit. X8 / 10 + 2.5 kbit = 306.5 kbit, which is smaller than the memory size 380 kbit of the color correction unit 3C (however, the number of output bits is 30 bits) shown in FIG.
 ここで注意しなければならないのは、V-T特性補正部7の影響の仕方が、並置(併置)加法混色もしくは同時加法混色を利用したカラー表示方式の液晶表示装置の場合と、 FSC方式の液晶表示装置の場合とで異なることである。 It should be noted here that the VT characteristic correction unit 7 affects the liquid crystal display device using the juxtaposed (parallel) additive color mixture or the color display method using the simultaneous additive color mixture, and the FSC method. This is different from the case of the liquid crystal display device.
 なお、並置(併置)加法混色を利用したカラー表示方式の液晶表示装置とは、R色、G色およびB色のカラーフィルターを有するサブ画素(サブピクセル)を近接配置してカラー表示する画素を、複数有する液晶表示装置である。 A liquid crystal display device of a color display system using juxtaposed (parallel) additive color mixture is a pixel that performs color display by arranging sub-pixels (sub-pixels) having R, G, and B color filters in close proximity. A liquid crystal display device having a plurality of liquid crystal displays.
 また、同時加法混色を利用したカラー表示方式の液晶表示装置とは、R色、G色およびB色のそれぞれを別々に変調する3つの液晶表示素子を有し、各色の変調された画像光を重ねて表示する液晶表示装置である。プロジェクタ等の投写型液晶表示装置は、このタイプが一般的であり、いわゆる3板式と呼ばれている。 In addition, a liquid crystal display device of a color display system using simultaneous additive color mixing has three liquid crystal display elements that separately modulate each of R, G, and B colors, and the modulated image light of each color is received. This is a liquid crystal display device that displays images in an overlapping manner. This type of projection type liquid crystal display device such as a projector is common and is called a so-called three-plate type.
 ここで、V-T特性補正部7の影響の仕方について説明する。 Here, how the VT characteristic correction unit 7 affects will be described.
 ある画素に注目すると、前者、具体的には、並置(併置)加法混色もしくは同時加法混色を利用したカラー表示方式の液晶表示装置では、その画素は、常に同じ色を表示する。 When paying attention to a certain pixel, in the former, specifically, a liquid crystal display device of a color display system using juxtaposed (parallel) additive color mixture or simultaneous additive color mixture, the pixel always displays the same color.
 よって、静止画を表示する場合は、時間が経てば液晶ダイレクタの状態は収束する。したがって、V-T特性補正部7が有する特性補正信号は、色ごとに、一意に作成することができる。 Therefore, when displaying a still image, the state of the liquid crystal director converges over time. Therefore, the characteristic correction signal possessed by the VT characteristic correction unit 7 can be uniquely created for each color.
 一方、後者、具体的には、FSC方式の液晶表示装置では、その画素が表示する色は一つではなく、静止画を表示する場合であっても、液晶ダイレクタの状態は収束しない場合が多い。 On the other hand, in the latter case, specifically, in the FSC type liquid crystal display device, the color displayed by the pixel is not one, and the state of the liquid crystal director often does not converge even when displaying a still image. .
 したがって、V-T特性補正部7が有する特性補正信号は、自色の映像信号のみで一意に作成することが容易にできない。故に、本来なら、複数の色の映像信号を受け付ける色補正部31に、V-T特性補正の機能を含めるのが妥当である。 Therefore, the characteristic correction signal possessed by the VT characteristic correction unit 7 cannot be easily created uniquely using only the own color video signal. Therefore, it is proper to include a VT characteristic correction function in the color correction unit 31 that receives video signals of a plurality of colors.
 このような状況にもかかわらず、本実施形態では、非線形なV-T特性の補正の機能を、色補正部31から分離してなお、 V-T特性補正の機能を有効に働かせる手法を提供するものである。 In spite of this situation, the present embodiment provides a method for effectively operating the function of correcting the VT characteristic while the function of correcting the non-linear VT characteristic is separated from the color correction unit 31. To do.
 FSC方式の場合、多くの表示画像では、液晶ダイレクタの状態は収束しないが、液晶ダイレクタの状態が収束する画像もある。それは、R色,G色およびB色の階調レベルが互いに等しい場合、つまり、無彩色の画像である。 In the case of the FSC system, in many display images, the state of the liquid crystal director does not converge, but there is also an image in which the state of the liquid crystal director converges. That is, when the gradation levels of the R, G, and B colors are equal to each other, that is, an achromatic image.
 したがって、無彩色の画像データを有する映像信号を用いることによって、液晶ダイレクタの状態は収束するので、 V-T特性補正部7の特性補正信号を一意に作成することができる。なお、V-T特性補正部7の特性補正信号を一意に作成する際には、無彩色の画像データを有する映像信号は、色補正部31をバイパスさせる。 Therefore, by using a video signal having achromatic image data, the state of the liquid crystal director converges, so that the characteristic correction signal of the VT characteristic correction unit 7 can be uniquely created. When the characteristic correction signal of the VT characteristic correction unit 7 is created uniquely, the video signal having achromatic image data bypasses the color correction unit 31.
 また、V-T特性補正部7で使用する特性補正信号を作成する際に、FSC方式に固有な駆動条件となる画像を用いることを回避したので、並置(併置)加法混色もしくは同時加法混色を利用したカラー表示方式におけるV-T特性の補正データ作成方法を利用することができ、調整の工程を簡便化できる。 Further, when creating the characteristic correction signal used in the VT characteristic correction unit 7, it is avoided to use an image that is a driving condition unique to the FSC method, so that juxtaposed (parallel) additive color mixing or simultaneous additive color mixing is performed. A correction data creation method for VT characteristics in the used color display method can be used, and the adjustment process can be simplified.
 以上のようにして、液晶表示素子2の印加電圧と光の透過率の関係を表す非線形なV-T特性の補正機能を、色補正部31とは別個のV-T特性補正部7に担わせることによって、色補正部31の特性を線形に近づけることができる。したがって、色補正部31の出力bit数を削減することができる。 As described above, a non-linear VT characteristic correction function representing the relationship between the applied voltage of the liquid crystal display element 2 and the light transmittance is assigned to the VT characteristic correction unit 7 separate from the color correction unit 31. By doing so, the characteristics of the color correction unit 31 can be made closer to linear. Therefore, the number of output bits of the color correction unit 31 can be reduced.
 なお、V-T特性補正部7を色ごとに複数設け、表示する色によって、使用するV-T特性補正部7を切り替えるようにしてもよい。 A plurality of VT characteristic correction units 7 may be provided for each color, and the VT characteristic correction unit 7 to be used may be switched depending on the color to be displayed.
 この場合の補正データは、無彩色の画像の映像信号を用い、常時単色の光を液晶表示素子に照明して、V-T特性を測定して作成すればよい。そうすることによって、液晶表示素子2の透過率特性の色依存性を、より精確に補正することができる。 The correction data in this case may be generated by using a video signal of an achromatic image, constantly illuminating the liquid crystal display element with monochromatic light, and measuring the VT characteristics. By doing so, the color dependence of the transmittance characteristic of the liquid crystal display element 2 can be corrected more accurately.
 [第3の実施の形態]
 本発明の第3の実施の形態は、例えば、図2に示した液晶表示装置1の色補正部3として、図8に示した色補正部32を用い、さらに、色補正部32の前段に、色変換部8を設けたものである。
[Third Embodiment]
In the third embodiment of the present invention, for example, the color correction unit 32 shown in FIG. 8 is used as the color correction unit 3 of the liquid crystal display device 1 shown in FIG. The color conversion unit 8 is provided.
 なお、本発明の第3の実施の形態は、例えば、図7に示した液晶表示装置1Aの色補正部31として、図8に示した色補正部32を用い、さらに、色補正部32の前段に、色変換部8を設けたものでもよい。 Note that, in the third embodiment of the present invention, for example, the color correction unit 32 shown in FIG. 8 is used as the color correction unit 31 of the liquid crystal display device 1A shown in FIG. A color conversion unit 8 may be provided in the preceding stage.
 図8において、色補正部32の前段の色変換部8は、一般的に生成手段と呼ぶことができる。 In FIG. 8, the color conversion unit 8 in the previous stage of the color correction unit 32 can be generally referred to as generation means.
 色変換部8は、R色、G色およびB色の3つの映像信号から、M色(マゼンタ色)、R色、G色、B色およびY色(黄色)のそれぞれに対応する5つの映像信号、具体的には、M色映像信号、R色映像信号、G色映像信号、B色映像信号およびY色映像信号を生成する。 The color conversion unit 8 extracts five images corresponding to M (magenta), R, G, B, and Y (yellow) from three image signals of R, G, and B, respectively. Signals, specifically, an M color video signal, an R color video signal, a G color video signal, a B color video signal, and a Y color video signal are generated.
 本実施形態では、FSC方式におけるカラーフィールドが5色あって、その順番がM色、R色、G色、B色、Y色の順であるとする。 In this embodiment, it is assumed that there are five color fields in the FSC method, and the order is M, R, G, B, Y.
 色補正部32は、複数の映像信号を受け付けると、複数の色のそれぞれに1対1で対応する複数の補正信号を出力する。 When the color correction unit 32 receives a plurality of video signals, the color correction unit 32 outputs a plurality of correction signals corresponding to the plurality of colors on a one-to-one basis.
 なお、色補正部32は、複数の映像信号として、M色映像信号、R色映像信号、G色映像信号、B色映像信号およびY色映像信号を受け付ける。 The color correction unit 32 receives an M color video signal, an R color video signal, a G color video signal, a B color video signal, and a Y color video signal as a plurality of video signals.
 M色映像信号、R色映像信号、G色映像信号、B色映像信号およびY色映像信号のそれぞれは、8bitの信号である。なお、R色映像信号、G色映像信号、B色映像信号およびY色映像信号のそれぞれのbit数は、8bitに限らず適宜変更可能である。 Each of the M color video signal, the R color video signal, the G color video signal, the B color video signal, and the Y color video signal is an 8-bit signal. Note that the number of bits of each of the R color video signal, the G color video signal, the B color video signal, and the Y color video signal is not limited to 8 bits and can be changed as appropriate.
 また、色補正部32は、複数の補正信号として、マゼンタ色に対応するM色補正信号と、R色補正信号と、G色補正信号と、B色補正信号と、黄色に対応するY色補正信号と、を出力する。 In addition, the color correction unit 32 uses a plurality of correction signals as an M color correction signal corresponding to magenta, an R color correction signal, a G color correction signal, a B color correction signal, and a Y color correction corresponding to yellow. Signal.
 色補正部32は、M色映像信号を元にしてM色補正信号を生成し、R色映像信号を元にしてR色補正信号を生成し、G色映像信号を元にしてG色補正信号を生成し、B色映像信号を元にしてB色補正信号を生成し、Y色映像信号を元にしてY色補正信号を生成する。 The color correction unit 32 generates an M color correction signal based on the M color video signal, generates an R color correction signal based on the R color video signal, and generates a G color correction signal based on the G color video signal. And a B color correction signal is generated based on the B color video signal, and a Y color correction signal is generated based on the Y color video signal.
 本実施形態では、データ並べ替え部4は、M色補正信号とR色補正信号とG色補正信号とB色補正信号とY色補正信号とを、M色補正信号、R色補正信号、G色補正信号、B色補正信号、Y色補正信号の順番で、駆動信号として、液晶表示素子2に出力する。なお、この順番は適宜変更可能である。 In this embodiment, the data rearrangement unit 4 converts the M color correction signal, the R color correction signal, the G color correction signal, the B color correction signal, and the Y color correction signal into an M color correction signal, an R color correction signal, and a G color correction signal. The color correction signal, the B color correction signal, and the Y color correction signal are output to the liquid crystal display element 2 as drive signals in the order. This order can be changed as appropriate.
 なお、本実施形態では、照明部5aは、M色、R色、G色、B色およびY色の各色の光を液晶表示素子2に照射する。 In the present embodiment, the illumination unit 5a irradiates the liquid crystal display element 2 with light of each color of M color, R color, G color, B color, and Y color.
 照明部5aの要素である光源として、R色、G色およびB色の光を個別に発する複数のLEDを用いる場合、 M色の光は、R色およびB色のLEDを同時に点灯すればよく、Y色の光は、R色およびG色のLEDを同時に点灯すればよい。 When using multiple LEDs that individually emit R, G, and B light as the light source that is an element of the illumination unit 5a, it is only necessary to light the R and B LEDs simultaneously for M light. For the Y-color light, the R-color and G-color LEDs may be turned on simultaneously.
 また、C色(シアン色)の光が必要であれば、G色およびB色のLEDを同時に点灯すればよく、W色(白色)の光が必要であれば、R色およびG色およびB色のLEDを同時に点灯すればよい。 If C (cyan) light is required, the G and B LEDs can be turned on simultaneously. If W (white) light is required, the R, G, and B colors can be used. Just turn on the colored LEDs at the same time.
 色補正部32は、M色補正LUT格納部3M4と、R色補正LUT格納部3R4と、G色補正LUT格納部3G4と、B色補正LUT格納部3B4と、Y色補正LUT格納部3Y4と、を含む。 The color correction unit 32 includes an M color correction LUT storage unit 3M4, an R color correction LUT storage unit 3R4, a G color correction LUT storage unit 3G4, a B color correction LUT storage unit 3B4, and a Y color correction LUT storage unit 3Y4. ,including.
 M色補正LUT格納部3M4とR色補正LUT格納部3R4とG色補正LUT格納部3G4とB色補正LUT格納部3B4とY色補正LUT格納部3Y4とのそれぞれは、一般的に補正手段または格納手段と呼ぶことができる。このため、色補正部32は、複数の補正手段(格納手段)を有することになる。 Each of the M color correction LUT storage unit 3M4, the R color correction LUT storage unit 3R4, the G color correction LUT storage unit 3G4, the B color correction LUT storage unit 3B4, and the Y color correction LUT storage unit 3Y4 generally includes correction means or It can be called storage means. Therefore, the color correction unit 32 has a plurality of correction means (storage means).
 M色補正LUT格納部3M4は、M色映像信号と1対1で対応する。 The M color correction LUT storage unit 3M4 has a one-to-one correspondence with the M color video signal.
 M色補正LUT格納部3M4は、複数の映像信号のうち、自己に対応するM色映像信号と、Y色映像信号の一部と、B色映像信号の一部と、R色映像信号の一部と、を受け付けると、M色映像信号をY色映像信号の一部とB色映像信号の一部とR色映像信号の一部に基づいて補正したM色補正信号を出力する。 The M color correction LUT storage unit 3M4 is an M color video signal corresponding to itself, a part of the Y color video signal, a part of the B color video signal, and one of the R color video signals. The M color correction signal obtained by correcting the M color video signal based on a part of the Y color video signal, a part of the B color video signal, and a part of the R color video signal is output.
 Y色映像信号は、M色映像信号を補正したM色補正信号の直前に、データ並べ替え部4から出力されるY色補正信号(他の補正信号)の元になった映像信号である。 The Y color video signal is a video signal based on the Y color correction signal (other correction signal) output from the data rearrangement unit 4 immediately before the M color correction signal obtained by correcting the M color video signal.
 B色映像信号は、Y色映像信号を補正したY色補正信号の直前に、データ並べ替え部4から出力されるB色補正信号(他の補正信号)の元になった映像信号である。 The B color video signal is a video signal based on the B color correction signal (other correction signal) output from the data rearrangement unit 4 immediately before the Y color correction signal obtained by correcting the Y color video signal.
 R色映像信号は、M色映像信号を補正したM色補正信号の直後に、データ並べ替え部4から出力されるR色補正信号(他の補正信号)の元になった映像信号である。 The R color video signal is a video signal that is the source of the R color correction signal (other correction signal) output from the data rearrangement unit 4 immediately after the M color correction signal obtained by correcting the M color video signal.
 本実施形態では、M色補正LUT格納部3M4は、B色映像信号の上位2bitと、Y色映像信号の上位4bitと、M色映像信号の全8bitと、R色映像信号の上位3bitと、を入力して、M色補正信号を出力する。 In this embodiment, the M color correction LUT storage unit 3M4 includes the upper 2 bits of the B color video signal, the upper 4 bits of the Y color video signal, all 8 bits of the M color video signal, and the upper 3 bits of the R color video signal. To output the M color correction signal.
 例えば、M色補正LUT格納部3M4は、B色映像信号の上位2bitとY色映像信号の上位4bitとM色映像信号の全8bitとR色映像信号の上位3bitと、M色映像信号の全8bitをB色映像信号の上位2bitとY色映像信号の上位4bitとR色映像信号の上位3bitに基づいて補正したM色補正映像信号と、を互いに関連づけて格納するLUTを格納する。 For example, the M color correction LUT storage unit 3M4 includes the upper 2 bits of the B color video signal, the upper 4 bits of the Y color video signal, all 8 bits of the M color video signal, the upper 3 bits of the R color video signal, and all of the M color video signal. An LUT that stores 8 bits of the M color corrected video signal corrected based on the upper 2 bits of the B color video signal, the upper 4 bits of the Y color video signal, and the upper 3 bits of the R color video signal in association with each other is stored.
 M色補正LUT格納部3M4は、B色映像信号の上位2bitとY色映像信号の上位4bitとM色映像信号の全8bitとR色映像信号の上位3bitとを受け付けると、B色映像信号の上位2bitとY色映像信号の上位4bitとM色映像信号の全8bitとR色映像信号の上位3bitとに関連づけられたM色補正映像信号を、M色補正信号として出力する。 When the M color correction LUT storage unit 3M4 receives the upper 2 bits of the B color video signal, the upper 4 bits of the Y color video signal, all 8 bits of the M color video signal, and the upper 3 bits of the R color video signal, The M color correction video signal associated with the upper 2 bits, the upper 4 bits of the Y color video signal, all 8 bits of the M color video signal, and the upper 3 bits of the R color video signal is output as an M color correction signal.
 M色補正LUT格納部3M4は、前々フィールドのB色映像信号と前フィールドのY色映像信号と次フィールドのR色映像信号を参照することによって、 M色映像信号を補正する。 The M color correction LUT storage unit 3M4 corrects the M color video signal by referring to the B color video signal of the previous field, the Y color video signal of the previous field, and the R color video signal of the next field.
 R色補正LUT格納部3R4は、R色映像信号と1対1で対応する。 The R color correction LUT storage unit 3R4 corresponds to the R color video signal on a one-to-one basis.
 なお、R色補正LUT格納部3R4についての詳しい説明は、上述したM色補正LUT格納部3M4の説明のうち、「M色補正LUT格納部3M4」を「R色補正LUT格納部3R4」に読み替え、対応映像信号を「M色映像信号」から「R色映像信号」に読み替え、他の映像信号を「Y色映像信号」および「R色映像信号」から「M色映像信号」および「G色映像信号」に読み替え、「B色映像信号」を「Y色映像信号」に読み替え、「M色補正信号」を「R色補正信号」に読み替え、「M色補正映像信号」を「R色補正映像信号」に読み替えることによって行うことができる。 For the detailed description of the R color correction LUT storage unit 3R4, “M color correction LUT storage unit 3M4” in the description of the M color correction LUT storage unit 3M4 described above is replaced with “R color correction LUT storage unit 3R4”. , Read the corresponding video signal from "M color video signal" to "R color video signal", and other video signals from "Y color video signal" and "R color video signal" to "M color video signal" and "G color" "Video signal" is read, "B color video signal" is read as "Y color video signal", "M color correction signal" is read as "R color correction signal", and "M color correction video signal" is read as "R color correction" This can be done by replacing it with “video signal”.
 G色補正LUT格納部3G4は、G色映像信号と1対1で対応する。 The G color correction LUT storage unit 3G4 has a one-to-one correspondence with the G color video signal.
 なお、G色補正LUT格納部3G4についての詳しい説明は、上述したM色補正LUT格納部3M4の説明のうち、「M色補正LUT格納部3M4」を「G色補正LUT格納部3G4」に読み替え、対応映像信号を「M色映像信号」から「G色映像信号」に読み替え、他の映像信号を「Y色映像信号」および「R色映像信号」から「R色映像信号」および「B色映像信号」に読み替え、「B色映像信号」を「M色映像信号」に読み替え、「M色補正信号」を「G色補正信号」に読み替え、「M色補正映像信号」を「G色補正映像信号」に読み替えることによって行うことができる。 For the detailed description of the G color correction LUT storage unit 3G4, “M color correction LUT storage unit 3M4” in the description of the M color correction LUT storage unit 3M4 described above is replaced with “G color correction LUT storage unit 3G4”. The corresponding video signal is read from “M color video signal” to “G color video signal”, and other video signals are read from “Y color video signal” and “R color video signal” to “R color video signal” and “B color”. "Video signal", "B color video signal" read "M color video signal", "M color correction signal" read "G color correction signal", "M color correction video signal" "G color correction" This can be done by replacing it with “video signal”.
 B色補正LUT格納部3B4は、B色映像信号と1対1で対応する。 The B color correction LUT storage unit 3B4 has a one-to-one correspondence with the B color video signal.
 なお、B色補正LUT格納部3B4についての詳しい説明は、上述したM色補正LUT格納部3M4の説明のうち、「M色補正LUT格納部3M4」を「B色補正LUT格納部3M4」に読み替え、対応映像信号を「M色映像信号」から「B色映像信号」に読み替え、他の映像信号を「Y色映像信号」および「R色映像信号」から「G色映像信号」および「Y色映像信号」に読み替え、「B色映像信号」を「R色映像信号」に読み替え、「M色補正信号」を「B色補正信号」に読み替え、「M色補正映像信号」を「B色補正映像信号」に読み替えることによって行うことができる。 For the detailed description of the B color correction LUT storage unit 3B4, “M color correction LUT storage unit 3M4” in the description of the M color correction LUT storage unit 3M4 described above is replaced with “B color correction LUT storage unit 3M4”. , Read the corresponding video signal from “M color video signal” to “B color video signal”, and other video signals from “Y color video signal” and “R color video signal” to “G color video signal” and “Y color” "Video signal" is read, "B color video signal" is read as "R color video signal", "M color correction signal" is read as "B color correction signal", and "M color correction video signal" is read as "B color correction" This can be done by replacing it with “video signal”.
 Y色補正LUT格納部3Y4は、Y色映像信号と1対1で対応する。 The Y color correction LUT storage unit 3Y4 has a one-to-one correspondence with the Y color video signal.
 なお、Y色補正LUT格納部3Y4についての詳しい説明は、上述したM色補正LUT格納部3M4の説明のうち、「M色補正LUT格納部3M4」を「Y色補正LUT格納部3Y4」に読み替え、対応映像信号を「M色映像信号」から「Y色映像信号」に読み替え、他の映像信号を「Y色映像信号」および「R色映像信号」から「B色映像信号」および「M色映像信号」に読み替え、「B色映像信号」を「G色映像信号」に読み替え、「M色補正信号」を「Y色補正信号」に読み替え、「M色補正映像信号」を「Y色補正映像信号」に読み替えることによって行うことができる。 For the detailed description of the Y color correction LUT storage unit 3Y4, “M color correction LUT storage unit 3M4” in the description of the M color correction LUT storage unit 3M4 described above is replaced with “Y color correction LUT storage unit 3Y4”. The corresponding video signal is read from “M color video signal” to “Y color video signal”, and the other video signals are changed from “Y color video signal” and “R color video signal” to “B color video signal” and “M color”. "Video signal", "B color video signal" read "G color video signal", "M color correction signal" read "Y color correction signal", "M color correction video signal" "Y color correction" This can be done by replacing it with “video signal”.
 本実施形態によれば、色変換部8が3つの映像信号から5つの映像信号を生成し、色補正部32が、5つの映像信号のそれぞれを補正する。 According to this embodiment, the color conversion unit 8 generates five video signals from the three video signals, and the color correction unit 32 corrects each of the five video signals.
 このため、3色以上の多色フィールドを有するFSC方式の場合にも、オーバードライブは適用することが可能になる。 For this reason, overdrive can be applied even in the case of the FSC system having multicolor fields of three or more colors.
 [第4の実施の形態]
 本発明の第4の実施の形態は、例えば、図2に示した液晶表示装置1の色補正部3として、図9に示した色補正部33を用いたものである。
[Fourth Embodiment]
In the fourth embodiment of the present invention, for example, the color correction unit 33 shown in FIG. 9 is used as the color correction unit 3 of the liquid crystal display device 1 shown in FIG.
 なお、本発明の第4の実施の形態は、例えば、図7に示した液晶表示装置1Aの色補正部31として、図9に示した色補正部33を用いたものでもよい。 In the fourth embodiment of the present invention, for example, the color correction unit 33 shown in FIG. 9 may be used as the color correction unit 31 of the liquid crystal display device 1A shown in FIG.
 本実施形態では、FSC方式におけるカラーフィールドの順番がB、G、Rの順であるとする。 In this embodiment, it is assumed that the order of the color fields in the FSC system is B, G, R.
 よって、データ並べ替え部4は、B色補正信号とG色補正信号とR色補正信号とを、B色補正信号、G色補正信号、R色補正信号の順番で、駆動信号として、液晶表示素子2に出力する。なお、この順番は適宜変更可能である。 Therefore, the data rearrangement unit 4 displays the B color correction signal, the G color correction signal, and the R color correction signal as a drive signal in the order of the B color correction signal, the G color correction signal, and the R color correction signal. Output to element 2. This order can be changed as appropriate.
 本実施形態の特徴は、補正信号を、次フィールドの色の補正に用いたことであり、また、補正に用いる補正信号の参照が無限ループにならないようにしたことであり、また、フレームをまたがる色の映像信号を参照しないようにしたことである。 The feature of the present embodiment is that the correction signal is used for correcting the color of the next field, and that the reference of the correction signal used for the correction does not become an infinite loop, and also extends across frames. That is, the color video signal is not referred to.
 色補正部33は、B色補正LUT格納部3B5、G色補正LUT格納部3G5、および、R色補正LUT格納部3R5を含む。 The color correction unit 33 includes a B color correction LUT storage unit 3B5, a G color correction LUT storage unit 3G5, and an R color correction LUT storage unit 3R5.
 B色補正LUT格納部3B5は、一般的に、補正手段または格納手段と呼ぶことができる。 The B color correction LUT storage unit 3B5 can generally be referred to as correction means or storage means.
 B色補正LUT格納部3B5は、B色映像信号と1対1で対応する。 The B color correction LUT storage unit 3B5 has a one-to-one correspondence with the B color video signal.
 B色補正LUT格納部3B5は、次フィールドのG色の色再現性が改善するように、B色映像信号を補正する。 The B color correction LUT storage unit 3B5 corrects the B color video signal so that the G color reproducibility of the next field is improved.
 B色補正LUT格納部3B5は、 B色映像信号の全8bitと、G色映像信号の上位3bitと、を入力して、B色補正信号を出力する。 The B color correction LUT storage unit 3B5 inputs all 8 bits of the B color video signal and the upper 3 bits of the G color video signal, and outputs a B color correction signal.
 例えば、B色補正LUT格納部3B5は、B色映像信号の全8bitとG色映像信号の上位3bitと、B色映像信号の全8bitをG色映像信号の上位3bitに基づいて補正したB色補正映像信号と、を互いに関連づけて格納するLUTを格納する。 For example, the B color correction LUT storage unit 3B5 corrects all 8 bits of the B color video signal, the upper 3 bits of the G color video signal, and all 8 bits of the B color video signal based on the upper 3 bits of the G color video signal. The LUT that stores the corrected video signal in association with each other is stored.
 B色補正LUT格納部3B5は、B色映像信号の全8bitとG色映像信号の上位3bitを受け付けると、B色映像信号の全8bitとG色映像信号の上位3bitに関連づけられたB色補正映像信号を、B色補正信号として出力する。 When the B color correction LUT storage unit 3B5 receives all 8 bits of the B color video signal and the upper 3 bits of the G color video signal, the B color correction associated with all 8 bits of the B color video signal and the upper 3 bits of the G color video signal. The video signal is output as a B color correction signal.
 G色補正LUT格納部3G5は、一般的に、補正手段、格納手段または映像信号補正手段と呼ぶことができる。 The G color correction LUT storage unit 3G5 can generally be referred to as correction means, storage means, or video signal correction means.
 G色補正LUT格納部3G5は、G色映像信号と1対1で対応する。 The G color correction LUT storage unit 3G5 has a one-to-one correspondence with the G color video signal.
 G色補正LUT格納部3G5は、前フィールドのB色補正信号を参照してG色の再現性が改善するように、また、次フィールドのR色映像信号を参照してR色の再現性が改善するように、G色映像信号を補正する。 The G color correction LUT storage unit 3G5 refers to the B color correction signal of the previous field to improve the G color reproducibility, and refers to the R color video signal of the next field to improve the R color reproducibility. The G color video signal is corrected so as to improve.
 G色補正LUT格納部3G5は、B色補正信号の上位4bitと、G色映像信号の全8bitと、R色映像信号の上位3bitと、を入力して、G色補正信号を出力する。 The G color correction LUT storage unit 3G5 inputs the upper 4 bits of the B color correction signal, all 8 bits of the G color video signal, and the upper 3 bits of the R color video signal, and outputs the G color correction signal.
 例えば、G色補正LUT格納部3G5は、B色補正信号の上位4bitとG色映像信号の全8bitとR色映像信号の上位3bitと、G色映像信号の全8bitをB色補正信号の上位4bitとR色映像信号の上位3bitに基づいて補正したG色補正映像信号と、を互いに関連づけて格納するLUTを格納する。 For example, the G color correction LUT storage unit 3G5 includes the upper 4 bits of the B color correction signal, all 8 bits of the G color video signal, the upper 3 bits of the R color video signal, and all 8 bits of the G color video signal. A LUT that stores 4 bits and the G color corrected video signal corrected based on the upper 3 bits of the R color video signal in association with each other is stored.
 G色補正LUT格納部3G5は、B色補正信号の上位4bitとG色映像信号の全8bitとR色映像信号の上位3bitを受け付けると、B色補正信号の上位4bitとG色映像信号の全8bitとR色映像信号の上位3bitに関連づけられたG色補正映像信号を、G色補正信号として出力する。 Upon receiving the upper 4 bits of the B color correction signal, all 8 bits of the G color video signal, and the upper 3 bits of the R color video signal, the G color correction LUT storage unit 3G5 receives the upper 4 bits of the B color correction signal and all of the G color video signal. A G color correction video signal associated with 8 bits and the upper 3 bits of the R color video signal is output as a G color correction signal.
 R色補正LUT格納部3R5は、一般的に、補正手段、格納手段または映像信号補正手段と呼ぶことができる。 The R color correction LUT storage unit 3R5 can generally be referred to as correction means, storage means, or video signal correction means.
 R色補正LUT格納部3R5は、R色映像信号と1対1で対応する。 The R color correction LUT storage unit 3R5 has a one-to-one correspondence with the R color video signal.
 R色補正LUT格納部3R5は、前フィールドのG色補正信号を参照してR色の再現性が改善するように、 R色映像信号を補正する。 The R color correction LUT storage unit 3R5 corrects the R color video signal so that the reproducibility of the R color is improved with reference to the G color correction signal of the previous field.
 R色補正LUT格納部3R5は、G色補正信号の上位4bitと、R色映像信号の全8bitと、を入力して、R色補正信号を出力する。 The R color correction LUT storage unit 3R5 inputs the upper 4 bits of the G color correction signal and all 8 bits of the R color video signal, and outputs an R color correction signal.
 例えば、R色補正LUT格納部3R5は、G色補正信号の上位4bitとR色映像信号の全8bitと、R色映像信号の全8bitをG色補正信号の上位4bitに基づいて補正したR色補正映像信号と、を互いに関連づけて格納するLUTを格納する。 For example, the R color correction LUT storage unit 3R5 corrects the upper 4 bits of the G color correction signal, all 8 bits of the R color video signal, and all 8 bits of the R color video signal based on the upper 4 bits of the G color correction signal. The LUT that stores the corrected video signal in association with each other is stored.
 R色補正LUT格納部3R5は、G色補正信号の上位4bitとR色映像信号の全8bitを受け付けると、G色補正信号の上位4bitとR色映像信号の全8bitに関連づけられたR色補正映像信号を、R色補正信号として出力する。 When the R color correction LUT storage unit 3R5 receives the upper 4 bits of the G color correction signal and all 8 bits of the R color video signal, the R color correction associated with the upper 4 bits of the G color correction signal and all 8 bits of the R color video signal. The video signal is output as an R color correction signal.
 本実施形態によれば、G色補正LUT格納部3G5およびR色補正LUT格納部3R5のそれぞれは、補正信号を次フィールドの色の補正に用いるので、より精確に、色再現性および階調再現性を改善することができる。 According to the present embodiment, each of the G color correction LUT storage unit 3G5 and the R color correction LUT storage unit 3R5 uses the correction signal for correcting the color of the next field. Can improve sex.
 また、補正に用いる補正信号の参照が無限ループにならないようにしたので、各補正LUT格納部からの出力が収束しなくなることを回避できる。 In addition, since the reference of the correction signal used for correction is made not to be an infinite loop, it can be avoided that the output from each correction LUT storage unit does not converge.
 FSC方式におけるカラーフィールドの順番がB、G、Rの順である場合、もし、B色補正LUT格納部3B5が前フィールドのR色映像信号を参照すると、それは前フレームの映像信号を参照することになる。 When the order of the color field in the FSC system is B, G, and R, if the B color correction LUT storage unit 3B5 refers to the R color video signal of the previous field, it refers to the video signal of the previous frame. become.
 静止画を表示する場合は、前フレームの映像信号と自フレームの映像信号とは等しいので問題ないが、動画を表示する場合は、多くの場合、映像信号は異なるので、誤った補正をすることになってしまう。 When displaying a still image, there is no problem because the video signal of the previous frame is the same as the video signal of the own frame, but when displaying a moving image, the video signal is often different, so correct correction is necessary. Become.
 本実施形態では、B色補正LUT格納部3B5、G色補正LUT格納部3G5、および、R色補正LUT格納部3R5のそれぞれは、フレームをまたがる色の映像信号を参照しない。このため、動画を表示する場合の色再現性および階調再現性を改善することができる。 In this embodiment, each of the B color correction LUT storage unit 3B5, the G color correction LUT storage unit 3G5, and the R color correction LUT storage unit 3R5 does not refer to a video signal of a color across frames. For this reason, the color reproducibility and gradation reproducibility when displaying a moving image can be improved.
 なお、本実施形態では、FSC方式におけるカラーフィールドがB色、G色およびR色であったが、FSC方式におけるカラーフィールドが、Y色、B色、G色、R色およびM色である場合、色補正部33の前段に、図8に示した色変換部8が設けられ、色補正部33が、M色補正LUT格納部3M4とY色補正LUT格納部3Y4をさらに含めばよい。 In this embodiment, the color fields in the FSC system are B, G, and R colors, but the color fields in the FSC system are Y, B, G, R, and M colors. The color conversion unit 8 shown in FIG. 8 is provided in front of the color correction unit 33, and the color correction unit 33 may further include an M color correction LUT storage unit 3M4 and a Y color correction LUT storage unit 3Y4.
 [第5の実施の形態]
 本発明の第5の実施の形態は、例えば、図2に示した液晶表示装置1の色補正部3として、図10に示した色補正部34を用いたものである。
[Fifth Embodiment]
In the fifth embodiment of the present invention, for example, the color correction unit 34 shown in FIG. 10 is used as the color correction unit 3 of the liquid crystal display device 1 shown in FIG.
 なお、本発明の第5の実施の形態は、例えば、図7に示した液晶表示装置1Aの色補正部31として、図10に示した色補正部34を用いたものでもよい。 Note that, in the fifth embodiment of the present invention, for example, the color correction unit 34 shown in FIG. 10 may be used as the color correction unit 31 of the liquid crystal display device 1A shown in FIG.
 本実施形態では、FSC方式におけるカラーフィールドの順番がB、G、Rの順であるとする。 In this embodiment, it is assumed that the order of the color fields in the FSC system is B, G, R.
 よって、データ並べ替え部4は、B色補正信号とG色補正信号とR色補正信号とを、B色補正信号、G色補正信号、R色補正信号の順番で、駆動信号として、液晶表示素子2に出力する。なお、この順番は適宜変更可能である。 Therefore, the data rearrangement unit 4 displays the B color correction signal, the G color correction signal, and the R color correction signal as a drive signal in the order of the B color correction signal, the G color correction signal, and the R color correction signal. Output to element 2. This order can be changed as appropriate.
 本実施形態の特徴は、補正信号を、次フィールドの色の補正に用いたことであり、また、補正に用いる補正信号の参照が無限ループにならないようにしたことであり、また、前フレームのデータを参照する場合はフレームバッファを経由させるようにしたことであり、また、次フレームのデータを参照しないようにしたことである。 The feature of this embodiment is that the correction signal is used for the correction of the color of the next field, the reference of the correction signal used for the correction does not become an infinite loop, and When referring to the data, it means that the frame buffer is used, and the data of the next frame is not referred to.
 色補正部34は、フレームバッファ34a、B色補正LUT格納部3B6、G色補正LUT格納部3G6、および、R色補正LUT格納部3R6を含む。 The color correction unit 34 includes a frame buffer 34a, a B color correction LUT storage unit 3B6, a G color correction LUT storage unit 3G6, and an R color correction LUT storage unit 3R6.
 フレームバッファ34aは、一般的に記憶手段と呼ぶことができる。 The frame buffer 34a can be generally referred to as storage means.
 フレームバッファ34aは、1フレームが更新された際に、更新前の1フレームを構成する複数の映像信号のうちデータ並べ替え部4から最後に出力される補正信号の元になった映像信号(本実施形態の場合、R色映像信号)を記憶する。 When one frame is updated, the frame buffer 34a is a video signal that is the source of the correction signal that is finally output from the data rearrangement unit 4 among a plurality of video signals that constitute one frame before the update. In the case of the embodiment, the R color video signal) is stored.
 なお、フレームバッファ34aは、更新前の1フレームを構成する複数の映像信号のうちデータ並べ替え部4から最後に出力される補正信号(本実施形態の場合、R色補正信号)を記憶してもよい。 The frame buffer 34a stores a correction signal (R color correction signal in this embodiment) output last from the data rearrangement unit 4 among a plurality of video signals constituting one frame before update. Also good.
 B色補正LUT格納部3B6は、一般的に、補正手段、格納手段、または、色映像信号補正手段と呼ぶことができる。 The B color correction LUT storage unit 3B6 can be generally referred to as correction means, storage means, or color video signal correction means.
 B色補正LUT格納部3B6は、B色映像信号と1対1で対応する。 The B color correction LUT storage unit 3B6 has a one-to-one correspondence with the B color video signal.
 B色補正LUT格納部3B6は、前フィールド(前フレーム)のR色映像信号または同一フレームのR色補正信号を参照してB色の再現性が改善するように、また、次フィールドのG色映像信号を参照してG色の再現性が改善するように、 B色映像信号を補正する。 The B color correction LUT storage unit 3B6 refers to the R color video signal of the previous field (previous frame) or the R color correction signal of the same frame to improve the reproducibility of the B color, and the G color of the next field The B color video signal is corrected so that the G color reproducibility is improved by referring to the video signal.
 B色補正LUT格納部3B6は、フレームバッファ34a内の1フレーム前のR色映像信号の上位4bitと、 B色映像信号の全8bitと、G色映像信号の上位3bitと、を入力して、B色補正信号を出力する。 The B color correction LUT storage unit 3B6 inputs the upper 4 bits of the R color video signal one frame before in the frame buffer 34a, all 8 bits of the B color video signal, and the upper 3 bits of the G color video signal. Outputs a B color correction signal.
 例えば、B色補正LUT格納部3B6は、1フレーム前のR色映像信号の上位4bitと B色映像信号の全8bitとG色映像信号の上位3bitと、B色映像信号の全8bitを1フレーム前のR色映像信号の上位4bitとG色映像信号の上位3bitに基づいて補正したB色補正映像信号と、を互いに関連づけて格納するLUTを格納する。 For example, the B color correction LUT storage unit 3B6 includes the upper 4 bits of the R color video signal one frame before, all 8 bits of the B color video signal, the upper 3 bits of the G color video signal, and all 8 bits of the B color video signal in one frame. An LUT for storing the B color corrected video signal corrected based on the upper 4 bits of the previous R color video signal and the upper 3 bits of the G color video signal in association with each other is stored.
 B色補正LUT格納部3B6は、1フレーム前のR色映像信号の上位4bitと B色映像信号の全8bitとG色映像信号の上位3bitを受け付けると、1フレーム前のR色映像信号の上位4bitと B色映像信号の全8bitとG色映像信号の上位3bitに関連づけられたB色補正映像信号を、B色補正信号として出力する。 When the B color correction LUT storage unit 3B6 receives the upper 4 bits of the R color video signal of the previous frame, all 8 bits of the B color video signal, and the upper 3 bits of the G color video signal, the higher level of the R color video signal of the previous frame The B color correction video signal associated with 4 bits and all 8 bits of the B color video signal and the upper 3 bits of the G color video signal is output as a B color correction signal.
 G色補正LUT格納部3G6は、図9に示したG色補正LUT格納部3G5と同一構成である。 The G color correction LUT storage unit 3G6 has the same configuration as the G color correction LUT storage unit 3G5 shown in FIG.
 R色補正LUT格納部3R6は、一般的に、補正手段、格納手段、または、映像信号補正手段と呼ぶことができる。 The R color correction LUT storage unit 3R6 can generally be referred to as correction means, storage means, or video signal correction means.
 R色補正LUT格納部3R6は、R色映像信号と1対1で対応する。 The R color correction LUT storage unit 3R6 has a one-to-one correspondence with the R color video signal.
 R色補正LUT格納部3R6は、前々フィールドのB色補正信号および前フィールドのG色補正信号を参照してR色の再現性が改善するように、R色補正信号を補正する。 The R color correction LUT storage unit 3R6 corrects the R color correction signal so that the reproducibility of the R color is improved with reference to the B color correction signal of the previous field and the G color correction signal of the previous field.
 R色補正LUT格納部3R6は、B色補正信号の上位3bitと、G色補正信号の上位4bitと、R色映像信号の全8bitと、を入力して、R色補正信号を出力する。 The R color correction LUT storage unit 3R6 inputs the upper 3 bits of the B color correction signal, the upper 4 bits of the G color correction signal, and all 8 bits of the R color video signal, and outputs an R color correction signal.
 例えば、R色補正LUT格納部3R6は、B色補正信号の上位3bitとG色補正信号の上位4bitとR色映像信号の全8bitと、R色映像信号の全8bitをB色補正信号の上位3bitとG色補正信号の上位4bitに基づいて補正したR色補正映像信号と、を互いに関連づけて格納するLUTを格納する。 For example, the R color correction LUT storage unit 3R6 includes the upper 3 bits of the B color correction signal, the upper 4 bits of the G color correction signal, all 8 bits of the R color video signal, and all 8 bits of the R color video signal. An LUT that stores 3 bits and the R color corrected video signal corrected based on the upper 4 bits of the G color correction signal in association with each other is stored.
 R色補正LUT格納部3R5は、B色補正信号の上位3bitとG色補正信号の上位4bitとR色映像信号の全8bitを受け付けると、B色補正信号の上位3bitとG色補正信号の上位4bitとR色映像信号の全8bitに関連づけられたR色補正映像信号を、R色補正信号として出力する。 When receiving the upper 3 bits of the B color correction signal, the upper 4 bits of the G color correction signal, and all 8 bits of the R color video signal, the R color correction LUT storage unit 3R5 receives the upper 3 bits of the B color correction signal and the higher order of the G color correction signal. An R color correction video signal associated with 4 bits and all 8 bits of the R color video signal is output as an R color correction signal.
 本実施形態では、補正後の色の映像信号、つまり、補正信号を、次フィールドの色の補正に用いるようにしたので、色再現性または階調再現性を改善することができる。 In the present embodiment, the corrected color video signal, that is, the correction signal is used for correcting the color of the next field, so that color reproducibility or gradation reproducibility can be improved.
 また、参照が無限ループにならないようにしたので、各補正LUT格納部からの出力が収束しなくなることを回避できる。 Also, since the reference is not infinite loop, it is possible to avoid the output from each correction LUT storage unit from converging.
 本実施形態では、B色補正LUT格納部3B6は、前フレームにおける前フィールドのデータを参照する場合は、フレームバッファ34a内の映像信号または補正信号を参照し、現フレームにおける前フィールドの色のデータ(実際には次々フィールドの色のデータ)参照しないようにしたので、前フレームの映像と現在のフレームの映像とが大きく異なる場合の色再現性および階調再現性を改善することができる。 In the present embodiment, when referring to the previous field data in the previous frame, the B color correction LUT storage unit 3B6 refers to the video signal or the correction signal in the frame buffer 34a, and the previous field color data in the current frame. Since it is not referred to (actually, the color data of the field one after another), it is possible to improve color reproducibility and gradation reproducibility when the image of the previous frame and the image of the current frame are greatly different.
 なお、本実施形態では、前フレームにおける1フィールド分のデータをバッファし参照するようにしたが、更に多くのフィールド分のデータをバッファし参照するようにしてもよい。そうすることによって、より精確に色再現性および階調再現性を改善することができる。 In this embodiment, data for one field in the previous frame is buffered and referenced. However, more fields of data may be buffered and referenced. By doing so, color reproducibility and gradation reproducibility can be improved more accurately.
 なお、本実施形態では、FSC方式におけるカラーフィールドがB色、G色およびR色であったが、FSC方式におけるカラーフィールドが、Y色、B色、G色、R色およびM色である場合、色補正部34の前段に、図8に示した色変換部8が設けられ、色補正部34が、M色補正LUT格納部3M4とY色補正LUT格納部3Y4をさらに含めばよい。 In this embodiment, the color fields in the FSC system are B, G, and R colors, but the color fields in the FSC system are Y, B, G, R, and M colors. The color conversion unit 8 shown in FIG. 8 is provided in front of the color correction unit 34, and the color correction unit 34 may further include an M color correction LUT storage unit 3M4 and a Y color correction LUT storage unit 3Y4.
 [他の実施の形態]
 以上の各実施形態では、特定のbit数で説明したが、各補正LUT格納部において削減するbit数は、補正の精度とメモリサイズとのトレードオフの関係に基づき、それぞれ独立に変更可能(0bit以上または1bit以上)である。
[Other embodiments]
In each of the above embodiments, the specific number of bits has been described. However, the number of bits to be reduced in each correction LUT storage unit can be changed independently based on the trade-off relationship between the accuracy of correction and the memory size (0 bits). Or more than 1 bit).
 また、補正の精度とメモリサイズとのトレードオフの関係に基づき、例えば、複数の補正LUT格納部のうちの少なくとも1つ(例えば、最も応答が遅い赤色に対応する補正LUT格納部)を、オーバードライブ用の補正信号を出力するものとし、他の補正LUT格納部は、オーバードライブ用の補正信号を出力しないもの(例えば、V-T特性に基づく補正が行われた補正信号を出力する補正LUT格納部)としてもよい。 Further, based on the trade-off relationship between the accuracy of correction and the memory size, for example, at least one of a plurality of correction LUT storage units (for example, the correction LUT storage unit corresponding to the slowest red color) is exceeded. A correction signal for driving is output, and another correction LUT storage unit does not output a correction signal for overdrive (for example, a correction LUT that outputs a correction signal corrected based on the VT characteristic) Storage unit).
 以上の各実施形態では、各色補正LUT格納部は、別々に設けたが、いくつかの色で1つの色補正LUT格納部を時分割で共用するようにしてもよい。なお、この場合も、複数の色補正LUT格納部が設けられる。この場合、メモリサイズを小さくできる。 In each of the embodiments described above, each color correction LUT storage unit is provided separately, but one color correction LUT storage unit may be shared in time division for several colors. Also in this case, a plurality of color correction LUT storage units are provided. In this case, the memory size can be reduced.
 以上の各実施形態では、各補正LUT格納部が色補正をLUTのみで実現するように説明したが、各補正LUT格納部がLUTと演算とを組み合わせて色補正を行ってもよい。例えば、各補正LUT格納部は、映像信号の上位bitについてはLUTを用いて補正し、映像信号の下位bitについては補間演算を用いて補正するようにしてもよい。 In each of the above embodiments, each correction LUT storage unit has been described so as to realize color correction only by the LUT. However, each correction LUT storage unit may perform color correction by combining the LUT and the calculation. For example, each correction LUT storage unit may correct the upper bits of the video signal using an LUT and correct the lower bits of the video signal using interpolation.
 また、補正LUT格納部の代わりに、演算によって補正信号を生成する色補正演算部が用いられてもよい。この場合、各色補正演算部は、補正手段として機能し、映像信号のそれぞれの1対1で対応する。 Further, instead of the correction LUT storage unit, a color correction calculation unit that generates a correction signal by calculation may be used. In this case, each color correction calculation unit functions as a correction unit and corresponds to each video signal one to one.
 以上の各実施形態は、液晶表示素子2が、ノーマリホワイトの構成でも、ノーマリブラックの構成でも適用できる。 Each of the above embodiments can be applied to the liquid crystal display element 2 having a normally white configuration or a normally black configuration.
 なお、焼付き防止のための液晶への印加電界の極性反転の方法については、周知の技術と各本願の発明との組合わせにより、当業者は容易に発想し得る。 In addition, a person skilled in the art can easily conceive a method of reversing the polarity of the electric field applied to the liquid crystal for preventing image sticking by combining a well-known technique and the inventions of the present application.
 以上、各実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 As mentioned above, although this invention was demonstrated with reference to each embodiment, this invention is not limited to the said embodiment. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.

Claims (14)

  1.  複数の色に対応する複数の映像信号と1対1で対応し、かつ、前記複数の映像信号のうち、自己に対応する対応映像信号を受け付けると、前記対応映像信号を補正した補正信号を出力する、複数の補正手段と、
     前記複数の補正手段のそれぞれから出力された補正信号を、1つずつ順番に出力する出力制御手段と、
     前記出力制御手段から前記補正信号が出力されるごとに、当該補正信号の元になった映像信号に対応する色の光を発する照射手段と、
     前記出力制御手段から前記補正信号が出力されるごとに、前記照射手段から発せられた光を、当該補正信号に応じて変調して出力する液晶表示素子と、を含み、
     前記複数の補正手段の少なくとも1つは、前記対応映像信号と、当該対応映像信号を補正した補正信号の直前または直後に前記出力制御手段から出力される他の補正信号の元になった他の映像信号の一部と、を受け付けると、前記対応映像信号を前記他の映像信号の一部に基づいて補正した補正映像信号を、前記補正信号として出力する、液晶表示装置。
    When a plurality of video signals corresponding to a plurality of colors correspond one-to-one, and when a corresponding video signal corresponding to one of the plurality of video signals is received, a correction signal obtained by correcting the corresponding video signal is output. A plurality of correction means;
    Output control means for sequentially outputting the correction signals output from each of the plurality of correction means, one by one;
    Each time the correction signal is output from the output control means, an irradiation means for emitting light of a color corresponding to the video signal that is the source of the correction signal;
    A liquid crystal display element that modulates and outputs the light emitted from the irradiation unit according to the correction signal each time the correction signal is output from the output control unit;
    At least one of the plurality of correction means may be a source of the corresponding video signal and another correction signal output from the output control means immediately before or immediately after the correction signal obtained by correcting the corresponding video signal. When receiving a part of the video signal, the liquid crystal display device outputs a corrected video signal obtained by correcting the corresponding video signal based on a part of the other video signal as the correction signal.
  2.  前記複数の補正手段のうちの少なくとも1つは、前記対応映像信号および前記他の映像信号の一部と、前記補正映像信号と、を互いに関連づけて格納し、前記対応映像信号および前記他の映像信号の一部を受け付けると、前記補正映像信号を、前記補正信号として出力する格納手段である、請求の範囲第1項に記載の液晶表示装置。 At least one of the plurality of correction means stores the corresponding video signal and a part of the other video signal and the corrected video signal in association with each other, and stores the corresponding video signal and the other video. The liquid crystal display device according to claim 1, wherein the liquid crystal display device is storage means for outputting the corrected video signal as the correction signal when a part of the signal is received.
  3.  前記複数の補正手段のうちの少なくとも1つでは、前記液晶表示素子での前記色ごとの応答特性の違いに基づいて、前記他の映像信号の一部が設定されている、請求の範囲第1項または第2項に記載の液晶表示装置。 The at least one of the plurality of correction means is configured such that a part of the other video signal is set based on a difference in response characteristics for each color in the liquid crystal display element. Item 2. A liquid crystal display device according to item 2.
  4.  前記複数の補正手段のうちの少なくとも1つは、前記他の映像信号の一部の代わりに、他の補正手段が当該他の映像信号を補正した補正信号の一部を受け付け、かつ、前記対応映像信号を受け付けると、前記対応映像信号を前記補正信号の一部に基づいて補正した補正信号を出力する映像信号補正手段である、請求の範囲第1項から第3項のいずれか1項に記載の液晶表示装置。 At least one of the plurality of correction means accepts a part of the correction signal obtained by correcting the other video signal by the other correction means instead of the part of the other video signal, and the correspondence 4. The video signal correcting means according to claim 1, wherein when the video signal is received, the video signal correcting means outputs a correction signal obtained by correcting the corresponding video signal based on a part of the correction signal. 5. The liquid crystal display device described.
  5.  前記複数の映像信号は、1フレームを構成し、
     前記1フレームが更新された際に、更新前の1フレームを構成する前記複数の映像信号のそれぞれに対応する複数の補正信号のうち前記出力制御手段から最後に出力される補正信号の元になった映像信号を記憶する記憶手段をさらに含み、
     前記複数の補正手段のうち、前記1フレームを構成する前記複数の映像信号のそれぞれに対応する複数の補正信号のうち前記出力制御手段から最初に出力される補正信号の元になった映像信号に1対1で対応する補正手段は、前記他の映像信号の一部として、前記記憶手段内の映像信号の一部を受け付け、かつ、前記対応映像信号を受け付けると、前記対応映像信号を前記記憶手段内の映像信号の一部に基づいて補正した補正信号を出力する、色映像信号補正手段である、請求の範囲第1項から第4項のいずれか1項に記載の液晶表示装置。
    The plurality of video signals constitute one frame,
    When the one frame is updated, it becomes the source of the correction signal that is finally output from the output control unit among the plurality of correction signals corresponding to each of the plurality of video signals constituting one frame before the update. Storage means for storing the received video signal,
    Of the plurality of correction means, a video signal that is a source of a correction signal that is first output from the output control means among a plurality of correction signals corresponding to each of the plurality of video signals constituting the one frame. The one-to-one correction unit accepts a part of the video signal in the storage unit as a part of the other video signal, and receives the corresponding video signal and stores the corresponding video signal. 5. The liquid crystal display device according to claim 1, wherein the liquid crystal display device is a color video signal correction unit that outputs a correction signal corrected based on a part of the video signal in the unit.
  6.  前記出力制御手段は、前記複数の補正手段のそれぞれから出力された補正信号を受け付けると、当該補正信号を、前記液晶表示素子が有する印加電圧と光の透過率との関係に応じて補正した、特性補正信号を出力し、前記補正信号の代わりに、当該特性補正信号を、1つずつ順番に出力する出力補正制御手段である、請求の範囲第1項から第5項のいずれか1項に記載の液晶表示装置。 When the output control means receives the correction signal output from each of the plurality of correction means, the correction signal is corrected according to the relationship between the applied voltage and the light transmittance of the liquid crystal display element, The output correction control means for outputting a characteristic correction signal and outputting the characteristic correction signal one by one in place of the correction signal, according to any one of claims 1 to 5. The liquid crystal display device described.
  7.  前記特性補正信号は、無彩色の画像を形成するための映像信号を用いて作成されたものである、請求の範囲第6項に記載の液晶表示装置。 The liquid crystal display device according to claim 6, wherein the characteristic correction signal is created using a video signal for forming an achromatic image.
  8.  前記複数の映像信号と異なる数の映像信号から前記複数の映像信号を生成する生成手段をさらに含む、請求の範囲第1項から第7項のいずれか1項に記載の液晶表示装置。 The liquid crystal display device according to any one of claims 1 to 7, further comprising generating means for generating the plurality of video signals from a number of video signals different from the plurality of video signals.
  9.  駆動信号を受け付けると当該駆動信号に対応する色の光を前記駆動信号に応じて変調して出力する液晶表示素子の駆動回路であって、
     複数の色に対応する複数の映像信号と1対1で対応し、かつ、前記複数の映像信号のうち、自己に対応する対応映像信号を受け付けると、前記対応映像信号を補正した補正信号を出力する、複数の補正手段と、
     前記複数の補正手段のそれぞれから出力された補正信号を、1つずつ順番に、前記駆動信号として前記液晶表示素子に出力する出力制御手段と、を含み、
     前記複数の補正手段の少なくとも1つは、前記対応映像信号と、当該対応映像信号を補正した補正信号の直前または直後に前記出力制御手段から出力される他の補正信号の元になった他の映像信号の一部と、を受け付けると、前記対応映像信号を前記他の映像信号の一部に基づいて補正した補正映像信号を、前記補正信号として出力する、液晶表示素子の駆動回路。
    A drive circuit for a liquid crystal display element that, upon receiving a drive signal, modulates and outputs light of a color corresponding to the drive signal according to the drive signal;
    When a plurality of video signals corresponding to a plurality of colors correspond one-to-one, and when a corresponding video signal corresponding to one of the plurality of video signals is received, a correction signal obtained by correcting the corresponding video signal is output. A plurality of correction means;
    Output control means for outputting correction signals output from each of the plurality of correction means to the liquid crystal display element as the drive signals one by one in order,
    At least one of the plurality of correction means may be a source of the corresponding video signal and another correction signal output from the output control means immediately before or immediately after the correction signal obtained by correcting the corresponding video signal. When a part of the video signal is received, a drive circuit for a liquid crystal display element that outputs a corrected video signal obtained by correcting the corresponding video signal based on a part of the other video signal as the correction signal.
  10.  前記複数の補正手段のうちの少なくとも1つは、前記対応映像信号および前記他の映像信号の一部と、前記補正映像信号と、を互いに関連づけて格納し、前記対応映像信号および前記他の映像信号の一部を受け付けると、前記補正映像信号を、前記補正信号として出力する格納手段である、請求の範囲第9項に記載の液晶表示素子の駆動回路。 At least one of the plurality of correction means stores the corresponding video signal and a part of the other video signal and the corrected video signal in association with each other, and stores the corresponding video signal and the other video. 10. The driving circuit for a liquid crystal display element according to claim 9, which is storage means for outputting the corrected video signal as the correction signal when a part of the signal is received.
  11.  複数の映像信号に対応する複数の色の画像を順番に表示することにより、カラー画像を表示するFSC方式の液晶表示装置が行うカラー画像生成方法であって、
     前記複数の映像信号と1対1で対応する複数の補正手段のそれぞれが、前記複数の映像信号のうち、自己に対応する対応映像信号を受け付けると、前記対応映像信号を補正した補正信号を出力し、
     前記補正信号を、1つずつ順番に出力し、
     前記補正信号が1つずつ順番に出力されるごとに、当該補正信号の元になった映像信号に対応する色の光を発し、
     前記補正信号が1つずつ順番に出力されるごとに、前記光を、当該補正信号に応じて変調して出力し、
     前記複数の補正手段の少なくとも1つが、前記対応映像信号と、当該対応映像信号を補正した補正信号の直前または直後に出力される他の補正信号の元になった他の映像信号の一部と、を受け付けると、前記対応映像信号を前記他の映像信号の一部に基づいて補正した補正映像信号を、前記補正信号として出力する、カラー画像生成方法。
    A color image generation method performed by an FSC liquid crystal display device that displays a color image by sequentially displaying a plurality of color images corresponding to a plurality of video signals,
    When each of the plurality of correction units corresponding to the plurality of video signals on a one-to-one basis receives a corresponding video signal corresponding to itself among the plurality of video signals, a correction signal obtained by correcting the corresponding video signal is output. And
    The correction signals are output one by one in order,
    Each time the correction signals are output one by one, light of a color corresponding to the video signal that is the source of the correction signal is emitted,
    Each time the correction signals are sequentially output one by one, the light is modulated and output according to the correction signal,
    At least one of the plurality of correction means includes the corresponding video signal and a part of another video signal that is a source of another correction signal output immediately before or immediately after the correction signal obtained by correcting the corresponding video signal. , A color image generation method of outputting a corrected video signal obtained by correcting the corresponding video signal based on a part of the other video signal as the correction signal.
  12.  前記複数の補正手段のうちの少なくとも1つは、前記対応映像信号および前記他の映像信号の一部と、前記補正映像信号と、を互いに関連づけて格納し、前記対応映像信号および前記他の映像信号の一部を受け付けると、前記補正映像信号を、前記補正信号として出力する、請求の範囲第11項に記載のカラー画像生成方法。 At least one of the plurality of correction means stores the corresponding video signal and a part of the other video signal and the corrected video signal in association with each other, and stores the corresponding video signal and the other video. 12. The color image generation method according to claim 11, wherein when a part of the signal is received, the corrected video signal is output as the correction signal.
  13.  駆動信号を受け付けると当該駆動信号に対応する色の光を前記駆動信号に応じて変調して出力する液晶表示素子の駆動方法であって、
     複数の色に対応する複数の映像信号と1対1で対応する複数の補正手段のそれぞれが、前記複数の映像信号のうち、自己に対応する対応映像信号を受け付けると、前記対応映像信号を補正した補正信号を出力し、
     前記補正信号を、1つずつ順番に出力し、
     前記複数の補正手段の少なくとも1つが、前記対応映像信号と、当該対応映像信号を補正した補正信号の直前または直後に出力される他の補正信号の元になった他の映像信号の一部と、を受け付けると、前記対応映像信号を前記他の映像信号の一部に基づいて補正した補正映像信号を、前記補正信号として出力する、液晶表示素子の駆動方法。
    A method of driving a liquid crystal display element that, when receiving a drive signal, modulates and outputs light of a color corresponding to the drive signal according to the drive signal,
    When each of a plurality of correction means corresponding to a plurality of video signals corresponding to a plurality of colors receives a corresponding video signal corresponding to itself among the plurality of video signals, the corresponding video signal is corrected. Output the corrected signal,
    The correction signals are output one by one in order,
    At least one of the plurality of correction means includes the corresponding video signal and a part of another video signal that is a source of another correction signal output immediately before or immediately after the correction signal obtained by correcting the corresponding video signal. , A liquid crystal display element driving method of outputting a corrected video signal obtained by correcting the corresponding video signal based on a part of the other video signal as the correction signal.
  14.  前記複数の補正手段のうちの少なくとも1つは、前記対応映像信号および前記他の映像信号の一部と、前記補正映像信号と、を互いに関連づけて格納し、前記対応映像信号および前記他の映像信号の一部を受け付けると、前記補正映像信号を、前記補正信号として出力する、請求の範囲第13項に記載の液晶表示素子の駆動方法。 At least one of the plurality of correction means stores the corresponding video signal and a part of the other video signal and the corrected video signal in association with each other, and stores the corresponding video signal and the other video. 14. The method of driving a liquid crystal display element according to claim 13, wherein when a part of the signal is received, the corrected video signal is output as the correction signal.
PCT/JP2008/073816 2008-12-26 2008-12-26 Liquid crystal display device, liquid crystal display element driving circuit, color image generation method, and liquid crystal display element driving method WO2010073393A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010543725A JP5376678B2 (en) 2008-12-26 2008-12-26 Liquid crystal display device, liquid crystal display element drive circuit, color image generation method, and liquid crystal display element drive method
PCT/JP2008/073816 WO2010073393A1 (en) 2008-12-26 2008-12-26 Liquid crystal display device, liquid crystal display element driving circuit, color image generation method, and liquid crystal display element driving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/073816 WO2010073393A1 (en) 2008-12-26 2008-12-26 Liquid crystal display device, liquid crystal display element driving circuit, color image generation method, and liquid crystal display element driving method

Publications (1)

Publication Number Publication Date
WO2010073393A1 true WO2010073393A1 (en) 2010-07-01

Family

ID=42287060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073816 WO2010073393A1 (en) 2008-12-26 2008-12-26 Liquid crystal display device, liquid crystal display element driving circuit, color image generation method, and liquid crystal display element driving method

Country Status (2)

Country Link
JP (1) JP5376678B2 (en)
WO (1) WO2010073393A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140021500A1 (en) * 2010-12-20 2014-01-23 Ocean's King Lighting Science & Technology Co., Ltd. Light emitting device and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002091390A (en) * 2000-09-13 2002-03-27 Advanced Display Inc Liquid crystal display device and its circuit device for drive
JP2002244626A (en) * 2001-02-22 2002-08-30 Sharp Corp Color sequential type display device
JP2003295838A (en) * 2002-04-01 2003-10-15 Mitsubishi Electric Corp Drive circuit for liquid crystal display device
JP2005208600A (en) * 2003-12-26 2005-08-04 Nec Corp Liquid crystal display device, and method and circuit for driving the same
JP2005275204A (en) * 2004-03-26 2005-10-06 Nec Display Solutions Ltd Liquid crystal display device
JP2005352463A (en) * 2004-05-14 2005-12-22 Canon Inc Color display element and method of driving the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000197071A (en) * 1998-12-25 2000-07-14 Victor Co Of Japan Ltd White balance adjustment circuit for matrix type display device and its method
WO2005119639A1 (en) * 2004-06-01 2005-12-15 Koninklijke Philips Electronics N.V. Display device comprising a light source
JP2006010839A (en) * 2004-06-23 2006-01-12 Kawasaki Microelectronics Kk Controller for display
JP5254003B2 (en) * 2005-04-21 2013-08-07 ティーピー ビジョン ホールディング ビー ヴィ Method, system, display device, computer program, camera, and portable device for converting three primary color input signals into four primary color drive signals
JP2007333770A (en) * 2006-06-12 2007-12-27 Seiko Epson Corp Electrooptical device, driving circuit for electrooptical device, and driving method of electrooptical device, and electronic device
JP2008107575A (en) * 2006-10-25 2008-05-08 Olympus Corp Display apparatus
JP2008191248A (en) * 2007-02-01 2008-08-21 Sharp Corp Back light device for liquid crystal display
JP2008216560A (en) * 2007-03-02 2008-09-18 Olympus Corp Display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002091390A (en) * 2000-09-13 2002-03-27 Advanced Display Inc Liquid crystal display device and its circuit device for drive
JP2002244626A (en) * 2001-02-22 2002-08-30 Sharp Corp Color sequential type display device
JP2003295838A (en) * 2002-04-01 2003-10-15 Mitsubishi Electric Corp Drive circuit for liquid crystal display device
JP2005208600A (en) * 2003-12-26 2005-08-04 Nec Corp Liquid crystal display device, and method and circuit for driving the same
JP2005275204A (en) * 2004-03-26 2005-10-06 Nec Display Solutions Ltd Liquid crystal display device
JP2005352463A (en) * 2004-05-14 2005-12-22 Canon Inc Color display element and method of driving the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140021500A1 (en) * 2010-12-20 2014-01-23 Ocean's King Lighting Science & Technology Co., Ltd. Light emitting device and manufacturing method thereof

Also Published As

Publication number Publication date
JPWO2010073393A1 (en) 2012-05-31
JP5376678B2 (en) 2013-12-25

Similar Documents

Publication Publication Date Title
US7106276B2 (en) Color display device
US7046221B1 (en) Increasing brightness in field-sequential color displays
US20070070024A1 (en) Liquid crystal display device
JP2004140800A (en) Image display device
US9928806B2 (en) Projection display apparatus having an optical element projecting modulated light, method for controlling the same, and electronic device
WO2017077931A1 (en) Color image display device and color image display method
JP6252031B2 (en) Electro-optical device drive device, electro-optical device drive method, electro-optical device, and electronic apparatus
JP2006293095A (en) Liquid crystal display device and display method of liquid crystal display device
JPWO2002056288A1 (en) Color image display
US20170047021A1 (en) Display device
JP2004251980A (en) Driving circuit and driving method for display device, and display device and projection display device
JP5376678B2 (en) Liquid crystal display device, liquid crystal display element drive circuit, color image generation method, and liquid crystal display element drive method
JP5413987B2 (en) Liquid crystal display device, driving circuit and driving method
JP2010250043A (en) Electro-optical device
KR20090007033A (en) Liquid crystal display and driving method thereof
US8711070B2 (en) Display device and projector
JP6508277B2 (en) projector
JP6262940B2 (en) Liquid crystal display device and driving method thereof
KR20060042602A (en) Liquid crystal display and driving method thereof
JP7288352B2 (en) Display device
KR100599757B1 (en) Liquid crystal device and driving method thereof
JP6299108B2 (en) Electro-optical device drive device, electro-optical device drive method, electro-optical device, and electronic apparatus
KR100627386B1 (en) Liquid crystal display device
KR100552013B1 (en) Liquid crystal display and driving method thereof
JP5398037B2 (en) Driving circuit, image display apparatus, and driving method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08879188

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010543725

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08879188

Country of ref document: EP

Kind code of ref document: A1