WO2010073319A1 - Duct for ship and ship - Google Patents

Duct for ship and ship Download PDF

Info

Publication number
WO2010073319A1
WO2010073319A1 PCT/JP2008/073411 JP2008073411W WO2010073319A1 WO 2010073319 A1 WO2010073319 A1 WO 2010073319A1 JP 2008073411 W JP2008073411 W JP 2008073411W WO 2010073319 A1 WO2010073319 A1 WO 2010073319A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
ship
duct
marine
hull
Prior art date
Application number
PCT/JP2008/073411
Other languages
French (fr)
Japanese (ja)
Inventor
三郎 岩本
Original Assignee
住友重機械マリンエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械マリンエンジニアリング株式会社 filed Critical 住友重機械マリンエンジニアリング株式会社
Priority to CN200880131603.8A priority Critical patent/CN102186721B/en
Priority to KR1020117008040A priority patent/KR20110050736A/en
Priority to DE112008004244T priority patent/DE112008004244T5/en
Priority to KR1020137012512A priority patent/KR101429416B1/en
Priority to PCT/JP2008/073411 priority patent/WO2010073319A1/en
Publication of WO2010073319A1 publication Critical patent/WO2010073319A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/16Arrangements on vessels of propulsion elements directly acting on water of propellers characterised by being mounted in recesses; with stationary water-guiding elements; Means to prevent fouling of the propeller, e.g. guards, cages or screens

Definitions

  • the present invention relates to a ship duct for improving propulsion performance and a ship provided with the duct.
  • the present inventor has found that the improvement in propulsion performance was reduced in the conventional marine duct. That is, as a result of the analysis of the flow direction in the vicinity of the stern in the absence of the ship duct by the present inventor, in the region corresponding to the upper part of the ship duct, the flow direction is directed downward toward the stern. In the area corresponding to the lower part of the duct, it became clear that the flow direction was upward as it went toward the stern. For this reason, in the conventional marine duct, a propulsive force can be obtained in the upper portion, but resistance has been provided in the lower portion.
  • An object of the present invention is to provide a marine duct and a marine vessel capable of further improving the propulsion performance.
  • the marine duct according to the present invention is curved in an arc shape having a radius r 0, and has a first plate-like body having a wing shape in which a cross-sectional shape in the front-rear direction projects inward, and a first plate-like body
  • the linear distance r between the central axis of the first plate-like body and the second plate-like body is 0 ⁇ r / r 0 ⁇ 0.85. It is characterized by satisfying.
  • the first plate-like body is curved in an arc shape, and a linear second plate-like body is provided at the end of the first plate-like body. Therefore, when this marine duct is attached to the hull so that the first plate-like body is located on the upper side and the second plate-like body is located on the lower side while being positioned in front of the screw, The lower part that caused the resistance no longer exists. As a result, it is possible to further improve the propulsion performance.
  • the linear distance r between the central axis of the first plate and the second plate satisfies 0 ⁇ r / r 0 ⁇ 0.85. Therefore, it is possible to sufficiently exhibit the effect of improving the propulsion performance due to the absence of the lower portion that causes the resistance in the conventional marine duct.
  • the linear distance r between the central axis of the first plate-like body and the second plate-like body satisfies 0.3 ⁇ r / r 0 ⁇ 0.8. If it does in this way, it will become possible to fully exhibit the effect of improvement of propulsion performance by the absence of the lower part which became the cause of resistance in the conventional duct for ships.
  • the second plate-like body is constituted by a flat plate. If it does in this way, it will become possible to comprise easily the duct for ships concerning the present invention.
  • the second plate-like body has a wing shape in which a cross-sectional shape in the front-rear direction projects inward. If it does in this way, in addition to the 1st plate-like object, since it can obtain propulsive force also in the 2nd plate-like object, it becomes possible to aim at the further improvement of propulsion performance.
  • vessel according to the present invention includes a hull, a screw provided on the hull for generating a main propulsive force, and a marine ducts, marine duct is curved in an arc shape having a radius r 0
  • the hull is such that the distance r satisfies 0 ⁇ r / r 0 ⁇ 0.85, is located in front of the screw, and the first plate is on the upper side and the second plate is on the lower side. It is attached to.
  • the first plate-like body is curved in an arc shape, and a linear second plate-like body is provided at the end of the first plate-like body.
  • the marine duct is attached to the hull so that the first plate-like body is on the upper side and the second plate-like body is on the lower side while being positioned in front of the screw. Therefore, there is no lower portion that has caused resistance in the conventional marine duct. As a result, it is possible to further improve the propulsion performance.
  • the linear distance r between the central axis of the first plate-like body and the second plate-like body satisfies 0 ⁇ r / r 0 ⁇ 0.85. Therefore, it is possible to sufficiently exhibit the effect of improving the propulsion performance due to the absence of the lower portion that causes the resistance in the conventional marine duct.
  • the linear distance r between the central axis of the first plate-like body and the second plate-like body satisfies 0.3 ⁇ r / r 0 ⁇ 0.8. If it does in this way, it will become possible to fully exhibit the effect of improvement of propulsion performance by the absence of the lower part which became the cause of resistance in the conventional duct for ships.
  • the intersection of the central axis of the first plate-like body and the virtual plane including the rear edge of the marine duct is located above the rotational axis of the screw.
  • the first plate-like body has a wing shape in which the cross-sectional shape in the front-rear direction protrudes inward, the flow velocity inside the marine duct is faster than the flow velocity outside the marine duct. Therefore, compared with the case where the center axis
  • the second plate-like body is constituted by a flat plate. If it does in this way, it will become possible to comprise simply the ship duct with which the ship concerning the present invention is provided.
  • the marine duct is attached to the hull so that the front-rear direction of the second plate-like body is along the flow direction in the region where the second plate-like body is located. If it does in this way, it will become possible to make resistance which arises in the 2nd plate-like object small enough.
  • the second plate-like body has a wing shape in which a cross-sectional shape in the front-rear direction projects inward.
  • a propulsive force can be obtained not only in the first plate-like body but also in the second plate-like body, so that it is possible to further improve the propulsion performance.
  • the marine duct is attached to the hull so that the second plate has a predetermined angle of attack with respect to the flow direction in the region where the second plate is located. If it does in this way, it will become possible to obtain a bigger thrust in the 2nd plate-shaped object.
  • FIG. 1 is a side view showing a stern portion of a ship according to the present embodiment.
  • FIG. 2 is a front view of the marine duct.
  • FIG. 3 is an enlarged longitudinal sectional view showing a part of the marine duct.
  • FIG. 4 is a diagram showing the flow direction in the vicinity of the stern part.
  • FIG. 5 is a diagram showing an improvement rate of propulsion performance by the marine duct.
  • FIG. 6 is a perspective view showing a stern portion of a ship according to a first modification of the present embodiment.
  • FIG. 7 is a perspective view showing a stern part of a ship according to a first modification of the present embodiment.
  • the ship 10 includes a hull 12, a screw 14, a rudder 16, a ladder horn 18, and a ship duct 20. Although there are ships that do not include the ladder horn 18, the effects of the present invention are not changed even with such ships.
  • the hull 12 has a backward stern portion 12a facing backward and a downward stern portion 12b facing downward.
  • the screw 14 is installed at the tip of the protrusion 22 provided in the backward stern part 12a.
  • the marine vessel 10 moves forward by obtaining the thrust (main propulsive force) generated by the screw 14.
  • the rudder 16 is attached to the downward stern portion 12b via a rudder shaft 24 extending upward from its upper end portion 16a so as to be rotatable with respect to the hull 12.
  • the rudder 16 is also supported by a ladder horn 18 projecting downward from the downward stern portion 12b. Therefore, by changing the angle of the rudder 16 via the rudder shaft 24 with a steering gear (not shown) while the screw 14 is rotated, the traveling direction of the ship 10 can be changed to match the course.
  • the rudder body 16 has a blade shape that gradually increases in thickness from the front end portion 16b toward the rear end portion 16c and then gradually decreases.
  • the marine duct 20 includes a first plate-like body 20a and a pair of second plate-like bodies 20b.
  • the first plate body 20a as shown in FIG. 2, is curved in an arc shape having a radius r 0.
  • the 1st plate-shaped body 20a is exhibiting the wing
  • one end of the bracket 26 is joined to the top of the first plate-like body 20 a by welding or the like, and the other end of the bracket 26 is joined to the protruding portion 22.
  • the 2nd plate-shaped body 20b is comprised by the flat plate, as FIG.1 and FIG.2 shows.
  • One end of each of the pair of second plate-like bodies 20b is provided at each end of the first plate-like body 20a.
  • Each other end of the pair of second plate-like bodies 20b is joined to the protrusion 22 by welding or the like, for example.
  • the second plate-like body 20b is positioned so as to be separated from the central axis X1 of the first plate-like body 20a by a linear distance r.
  • the linear distance r satisfies 0 ⁇ r / r 0 ⁇ 0.85, and preferably satisfies 0.3 ⁇ r / r 0 ⁇ 0.8.
  • the marine duct 20 is attached to the projecting portion 22 of the hull 12 so that the first plate-like body 20a is on the upper side and the second plate-like body 20b is on the lower side while being positioned in front of the screw 14. (See FIG. 1). Further, the marine duct 20 includes the hull 12 so that the intersection P between the central axis X1 of the first plate-like body 20a and the virtual plane S including the rear edge 20c is located above the rotation axis X2 of the screw 14. The protrusion 22 is attached (see FIG. 1).
  • the center axis X1 of the first plate-like body 20a is inclined upward by an angle ⁇ with respect to the rotation axis X2 of the screw 14.
  • This angle ⁇ can be set so as to have an appropriate angle of attack with respect to the flow direction in the first plate-like body 20a so that a large lift can be obtained by the first plate-like body 20a.
  • a substantially annular ship duct 120 having a wing shape whose cross-sectional shape in the front-rear direction protrudes inward has been provided in the hull 12 (see FIG. 4).
  • the region corresponding to the upper portion of the ship duct 120 A region in FIG. 4
  • the flow direction is directed downward toward the stern.
  • the region corresponding to the lower portion of the vessel duct 120 region B in FIG. 4
  • the flow direction is directed upward toward the stern.
  • the first plate-like body 20a of the marine duct 20 is curved in an arc shape, and a flat plate-like second plate-like body 20b is provided at the end of the first plate-like body 20a. ing.
  • the marine duct 20 is attached to the hull 12 so that the first plate-like body 20a is on the upper side and the second plate-like body 20b is on the lower side while being positioned in front of the screw 14. Therefore, there is no lower portion that causes resistance in the conventional marine duct 120. As a result, it is possible to further improve the propulsion performance.
  • the linear distance r between the central axis X1 of the first plate 20a and the second plate 20b satisfies 0 ⁇ r / r 0 ⁇ 0.85. Therefore, it is possible to sufficiently exert the effect of improving the propulsion performance due to the absence of the lower portion that causes the resistance in the conventional marine duct 120.
  • r / r 0 is 0 , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0.
  • BHP Brain Horse Power
  • the improvement rate of propulsion performance is greater than 7%, and the linear distance r is 0.4 ⁇ r / r.
  • the improvement rate of propulsion performance was 8% or more. Therefore, when the linear distance r satisfies 0 ⁇ r / r 0 ⁇ 0.85, the propulsion performance is further improved, and when the linear distance r satisfies 0.4 ⁇ r / r 0 ⁇ 0.8, the propulsion performance is improved. It was confirmed that it was further improved.
  • the intersection P between the central axis X1 of the first plate-like body 20a and the virtual plane S including the rear edge portion 20c of the marine duct 20 is located above the rotation axis X2 of the screw 14.
  • the marine duct 20 is attached to the hull 12. Since the first plate-like body 20a has a wing shape in which the cross-sectional shape in the front-rear direction protrudes inward (see FIGS. 1 and 3), the flow velocity inside the marine duct 20 is outside the marine duct. Faster than the flow rate at.
  • the marine duct 20 can be easily constituted.
  • the second plate-like body 20 b may be configured to have a wing shape in which the cross-sectional shape in the front-rear direction protrudes inward.
  • the marine duct 20 is arranged such that the second plate-like body 20b has a predetermined angle of attack with respect to the flow direction in the region where the second plate-like body 20b is located (in FIG.
  • the angle ⁇ formed with the upper surface on the rear edge side of the body 20b is, for example, about 0 ° to 40 ° upward, preferably about 10 ° to 30 ° upward), and attached to the hull 12. More preferred. In this case, since the propulsive force can be obtained not only in the first plate-like body 20a but also in the second plate-like body 20b, the propulsion performance can be further improved.
  • the front-back direction of the 2nd plate-shaped body 20b is the 2nd plate-shaped body 20b. It may be attached to the hull 12 so as to follow the flow direction in the region where it is located. In this case, the resistance generated in the second plate-like body 20b can be made sufficiently small.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Screw Conveyors (AREA)

Abstract

Provided are a duct for a ship, capable of further improving propulsion performance of the ship, and a ship. The duct (20) for a ship has first plate-like body (20a) and a second plate-like body (20b). The first plate-like body (20a) is curved in a circular arc shape having a radius r0, and a cross-section of the first plate-like body (20a) taken in the front-rear direction has an inwardly protruding wing shape. The second plate-like body (20b) is constructed from a flat plate and is provided to an end of the first plate-like body (20a). The distance r between the center axis X1 of the first plate-like body (20a) and the second plate-like body (20b) satisfies the expression of 0 < r/r0 < 0.85.

Description

船舶用ダクト及び船舶Ship duct and ship
 本発明は、推進性能を向上させるための船舶用ダクト及び当該ダクトが設けられた船舶に関する。 The present invention relates to a ship duct for improving propulsion performance and a ship provided with the duct.
 従来、前後方向における断面形状が内側に向けて突出する翼形状を呈する、略円環状の船舶用ダクトが知られている(例えば、特許文献1参照)。
特開2002-220089号公報
2. Description of the Related Art Conventionally, a substantially annular ship duct having a wing shape in which a cross-sectional shape in the front-rear direction projects inward is known (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 2002-220089
 しかしながら、本発明者は、従来の船舶用ダクトでは、推進性能の向上が減殺されていたことを見出した。すなわち、本発明者による船舶用ダクトがない場合の船尾近傍における流向の解析の結果、船舶用ダクトの上側部分に相当する領域においては、船尾に向かうにつれて下方に向かう流向となっているが、船舶用ダクトの下側部分に相当する領域においては、船尾に向かうにつれて上方に向かう流向となっていることが明らかとなった。そのため、従来の船舶用ダクトでは、上側部分においては推進力を得られるものの、下側部分においては抵抗となってしまっていた。 However, the present inventor has found that the improvement in propulsion performance was reduced in the conventional marine duct. That is, as a result of the analysis of the flow direction in the vicinity of the stern in the absence of the ship duct by the present inventor, in the region corresponding to the upper part of the ship duct, the flow direction is directed downward toward the stern. In the area corresponding to the lower part of the duct, it became clear that the flow direction was upward as it went toward the stern. For this reason, in the conventional marine duct, a propulsive force can be obtained in the upper portion, but resistance has been provided in the lower portion.
 本発明は、推進性能の更なる向上を図ることが可能な船舶用ダクト及び船舶を提供することを目的とする。 An object of the present invention is to provide a marine duct and a marine vessel capable of further improving the propulsion performance.
 本発明に係る船舶用ダクトは、半径rを有する円弧状に湾曲されると共に、前後方向における断面形状が内側に向けて突出する翼形状を呈する第1板状体と、第1板状体の端部に設けられた直線状の第2板状体とを備え、第1板状体の中心軸と第2板状体との直線距離rが、0<r/r<0.85を満たすことを特徴とする。 The marine duct according to the present invention is curved in an arc shape having a radius r 0, and has a first plate-like body having a wing shape in which a cross-sectional shape in the front-rear direction projects inward, and a first plate-like body The linear distance r between the central axis of the first plate-like body and the second plate-like body is 0 <r / r 0 <0.85. It is characterized by satisfying.
 本発明に係る船舶用ダクトでは、第1板状体が円弧状に湾曲されており、当該第1板状体の端部に直線状の第2板状体が設けられている。そのため、この船舶用ダクトを、スクリューの前方に位置すると共に、第1板状体が上側で且つ第2板状体が下側となるように、船体に取り付けた場合、従来の船舶用ダクトにおいて抵抗の原因となっていた下側部分が存在しなくなる。その結果、推進性能の更なる向上を図ることが可能となる。そして、本発明に係る船舶用ダクトでは、第1板状体の中心軸と第2板状体との直線距離rが、0<r/r<0.85を満たしている。そのため、従来の船舶用ダクトにおいて抵抗の原因となっていた下側部分が存在しないことによる推進性能の向上の効果を、十分に発揮することが可能となっている。 In the marine duct according to the present invention, the first plate-like body is curved in an arc shape, and a linear second plate-like body is provided at the end of the first plate-like body. Therefore, when this marine duct is attached to the hull so that the first plate-like body is located on the upper side and the second plate-like body is located on the lower side while being positioned in front of the screw, The lower part that caused the resistance no longer exists. As a result, it is possible to further improve the propulsion performance. In the marine duct according to the present invention, the linear distance r between the central axis of the first plate and the second plate satisfies 0 <r / r 0 <0.85. Therefore, it is possible to sufficiently exhibit the effect of improving the propulsion performance due to the absence of the lower portion that causes the resistance in the conventional marine duct.
 好ましくは、第1板状体の中心軸と第2板状体との直線距離rが、0.3≦r/r≦0.8を満たす。このようにすると、従来の船舶用ダクトにおいて抵抗の原因となっていた下側部分が存在しないことによる推進性能の向上の効果を、より十分に発揮することが可能となっている。 Preferably, the linear distance r between the central axis of the first plate-like body and the second plate-like body satisfies 0.3 ≦ r / r 0 ≦ 0.8. If it does in this way, it will become possible to fully exhibit the effect of improvement of propulsion performance by the absence of the lower part which became the cause of resistance in the conventional duct for ships.
 好ましくは、第2板状体は、平板によって構成されている。このようにすると、本発明に係る船舶用ダクトを簡単に構成することが可能となる。 Preferably, the second plate-like body is constituted by a flat plate. If it does in this way, it will become possible to comprise easily the duct for ships concerning the present invention.
 好ましくは、第2板状体は、前後方向における断面形状が内側に向けて突出する翼形状を呈する。このようにすると、第1板状体に加え、第2板状体においても推進力を得ることができるので、推進性能のより一層の向上を図ることが可能となる。 Preferably, the second plate-like body has a wing shape in which a cross-sectional shape in the front-rear direction projects inward. If it does in this way, in addition to the 1st plate-like object, since it can obtain propulsive force also in the 2nd plate-like object, it becomes possible to aim at the further improvement of propulsion performance.
 一方、本発明に係る船舶は、船体と、主推進力を発生させるために船体に設けられたスクリューと、船舶用ダクトとを備え、船舶用ダクトは、半径rを有する円弧状に湾曲された第1板状体と、第1板状体の端部に設けられた直線状の第2板状体とを有し、第1板状体の中心軸と第2板状体との直線距離rが、0<r/r<0.85を満たしており、スクリューの前方に位置すると共に、第1板状体が上側で且つ第2板状体が下側となるように、船体に取り付けられているすことを特徴とする。 Meanwhile, vessel according to the present invention includes a hull, a screw provided on the hull for generating a main propulsive force, and a marine ducts, marine duct is curved in an arc shape having a radius r 0 A first plate-like body and a linear second plate-like body provided at an end of the first plate-like body, and a straight line between the central axis of the first plate-like body and the second plate-like body. The hull is such that the distance r satisfies 0 <r / r 0 <0.85, is located in front of the screw, and the first plate is on the upper side and the second plate is on the lower side. It is attached to.
 本発明に係る船舶では、船舶用ダクトにおいて、第1板状体が円弧状に湾曲されており、当該第1板状体の端部に直線状の第2板状体が設けられている。また、船舶用ダクトが、スクリューの前方に位置すると共に、第1板状体が上側で且つ第2板状体が下側となるように、船体に取り付けられている。そのため、従来の船舶用ダクトにおいて抵抗の原因となっていた下側部分が存在しなくなる。その結果、推進性能の更なる向上を図ることが可能となる。そして、本発明に係る船舶が備える船舶用ダクトでは、第1板状体の中心軸と第2板状体との直線距離rが、0<r/r<0.85を満たしている。そのため、従来の船舶用ダクトにおいて抵抗の原因となっていた下側部分が存在しないことによる推進性能の向上の効果を、十分に発揮することが可能となっている。 In the ship according to the present invention, in the marine duct, the first plate-like body is curved in an arc shape, and a linear second plate-like body is provided at the end of the first plate-like body. The marine duct is attached to the hull so that the first plate-like body is on the upper side and the second plate-like body is on the lower side while being positioned in front of the screw. Therefore, there is no lower portion that has caused resistance in the conventional marine duct. As a result, it is possible to further improve the propulsion performance. In the marine duct provided in the marine vessel according to the present invention, the linear distance r between the central axis of the first plate-like body and the second plate-like body satisfies 0 <r / r 0 <0.85. Therefore, it is possible to sufficiently exhibit the effect of improving the propulsion performance due to the absence of the lower portion that causes the resistance in the conventional marine duct.
 好ましくは、第1板状体の中心軸と第2板状体との直線距離rが、0.3≦r/r≦0.8を満たす。このようにすると、従来の船舶用ダクトにおいて抵抗の原因となっていた下側部分が存在しないことによる推進性能の向上の効果を、より十分に発揮することが可能となっている。 Preferably, the linear distance r between the central axis of the first plate-like body and the second plate-like body satisfies 0.3 ≦ r / r 0 ≦ 0.8. If it does in this way, it will become possible to fully exhibit the effect of improvement of propulsion performance by the absence of the lower part which became the cause of resistance in the conventional duct for ships.
 好ましくは、第1板状体の中心軸と船舶用ダクトの後縁部を含む仮想平面との交点が、スクリューの回転軸よりも上方に位置している。第1板状体は、前後方向における断面形状が内側に向けて突出する翼形状を呈しているので、船舶用ダクトの内側における流速は船舶用ダクトの外側における流速よりも速くなる。そのため、第1板状体の中心軸とスクリューの回転軸とが一致しているような場合と比較して、より多くの速い流れがスクリューに流入することとなる。その結果、より一層の推進性能の向上を図ることが可能となる。 Preferably, the intersection of the central axis of the first plate-like body and the virtual plane including the rear edge of the marine duct is located above the rotational axis of the screw. Since the first plate-like body has a wing shape in which the cross-sectional shape in the front-rear direction protrudes inward, the flow velocity inside the marine duct is faster than the flow velocity outside the marine duct. Therefore, compared with the case where the center axis | shaft of a 1st plate-shaped body and the rotating shaft of a screw correspond, more quick flows will flow in into a screw. As a result, it is possible to further improve the propulsion performance.
 好ましくは、第2板状体は、平板によって構成されている。このようにすると、本発明に係る船舶が備える船舶用ダクトを簡単に構成することが可能となる。 Preferably, the second plate-like body is constituted by a flat plate. If it does in this way, it will become possible to comprise simply the ship duct with which the ship concerning the present invention is provided.
 より好ましくは、船舶用ダクトは、第2板状体の前後方向が当該第2板状体の位置する領域における流向に沿うように、船体に取り付けられている。このようにすると、第2板状体において生じる抵抗を十分小さくすることが可能となる。 More preferably, the marine duct is attached to the hull so that the front-rear direction of the second plate-like body is along the flow direction in the region where the second plate-like body is located. If it does in this way, it will become possible to make resistance which arises in the 2nd plate-like object small enough.
 好ましくは、第2板状体は、前後方向における断面形状が内側に向けて突出する翼形状を呈する。このようにすると、船舶用ダクトにおいて、第1板状体に加え、第2板状体においても推進力を得ることができるので、推進性能の更により一層の向上を図ることが可能となる。 Preferably, the second plate-like body has a wing shape in which a cross-sectional shape in the front-rear direction projects inward. In this way, in the marine duct, a propulsive force can be obtained not only in the first plate-like body but also in the second plate-like body, so that it is possible to further improve the propulsion performance.
 より好ましくは、船舶用ダクトは、第2板状体が当該第2板状体の位置する領域における流向に対して所定の迎角を有するように船体に取り付けられている。このようにすると、第2板状体においてより大きな推進力を得ることが可能となる。 More preferably, the marine duct is attached to the hull so that the second plate has a predetermined angle of attack with respect to the flow direction in the region where the second plate is located. If it does in this way, it will become possible to obtain a bigger thrust in the 2nd plate-shaped object.
 本発明によれば、推進性能の更なる向上を図ることが可能な船舶用ダクト及び船舶を提供することができる。 According to the present invention, it is possible to provide a marine duct and a marine vessel capable of further improving the propulsion performance.
図1は、本実施形態に係る船舶の船尾部分を示す側面図である。FIG. 1 is a side view showing a stern portion of a ship according to the present embodiment. 図2は、船舶用ダクトの正面図である。FIG. 2 is a front view of the marine duct. 図3は、船舶用ダクトの一部を拡大して示す縦断面図である。FIG. 3 is an enlarged longitudinal sectional view showing a part of the marine duct. 図4は、船尾部分の近傍における流向を示す図である。FIG. 4 is a diagram showing the flow direction in the vicinity of the stern part. 図5は、船舶用ダクトによる推進性能の向上率を示す図である。FIG. 5 is a diagram showing an improvement rate of propulsion performance by the marine duct. 図6は、本実施形態の第1変形例に係る船舶の船尾部分を示す斜視図である。FIG. 6 is a perspective view showing a stern portion of a ship according to a first modification of the present embodiment. 図7は、本実施形態の第1変形例に係る船舶の船尾部分を示す斜視図である。FIG. 7 is a perspective view showing a stern part of a ship according to a first modification of the present embodiment.
符号の説明Explanation of symbols
 10…船舶、12…船体、14…スクリュー、20…船舶用ダクト、20a…第1板状体、20b…第2板状体。 10 ... ship, 12 ... hull, 14 ... screw, 20 ... ship duct, 20a ... first plate, 20b ... second plate.
 本発明の好適な実施形態について、図面を参照して説明する。なお、説明において、同一要素又は同一機能を有する要素には同一符号を用いることとし、重複する説明は省略する。 Preferred embodiments of the present invention will be described with reference to the drawings. In the description, the same reference numerals are used for the same elements or elements having the same function, and a duplicate description is omitted.
 まず、図1~図3を参照して、本実施形態に係る船舶10の構造について説明する。船舶10は、船体12と、スクリュー14と、舵16と、ラダーホーン18と、船舶用ダクト20とを備える。なお、ラダーホーン18を備えない船舶も存在するが、そのような船舶であっても本発明の効果は変わらない。 First, the structure of the ship 10 according to this embodiment will be described with reference to FIGS. The ship 10 includes a hull 12, a screw 14, a rudder 16, a ladder horn 18, and a ship duct 20. Although there are ships that do not include the ladder horn 18, the effects of the present invention are not changed even with such ships.
 船体12は、図12に示されるように、後方に向いた後向船尾部12aと、下方に向いた下向船尾部12bとを有している。 As shown in FIG. 12, the hull 12 has a backward stern portion 12a facing backward and a downward stern portion 12b facing downward.
 スクリュー14は、後向船尾部12aに設けられた突出部22の先端に設置されている。船舶10は、スクリュー14によって発生された推力(主推進力)を得て前進する。 The screw 14 is installed at the tip of the protrusion 22 provided in the backward stern part 12a. The marine vessel 10 moves forward by obtaining the thrust (main propulsive force) generated by the screw 14.
 舵16は、船体12に対し回動可能となるように、その上端部16aから上方に延びる舵軸24を介して下向船尾部12bに取り付けられている。この舵16は、また、下向船尾部12bから下方に向けて突設されたラダーホーン18によっても支持されている。そのため、スクリュー14を回転させた状態で、図示しない舵取機によって舵軸24を介して舵16の角度を変えることで、船舶10の進行方向を変更し、針路に合わせることができる。なお、舵本体16は、先端部16bから後端部16cに向かうにつれて徐々に厚くなりその後徐々に薄くなる翼形状を呈している。 The rudder 16 is attached to the downward stern portion 12b via a rudder shaft 24 extending upward from its upper end portion 16a so as to be rotatable with respect to the hull 12. The rudder 16 is also supported by a ladder horn 18 projecting downward from the downward stern portion 12b. Therefore, by changing the angle of the rudder 16 via the rudder shaft 24 with a steering gear (not shown) while the screw 14 is rotated, the traveling direction of the ship 10 can be changed to match the course. The rudder body 16 has a blade shape that gradually increases in thickness from the front end portion 16b toward the rear end portion 16c and then gradually decreases.
 船舶用ダクト20は、図1及び図2に示されるように、第1板状体20a及び一対の第2板状体20bを有する。第1板状体20aは、図2に示されるように、半径rを有する円弧状に湾曲されている。また、第1板状体20aは、図1及び図3に示されるように、前後方向における断面形状(縦断面形状)が、内側に向けて突出する翼形状を呈している。なお、例えば溶接等によって、ブラケット26の一端が第1板状体20aの頂部に接合されており、ブラケット26の他端が突出部22に接合されている。 As shown in FIGS. 1 and 2, the marine duct 20 includes a first plate-like body 20a and a pair of second plate-like bodies 20b. The first plate body 20a, as shown in FIG. 2, is curved in an arc shape having a radius r 0. Moreover, the 1st plate-shaped body 20a is exhibiting the wing | blade shape which the cross-sectional shape (vertical cross-sectional shape) in the front-back direction protrudes inside as FIG.1 and FIG.3 shows. For example, one end of the bracket 26 is joined to the top of the first plate-like body 20 a by welding or the like, and the other end of the bracket 26 is joined to the protruding portion 22.
 第2板状体20bは、図1及び図2に示されるように、平板によって構成されている。一対の第2板状体20bの各一端は、第1板状体20aの各端部にそれぞれ設けられている。一対の第2板状体20bの各他端は、例えば溶接等によって突出部22に接合されている。 The 2nd plate-shaped body 20b is comprised by the flat plate, as FIG.1 and FIG.2 shows. One end of each of the pair of second plate-like bodies 20b is provided at each end of the first plate-like body 20a. Each other end of the pair of second plate-like bodies 20b is joined to the protrusion 22 by welding or the like, for example.
 第2板状体20bは、図2に示されるように、第1板状体20aの中心軸X1から直線距離rだけ離間するように位置している。本実施形態において、直線距離rは、0<r/r<0.85を満たしており、好ましくは0.3≦r/r≦0.8を満たしている。 As shown in FIG. 2, the second plate-like body 20b is positioned so as to be separated from the central axis X1 of the first plate-like body 20a by a linear distance r. In the present embodiment, the linear distance r satisfies 0 <r / r 0 <0.85, and preferably satisfies 0.3 ≦ r / r 0 ≦ 0.8.
 ここで、船舶用ダクト20は、スクリュー14の前方に位置すると共に、第1板状体20aが上側で且つ第2板状体20bが下側となるように、船体12の突出部22に取り付けられている(図1参照)。また、船舶用ダクト20は、第1板状体20aの中心軸X1とその後縁部20cを含む仮想平面Sとの交点Pがスクリュー14の回転軸X2よりも上方に位置するように、船体12の突出部22に取り付けられている(図1参照)。 Here, the marine duct 20 is attached to the projecting portion 22 of the hull 12 so that the first plate-like body 20a is on the upper side and the second plate-like body 20b is on the lower side while being positioned in front of the screw 14. (See FIG. 1). Further, the marine duct 20 includes the hull 12 so that the intersection P between the central axis X1 of the first plate-like body 20a and the virtual plane S including the rear edge 20c is located above the rotation axis X2 of the screw 14. The protrusion 22 is attached (see FIG. 1).
 船舶用ダクト20は、第1板状体20aの中心軸X1がスクリュー14の回転軸X2に対して上方に角度θだけ傾いている。この角度θは、第1板状体20aによって大きな揚力が得られるよう、第1板状体20aにおける流向に対して適切な迎角となるように設定することができる。 In the marine duct 20, the center axis X1 of the first plate-like body 20a is inclined upward by an angle θ with respect to the rotation axis X2 of the screw 14. This angle θ can be set so as to have an appropriate angle of attack with respect to the flow direction in the first plate-like body 20a so that a large lift can be obtained by the first plate-like body 20a.
 ところで、従来、推進性能の向上を目的として、前後方向における断面形状が内側に向けて突出する翼形状を呈する、略円環状の船舶用ダクト120が船体12に設けられていた(図4参照)。しかしながら、本発明者が、船舶用ダクト20を船体12に設けない場合の船尾近傍における流向を解析した結果(図4参照)、船舶用ダクト120の上側部分に相当する領域(図4のA領域)においては、船尾に向かうにつれて下方に向かう流向となっているが、船舶用ダクト120の下側部分に相当する領域(図4のB領域)においては、船尾に向かうにつれて上方に向かう流向となっていることが明らかとなった。そのため、従来の船舶用ダクト120では、上側部分においては推進力を得られるものの、下側部分においては抵抗となってしまっていた。 By the way, conventionally, for the purpose of improving propulsion performance, a substantially annular ship duct 120 having a wing shape whose cross-sectional shape in the front-rear direction protrudes inward has been provided in the hull 12 (see FIG. 4). . However, as a result of analyzing the flow direction in the vicinity of the stern when the inventor does not provide the ship duct 20 on the hull 12 (see FIG. 4), the region corresponding to the upper portion of the ship duct 120 (A region in FIG. 4) ), The flow direction is directed downward toward the stern. However, in the region corresponding to the lower portion of the vessel duct 120 (region B in FIG. 4), the flow direction is directed upward toward the stern. It became clear that. For this reason, in the conventional marine duct 120, propulsive force can be obtained in the upper portion, but resistance has been provided in the lower portion.
 しかしながら、本実施形態においては、船舶用ダクト20の第1板状体20aが円弧状に湾曲されており、第1板状体20aの端部に平板状の第2板状体20bが設けられている。また、船舶用ダクト20が、スクリュー14の前方に位置すると共に、第1板状体20aが上側で且つ第2板状体20bが下側となるように、船体12に取り付けられている。そのため、従来の船舶用ダクト120において抵抗の原因となっていた下側部分が存在しなくなる。その結果、推進性能の更なる向上を図ることが可能となる。そして、船舶用ダクト20では、第1板状体20aの中心軸X1と第2板状体20bとの直線距離rが、0<r/r<0.85を満たしている。そのため、従来の船舶用ダクト120において抵抗の原因となっていた下側部分が存在しないことによる推進性能の向上の効果を、十分に発揮することが可能となっている。 However, in the present embodiment, the first plate-like body 20a of the marine duct 20 is curved in an arc shape, and a flat plate-like second plate-like body 20b is provided at the end of the first plate-like body 20a. ing. The marine duct 20 is attached to the hull 12 so that the first plate-like body 20a is on the upper side and the second plate-like body 20b is on the lower side while being positioned in front of the screw 14. Therefore, there is no lower portion that causes resistance in the conventional marine duct 120. As a result, it is possible to further improve the propulsion performance. In the marine duct 20, the linear distance r between the central axis X1 of the first plate 20a and the second plate 20b satisfies 0 <r / r 0 <0.85. Therefore, it is possible to sufficiently exert the effect of improving the propulsion performance due to the absence of the lower portion that causes the resistance in the conventional marine duct 120.
 ここで、直線距離rが0<r/r<0.85を満たす場合に、推進性能が更に向上することを確認するための試験を行った。試験では、r/rが0、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0となるように設定された船舶用ダクト20をそれぞれ用意して、それぞれについてBHP(Brake Horse Power:所要馬力)を測定した。そして、船舶用ダクト20による推進性能の向上率[%]を、それぞれの船舶用ダクト20について、(1-船舶用ダクト20を設けた場合におけるBHP/船舶用ダクト20がない場合におけるBHP)×100によって算出した。その結果を図5に示す。 Here, a test for confirming that the propulsion performance is further improved when the linear distance r satisfies 0 <r / r 0 <0.85 was performed. In the test, r / r 0 is 0 , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0. Each of the marine ducts 20 set to be prepared was prepared, and BHP (Brake Horse Power) was measured for each. Then, the improvement rate [%] of the propulsion performance by the marine duct 20 is calculated for each marine duct 20 (1−BHP when the marine duct 20 is provided / BHP when the marine duct 20 is not present) × Calculated by 100. The result is shown in FIG.
 図5に示されるように、直線距離rが0<r/r<0.85を満たす場合、推進性能の向上率が7%よりも大きくなり、直線距離rが0.4≦r/r≦0.8を満たす場合、推進性能の向上率が8%以上となった。従って、直線距離rが0<r/r<0.85を満たす場合、推進性能が更に向上し、直線距離rが0.4≦r/r≦0.8を満たす場合、推進性能がより一層向上することが確認された。 As shown in FIG. 5, when the linear distance r satisfies 0 <r / r 0 <0.85, the improvement rate of propulsion performance is greater than 7%, and the linear distance r is 0.4 ≦ r / r. When 0 ≦ 0.8 was satisfied, the improvement rate of propulsion performance was 8% or more. Therefore, when the linear distance r satisfies 0 <r / r 0 <0.85, the propulsion performance is further improved, and when the linear distance r satisfies 0.4 ≦ r / r 0 ≦ 0.8, the propulsion performance is improved. It was confirmed that it was further improved.
 また、本実施形態においては、第1板状体20aの中心軸X1と船舶用ダクト20の後縁部20cを含む仮想平面Sとの交点Pがスクリュー14の回転軸X2よりも上方に位置するように、船舶用ダクト20が船体12に取り付けられている。第1板状体20aは、前後方向における断面形状が内側に向けて突出する翼形状を呈しているので(図1及び図3参照)、船舶用ダクト20の内側における流速は船舶用ダクトの外側における流速よりも速くなる。そのため、第1板状体20aの中心軸X1とスクリュー14の回転軸X2とが一致しているような場合と比較して、速い流れがより多くスクリュー14に流入することとなる。その結果、より一層の推進性能の向上を図ることが可能となる(図3参照)。 Further, in the present embodiment, the intersection P between the central axis X1 of the first plate-like body 20a and the virtual plane S including the rear edge portion 20c of the marine duct 20 is located above the rotation axis X2 of the screw 14. As described above, the marine duct 20 is attached to the hull 12. Since the first plate-like body 20a has a wing shape in which the cross-sectional shape in the front-rear direction protrudes inward (see FIGS. 1 and 3), the flow velocity inside the marine duct 20 is outside the marine duct. Faster than the flow rate at. Therefore, compared with the case where the central axis X1 of the 1st plate-shaped body 20a and the rotating shaft X2 of the screw 14 correspond, a quick flow will flow in into the screw 14 more. As a result, it is possible to further improve the propulsion performance (see FIG. 3).
 また、本実施形態においては、第2板状体20bが平板によって構成されているので、船舶用ダクト20を簡単に構成することができるようになっている。 Further, in the present embodiment, since the second plate-like body 20b is constituted by a flat plate, the marine duct 20 can be easily constituted.
 以上、本発明の好適な実施形態について詳細に説明したが、本発明は上記した実施形態に限定されるものではない。例えば、図6に示されるように、第2板状体20bが、前後方向における断面形状が内側に向けて突出する翼形状を呈するように構成されていてもよい。このとき、船舶用ダクト20は、第2板状体20bの位置する領域における流向に対して第2板状体20bが所定の迎角を有するように(図6においては、水平面と第2板状体20bの後縁側における上面とがなす角αが、例えば、上向0°~40°程度、好ましくは上向10°~30°程度となるように)、船体12に取り付けられているとより好ましい。この場合、第1板状体20aに加え、第2板状体20bにおいても推進力を得ることができるので、推進性能のより一層の向上を図ることが可能となる。 The preferred embodiment of the present invention has been described in detail above, but the present invention is not limited to the above-described embodiment. For example, as shown in FIG. 6, the second plate-like body 20 b may be configured to have a wing shape in which the cross-sectional shape in the front-rear direction protrudes inward. At this time, the marine duct 20 is arranged such that the second plate-like body 20b has a predetermined angle of attack with respect to the flow direction in the region where the second plate-like body 20b is located (in FIG. 6, the horizontal plane and the second plate The angle α formed with the upper surface on the rear edge side of the body 20b is, for example, about 0 ° to 40 ° upward, preferably about 10 ° to 30 ° upward), and attached to the hull 12. More preferred. In this case, since the propulsive force can be obtained not only in the first plate-like body 20a but also in the second plate-like body 20b, the propulsion performance can be further improved.
 また、第2板状体20bが平板によって構成されている場合には、図7に示されるように、船舶用ダクト20は、第2板状体20bの前後方向が第2板状体20bの位置する領域における流向に沿うように、船体12に取り付けられていてもよい。この場合、第2板状体20bにおいて生じる抵抗を十分小さくすることが可能となる。 Moreover, when the 2nd plate-shaped body 20b is comprised by the flat plate, as FIG. 7 shows, as for the duct 20 for ships, the front-back direction of the 2nd plate-shaped body 20b is the 2nd plate-shaped body 20b. It may be attached to the hull 12 so as to follow the flow direction in the region where it is located. In this case, the resistance generated in the second plate-like body 20b can be made sufficiently small.

Claims (11)

  1.  半径rを有する円弧状に湾曲された第1板状体と、
     前記第1板状体の端部に設けられた直線状の第2板状体とを備え、
     前記第1板状体の中心軸と前記第2板状体との直線距離rが、0<r/r<0.85を満たすことを特徴とする船舶用ダクト。
    A first plate-like body curved in an arc shape having a radius r 0 ;
    A linear second plate provided at an end of the first plate,
    A marine duct, wherein a linear distance r between a central axis of the first plate-like body and the second plate-like body satisfies 0 <r / r 0 <0.85.
  2.  前記第1板状体の中心軸と前記第2板状体との直線距離rが、0.3≦r/r≦0.8を満たすことを特徴とする請求項1に記載された船舶用ダクト。 2. The ship according to claim 1, wherein a linear distance r between a central axis of the first plate-like body and the second plate-like body satisfies 0.3 ≦ r / r 0 ≦ 0.8. Duct.
  3.  前記第2板状体は、平板によって構成されていることを特徴とする請求項1又は2に記載された船舶用ダクト。 The marine duct according to claim 1 or 2, wherein the second plate-like body is constituted by a flat plate.
  4.  前記第2板状体は、前後方向における断面形状が内側に向けて突出する翼形状を呈することを特徴とする請求項1又は2に記載された船舶用ダクト。 The marine duct according to claim 1 or 2, wherein the second plate-like body has a wing shape in which a cross-sectional shape in the front-rear direction projects inward.
  5.  船体と、
     主推進力を発生させるために前記船体に設けられたスクリューと、
     船舶用ダクトとを備え、
     前記船舶用ダクトは、
      半径rを有する円弧状に湾曲された第1板状体と、
      前記第1板状体の端部に設けられた直線状の第2板状体とを有し、
      前記第1板状体の中心軸と前記第2板状体との直線距離rが、0<r/r<0.85を満たしており、
      前記スクリューの前方に位置すると共に、前記第1板状体が上側で且つ前記第2板状体が下側となるように、前記船体に取り付けられていることを特徴とする船舶。
    The hull,
    A screw provided in the hull to generate the main propulsive force;
    A marine duct and
    The marine duct is
    A first plate-like body curved in an arc shape having a radius r 0 ;
    A linear second plate provided at an end of the first plate,
    A linear distance r between the central axis of the first plate and the second plate satisfies 0 <r / r 0 <0.85;
    A ship that is located in front of the screw and is attached to the hull so that the first plate-like body is on the upper side and the second plate-like body is on the lower side.
  6.  前記第1板状体の中心軸と前記第2板状体との直線距離rが、0.3≦r/r≦0.8を満たすことを特徴とする請求項5に記載された船舶。 The ship according to claim 5, wherein a linear distance r between the central axis of the first plate-like body and the second plate-like body satisfies 0.3 ≦ r / r 0 ≦ 0.8. .
  7.  前記第1板状体の中心軸と前記船舶用ダクトの後縁部を含む仮想平面との交点が、前記スクリューの回転軸よりも上方に位置していることを特徴とする請求項5に記載された船舶。 The intersection of the central axis of the said 1st plate-shaped body and the virtual plane containing the rear edge part of the said ship duct is located above the rotating shaft of the said screw. Ship.
  8.  前記第2板状体は、平板によって構成されていることを特徴とする請求項5~7のいずれか一項に記載された船舶。 The ship according to any one of claims 5 to 7, wherein the second plate-like body is constituted by a flat plate.
  9.  前記船舶用ダクトは、前記第2板状体の前後方向が当該第2板状体の位置する領域における流向に沿うように、前記船体に取り付けられていることを特徴とする請求項8に記載された船舶。 The said ship duct is attached to the said ship body so that the front-back direction of the said 2nd plate-shaped body may follow the flow direction in the area | region where the said 2nd plate-shaped body is located. Ship.
  10.  前記第2板状体は、前後方向における断面形状が内側に向けて突出する翼形状を呈することを特徴とする請求項5~7のいずれか一項に記載された船舶。 The ship according to any one of claims 5 to 7, wherein the second plate-like body has a wing shape in which a cross-sectional shape in the front-rear direction protrudes inward.
  11.  前記船舶用ダクトは、前記第2板状体が当該第2板状体の位置する領域における流向に対して所定の迎角を有するように前記船体に取り付けられていることを特徴とする請求項10に記載された船舶。 The ship duct is attached to the hull so that the second plate has a predetermined angle of attack with respect to a flow direction in a region where the second plate is located. 10. The ship described in 10.
PCT/JP2008/073411 2008-12-24 2008-12-24 Duct for ship and ship WO2010073319A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN200880131603.8A CN102186721B (en) 2008-12-24 2008-12-24 Duct for ship and ship
KR1020117008040A KR20110050736A (en) 2008-12-24 2008-12-24 Duct for ship and ship
DE112008004244T DE112008004244T5 (en) 2008-12-24 2008-12-24 TRANSFER FOR A SHIP AND SHIP
KR1020137012512A KR101429416B1 (en) 2008-12-24 2008-12-24 Duct for ship and ship
PCT/JP2008/073411 WO2010073319A1 (en) 2008-12-24 2008-12-24 Duct for ship and ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/073411 WO2010073319A1 (en) 2008-12-24 2008-12-24 Duct for ship and ship

Publications (1)

Publication Number Publication Date
WO2010073319A1 true WO2010073319A1 (en) 2010-07-01

Family

ID=42286988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073411 WO2010073319A1 (en) 2008-12-24 2008-12-24 Duct for ship and ship

Country Status (4)

Country Link
KR (2) KR20110050736A (en)
CN (1) CN102186721B (en)
DE (1) DE112008004244T5 (en)
WO (1) WO2010073319A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013103717A (en) * 2011-11-11 2013-05-30 Becker Marine Systems Gmbh & Co Kg Device for reducing drive power requirement of watercraft
JP6239711B1 (en) * 2016-09-15 2017-11-29 サノヤス造船株式会社 Ship duct equipment

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101291178B1 (en) * 2011-09-21 2013-07-31 삼성중공업 주식회사 A ship having rotating duct
KR101985450B1 (en) * 2012-11-01 2019-06-03 대우조선해양 주식회사 Duct Supporting Structure of Vessel and Vessel Having the same
KR101491669B1 (en) * 2013-07-05 2015-02-09 삼성중공업 주식회사 Ship
JP6138680B2 (en) * 2013-12-27 2017-05-31 三菱重工業株式会社 Duct equipment
CN110155286B (en) * 2018-03-28 2021-02-26 杭州电子科技大学 Novel propeller flow guide device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2896565A (en) * 1956-11-28 1959-07-28 George E Stevens Hydraulic flow control plate
JPS5338795U (en) * 1976-09-07 1978-04-05
JPS56166999U (en) * 1980-05-14 1981-12-10
JPS58139395U (en) * 1982-03-16 1983-09-19 三菱重工業株式会社 Reaction Fin
JPS6238800U (en) * 1985-08-28 1987-03-07
JPH09175488A (en) * 1995-12-22 1997-07-08 Sumitomo Heavy Ind Ltd Ship with stern duct
JP2004130908A (en) * 2002-10-10 2004-04-30 Universal Shipbuilding Corp Duct body of ship
JP2006347285A (en) * 2005-06-14 2006-12-28 Ishikawajima Harima Heavy Ind Co Ltd Stern structure of vessel, and designing method thereof
JP2008239060A (en) * 2007-03-28 2008-10-09 Mitsui Eng & Shipbuild Co Ltd Stern oblong duct and vessel
JP2008308023A (en) * 2007-06-14 2008-12-25 Sumitomo Heavy Industries Marine & Engineering Co Ltd Ship duct and ship

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0450238A (en) * 1990-06-18 1992-02-19 Mitsubishi Rayon Co Ltd Thermally shrinkable film
JP4454161B2 (en) 2001-01-23 2010-04-21 ユニバーサル造船株式会社 Duct for improving ship propulsion efficiency
JP2003011880A (en) * 2001-06-29 2003-01-15 Ishikawajima Harima Heavy Ind Co Ltd Stern structure
JP5025247B2 (en) * 2006-12-13 2012-09-12 ユニバーサル造船株式会社 Ship duct and ship with ship duct

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2896565A (en) * 1956-11-28 1959-07-28 George E Stevens Hydraulic flow control plate
JPS5338795U (en) * 1976-09-07 1978-04-05
JPS56166999U (en) * 1980-05-14 1981-12-10
JPS58139395U (en) * 1982-03-16 1983-09-19 三菱重工業株式会社 Reaction Fin
JPS6238800U (en) * 1985-08-28 1987-03-07
JPH09175488A (en) * 1995-12-22 1997-07-08 Sumitomo Heavy Ind Ltd Ship with stern duct
JP2004130908A (en) * 2002-10-10 2004-04-30 Universal Shipbuilding Corp Duct body of ship
JP2006347285A (en) * 2005-06-14 2006-12-28 Ishikawajima Harima Heavy Ind Co Ltd Stern structure of vessel, and designing method thereof
JP2008239060A (en) * 2007-03-28 2008-10-09 Mitsui Eng & Shipbuild Co Ltd Stern oblong duct and vessel
JP2008308023A (en) * 2007-06-14 2008-12-25 Sumitomo Heavy Industries Marine & Engineering Co Ltd Ship duct and ship

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013103717A (en) * 2011-11-11 2013-05-30 Becker Marine Systems Gmbh & Co Kg Device for reducing drive power requirement of watercraft
JP6239711B1 (en) * 2016-09-15 2017-11-29 サノヤス造船株式会社 Ship duct equipment

Also Published As

Publication number Publication date
CN102186721A (en) 2011-09-14
DE112008004244T5 (en) 2012-07-12
CN102186721B (en) 2014-10-08
KR20130056917A (en) 2013-05-30
KR101429416B1 (en) 2014-08-25
KR20110050736A (en) 2011-05-16

Similar Documents

Publication Publication Date Title
JP4717857B2 (en) Ship duct and ship
WO2010073319A1 (en) Duct for ship and ship
JP4789953B2 (en) Ship propulsion system
KR20180026363A (en) Vessel
JP2010006175A (en) Hull structure
US11945564B2 (en) Steering device
JP6265565B2 (en) Rudder structure and ship manufacturing method
JP2012131475A (en) Rudder for ship
WO2021014919A1 (en) Stern fin
KR102289493B1 (en) Stern structure
WO2014125881A1 (en) Propeller wake flow straightener device
KR20130037280A (en) Rudder and ship having the same
KR101886920B1 (en) Rudder for ship
JP5393160B2 (en) Stern shape of a displacement type ship
JP6841540B1 (en) Thruster placement stern structure
KR102448983B1 (en) Rudder for ship
EP4206070A1 (en) Rudder
JP2013132919A (en) Ship operation device and ship operation method
JP2012017017A (en) Twin-skeg ship
KR101877125B1 (en) Rudder for ship
JPS628893A (en) High speed boat provided with torpede shape submerged body
KR20220162215A (en) Full spade rudder for small sized ship
KR20130012433A (en) Rudder for ship and ship having the same
JP2011031858A (en) Pod propelling device
WO2013153665A1 (en) Rudder for ship

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880131603.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08879115

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117008040

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1120080042446

Country of ref document: DE

Ref document number: 112008004244

Country of ref document: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/09/2011)

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 08879115

Country of ref document: EP

Kind code of ref document: A1