WO2010072882A1 - Polvo compuesto nanoestructurado fosfato de calcio-plata. procedimiento de obtención y sus aplicaciones bactericidas y fungicidas - Google Patents

Polvo compuesto nanoestructurado fosfato de calcio-plata. procedimiento de obtención y sus aplicaciones bactericidas y fungicidas Download PDF

Info

Publication number
WO2010072882A1
WO2010072882A1 PCT/ES2009/070628 ES2009070628W WO2010072882A1 WO 2010072882 A1 WO2010072882 A1 WO 2010072882A1 ES 2009070628 W ES2009070628 W ES 2009070628W WO 2010072882 A1 WO2010072882 A1 WO 2010072882A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
calcium
weight
powder
calcium phosphate
Prior art date
Application number
PCT/ES2009/070628
Other languages
English (en)
French (fr)
Inventor
José Serafín MOYA CORRAL
Marcos DÍAZ MUÑOZ
María Flora BARBA MARTÍN-SONSECA
Francisco Malpartida Romero
Miriam MIRANDA FERNÁNDEZ
Adolfo FERNÁNDEZ VALDÉS
Leticia Esteban Tejeda
Sonia LÓPEZ-ESTEBAN
Ramón TORRECILLAS SAN MILLÁN
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic) filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Priority to CN2009801573703A priority Critical patent/CN102361717A/zh
Priority to JP2011542851A priority patent/JP2012513971A/ja
Priority to CA2748420A priority patent/CA2748420A1/en
Priority to US13/142,220 priority patent/US20120040005A1/en
Priority to EP09834169A priority patent/EP2380687A4/en
Publication of WO2010072882A1 publication Critical patent/WO2010072882A1/es
Priority to US14/076,887 priority patent/US20140065306A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/12Powders or granules
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/26Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests in coated particulate form
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/26Phosphorus; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/32Phosphates of magnesium, calcium, strontium, or barium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Definitions

  • the antibacterial properties of silver in low concentrations against a wide range of pathogens are well known, including strains of common bacteria that cause implant-associated infections, as well as their non-toxicity to mammalian cells.
  • Most of the biomaterials that contain silver as an antimicrobial substance consist of the elemental or cationic form of the metal supported by both organic and inorganic matrices.
  • the antimicrobial activity is studied in the cases of polymers and bioglasses that contain silver, but this is not the case in the case of 5 nanostructured calcium-silver phosphate composites.
  • the biocidal activity of the silver nanoparticles is influenced by their size: the smaller the size, the greater the antimicrobial activity, so that the agglomeration of the nanoparticles presents a problem.
  • a solution to avoid this disadvantage is to work with the nanoparticles supported on the surface of different substrates.
  • An object of the invention constitutes a nanocomposite or nanostructured powder, hereinafter nanocomposite powder of the invention, constituted by a calcium phosphate, preferably with a particle size of less than 150 nm and having Ag nanoparticles adhered to its surface, preferably inferior to 50 nm
  • nanocomposite powder of the invention constituted by a calcium phosphate, preferably with a particle size of less than 150 nm and having Ag nanoparticles adhered to its surface, preferably inferior to 50 nm
  • a particular object of the invention constitutes the nanocomposite powder in which the calcium phosphate belongs, by way of illustration and without limiting the scope of the invention, to the following group: hydroxyapatite, ⁇ -TCP, ⁇ -TCP and / or mixtures of they, preferably hydroxyapatite (HA).
  • Another object of the invention constitutes a process for obtaining the nanocomposite powder of the invention, hereinafter the method of the invention, which comprises the following steps: a. Preparation of nanometric calcium phosphate from a sol-gel processing route, and b. Deposition of silver nanoparticles on the surface of calcium phosphate.
  • Another object of the invention constitutes the use of the nanocomposite powder of the invention in the preparation of a bactericidal and / or fungicidal composition useful as a universal disinfectant for applications belonging, by way of illustration and without limiting the scope of the present invention, to the following group: surgical implants, public use facilities - sanitary and hospital, transport, etc. -, food, dental, paints, clothing and packaging - food, pharmaceutical, medical devices.
  • This invention describes a nanostructured powder consisting of HA nanoparticles, of a size smaller than 140 nm, with Ag metal nanoparticles adhered to the surface and homogeneously dispersed, with a particle size of less than 50 nm ( Figures 1 and 2), with Bactericidal and fungicidal activity based on calcium phosphates as a substrate with silver nanoparticles on its surface.
  • Figures 1 and 2 Bactericidal and fungicidal activity based on calcium phosphates as a substrate with silver nanoparticles on its surface.
  • an alternative, simple and low-cost procedure is presented for obtaining said nanostructured composite material, more specifically through two different methods (Example 1).
  • the first advantage provided by the present invention with respect to the current state of the art constitutes the fact that the agglomeration of the nanoparticles is avoided by being adhered to the surface of a substrate.
  • the second advantage is its bactericidal and fungicidal efficiency, similar to that of commercial products (Example 2).
  • the third advantage is its low toxicity, shown by verifying that this material leaches 2 orders of magnitude less than silver in the case of HA / Ag ( ⁇ 5 ppm) than in the case of Vitellinate (approx. 800-1300 ppm ), which implies a toxicity far below that of the commercial product and well below the toxic level (The amount of silver used is of the order of 1% by weight), and with a similar efficacy (Example 2).
  • an object of the invention constitutes a nanocomposite or nanostructured powder, hereinafter nanocomposite powder of the invention, constituted by a calcium phosphate, preferably with a particle size of less than 150 nm and having Ag nanoparticles adhered on its surface, preferably less than 50 nm.
  • a particular object of the invention constitutes the nanocomposite powder in which the calcium phosphate belongs, by way of illustration and without limiting the scope of the invention, to the following group: hydroxyapatite, ⁇ -TCP, ⁇ -TCP and / or mixtures of they, preferably hydroxyapatite (HA).
  • Another particular object of the invention constitutes the powder nanocomposite in which the content of silver metallic particles is between 0.01% and 8% by weight, the optimum percentage being 1% by weight of silver.
  • Another object of the invention constitutes a process for obtaining the nanocomposite powder of the invention, hereinafter the method of the invention, which comprises the following steps: a. Preparation of nanometric calcium phosphate from a sol-gel processing route, and b. Deposition of silver nanoparticles on the surface of calcium phosphate.
  • step a) the calcium phosphate has been prepared by a sol-gel process, which comprises the following steps: a) Preparation of the corresponding aqueous solutions with Ia necessary amount of triethyl phosphite and calcium nitrate to obtain in the final mixture the desired Ca / P molar ratio, preferably 1.67 in the case of hydroxyapatite, b) Drip of the phosphorus solution on calcium while stirring strongly, maintaining conditions controlled of temperature and pH, c) Stirring of the resulting colloidal suspension and subsequent aging at room temperature, preferably for 24 hours, to form a gel, and d) Drying the gel in a vacuum oven until the solvent is completely removed and calcining at temperatures between 500 ° C and 1000 ° C, preferably 550 ° C, to obtain the powder of nanometric size and well cris carved
  • step b) it comprises the following steps
  • Another particular object of the invention constitutes the process of the invention in which in step b) it comprises the following steps (Method 2): a) Preparation of an aqueous suspension with the hydroxyapatite powder obtained in 6 to which it is add an anionic surfactant in low concentration, b) Adjust pH to 7 with an aqueous solution of 0.1 N NaOH, c) Apply an ultrasonic probe for 1-10 minutes and complete homogenization and disintegration in a ball mill, d) Addition drop by drop of the necessary amount of the solution of the silver precursor, AgNO ⁇ , to obtain in the final product a concentration of Ag 0 comprised between 0.01 and 8% weight in the final compound, maintaining strong stirring for 10 minutes, preferably 1% by weight of silver, e) Chemical reduction in situ of the silver, using any reducing agent, preferably NaBH 4 , which is added dropwise to the dispersion maintaining the strong stirring, and f) Filtering, washing with distilled water and drying in an oven at 60 ° C.
  • Another object of the invention constitutes the use of the nanocomposite powder of the invention in the preparation of a bactericidal and / or fungicidal composition useful as a universal disinfectant for belonging applications, by way of illustration and without limiting the scope of the present invention. , to the following group: surgical implants, public use facilities - sanitary and hospital, transport, etc. -, food, dental, paints, clothing and packaging - food, pharmaceutical, medical devices.
  • Figure 1 Micrograph obtained by Transmission Electron Microscopy in which the homogeneous distribution of silver nanoparticles smaller than 20 nm adhered to the surface of a hydroxyapatite nanoparticle of size 140 nm is shown, approximately obtained by method 1.
  • Figure 2. Micrograph obtained by Transmission Electron Microscopy in which a nanocomposite powder obtained by method 2 is shown, where it is observed that the Ag nanoparticles are smaller than 15 nm.
  • Example 1 Procedure for obtaining the nanocomposite powders of the invention
  • the procedure for obtaining the nanocomposite powder of the invention comprises two main stages of preparation of the nanometric calcium phosphate from a sol-gel processing route, and a deposition of silver nanoparticles on the surface of the calcium phosphate , and which are detailed below.
  • nanostructured powders of the invention were obtained through two different methods.
  • an anionic surfactant is introduced in low concentration as a dispersant (1% by weight with respect to the concentration in hydroxyapatite solids); b) Adding, protecting from light, an aqueous solution of the precursor silver salt with the necessary concentration so that the content of elemental silver is between 0.01 and 8% by weight in the final compound HA-Ag (referred to solids content of HA); c) While the suspension is vigorously stirred, the pH is adjusted to 9, so that Ag + cations are precipitated as oxide, Ag 2 O, and d) After filtration and washing, it is dried and reduced in an atmosphere of Ar / 10% H 2 in the temperature range between 150 and 500 ° C.
  • the deposition of silver nanoparticles, Ag 0 , on hydroxyapatite is produced from a silver precursor dispersed in water under optimal pH and dispersant conditions. The reduction is carried out in situ with a reducing agent at room temperature. a) An aqueous suspension is prepared with the hydroxyapatite powder obtained.
  • an anionic surfactant is introduced in low concentration as dispersant (Dolapix); b) The pH is adjusted to 7 with an aqueous solution of 0.1 N NaOH to achieve a good dispersion of the HA particles and, at the same time, avoid the precipitation of Ag + ions such as Ag 2 O, which occurs at pH values above 8; c) Ultrasound probe of 1-10 minutes. Homogenization and disintegration in ball mill;
  • a nanocomposite powder of the invention was thus obtained, where it is observed that the Ag nanoparticles are smaller than 15 nm.
  • Escher ⁇ chia coli JM 110 Gram-negative bacteria
  • Micrococcus luteus Gram-positive bacteria
  • Issatchenkia or ⁇ entalis yeast
  • the microorganisms were seeded in solid medium, Petri dishes, from Luria Bertani (LB) (containing: 1% tryptone, 0.5% yeast extract, 1% CINa, 1.5% agar) for E. coli JM110 and M. luteus
  • Yeast Extract Destrosa (containing: 1% yeast extract, 2% peptone, 2% glucose). The plates were incubated 24 hours at 37 ° C. Then, colonies isolated from the anterior plates of each microorganism were inoculated in 5 mL of LB (bacteria) or YEPD (yeast) and grown at 37 ° C for 5 hours to obtain pre-cultures.
  • suspensions of 200 mg / ml (weight / weight) in water of preparations M1 and M2 were prepared, containing 1% silver.
  • 10 ⁇ L of each of the precultures of the microorganisms were inoculated to 1 mL of LB or YEPD, depending on the microorganism.
  • 150 ⁇ L of the HA / nAg samples (M 1 and M2) were added to the cultures resulting in a final concentration of 0.13%
  • samples without silver were prepared as a control, consisting of a mixture of water plus the corresponding nutrient. The cultures were incubated at 37 ° C under agitation and aliquots of the different cultures were taken for viable counting after serial dilutions of the different cultures.
  • the concentration of leached calcium in the culture medium was in the range 15-30 ppm.
  • the silver concentration was ⁇ 5 ppm.
  • the same concentration of starting silver was tested to inoculate from commercial nanostructured silver Vitellinate (Argenol, particle size smaller than 20 nm); observing that approximately 1300 ppm of silver was leached.
  • HA obtained by method 1 (AgN ⁇ 3 was used as a precursor of silver, the silver content in the final compound, HA-Ag, being 1% by weight (based on the solids content of HA)).
  • the test performed with Escherichia coli JM 110 shows a title at 24 hours ⁇ 1.0-10 4 , while the control is 1.4-10 11 .
  • the concentration of leached calcium in the culture medium was in the range 15-30 ppm.
  • the silver concentration was ⁇ 5 ppm.
  • the same concentration of starting silver was tested to inoculate from commercial nanostructured silver Vitellinate (Argenol, particle size smaller than 20 nm); observing that approximately 900 ppm was leached.
  • HA obtained by method 2 (AgN ⁇ 3 was used as a precursor of silver, the silver content in the final compound, HA-Ag, being 1% by weight (based on the solids content of HA)).
  • the bactericidal test performed with Issatchenkia Or ⁇ ntalis showed a 24-hour title of 1.0-10 4 , while the control is 1.2-10 11 .
  • the concentration of leached calcium in the culture medium was in the range 15-30 ppm.
  • the silver concentration was ⁇ 5 ppm.
  • the same concentration of starting silver was inoculated from commercial nanostructured silver Vitellinate (Argenol, particle size smaller than 20 nm); observing that they leached approximately 800 ppm of silver.
  • HA obtained by method 2 (it was used as a precursor of AgNO ⁇ silver, the silver content in the final compound, HA-Ag, being 1% by weight (based on the solids content of HA)).
  • the test performed with Micrococcus luteus shows a title at 24 hours 4.0-10 4 , while the control is 3.0-10 9 .
  • the concentration of leached calcium in the culture medium was in the range 15-30 ppm.
  • the silver concentration was ⁇ 5 ppm.
  • the same concentration of starting silver was tested to inoculate from commercial nanostructured silver vitellinate ⁇ Argenol. particle size less than 20 nm); observing that approximately 900 ppm was leached.
  • HA obtained by method 2 (it was used as a precursor of AgNO 3 silver, the silver content in the final compound, HA-Ag, being 1% by weight (based on the solids content of HA)).
  • the test performed with Escherichia coli JM 110 shows a title at 24 hours ⁇ 1.0-10 4 , while the control is 1.4-10 11 .
  • the concentration of leached calcium in the culture medium was in the range 15-30 ppm.
  • the silver concentration was ⁇ 5 ppm.
  • the same concentration of starting silver was tested to inoculate from commercial nanostructured silver Vitellinate (Argenol, particle size smaller than 20 nm); observing that approximately 1300 ppm was leached.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Plant Pathology (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Pest Control & Pesticides (AREA)
  • Environmental Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Dental Preparations (AREA)

Abstract

La presente invención lo constituye un polvo compuesto nanoestructurado fosfato de calcio-plata útil como antibactericida y/o fungicida, con una eficacia similar a la de productos comerciales y con una baja toxicidad. El segundo objeto de la presente invención lo constituye el procedimiento de obtención de dichos polvos compuestos nanoestructurados fosfato de calcio- plata, consistente en la preparación de fosfato de calcio nanométrico a partir de un procesamiento sol-gel y, a continuación, la deposición de nanopartículas de plata en su superficie. Este polvo nanoestructurado puede ser utilizado en la elaboración de una composición bactericida y/o fungicida útil como desinfectante universal para aplicaciones, por ejemplo, en implantes quirúrgicos, instalaciones de uso público alimentación, dental, pinturas, prendas de vestir y embalajes.

Description

POLVO COMPUESTO NANOESTRUCTURADO FOSFATO DE CALCIO- PLATA. PROCEDIMIENTO DE OBTENCIÓN Y SUS APLICACIONES BACTERICIDAS Y FUNGICIDAS.
SECTOR DE LA TÉCNICA
Aplicaciones bactericidas y fungicidas en el sector de los implantes quirúrgicos, instalaciones de uso público (sanitarias y hospitalarias, transporte,
I O etc.), equipos de aire acondicionado, alimentación, dental, pinturas, prendas de vestir, embalajes (alimentos, domésticos, farmacéuticos, dispositivos médicos, etc.).
5 ESTADO DE LA TÉCNICA
Son bien conocidas las propiedades antibacterianas de Ia plata en bajas concentraciones frente a una amplia gama de patógenos, incluidas las cepas de bacterias comunes causantes de las infecciones asociadas a implantes, así 0 como su no toxicidad para células de mamíferos. La mayor parte de los biomateriales que contienen plata como sustancia antimicrobiana consisten en Ia forma elemental o catiónica del metal soportada tanto por matrices orgánicas como inorgánicas. Está estudiada Ia actividad antimicrobiana en los casos de polímeros y biovidrios que contienen plata, pero no es así en el caso de 5 materiales compuestos nanoestructurados fosfato de calcio-plata.
Recientemente, se han publicado estudios sobre Ia obtención de compuestos de hidroxiapatita (HA) con Ag mediante métodos de intercambio iónico (sol-gel o coprecipitación) [Han l-H,Lee I-S, Song J-H, Lee M-H, Park J-0 C, Lee G-H, Sun X-D, Chung S-M. Characterization of a silver-incorporated calcium phosphate film by RBS and ¡ts antimicrobial effects. Biomed. Mater. 2007; 2(3): S91-4; Chen W, Oh S, Ong A P, Oh N, Liu Y, Courtney H S, Appleford M and Ong J L 2007 J. Biomed. Mater. Res. A 82 899; Cheng R J, Hsieh M F, Huang K C, Perng L H, Chou F I and Chin T S 2005 Journal of Solid Science and Technology 33 229; Rameshbabu N, Sampath Kumar T S, Prabhakar T G, Sastry V S, Murty K V G K and Prasad Rao K 2007 J. Biomed. Mater. Res. A 80 581]. Esas rutas implican Ia sustitución de calcio por plata, obteniéndose hidroxiapatita deficiente en calcio. La respuesta antimicrobiana ante estos materiales es buena, pero se ha observado que presentan dos desventajas principales: i) Ia deficiencia en calcio puede tener efectos negativos sobre Ia estabilidad estructural de las nanopartículas de HA, además de en su capacidad osteoconductora de Ia HA, y ii) dependiendo del pH, se puede producir una liberación de Ia plata más rápida de Io deseable. Esto último ha provocado un aumento del interés en las nanopartículas de plata como una fuente bactericida gracias a su baja solubilidad en medios acuosos.
La actividad biocida de las nanopartículas de plata está influenciada por el tamaño de las mismas: a menor tamaño, mayor actividad antimicrobiana, por Io que Ia aglomeración de las nanopartículas presenta un problema. Una solución para evitar esa desventaja es trabajar con las nanopartículas soportadas sobre Ia superficie de distintos sustratos.
DESCRIPCIÓN DE LA INVENCIÓN
Descripción Breve
Un objeto de Ia invención Io constituye un polvo nanocompuesto o nanoestructurado, en adelante polvo nanocompuesto de Ia invención, constituido por un fosfato calcico, preferentemente con tamaño de partícula inferior a 150 nm y que tiene adherida en su superficie nanopartículas de Ag, preferentemente inferiores a 50 nm. Un objeto particular de Ia invención Io constituye el polvo nanocompuesto en el que el fosfato calcico pertenece, a título ilustrativo y sin que limite el alcance de Ia invención, al siguiente grupo: hidroxiapatita, α-TCP, β-TCP y/o mezclas de ellos, preferentemente hidroxiapatita (HA).
Otro objeto de Ia invención Io constituye un procedimiento de obtención del polvo nanocompuesto de Ia invención, en adelante procedimiento de Ia invención, que comprende las siguientes etapas: a. Preparación del fosfato calcico nanométrico a partir de una ruta de procesamiento sol-gel, y b. Deposición de nanopartículas de plata en Ia superficie del fosfato calcico.
Otro objeto de Ia invención Io constituye el uso del polvo nanocompuesto de Ia invención en Ia elaboración de una composición bactericida y/o fungicida útil como desinfectante universal para aplicaciones pertenecientes, a título ilustrativo y sin que limite el alcance de Ia presente invención, al siguiente grupo: implantes quirúrgicos, instalaciones de uso público -sanitarias y hospitalarias, transporte, etc.-, alimentación, dental, pinturas, prendas de vestir y embalajes - alimentos, farmacéuticos, dispositivos médicos.
Descripción Detallada
En esta invención se describe un polvo nanoestructurado constituido por nanopartículas de HA, de tamaño inferior a 140 nm, con nanopartículas metálicas de Ag adheridas a Ia superficie y homogéneamente dispersas, con tamaño de partícula inferior a 50 nm (Figuras 1 y 2), con actividad bactericida y fungicida basado en fosfatos de calcio como sustrato con nanopartículas de plata en su superficie. Asimismo, se presenta un procedimiento alternativo, sencillo y de bajo coste para Ia obtención de dicho material compuesto nanoestructurado, más concretamente a través de dos métodos diferentes (Ejemplo 1).
La primera ventaja que aporta Ia presente invención respecto al estado de Ia técnica actual Io constituye el hecho de que se evita Ia aglomeración de las nanopartículas por encontrarse adheridas a Ia superficie de un sustrato. La segunda ventaja es su eficiencia bactericida y fungicida, similar a Ia de productos comerciales (Ejemplo 2). La tercera ventaja es su baja toxicidad, puesta de manifiesto al comprobar que este material lixivia 2 órdenes de magnitud menos de plata en el caso de HA/Ag (<5 ppm) que en el caso de Vitelinato (aprox., 800-1300 ppm), Io que implica una toxicidad muy inferior a Ia del producto comercial y muy por debajo del nivel tóxico (La cantidad de plata utilizada es del orden de 1% en peso), y con una eficacia similar (Ejemplo 2). Además, Ia liberación de Ia plata es mucho más lenta y controlada que en el caso de los materiales en los que el Ca se ha sustituido por Ag, como se ha podido comprobar por análisis cuantitativo de Ia plata lixiviada. Por tanto, dado el efecto sinérgico del calcio y Ia plata en el comportamiento bactericida y fungicida, este nuevo material puede ser utilizado como desinfectante universal.
Así, un objeto de Ia invención Io constituye un polvo nanocompuesto o nanoestructurado, en adelante polvo nanocompuesto de Ia invención, constituido por un fosfato calcico, preferentemente con tamaño de partícula inferior a 150 nm y que tiene adherida en su superficie nanopartículas de Ag, preferentemente inferiores a 50 nm.
Un objeto particular de Ia invención Io constituye el polvo nanocompuesto en el que el fosfato calcico pertenece, a título ilustrativo y sin que limite el alcance de Ia invención, al siguiente grupo: hidroxiapatita, α-TCP, β-TCP y/o mezclas de ellos, preferentemente hidroxiapatita (HA).
Otro objeto particular de Ia invención Io constituye el polvo nanocompuesto en el que el contenido en partículas metálicas de plata está comprendido entre 0.01 % y 8% en peso, siendo el porcentaje óptimo el 1% en peso de plata.
Otro objeto de Ia invención Io constituye un procedimiento de obtención del polvo nanocompuesto de Ia invención, en adelante procedimiento de Ia invención, que comprende las siguientes etapas: a. Preparación del fosfato calcico nanométrico a partir de una ruta de procesamiento sol-gel, y b. Deposición de nanopartículas de plata en Ia superficie del fosfato calcico.
Otro objeto particular de Ia invención Io constituye el procedimiento de Ia invención en el que en Ia etapa a) el fosfato calcico se ha preparado mediante un procedimiento sol-gel, que comprende las siguientes etapas: a) Preparación de las correspondientes disoluciones acuosas con Ia cantidad necesaria de trietil fosfito y nitrato calcico para obtener en Ia mezcla final Ia relación molar Ca/P deseada, preferentemente 1.67 en el caso de Ia hidroxiapatita, b) Goteo de Ia disolución con fósforo sobre Ia de calcio mientras se agita fuertemente, manteniendo condiciones controladas de temperatura y pH, c) Agitación de Ia suspensión coloidal resultante y posterior envejecimiento a temperatura ambiente, preferentemente durante 24 horas, para formar un gel, y d) Secado del gel en estufa de vacío hasta Ia eliminación completa del disolvente y calcinación a temperaturas comprendidas entre 500°C y 1000°C, preferentemente 550°C, para obtener el polvo de tamaño nanométrico y bien cristalizado. Otro objeto particular de Ia invención Io constituye el procedimiento de Ia invención en el que en Ia etapa b) comprende los siguientes pasos (Método 1): a) Preparación de una suspensión acuosa con el polvo obtenido en 6, ajustando el pH a 5 y a Ia que se Ie añade un surfactante aniónico en baja concentración, b) Adición, en ausencia de luz, de una disolución acuosa de Ia sal de plata precursora con Ia concentración necesaria para que el contenido de plata elemental esté comprendida entre el 0.01 y el 8% peso en el compuesto final, referido al contenido en sólidos de fosfato calcico, preferentemente al 1% en peso de plata, c) Agitación fuerte de Ia suspensión, ajustando el pH a 9, de modo que se precipitan cationes Ag+ como óxido, Ag2O, d) Filtrado, lavado con agua destilada y secado del polvo resultante, y e) Reducción en atmósfera de H2/Ar en el intervalo de temperaturas comprendido entre 150 y 50O0C1 preferentemente 3500C.
Otro objeto particular de Ia invención Io constituye el procedimiento de Ia invención en el que en Ia etapa b) comprende los siguientes pasos (Método 2): a) Preparación de una suspensión acuosa con el polvo de hidroxiapatita obtenido en 6 a Ia que se Ie añade un surfactante aniónico en baja concentración, b) Ajuste del pH a 7 con una disolución acuosa de NaOH 0.1 N, c) Aplicación de una sonda de ultrasonidos durante 1-10 minutos y completa homogeneización y disgregación en molino de bolas, d) Adición gota a gota de Ia cantidad necesaria de Ia disolución del precursor de plata, AgNOβ, para obtener en el producto final una concentración de Ag0 comprendida entre el 0.01 y el 8% peso en el compuesto final, manteniendo fuerte agitación durante 10 minutos, preferentemente al 1% en peso de plata, e) Reducción química in situ de Ia plata, utilizando cualquier agente reductor, preferentemente NaBH4, que se adiciona gota a gota a Ia dispersión manteniendo Ia agitación fuerte, y f) Filtrado, lavado con agua destilada y secado en estufa a 60°C.
Por último, otro objeto de Ia invención Io constituye el uso del polvo nanocompuesto de Ia invención en Ia elaboración de una composición bactericida y/o fungicida útil como desinfectante universal para aplicaciones pertenecientes, a título ilustrativo y sin que limite el alcance de Ia presente invención, al siguiente grupo: implantes quirúrgicos, instalaciones de uso público -sanitarias y hospitalarias, transporte, etc.-, alimentación, dental, pinturas, prendas de vestir y embalajes - alimentos, farmacéuticos, dispositivos médicos.
DESCRIPCIÓN DE FIGURAS
Figura 1.- Micrografía obtenida por Microscopía Electrónica de Transmisión en Ia que se muestra Ia distribución homogénea de nanopartículas de plata menores de 20 nm adheridas a Ia superficie de una nanopartícula de hidroxiapatita de tamaño 140 nm, aproximadamente obtenidas mediante el método 1.
Figura 2.- Micrografía obtenida por Microscopía Electrónica de Transmisión en Ia que se muestra un polvo nanocompuesto obtenido por el método 2, donde se observa que las nanopartículas de Ag son menores de 15 nm.
EJEMPLOS DE REALIZACIÓN DE LA INVENCIÓN
Ejemplo 1.- Procedimiento de obtención de los polvos nanocompuesto de Ia invención A continuación se describe el procedimiento de obtención del polvo nanocompuesto de Ia invención que comprende dos etapas principales de preparación del fosfato calcico nanométrico a partir de una ruta de procesamiento sol-gel, y de una deposición de nanopartículas de plata en Ia superficie del fosfato calcico, y que a continuación se detallan.
1.1.- Síntesis de hidroxiapatita (HA) como fosfato de calcio
Los precursores utilizados para Ia síntesis de HA utilizados fueron trietilfosfito (98%, Aldrich) y nitrato calcico tetrahidratado (>99%, Fluka). El procedimiento seguido es el que se detalla a continuación:
1.- Se preparan las correspondientes disoluciones acuosas con Ia cantidad necesaria de estos precursores para obtener en Ia mezcla final una relación molar Ca/P de 1.67, 2.- La disolución de trietilfosfito se añade gota a gota sobre Ia de calcio mientras se agita fuertemente, manteniendo condiciones controladas de temperatura y pH,
3.- La suspensión coloidal resultante se mantiene en agitación y, después de un envejecimiento a temperatura ambiente de 24 h, forma un gel, y 4.- El gel resultante se seca en estufa a vacío hasta Ia eliminación completa del disolvente. Se calcina a 55O0C, obteniendo un polvo de hidroxiapatita de tamaño nanométrico y bien cristalizado con un tamaño menor de 150 nm.
1.2.- Procedimiento de deposición de plata sobre las nanopartículas de HA.
A partir de este punto, los polvos nanoestructurados de Ia invención se obtuvieron a través de dos métodos diferentes.
Método 1. Tras Ia síntesis de nanopartículas de HA por el método sol-gel y posterior calcinación, se produce Ia deposición de óxido de plata a partir de un precursor
(por ejemplo, nitrato de plata) sobre HA dispersado en agua con Ia cantidad óptima de surfactante. A continuación, se procede a Ia reducción del catión Ag+ a Ag0 en horno en atmósfera de Ar /H2, tal y como se detalla a continuación: a) Se prepara una suspensión acuosa con el polvo de hidroxiapatita obtenido en 1.1.. Se ajusta el pH a 5 en agitación. Para conseguir una mejor dispersión de Ia hidroxiapatita se introduce un surfactante aniónico en baja concentración como dispersante (1% en peso respecto a Ia concentración en sólidos de hidroxiapatita); b) Se añade, protegiendo de Ia luz, una disolución acuosa de Ia sal de plata precursora con Ia concentración necesaria para que el contenido de plata elemental esté comprendida entre el 0.01 y el 8% peso en el compuesto final HA-Ag (referido al contenido en sólidos de HA); c) Mientras se agita fuertemente Ia suspensión, se ajusta el pH a 9, de modo que se precipitan cationes Ag+ como óxido, Ag2O, y d) Tras filtrado y lavado, se seca y reduce en atmósfera de Ar/10%H2 en el intervalo de temperaturas comprendido entre 150 y 500°C.
Se obtuvo así un polvo nanocompuesto con nanopartículas de plata menores de 20 nm adheridas a Ia superficie de una nanopartícula de hidroxiapatita de tamaño 140 nm, aproximadamente, con una distribución homogénea.
Método 2.
Tras Ia síntesis de nanopartículas de HA por el método sol-gel y posterior calcinación, se produce Ia deposición de nanopartículas de plata, Ag0, sobre hidroxiapatita a partir de un precursor de plata dispersado en agua en condiciones de pH y dispersante óptimas. La reducción se realiza in situ con un agente reductor a temperatura ambiente. a) Se prepara una suspensión acuosa con el polvo de hidroxiapatita obtenido. Para conseguir una mejor dispersión de Ia hidroxiapatita se introduce un surfactante aniónico en baja concentración como dispersante (Dolapix); b) Se ajusta el pH a 7 con una disolución acuosa de NaOH 0.1 N para 5 conseguir un buena dispersión de las partículas de HA y evitar, al mismo tiempo, Ia precipitación de los iones Ag+ como Ag2O, que se produce a valores de pH por encima de 8; c) Sonda de ultrasonidos de 1-10 minutos. Homogeneización y disgregación en molino de bolas;
I O d) Para obtener en el producto final una concentración de Ag0 comprendida entre el 0.01 y el 8% peso en el compuesto final HA-Ag, se añade Ia cantidad necesaria de precursor, AgNθ3. Una vez añadido gota a gota sobre Ia dispersión de HA, se deja agitando fuertemente 10 min antes de iniciar el siguiente paso. Este proceso es necesario hacerlo protegiendo de Ia luz Ia
15 disolución con el precursor y Ia dispersión una vez añadido el precursor; e) La reducción de Ia plata se realiza químicamente in sitυ, usando como agente reductor, por ejemplo, NaBH4, que reacciona con Ia plata en Ia relación molar 1 :8 (NaBH4:Ag+), según las reacciones:
8 (Ag+ + le » Ag0) 0 BH; +3H,O <-> B(OH)3 + 7H+ +8e"
8 Ag+ + BH¡ +3H2O <-> Ag0 + B(OH)3 + 7H+
f) Se procede a Ia deposición gota a gota de Ia disolución de NaBH4 sobre Ia dispersión; y g) Se agita fuertemente, se procede a su filtrado, lavado con agua 5 destilada y, por último, secado en estufa a 6O0C.
Se obtuvo así un polvo nanocompuesto de Ia invención, donde se observa que las nanopartículas de Ag son menores de 15 nm. EJEMPLO 2.- Ensayos de actividad biocida y lixiviado de los polvos nanocompuestos de Ia invención
Se realizaron tests bactericidas para investigar el efecto de las muestras
5 que contenían plata sobre diferentes organismos: Escheríchia coli JM 110 (Gram-negative bacteria), Micrococcus luteus (Gram-positive bacteria) e Issatchenkia oríentalis (levadura). Los microorganismos se sembraron en medio sólido, placas Petri, de Luria Bertani (LB) (conteniendo: triptona 1 %, extracto de levadura 0.5%, CINa 1 %, agar 1.5%) para E. coli JM110 y M. luteus
I O ó Yeast Extract Destrosa (YEPD) (conteniendo: Extracto de levadura 1 %, peptona 2%, glucosa 2%). Las placas se incubaron 24 horas a 37°C. A continuación, colonias aisladas de las placas anteriores de cada microorganismo se inocularon en 5 mL de LB (bacterias) ó YEPD (levadura) y se cultivaron a 37°C durante 5 horas para obtener los pre-cultivos.
15 Paralelamente se prepararon suspensiones de 200 mg/ml (peso/peso) en agua de las preparaciones M1 y M2, conteniendo 1% de plata. Finalmente 10 μL de cada uno de los precultivos de los microorganismos se inocularon a 1 mL de LB o YEPD, según el microorganismo. A los cultivos se añadieron 150 μL de las muestras de HA/nAg (M 1 y M2) resultando en una concentración final de 0.13%
20 en peso de Ag. Asimismo, se prepararon como control muestras sin plata, consistentes en una mezcla de agua más el correspondiente nutriente. Los cultivos se incubaron a 37°C en agitación y se tomaron alícuotas de los distintos cultivos para el contaje de viables tras diluciones seriadas de los distintos cultivos.
25
2.1.- Test biocida realizado con Micrococcus luteus
Se preparó una suspensión acuosa (9% peso de sólidos) con el polvo de
HA obtenido por el método 1 (se utilizó como precursor de plata AgNC>3, siendo
30 el contenido en plata en el compuesto final, HA-Ag, de 1% peso (referido al contenido en sólidos de HA)). El test realizado con Micrococcus luteus muestra un título a las 24 horas <1.0-104, mientras que el control es 3.0-109.
Al cabo de 72 horas, Ia concentración de calcio lixiviado en el medio de cultivo se encontró en el rango 15-30 ppm. La concentración de plata fue <5 ppm. Igualmente, se probó a inocular Ia misma concentración de plata de partida a partir de Vitelinato de plata nanoestructurada comercial (Argenol, tamaño de partícula menor de 20 nm); observándose que se lixiviaron 1300 ppm de plata, aproximadamente.
2.2.- Test biocida realizado con Escherichia coli
Se preparó una suspensión acuosa (9% peso de sólidos) con el polvo de
HA obtenido por el método 1 (se utilizó como precursor de plata AgNθ3, siendo el contenido en plata en el compuesto final, HA-Ag, de 1% peso (referido al contenido en sólidos de HA)). El test realizado con Escherichia coli JM 110 muestra un título a las 24 horas <1.0-104, mientras que el control es 1.4-1011.
Al cabo de 72 horas, Ia concentración de calcio lixiviado en el medio de cultivo se encontró en el rango 15-30 ppm. La concentración de plata fue <5 ppm. Igualmente, se probó a inocular Ia misma concentración de plata de partida a partir de Vitelinato de plata nanoestructurada comercial (Argenol, tamaño de partícula menor de 20 nm); observándose que se lixiviaron 900 ppm, aproximadamente.
2.3.- Test biocida realizado con Issatchenkia oríentalis
Se preparó una suspensión acuosa (9% peso de sólidos) con el polvo de
HA obtenido por el método 2 (se utilizó como precursor de plata AgNθ3, siendo el contenido en plata en el compuesto final, HA-Ag, de 1% peso (referido al contenido en sólidos de HA)). El test bactericida realizado con Issatchenkia oríentalis mostró un título a las 24 horas de 1.0-104, mientras que el control es 1.2-1011.
Al cabo de 72 horas, Ia concentración de calcio lixiviado en el medio de cultivo se encontró en el rango 15-30 ppm. La concentración de plata fue <5 ppm. En paralelo, se inoculó Ia misma concentración de plata de partida a partir de Vitelinato de plata nanoestructurada comercial (Argenol, tamaño de partícula menor de 20 nm); observándose que lixiviaron 800 ppm de plata, aproximadamente.
2.4.- Test biocida realizado con Micrococcus luteus
Se preparó una suspensión acuosa (9% peso de sólidos) con el polvo de
HA obtenido por el método 2 (se utilizó como precursor de plata AgNOβ, siendo el contenido en plata en el compuesto final, HA-Ag, de 1% peso (referido al contenido en sólidos de HA)). El test realizado con Micrococcus luteus muestra un título a las 24 horas 4.0-104, mientras que el control es 3.0-109.
Al cabo de 72 horas, Ia concentración de calcio lixiviado en el medio de cultivo se encontró en el rango 15-30 ppm. La concentración de plata fue <5 ppm. Igualmente, se probó a inocular Ia misma concentración de plata de partida a partir de Vitelinato de plata nanoestructurada comercial {Argenol. tamaño de partícula menor de 20 nm); observándose que se lixiviaron 900 ppm, aproximadamente.
2.5.- Test biocida realizado con Escherichia coli JM 110
Se preparó una suspensión acuosa (9% peso de sólidos) con el polvo de
HA obtenido por el método 2 (se utilizó como precursor de plata AgNO3, siendo el contenido en plata en el compuesto final, HA-Ag, de 1% peso (referido al contenido en sólidos de HA)). El test realizado con Escherichia coli JM 110 muestra un título a las 24 horas <1.0-104, mientras que el control es 1.4-1011. Al cabo de 72 horas, Ia concentración de calcio lixiviado en el medio de cultivo se encontró en el rango 15-30 ppm. La concentración de plata fue <5 ppm. Igualmente, se probó a inocular Ia misma concentración de plata de partida a partir de Vitelinato de plata nanoestructurada comercial (Argenol, tamaño de partícula menor de 20 nm); observándose que se lixiviaron 1300 ppm, aproximadamente.

Claims

REIVINDICACIONES
1.- Polvo nanocompuesto caracterizado porque está constituido por un fosfato calcico, preferentemente con tamaño de partícula inferior a 150 nm y que tiene adherida en su superficie nanopartículas de Ag, preferentemente inferiores a 50 nm.
2.- Polvo nanocompuesto según Ia reivindicación 1 caracterizado porque el fosfato calcico pertenece al siguiente grupo: hidroxiapatita, α-TCP, β-TCP y/o mezclas de ellos.
3.- Polvo nanocompuesto según Ia reivindicación 1 caracterizado porque el fosfato calcico es hidroxiapatita (HA).
4.- Polvo nanocompuesto según Ia reivindicación 1 caracterizado porque el contenido en partículas metálicas de plata está comprendido entre 0.01% y 8% en peso, preferentemente el 1% en peso de plata.
5.- Procedimiento de obtención del polvo nanocompuesto según las reivindicaciones 1 a Ia 4 caracterizado porque comprende las siguientes etapas:
a) Preparación del fosfato calcico nanométrico a partir de una ruta de procesamiento sol-gel, y b) Deposición de nanopartículas de plata en Ia superficie del fosfato calcico.
6.- Procedimiento según Ia reivindicación 5 caracterizado porque en Ia etapa a) el fosfato calcico se ha preparado mediante un procedimiento sol-gel, que comprende los siguientes pasos: a) Preparación de las correspondientes disoluciones acuosas con Ia cantidad necesaria de trietil fosfito y nitrato calcico para obtener en Ia mezcla final Ia relación molar Ca/P deseada, preferentemente 1.67 en ei caso de Ia hidroxiapatita, b) Goteo de Ia disolución con fósforo sobre Ia de calcio mientras se agita fuertemente, manteniendo condiciones controladas de temperatura y pH, c) Agitación de Ia suspensión coloidal resultante y posterior envejecimiento a temperatura ambiente, preferentemente durante 24 horas, para formar un gel, y d) Secado del gel en estufa de vacío hasta Ia eliminación completa del disolvente y calcinación a temperaturas comprendidas entre 5000C y 10000C, preferentemente 55O0C, para obtener el polvo de tamaño nanométrico y bien cristalizado.
7.- Procedimiento según Ia reivindicación 5 caracterizado porque en Ia etapa b) comprende los siguientes pasos:
a. Preparación de una suspensión acuosa con el polvo obtenido en 6, ajustando el pH a 5 y a Ia que se Ie añade un surfactante amónico en baja concentración, b. Adición, en ausencia de luz, de una disolución acuosa de Ia sal de plata precursora con Ia concentración necesaria para que el contenido de plata elemental esté comprendida entre el 0.01 y el 8% peso en el compuesto final, referido al contenido en sólidos de fosfato calcico, preferentemente al 1% en peso de plata, c. Agitación fuerte de Ia suspensión, ajustando el pH a 9, de modo que se precipitan cationes Ag+ como óxido, Ag2O, d. Filtrado, lavado con agua destilada y secado del polvo resultante, y e. Reducción en atmósfera de H2/Ar en el intervalo de temperaturas comprendido entre 150 y 5000C, preferentemente 3500C.
8.- Procedimiento según Ia reivindicación 5 caracterizado porque en Ia etapa b) comprende los siguientes pasos:
a) Preparación de una suspensión acuosa con el polvo de hidroxiapatita obtenido en 6 a Ia que se Ie añade un surfactante aniónico en baja concentración, b) Ajuste del pH a 7 con una disolución acuosa de NaOH 0.1 N, c) Aplicación de una sonda de ultrasonidos durante 1-10 minutos y completa homogeneización y disgregación en molino de bolas, d) Adición gota a gota de Ia cantidad necesaria de Ia disolución del precursor de plata, AgN03, para obtener en el producto final una concentración de Ag0 comprendida entre el 0.01 y el 8% peso en el compuesto final, manteniendo fuerte agitación durante 10 minutos, preferentemente al 1 % en peso de plata, e) Reducción química in situ de Ia plata, utilizando cualquier agente reductor, preferentemente NaBHU, que se adiciona gota a gota a Ia dispersión manteniendo Ia agitación fuerte, y f) Filtrado, lavado con agua destilada y secado en estufa a 600C.
9.- Uso del polvo nanocompuesto según Ia reivindicaciones 1 a Ia 4 en Ia elaboración de una composición bactericida y/o fungicida útil como desinfectante para aplicaciones pertenecientes al siguiente grupo: implantes quirúrgicos, instalaciones de uso público -sanitarias y hospitalarias, transporte, etc-, alimentación, dental, pinturas, prendas de vestir y embalajes -alimentos, farmacéuticos, dispositivos médicos.
PCT/ES2009/070628 2008-12-24 2009-12-23 Polvo compuesto nanoestructurado fosfato de calcio-plata. procedimiento de obtención y sus aplicaciones bactericidas y fungicidas WO2010072882A1 (es)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN2009801573703A CN102361717A (zh) 2008-12-24 2009-12-23 纳米结构的钙-银磷酸盐复合粉末、用于获得所述粉末的方法以及其杀菌和杀真菌应用
JP2011542851A JP2012513971A (ja) 2008-12-24 2009-12-23 ナノ構造のリン酸カルシウム銀複合粉体、その粉体の製造方法並びに抗菌及び殺菌への利用
CA2748420A CA2748420A1 (en) 2008-12-24 2009-12-23 Nanostructured calcium-silver phosphate composite powder, process for obtaining said powder and bactericidal and fungicidal applications thereof
US13/142,220 US20120040005A1 (en) 2008-12-24 2009-12-23 Nanostructured calcium-silver phosphate composite powders, process for obtaining the powders, and bactericidal and fungicidal applications thereof
EP09834169A EP2380687A4 (en) 2008-12-24 2009-12-23 NANOSTRUCTURED POWDER COMPOUND OF CALCIUM-SILVER PHOSPHATE. METHOD OF OBTAINING AND ITS BACTERICIDAL AND FUNGICIDAL APPLICATIONS
US14/076,887 US20140065306A1 (en) 2008-12-24 2013-11-11 Nanostructured calcium-silver phosphate composite powders, process for obtaining the powders and bactericidal and fungicidal applications thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200803695A ES2341749B1 (es) 2008-12-24 2008-12-24 Polvo compuesto nanoestructurado fosfato de calcio-plata. procedimiento de obtencion y sus aplicaciones bactericidas y fungicidas.
ESP200803695 2008-12-24

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/142,220 A-371-Of-International US20120040005A1 (en) 2008-12-24 2009-12-23 Nanostructured calcium-silver phosphate composite powders, process for obtaining the powders, and bactericidal and fungicidal applications thereof
US14/076,887 Division US20140065306A1 (en) 2008-12-24 2013-11-11 Nanostructured calcium-silver phosphate composite powders, process for obtaining the powders and bactericidal and fungicidal applications thereof

Publications (1)

Publication Number Publication Date
WO2010072882A1 true WO2010072882A1 (es) 2010-07-01

Family

ID=42237124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/070628 WO2010072882A1 (es) 2008-12-24 2009-12-23 Polvo compuesto nanoestructurado fosfato de calcio-plata. procedimiento de obtención y sus aplicaciones bactericidas y fungicidas

Country Status (7)

Country Link
US (2) US20120040005A1 (es)
EP (1) EP2380687A4 (es)
JP (1) JP2012513971A (es)
CN (1) CN102361717A (es)
CA (1) CA2748420A1 (es)
ES (1) ES2341749B1 (es)
WO (1) WO2010072882A1 (es)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102657228A (zh) * 2012-05-21 2012-09-12 华东理工大学 一种纳米银复合杀菌剂的原位制备方法
WO2012171911A1 (en) 2011-06-14 2012-12-20 Dow Corning Corporation Pressure material
CN104400001A (zh) * 2014-11-14 2015-03-11 东北林业大学 一种利用钩状木霉胞外液制备Ag/AgCl纳米复合材料的方法
CN104692348A (zh) * 2015-03-22 2015-06-10 河北工业大学 制备碳纳米管增强羟基磷灰石复合材料的双原位合成方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2136621B1 (en) * 2007-04-04 2013-05-08 Perlen Converting AG Antimicrobial material
CN103289408A (zh) * 2012-02-29 2013-09-11 刘芳 一种硅橡胶的制备方法
PL231410B1 (pl) * 2013-06-10 2019-02-28 Inst Chemii Fizycznej Polskiej Akademii Nauk Sposób modyfikowania powierzchni nanokompozytami i zastosowanie materiału nanokompozytowego zmodyfikowanego tym sposobem do wytwarzania powierzchni antyseptycznych
CL2013002101A1 (es) * 2013-07-23 2014-08-29 Univ Chile Aditivo que confiere propiedades biocidas a distintos materiales que comprende un material de soporte o portador modificado con un agente bacteriano que forma estructuras nanometricas sobre la superficie externa de dicho material de soporte; y metodo para preparacion de dicho aditivo.
CN104910597A (zh) * 2015-05-08 2015-09-16 常州龙骏天纯环保科技有限公司 一种具有活性抗菌生物降解性复合材料的制备方法
WO2017150539A1 (ja) * 2016-02-29 2017-09-08 国立大学法人東京工業大学 銀含有リン酸カルシウム焼結体及びその製造方法
CN106914629A (zh) * 2017-03-02 2017-07-04 扬州大学 一种磷酸钙/纳米银壳层复合材料的制备方法
CN107186221B (zh) * 2017-05-08 2019-07-23 华南师范大学 一种银纳米颗粒的合成方法
CN107309437B (zh) * 2017-07-07 2019-10-22 东北师范大学 一种金纳米星/磷酸钙纳米粒子及其制备方法
CN111226917A (zh) * 2020-03-26 2020-06-05 深圳市亚微新材料有限公司 一种磷酸氢锆纳米银抗菌复合材料的制备方法
CN113080204B (zh) * 2021-03-10 2022-04-08 蒙娜丽莎集团股份有限公司 一种具有持久抗菌功能的载银磷酸钙及其湿法合成方法
BR112024001172A2 (pt) * 2021-07-21 2024-04-30 Univ Granada Nanopartículas de fosfato de cálcio carregadas com jasmonato para induzir respostas eficientes de defesa de plantas

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1942396B (zh) * 2004-03-15 2010-09-01 苏黎世联合高等工业学校 金属盐纳米颗粒,特别是包含钙和磷酸根的纳米颗粒的火焰合成
WO2007149386A2 (en) * 2006-06-22 2007-12-27 Biomet 3I, Llc. Deposition of silver particles on an implant surface
EP2136621B1 (en) * 2007-04-04 2013-05-08 Perlen Converting AG Antimicrobial material
JP2009046410A (ja) * 2007-08-17 2009-03-05 Naoyuki Kato 抗菌組成物およびその製造方法

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
ARUMUGAN, S.K. ET AL.: "One step synthesis of silsee nanorods by autoreduction of aqueous silsee ions with hydroxyapatite: an inorganic- inorganic hybrid nanocomposite", JOURNAL OF BIOMEDICAL RESEARCH PART A, vol. 80, 2006, pages 391 - 398., XP008152773 *
BERA, T. ET AL.: "Morphological changes in biomimetically synthesized hydroxyapatite and silsee nanoparticles for medical applications", JOURNAL OF MATERIALS SCIENCE, vol. 44, no. 9, 2009, pages 2264 - 2270, XP019679383 *
CHEN W, OH S, ONG A P, OH N, LIU Y, COURTNEY H S, APPLEFORD M, ONG J L, J. BIOMED. MATER. RES. A, vol. 82, 2007
CHENG R J, HSIEH M F, HUANG K C, PERNG L H, CHOU F I, CHIN T S, JOURNAL OF SOLID SCIENCE AND TECHNOLOGY, vol. 33, 2005, pages 229
DIAZ, M. ET AL.: "Synthesis and antimicrobial activity of a silver-hydroxyapatite nanocomposite", JOURNAL OF NANOMATERIALS, 2009, XP008152759 *
FERRAZ, M.P. ET AL.: "Hydroxyapatite nanoparticles: A review of preparation methodologies", JOURNAL OF APPLIED BIOMATERIALS & BIOMECHANICS, 2004, pages 74 - 80, XP002468051 *
HAN I-H, LEE I-S, SONG J-H, LEE M-H, PARK J-C, LEE G-H, SUN X-D, CHUNG S-M: "Characterization of a silver-incorporated calcium phosphate film by RBS and its antimicrobial effects", BIOMED. MATER., vol. 2, no. 3, 2007, pages 91 - 4
ICHIKAWA , Y. ET AL.: "Hybridization of silsee nanoparticles on hydroxyapatite in an aqueous solution", JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, vol. 117, 2009, pages 294 - 298., XP008152760 *
LIU, J.-K. ET AL.: "Preparation of silver/ hydroxyapatite nanocomposite spheres", POWDER TECHNOLOGY, vol. 184, 2008, pages 21 - 24, XP022616355 *
RAMESHBABU N, SAMPATH KUMAR T S, PRABHAKAR T G, SASTRY V S, MURTY K V G K, PRASAD RAO K, J. BIOMED. MATER. RES. A, vol. 80, 2007, pages 581
See also references of EP2380687A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012171911A1 (en) 2011-06-14 2012-12-20 Dow Corning Corporation Pressure material
CN102657228A (zh) * 2012-05-21 2012-09-12 华东理工大学 一种纳米银复合杀菌剂的原位制备方法
CN104400001A (zh) * 2014-11-14 2015-03-11 东北林业大学 一种利用钩状木霉胞外液制备Ag/AgCl纳米复合材料的方法
CN104400001B (zh) * 2014-11-14 2016-03-16 东北林业大学 一种利用钩状木霉胞外液制备Ag/AgCl纳米复合材料的方法
CN104692348A (zh) * 2015-03-22 2015-06-10 河北工业大学 制备碳纳米管增强羟基磷灰石复合材料的双原位合成方法
CN104692348B (zh) * 2015-03-22 2016-08-24 河北工业大学 制备碳纳米管增强羟基磷灰石复合材料的双原位合成方法

Also Published As

Publication number Publication date
ES2341749A1 (es) 2010-06-25
EP2380687A4 (en) 2012-07-25
US20140065306A1 (en) 2014-03-06
CN102361717A (zh) 2012-02-22
EP2380687A1 (en) 2011-10-26
US20120040005A1 (en) 2012-02-16
JP2012513971A (ja) 2012-06-21
ES2341749B1 (es) 2011-04-28
CA2748420A1 (en) 2010-07-01

Similar Documents

Publication Publication Date Title
ES2341749B1 (es) Polvo compuesto nanoestructurado fosfato de calcio-plata. procedimiento de obtencion y sus aplicaciones bactericidas y fungicidas.
Shanmugam et al. Antimicrobial and cytotoxicity evaluation of aliovalent substituted hydroxyapatite
Stanić et al. Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders
Ragab et al. Synthesis and in vitro antibacterial properties of hydroxyapatite nanoparticles
Ravi et al. Strontium‐substituted calcium deficient hydroxyapatite nanoparticles: synthesis, characterization, and antibacterial properties
Zhou et al. Synthesis, characterization, and antibacterial activities of a novel nanohydroxyapatite/zinc oxide complex
EP2559436A1 (en) Composition comprising aluminum silicates and silver nanoparticles as bactericides
Padmanabhan et al. New core-shell hydroxyapatite/Gum-Acacia nanocomposites for drug delivery and tissue engineering applications
Jegatheeswaran et al. PEGylation of novel hydroxyapatite/PEG/Ag nanocomposite particles to improve its antibacterial efficacy
Sheikh et al. Traversing the profile of biomimetically nanoengineered iron substituted hydroxyapatite: synthesis, characterization, property evaluation, and drug release modeling
Iqbal et al. Characterization and antibacterial properties of stable silver substituted hydroxyapatite nanoparticles synthesized through surfactant assisted microwave process
Padmanabhan et al. Advanced lithium substituted hydroxyapatite nanoparticles for antimicrobial and hemolytic studies
Wiglusz et al. Hydroxyapatites and europium (III) doped hydroxyapatites as a carrier of silver nanoparticles and their antimicrobial activity
US11753310B2 (en) Ferrite nanoparticles
Kamonwannasit et al. Synthesis of copper-silver doped hydroxyapatite via ultrasonic coupled sol-gel techniques: structural and antibacterial studies
Nazari et al. Ion exchange behaviour of silver-doped apatite micro-and nanoparticles as antibacterial biomaterial
Grenho et al. In vitro analysis of the antibacterial effect of nanohydroxyapatite–ZnO composites
Dubnika et al. Evaluation of the physical and antimicrobial properties of silver doped hydroxyapatite depending on the preparation method
CN105664251A (zh) 一种超微量银掺杂羟基磷灰石涂层及其制备方法和应用
Al Attas et al. Bactericidal efficacy of new types of magnesium hydroxide and calcium carbonate nanoparticles
Sumathi et al. A new insight into biomedical applications of an apatite like oxyphosphate–BiCa4 (PO4) 3O
Ueda et al. Regulating size of silver nanoparticles on calcium carbonate via ultrasonic spray for effective antibacterial efficacy and sustained release
Yücel et al. Synthesis and characterization of whitlockite from sea urchin skeleton and investigation of antibacterial activity
El-Naggar et al. Biomedical domains of the as-prepared nanocomposite based on hydroxyapatite, bismuth trioxide and graphene oxide
Gao et al. Plasma sprayed rutile titania-nanosilver antibacterial coatings

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980157370.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834169

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011542851

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2748420

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2009834169

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13142220

Country of ref document: US