WO2010072127A1 - 一种信号削波方法、装置、系统以及信号发射系统 - Google Patents

一种信号削波方法、装置、系统以及信号发射系统 Download PDF

Info

Publication number
WO2010072127A1
WO2010072127A1 PCT/CN2009/075709 CN2009075709W WO2010072127A1 WO 2010072127 A1 WO2010072127 A1 WO 2010072127A1 CN 2009075709 W CN2009075709 W CN 2009075709W WO 2010072127 A1 WO2010072127 A1 WO 2010072127A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
clipping
clipped
maximum peak
peak point
Prior art date
Application number
PCT/CN2009/075709
Other languages
English (en)
French (fr)
Inventor
刘宇航
付卫香
吴迪
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2010072127A1 publication Critical patent/WO2010072127A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • H04L27/2623Reduction thereof by clipping

Definitions

  • the present invention relates to signal processing techniques in the field of communications, and more particularly to a signal clipping method, apparatus, system, and signal transmission system.
  • the composite envelope of multi-carrier signals causes the PAR (Peak Average Ratio) of the signal to be high.
  • PAR Peak Average Ratio
  • the power amplifier needs to have a larger linear range, that is, the power amplifier must amplify the signal with high PAR and transmit the amplified signal, thus, It will inevitably reduce the output power of the base station power amplifier and increase the efficiency of the power amplifier. Therefore, in order to reduce the PAR of the signal, thereby increasing the effective output power of the power amplifier and reducing the pressure on the power amplifier, the CFR processing (Crest Factor Reduced) is required to cut the peak value of the signal waveform.
  • the existing clipping methods are mainly: The initial noise extracted from the input signal is subjected to high-order band-pass filtering to generate the clipping noise required for the superposition, and then the clipping noise is superimposed on the input signal to complete the shaving. Wave processing, the prior art requires a large amount of hardware resources in implementation.
  • Embodiments of the present invention provide a signal clipping method, apparatus, system, and signal transmission system that achieve suppression of signal peak-to-average ratio with optimized hardware resources.
  • An embodiment of the present invention provides a signal clipping method, including:
  • the input signal is sampled and the maximum peak point signal exceeding the preset threshold is detected therefrom, and the sample point signal centered on the maximum peak point signal is used as the signal to be clipped;
  • An embodiment of the present invention provides a signal clipping device, including:
  • the signal unit to be clipped is configured to sample the input signal and detect a maximum peak point signal exceeding a preset threshold, and the sample point signal centered on the maximum peak point signal is used as a signal to be clipped;
  • a clipping noise signal unit configured to multiply the maximum peak point signal by a preset clipping coefficient to obtain a clipping noise signal
  • a clipping processing unit configured to inversely superimpose the clipping noise signal on the signal to be clipped to implement clipping processing
  • the preset parameter storage unit is configured to store the preset wavelet cancellation coefficient and a preset threshold.
  • An embodiment of the present invention provides a signal clipping system comprising k signal filtering devices sequentially connected, wherein k >
  • An embodiment of the present invention provides a signal transmission system, including: a power amplifier and the above-described signal clipping device connected to an input end of the power amplifier, wherein the signal clipping device is one or more sequentially connection.
  • the first clipping process realizes removing a maximum peak point signal of the input signal, and the logic design is simple, and the peak value can be realized under the condition of optimizing hardware resources.
  • the ratio is suppressed by the signal, which in turn reduces the pressure on the output power and efficiency.
  • FIG. 1 is a block diagram 1 of a signal clipping method according to an embodiment of the present invention.
  • FIG. 2 is a block diagram 2 of a signal clipping method according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a principle of a clipping queue in a signal clipping method according to an embodiment of the present invention
  • FIG. 4 is a block diagram 3 of a signal clipping method according to an embodiment of the present invention.
  • Figure 5 is a block diagram showing the structure of a signal clipping device according to an embodiment of the present invention.
  • FIG. 6 is a structural block diagram 2 of a signal clipping device according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a principle of a signal clipping device according to an embodiment of the present invention.
  • FIG. 8 is a structural block diagram of a signal clipping system according to an embodiment of the present invention.
  • FIG. 9 is a structural block diagram of a signal transmission system according to an embodiment of the present invention.
  • Step 10 of obtaining a signal to be clipped sampling the input signal and detecting a maximum peak point signal exceeding a preset threshold, and using the sample point signal centered on the maximum peak point signal as the waveform to be clipped Signal, it can be known that the peak point signal can be regarded as a noise signal exceeding the preset threshold, where a maximum peak point signal is found according to the preset threshold.
  • Step 20 of obtaining a clipping noise signal Multiplying the maximum peak point signal by a preset clipping coefficient to obtain a clipping noise signal.
  • Step of clipping processing 30 The clipping noise signal is inversely superimposed on the signal to be clipped to complete the clipping processing.
  • the input signal may be a multi-carrier signal combined signal or a single carrier signal.
  • the peak-to-average ratio is generally not very high; if it is a multi-carrier signal, the composite envelope of the multi-carrier signal causes the peak-to-average ratio of the signal to be high, so the signal clipping method of this embodiment is especially Suitable for multi-carrier combined signals.
  • the embodiment of the present invention provides a signal clipping method, including: Step 10 of obtaining a signal to be clipped: detecting an input signal and detecting a maximum peak point signal exceeding a preset threshold from the maximum The peak point signal is the center of the sample point signal as the signal to be clipped.
  • Step 20 of obtaining a clipping noise signal Multiplying the maximum peak point signal by a preset clipping coefficient to obtain a clipping noise signal.
  • Step 30 of clipping processing inversely superimposing the clipping noise signal on the signal to be clipped to complete clipping processing.
  • step 10 of obtaining a signal to be clipped the method may include:
  • Step 101 See the schematic diagram of the clip queue in Figure 3.
  • the signal flow direction is explained.
  • the initial sample point signal 1 is input to the clip queue in sequence according to a certain sampling rate, and the data of n sample points is one.
  • the value of the n value is mainly related to the peak-to-average ratio of the signal and the peak noise point density exceeding the preset threshold in the signal, n ⁇ 1, which is 1 ⁇ 32 in the embodiment of the present invention.
  • the clip queue has at least four frames of sample data, such as the first frame of the team 3 ⁇ : 4n- I s tail frame 0: n-1 and the middle two frames n: 2n-l - 2 ⁇ : 3 ⁇ -1.
  • the middle two frames ⁇ : 2 ⁇ - 1 - 2 ⁇ : 3 ⁇ -1 are two frames of 2n sample point data, which is the region for finding the maximum peak point signal.
  • Step 102 of querying the maximum peak point signal Find one from the middle two frames of the sample point signal 2 corresponding to the 2n sample points of the two frames ⁇ : 2 ⁇ -1 - 3 ⁇ -1 in the middle of the clipping queue The maximum peak point signal that exceeds the preset threshold.
  • Step 103 of obtaining a signal to be clipped 2n sample point signals symmetrical with the maximum peak point signal (excluding the maximum peak point signal itself) as the clipping to be clipped Signal 5.
  • the maximum peak point signal is not necessarily the sample point signal corresponding to the center sample data of the two frames ⁇ : 2 ⁇ 1—3 ⁇ -1 in the middle of the clip queue, and then the maximum peak point of the signal as the center, said two 2 ⁇ preclude signal samples may contain first team frame 3 ⁇ : 4 ⁇ -1 or the tail frame 0: n-1 preclude certain of the data samples corresponding to preclude the signal samples.
  • the clip queue has at least four frames of sample signals to ensure that the spectrum of the clipped chirp signal is not distorted.
  • step 20 of obtaining a clipping noise signal a predetermined clipping coefficient is sequentially multiplied with the maximum peak point signal to obtain a clipping noise signal.
  • the preset clipping coefficient can be generated according to the spectral characteristics of the input signal or preset according to the empirical value. Its main function is to ensure that the spectrum of the clipping noise signal is not distorted.
  • the signal to be clipped is 2n sample points. Preferably, the number of preset clipping coefficients can be ⁇ 21, optimizing resource utilization.
  • step 30 of the clipping process may include:
  • Steps of delay processing 301 aligning the signal to be clipped and aligning with the clipped noise signal
  • Step 302 of superimposing processing subtracting the clipping noise signal from the signal to be clipped to complete clipping processing.
  • the input signal may be a multi-carrier signal combined signal or a single carrier signal.
  • the signal clipping method of the embodiment can also perform m-time clipping processing on the input signal without increasing the logic complexity, and the m-value is selected mainly according to the characteristics of the signal peak-to-average ratio and the input signal.
  • the size of the sample rate is determined by at least m ⁇ l.
  • the clipping processing rate of the input signal is greater than the sampling rate of the input signal, and the state of the high-speed processing of the low-speed sampling is achieved, which is not mentioned here.
  • the m-th clipping processing is performed in the embodiment of the present invention: after completing one clipping processing, the clipping queue is updated according to the data corresponding to the processed signal 8. Corresponding sample point data, and then re-detecting the maximum peak point signal from the sample points corresponding to the 2n sample points of the updated two frames n: 2n-l-3n-1, and then, according to The updated maximum peak point signal obtains the updated clipping signal and the clipping noise signal to complete the next clipping process. In the same way, m clipping processing can be completed cyclically.
  • the maximum peak point is detected from the sample points corresponding to the 2n sample points of the two frames n: 2n-l-3n-l. Signal, but since the maximum peak point signal detected each time in this area is not necessarily the same, the 2n sample point signals symmetrical with respect to the maximum peak point signal are not necessarily the same.
  • the first clipping process realizes removing a maximum peak point signal of the input signal, and performing m-cycle clipping processing to achieve suppression of the signal peak, and needs to be stored and calculated.
  • the operation is less, the logic design is simple, and the FPGA resource occupation is ideal.
  • the peak-to-average ratio signal can be suppressed under the condition of optimizing hardware resources, thereby increasing the effective output power of the power amplifier and reducing the pressure on the efficiency of the power amplifier.
  • an embodiment of the present invention provides a signal clipping method, which can perform k-level clipping processing on an input signal.
  • the choice of k series is mainly based on the signal peak-to-average ratio. Some signals only need one level to complete.
  • the signal of the peak-to-average ratio must be multi-level to achieve, k>l.
  • the output signal is further transmitted to the power amplifier through digital pre-distortion after k-stage clipping.
  • the k-level clipping processing of the embodiment of the present invention corresponds to 2n sample data of n: 2n-l-3n-l in the middle two frames.
  • the sample signal is m-time clipping processing
  • the sample point signal 9 corresponding to the n pieces of sample data of the first frame 3 ⁇ : 4 ⁇ -1 is output to the next-stage clipping processing link at a certain rate, and the tail frame is 0:
  • the ⁇ sample point data corresponding to ⁇ -1's ⁇ sample point data moves upward, so that the incoming clipping queue of a new ⁇ sample point signal starts clipping processing. Due to the simple logic design, the signal clipping method is easy to expand in multiple stages, achieving better suppression of peak-to-average signals.
  • the first clipping process realizes removing a maximum peak point signal of the input signal, and performing m-cycle clipping processing to achieve suppression of the signal peak, and needs to be stored and calculated.
  • the operation is less, the logic design is simple, the FPGA resource occupation is ideal, and the multi-level expansion is easy.
  • the peak-to-average ratio signal can be suppressed in the case of optimizing hardware resources, thereby increasing the effective output power of the power amplifier and reducing the efficiency of the power amplifier. pressure.
  • the embodiment of the present invention provides a signal clipping device, where the input signal can be a multi-carrier signal combined signal or a single carrier signal, including:
  • the signal to be clipped 11 is configured to sample the input signal and detect a maximum peak point signal exceeding a preset threshold, and obtain a sample point signal centered on the maximum peak point signal as a waveform to be clipped signal
  • the peak point signal can be regarded as a noise signal exceeding a preset threshold, and a maximum peak point signal is found here according to a preset threshold.
  • the clipping noise signal unit 21 multiplies the maximum peak point signal by a preset clipping coefficient to obtain a clipping noise signal.
  • the clipping processing unit 31 is configured to inversely superimpose the clipping noise signal on the signal to be clipped to implement clipping processing.
  • the preset parameter storage unit is configured to store the preset clipping coefficient and a preset threshold.
  • the first clipping process realizes removing a maximum peak point signal of the input signal, requires less storage and calculation operations, and is simple in logic design and occupied by F PGA resources. Ideally, you can achieve peak-to-average ratio signals while optimizing hardware resources. Suppress, and thus increase the effective output power of the power amplifier, reducing the pressure on the power efficiency.
  • the embodiment of the present invention provides a signal clipping device, including: a signal unit to be clipped 11 for detecting an input signal and detecting a maximum peak point signal exceeding a preset threshold, and obtaining the maximum The peak point signal is the center of the sample point signal as the signal to be clipped; the clipping noise signal unit 21 multiplies the maximum peak point signal by a preset clipping coefficient to obtain a clipping noise signal; the clipping processing unit 31 And performing the clipping processing by the superimposing the clipping noise signal on the waveform to be clipped; the preset parameter storage unit 41 is configured to store the preset clipping coefficient and the preset threshold.
  • the signal to be clipped 11 of the embodiment of the present invention may include:
  • the sampling unit 111 is configured to collect signals and combine data corresponding to the sample point signals into a clipping queue, where the clipping queue includes at least four frames of sample data frames, and each frame of the sample data frames includes n ⁇ sample point data corresponding to the sample point data, the value of the value of n is mainly related to the magnitude of the signal peak-to-average ratio and the density of the peak noise point in the signal exceeding the preset threshold, n ⁇ l, embodiment n of the present invention ⁇ 32.
  • the maximum peak point query unit 112 is configured to detect a maximum peak point signal exceeding a preset threshold from the middle two frames of the clip queue.
  • the clipped signal generating unit 113 is configured to use 2n ⁇ sample signals symmetrical with the maximum peak point signal as the signal to be clipped. As shown in Fig. 7, the middle two frames of the clipping queue ⁇ : 2 ⁇ - 1 - 3 ⁇ -1 a total of 2 ⁇ sample point data corresponding to the sample point signal is the selected area of the maximum peak point signal.
  • the clipping processing unit 31 of the embodiment of the present invention may include:
  • the delay unit 311 is configured to delay the signal to be clipped and align with the clipped noise signal to eliminate the delay difference due to different processing.
  • Subtraction unit 312 configured to subtract the clipping noise signal from the to-be-clipped signal.
  • the signal clipping device of the embodiment of the present invention may further include: a buffer unit 51, configured to store the clipping team ⁇ ij, and update a corresponding one of the clipping queues according to data corresponding to the clipped processed signal
  • the sample data is sampled to perform the next clipping process, and the cycle update completes m times of clipping processing, wherein the m ⁇ l.
  • the processing rate of storing data in the buffer unit is greater than the sampling rate of the sampling unit, and the state of the high-speed processing of the low-speed sampling is reached, which is not described herein.
  • the preset clipping coefficient of the embodiment of the present invention may be generated according to the spectral characteristics of the input signal or preset according to an empirical value, and its main function is to ensure that the spectrum of the clipping noise signal is not distorted.
  • the signal to be clipped is 2 ⁇ samples
  • the point signal, preferably, the number of clipping coefficients can be ⁇ 21, optimizing resource utilization.
  • the initial sampling point signal 1 is sequentially input into the clipping queue according to a certain sampling rate, with n ⁇
  • the sample data is one frame, and four frames of data are input, including the tail frame 0: nl, the first frame of the team 3 ⁇ : 4 ⁇ -1, and the middle two frames ⁇ : 2 ⁇ - 1 - 2 ⁇ : 3 ⁇ -1;
  • the preset threshold 3 is configured, and the clipped signal generating unit 112 detects one of the sample points 2 corresponding to the 2n sample points of the two frames ⁇ : 2 ⁇ - 1 - 2 ⁇ : 3 ⁇ -1 in the middle of the clip queue.
  • the clipping noise signal unit 2 1 obtains the clipping noise signal 6; then, the signal to be clipped 5 passes through the delay unit 311 to form a delayed signal to be clipped 7, and the subtracting unit 312 Will delay the letter to be cut No.
  • the sample point signal 9 corresponding to the n pieces of sample data in the first frame 3n: 4n-1 is output at a certain signal rate, and the first stage signal clipping process is completed.
  • the first clipping process realizes removing a maximum peak point signal of the input signal, and performing m-cycle clipping processing to achieve suppression of the signal peak, and needs to be stored and calculated.
  • the operation is less, the logic design is simple, and the FPGA resource occupation is ideal.
  • the peak-to-average ratio signal can be suppressed under the condition of optimizing hardware resources, thereby increasing the effective output power of the power amplifier and reducing the pressure on the efficiency of the power amplifier.
  • the present embodiment proposes a signal clipping system including k signal-clipting devices as described above.
  • the signal clipping device CFR_1 outputs the first frame of the team after performing m clipping processing on the sample point signal corresponding to the sample data of the two frames in the middle of the clipping queue.
  • the sample point signal corresponding to the sample data enters the next signal clipping device CFR_2 for clipping processing, and the same, a new frame of the frame
  • the point signal is input to the signal clipping device CFR_1 to start a new clipping process. Due to the simple logic design, the signal clipping method is easy to expand in multiple stages, achieving better suppression of peak-to-average signals.
  • the first clipping process realizes removing a maximum peak point signal of the input signal, and performing m-cycle clipping processing to achieve suppression of the signal peak, and needs to be stored and calculated.
  • the operation is less, the logic design is simple, and the FPGA resource occupation is ideal and easy to multi-level expansion.
  • the peak-to-average ratio signal can be suppressed under the condition of optimizing hardware resources, thereby increasing the effective output power of the power amplifier and reducing the efficiency of the power amplifier. pressure.
  • this embodiment provides a signal transmission system, including: a power amplifier and a signal clipping device as described above connected to an input end of the power amplifier, wherein the signal clipping device is One CFR_1, or signal clipping device is connected in more than one order, such as CFR_1, ..., CFR_K
  • the multi-carrier signal is digitally up-converted/combined, and then clipped by the CFR_1, ..., CFR_K signal clipping device to further transmit the output signal to the power amplifier through digital pre-distortion.
  • the signal clipping device has a simple logic design, and the FP GA resource occupation is ideal for easy multi-stage expansion, and the peak-to-average ratio signal is transmitted by one or more signal clipping devices.
  • the clipping process is performed to increase the effective output power of the power amplifier and reduce the pressure on the power efficiency.
  • the storage medium may be a magnetic disk, an optical disk, or a read-only storage memory (Read-Only)

Description

说明书
Title of Invention:—种信号削波方法、 装置、 系统以及信号发射系
[1] 本申请要求了 2008年 12月 22日提交的、 申请号为 200810240705.5、 发明名称为" 一种信号削波方法、 装置、 系统以及信号发射系统"的中国申请的优先权, 其全 部内容通过引用结合在本申请中。
[2] 技术领域
[3] 本发明涉及通信领域的信号处理技术, 尤其涉及一种信号削波方法、 装置、 系 统以及信号发射系统。
[4] 发明背景
在通信技术领域中, 多载波信号的合成包络会导致信号的 PAR (Peak Average Ratio, 峰均比) 很高。 当高 PAR的信号通过基站功率放大器吋, 为了避免信号 失真和频谱再生, 需要功率放大器具有更大的线性范围, 也就是功率放大器必 须放大具有高 PAR的信号并发送该放大后的信号, 这样, 必然会降低基站功率放 大器的输出功率, 增加功率放大器在效率上的压力。 因此, 为了减小信号的 PAR , 进而增加功放的有效输出功率以及降低功放在提升效率上的压力, 需要对信 号波形进行削去峰值的 CFR处理 (Crest Factor Reduced, 简称削波) 。
[6] 现有的削波方法主要是: 将从输入信号中提取的初始噪声经过高阶带通滤波处 理后生成叠加需要的削波噪声, 再将削波噪声反向叠加输入信号即完成削波处 理, 现有技术在实现中需要占用大量的硬件资源。
[7] 发明内容
[8] 本发明的实施例提供了一种信号削波方法、 装置、 系统以及信号发射系统, 其 以优化的硬件资源实现对信号峰均比的抑制。
[9] 本发明的实施例提供一种信号削波方法, 包括:
[10] 对输入信号进行釆样并从中检测出超过预设门限的最大峰值点信号, 将以该最 大峰值点信号为中心的釆样点信号作为待削波信号;
[11] 将所述最大峰值点信号与预设的削波系数相乘得到削波噪声信号; [12] 将所述削波噪声信号反向叠加所述待削波信号完成削波处理。
[13] 本发明的实施例提供一种信号削波装置, 包括:
[14] 待削波信号单元, 用于对输入信号进行釆样并从中检测出超过预设门限的最大 峰值点信号, 以该最大峰值点信号为中心的釆样点信号作为待削波信号;
[15] 削波噪声信号单元, 用于将所述最大峰值点信号乘以预设的削波系数得到削波 噪声信号;
[16] 削波处理单元, 用于将所述削波噪声信号反向叠加所述待削波信号实现削波处 理;
[17] 预设参数存储单元, 用于存储所述预设的消波系数、 预设门限。
[18] 本发明的实施例提供一种信号削波系统, 包括 k个依次连接的上述信号削波装 置, 其中, k〉l。
[19] 本发明的实施例提供一种信号发射系统, 包括: 功率放大器以及与所述功率放 大器的输入端连接的上述信号削波装置, 其中, 所述信号削波装置为一个或一 个以上依次连接。
[20] 由上述本发明的实施例提供的技术方案可以看出, 一次削波处理实现去除输入 信号的一个最大峰值点信号, 其逻辑设计上简单, 可以在优化硬件资源的情况 下实现对高峰均比信号的抑制, 进而减小功放在输出功率和效率上的压力。
[21] 附图简要说明
[22] 图 1为本发明实施例信号削波方法的流程框图一;
[23] 图 2为本发明实施例信号削波方法的流程框图二;
[24] 图 3为本发明实施例信号削波方法中削波队列的原理示意图;
[25] 图 4为本发明实施例信号削波方法的流程框图三;
[26] 图 5为本发明实施例信号削波装置的结构框图一;
[27] 图 6为本发明实施例信号削波装置的结构框图二;
[28] 图 7为本发明实施例信号削波装置的原理示意图;
[29] 图 8为本发明实施例信号削波系统的结构框图;
[30] 图 9为本发明实施例信号发射系统的结构框图。
[31] 实施本发明的方式 [32] 在实现本发明过程中, 发明人发现现有技术中至少存在如下问题: 一般釆用如 FPGA (Field Programmable Gate Array, 现场可编程门阵列) 等逻辑器件进行滤 波器硬件设计, 而高阶的带通滤波器一般都是复数带通滤波器, 其中乘法操作 的次数增加明显, 再结合本身的高阶特性, 在 FPGA等逻辑器件中实现中需要占 用大量的硬件资源, 因此现有的削波方法存在占用大量硬件资源实现比较复杂 , 而且不易多级扩展的缺陷。
[33] 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部 的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创造性劳 动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
[34] 如图 1所示信号削波方法的流程框图, 本发明实施例提出一种信号削波方法, 包括:
[35] 得到待削波信号的步骤 10: 对输入信号进行釆样并从中检测出超过预设门限的 最大峰值点信号, 将以该最大峰值点信号为中心的釆样点信号作为待削波信号 , 可以知道, 峰值点信号可以视为超过预设门限的噪声信号, 这里根据预设门 限找到一个最大峰值点信号。
[36] 得到削波噪声信号的步骤 20: 将所述最大峰值点信号与预设的削波系数相乘得 到削波噪声信号。
[37] 削波处理的步骤 30: 将所述削波噪声信号反向叠加所述待削波信号完成削波处 理。
[38] 上述本发明实施例信号削波方法中输入信号可以为多载波信号合路后的信号或 单载波信号。 对于单载波信号而言, 其峰均比一般不是很高; 如果是多载波信 号, 那么多载波信号的合成包络会导致信号的峰均比很高, 所以本实施例的信 号削波方法尤其适用多载波合路信号。
[39] 由上述实施例提供的技术方案可以看出, 一次削波处理实现去除输入信号的一 个最大峰值点信号, 需要进行的存储和计算操作较少, 其逻辑设计上简单并且 F PGA资源占用比较理想, 可以在优化硬件资源的情况下实现对高峰均比信号的 抑制, 进而增加功放的有效输出功率, 降低功放在提升效率上的压力。 [40] 本发明实施例提出一种信号削波方法, 包括: 得到待削波信号的步骤 10: 对输 入信号进行釆样并从中检测出超过预设门限的最大峰值点信号, 将以该最大峰 值点信号为中心的釆样点信号作为待削波信号。 得到削波噪声信号的步骤 20: 将所述最大峰值点信号与预设的削波系数相乘得到削波噪声信号。 削波处理的 步骤 30: 将所述削波噪声信号反向叠加所述待削波信号完成削波处理。
[41] 具体而言, 如图 2所示, 首先, 在得到待削波信号的步骤 10中可以包括:
[42] 釆样步骤 101 : 参见图 3削波队列的原理示意图以信号流向做出说明, 初始釆样 点信号 1按照一定釆样速率依次输入削波队列, 以 n个釆样点数据为一帧, n值的 选取主要与信号峰均比大小以及信号中超过预设门限的峰值噪声点密度大小有 关, n≥l, 本发明实施例中1≥32。 削波队列至少有四帧釆样点数据, 如队首帧 3η : 4n- I s 队尾帧 0: n-1以及中间两帧 n: 2n-l—— 2η: 3η-1。 在削波队列中, 中间 两帧 η: 2η- 1— 2η: 3η-1共为两帧 2η个釆样点数据, 其为寻找最大峰值点信号 的区域。
[43] 査询最大峰值点信号的步骤 102: 从削波队列中间两帧 η: 2η-1— 3η-1的 2η个 釆样点数据对应的中间两帧釆样点信号 2中找出一个超过预设门限的最大峰值点 信号。
[44] 获得待削波信号的步骤 103: 将以该最大峰值点信号为中心相对称的 2η个釆样 点信号 (不包括该最大峰值点信号本身) 作为本次削波处理的待削波信号 5。 参 见图 3, 可能存在这样的情况, 该最大峰值点信号不一定是削波队列中间两帧 η : 2η- 1— 3η-1的中心釆样点数据对应的釆样点信号, 那么以该最大峰值点信号 为中心相对称的 个釆样点信号可能会包含队首帧 3η: 4η-1或队尾帧 0: n-1中的 某些釆样点数据对应的釆样点信号。 这样看来, 所述削波队列至少有四帧釆样 点信号, 以保证削波吋信号频谱不失真。
[45] 接着, 在得到削波噪声信号的步骤 20中: 将预设的削波系数依次与所述最大峰 值点信号相乘得到削波噪声信号。 预设的削波系数可以根据输入信号的频谱特 性生成或依照经验值预设, 其主要功能是保证削波噪声信号的频谱不失真。 待 削波信号为 2η个釆样点信号, 较佳地, 预设的削波系数的个数可以为≤21, 优化 资源利用。 [46] 最后, 削波处理的步骤 30中可以包括:
[47] 吋延处理的步骤 301 : 将所述待削波信号吋延后与所述削波噪声信号进行对齐
, 消除由于不同处理的吋延差。
[48] 叠加处理的步骤 302: 将所述待削波信号减去所述削波噪声信号以完成削波处 理。
[49] 上述本发明实施例的信号削波方法中输入信号可以为多载波信号合路后的信号 或单载波信号。
[50] 本实施例的信号削波方法, 还可以在不增加逻辑复杂度的情况下, 对输入信号 循环进行 m次削波处理, m值的选取主要根据信号峰均比等特性以及输入信号的 釆样速率大小来决定, 至少 m≥l。 而且, 对输入信号的削波处理速率要大于对输 入信号的釆样速率, 达到低速釆样高速处理的状态, 在此不做赞述。
[51] 具体而言, 参见图 3削波队列的原理示意图说明本发明实施例 m次削波处理: 在完成一次削波处理后, 根据处理后的信号 8对应的数据更新所述削波队列中对 应的釆样点数据, 再从更新后的中间两帧 n: 2n-l— 3η- 1的 2η个釆样点数据对 应的釆样点信号中重新检测出最大峰值点信号, 然后, 根据更新的最大峰值点 信号获得更新的待削波信号及削波噪声信号, 完成下一次的削波处理。 同理, 可以循环完成 m次削波处理。
[52] 值得注意的是, 在 m次削波处理中, 虽然都是从中间两帧 n: 2n-l— 3n-l的 2η 个釆样点数据对应的釆样点信号中检测最大峰值点信号, 但是由于每次在这个 区域中检测出的最大峰值点信号不一定相同, 那么以该最大峰值点信号为中心 相对称的 2η个釆样点信号也不一定相同。
[53] 由上述实施例提供的技术方案可以看出, 一次削波处理实现去除输入信号的一 个最大峰值点信号, 经过 m次循环削波处理实现对信号峰值的抑制, 需要进行的 存储和计算操作较少, 其逻辑设计简单并且 FPGA资源占用比较理想, 可以在优 化硬件资源的情况下对高峰均比信号的抑制, 进而增加功放的有效输出功率, 降低功放在提升效率上的压力。
[54] 如图 4所示, 本发明实施例提出一种信号削波方法, 可以对输入信号进行 k级削 波处理。 k级数选择主要根据信号峰均比的大小, 有些信号只需要一级即可完成 对峰均比的控制, 但高峰均比的信号必须要多级才能实现, k〉l。 多载波信号 经过数字上变频 /合路后, 经 k级削波处理后通过数字预失真进一步将输出信号传 递给功率放大器。
[55] 具体而言, 参见图 3削波队列的原理示意图说明本发明实施例 k级削波处理, 对 中间两帧 n: 2n-l— 3n-l的 2η个釆样点数据对应的釆样点信号进行 m次削波处理 后, 队首帧 3η: 4η-1的 η个釆样点数据对应的釆样点信号 9按照一定的速率输出到 下一级削波处理环节, 队尾帧 0: η-1的 η个釆样点数据对应的釆样点信号向上移 动, 这样一帧新的釆样点信号的进入削波队列开始削波处理。 由于逻辑设计简 单, 信号削波方法易于多级扩展, 实现对高峰均比信号更好的抑制。
[56] 由上述实施例提供的技术方案可以看出, 一次削波处理实现去除输入信号的一 个最大峰值点信号, 经过 m次循环削波处理实现对信号峰值的抑制, 需要进行的 存储和计算操作较少, 其逻辑设计简单并且 FPGA资源占用比较理想, 易于多级 扩展, 可以在优化硬件资源的情况下对高峰均比信号的抑制, 进而增加功放的 有效输出功率, 降低功放在提升效率上的压力。
[57] 如图 5所示, 本发明实施例提出一种信号削波装置, 输入信号可以为多载波信 号合路后的信号或单载波信号, 包括:
[58] 待削波信号单元 11, 用于对输入信号进行釆样并从中检测出超过预设门限的最 大峰值点信号, 获得以该最大峰值点信号为中心的釆样点信号作为待削波信号
, 可以知道, 峰值点信号可以视为超过预设门限的噪声信号, 这里根据预设门 限找到一个最大峰值点信号。
[59] 削波噪声信号单元 21, 将所述最大峰值点信号与预设的削波系数相乘得到削波 噪声信号。
[60] 削波处理单元 31, 用于将所述削波噪声信号反向叠加所述待削波信号实现削波 处理。
[61] 预设参数存储单元, 用于存储所述预设的消波系数、 预设门限。
[62] 由上述实施例提供的技术方案可以看出, 一次削波处理实现去除输入信号的一 个最大峰值点信号, 需要进行的存储和计算操作较少, 其逻辑设计上简单并且 F PGA资源占用比较理想, 可以在优化硬件资源的情况下实现对高峰均比信号的 抑制, 进而增加功放的有效输出功率, 降低功放在提升效率上的压力。
[63] 本发明实施例提出一种信号削波装置, 包括: 待削波信号单元 11, 用于对输入 信号进行釆样并从中检测出超过预设门限的最大峰值点信号, 获得以该最大峰 值点信号为中心的釆样点信号作为待削波信号; 削波噪声信号单元 21, 将所述 最大峰值点信号与预设的削波系数相乘得到削波噪声信号; 削波处理单元 31, 用于将所述削波噪声信号反向叠加所述待削波信号实现削波处理; 预设参数存 储单元 41, 用于存储所述预设的消波系数、 预设门限。
[64] 具体而言, 如图 6以及图 7所示, 本发明实施例待削波信号单元 11可以包括:
[65] 釆样单元 111, 用于釆集信号并将釆样点信号对应的数据组成削波队列, 所述 削波队列包括至少四帧釆样点数据帧, 每帧釆样点数据帧包括 n个釆样点信号对 应的釆样点数据, n值的选取主要与信号峰均比的大小以及信号中超过预设门限 的峰值噪声点的密度大小有关, n≥l, 本发明实施例 n≥32。
[66] 最大峰值点査询单元 112, 用于从所述削波队列的中间两帧中检测出超过预设 门限的最大峰值点信号。
[67] 待削波信号产生单元 113, 用于将以该最大峰值点信号为中心相对称的 2η个釆 样点信号作为待削波信号。 如图 7所示, 削波队列的中间两帧 η: 2η- 1— 3η-1共 2η个釆样点数据对应的釆样点信号为最大峰值点信号的选择区域。
[68] 本发明实施例削波处理单元 31可以包括:
[69] 吋延单元 311, 用于将所述待削波信号吋延后与所述削波噪声信号进行对齐, 消除由于不同处理的吋延差。
[70] 减法单元 312, 用于将所述待削波信号减去所述削波噪声信号。
[71] 本发明实施例信号削波装置, 还可以包括: 缓存单元 51, 用于存储所述削波队 歹 ij, 根据削波处理后的信号对应的数据更新所述削波队列中相应的釆样点数据 , 以进行下一次削波处理, 循环更新完成 m次削波处理, 其中, 所述 m≥l。 而且 , 缓存单元内存储数据的处理速率大于所述釆样单元的釆样速率, 达到低速釆 样高速处理的状态, 在此不做赞述。
[72] 本发明实施例预设的削波系数可以根据输入信号的频谱特性生成或依照经验值 预设, 其主要功能是保证削波噪声信号的频谱不失真。 待削波信号为 2η个釆样 点信号, 较佳地, 削波系数的个数可以为≤21, 优化资源利用。
[73] 下面以信号削波装置的信号流向来说明如何实现一级信号削波处理, 参见图 7 , 首先, 初始釆样点信号 1按照一定釆样速率依次输入削波队列, 以 n个釆样点 数据为一帧, 输入四帧数据, 包括队尾帧 0: n-l、 队首帧 3η: 4η-1以及中间两帧 η: 2η- 1— 2η: 3η- 1; 接着, 根据中处理器配置的预设门限 3, 待削波信号产生 单元 112从削波队列中间两帧 η: 2η- 1— 2η: 3η- 1的 2η个釆样点数据对应的釆样 点信号 2中检测出一个最大峰值点信号, 并根据最大峰值点信号从削波队列对应 的信号中确定出以该最大峰值点信号为中心相对称的 2η个釆样点信号作为待削 波信号 5; 然后, 根据最大峰值点信号和预设的削波系数 4, 削波噪声信号单元 2 1得到削波噪声信号 6; 接着, 待削波信号 5经过吋延单元 311后形成吋延待削波 信号 7, 减法单元 312将吋延待削波信号 7叠加削波噪声信号 6, 完成一次削波处 理; 而后, 经削波处理后的信号 8对应的数据更新削波队列的相应釆样点数据, 循环进行 m次削波处理; 最后, 队首帧 3η: 4η-1中 η个釆样点数据对应的釆样点 信号 9按照一定的信号速率输出, 一级信号削波处理完成。
[74] 由上述实施例提供的技术方案可以看出, 一次削波处理实现去除输入信号的一 个最大峰值点信号, 经过 m次循环削波处理实现对信号峰值的抑制, 需要进行的 存储和计算操作较少, 其逻辑设计简单并且 FPGA资源占用比较理想, 可以在优 化硬件资源的情况下对高峰均比信号的抑制, 进而增加功放的有效输出功率, 降低功放在提升效率上的压力。
[75] 如图 8所示削波系统的结构框图, 本实施例提出一种信号削波系统, 包括 k个依 次连接的如上述的信号削波装置。 主要根据信号峰均比的大小选择信号削波装 置的个数, 有些信号只需要一级即可完成对峰均比的控制, 即 k=l, 但高峰均比 的信号必须要多级才能实现, 即 k〉l, 如信号削波装置 CFR_1、 CFR_2、 ......、
CFR_K等。 k级削波的各级削波内部处理的流程完全一致, 可以参见上述实施例 , 在此不作赞述。
[76] 具体以进行二级削波为例, 信号削波装置 CFR_1经过对削波队列中间两帧釆样 点数据对应的釆样点信号进行 m次削波处理后, 输出队首帧的釆样点数据对应的 釆样点信号进入下一个信号削波装置 CFR_2进行削波处理, 同吋, 一帧新的釆样 点信号输入所述信号削波装置 CFR_1开始新的削波处理。 由于逻辑设计简单, 信 号削波方法易于多级扩展, 实现对高峰均比信号更好的抑制。
[77] 由上述实施例提供的技术方案可以看出, 一次削波处理实现去除输入信号的一 个最大峰值点信号, 经过 m次循环削波处理实现对信号峰值的抑制, 需要进行的 存储和计算操作较少, 其逻辑设计简单, 并且 FPGA资源占用比较理想易于多级 扩展, 可以在优化硬件资源的情况下对高峰均比信号的抑制, 进而增加功放的 有效输出功率, 降低功放在提升效率上的压力。
[78] 如图 9所示, 本实施例提出一种信号发射系统, 包括: 功率放大器以及与所述 功率放大器的输入端连接的如上所述的信号削波装置, 其中, 信号削波装置为 一个 CFR_1, 或者信号削波装置为一个以上依次连接, 如 CFR_1、 ......、 CFR_K
[79] 多载波信号经过数字上变频 /合路后, 经 CFR_1、 ......、 CFR_K信号削波装置 进行削波处理后通过数字预失真进一步将输出信号传递给功率放大器。
[80] 由上述实施例提供的技术方案可以看出, 信号削波装置逻辑设计简单, 并且 FP GA资源占用比较理想易于多级扩展, 通过一个或一个以上的信号削波装置对高 峰均比信号进行削波处理, 进而实现增加功放的有效输出功率, 降低功放在提 升效率上的压力。
[81] 另外, 本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程 , 是可以通过计算机程序来指令相关的硬件来完成, 所述的程序可存储于一计 算机可读取存储介质中, 该程序在执行吋, 可包括如上述各方法的实施例的流 程。 其中, 所述的存储介质可为磁碟、 光盘、 只读存储记忆体 (Read-Only
Memory, ROM) 或随机存储记忆体 (Random Access Memory, RAM) 等。 以上所述, 仅为本发明较佳的具体实施方式, 但本发明的保护范围并不局限于 此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想到 的变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护范围 应该以权利要求的保护范围为准。

Claims

权利要求书
[Claim 1] 一种信号削波方法, 其特征在于, 包括:
对输入信号进行釆样并从中检测出超过预设门限的最大峰值点信 号, 将以该最大峰值点信号为中心的釆样点信号作为待削波信号 将所述最大峰值点信号与预设的削波系数相乘得到削波噪声信号 将所述削波噪声信号反向叠加所述待削波信号完成削波处理。
[Claim 2] 根据权利要求 1所述的信号削波方法, 其特征在于, 所述对输入信 号进行釆样并从中检测出超过预设门限的最大峰值点信号, 将以 该最大峰值点信号为中心的釆样点信号作为待削波信号的步骤包 括:
对输入信号釆样并以 n个釆样点信号对应的釆样点数据为一帧, 依 次输入至少四帧釆样点数据帧组成削波队列, 其中, 所述 n≥l ; 从所述削波队列的中间两帧中检测出超过预设门限的最大峰值点 信号;
将以该最大峰值点信号为中心对称的 2η个釆样点信号作为待削波 信号。
[Claim 3] 根据权利要求 1述的信号削波方法, 其特征在于, 所述将所述削波 噪声信号反向叠加所述待削波信号完成削波处理的步骤包括: 将所述待削波信号吋延后与所述削波噪声信号进行对齐; 将所述待削波信号减去所述削波噪声信号以完成削波处理。
[Claim 4] 根据权利要求 2所述的信号削波方法, 其特征在于, 所述方法还包 括:
根据削波处理后的信号对应的数据更新所述削波队列中相应的釆 样点数据以进行下一次削波处理, 循环更新完成 m次削波处理, 输 出所述削波队列的队首帧并输入新的队尾帧, 其中, 所述 m≥l。
[Claim 5] 根据权利要求 1或 2所述的信号削波方法, 其特征在于, 所述削波 处理的速率大于对所述输入信号的釆样速率。
[Claim 6] 一种信号削波装置, 其特征在于, 包括:
待削波信号单元, 用于对输入信号进行釆样并从中检测出超过预 设门限的最大峰值点信号, 以该最大峰值点信号为中心的釆样点 信号作为待削波信号;
削波噪声信号单元, 用于将所述最大峰值点信号乘以预设的削波 系数得到削波噪声信号;
削波处理单元, 用于将所述削波噪声信号反向叠加所述待削波信 号实现削波处理;
预设参数存储单元, 用于存储所述预设的消波系数、 预设门限。
[Claim 7] 根据权利要求 6所述的信号削波装置, 其特征在于, 所述待削波信 号单元包括:
釆样单元, 用于釆集信号并将釆样点信号对应的数据组成削波队 歹 ij, 所述削波队列包括至少四帧釆样点数据帧, 每帧釆样点数据 帧包括 n个釆样点信号对应的釆样点数据, 其中, 所述 n≥l ;
最大峰值点査询单元, 用于从所述削波队列的中间两帧中检测出 超过预设门限的最大峰值点信号;
待削波信号产生单元, 用于将以该最大峰值点信号为中心对称的 2 n个釆样点信号作为待削波信号。
[Claim 8] 根据权利要求 6所述的信号削波装置, 其特征在于, 所述削波处理 单元包括:
吋延单元, 用于将所述待削波信号吋延后与所述削波噪声信号进 行对齐;
减法单元, 用于将所述待削波信号减去所述削波噪声信号。
[Claim 9] 根据权利要求 7所述的信号削波装置, 其特征在于, 所述信号削波 装置还包括: 缓存单元, 用于存储所述削波队列, 根据削波处理 后的信号对应的数据更新所述削波队列中相应的釆样点数据, 以 循环更新完成 m次削波处理, 其中, 所述 m≥l。
[Claim 10] 一种信号削波系统, 其特征在于, 包括 k个依次连接的如权利要求
6-9任一项所述的信号削波装置, 其中, 所述 k〉l。
[Claim 11] 一种信号发射系统, 其特征在于, 包括: 功率放大器以及与所述 功率放大器的输入端连接的如权利要求 6-9任一项所述的信号削波 装置, 其中, 所述信号削波装置为一个或一个以上依次连接。
PCT/CN2009/075709 2008-12-22 2009-12-18 一种信号削波方法、装置、系统以及信号发射系统 WO2010072127A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810240705.5 2008-12-22
CN 200810240705 CN101442348B (zh) 2008-12-22 2008-12-22 一种信号削波方法、装置、系统以及信号发射系统

Publications (1)

Publication Number Publication Date
WO2010072127A1 true WO2010072127A1 (zh) 2010-07-01

Family

ID=40726625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/075709 WO2010072127A1 (zh) 2008-12-22 2009-12-18 一种信号削波方法、装置、系统以及信号发射系统

Country Status (2)

Country Link
CN (1) CN101442348B (zh)
WO (1) WO2010072127A1 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2489919A (en) * 2011-04-05 2012-10-17 Picochip Ltd Filter for crest factor reduction (CFR) of transmit signals
US8463312B2 (en) 2009-06-05 2013-06-11 Mindspeed Technologies U.K., Limited Method and device in a communication network
US8559998B2 (en) 2007-11-05 2013-10-15 Mindspeed Technologies U.K., Limited Power control
US8712469B2 (en) 2011-05-16 2014-04-29 Mindspeed Technologies U.K., Limited Accessing a base station
US8798630B2 (en) 2009-10-05 2014-08-05 Intel Corporation Femtocell base station
US8849340B2 (en) 2009-05-07 2014-09-30 Intel Corporation Methods and devices for reducing interference in an uplink
US8862076B2 (en) 2009-06-05 2014-10-14 Intel Corporation Method and device in a communication network
US8862257B2 (en) 2009-06-25 2014-10-14 Huawei Technologies Co., Ltd. Method and device for clipping control
US8904148B2 (en) 2000-12-19 2014-12-02 Intel Corporation Processor architecture with switch matrices for transferring data along buses
CN104320160A (zh) * 2014-10-21 2015-01-28 罗震 一种数据收发方法、装置及系统
US9107136B2 (en) 2010-08-16 2015-08-11 Intel Corporation Femtocell access control
WO2018049674A1 (zh) * 2016-09-19 2018-03-22 华为技术有限公司 信号处理方法和信号处理装置
US10856302B2 (en) 2011-04-05 2020-12-01 Intel Corporation Multimode base station

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101442348B (zh) * 2008-12-22 2013-08-07 华为技术有限公司 一种信号削波方法、装置、系统以及信号发射系统
CN102739592B (zh) * 2011-03-31 2015-02-25 鼎桥通信技术有限公司 有效峰值点筛选方法、峰值搜索分配器及削峰装置
CN103957179B (zh) * 2014-04-04 2018-04-20 京信通信系统(中国)有限公司 Dpd实现方法和系统
WO2016106719A1 (zh) * 2014-12-31 2016-07-07 华为技术有限公司 一种信号的削波处理方法和设备
WO2017214998A1 (zh) * 2016-06-17 2017-12-21 华为技术有限公司 一种正交频分复用的削波方法及设备
CN108737308B (zh) * 2017-04-18 2021-02-05 鼎桥通信技术有限公司 峰值因子降低方法和装置
CN110071892A (zh) * 2019-04-30 2019-07-30 中国联合网络通信集团有限公司 一种发射信号的方法及装置
CN117014271A (zh) * 2022-04-29 2023-11-07 上海华为技术有限公司 削峰方法,信号处理装置和网络设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1385975A (zh) * 2002-06-20 2002-12-18 上海交通大学 正交频分复用通信系统的峰平比抑制方法
CN1531293A (zh) * 2003-03-11 2004-09-22 ���Ͽع����޹�˾ 减小峰均功率比的方法
CN1538650A (zh) * 2003-04-16 2004-10-20 华为技术有限公司 一种多载波信号削波装置及方法
US20070116142A1 (en) * 2005-11-14 2007-05-24 Telefonaktiebolaget Lm Ericsson (Publ) Peak-to-average power reduction
CN101068233A (zh) * 2007-07-05 2007-11-07 华为技术有限公司 一种降低信号峰均比的方法和装置
CN101136890A (zh) * 2006-09-01 2008-03-05 中兴通讯股份有限公司 一种优化的多载波信号削波装置及其方法
CN101442348A (zh) * 2008-12-22 2009-05-27 华为技术有限公司 一种信号削波方法、装置、系统以及信号发射系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1385975A (zh) * 2002-06-20 2002-12-18 上海交通大学 正交频分复用通信系统的峰平比抑制方法
CN1531293A (zh) * 2003-03-11 2004-09-22 ���Ͽع����޹�˾ 减小峰均功率比的方法
CN1538650A (zh) * 2003-04-16 2004-10-20 华为技术有限公司 一种多载波信号削波装置及方法
US20070116142A1 (en) * 2005-11-14 2007-05-24 Telefonaktiebolaget Lm Ericsson (Publ) Peak-to-average power reduction
CN101136890A (zh) * 2006-09-01 2008-03-05 中兴通讯股份有限公司 一种优化的多载波信号削波装置及其方法
CN101068233A (zh) * 2007-07-05 2007-11-07 华为技术有限公司 一种降低信号峰均比的方法和装置
CN101442348A (zh) * 2008-12-22 2009-05-27 华为技术有限公司 一种信号削波方法、装置、系统以及信号发射系统

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8904148B2 (en) 2000-12-19 2014-12-02 Intel Corporation Processor architecture with switch matrices for transferring data along buses
US8559998B2 (en) 2007-11-05 2013-10-15 Mindspeed Technologies U.K., Limited Power control
US8849340B2 (en) 2009-05-07 2014-09-30 Intel Corporation Methods and devices for reducing interference in an uplink
US8892154B2 (en) 2009-06-05 2014-11-18 Intel Corporation Method and device in a communication network
US8463312B2 (en) 2009-06-05 2013-06-11 Mindspeed Technologies U.K., Limited Method and device in a communication network
US9807771B2 (en) 2009-06-05 2017-10-31 Intel Corporation Method and device in a communication network
US8862076B2 (en) 2009-06-05 2014-10-14 Intel Corporation Method and device in a communication network
US8862257B2 (en) 2009-06-25 2014-10-14 Huawei Technologies Co., Ltd. Method and device for clipping control
US8798630B2 (en) 2009-10-05 2014-08-05 Intel Corporation Femtocell base station
US9107136B2 (en) 2010-08-16 2015-08-11 Intel Corporation Femtocell access control
GB2489919A (en) * 2011-04-05 2012-10-17 Picochip Ltd Filter for crest factor reduction (CFR) of transmit signals
US9042434B2 (en) 2011-04-05 2015-05-26 Intel Corporation Filter
GB2489919B (en) * 2011-04-05 2018-02-14 Intel Corp Filter
US10856302B2 (en) 2011-04-05 2020-12-01 Intel Corporation Multimode base station
US8712469B2 (en) 2011-05-16 2014-04-29 Mindspeed Technologies U.K., Limited Accessing a base station
CN104320160A (zh) * 2014-10-21 2015-01-28 罗震 一种数据收发方法、装置及系统
WO2018049674A1 (zh) * 2016-09-19 2018-03-22 华为技术有限公司 信号处理方法和信号处理装置

Also Published As

Publication number Publication date
CN101442348A (zh) 2009-05-27
CN101442348B (zh) 2013-08-07

Similar Documents

Publication Publication Date Title
WO2010072127A1 (zh) 一种信号削波方法、装置、系统以及信号发射系统
KR102207599B1 (ko) 블록 기반 파고율 저감
CN101136890B (zh) 一种优化的多载波信号削波装置及其方法
US9521024B2 (en) Device of crest factor reduction
JP5170267B2 (ja) 信号ピーク電圧抑圧装置
US6889238B2 (en) Parallel decimator adaptive filter and method for all-rate gigabit-per-second modems
US7466966B2 (en) Method for clipping a wideband radio signal and corresponding transmitter
CN101076008B (zh) 信号的削波处理方法和设备
CN100502378C (zh) 正交频分复用系统中抑制峰平比的电路和方法
WO2016106719A1 (zh) 一种信号的削波处理方法和设备
CN102970266A (zh) 一种多频段信号削峰的方法及装置
JP2007194825A (ja) マルチキャリア信号送信装置
CN111107031B (zh) 一种用于降低信号峰均比的方法及装置
WO2011103809A1 (zh) 一种信号波峰削除的方法及设备
EP3360260B1 (en) Crest factor reduction in a radio transmitter
CN103117730B (zh) 多通道梳状滤波器及其实现方法
JP2007251909A (ja) 信号ピーク電圧抑圧装置
CN110519201A (zh) 一种基于ofdm发射机系统的信号峰均比抑制方法
CN103401831A (zh) 一种基于fpga的lte数字中频削峰方法及装置
CN116016057A (zh) 基于优化频响实现并行架构任意插值与高采样处理的方法、装置、处理器及其存储介质
US10904060B2 (en) Peak suppression circuit, peak suppression method, and transmitter
WO2016165481A1 (zh) 数字信号处理方法及装置
CN108667758B (zh) 一种削峰方法及装置
Zhu et al. ASIC implementation architecture for pulse shaping FIR filters in 3G mobile communications
CN108737308B (zh) 峰值因子降低方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834080

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09834080

Country of ref document: EP

Kind code of ref document: A1