WO2010072115A1 - 信号分类处理方法、分类处理装置及编码系统 - Google Patents

信号分类处理方法、分类处理装置及编码系统 Download PDF

Info

Publication number
WO2010072115A1
WO2010072115A1 PCT/CN2009/075243 CN2009075243W WO2010072115A1 WO 2010072115 A1 WO2010072115 A1 WO 2010072115A1 CN 2009075243 W CN2009075243 W CN 2009075243W WO 2010072115 A1 WO2010072115 A1 WO 2010072115A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
input signal
value
band input
current frame
Prior art date
Application number
PCT/CN2009/075243
Other languages
English (en)
French (fr)
Inventor
陈龙吟
刘泽新
苗磊
胡晨
肖玮
哈维·米希尔·塔迪
张清
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP09834068A priority Critical patent/EP2381438B1/en
Publication of WO2010072115A1 publication Critical patent/WO2010072115A1/zh
Priority to US13/160,115 priority patent/US8103515B2/en

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/16Vocoder architecture
    • G10L19/18Vocoders using multiple modes
    • G10L19/22Mode decision, i.e. based on audio signal content versus external parameters
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/022Blocking, i.e. grouping of samples in time; Choice of analysis windows; Overlap factoring
    • G10L19/025Detection of transients or attacks for time/frequency resolution switching

Definitions

  • the present invention relates to the field of voice and audio technologies, and in particular, to a signal classification processing method, a classification processing device, and an encoding system. Background technique
  • bandwidth extension techniques have emerged that expand the frequency range of sound signals (e.g., audio signals or speech signals), primarily to extend those bands that contain useful information or that have a greater impact on the auditory effect.
  • the bandwidth extension technology has developed rapidly, and the technology has been commercialized in several fields, including enhancing the auditory effect of the bass and improving the high frequency of audio and speech.
  • the bandwidth extension technique generally uses a core encoder to perform high-precision encoding on the low frequency band of the input signal at the encoding end, and a high frequency band of the input signal uncoded by the core encoder, generally another encoder performs lower bits.
  • the encoding of the rate so in many cases, the high frequency band of the input signal is encoded as a separate input signal.
  • the process of the more common bandwidth extension method in the prior art is as follows: The encoder receives the high-band input signal, calculates the time domain envelope and the frequency domain envelope in the time domain and the frequency domain, respectively, and then separately applies the time domain packet.
  • the network and frequency domain envelopes are quantized and mixed and transmitted to the decoder.
  • the de-mixed time domain envelope and the frequency domain envelope are decoded, the high-band excitation signal is generated according to the parameters of the core encoder of the encoding end, and then the decoded time domain envelope and frequency domain are obtained.
  • the envelope shapes the excitation signal to obtain a high-band output signal.
  • the prior art has the following problems:
  • the calculation and quantization mode of the frequency domain envelope and the time domain envelope of the high frequency band input signal The equations are all certain, so it is necessary to set the encoder in advance to correspond to a mode suitable for a certain type of input signal, such as a mode suitable for a voice-like signal, which is advantageous for encoding of a voice type signal, but for an audio type.
  • the coding effect of the signal is poor.
  • the embodiment of the invention provides a signal classification processing method, a classification processing device and an encoding system, which can better classify and process the high-band input signal, which is more advantageous for signal encoding and decoding processing.
  • An embodiment of the present invention provides a signal classification processing method, including: acquiring an input high frequency band input signal; determining the high frequency band according to a time domain characteristic parameter and/or a frequency domain characteristic parameter of the acquired high frequency band input signal.
  • the signal type of the input signal determines the coding mode corresponding to the signal type.
  • An embodiment of the present invention provides a classification processing apparatus, including: a receiving unit, configured to acquire an input high-band input signal; and a processing unit, configured to: time-domain characteristic parameters of the acquired high-band input signal and/or The frequency domain characteristic parameter determines a signal type of the high frequency band input signal, and determines an encoding mode corresponding to the signal type.
  • An embodiment of the present invention provides an encoding system, including: a classification processing apparatus, configured to acquire an input high-band input signal; and determine, according to a time domain characteristic parameter and/or a frequency domain characteristic parameter of the high-band input signal, Determining a signal type corresponding to the signal type, and encoding means for encoding the high-band input signal according to an encoding mode determined by the classification processing means.
  • a classification processing apparatus configured to acquire an input high-band input signal; and determine, according to a time domain characteristic parameter and/or a frequency domain characteristic parameter of the high-band input signal, Determining a signal type corresponding to the signal type, and encoding means for encoding the high-band input signal according to an encoding mode determined by the classification processing means.
  • the embodiment of the present invention determines the signal type of the high-band input signal by using a time domain characteristic parameter and/or a frequency domain characteristic parameter of the high-band input signal, and determines the corresponding letter.
  • the coding mode of the type is provided, thereby providing a more subdivided signal classification processing method, which can better classify and process the high-band input signal, which is more advantageous for signal encoding and decoding processing.
  • FIG. 1 is a flow chart of a method according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a principle framework of an embodiment of the present invention.
  • FIG. 3 is a schematic flow chart of a method according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of determining a transient type in a time domain mode in a method according to an embodiment of the present invention
  • FIG. 5 is a schematic flowchart of determining a signal type in a frequency domain mode according to an embodiment of the present invention
  • FIG. 6 is an embodiment of the present invention. Schematic diagram of the classification processing device;
  • FIG. ⁇ is a schematic structural diagram of an encoding system according to an embodiment of the present invention. detailed description
  • the embodiment of the invention provides a signal classification method, which can better classify the input signal of the high frequency band, so that the coding and decoding processing of the signal is more advantageous.
  • FIG. 1 is a flowchart of a method according to an embodiment of the present invention. As shown in FIG. 1, the method includes the following steps: Step 101: Acquire an input high-band input signal;
  • the acquired high-band input signal may be a high-band input signal in time domain mode, or it may be High-band input signal in frequency domain mode.
  • Step 102 Determine, according to the acquired time domain characteristic parameter and/or frequency domain characteristic parameter of the high frequency band input signal, a signal type of the high frequency band input signal, and then determine an encoding mode corresponding to the signal type.
  • Determining a signal type of the high-band input signal according to a time domain characteristic parameter of the high-band input signal, and determining an encoding mode corresponding to the signal type includes:
  • the high-band input signal is a high-band input signal in a time domain mode, and includes a current frame and an adjacent frame thereof, and determining an envelope maximum deviation value and a front-end envelope maximum order value according to each frame envelope value; Determining whether the maximum deviation value of the envelope is greater than or equal to the maximum deviation threshold of the envelope, and whether the maximum value of the front and back envelopes is greater than or equal to the maximum threshold of the front and rear envelopes, and if both judgments are yes, The current frame of the high-band input signal is of a transient type; or when both of the determination results are yes, further determining whether the total envelope value determined by the envelope value of each frame is greater than or equal to the total envelope threshold value, if If yes, it is determined that the current frame of the high frequency band input signal belongs to a transient type; and the determined current frame corresponding to the transient type is determined to correspond to the transient type coding mode.
  • the maximum order value of the front and back envelopes is: Compare the two envelope values before and after each frame to obtain a comparison value, and select the largest one of the comparison values as the maximum order value of the front and back envelopes; the maximum deviation value of the envelope is: The average of the individual envelope values is subtracted from the maximum envelope value to obtain a difference, which is taken as the maximum deviation of the envelope.
  • the total value of the envelope is: The sum of the individual envelope values is taken as the total value of the envelope, or the weighted value of the sum of the individual envelope values is taken as the total envelope value.
  • Determining a signal type of the high-band input signal according to a frequency domain characteristic parameter of the high-band input signal, and determining an encoding mode corresponding to the signal type may further include: the high-band input signal is a conversion For the high frequency band input signal in the frequency domain mode, the current frame of the high frequency band input signal is divided into a set number of subbands, and the number of subbands whose harmonic intensity value is greater than the harmonic intensity threshold and the harmonic type threshold are determined. Whether the comparison result is greater than or equal to the relationship, if it is greater than or equal to the relationship, it is determined that the current frame of the high-band input signal belongs to a harmonic type, and the corresponding harmonic type coding mode is determined.
  • the embodiment of the present invention determines the signal type of the high-band input signal by using a time domain characteristic parameter and/or a frequency domain characteristic parameter of the high-band input signal, and determines corresponding to the signal type.
  • the coding mode of the type provides a more subdivided signal classification processing method, which can better classify and process the high-band input signal, which is more advantageous for signal encoding and decoding processing.
  • FIG. 2 is a schematic diagram of a principle framework of an embodiment of the present invention.
  • the high-band input signal is divided into a time domain input signal and a frequency domain input signal, and the frequency domain input signal is obtained by time-frequency transforming the time domain input signal. That is to say, the time domain input signal and the frequency domain input signal obtained by the classifier are the same input signal, but the representation is different.
  • the high-band input signal is in the form of a time domain input signal, and the time domain input signal can be converted into a frequency domain input signal and input to the classifier while inputting the time domain input signal to the classifier, or The classifier converts to a frequency domain input signal for processing when it needs to adopt a signal in the frequency domain form in the classification process.
  • the classifier divides the high-band input signal into a transient type, a harmonic type, and a common type according to a time domain characteristic parameter of the time domain input signal and a frequency domain characteristic parameter of the frequency domain input signal, or further distinguishes the noise type, and then
  • the corresponding type coding mode can be determined, and the signal can be encoded according to each type of coding mode, so that the coding can be performed more accurately and efficiently, and a better coding effect can be obtained.
  • the classifier also sends the classified signal type to the decoding end, and the decoding end is also divided into corresponding decoding mode processing, so that a better decoding effect is obtained correspondingly when decoding.
  • FIG. 3 is a schematic flowchart of a method according to an embodiment of the present invention.
  • Step 301 Determine whether the current frame time domain input signal is a transient type signal, and if yes, go to step 302, if no, go to step 305;
  • Step 302 determining a transient type signal, and entering steps 303 and 304, respectively;
  • Step 303 Update a signal type recorded in a previous frame type memory.
  • Step 304 Determine to adopt a transient type coding mode for the input signal.
  • Step 305 determining whether the signal type recorded in the previous frame type memory is a transient type, and if so, proceeding to step 306, if no, proceeding to step 307;
  • Step 306 Determine the current frame time domain input signal as a normal type, and enter step 303 and
  • step 304 is still performed, that is, the transient type coding mode is adopted for the input signal, that is, the current frame time domain input signal is a transient type coding mode corresponding to the transient type. Process it.
  • Step 307 Determine whether the current frame frequency domain input signal is a harmonic type signal, and if yes, proceed to step 308, and if no, proceed to step 311;
  • the current frame frequency domain input signal in this step may be obtained by time-frequency transform according to the current frame time domain input signal, or may be previously time-frequency transformed before the step, or may be performed at this step. Transform.
  • Step 308 determining a harmonic type signal, and entering steps 309 and 310, respectively;
  • Step 309 Update a signal type recorded in a memory of a previous frame type
  • the update is performed according to the type determined in the previous step of the step. If the harmonic type is determined in step 308, the signal type recorded in the memory of the previous frame type is updated to a harmonic type, such as The signal type recorded in the memory of the previous frame type is updated to the normal type, which is determined to be a normal type in the step 312 mentioned later.
  • Step 310 Determine to adopt a harmonic type coding mode for the input signal
  • Step 311 determining whether the signal type recorded in the previous frame type memory is a harmonic type, and if so, proceeds to step 312, and if not, proceeds to step 313;
  • Step 312 Determine the current frame frequency domain input signal as a normal type, and enter step 309 and
  • Step 313 determining whether the current frame frequency domain input signal is a noise type signal, and if so, proceeds to step 314, and if not, proceeds to step 317;
  • Step 314 determining a noise type signal, and entering steps 315 and 316, respectively;
  • Step 315 Update a signal type recorded in a memory of a previous frame type
  • the update is performed according to the type determined in the previous step of entering the step. If the noise type is determined in step 314, the signal type recorded in the memory of the previous frame type is updated to the noise type, as follows. When it is determined in step 317 that it is a normal type, the signal type recorded in the previous frame type memory will be updated to the normal type.
  • Step 316 Determine to adopt a noise type coding mode for the input signal.
  • Step 317 the current frame time domain input signal is determined to be a common type, proceeds to step 318;
  • Step 318 Determine to adopt a common type coding mode for the input signal.
  • the above steps can encode the signal according to the type encoding mode and transmit it to the decoding end, and the decoding end performs decoding processing according to the corresponding type.
  • the high-band input signal is subdivided into a transient type, a harmonic type, a noise type, and a common type by different characteristics of the high-band input signal in the time domain and the frequency domain, and the corresponding
  • the coding mode of the signal type can better classify and process the high-band input signal, which is more advantageous for signal encoding and decoding processing.
  • FIG. 4 is a schematic flowchart of determining a transient type in a time domain mode in a method according to an embodiment of the present invention. As shown in Figure 4, the steps are as follows:
  • Step 401 Acquire a time domain input signal of a plurality of frame lengths
  • This step takes an example of intercepting a time domain input signal that is three times larger than the frame length, that is, intercepting the previous frame of the current frame, the current frame, and the subsequent frame of the current frame, and a total of three frames of the time domain input signal.
  • Step 402 Calculate at least two time domain envelope values for each time domain input signal
  • At least 6 envelope values are obtained in this step.
  • Step 403 Determine a maximum order value a of the preceding and succeeding envelopes, a maximum deviation value b of the envelope, and a total value of the envelope c.
  • the calculation method of the maximum order value a of the before and after envelopes is: comparing the two envelope values before and after each frame The comparison value is obtained, so that three comparison values can be obtained, and the largest one of the comparison values is selected as the maximum order value a of the preceding and succeeding envelopes.
  • the maximum deviation value of the envelope b is calculated as: The average of the six envelope values is subtracted from the largest envelope value to obtain the difference, which is taken as the maximum deviation value b of the envelope.
  • the total envelope value c is calculated as: the sum of the six envelope values as the total envelope value c, or the weighted value of the sum of the six envelope values as the envelope total value of zero.
  • Step 404 Determine whether the maximum deviation value b of the envelope is greater than or equal to the maximum deviation threshold T2 of the envelope, and whether the maximum value a before and after the envelope is greater than or equal to the maximum threshold of the envelope T3. If both are satisfied, enter the step. 405, if not satisfied at the same time, indicating that it is impossible to be a transient type, proceed to step 406; the envelope maximum deviation threshold T2 and the envelope maximum step threshold T3, generally can take an empirical value, as needed.
  • Step 405 determining whether the total envelope value c is greater than or equal to the envelope total value threshold T4, and if so, proceeding to step 407, if no, proceeding to step 406;
  • the envelope total threshold T4 can generally take the empirical value and set it as needed.
  • Step 406 Determine whether the signal type recorded in the previous frame type memory is a transient type. If yes, go to step 410, if no, go to step 412; Step 407, determine the transient type signal, and enter steps 408 and 409, respectively. And 411; Step 408: Update a signal type recorded in a previous frame type memory.
  • the update is performed according to the type determined in the previous step of the step. If the transient type is determined in step 407, the signal type recorded in the memory of the previous frame type is updated to a transient type, such as The signal type recorded in the memory of the previous frame type is updated to the normal type by determining the normal type in the step 410 mentioned later.
  • Step 409 Zero the value of the type counter.
  • Step 410 determining to be a common type, and entering steps 408 and 411, respectively;
  • Step 411 Determine to adopt a transient type coding mode for the input signal.
  • Step 412 Perform a signal type judgment process under the frequency domain characteristic.
  • the step of determining whether the total envelope value c is greater than or equal to the total value threshold T4 may not be included.
  • the characteristic parameters of the high-band input signal in the time domain mode it can be distinguished whether the high-band input signal is a transient type or a common type, and the coding mode corresponding to the signal type is determined, thereby It is better to perform type subdivision and processing on the high-band input signal, which is more advantageous for signal encoding and decoding processing.
  • FIG. 5 it is a schematic flowchart of determining a signal type in a frequency domain mode in a method according to an embodiment of the present invention. As shown in Figure 5, including the steps:
  • Step 501 dividing the current frame frequency domain input signal into several sub-bands according to a spectrum order
  • Step 502 determining the number of strong harmonic subbands n;
  • the harmonic intensity value is calculated for each sub-band, and the sub-band whose harmonic intensity value is greater than the harmonic intensity threshold is called a strong harmonic sub-band, so that the number n of strong harmonic sub-bands can be determined.
  • the harmonic intensity threshold can generally be taken as an empirical value, as needed.
  • Step 503 determining whether the number n of strong harmonic sub-bands is greater than or equal to the harmonic type threshold K, and if so, proceeding to step 504, if no, proceeding to step 509;
  • the harmonic type threshold K can generally take an empirical value and set it as needed. Step 504, determining whether the difference between the current frame and the spectrum global energy of the previous frame is less than or equal to the spectrum global energy difference threshold, and if so, proceeds to steps 505 and 507, respectively, if no, proceeds to step 509;
  • the spectral global energy difference threshold of this step can generally take an empirical value and set as needed. If the difference between the current frame and the frequency global energy of the previous frame is greater than the spectral global energy difference threshold, it is equivalent to determining that the spectral energy changes too fast, and thus cannot be estimated as a harmonic class.
  • Step 505 determining a harmonic type signal, and entering steps 506 and 508, respectively;
  • Step 506 Determine to adopt a harmonic type coding mode for the input signal.
  • Step 507 Increase the value of the type counter
  • Step 508 Update a signal type recorded in a previous frame type memory.
  • Step 509 the value of the type counter is decreased, proceeds to step 510;
  • Decrease the value of the type counter for example by one.
  • Step 510 Determine whether the value of the type counter is greater than or equal to the set count threshold ⁇ , if yes, proceed to step 505, if no, proceed to step 511;
  • Step 511 determining whether the signal type recorded in the previous frame type memory is a harmonic type, and if so, proceeds to steps 506 and 512, respectively, if no, proceeds to step 514;
  • Step 512 determining to be a normal type signal, proceeding to step 513;
  • Step 513 Update a signal type recorded in a previous frame type memory.
  • Step 514 Determine each subband noise value, and determine a number of subbands greater than a noise threshold according to a comparison between each subband noise value and a noise threshold;
  • the noise threshold can generally be an empirical value, set as needed.
  • Step 515 determining whether the number m is greater than or equal to the noise type threshold, if not, proceed to steps 512 and 516, and if yes, proceed to step 517;
  • the noise type threshold can generally take the empirical value and set it as needed.
  • Step 516 Determine to adopt a common type coding mode for the input signal.
  • Step 517 determining to be a noise type signal, respectively entering steps 518 and 519;
  • Step 518 Update a signal type recorded in a previous frame type memory.
  • Step 519 Determine to adopt a noise type coding mode for the input signal.
  • step 504 may not be included in the above steps.
  • the step of determining the type of the noise is not included. For example, when the judgment result of the step 503 is negative, it is determined that the signal belongs to the normal type, and it is determined that the input signal is in the normal type coding mode, or in step 511. If the result of the determination is no, it is determined that the current frame of the high-band input signal belongs to a common type, the type of the memory of the previous frame type is updated to a normal type, and it is determined that the ordinary type encoding mode is adopted for the input signal.
  • the above step may also be to first determine whether it is a noise type, and then determine whether the harmonic type.
  • the above steps may also include only judging the noise type and the common type, and does not include determining whether the harmonic type is.
  • the mode can better classify and process the high-band input signal, which makes the signal encoding and decoding processing more favorable.
  • FIG. 6 is a schematic structural diagram of a classification processing apparatus according to an embodiment of the present invention.
  • the classification processing device includes:
  • a receiving unit 61 configured to acquire an input high frequency band input signal
  • the processing unit 62 is configured to determine, according to the acquired time domain characteristic parameter and/or the frequency domain characteristic parameter of the high frequency band input signal, a signal type of the high frequency band input signal, and then determine a coding mode corresponding to the signal type.
  • the high-band input signal acquired by the receiving unit 61 may be a high-band input signal in the time domain mode. Number, which includes the current frame and its adjacent frames;
  • the processing unit 62 includes:
  • a first parameter unit 621 configured to determine an envelope maximum deviation value according to each frame envelope value, and a maximum order value of the preceding and following envelopes;
  • the first determining unit 622 is configured to determine whether the maximum deviation value of the envelope is greater than or equal to a maximum deviation threshold of the envelope, and whether the maximum value of the front and back envelopes is greater than or equal to a maximum threshold of the front and rear envelopes, if the two judge If the knot is yes, it is determined whether the current frame of the high-band input signal belongs to a transient type; or when both determination results are yes, further determining whether the total envelope value determined by each frame envelope value is greater than or equal to An envelope total value threshold, if yes, determining that the current frame of the high frequency band input signal belongs to a transient type;
  • the first coding mode unit 623 is configured to determine the determined current frame corresponding transient type coding mode that belongs to the transient type.
  • the processing unit 62 further includes:
  • the method further includes: notifying the type of the recording in the previous frame type memory 624 to be a transient type; 625.
  • the first determining unit 622 further determines whether the total envelope value determined by each frame envelope value is greater than or equal to the envelope total value threshold, Whether the type recorded in the previous frame type memory 624 is a transient type, and if so, notifying the previous frame type memory 624 to update the type of the record to the normal type, but notifying the first encoding mode unit 623 to determine the current The frame corresponds to the transient type coding mode.
  • the high frequency band input signal obtained by the receiving unit 61 may also be converted into a high frequency band input signal in the frequency domain mode;
  • the processing unit 62 includes: a second parameter unit 626, configured to determine, after the current frame of the high-band input signal is divided into a set number of sub-bands, a number of sub-bands whose harmonic intensity values are greater than a harmonic intensity threshold;
  • a third determining unit 627 configured to determine whether the comparison between the number of subbands whose harmonic intensity value is greater than the harmonic intensity threshold and the harmonic type threshold is greater than or equal to, and if so, determine the highband input
  • the current frame of the signal belongs to a harmonic type, if otherwise, it is determined that the current frame of the high-band input signal belongs to a common type;
  • a second coding mode unit 628 configured to determine the determined harmonic frame coding mode of the current frame belonging to the harmonic type
  • the third coding mode unit 634 is configured to determine that the determined current frame belonging to the normal type corresponds to the normal type coding mode.
  • the processing unit 62 further includes:
  • the fourth determining unit 631 is configured to determine, after the third determining unit 627 determines that the number of subbands whose harmonic intensity value is greater than the harmonic intensity threshold is greater than or equal to the relationship between the harmonic type thresholds, and further determines the current Whether the difference between the frequency global energy of the frame and the spectral global energy of the recorded previous frame is less than or equal to the spectral global energy difference threshold, and if so, it is determined that the current frame of the high frequency input signal belongs to a harmonic type.
  • the processing unit 62 further includes:
  • Type counter 630 used to record values
  • the fourth determining unit 631 notifies the type counter 630 to increase the value when determining that the difference between the spectral global energy of the current frame and the spectral global energy of the recorded previous frame is less than or equal to the spectral global energy difference threshold. And the fourth determining unit 631 notifying the previous frame type memory 624 to update the type of the record to a harmonic type after determining that the current frame of the high-band input signal belongs to a harmonic type;
  • the fourth determining unit 631 determines that the difference between the global energy of the spectrum of the current frame and the frequency of the global energy of the recorded previous frame is greater than the threshold value of the global energy difference, or the third determining unit 627 determines the harmonic intensity.
  • the comparison between the number of subbands whose value is greater than the harmonic intensity threshold and the harmonic type threshold is small In the relationship, the type counter 630 is notified to decrease the value;
  • a fifth determining unit 632 configured to determine whether the value of the type counter 630 is greater than or equal to a set count threshold, and if yes, determine that the current frame of the high-band input signal belongs to a harmonic type, and if not, Viewing whether the type recorded in the previous frame type memory 624 is a harmonic type, and if so, notifying the previous frame type memory 624 to update the type of the record to the normal type, but notifying the second encoding mode unit 628 to determine The current frame corresponds to the harmonic type encoding mode, and if not, the previous frame type memory 624 is notified to update the type of the record to the normal type, and the third encoding mode unit 634 is notified to determine that the current frame corresponds to the normal type encoding mode.
  • the processing unit 62 further includes:
  • the sixth determining unit 633 is configured to: when the third determining unit 627 determines that the number of subbands whose harmonic intensity value is greater than the harmonic intensity threshold is less than the relationship between the harmonic type threshold and the noise, the noise value is greater than the noise.
  • the comparison between the number of the sub-bands of the value and the noise type threshold is greater than or equal to the relationship, and it is determined that the current frame of the high-band input signal belongs to a noise type, and when the comparison result is less than the relationship, the high is determined.
  • the current frame of the band input signal belongs to a common type, and the third coding mode unit 634 is notified to determine that the current frame corresponds to the normal type coding mode;
  • the fourth coding mode unit 635 is configured to determine the determined coding mode of the current frame corresponding noise type belonging to the noise type.
  • FIG. 7 is a schematic structural diagram of an encoding system according to an embodiment of the present invention.
  • the coding system includes: a classification processing device 701 and an encoding device 702.
  • a classification processing device 701 configured to acquire an input high-band input signal; determine a signal type of the high-band input signal according to a time domain characteristic parameter and/or a frequency domain characteristic parameter of the high-band input signal, and then A coding mode corresponding to the signal type is determined.
  • the encoding device 702 is configured to encode the high-band input signal according to an encoding mode determined by the classification processing device 701.
  • the classification processing device 701 is specifically configured as shown in FIG. 6 described above.
  • the classification processing device 701 includes a receiving unit and a processing unit. method one:
  • the high-band input signal acquired by the receiving unit is a high-band input signal in a time domain mode, and includes a current frame and an adjacent frame thereof;
  • the processing unit includes:
  • a first parameter unit configured to determine an envelope maximum deviation value according to each frame envelope value, and a maximum order value of the before and after envelopes;
  • a first determining unit configured to determine whether the maximum deviation value of the envelope is greater than or equal to a maximum deviation threshold of the envelope, and whether the maximum value of the front and rear envelopes is greater than or equal to a maximum threshold of the front and rear envelopes, if the two judge The result is yes, determining that the current frame of the high-band input signal belongs to a transient type;
  • the first coding mode unit is configured to determine the determined current type corresponding transient type coding mode of the transient type.
  • the high-band input signal obtained by the receiving unit is converted into a high-band input signal in a frequency domain mode
  • the processing unit includes:
  • a second parameter unit configured to determine, after the current frame of the high-band input signal is divided into a set number of sub-bands, a number of sub-bands whose harmonic intensity values are greater than a harmonic intensity threshold;
  • a third determining unit configured to determine whether the comparison between the number of subbands whose harmonic intensity value is greater than the harmonic intensity threshold and the harmonic type threshold is greater than or equal to, and if so, determine the high frequency input signal The current frame belongs to a harmonic type, if otherwise, it is determined that the current frame of the high-band input signal belongs to a common type;
  • a second coding mode unit configured to determine the determined current frame corresponding harmonic type coding mode belonging to the harmonic type;
  • the third coding mode unit is configured to determine that the determined current frame belonging to the common type corresponds to the normal type coding mode.
  • the embodiment of the present invention determines a signal type of the high-band input signal by using a time domain characteristic parameter and/or a frequency domain characteristic parameter of a high-band input signal, and determines an encoding mode corresponding to the signal type. Therefore, a more subdivided signal classification processing method is provided, which can better classify and process the high-band input signal, which is more advantageous for signal encoding and decoding processing.
  • the high-band input signal is subdivided into a transient type, a harmonic type, a noise type, and a common type, and the corresponding coding mode can be determined according to the signal types.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Transmission Systems Not Characterized By The Medium Used For Transmission (AREA)

Description

信号分类处理方法、 分类处理装置及编码系统 本申倚要求于 2008年 12月 23 日提交中国专利局、 申请号为
200810187911.4, 发明名称为"信号分类处理方法、 分类处理装置及编码系统"的 中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及语音及音频技术领域, 具体涉及一种信号分类处理方法、 分类 处理装置及编码系统。 背景技术
在音频和语音处理技术中, 已经出现带宽扩展技术, 即扩大声音信号 (例 如音频信号或语音信号)频率范围, 主要是扩展那些含有有用信息或者对听觉 效果较有影响的频带。 近年来带宽扩展技术发展较快, 已经使该技术在若干领 域实现商业化应用, 包括增强低音小喇八的听觉效果和增强音频和语音的高频 率等。
带宽扩展技术一般是在编码端采用核心编码器对输入信号的低频带进行精 度较高的编码, 而对核心编码器未编码的输入信号的高频带, 一般另外由一个 编码器进行较低比特率的编码, 因此很多情况下, 输入信号的高频带会被当作 独立的输入信号进行编码。 现有技术中较常见的带宽扩展方法的过程如下所示: 编码端接收高频带输入信号, 在时域和频域分別计算得到时域包络和频域 包络, 然后分别对时域包络和频域包络进行量化和混合后传输到解码端。 在解 码端, 对经过去混合处理的时域包络和频域包络进行解码, 根据编码端的核心 编码器的参数生成高频带的激励信号 , 然后用解码得到的时域包络和频域包络 对激励信号进行整形, 从而得到高频带输出信号。
在对现有技术的研究和实践过程中, 发明人发现现有技术存在以下问题: 现有技术中, 对于高频带输入信号的频域包络和时域包络的计算和量化模 式都是一定的, 所以需要预先将编码器设置为对应适用于某一类型的输入信号 的模式, 例如适用于语音类信号的模式, 这样虽然有利于语音类型信号的编码, 但是对于音频类型的信号的编码效果却较差。 另外, 现有技术中适用的类型也 只是在宏观上的类型分类, 对于例如语音类信号中更具体的细分类型没有进行 区分, 例如是瞬态类型或谐波类型等都没有考虑, 因此导致无法根据输入信号 的更细分的类型进行更好的编码, 得到更好的编码效果。 发明内容
本发明实施例提供一种信号分类处理方法、 分类处理装置及编码系统, 能 够较好对高频带输入信号进行类型细分及处理, 使得更有利于信号的编码及解 码处理。
本发明所提供的实施例是通过以下技术方案实现:
本发明实施例提供一种信号分类处理方法, 包括: 获取输入的高频带输入 信号; 根据获取的高频带输入信号的时域特性参数和/或频域特性参数, 确定所 述高频带输入信号的信号类型, 确定对应所述信号类型的编码模式。
本发明实施例提供一种分类处理装置, 包括: 接收单元, 用于获取输入的 高频带输入信号; 处理单元, 用于 ^艮据获取的高频带输入信号的时域特性参数 和 /或频域特性参数, 确定所述高频带输入信号的信号类型, 确定对应所述信号 类型的编码模式。
本发明实施例提供一种编码系统, 包括: 分类处理装置, 用于获取输入的 高频带输入信号;根据所述高频带输入信号的时域特性参数和 /或频域特性参数, 确定所述高频带输入信号的信号类型, 确定对应所述信号类型的编码模式; 编 码装置, 用于根据所述分类处理装置确定的编码模式, 对所述高频带输入信号 进行编码。
上述技术方案可以看出, 本发明实施例通过高频带输入信号的时域特性参 数和 /或频域特性参数来确定所述高频带输入信号的信号类型, 确定对应所述信 号类型的编码模式, 从而提供了一种更细分的信号分类处理方法, 能够较好对 高频带输入信号进行类型细分及处理, 使得更有利于信号的编码及解码处理。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例描述中所需 要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图是本发明的一些 实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还 可以根据这些附图获得其他的附图。
图 1是本发明实施例方法流程图;
图 2是本发明实施例方法原理框架示意图;
图 3是本发明实施例方法原理流程示意图;
图 4是本发明实施例方法中在时域模式下判断瞬态类型的流程示意图; 图 5是本发明实施例方法中在频域模式下判断信号类型的流程示意图; 图 6是本发明实施例分类处理装置结构示意图;
图 Ί是本发明实施例编码系统结构示意图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部 的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造性劳 动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明实施例提供一种信号分类方法, 能够较好对高频带的输入信号进行 类型的细分, 使得更有利于信号的编码及解码处理。
请参阅图 1, 是本发明实施例方法流程图。 如图 1所示, 包括步骤: 步骤 101、 获取输入的高频带输入信号;
获取的高频带输入信号, 可能是时域模式下的高频带输入信号, 也可能是 频域模式下的高频带输入信号。
步骤 102、 根据获取的高频带输入信号的时域特性参数和 /或频域特性参数, 确定所述高频带输入信号的信号类型, 再确定对应所述信号类型的编码模式。
根据所述高频带输入信号的时域特性参数, 确定所述高频带输入信号的信 号类型, 并确定对应所述信号类型的编码模式包括:
所述高频带输入信号为时域模式下的高频带输入信号, 其包括当前帧及其 相邻帧, 根据各帧包络值确定包络最大偏差值、 前后包络最大阶越值; 判断所 述包络最大偏差值是否大于或等于包络最大偏差阈值, 并且前后包络最大阶越 值是否大于或等于前后包络最大阶越阈值, 若两者判断结果都为是, 判断出所 述高频带输入信号当前帧属于瞬态类型; 或者在两者判断结果都为是时, 进一 步再判断各帧包络值确定的包络总值是否大于或等于包络总值阈值, 若为是, 则判断出所述高频带输入信号当前帧属于瞬态类型; 确定判断出的属于瞬态类 型的当前帧对应瞬态类型编码模式。
其中, 前后包络最大阶越值为: 将每帧的前后两个包络值进行比较得到比 较值, 选择其中最大的一个比较值作为前后包络最大阶越值; 包络最大偏差值 为: 将各个包络值的平均值与最大的包络值相减, 得到差值, 该差值作为包络 最大偏差值。 包络总值为: 将各个包络值之和作为包络总值, 或者将各个包络 值之和经过加权处理后的值作为包络总值。
根据所述高频带输入信号的频域特性参数, 确定所述高频带输入信号的信 号类型, 并确定对应所述信号类型的编码模式还可以是包括: 所述高频带输入 信号是转换为频域模式下的高频带输入信号, 将所述高频带输入信号当前帧划 分为设定数目子带, 判断谐波强度值大于谐波强度阈值的子带的数目与谐波类 型阈值的比较结果是否为大于或等于关系, 若是大于或等于关系, 则判断出所 述高频带输入信号当前帧属于谐波类型, 并确定对应谐波类型编码模式。
从上述可以看出, 本发明实施例通过高频带输入信号的时域特性参数和 /或 频域特性参数来确定所述高频带输入信号的信号类型, 并确定对应所述信号类 型的编码模式, 从而提供了一种更细分的信号分类处理方法, 能够较好对高频 带输入信号进行类型细分及处理, 使得更有利于信号的编码及解码处理。
以下进一步详细介绍本发明实施例技术方案。
请参阅图 2, 是本发明实施例方法原理框架示意图。
如图 2所示, 高频带输入信号分为时域输入信号和频域输入信号, 所述频 域输入信号是对时域输入信号进行时频变换得到。 也就是说, 分类器获取的时 域输入信号和频域输入信号是同一输入信号, 只是表现形式不同。 一般来说, 高频带输入信号都是时域输入信号的形式, 可以在向分类器输入时域输入信号 的同时, 将时域输入信号转换成频域输入信号也输入给分类器, 或者由分类器 在分类过程中当需要采用频域形式的信号时再转换为频域输入信号进行处理。 分类器根据时域输入信号的时域特性参数和频域输入信号的频域特性参数, 将 高频带输入信号分为瞬态类型、 谐波类型及普通类型, 或者进一步区分出噪声 类型, 然后就可以确定对应的类型编码模式, 也就可以根据各类型编码模式对 信号进行编码处理, 从而可以更精确和更有效率地进行编码, 得到更好的编码 效果。 另外, 分类器也会将分类的信号类型发送给解码端, 解码端也分为对应 的解码模式处理, 从而解码时也相应会获得更好的解码效果。
请参阅图 3 , 是本发明实施例方法原理流程示意图。
如图 3所示, 包括步骤:
步骤 301、 判断当前帧时域输入信号是否是瞬态类型信号, 若是, 进入步骤 302 , 若否, 进入步骤 305 ;
步骤 302、 确定为瞬态类型信号, 并分别进入步骤 303和 304;
步骤 303、 将前一帧类型存储器中记录的信号类型进行更新;
该步驟中, 是根据进入该步骤的上一步骤中确定的类型进行更新, 如步骤 302中确定的是瞬态类型,则将前一帧类型存储器中记录的信号类型更新为瞬态 类型, 如后面提到的步骤 306中确定为普通类型, 则将前一帧类型存储器中记 录的信号类型更新为普通类型。 步骤 304、 确定为对输入信号采用瞬态类型编码模式;
步骤 305、判断前一帧类型存储器中记录的信号类型是否是瞬态类型,若是, 进入步骤 306, 若否, 进入步骤 307;
步骤 306、 将当前帧时域输入信号确定为普通类型, 并分别进入步骤 303和
304;
该步骤中, 虽然判断出前一帧类型存储器中记录的信号类型是瞬态类型, 但为了避免流程中出现死循环, 因此还是确定为普通类型用于去更新前一帧类 型存储器中记录的信号类型, 但在确定类型编码模式时还是会执行步骤 304, 即 确定为对输入信号采用瞬态类型编码模式, 也就是该当前帧时域输入信号是会 被按照瞬态类型对应的瞬态类型编码模式进行处理。
步骤 307、 判断当前帧频域输入信号是否是谐波类型信号, 若是, 则进入步 骤 308, 若否, 则进入步骤 311 ;
该步驟中的当前帧频域输入信号, 可以是根据当前帧时域输入信号进行时 频变换得到, 也可以是在该步骤前预先已经进行时频变换, 也可以在该步骤时 再进行时频变换。
步骤 308、 确定为谐波类型信号, 并分别进入步驟 309和 310;
步骤 309、 将前一帧类型存储器中记录的信号类型进行更新;
该步骤中, 是根据进入该步骤的上一步骤中确定的类型进行更新, 如步骤 308中确定的是谐波类型,则将前一帧类型存储器中记录的信号类型更新为谐波 类型, 如后面提到的步骤 312中确定为普通类型, 则将前一帧类型存储器中记 录的信号类型更新为普通类型。
步骤 310、 确定为对输入信号采用谐波类型编码模式;
步骤 311、判断前一帧类型存储器中记录的信号类型是否是谐波类型,若是, 进入步骤 312, 若否, 进入步骤 313;
步骤 312、 将当前帧频域输入信号确定为普通类型, 并分别进入步骤 309和
310; 步骤 313、 判断当前帧频域输入信号是否是噪声类型信号, 若是, 则进入步 骤 314, 若否, 则进入步骤 317;
步骤 314、 确定为噪声类型信号, 并分别进入步骤 315和 316;
步骤 315、 将前一帧类型存储器中记录的信号类型进行更新;
该步樣中, 是根据进入该步骤的上一步骤中确定的类型进行更新, 如步骤 314中确定的是噪声类型,则将前一帧类型存储器中记录的信号类型更新为噪声 类型, 如后面提到的步骤 317中确定为普通类型, 则将将前一帧类型存储器中 记录的信号类型更新为普通类型。
步骤 316、 确定为对输入信号采用噪声类型编码模式;
步骤 317、 将当前帧时域输入信号确定为普通类型, 进入步骤 318;
可以将不符合上述条件的所有类型的信号都统一定义为普通类型, 即是一 种默认的类型。
步骤 318、 确定为对输入信号采用普通类型编码模式。
需要说明的是, 上述步骤中在进行瞬态类型的判断后, 是先判断是否是谐 波类型, 再判断是否是噪声类型但不局限于此, 也可以先判断是否是噪声类型, 再判断是否是谐波类型。 另外, 也可以是不包括判断是否是噪声类型的步骤, 即步骤 311判断出前一帧类型存储器中记录的信号类型不是谐波类型时, 就确定 为普通类型, 并确定为对输入信号采用普通类型编码模式。
上述步骤在确定对输入信号采用哪种类型编码模式后, 就可以根据该类型 编码模式对信号进行编码处理, 并传输给解码端, 由解码端根据相应类型进行 解码处理。
上述可以看出, 通过对高频带输入信号在时域和频域的不同特征, 将高频 带输入信号细分为瞬态类型、 谐波类型、 噪声类型和普通类型, 并确定对应所 述信号类型的编码模式, 从而能够较好对高频带输入信号进行类型细分及处理, 使得更有利于信号的编码及解码处理。 请参阅图 4,是本发明实施例方法中在时域模式下判断瞬态类型的流程示意 图。 如图 4所示, 包括步骤:
步骤 401、 获取若干帧长的时域输入信号;
该步骤以截取 3倍于帧长的时域输入信号为例, 也就是截取当前帧的前一 帧、 当前帧和当前帧的后一帧, 共三帧的时域输入信号。
步骤 402、 每帧的时域输入信号至少计算两个时域包络值;
该步骤中至少得到 6个包络值。
步骤 403、 确定前后包络最大阶越值 a、 包络最大偏差值 b、 包络总值 c; 前后包絡最大阶越值 a的计算方式为: 将每帧的前后两个包络值进行比较得 到比较值, 这样可以得到 3个比较值, 选择其中最大的一个比较值作为前后包络 最大阶越值 a。
包络最大偏差值 b的计算方式为: 将 6个包絡值的平均值与最大的 1个包络值 相减, 得到差值, 该差值作为包络最大偏差值 b。
包络总值 c的计算方式为: 将 6个包络值之和作为包络总值 c,或者将 6个包络 值之和经过加权处理后的值作为包络总值0。
步骤 404、 判断包络最大偏差值 b是否大于或等于包络最大偏差阈值 T2, 并 且前后包络最大阶越值 a是否大于或等于包络最大阶越阈值 T3 , 若两者同时满 足, 进入步骤 405, 若不能同时满足, 表示不可能为瞬态类型, 进入步骤 406; 包络最大偏差阈值 T2和包络最大阶越阈值 T3 , —般可以取经验值, 根据需 要设定。
步骤 405、 判断包络总值 c是否大于或等于包络总值阈值 T4, 若是, 进入步 骤 407, 若否, 进入步骤 406;
包络总值阈值 T4一般可以取经验值, 根据需要设定。
步骤 406、判断前一帧类型存储器中记录的信号类型是否是瞬态类型,若是, 进入步骤 410, 若否, 进入步骤 412; 步骤 407、 确定为瞬态类型信号, 并分别进 入步骤 408、 409和 411 ; 步骤 408、 将前一帧类型存储器中记录的信号类型进行更新;
该步骤中, 是根据进入该步骤的上一步骤中确定的类型进行更新, 如步骤 407中确定的是瞬态类型,则将前一帧类型存储器中记录的信号类型更新为瞬态 类型, 如后面提到的步骤 410中确定为普通类型, 则将前一帧类型存储器中记 录的信号类型更新为普通类型。
步骤 409、 将类型计数器的值置零;
步骤 410、 确定为普通类型, 并分別进入步驟 408和 411;
步骤 411、 确定为对输入信号采用瞬态类型编码模式;
步骤 412、 执行在频域特性下的信号类型判断过程。
需要说明的是, 上述步骤中也可以不包括判断包络总值 c是否大于或等于包 络总值阈值 T4的步骤。
在频域特性下的类型判断过程请参见后面的描述。
上述可以看出, 通过对高频带输入信号在时域模式下的特征参数, 可以区 分出高频带输入信号是否为瞬态类型或普通类型, 并确定对应所述信号类型的 编码模式, 从而能够较好对高频带输入信号进行类型细分及处理, 使得更有利 于信号的编码及解码处理。
请参阅图 5 ,是本发明实施例方法中在频域模式下判断信号类型的流程示意 图。 如图 5所示, 包括步骤:
步骤 501、 按频谱顺序将当前帧频域输入信号分为若干子带;
步骤 502、 确定强谐波子带的数目 n;
对每个子带计算谐波强度值, 将谐波强度值大于谐波强度阈值的子带称为 强谐波子带, 从而可以确定强谐波子带的数目 n。 谐波强度阈值一般可以取经验 值, 根据需要设定。
步骤 503、 判断强谐波子带的数目 n是否大于或等于谐波类型阈值 K, 若是, 进入步骤 504, 若否, 进入步骤 509;
谐波类型阈值 K一般可以取经验值, 根据需要设定。 步骤 504、 判断当前帧与前一帧的频谱全局能量的差值是否小于或等于频谱 全局能量差值阈值, 若是, 分别进入步骤 505和 507, 若否, 进入步骤 509;
该步骤的频谱全局能量差值阈值一般可以取经验值, 根据需要设定。 如果 当前帧与前一帧的频普全局能量的差值大于频谱全局能量差值阈值, 就相当于 判断出频谱能量变化过快, 也就不能估算为谐波类。
步骤 505、 确定为谐波类型信号, 并分别进入步骤 506和 508;
步骤 506、 确定为对输入信号采用谐波类型编码模式;
步骤 507、 将类型计数器的值增加;
将类型计数器的值增加, 例如是加 1。
步骤 508、 将前一帧类型存储器中记录的信号类型进行更新;
该步骤中, 是根据进入该步骤的上一步骤中确定的类型进行更新。
步骤 509、 将类型计数器的值减小, 进入步骤 510;
将类型计数器的值减小, 例如是減 1。
步骤 510、 判断类型计数器的值是否大于或等于设定计数阔值 Τ, 若是, 进 入步骤 505 , 若否, 进入步骤 511 ;
设定计数阈值 Τ一般可以取经验值, 根据需要设定。
步骤 511、判断前一帧类型存储器中记录的信号类型是否是谐波类型,若是, 分别进入步骤 506和 512, 若否, 进入步骤 514;
步骤 512、 确定为普通类型信号, 进入步骤 513;
步骤 513、 将前一帧类型存储器中记录的信号类型进行更新;
该步骤中, 是根据进入该步骤的上一步骤中确定的类型进行更新。
步骤 514、 确定各子带噪声值, 根据各子带噪声值与噪声阈值比较情况, 确 定大于噪声阈值的子带数目 m;
噪声阈值一般可以取经验值, 根据需要设定。
步骤 515、 判断数目 m是否大于或等于噪声类型阈值, 若否, 进入步骤 512 和 516, 若是, 进入步骤 517; 噪声类型阈值一般可以取经验值, 根据需要设定。
步骤 516、 确定为对输入信号采用普通类型编码模式;
步骤 517、 确定为噪声类型信号, 分别进入步骤 518和 519;
步骤 518、 将前一帧类型存储器中记录的信号类型进行更新;
步骤 519、 确定为对输入信号采用噪声类型编码模式。
需要说明的是, 上述步骤中可以不包括步骤 504的判断过程。 上述步骤中还 可以是不包括判断噪声类型的步骤, 例如在步骤 503的判断结杲为否时, 就判断 出属于普通类型信号, 确定为对输入信号采用普通类型编码模式, 或者是在步 骤 511的判断结果为否时, 判断出所述高频带输入信号当前帧属于普通类型, 将 前一帧类型存储器记录的类型更新为普通类型, 并确定为对输入信号采用普通 类型编码模式。 另外, 上述步骤还可以是先判断是否是噪声类型, 再判断是否 谐波类型。 上述步骤还可以是只包括判断噪声类型和普通类型, 不包括判断是 否谐波类型。
上述可以看出, 通过对高频带输入信号在频域模式下的特征参数, 可以区 分出高频带输入信号是否为谐波类型、 噪声类型或普通类型, 并确定对应所述 信号类型的编码模式, 从而能够较好对高频带输入信号进行类型细分及处理, 使得更有利于信号的编码及解码处理。
上述内容详细介绍了本发明实施例的信号分类处理方法, 以下介绍本发明 实施例提供的分类处理装置和编码系统。
请参阅图 6, 是本发明实施例分类处理装置结构示意图。 如图 6所示, 分类 处理装置包括:
接收单元 61, 用于获取输入的高频带输入信号;
处理单元 62, 用于根据获取的高频带输入信号的时域特性参数和 /或频域特 性参数, 确定所述高频带输入信号的信号类型, 再确定对应所述信号类型的编 码模式。
所述接收单元 61获取的高频带输入信号可以为时域模式下的高频带输入信 号, 其包括当前帧及其相邻帧;
所述处理单元 62包括:
第一参数单元 621 , 用于根据各帧包络值确定包络最大偏差值、 前后包络最 大阶越值;
第一判断单元 622, 用于判断所述包络最大偏差值是否大于或等于包络最大 偏差阈值, 并且前后包络最大阶越值是否大于或等于前后包络最大阶越阈值, 若两者判断结杲都为是, 判断出所述高频带输入信号当前帧属于瞬态类型; 或者在两者判断结果都为是时进一步再判断各帧包络值确定的包络总值是 否大于或等于包络总值阈值, 若为是则判断出所述高频带输入信号当前帧属于 瞬态类型;
第一编码模式单元 623, 用于确定判断出的属于瞬态类型的当前帧对应瞬态 类型编码模式。
所述处理单元 62还包括:
前一帧类型存储器 624, 用于记录信号类型;
所述第一判断单元 622判断出所述高频带输入信号当前帧属于瞬态类型后 还包括, 通知所述前一帧类型存储器 624中将记录的类型更新为瞬态类型; 第二判断单元 625 , 用于在所述第一判断单元 622判断所述包络最大偏差值 是否大于或等于包络最大偏差阈值, 并且前后包络最大阶越值是否大于或等于 前后包络最大阶越阈值的两个判断结果都为否时; 或者, 在所述第一判断单元 622进一步再判断各帧包络值确定的包络总值是否大于或等于包络总值阈值的 结杲为否时, 查看所述前一帧类型存储器 624中记录的类型是否为瞬态类型, 若 是, 通知所述前一帧类型存储器 624将记录的类型更新为普通类型, 但通知所述 第一编码模式单元 623确定当前帧对应瞬态类型编码模式。
所述接收单元 61获取的高频带输入信号还可以是转换为频域模式下的高频 带输入信号;
所述处理单元 62包括: 第二参数单元 626, 用于将所述高频带输入信号当前帧划分为设定数目子带 后, 确定谐波强度值大于谐波强度阔值的子带的数目;
第三判断单元 627 , 用于判断所述谐波强度值大于谐波强度阈值的子带的数 目与谐波类型阈值的比较结果是否为大于或等于关系, 若是则判断出所述高频 带输入信号当前帧属于谐波类型, 若否则判断出所述高频带输入信号当前帧属 于普通类型;
第二编码模式单元 628 , 用于确定判断出的属于谐波类型的当前帧对应谐波 类型编码模式;
第三编码模式单元 634, 用于确定判断出的属于普通类型的当前帧对应普通 类型编码模式。
所述处理单元 62还包括:
第四判断单元 631 , 用于在所述第三判断单元 627判断出谐波强度值大于谐 波强度阈值的子带的数目与谐波类型阈值的比较结果是大于或等于关系之后, 进一步判断当前帧的频谌全局能量与记录的前一帧的频谱全局能量之差是否小 于或等于频谱全局能量差值阈值, 若是, 判断出所述高频带输入信号当前帧属 于谐波类型。
所述处理单元 62还包括:
类型计数器 630, 用于记录数值;
所述第四判断单元 631在判断当前帧的频谱全局能量与记录的前一帧的频 谱全局能量之差是小于或等于频谱全局能量差值阈值时, 通知所述类型计数器 630将值进行增大; 以及所述第四判断单元 631在判断出所述高频带输入信号当 前帧属于谐波类型后, 通知所述前一帧类型存储器 624将记录的类型更新为谐波 类型;
所述第四判断单元 631判断出当前帧的频谱全局能量与记录的前一帧的频 讲全局能量之差大于频谱全局能量差值阈值时, 或者所述第三判断单元 627判断 出谐波强度值大于谐波强度阈值的子带的数目与谐波类型阔值的比较结果是小 于关系时, 都通知所述类型计数器 630将值进行減小;
第五判断单元 632, 用于判断所述类型计数器 630减小处理后的值是否大于 或等于设定计数阈值, 若是, 判断出所述高频带输入信号当前帧属于谐波类型, 若否, 查看所述前一帧类型存储器 624中记录的类型是否为谐波类型, 若是, 通 知所述前一帧类型存储器 624将记录的类型更新为普通类型, 但通知所述第二编 码模式单元 628确定当前帧对应谐波类型编码模式, 若否, 通知所述前一帧类型 存储器 624将记录的类型更新为普通类型, 并通知所述第三编码模式单元 634确 定当前帧对应普通类型编码模式。
所述处理单元 62还包括:
第六判断单元 633, 用于在所述第三判断单元 627判断谐波强度值大于谐波 强度阈值的子带的数目与谐波类型阈值的比较结杲为小于关系时, 根据噪声值 大于噪声阁值的子带的数目与噪声类型阈值的比较结果为大于或等于关系, 判 断出所述高频带输入信号当前帧属于噪声类型, 根据所述比较结果为小于关系 时, 判断出所述高频带输入信号当前帧属于普通类型, 通知所述第三编码模式 单元 634确定当前帧对应普通类型编码模式;
第四编码模式单元 635 , 用于确定判断出的属于噪声类型的当前帧对应噪声 类型的编码模式。
请参阅图 7, 是本发明实施例编码系统结构示意图。
如图 7所示, 编码系统包括: 分类处理装置 701、 编码装置 702。
分类处理装置 701 , 用于获取输入的高频带输入信号; 根据所述高频带输入 信号的时域特性参数和 /或频域特性参数,确定所述高频带输入信号的信号类型, 再确定对应所述信号类型的编码模式。
编码装置 702, 用于根据所述分类处理装置 701确定的编码模式, 对所述高 频带输入信号进行编码。
所述分类处理装置 701具体上述图 6所示的结构。 分类处理装置 701包括接收 单元和处理单元。 方式一:
所述接收单元获取的高频带输入信号为时域模式下的高频带输入信号, 其 包括当前帧及其相邻帧;
所述处理单元包括:
第一参数单元, 用于根据各帧包絡值确定包络最大偏差值、 前后包络最大 阶越值;
第一判断单元, 用于判断所述包络最大偏差值是否大于或等于包络最大偏 差阀值, 并且前后包络最大阶越值是否大于或等于前后包络最大阶越阈值, 若 两者判断结果都为是, 判断出所述高频带输入信号当前帧属于瞬态类型;
或者在两者判断结果都为是时进一步再判断各帧包络值确定的包络总值是 否大于或等于包络总值阈值, 若为是则判断出所述高频带输入信号当前帧属于 瞬态类型;
第一编码模式单元, 用于确定判断出的属于瞬态类型的当前帧对应瞬态类 型编码模式。
方式二:
所述接收单元获取的高频带输入信号是转换为频域模式下的高频带输入信 号;
所述处理单元包括:
第二参数单元, 用于将所述高频带输入信号当前帧划分为设定数目子带后, 确定谐波强度值大于谐波强度阈值的子带的数目;
第三判断单元, 用于判断所述谐波强度值大于谐波强度阈值的子带的数目 与谐波类型阈值的比较结果是否为大于或等于关系, 若是则判断出所述高频带 输入信号当前帧属于谐波类型, 若否则判断出所述高频带输入信号当前帧属于 普通类型;
第二编码模式单元, 用于确定判断出的属于谐波类型的当前帧对应谐波类 型编码模式; 第三编码模式单元, 用于确定判断出的属于普通类型的当前帧对应普通类 型编码模式。
分类处理装置 701具有的其他各子单元请参见图 6中的描述。
综上所述, 本发明实施例通过高频带输入信号的时域特性参数和 /或频域特 性参数来确定所述高频带输入信号的信号类型, 并确定对应所述信号类型的编 码模式, 从而提供了一种更细分的信号分类处理方法, 能够较好对高频带输入 信号进行类型细分及处理, 使得更有利于信号的编码及解码处理。
进一步的, 本发明实施例是将高频带输入信号细分为瞬态类型、谐波类型、 噪声类型和普通类型, 可以根据这些信号类型确定对应的编码模式。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程, 是可以通过计算机程序来指令相关的硬件来完成, 所述的程序可存储于一计算 机可读取存储介质中, 该程序在执行时, 可包括如上述各方法的实施例的流程。 其中, 所述的存储介质可为磁碟、 光盘、 只读存储记忆体(Read-Only Memory, ROM )或随机存储记忆体 ( Random Acces s Memory, RAM )等。
以上对本发明实施例所提供的一种信号分类处理方法、 分类处理装置及编 码系统进行了详细介绍, 本文中应用了具体个例对本发明的原理及实施方式进 行了阐述, 以上实施例的说明只是用于帮助理解本发明的方法及其核心思想; 同时, 对于本领域的一般技术人员, 依据本发明的思想, 在具体实施方式及应 用范围上均会有改变之处, 综上所述, 本说明书内容不应理解为对本发明的限 制。

Claims

权利 要求 书
1、 一种信号分类处理方法, 其特征在于, 包括:
获取输入的高频带输入信号;
根据获取的高频带输入信号的时域特性参数和 /或频域特性参数, 确定所述 高频带输入信号的信号类型, 确定对应所述信号类型的编码模式。
2、 根据权利要求 1所述的信号分类处理方法, 其特征在于:
所述根据获取的高频带输入信号的时域特性参数, 确定所述高频带输入信 号的信号类型, 确定对应所述信号类型的编码模式包括:
所述高频带输入信号为时域模式下的高频带输入信号 , 其包括当前帧及其 相邻帧, 根据各帧包络值确定包络最大偏差值、 前后包络最大阶越值;
判断所述包络最大偏差值是否大于或等于包络最大偏差阈值, 并且前后包 络最大阶越值是否大于或等于前后包絡最大阶越阈值, 若两者判断结果都为是, 判断出所述高频带输入信号当前帧属于瞬态类型;
或者在两者判断结果都为是时进一步判断各帧包络值确定的包络总值是否 大于或等于包络总值阁值, 若为是则判断出所述高频带输入信号当前帧属于瞬 态类型;
确定判断出的属于瞬态类型的当前帧对应瞬态类型编码模式。
3、 根据权利要求 2所述的信号分类处理方法, 其特征在于:
所述判断出所述高频带输入信号当前帧属于瞬态类型后还包括, 在前一帧 类型存储器中将记录的类型更新为瞬态类型;
所述判断所述包络最大偏差值是否大于或等于包络最大偏差阈值, 并且前 后包络最大阶越值是否大于或等于前后包络最大阶越阈值的两个判断结杲都为 否时; 或者,
所述在两者判断结果都为是时进一步判断各帧包络值确定的包络总值是否 大于或等于包络总值阈值的结果为否时, 还包括:
查看所述前一帧类型存储器中记录的类型是否为瞬态类型, 若是, 将记录 的类型更新为普通类型, 确定当前帧对应瞬态类型编码模式。
4、 根据权利要求 1、 2或 3所述的信号分类处理方法, 其特征在于: 所述根据获取的高频带输入信号的频域特性参数, 确定所述高频带输入信 号的信号类型, 确定对应所述信号类型的编码模式包括: 所述高频带输入信号是转换为频域模式下的高频带输入信号, 将所述高频 带输入信号当前帧划分为设定数目子带, 判断谐波强度值大于谐波强度阔值的 子带的数目与谐波类型阈值的比较结果是否为大于或等于关系, 若是则判断出 所述高频带输入信号当前帧属于谐波类型, 确定对应谐波类型编码模式, 若否 则判断出所述高频带输入信号当前帧属于普通类型, 确定对应普通类型编码模 式。
5、 根据权利要求 4所述的信号分类处理方法, 其特征在于:
在判断出谐波强度值大于谐波强度阈值的子带的数目与谐波类型阈值的比 较结果是大于或等于关系之后进一步包括:
判断当前帧的频谱全局能量与记录的前一帧的频谱全局能量之差是否小于 或等于频谌全局能量差值阈值, 若是, 判断出所述高频带输入信号当前帧属于 谐波类型。
6、 根据权利要求 5所述的信号分类处理方法, 其特征在于:
在判断当前帧的频谱全局能量与记录的前一帧的频谱全局能量之差是否小 于或等于频谱全局能量差值阈值的结果为是时, 还包括: 将类型计数器的值进 行增大; 以及在判断出所述高频带输入信号当前帧属于谐波类型后, 在前一帧 类型存储器中将记录的类型更新为谐波类型;
在判断当前帧的频谱全局能量与记录的前一帧的频谱全局能量之差是否小 于或等于频谱全局能量差值阈值的结果为否时, 或者在判断谐波强度值大于谐 波强度阈值的子带的数目与谐波类型闹值的比较结果是否为大于或等于关系的 结杲为否时, 将类型计数器的值进行减小;
判断减小处理后的值是否大于或等于设定计数阈值, 若是, 判断出所述高 频带输入信号当前帧属于谐波类型, 若否, 查看所述前一帧类型存储器中记录 的类型是否为谐波类型, 若是, 将记录的类型更新为普通类型, 确定当前帧对 应谐波类型编码模式, 若否, 将记录的类型更新为普通类型, 判断出所述高频 带输入信号当前帧属于普通类型, 确定对应普通类型编码模式。
7、 根据权利要求 4所述的信号分类处理方法, 其特征在于:
当判断谐波强度值大于谐波强度阈值的子带的数目与谐波类型阈值的比较 结果为小于关系时, 还包括:
判断噪声值大于噪声阈值的子带的数目与噪声类型阈值的比较结果是否为 大于或等于关系, 若是, 判断出所述高频带输入信号当前帧属于噪声类型, 确 定对应噪声类型的编码模式;
若否, 判断出所述高频带输入信号当前帧属于普通类型, 确定对应普通类 型的编码模式。
8、 根据权利要求 1、 2或 3所述的信号分类处理方法, 其特征在于: 所述根据获取的高频带输入信号的频域特性参数, 确定所述高频带输入信 号的信号类型, 确定对应所述信号类型的编码模式包括:
所述高频带输入信号是转换为频域模式下的高频带输入信号, 将所述高频 带输入信号当前帧划分为设定数目子带, 根据噪声值大于噪声阈值的子带的数 目与噪声类型阈值的比较结果为大于或等于关系, 判断出所述高频带输入信号 当前帧属于噪声类型, 确定对应噪声类型的编码模式, 若否则判断出所述高频 带输入信号当前帧属于普通类型, 确定对应普通类型编码模式。
9、 一种分类处理装置, 其特征在于, 包括:
接收单元, 用于获取输入的高频带输入信号;
处理单元, 用于根据获取的高频带输入信号的时域特性参数和 /或频域特性 参数, 确定所述高频带输入信号的信号类型, 确定对应所述信号类型的编码模 式。
10、 根据权利要求 9所述的分类处理装置, 其特征在于:
所述接收单元获取的高频带输入信号为时域模式下的高频带输入信号, 其 包括当前帧及其相邻帧;
所述处理单元包括:
第一参数单元, 用于根据各帧包絡值确定包络最大偏差值、 前后包络最大 阶越值;
第一判断单元, 用于判断所述包络最大偏差值是否大于或等于包络最大偏 差阈值, 并且前后包络最大阶越值是否大于或等于前后包络最大阶越阈值, 若 两者判断结果都为是, 判断出所述高频带输入信号当前帧属于瞬态类型;
或者在两者判断结果都为是时进一步判断各帧包络值确定的包络总值是否 大于或等于包络总值阈值, 若为是则判断出所述高频带输入信号当前帧属于瞬 态类型;
第一编码模式单元, 用于确定判断出的属于瞬态类型的当前帧对应瞬态类 型编码模式。
11、 根据权利要求 10所述的分类处理装置, 其特征在于, 所述处理单元还 包括:
前一帧类型存储器, 用于记录信号类型;
所述第一判断单元判断出所述高频带输入信号当前帧属于瞬态类型后还包 括, 通知所述前一帧类型存储器中将记录的类型更新为瞬态类型;
第二判断单元, 用于在所述第一判断单元判断所述包络最大偏差值是否大 于或等于包络最大偏差阈值, 并且前后包络最大阶越值是否大于或等于前后包 络最大阶越阈值的两个判断结果都为否时; 或者, 在所述第一判断单元进一步 判断各帧包络值确定的包络总值是否大于或等于包络总值阈值的结果为否时, 查看所述前一帧类型存储器中记录的类型是否为瞬态类型, 若是, 通知所述前 一帧类型存储器将记录的类型更新为普通类型, 但通知所述第一编码模式单元 确定当前帧对应瞬态类型编码模式。
12、 根据权利要求 9所述的分类处理装置, 其特征在于:
所述接收单元获取的高频带输入信号是转换为频域模式下的高频带输入信 号;
所述处理单元包括:
第二参数单元, 用于将所述高频带输入信号当前帧划分为设定数目子带后, 确定谐波强度值大于谐波强度阈值的子带的数目;
第三判断单元, 用于判断所述谐波强度值大于谐波强度阈值的子带的数目 与谐波类型阈值的比较结果是否为大于或等于关系, 若是则判断出所述高频带 输入信号当前帧属于谐波类型, 若否则判断出所述高频带输入信号当前帧属于 普通类型;
第二编码模式单元, 用于确定判断出的属于谐波类型的当前帧对应谐波类 型编码模式;
第三编码模式单元, 用于确定判断出的属于普通类型的当前帧对应普通类 型编码模式。
13、 根据权利要求 12所述的分类处理装置, 其特征在于, 所述处理单元还 包括:
第四判断单元, 用于在所述第三判断单元判断出谐波强度值大于谐波强度 阈值的子带的数目与谐波类型阈值的比较结果是大于或等于关系之后, 进一步 判断当前帧的频谱全局能量与记录的前一帧的频 i脊全局能量之差是否小于或等 于频谱全局能量差值阈值, 若是, 判断出所述高频带输入信号当前帧属于谐波 类型。
14、 根据权利要求 13所述的分类处理装置, 其特征在于, 所述处理单元还 包括:
前一帧类型存储器, 用于记录信号类型;
类型计数器的值, 用于记录数值;
所述第四判断单元在判断当前帧的频谱全局能量与记录的前一帧的频谱全 局能量之差是小于或等于频谱全局能量差值阈值时, 通知所述类型计数器将值 进行增大; 以及所述第四判断单元在判断出所述高频带输入信号当前帧属于谐 波类型后, 通知所述前一帧类型存储器将记录的类型更新为谐波类型;
所述第四判断单元判断出当前帧的频谱全局能量与记录的前一帧的频谱全 局能量之差大于频谱全局能量差值阈值时, 或者所述第三判断单元判断出谐波 强度值大于谐波强度闲值的子带的数目与谐波类型阈值的比较结果是小于关系 时, 都通知所述类型计数器将值进行减小;
第五判断单元, 用于判断所述类型计数器减小处理后的值是否大于或等于 设定计数阈值, 若是, 判断出所述高频带输入信号当前帧属于谐波类型, 若否, 查看所述前一帧类型存储器中记录的类型是否为谐波类型, 若是, 通知所述前 一帧类型存储器将记录的类型更新为普通类型, 但通知所述第二编码模式单元 确定当前帧对应谐波类型编码模式, 若否, 通知所述前一帧类型存储器将记录 的类型更新为普通类型, 通知所述第三编码模式单元确定当前帧对应普通类型 编码模式。
15、 根据权利要求 12至 14任一项所述的分类处理装置, 其特征在于, 所述 处理单元还包括:
第六判断单元, 用于在所述第三判断单元判断谐波强度值大于谐波强度阈 值的子带的数目与谐波类型阈值的比较结果为小于关系时, 根据噪声值大于噪 声阈值的子带的数目与噪声类型阁值的比较结果为大于或等于关系, 判断出所 述高频带输入信号当前帧属于噪声类型, 根据所述比较结果为小于关系时, 判 断出所述高频带输入信号当前帧属于普通类型, 通知所述第三编码模式单元确 定当前帧对应普通类型编码模式;
第四编码模式单元, 用于确定判断出的属于噪声类型的当前帧对应噪声类 型的编码模式。
16、 一种编码系统, 其特征在于, 包括:
分类处理装置, 用于获取输入的高频带输入信号; 根据所述高频带输入信 号的时域特性参数和 /或频域特性参数, 确定所述高频带输入信号的信号类型, 确定对应所述信号类型的编码模式;
编码装置, 用于根据所述分类处理装置确定的编码模式, 对所述高频带输 入信号进行编码。
17、 根据权利要求 16所述的编码系统, 其特征在于, 所述分类处理装置包 括接收单元和处理单元:
所述接收单元获取的高频带输入信号为时域模式下的高频带输入信号, 其 包括当前帧及其相邻帧;
所述处理单元包括:
第一参数单元, 用于根据各帧包络值确定包络最大偏差值、 前后包络最大 阶越值;
第一判断单元, 用于判断所述包络最大偏差值是否大于或等于包络最大偏 差阈值, 并且前后包络最大阶越值是否大于或等于前后包络最大阶越阈值, 若 两者判断结果都为是, 判断出所述高频带输入信号当前帧属于瞬态类型;
或者在两者判断结果都为是时进一步判断各帧包络值确定的包络总值是否 大于或等于包络总值阈值, 若为是则判断出所述高频带输入信号当前帧属于瞬 态类型;
第一编码模式单元, 用于确定判断出的属于瞬态类型的当前帧对应瞬态类 型编码模式。
18、 根据权利要求 16所述的编码系统, 其特征在于, 所述分类处理装置包 括接收单元和处理单元:
所述接收单元获取的高频带输入信号是转换为频域模式下的高频带输入信 号;
所述处理单元包括:
第二参数单元, 用于将所述高频带输入信号当前帧划分为设定数目子带后, 确定谐波强度值大于谐波强度阈值的子带的数目;
第三判断单元, 用于判断所述谐波强度值大于谐波强度阈值的子带的数目 与谐波类型阈值的比较结果是否为大于或等于关系, 若是则判断出所述高频带 输入信号当前帧属于谐波类型, 若否则判断出所述高频带输入信号当前帧属于 普通类型;
第二编码模式单元, 用于确定判断出的属于谐波类型的当前帧对应谐波类 型编码模式;
第三编码模式单元, 用于确定判断出的属于普通类型的当前帧对应普通类 型编码模式。
PCT/CN2009/075243 2008-12-23 2009-12-01 信号分类处理方法、分类处理装置及编码系统 WO2010072115A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09834068A EP2381438B1 (en) 2008-12-23 2009-12-01 Signal classification processing method, classification processing device and encoding system
US13/160,115 US8103515B2 (en) 2008-12-23 2011-06-14 Signal classification processing method, classification processing device, and encoding system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810187911.4 2008-12-23
CN200810187911.4A CN101763856B (zh) 2008-12-23 2008-12-23 信号分类处理方法、分类处理装置及编码系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/160,115 Continuation US8103515B2 (en) 2008-12-23 2011-06-14 Signal classification processing method, classification processing device, and encoding system

Publications (1)

Publication Number Publication Date
WO2010072115A1 true WO2010072115A1 (zh) 2010-07-01

Family

ID=42286890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/075243 WO2010072115A1 (zh) 2008-12-23 2009-12-01 信号分类处理方法、分类处理装置及编码系统

Country Status (4)

Country Link
US (1) US8103515B2 (zh)
EP (2) EP2515298A3 (zh)
CN (1) CN101763856B (zh)
WO (1) WO2010072115A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101826331B1 (ko) * 2010-09-15 2018-03-22 삼성전자주식회사 고주파수 대역폭 확장을 위한 부호화/복호화 장치 및 방법
CN102436820B (zh) * 2010-09-29 2013-08-28 华为技术有限公司 高频带信号编码方法及装置、高频带信号解码方法及装置
CN102737636B (zh) * 2011-04-13 2014-06-04 华为技术有限公司 一种音频编码方法及装置
CN102800317B (zh) * 2011-05-25 2014-09-17 华为技术有限公司 信号分类方法及设备、编解码方法及设备
CN103516440B (zh) 2012-06-29 2015-07-08 华为技术有限公司 语音频信号处理方法和编码装置
CN103971693B (zh) * 2013-01-29 2017-02-22 华为技术有限公司 高频带信号的预测方法、编/解码设备
CN104103276B (zh) * 2013-04-12 2017-04-12 北京天籁传音数字技术有限公司 一种声音编解码装置及其方法
CN104112451B (zh) * 2013-04-18 2017-07-28 华为技术有限公司 一种选择编码模式的方法及装置
TWI496138B (zh) * 2013-09-03 2015-08-11 Helios Semiconductor Inc 用於編解碼高頻聲音信號之技術和系統
CN112992163B (zh) * 2014-07-28 2024-09-13 日本电信电话株式会社 编码方法、装置以及记录介质
EP3171362B1 (en) * 2015-11-19 2019-08-28 Harman Becker Automotive Systems GmbH Bass enhancement and separation of an audio signal into a harmonic and transient signal component
US10825467B2 (en) * 2017-04-21 2020-11-03 Qualcomm Incorporated Non-harmonic speech detection and bandwidth extension in a multi-source environment
CN110880957B (zh) * 2019-11-01 2021-06-29 腾讯科技(深圳)有限公司 声波通信方法及装置、电子设备
CN111782569B (zh) * 2020-06-30 2024-05-28 联想(北京)有限公司 一种电子设备
CN111883182B (zh) * 2020-07-24 2024-03-19 平安科技(深圳)有限公司 人声检测方法、装置、设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101140759A (zh) * 2006-09-08 2008-03-12 华为技术有限公司 语音或音频信号的带宽扩展方法及系统
CN101145345A (zh) * 2006-09-13 2008-03-19 华为技术有限公司 音频分类方法
US20080312912A1 (en) * 2007-06-12 2008-12-18 Samsung Electronics Co., Ltd Audio signal encoding/decoding method and apparatus

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1062963C (zh) * 1990-04-12 2001-03-07 多尔拜实验特许公司 用于产生高质量声音信号的解码器和编码器
US6266644B1 (en) 1998-09-26 2001-07-24 Liquid Audio, Inc. Audio encoding apparatus and methods
US6581032B1 (en) 1999-09-22 2003-06-17 Conexant Systems, Inc. Bitstream protocol for transmission of encoded voice signals
US6901362B1 (en) 2000-04-19 2005-05-31 Microsoft Corporation Audio segmentation and classification
AU2001276588A1 (en) * 2001-01-11 2002-07-24 K. P. P. Kalyan Chakravarthy Adaptive-block-length audio coder
CN100349207C (zh) * 2003-01-14 2007-11-14 北京阜国数字技术有限公司 高频耦合的伪小波5声道音频编/解码方法
WO2007083931A1 (en) 2006-01-18 2007-07-26 Lg Electronics Inc. Apparatus and method for encoding and decoding signal
CN101751926B (zh) * 2008-12-10 2012-07-04 华为技术有限公司 信号编码、解码方法及装置、编解码系统
CN101770776B (zh) * 2008-12-29 2011-06-08 华为技术有限公司 瞬态信号的编码方法和装置、解码方法和装置及处理系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101140759A (zh) * 2006-09-08 2008-03-12 华为技术有限公司 语音或音频信号的带宽扩展方法及系统
CN101145345A (zh) * 2006-09-13 2008-03-19 华为技术有限公司 音频分类方法
US20080312912A1 (en) * 2007-06-12 2008-12-18 Samsung Electronics Co., Ltd Audio signal encoding/decoding method and apparatus

Also Published As

Publication number Publication date
EP2515298A3 (en) 2012-11-14
EP2515298A2 (en) 2012-10-24
EP2381438B1 (en) 2012-11-21
EP2381438A4 (en) 2011-11-23
CN101763856A (zh) 2010-06-30
EP2381438A1 (en) 2011-10-26
CN101763856B (zh) 2011-11-02
US20110238427A1 (en) 2011-09-29
US8103515B2 (en) 2012-01-24

Similar Documents

Publication Publication Date Title
WO2010072115A1 (zh) 信号分类处理方法、分类处理装置及编码系统
JP6790048B2 (ja) 時間領域デコーダにおける量子化雑音を低減するためのデバイスおよび方法
JP7177185B2 (ja) 信号分類方法および信号分類デバイス、ならびに符号化/復号化方法および符号化/復号化デバイス
JP5281169B2 (ja) 過渡信号符号化方法及び装置、復号化方法及び装置、並びに処理システム
KR102367538B1 (ko) 다중 채널 신호 인코딩 방법 및 인코더
RU2417456C2 (ru) Системы, способы и устройства для обнаружения изменения сигналов
EP3598448B2 (en) Apparatuses and methods for audio classifying and processing
WO2008067735A1 (fr) Procédé et dispositif de classement pour un signal sonore
WO2010066158A1 (zh) 信号编码、解码方法及装置、编解码系统
RU2668111C2 (ru) Классификация и кодирование аудиосигналов
KR20130126695A (ko) 오디오 신호 코딩 방법 및 장치
CN114550732B (zh) 一种高频音频信号的编解码方法和相关装置
JP5390690B2 (ja) 音声コーデックの品質向上装置およびその方法
KR102457290B1 (ko) 신호 분류 방법 및 장치, 및 이를 이용한 오디오 부호화방법 및 장치
CN106683681B (zh) 处理丢失帧的方法和装置
KR20160005069A (ko) 손실 프레임을 처리하는 방법, 및 디코더
TW479221B (en) Complex signal activity detection for improved speech/noise classification of an audio signal
CN114863940A (zh) 音质转换的模型训练方法、提升音质的方法、装置及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834068

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009834068

Country of ref document: EP