WO2010069273A1 - 动力工具 - Google Patents

动力工具 Download PDF

Info

Publication number
WO2010069273A1
WO2010069273A1 PCT/CN2009/075743 CN2009075743W WO2010069273A1 WO 2010069273 A1 WO2010069273 A1 WO 2010069273A1 CN 2009075743 W CN2009075743 W CN 2009075743W WO 2010069273 A1 WO2010069273 A1 WO 2010069273A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
power tool
ring gear
sensor
tool according
Prior art date
Application number
PCT/CN2009/075743
Other languages
English (en)
French (fr)
Inventor
张士松
钟红风
刘芳世
Original Assignee
苏州宝时得电动工具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州宝时得电动工具有限公司 filed Critical 苏州宝时得电动工具有限公司
Publication of WO2010069273A1 publication Critical patent/WO2010069273A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B45/00Hand-held or like portable drilling machines, e.g. drill guns; Equipment therefor
    • B23B45/008Gear boxes, clutches, bearings, feeding mechanisms or like equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B23/00Details of, or accessories for, spanners, wrenches, screwdrivers
    • B25B23/14Arrangement of torque limiters or torque indicators in wrenches or screwdrivers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B23/00Details of, or accessories for, spanners, wrenches, screwdrivers
    • B25B23/14Arrangement of torque limiters or torque indicators in wrenches or screwdrivers
    • B25B23/147Arrangement of torque limiters or torque indicators in wrenches or screwdrivers specially adapted for electrically operated wrenches or screwdrivers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
    • B25F5/001Gearings, speed selectors, clutches or the like specially adapted for rotary tools
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/14Rotary-transmission dynamometers wherein the torque-transmitting element is other than a torsionally-flexible shaft
    • G01L3/1464Rotary-transmission dynamometers wherein the torque-transmitting element is other than a torsionally-flexible shaft involving screws and nuts, screw-gears or cams
    • G01L3/1471Rotary-transmission dynamometers wherein the torque-transmitting element is other than a torsionally-flexible shaft involving screws and nuts, screw-gears or cams using planet wheels or conical gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2260/00Details of constructional elements
    • B23B2260/044Clutches
    • B23B2260/0445Overload clutches

Definitions

  • the invention relates to a power tool, in particular a power tool having a screwdriver function.
  • Power tools with screwdriver functions have been widely used in a variety of fields, such as construction, home renovation, factory operations, and more.
  • the power tool must not exceed a certain torque when implementing the screwdriver function. Otherwise, the power tool itself or the material or workpiece may be damaged.
  • U.S. Patent No. 5,527,527 discloses a screwdriver, which is provided with a motor, a planetary gear reduction mechanism coupled to the motor output shaft, a spindle coupled to the planetary gear reduction mechanism, and a screwdriver bit coupled to the spindle.
  • the mechanical clutch is disposed on the planetary gear reduction mechanism, and the clutch mechanism includes an internal gear, a steel ball, a washer, and an elastic member.
  • the inner gear is sleeved on the planetary gear, and a plurality of beveled end teeth extend in an axial direction on the end surface of the inner gear, and inner gears of the inner gear are formed with axially extending inner teeth, and the inner teeth are used for the planetary gears
  • the axially extending external teeth mesh.
  • the steel ball and the washer are disposed in the torque setting cover, and the steel ball is disposed between the gasket and the end surface of the internal gear, and the elastic member abuts the steel ball against the end surface of the inner gear.
  • the motor output shaft rotates, driving the planetary gear reduction system, and the spindle rotates, so that the screwdriver bit is turned to screw the screw.
  • the load torque is transmitted to the planetary gear reduction mechanism, the ring gear, the steel ball, and the elastic member via the screwdriver head.
  • the steel ball overcomes the elastic force of the elastic element and passes over the end teeth of the inner ring gear, so that the inner ring gear rotates, at this time, the motor
  • the torque transfer between the output shaft and the screwdriver bit is interrupted.
  • This type of mechanical clutch can not stop immediately when the torque reaches the set value.
  • the continuously impacting clutch acts on the screwdriver, so that the torque value of the workpiece is greater than the set value, so only the relatively inaccurate maximum torque can be achieved.
  • the setting of this torque can only be adjusted stepwise, and the mechanical clutch will cause mechanical wear, so that the transmission of force will decrease with the continuous wear of the mechanical clutch.
  • the clutch sometimes separates when it is less than a given torque. Sometimes it will separate when it is larger than the set torque, and it will also cause damage to the screwdriver itself or materials and workpieces.
  • U.S. Patent No. 4,231,270 discloses the use of a microswitch (m i c r o sw i t c h ) in combination with a mechanical clutch for torque control to shut off the motor to prevent damage to the screwdriver itself and to workpieces and materials when the torque reaches a set value. Due to the use of the micro switch, sparks are generated at the switch contacts during operation, which not only causes wear of the contacts, but also causes various drawbacks to surrounding electronic components or electronic circuits. This type of mechanical switch not only affects the life of the entire power tool, but also has many limitations on the overall miniaturization of the power tool.
  • British Patent No. GB2328634B discloses a use of a permanent magnet (pe r ma ne nt magn et ) arranged on an inner ring gear and a Hall element (Ha llsensor ) provided on the casing, in combination with a mechanical clutch for the screwdriver Torque control.
  • a permanent magnet pe r ma ne nt magn et
  • a Hall element Ha llsensor
  • the technical problem to be solved by the present invention is to provide a power tool having a torque control system.
  • the technical solution of the present invention is: a power tool including a casing; a motor disposed in the casing, the motor outputting rotational power; an output shaft; disposed between the motor and the output shaft to transmit the rotational output of the motor to a planetary gear transmission mechanism on the output shaft, the planetary gear transmission mechanism includes a ring gear; a torque control system; the torque control system is configured to detect a torque value received by the ring gear, and determine whether the detected torque is greater than or equal to a power tool The preset torque value, if greater than or equal to the torque value preset by the power tool, stops the power supply of the motor.
  • the gear transmission mechanism includes at least one gear train, the gear train includes a planetary gear train, the planetary gear train includes a plurality of planet gears, and a planet carrier for supporting the planet gears, the ring gear and the planet a toothed connection;
  • the torque control system is configured to detect torque received by the ring gear in real time;
  • the torque control system includes a torque detection unit and a processing unit electrically coupled to the torque detection unit.
  • the torque detecting unit comprises a sensor fixedly disposed on the casing, a detecting member connected to the ring gear and moving relative to the sensor while the ring gear is moving, the sensor is detected according to the detected Generating a signal indicative of the amount of change in the ring gear motion and transmitting the signal to the processing unit; the processing unit is configured to calculate a torque of the ring gear based on the received signal, and the torque is greater than the set At the torque value, a signal is output to stop the motor power supply.
  • the detecting member moves axially with respect to the output shaft.
  • the power tool further includes a spherical ejector fixedly mounted with the detecting member, and an elastic member sleeved on the detecting member; an inclined surface is disposed on one end surface of the ring gear, and the spherical ejector pin is pressed against the inclined surface
  • the sensor is a photoelectric sensor
  • the detecting member is a light shielding film
  • the sensor is a magnetic encoder, and the detecting member is a magnetic sheet.
  • the detecting member rotates relative to the output shaft.
  • the power tool further includes an elastic member, the elastic member has one end fixed to the elastic member disposed on the ring gear, and the other end is fixedly disposed on the casing; when the torque transmitted from the output shaft to the ring gear reaches a certain value, the ring gear Rotating, and simultaneously driving the elastic element to generate a twist, driving the detecting member to rotate relative to the sensor;
  • the sensor is a photoelectric sensor, the detecting member is an annular shading disc; the sensor is a magnetic encoder, and the detecting member is annular Disk.
  • the torque detecting unit includes a pressure sensor disposed in the casing, and the outer circumferential surface of the ring gear is uniformly provided with a plurality of protrusions, and the pressure sensor abuts against the one protrusion.
  • the torque control system further includes a torque setting unit electrically connected to the processing unit, the torque setting unit is configured to set a value, and the processing unit can convert the value set by the torque setting unit into a preset torque value. And stored in the processing unit.
  • the torque control system further includes a torque setting unit electrically coupled to the processing unit, the torque setting unit for setting a preset torque value, and the processing unit for storing the preset torque value.
  • the beneficial effects of the present invention are:
  • the torque control system of the present invention measures the torque of the inner ring gear through the torque detecting unit, and the torque detecting unit can sense the pulse signal in real time as long as the inner ring gear is rotated by the force.
  • the units work together to detect the torque experienced by the ring gear in real time. When the detected torque of the ring gear is greater than the torque value set by the power tool, the power supply of the motor can be stopped, and the damage of the power tool itself or the material or the workpiece can be avoided.
  • Figure 1 is a partial cross-sectional view showing a first embodiment of a power tool of the present invention.
  • Figure 2 is a cross-sectional view of the transmission portion of Figure 1.
  • Figure 3 is a partial enlarged view of a portion shown in C of Figure 2.
  • Figure 4 is a schematic view of the direction shown by B in Figure 3.
  • Figure 5 is a schematic view of the direction shown in Figure 3 in the direction of A.
  • Figure 6 is a schematic block diagram of a first embodiment of the power tool of the present invention.
  • Figure 7 is a partial cross-sectional view showing a second embodiment of the power tool of the present invention.
  • Figure 8 is a partial enlarged view of the portion shown by E in Figure 7.
  • Figure 9 is a schematic view of the direction shown by B' in Figure 8.
  • Figure 10 is a schematic view of the direction shown by A' in Figure 8.
  • Figure 11 is a schematic view showing the structure of the light shielding sheet of Figure 7.
  • Figure 12 is a schematic block diagram of a second embodiment of the power tool of the present invention.
  • Figure 13 is a partial cross-sectional view showing a third embodiment of the power tool of the present invention.
  • FIG 14 is a schematic illustration of the tact switch of Figure 13.
  • Figure 15 is a schematic view of the dial in the third embodiment.
  • Figure 16 is a cross-sectional view of the transmission portion of Figure 13.
  • Figure 17 is a partial enlargement of the portion indicated by F in Figure 16
  • Figure 18 is a schematic view of the light shielding sheet of Figure 16.
  • Figure 19 is a schematic view of the light shielding sheet of Figure 16.
  • Figure 20 is a schematic block diagram of a third embodiment of the power tool of the present invention.
  • Figure 21 is a partial cross-sectional view showing a fourth embodiment of the power tool of the present invention.
  • Figure 22 is a partial enlarged view of a portion indicated by G in Figure 21 .
  • Figure 23 is a schematic structural view of the magnetic disk of Figure 21.
  • Figure 24 is a partial cross-sectional view showing a fifth embodiment of the power tool of the present invention.
  • Figure 25 is a cross-sectional view taken along line H-H of Figure 24;
  • Torque detecting unit 301 Magnetic encoder 302. Magnetic sheet 303. Spherical rod
  • Photoelectric sensor 34 Bracket 51. Torque detecting unit 511. Photoelectric sensor
  • a power tool includes a housing 1, a motor disposed in the housing 2, a power supply 3 for the motor 2, a main switch 6 for starting or stopping the motor 2, a planetary gear mechanism 4, and an output shaft 7.
  • the gear transmission mechanism 4 is disposed in the gear case, and the gear case includes a front case 9 and a rear case 10.
  • the planetary gear transmission 4 includes a first planetary gear set composed of a first planetary gear 41 and a first carrier 42 and a first ring gear 47.
  • the second planetary gear 43 and the second carrier 44, the second ring gear 48 The second planetary gear set is composed of a third planetary gear set composed of a third planetary gear 45 and a third carrier 46 and a third ring gear 11.
  • the output shaft 7 is fixedly mounted on the third planet carrier 46.
  • the inner surface of the third ring gear 11 is formed with internal teeth which mesh with the external teeth of the third planet gear 45.
  • a slope is formed on the end surface of the third ring gear 11 in the direction toward the output shaft 7.
  • the power tool further includes a torque control system including a torque setting unit 15 electrically connected to each other, a torque detecting unit 12, a data conversion circuit, a processing unit, and a control execution unit.
  • a torque control system including a torque setting unit 15 electrically connected to each other, a torque detecting unit 12, a data conversion circuit, a processing unit, and a control execution unit.
  • the data conversion circuit is disposed on the printed wiring board 13 (PCB board).
  • the data conversion circuit is a commonly used circuit in the industry, and will not be described here.
  • the data conversion circuit includes two conversion circuits, that is, a first data conversion circuit and a second data conversion circuit.
  • the first data conversion circuit is for receiving a resistance or pulse signal change value from the torque setting unit
  • the second data conversion circuit is for receiving a pulse signal change value from the torque detecting unit.
  • the processing unit is disposed on the printed wiring board 13.
  • the processing unit can use an MCU, a DSP, or the like.
  • the processing unit is a microcomputer control system (MCU).
  • MCUs typically include a central processing unit (CPU), read only memory (ROM), random access memory (RAM), etc., as the operation of these units is well known to those of ordinary skill in the art. I won't go into details here.
  • the control execution unit is disposed on the printed circuit board, and the control execution unit is controlled by the processing unit to perform power shutdown of the motor. Since the working principle of the control execution unit is well known to those skilled in the art, no further details are provided herein.
  • the torque setting unit 15 includes an annular member 8 and a potentiometer 16 rotatably disposed on the front housing 9.
  • the ring member 8 is sleeved on the front case 9, and the inner wall of the ring member 8 is formed with teeth 81.
  • a bracket 17 is fixedly disposed on the front housing 9.
  • the potentiometer 16 is rotatably disposed on the bracket 17, and the outer circumference of the potentiometer 16 is provided with teeth 161, and the teeth 161 of the potentiometer 16 are engaged with the teeth 81 of the ring member 8.
  • the potentiometer 16 is a rotary variable resistor.
  • the operator rotates the ring member 8 by hand, and the rotation of the ring member 8 drives the potentiometer 16 to rotate, and the resistance value of the potentiometer 16 changes, and the resistance value change is transmitted to the first data conversion circuit.
  • the processing unit the processing unit is converted into a torque value by calculation, and the set torque of the power tool is obtained.
  • the torque detecting unit 12 is disposed on the front case 9.
  • the torque detecting unit 12 includes a sensor fixedly disposed on the front case 9, and the sensor is preferably a photosensor 121, a detecting member movably disposed in the front case 9, and the detecting member is preferably a light blocking piece 122.
  • the spherical ejector pin 123 and the visor 122 are fixedly mounted together, and the spherical ejector pin 123 and the visor 122 may be integrally formed, and the elastic member 124 is sleeved on the visor 122.
  • a blind hole 91 is provided in the front case 9, and the spherical ejector pin 123 and the elastic member 124 are movably disposed in the blind hole 93.
  • the elastic member 124 is a spring, and the elastic member 124 may also be a compression spring, a flat spring or the like.
  • the light shielding sheet 122 includes a plurality of through holes 1221 which are uniformly disposed.
  • a light beam 1211 is emitted from the photoelectric sensor 121, and when the power tool is operated, the torque transmitted to the third ring gear 11 through the output shaft 7 reaches a certain value (where the torque is reached).
  • the certain value refers to the torque value required to overcome the initial torque of the elastic member 124
  • the third ring gear 11 rotates, and the inclined surface of the third ring gear 11 abuts the spherical ejector pin 123, so that the visor 122 is shown along K.
  • the direction moves linearly with respect to the photosensor 121, that is, the visor 122 moves axially relative to the output shaft 7.
  • the ray 1211 is blocked by the visor 122 or passes through the through hole 1221 of the visor 122, and the photosensor 121 Recording the number of through holes 1221 and generating corresponding pulse signals (each pulse represents the moving distance, ie moving distance/pulse), the signal is transmitted to the processing unit through the second data conversion circuit, and the processing unit calculates and pulses The signal is converted into a corresponding displacement amount, that is, the displacement amount of the elastic member 124, which is also the displacement amount of the third ring gear 11.
  • the processor multiplies the stiffness (force/length) of the elastic member 124 by the displacement amount to obtain the pressure F1 received by the elastic member 124, and then calculates the force applied by the third ring gear 11 to the spherical ejector pin 123 by the slope calculation formula.
  • F2 the force F2 is perpendicular to the radius of gyration of the third ring gear 11.
  • the torque received by the third ring gear 11 is calculated, that is, the torque value to be measured is obtained.
  • the slope calculation formula is a common formula in the industry. For example, if the angle between the slope of the ring gear and the horizontal plane is ⁇ , the stiffness of the elastic element is ⁇ , and ⁇ ' is the equivalent angle, the force F2 of the ring gear is F1/tag ( ⁇ + ⁇ , ;).
  • FIG. 6 there is shown a block diagram of the first embodiment of the power tool of the present invention.
  • the processor is powered on reset, performing an initialization operation (step 191), and then the operator rotates the ring member 8, causing the potentiometer 16 to rotate, and the resistance value of the potentiometer 16 changes (step 192), the resistor
  • the value change is passed to the processing unit via the first data circuit (step 193), and the processing unit converts the resistance value into a torque value by calculation (step 194), and the new torque set value is stored in the first memory of the processing unit (step 195).
  • the power tool starts to work (step 196), the photoelectric sensor 121 detects the movement change amount of the light shielding sheet 122 in real time, and generates a signal indicating the movement variation amount of the third ring gear 11 in real time, and the signal is transmitted to the second data conversion circuit.
  • the processing unit reads the detected value of the photosensor 121 in real time (step 197), and converts the torque value into a second memory of the processing unit (step 198), and the processing unit compares whether the real-time measured torque value is greater than or equal to the setting.
  • the torque value (step 199), if not, proceeds to the next step, the power tool can continue to operate (step 200); if so, the processing unit transmits a signal to the control execution unit to cut off the motor power supply (step 201).
  • FIG. 7 through 12 a second embodiment of the present invention is shown.
  • the structure and working principle of the data conversion circuit, the processing unit, and the control unit are the same as those in the first embodiment, and are not described herein again.
  • the torque setting unit 31 includes an annular member 8 sleeved on the output shaft 7, a light shielding sheet 32 fixedly disposed on the annular member 8, and a photosensor 33 fixedly disposed on the front housing 9.
  • a bracket 34 is fixedly disposed on the front case 9, and the photosensor 33 is fixedly disposed on the bracket 34.
  • the light shielding sheet 32 includes a plurality of through holes 321 each provided.
  • the photoelectric sensor 33 records the number of through holes 321 passing through and generates a pulse signal, and the pulse signal is transmitted to the processing unit through the first data conversion circuit, and the processing unit converts the pulse signal into a detected torque value through calculation.
  • the changed torque value plus the previously set torque value gives the set torque of the power tool.
  • the varying torque value can be either positive or negative.
  • the torque setting unit 30 can also use the torque setting unit 15 in the first embodiment.
  • the torque detecting unit 30 includes a sensor fixedly disposed on the front case 9, and the sensor is preferably a magnetic encoder 301, a detecting member movably disposed in the front case 9, and the detecting member is preferably a magnetic piece 302.
  • the spherical ejector 303 is fixedly mounted with the magnetic piece 302.
  • the spherical ejector 303 and the magnetic piece 302 may also be integrally formed, and the elastic member 304 is sleeved on the magnetic piece 302.
  • a blind hole 91 is provided in the front case 9, and the spherical top rod 303 and the elastic member 304 are movably disposed in the blind hole 91.
  • the elastic member 304 is a spring, and the elastic member 304 may also be a compression spring, a flat spring or the like.
  • the magnetic sheet 302 is provided with a plurality of sets of S and N magnetic poles, and the magnetic poles may be printed on the surface of the magnetic sheet 302, or may be disposed on the magnetic sheet 302 by sintering, or may be sprayed with magnetic powder.
  • the manner is set on the magnetic sheet 302. The manner of arrangement well known to those skilled in the art is within the scope of the inventive concept.
  • the third ring gear 1 1 rotates, and the inclined surface of the third ring gear 1 1 presses the spherical jack 303,
  • the magnetic sheet 302 is linearly moved relative to the magnetic encoder 301 in the direction indicated by M, that is, the magnetic sheet 302 is axially moved relative to the output shaft 7, and the S and N magnetic poles disposed on the magnetic sheet 302 are sequentially opposed to the magnetic encoder 301.
  • the magnetic encoder 301 records the number of S poles or N poles passing through and generates a pulse signal (each pulse represents a moving distance, that is, a moving distance/pulse), and the signal is transmitted to the second data conversion circuit.
  • the processing unit calculates, by the processing unit, the pulse signal into a corresponding displacement amount, which is the displacement amount of the elastic element 304, and is also the displacement amount of the third ring gear 1 1 .
  • the pressure applied to the elastic member 304 is obtained by multiplying the stiffness (force/length) of the elastic member 304 by the displacement amount, and then the force applied by the third ring gear 1 1 to the spherical plunger 303 is calculated by the slope calculation formula, and then The force is calculated by the radius of gyration of the third ring gear 1 1 to calculate the torque received by the third ring gear 1 1 , that is, the torque value to be measured is obtained.
  • FIG. 12 there is shown a block diagram of a second embodiment of the power tool of the present invention.
  • the processor is powered on and resets (step 361), after which the processing unit reads the previously set torque value in the memory (step 362), and then the operator rotates the ring member 8 to make the shading
  • the chip 32 generates rotation relative to the photosensor 33, and the photosensor 33 senses a pulse change (363).
  • the pulse change signal is transmitted to the processing unit through the first data conversion circuit, and the processing unit converts the pulse change into the detected change torque by calculation.
  • the value, the changed torque value may be a positive number or a negative number (step 364), and the changed torque value plus the previous set value is the newly set torque value (step 365), and the newly set torque value is
  • the first memory of the processing unit is stored (step 366).
  • the power tool starts to work (step 367), the magnetic encoder 301 detects the movement change amount of the magnetic piece 302 in real time, and generates a signal indicating the movement variation amount of the third ring gear 1 1 in real time, and the signal passes through the second data conversion circuit.
  • the processing unit reads the detected value of the magnetic encoder in real time (step 368), and converts the converted torque value into the second memory of the processing unit (step 369), and compares whether the real-time measured torque value is greater than or equal to The torque value is determined (step 370), if not, the next step is continued, the power tool can continue to operate (step 371); if so, the processing unit transmits a signal to the control execution unit to cut off the motor power supply (step 372) .
  • FIG. 13 to 20 there is shown a third embodiment of the power tool of the present invention.
  • the structure and working principle of the data conversion circuit, the processing unit, and the control unit are the same as those in the first embodiment, and details are not described herein again.
  • the torque setting unit 52 includes a tact switch 521 electrically connected to the printed wiring board 13.
  • the touch switch 521 is an industry-wide switch including an electronic display 522, buttons 523, 524 for setting the torque value, and a button 525 for turning on the power of the tact switch 521.
  • the electronic display 522 can be a digital tube or a liquid crystal screen.
  • the operator can conveniently operate the button 523, 524 for setting the torque value to set the torque value, which is transmitted to the first memory of the processing unit through the first data conversion circuit.
  • the torque setting unit 52 can also use the torque setting unit in the first embodiment or the second embodiment.
  • the torque detecting unit 51 includes a sensor fixedly disposed on the rear case 1 1 , and the sensor is preferably a photo sensor 51 1 , a detecting member fixedly disposed on the third ring gear 1 1 , and the detecting member is preferably an annular shading plate 51 2 .
  • the third ring gear 11 is provided with a groove 1 1 1 on the end face of the output shaft 7, and a free end of the elastic member 51 3 is disposed in the ring gear groove 1 1 1 , and the elastic member 51 3
  • the main body is sleeved on the front case 9, and the other free end of the elastic member 51 3 is fixedly disposed on the front case 9.
  • the elastic member 51 3 is a torsion spring. Referring to Fig.
  • the light shielding disk 51 2 includes a plurality of through holes 51 21 each disposed on the circumference.
  • the light shielding plate 51 2 may also be made of a light transmissive material, and a plurality of opaque stripes 51 22 are disposed on the circumference of the light shielding plate 51 2 .
  • the light emitted by the photosensor 511 is blocked by the light shielding sheet 512 or passes through the through hole 5121 of the light shielding sheet 512, and the photoelectric sensor 511 records the number of the through holes 5121 passing through and generates a pulse signal (each pulse represents an angular displacement)
  • the quantity, ie the angular displacement amount/pulse) is transmitted to the processing unit through the second data conversion circuit, and the processing unit calculates the pulse signal into a corresponding angular displacement amount, according to the stiffness of the elastic element 513 (torque/angle)
  • the multiplication by the angular displacement amount yields the torque experienced by the elastic member 513, that is, the torque value that needs to be measured.
  • FIG 20 there is shown a block diagram of a third embodiment of the power tool of the present invention.
  • the processor is powered on reset, performs an initialization operation (step 531), then activates the tact switch 521, clears the original set value of the processing unit (step 532), and then presses the tact switch 521 to set
  • the torque value is determined (step 533), and the newly set torque value is transmitted to the first memory of the processing unit through the first data conversion circuit (step 534).
  • the power tool starts to work (step 535), the photosensor 511 detects the movement change amount of the visor 512 in real time, and generates a signal indicating the movement variation of the third ring gear 11 in real time, and the signal is transmitted to the second data conversion circuit.
  • the processing unit reads the detected value of the photosensor 511 in real time (step 536), and converts the torque value into a second memory of the processing unit (step 537), and compares whether the real-time measured torque value is greater than or equal to the set torque.
  • the value (step 538) if not, proceeds to the next step, the power tool can continue to operate (step 539); if so, the processing unit transmits a signal to the control execution unit to shut off the motor power supply (step 540).
  • the tact switch 521 of the torque setting unit 52 of the present embodiment can be replaced with a dial 55 electrically connected to the printed wiring board 13, as shown in FIG.
  • a dial 55 electrically connected to the printed wiring board 13, as shown in FIG.
  • There are many types of dials, and the dials that are more convenient to use are binary coded decimal code (BCD code) dials.
  • BCD code binary coded decimal code
  • each dial has zero to ninety positions, and each position has a corresponding digital display that represents the decimal number entered on the dial. Therefore, each dial can represent a decimal number. Several decimal digits are required to select a few pieces of BCD dial.
  • the BCD code dial There are five contacts behind the BCD code dial, where A is the input control line and the other four are the BCD code output signal lines.
  • A is the input control line and the other four are the BCD code output signal lines.
  • the dial is dialed to a different position, the input control line A is connected to one or several of the four BCD code output lines.
  • the BCD code output line that is connected to it is in the same state as the dial indicator The system is consistent.
  • the dial 55 is electrically coupled to the processing unit.
  • the processing unit can detect the value set by the BCD code dial 55 and convert it to a corresponding torque value.
  • FIG. 21 to 23 there is shown a fourth embodiment of the power tool of the present invention.
  • the structure and operation principle of the data conversion circuit, the processing unit, and the control unit are the same as those of the first embodiment.
  • the torque setting unit 15 is the same as the setting device of the first embodiment, and the torque setting unit 15 It can be replaced with any one of the torque setting modes of the second and third embodiments, and details are not described herein again.
  • the torque detecting unit 60 includes a sensor fixedly disposed on the rear case 10, and the sensor is preferably a magnetic encoder 601, a detecting member fixedly disposed on the third ring gear 1 1 , and the detecting member is preferably a ring-shaped disk 602.
  • the structure and arrangement of the elastic member 603 in this embodiment are the same as those in the third embodiment of the present invention, and are not described herein again.
  • the magnetic disk 602 includes a plurality of S, N magnetic poles uniformly disposed on the circumference.
  • the magnetic poles may be printed on the surface of the magnetic disk 602, or may be disposed on the magnetic disk 602 by sintering, or may be disposed by spraying magnetic powder.
  • On disk 602. The manner of arrangement well known to those skilled in the art is within the scope of the inventive concept.
  • the third ring gear 1 1 rotates, and the rotation of the third ring gear 1 1 causes the elastic member 603 to generate a twist.
  • the disk 602 is rotated relative to the magnetic encoder 601, that is, the disk 602 is rotated relative to the output shaft 7.
  • the magnetic encoder 601 records the number of S poles or N poles passed and generates a pulse signal (each pulse represents an angular displacement amount, that is, an angular displacement amount / pulse), and the second data conversion circuit will The signal is transmitted to the processing unit, and the processing unit calculates the pulse signal into a corresponding angular displacement amount, and simultaneously multiplies the angular displacement by the stiffness (torque/angle) of the elastic member 603 to obtain the torque of the torsion spring. The torque value that needs to be measured.
  • the third ring gear 1 1 is formed with a plurality of protrusions on the outer circumferential surface, except that the inner ring is formed with inner teeth that mesh with the outer teeth of the planetary gear 45. 1 1 2, the third ring gear 1 1 is clearance-fitted with the corresponding plurality of positioning grooves 92 provided on the front case 9 by the plurality of protrusions 1 1 2 .
  • the torque detecting unit 61 includes a pressure sensor 61 1 fixedly disposed on the casing. Referring to Fig. 25, a groove 93 is provided on the front side, and the groove 93 communicates with the positioning groove 92.
  • the pressure sensor 61 1 is disposed in the recess 93.
  • the pressure sensor here can take many forms.
  • the pressure sensor 61 1 may be a strain gauge.
  • the third ring gear 1 1 When the power tool is working, when the torque transmitted to the third ring gear 1 through the output shaft 7 reaches a certain value, the third ring gear 1 1 is rotated, and the protrusion 1 on the outer circumferential surface of the third ring gear 1 1 is generated. 1 2 will resist the strain resistance piece, the strain resistance piece will be deformed, and the resistance value will change.
  • the resistance value change is transmitted to the processing unit through the second data conversion circuit, and the processing unit converts the change amount of the resistance value into the force value by calculation. The value is multiplied by the radius of gyration of the third ring gear 1 1 to obtain the torque value of the third ring gear 1 1 , which is the torque value to be measured.
  • the torque value received by the third ring gear 1 1 in the above embodiment can also be replaced by detecting the torque value of the first ring gear 47 or the second ring gear 48.
  • the principle of detection and the principle of power supply for cutting off the motor are the same, and will not be described here.
  • the invention measures the torque of the ring gear through the torque detecting unit.
  • the torque detecting unit can sense the pulse signal in real time, and cooperate with the processing unit to detect the ring gear in real time. Torque.
  • the power supply to the motor can be cut off to effectively prevent damage to the power tool itself and the workpiece and materials. Since the torque detecting unit does not need to be combined with the mechanical clutch, the disadvantage of the mechanical clutch being easily worn out is avoided, and the power tool can cut off the power supply of the motor at the set torque value, thereby avoiding damage to the power tool itself or materials and workpieces.
  • the torque control system of the present invention can detect the real-time working efficiency of the power tool and prepare for further optimization of the operation of the power tool.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Details Of Spanners, Wrenches, And Screw Drivers And Accessories (AREA)

Description

动力工具 技术领域
本发明涉及一种动力工具, 尤其是具有螺丝批功能的动力工具。
背景技术
具有螺丝批功能的动力工具, 譬如无绳枪, 电动螺丝批等, 已经广泛应 用于各种不同的领域中, 譬如建筑、 家庭装修、 工厂作业等等。
根据螺丝批头的使用范围、 所加工的材料或者所加工的工件等性质的需 要, 动力工具在实现螺丝批功能时, 不能超过一定的扭矩, 否则会造成动力 工具本身或者材料、 工件的损坏。
为了防止由于超过设定的扭矩而使动力工具损伤, 或者造成材料或者工 件的破坏, 现有技术中已经产生了具有机械式离合器的电动螺丝批。 例如美 国公告专利 U S5277527公开了一种螺丝批, 该螺丝批设置有马达, 与马达输 出轴连接的行星齿轮减速机构, 与行星齿轮减速机构连接的主轴, 以及与主 轴连接的螺丝批头。 机械式离合器设置在行星齿轮减速机构上, 离合机构包 括内齿轮, 钢球、 垫圈以及弹性元件。 内齿轮套设在行星齿轮上, 内齿轮的 端面上沿轴向方向延伸出多个带斜面的端齿, 内齿轮的内壁上成型有轴向延 伸的内齿, 内齿用于与行星齿轮的轴向延伸的外齿啮合。 钢球以及垫圈设置 在扭力设定罩内, 钢球设置在垫圈以及内齿轮的端面之间, 弹性元件将钢球 抵靠在内齿轮的端面上。
螺丝批在工作前, 先用扭力设定罩设定所需的扭矩值, 螺丝批工作时, 马达输出轴产生旋转, 带动行星齿轮减速系统、 主轴产生旋转, 从而带动螺 丝批头拧动螺丝, 负载扭矩经螺丝批头传递给行星齿轮减速机构、 内齿圈、 钢球、 弹性元件。 当负载扭矩大于按压钢球的弹性元件的弹力时, 即达到设 定的扭矩时, 钢球便克服弹性元件的弹力, 越过内齿圈的端齿, 使得内齿圈 产生旋转, 此时, 马达输出轴与螺丝批头之间的扭矩传递被中断。
这种类型的机械式离合器不能在扭矩达到设定值时, 立即停机, 不断冲 击的离合器作用于螺丝批, 使工件的扭矩值大于设定值, 因而仅能实现相对 不精确的最大扭矩的设定, 这种扭矩的设定也只能分级调节, 而且机械式离 合器会产生机械磨损, 由此使得力的传递随着机械式离合器的不断的磨损而 下降。 在调节到最大扭矩的情况下, 离合器有时会在小于给定扭矩时分离, 有时会在大于设定扭矩时分离, 因而也会引起螺丝批本身或者材料、 工件的 损坏。
美国公告专利 US4231 270揭示了利用微动开关 (m i c r o sw i t c h ) 与机械 式离合器结合来实现扭矩控制, 从而在扭矩达到设定值时, 关断马达来防止 螺丝批本身以及工件、 材料的损坏。 由于使用微动开关, 在操作时在开关接 点上会产生火花等, 不仅造成接点的磨损, 对周边的电子元件或者电子电路 等也会带来各种弊端。 这种机械式开关不仅会对整个动力工具的寿命产生影 响, 在构造上对动力工具整体进行小型化也会存在很多限制。
英国公告专利 GB2328634B 公开了一种利用设置在内齿圈上的永磁铁 ( pe r ma n e nt magn et ) 与设置在机壳上的霍尔元件 (Ha l l s e n s o r ) , 结合机 械式离合器来进行螺丝批的扭矩控制。 当 负载扭矩大于机械式离合器中的弹 簧的弹力时, 机械式离合器的内齿圈会产生转动, 带动设置在内齿圈上的永 磁铁一起转动, 霍尔元件感应到永磁铁的转动, 便将信号传递给马达使得马 达停机, 来防止螺丝批本身以及工件、 材料的损坏。 由于这种扭矩检测单元 需要与机械式离合器结合, 机械式离合器容易磨损的弊端仍存在, 在调节到 最大扭矩的情况下, 机械式离合器有时会在小于给定扭矩时分离, 有时会在 大于设定扭矩时分离, 因而也会引起螺丝批本身或者材料、 工件的损坏。
发明内容
本发明所要解决的技术问题是:提供一种具有扭矩控制系统的动力工具。 本发明的技术方案是: 一种动力工具, 包括机壳; 设置在机壳内的马达, 所述马达输出旋转动力; 输出轴; 设置在马达和输出轴之间以将马达的旋转 输出传递到输出轴上的行星齿轮传动机构, 行星齿轮传动机构包括齿圈; 扭 矩控制系统; 所述扭矩控制系统用于检测所述齿圈受到的扭矩值, 并判断检 测的扭矩是否大于或等于动力工具的预设扭矩值, 如果大于或等于动力工具 预设的扭矩值, 所述扭矩控制系统便停止马达的电源供给。
其中, 所述齿轮传动机构包括至少一組齿轮系, 所述齿轮系包括行星轮 系, 所述行星轮系包括若干行星轮以及用于支撑行星轮的行星架, 所述齿圈 与所述行星轮齿形连接;所述扭矩控制系统用于实时检测齿圈所受到的扭矩; 所述扭矩控制系统包括扭矩检测单元及与扭矩检测单元电连接的处理单元。
其中, 所述扭矩检测单元包括固定设置在机壳上的传感器, 与齿圈连接 并在齿圈运动时而相对于传感器运动的检测件, 所述传感器根据检测到的检 测件的运动变化量而生成表征所述齿圈运动变化量的信号, 并传递给所述处 理单元; 所述处理单元用于根据接收到的信号计算齿圈的扭矩, 并在扭矩大 于设定的扭矩值时, 输出信号来停止马达电源供给。
其中, 所述检测件相对于输出轴作轴向运动。
所述动力工具还包括与检测件固定安装在一起的球面顶杆, 以及套设在 检测件上的弹性元件; 所述齿圈的一个端面上设置有斜面, 所述球面顶杆抵 压在斜面上; 当输出轴传递到齿圈上扭矩达到一定值时, 齿圈旋转, 并通过 斜面体动球面顶杆以及检测件相对于传感器运动;所述传感器为光电传感器, 所述检测件为遮光片 ; 所述传感器为磁编码器, 所述检测件为磁片。
其中, 所述检测件相对于输出轴作旋转运动。
所述动力工具还包括弹性元件, 所述弹性元件一端固定设置在齿圈上的 弹性元件, 另一端固定设置在机壳上; 当输出轴传递到齿圈上的扭矩达到一 定值时, 齿圈旋转, 并同时带动弹性元件产生扭转, 带动检测件相对于传感 器转动; 所述传感器为光电传感器, 所述检测件为环形的遮光盘; 所述传感 器为磁编码器, 所述检测件为环形的磁盘。
其中, 所述扭矩检测单元包括设置在机壳内的压力传感器, 所述齿圈的 外圆周面上均布有多个凸起, 所述压力传感器抵靠在所述之一凸起上。
所述扭矩控制系统还包括与处理单元电连接的扭矩设定单元, 所述扭矩 设定单元用于设定数值, 所述处理单元可将扭矩设定单元设定的数值转换成 预设扭矩值并存储于处理单元内。
所述扭矩控制系统还包括与处理单元电连接的扭矩设定单元, 所述扭矩 设定单元用于设定预设扭矩值, 所述处理单元用于存储预设扭矩值。
本发明的有益效果是: 本发明的扭矩控制系统通过扭矩检测单元来测量 内齿圈所受的扭矩, 只要内齿圈受力产生转动, 扭矩检测单元便可以实时感 应到脉冲信号, 通过与处理单元共同作用, 来实时检测内齿圈所受到的扭矩。 当检测到的齿圈所受到的扭矩大于动力工具设定的扭矩值时, 可以停止马达 的电源供给, 避免了动力工具本身或者材料、 工件的损坏。
附图说明
下面结合附图对本发明做进一步说明。
图 1 是本发明动力工具第一实施例的局部剖视图。
图 2是图 1 中传动部分的剖视图。 图 3是图 2 中 C所示部分的局部放大图。
图 4是图 3 中沿 B所示方向的示意图。
图 5是图 3 中沿 A所示方向的示意图。
图 6是本发明动力工具第一实施例的原理方框图。
图 7是本发明动力工具第二实施例的局部剖视图。
图 8是图 7 中 E所示部分的局部放大图。
图 9是图 8 中沿 B' 所示方向的示意图。
图 10是图 8 中沿 A' 所示方向的示意图。
图 11 是图 7 中遮光片的结构示意图。
图 12是本发明动力工具第二实施例的原理方框图。
图 13是本发明动力工具第三实施例的局部剖视图。
图 14是图 13 中的轻触开关的示意图。
图 15是第三实施例中拨盘的示意图。
图 16是图 13 中传动部分的剖视图。
图 17是图 16中 F所示部分的局部放大 I
图 18是图 16中遮光片的示意图。
图 19是图 16中遮光片的示意图。
图 20是本发明动力工具第三实施例的原理方框图。
图 21 是本发明动力工具第四实施例的局部剖视图。
图 22是图 21 中 G所示部分的局部放大图。
图 23是图 21 中磁盘的结构示意图。
图 24是本发明动力工具第五实施例的局部剖视图。
图 25是图 24中沿 H- H所示方向的剖视图。
其中:
体 2.马达 3.电源 4.齿轮传动机构 一行星齿轮 42. 第一行星架 43.第二行星齿轮 44.第二行星架 三行星齿轮 46.第三行星架 47、 第一齿圈 48、 第二齿圈 关 7.输出轴 8.环形元件 81.齿
壳 91.凹槽 92.定位凹槽 93.凹槽 壳 11.第三齿圈 111.凹槽 112.凸起 矩检测单元 121.光电传感器 1211.光线 122.遮光片 1221.通孔 123.球面顶杆 124.弹性元件 13.印刷线路板
15.扭矩设定单元 16.电位器 161.齿 17.支架
30.扭矩检测单元 301.磁编码器 302.磁片 303.球面顶杆
304.弹性元件 31.扭矩设定单元 32.遮光片 321.通孔
33.光电传感器 34.支架 51.扭矩检测单元 511.光电传感器
512.遮光盘 5121.通孔 5122.不透光条紋 513.弹性元件
60.扭矩检测单元 601.磁编码器 602.磁盘 61.扭矩检测单元
611.压力传感器
具体实施方式
参见图 1 至图 6所示, 是本发明动力工具第一实施例的结构示意图。 一 种动力工具, 包括壳体 1、 设置在壳体 1 内的马达 2、 马达 2的供给电源 3, 启动或停止马达 2的主开关 6, 行星齿轮传动机构 4 以及输出轴 7。 齿轮传动 机构 4设置在齿轮箱内, 齿轮箱包括前壳 9与后壳 10。 行星齿轮传动机构 4 包括由第一行星轮 41 与第一行星架 42、第一齿圈 47組成的第一行星齿轮組, 由第二行星轮 43与第二行星架 44、 第二齿圈 48組成的第二行星齿轮組, 由 第三行星轮 45与第三行星架 46、 第三齿圈 11 組成的第三行星齿轮組。 输出 轴 7 固定安装在第三行星架 46上。
第三齿圈 11 的内表面成型有内齿, 内齿与第三行星轮 45的外齿啮合。 第三齿圈 11 朝向输出轴 7的方向的端面上成型有斜面。
动力工具还包括扭矩控制系统, 扭矩控制系统包括相互电连接的扭矩设 定单元 15、 扭矩检测单元 12、 数据转换电路、 处理单元以及控制执行单元。
数据转换电路设置在印刷线路板 13 (PCB板) 上。 该数据转换电路为业 界常用电路, 此处不再赘述。 数据转换电路包括两条转换电路, 即第一数据 转换电路, 第二数据转换电路。 第一数据转换电路用于接收来自扭矩设定单 元的电阻或者脉冲信号变化值, 第二数据转换电路用于接收来自扭矩检测单 元的脉冲信号变化值。
处理单元设置在印刷线路板 13上。处理单元可以采用 MCU、或者 DSP等。 在本实施例中, 处理单元为一微电脑控制系统 ( MCU )。 本领域技术人员可以 想到的是, MCU 通常包括有中央处理单元 (CPU)、 只读存储器 (R0M)、 随机 存储器 (RAM) 等, 由于这些单元的工作原理为本领域普通技术人员所熟知, 此处不再赘述。 控制执行单元设置在印刷线路板上, 控制执行单元由处理单元控制, 来 执行电机的动力关断。 由于控制执行单元的工作原理为本领域普通技术人员 所熟知, 此处不再赘述。
参见图 1 所示,扭矩设定单元 15包括一环形元件 8 以及可转动地设置在 前壳 9上的电位器 16 ( potent iometer)。 该环形元件 8套设在前壳 9上, 环形元件 8 的内壁上成型有齿 81。 在前壳 9 上固定设置有支架 17, 电位器 16可转动地设置在支架 17上, 电位器 16的外圆周上设置有齿 161, 电位器 16的齿 161 与环形元件 8的齿 81 啮合。 在本实施例中, 电位器 16为旋转可 变电阻。 当需要设定扭矩时, 操作者用手旋转环形元件 8, 环形元件 8 的旋 转带动电位器 16进行旋转, 电位器 16的电阻值便会发生变化, 电阻值变化 通过第一数据转换电路传递给处理单元, 处理单元经过计算换算成扭矩值, 即得出动力工具的设定扭矩。
扭矩检测单元 12设置在前壳 9上。 扭矩检测单元 12包括固定设置在前 壳 9 上的传感器, 传感器优选为光电传感器 121, 可移动地设置在前壳 9 内 的检测件, 检测件优选为遮光片 122。 球面顶杆 123 与遮光片 122 固定安装 在一起, 球面顶杆 123与遮光片 122也可以一体成型, 弹性元件 124套设在 遮光片 122上。 在前壳 9上设置有盲孔 91, 球面顶杆 123 以及弹性元件 124 可移动的设置在盲孔 93 内。 优选的, 弹性元件 124 为弹簧, 弹性元件 124 也可以为压簧、 扁簧等等。
在本实施例中, 遮光片 122包括均匀设置的多个通孔 1221。
参见图 4及图 5所示, 动力工具开机后, 自光电传感器 121 发出一束光 线 1211, 当动力工具工作时, 通过输出轴 7传递到第三齿圈 11 的扭矩到达 一定的值(该处一定的值是指克服弹性元件 124初始扭力所需的扭矩值) 时, 第三齿圈 11 产生转动, 第三齿圈 11 的斜面抵压球形顶杆 123, 使得遮光片 122 沿 K所示的方向相对于光电传感器 121 直线移动, 即遮光片 122相对于 输出轴 7作轴向运动, 此时, 光线 1211 会被遮光片 122遮住, 或者穿过遮光 片 122 的通孔 1221, 光电传感器 121 记录通过的通孔 1221 的数量, 并生成 相应的脉冲信号 (每个脉冲代表移动距离, 即移动距离 /脉冲), 该信号通过 第二数据转换电路传递给处理单元, 处理单元经过计算, 将脉冲信号换算成 相应的位移量, 即弹性元件 124的位移量, 同样也是第三齿圈 11 的位移量。 譬如, 光电传感器 121 生成 n个脉冲信号, 位移量计算公式为: 位移量 =nX 移动距离 冲。
然后, 处理器根据弹性元件 124的刚度 (力 /长度) 与位移量相乘得到弹 性元件 124所受的压力 F1, 然后通过斜面计算公式计算出第三齿圈 11 对球 面顶杆 123施加的力 F2, 力 F2与第三齿圈 11 的回转半径垂直。 然后根据力 F2乘第三齿圈 11 的回转半径计算出第三齿圈 11 所受的扭矩, 即得出需要测 量的扭矩值。
其中, 斜面计算公式为业界通用的公式, 譬如, 设定齿圈的斜面与水平 面的角度为 α , 弹性元件的刚度为 Ρ, Ρ ' 为当量摩檫角, 则齿圈所受的力 F2 = F1/tag ( α + Ρ, ;)。
参见图 6所示, 是本发明动力工具第一实施例原理方框图。 当开关 6闭 合后, 处理器上电复位, 执行初始化动作 (步骤 191), 然后操作者转动环形 元件 8, 使得电位器 16产生旋转, 电位器 16的电阻值发生变化 (步骤 192 ), 该电阻值变化通过第一数据电路传递给处理单元 (步骤 193), 处理单元通过 计算将电阻值换算成扭矩值 (步骤 194), 新的扭矩设定值被存入处理单元的 第一内存 (步骤 195)。 此时, 动力工具开始工作 (步骤 196), 光电传感器 121 实时检测遮光片 122的运动变化量, 并实时生成表征第三齿圈 11 运动变 化量的信号, 该信号通过第二数据转换电路传递给处理单元, 处理单元实时 读取光电传感器 121 的检测值 (步骤 197), 并换算成扭矩值存入处理单元的 第二内存 (步骤 198), 处理单元比较实时测量扭矩值是否大于或等于设定扭 矩值 (步骤 199 ), 如果不是, 则继续进行下一步骤, 动力工具可以继续工作 (步骤 200); 如果是, 则处理单元将信号传给控制执行单元, 切断马达电源 供给 (步骤 201)。
参见图 7至图 12, 是本发明的第二实施例。 在该实施例中, 数据转换电 路、 处理单元以及控制单元的结构与工作原理与第一实施例相同, 此处不再 赘述。
扭矩设定单元 31 包括套设在输出轴 7上的环形元件 8、 固定设置在环形 元件 8 上的遮光片 32 以及固定设置在前壳 9 上的光电传感器 33。 在前壳 9 上固定设置有支架 34, 光电传感器 33 固定设置在支架 34上。 遮光片 32 包 括均 设置的多个通孔 321。当需要设定扭矩时,操作者用手旋转环形元件 8, 环形元件 8的旋转带动遮光片 32进行旋转并相对光电传感器 33进行位移, 光电传感器 33 发出的光线便会被遮光片 32 遮住, 或者穿过遮光片的通孔 32 1, 光电传感器 33记录下通过的通孔 321 的个数并生成脉冲信号, 脉冲信 号通过第一数据转换电路传递给处理单元, 处理单元将脉冲信号经过计算换 算成检测到的变化的扭矩值, 变化的扭矩值加上前次设定的扭矩值即得出动 力工具的设定扭矩。 变化的扭矩值可以为正数, 也可以为负数。
在本实施例中,扭矩设定单元 30也可以使用第一实施例中的扭矩设定单 元 1 5。
扭矩检测单元 30包括固定设置在前壳 9上的传感器,传感器优选为磁编 码器 301, 可移动地设置在前壳 9 内的检测件, 检测件优选为磁片 302。 球面 顶杆 303与磁片 302 固定安装在一起, 球面顶杆 303与磁片 302也可以一体 成型, 弹性元件 304套设在磁片 302上。 在前壳 9上设置有盲孔 91, 球面顶 杆 303 以及弹性元件 304可移动的设置在盲孔 91 内。 优选的, 弹性元件 304 为弹簧, 弹性元件 304也可以为压簧、 扁簧等等。
参见图 9、 图 1 0所示, 磁片 302上设置有多組 S、 N磁极, 磁极可以印 刷在磁片 302的表面, 也可以通过烧结而设置在磁片 302上, 也可以通过喷 磁粉的方式设置在磁片 302上。 本领域人员所熟知的设置方式均属于本发明 的构思范围。
动力工具工作时,当通过输出轴 7传递到第三齿圈 1 1 的扭矩到达一定的 值时, 第三齿圈 1 1 产生转动, 第三齿圈 1 1 的斜面抵压球形顶杆 303, 使得 磁片 302沿 M所示的方向相对磁编码器 301 直线移动, 即磁片 302相对于输 出轴 7作轴向运动, 设置在磁片 302上的 S、 N磁极便依次相对磁编码器 301 移动, 此时, 磁编码器 301 记录下通过的 S极或者 N极的个数并生成脉冲信 号 (每个脉冲代表移动距离, 即移动距离 /脉冲), 该信号通过第二数据转换 电路传递给处理单元, 处理单元经过计算, 将脉冲信号换算成相应的位移量, 该位移量为弹性元件 304的位移量, 同样也是第三齿圈 1 1 的位移量。 然后根 据弹性元件 304的刚度(力 /长度) 与位移量相乘得到弹性元件 304所受的压 力, 然后通过斜面计算公式计算出第三齿圈 1 1 对球面顶杆 303施加的力, 然 后根据力乘第三齿圈 1 1 的回转半径计算出第三齿圈 1 1 所受的扭矩, 即得出 需要测量的扭矩值。
参见图 1 2所示, 是本发明动力工具第二实施例原理方框图。 当开关闭合 后, 处理器上电复位, 执行初始化动作 (步骤 361 ), 之后处理单元读取内存 中的前次设定的扭矩值 (步骤 362 ), 然后操作者转动环形元件 8, 使得遮光 片 32 产生相对于光电传感器 33 产生旋转, 光电传感器 33 感应脉冲变化 ( 363 ), 脉冲变化信号通过第一数据转换电路传递给处理单元, 处理单元通 过计算将脉冲变化换算成检测到的变化的扭矩值,变化的扭矩值可以为正数, 也可以为负数 (步骤 364 ), 变化扭矩值加上前次设定值便为新设定的扭矩值 (步骤 365 ),新设定的扭矩值被存入处理单元的第一内存(步骤 366 )。此时, 动力工具开始工作 (步骤 367 ), 磁编码器 301 实时检测磁片 302的运动变化 量, 并实时生成表征第三齿圈 1 1 运动变化量的信号, 该信号通过第二数据转 换电路传递给处理单元, 处理单元实时读取磁编码器的检测值 (步骤 368 ), 并换算成扭矩值存入处理单元的第二内存 (步骤 369 ), 并比较实时测量扭矩 值是否大于或等于设定扭矩值(步骤 370 ), 如果不是, 则继续进行下一步骤, 动力工具可以继续工作 (步骤 371 ) ; 如果是, 则处理单元将信号传给控制执 行单元, 切断马达电源供给 (步骤 372 )。
参见图 1 3至图 20所示, 是本发明动力工具第三实施例。在本实施例中, 数据转换电路、处理单元以及控制单元的结构与工作原理与第一实施例相同, 此处不再赘述。
扭矩设定单元 52 包括与印刷线路板 1 3 电连接的轻触开关 521。 轻触开 关 521 为业界通用的开关, 包括电子显示屏 522、设定扭矩值的按键 523、 524 以及用于通断轻触开关 521 的电力的按键 525。 电子显示屏 522 可以为数码 管或者液晶屏。
利用轻触开关 521,操作者可以很方便地操作设定扭矩值的按键 523、524 来设定扭矩值, 设定的扭矩值通过第一数据转换电路传递到处理单元的第一 内存。在本实施例中, 扭矩设定单元 52也可以使用第一实施例或者第二实施 例中的扭矩设定单元。
扭矩检测单元 51 包括固定设置在后壳 1 1 上的传感器, 传感器优选为光 电传感器 51 1, 固定设置在第三齿圈 1 1 上的检测件, 检测件优选为环形的遮 光盘 51 2。在本实施例中,第三齿圈 1 1朝向输出轴 7的端面上设置有凹槽 1 1 1, 弹性元件 51 3的一个自由端设置在齿圈凹槽 1 1 1 内, 弹性元件 51 3的主体套 设在前壳 9上, 弹性元件 51 3的另一自 由端固定设置在前壳 9上。 在本实施 例中, 弹性元件 51 3为扭簧。 参见图 1 6所示, 遮光盘 51 2包括均 设置在圆 周上的多个通孔 51 21。 参见图 1 9 所示, 遮光盘 51 2也可以使用透光材料制 成, 遮光盘 51 2的圆周上均 设置有多个不透光的条紋 51 22。 动力工具工作时,当通过输出轴 7传递到第三齿圈 11 的扭矩到达一定的 值时, 第三齿圈 11 产生转动, 第三齿圈 11 的转动带动弹性元件 513产生扭 转, 同时带动遮光盘 512相对于光电传感器 511 转动, 即遮光盘 512相对于 输出轴 7作旋转运动。 光电传感器 511 发出的光线便会被遮光片 512遮住, 或者穿过遮光片 512 的通孔 5121, 光电传感器 511 记录下通过的通孔 5121 的个数并生成脉冲信号 (每个脉冲代表角位移量, 即角位移量 /脉冲), 该信 号通过第二数据转换电路传递给处理单元, 处理单元经过计算, 将脉冲信号 换算成相应的角位移量, 同时根据弹性元件 513的刚度 (扭矩 /角度) 与角位 移量相乘得到弹性元件 513所受的扭矩, 即得出需要测量的扭矩值。
参见图 20 所示, 是本发明动力工具第三实施例原理方框图。 当开关 6 闭合后, 处理器上电复位, 执行初始化动作 (步骤 531), 之后启动轻触开关 521, 将处理单元的原设定值清零 (步骤 532), 然后按压轻触开关 521, 设定 扭矩值 (步骤 533 ), 新设定的扭矩值通过第一数据转换电路传递给处理单元 的第一内存 (步骤 534)。 此时, 动力工具开始工作 (步骤 535), 光电传感器 511 实时检测遮光盘 512的运动变化量, 并实时生成表征第三齿圈 11 运动变 化量的信号, 该信号通过第二数据转换电路传递给处理单元, 处理单元实时 读取光电传感器 511 的检测值 (步骤 536), 并换算成扭矩值存入处理单元的 第二内存(步骤 537),并比较实时测量扭矩值是否大于或等于设定扭矩值(步 骤 538 ),如果不是,则继续进行下一步骤,动力工具可以继续工作(步骤 539 ); 如果是, 则处理单元将信号传给控制执行单元, 切断马达电源供给 (步骤 540)。
本实施例的扭矩设定单元 52 的轻触开关 521 可以更换为与印刷线路板 13 电连接的拨盘 55, 参见图 15所示。 拨盘的种类很多, 而使用比较方便的 拨盘是二进制编码的十进制代码 (BCD码) 拨盘。
参见图 15所示, 图中为四片 BCD码拨盘拼接的四位十进制输入拨盘組。 每片拨盘具有零至九十个位置, 每个位置都有相应的数字显示, 代表拨盘输 入的十进制数。 因此, 每片拨盘可代表一位十进制数。 需要几位十进制数可 选择几片 BCD拨码盘拼接。
BCD码拨盘后面有五个接点, 其中 A 为输入控制线, 另外四根是 BCD码 输出信号线。 拨盘拨到不同位置时, 输入控制线 A分别与四根 BCD码输出线 中的某根或某几根接通。 其接通的 BCD码输出线状态正好与拨盘指示的十进 制数相一致。
所述拨盘 55 与处理单元电连接。 所述处理单元可以检测 BCD码拨盘 55 设定的数值并将其转换成相应的扭矩值。
参见图 21 至图 23所示, 是本发明动力工具第四实施例。在本实施例中, 数据转换电路、处理单元以及控制单元的结构与工作原理与第一实施例相同, 扭矩设定单元 1 5与第一实施例的设定装置相同, 扭矩设定单元 1 5可以更换 为第二、 第三实施例中的任意一种扭矩设定方式, 此处不再赘述。
扭矩检测单元 60包括固定设置在后壳 1 0上的传感器, 传感器优选为磁 编码器 601, 固定设置在第三齿圈 1 1 上的检测件, 检测件优选为环形的磁盘 602。本实施例中的弹性元件 603的结构以及设置方式与本发明第三实施例的 相同, 此处不再赘述。
参见图 23所示, 磁盘 602包括均匀设置在圆周上的多个 S、 N磁极, 磁 极可以印刷在磁盘 602表面, 也可以通过烧结而设置在磁盘 602上, 也可以 通过喷磁粉的方式设置在磁盘 602上。 本领域人员所熟知的设置方式均属于 本发明的构思范围。
动力工具工作时,当通过输出轴 7传递到第三齿圈 1 1 的扭矩到达一定的 值时, 第三齿圈 1 1 产生转动, 第三齿圈 1 1 的转动带动弹性元件 603产生扭 转, 同时带动磁盘 602相对于磁编码器 601 转动, 即磁盘 602相对于输出轴 7作旋转运动。 此时, 磁编码器 601 记录下通过的 S极或者 N极的个数并生 成脉冲信号 (每个脉冲代表角位移量, 即角位移量 /脉冲), 并通过第二数据 转换电路将把该信号传递给处理单元, 处理单元经过计算, 将脉冲信号换算 成相应的角位移量, 同时根据弹性元件 603的刚度 (扭矩 /角度) 与角位移量 相乘得到扭簧所受的扭矩, 即得出需要测量的扭矩值。
参见图 24、 图 25所示, 是本发明动力工具第五实施例。 在本实施例中, 第三齿圈 1 1 除了在内圈上成型有与行星齿轮 45的外齿啮合的内齿外, 第三 齿圈 1 1 在外圆周面上还均布有多个凸起 1 1 2, 第三齿圈 1 1 通过该多个凸起 1 1 2与设置在前壳 9上的相应的多个定位凹槽 92 间隙配合。
在本实施例中, 数据转换电路、 处理单元以及控制单元的结构与工作原 理与第一实施例相同, 扭矩设定单元 1 5与第一实施例的设定装置相同, 扭矩 设定单元 1 5可以更换为第二、 第三实施例中的任意一种扭矩设定方式, 此处 不再赘述。 扭矩检测单元 61 包括固定设置在机壳上的压力传感器 61 1。 参见图 25 所示, 在前上设置有凹槽 93, 凹槽 93与定位凹槽 92相通。 压力传感器 61 1 便设置在凹槽 93 内。 此处的压力传感器可以有多种形式。 优选的, 压力传感 器 61 1 可以为应变电阻片 。
动力工具工作时,当通过输出轴 7传递到第三齿圈 1 1 的扭矩到达一定的 值时, 第三齿圈 1 1 产生转动, 第三齿圈 1 1 的外圆周面上的凸起 1 1 2便抵压 应变电阻片, 应变电阻片产生变形, 电阻值产生变化, 电阻值变化通过第二 数据转换电路传递给处理单元, 处理单元通过计算将电阻值的变化量换算成 力值, 力值乘以第三齿圈 1 1 的回转半径便得出第三齿圈 1 1 所受的扭矩值, 即为需要测量的扭矩值。
本领域普通技术人员可知,以上实施例中的实时检测第三齿圈 1 1 所受的 扭矩值, 也可以替换成检测第一齿圈 47或者第二齿圈 48的扭矩值。 其检测 原理以及切断马达的电源供给的原理均相同, 此处不再赘述。
本发明通过扭矩检测单元来测量内齿圈所受的扭矩, 只要内齿圈受力产 生转动, 扭矩检测单元便可以实时感应到脉冲信号, 通过与处理单元共同作 用, 来实时检测内齿圈所受的扭矩。 当检测到的扭矩值大于设定扭矩值时, 便可以切断马达的供电, 来有效地防止动力工具本身以及工件、 材料的损坏。 由于扭矩检测单元不需要与机械式离合器结合, 避免了机械式离合器容易磨 损的弊端, 动力工具可以在设定的扭矩值来切断马达的电源供给, 避免了动 力工具本身或者材料、 工件的损坏。 而且本发明的扭矩控制系统可以检测动 力工具的实时工作效率, 为进一步优化动力工具的操作做好准备。

Claims

权 利 要 求 书
、 一种动力工具, 包括机壳; 设置在机壳内的马达, 所述马达输出旋转动 力; 输出轴; 设置在马达和输出轴之间以将马达的旋转输出传递到输出 轴上的行星齿轮传动机构, 行星齿轮传动机构包括齿圈; 扭矩控制系统; 其特征在于: 所述扭矩控制系统用于检测所述齿圈受到的扭矩值, 并判 断检测的扭矩是否大于或等于动力工具的预设扭矩值, 如果大于或等于 动力工具的预设扭矩值, 所述扭矩控制系统便停止马达的电源供给。 、 根据权利要求 1 所述的动力工具, 其特征在于: 所述齿轮传动机构包括 至少一組齿轮系, 所述齿轮系包括行星轮系, 所述行星轮系包括若干行 星轮以及用于支撑行星轮的行星架, 所述齿圈与所述行星轮齿形连接。 、 根据权利要求 1 所述的动力工具, 其特征在于: 所述扭矩控制系统用于 实时检测齿圈所受到的扭矩。
、 根据权利要求 1 所述的动力工具, 其特征在于: 所述扭矩控制系统包括 扭矩检测单元及与扭矩检测单元电连接的处理单元
、 根据权利要求 4所述的动力工具, 其特征在于: 所述扭矩检测单元包括
固定设置在机冗上的传感器, 与齿圈连接并在齿圈运动时而相对于传感 器运动的检测件, 所述传感器根据检测到的检测件的运动变化量而生成 表征所述齿圈运动变化量的信号, 并传递给所述处理单元; 所述处理单 元用于根据接收到的信号计算齿圈的扭矩, 并在扭矩大于或等于设定的 扭矩值时, 输出信号来停止马达电源供给。
、 根据权利要求 5所述的动力工具, 其特征在于: 所述检测件相对于输出 轴作轴向运动。
、 根据权利要求 6所述的动力工具, 其特征在于: 所述动力工具还包括与 检测件固定安装在一起的球面顶杆, 以及套设在检测件上的弹性元件; 所述齿圈的一个端面上设置有斜面, 所述球面顶杆抵压在斜面上; 当输 出轴传递到齿圈上扭矩达到一定值时, 齿圈旋转, 并通过斜面体动球面 顶杆以及检测件相对于传感器运动。
、 根据权利要求 6所述的动力工具, 其特征在于: 所述传感器为光电传感 器, 所述检测件为遮光片。
、 根据权利要求 6所述的动力工具, 其特征在于: 所述传感器为磁编码器, 所述检测件为磁片。 、 根据权利要求 5所述的动力工具, 其特征在于: 所述检测件相对于输出 轴作旋转运动。
、 根据权利要求 1 0所述的动力工具, 其特征在于: 所述动力工具还包括弹 性元件, 所述弹性元件一端固定设置在齿圈上的弹性元件, 另一端固定 设置在机壳上; 当输出轴传递到齿圈上的扭矩达到一定值时, 齿圈旋转, 并同时带动弹性元件产生扭转, 带动检测件相对于传感器转动。
、 根据权利要求 1 0所述的动力工具, 其特征在于: 所述传感器为光电传感 器, 所述检测件为环形的遮光盘。
、 根据权利要求 1 0所述的动力工具,其特征在于:所述传感器为磁编码器, 所述检测件为环形的磁盘。
、 根据权利要求 4所述的动力工具, 其特征在于: 所述扭矩检测单元包括 设置在机壳内的压力传感器, 所述齿圈的外圆周面上均布有多个凸起, 所述压力传感器抵靠在所述凸起上。
、 根据权利要求 4所述的动力工具, 其特征在于: 所述扭矩控制系统还包 括与处理单元电连接的扭矩设定单元, 所述扭矩设定单元用于设定数值, 所述处理单元可将扭矩设定单元设定的数值转换成预设扭矩值并存储于 处理单元内。
PCT/CN2009/075743 2008-12-19 2009-12-18 动力工具 WO2010069273A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810188677 2008-12-19
CN200810188677.7 2008-12-19

Publications (1)

Publication Number Publication Date
WO2010069273A1 true WO2010069273A1 (zh) 2010-06-24

Family

ID=42268337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/075743 WO2010069273A1 (zh) 2008-12-19 2009-12-18 动力工具

Country Status (1)

Country Link
WO (1) WO2010069273A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2095744U (zh) * 1990-12-04 1992-02-12 济南交通高等专科学校 气扳机数控间接定扭矩装置
US5277527A (en) * 1991-03-29 1994-01-11 Ryobi Limited Torque adjustment device
JPH0691551A (ja) * 1992-09-07 1994-04-05 Nissan Motor Co Ltd インパクト式ねじ締め装置
JPH10329051A (ja) * 1997-05-23 1998-12-15 Yaskawa Electric Corp ねじ締め機とその制御方法
CN1505555A (zh) * 2001-04-25 2004-06-16 户津胜行 电动旋转工具的扭矩控制方法
WO2008093625A1 (ja) * 2007-01-29 2008-08-07 Katsuyuki Totsu 電動モータの負荷トルク検出装置
CN201124405Y (zh) * 2007-10-12 2008-10-01 苏州宝时得电动工具有限公司 动力工具

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2095744U (zh) * 1990-12-04 1992-02-12 济南交通高等专科学校 气扳机数控间接定扭矩装置
US5277527A (en) * 1991-03-29 1994-01-11 Ryobi Limited Torque adjustment device
JPH0691551A (ja) * 1992-09-07 1994-04-05 Nissan Motor Co Ltd インパクト式ねじ締め装置
JPH10329051A (ja) * 1997-05-23 1998-12-15 Yaskawa Electric Corp ねじ締め機とその制御方法
CN1505555A (zh) * 2001-04-25 2004-06-16 户津胜行 电动旋转工具的扭矩控制方法
WO2008093625A1 (ja) * 2007-01-29 2008-08-07 Katsuyuki Totsu 電動モータの負荷トルク検出装置
CN201124405Y (zh) * 2007-10-12 2008-10-01 苏州宝时得电动工具有限公司 动力工具

Similar Documents

Publication Publication Date Title
CN101758478B (zh) 动力工具
US7886635B2 (en) Bolt or nut tightening device
US11491616B2 (en) Power tools with user-selectable operational modes
US6945337B2 (en) Power impact tool
EP1595649B1 (en) Rotary impact tool
US20030077082A1 (en) Pan/tilt camera system
US11207727B2 (en) Electrically-driven rivet nut tool having multi-stage stroke and pull-riveting force adjustment
US7321175B2 (en) Low cost precision linear actuator and control system
TWI775459B (zh) 動力工具機及其扭力顯示設置
GB2559927A (en) Screwing-member-fastening tool and method for setting driving time in screwing-member-fastening tool
EP3302882A1 (en) Power tools with user-selectable operational modes
WO2010069273A1 (zh) 动力工具
CN111300328B (zh) 扭力调整装置
CN201405312Y (zh) 动力工具
CN215548419U (zh) 动力工具
TWM576947U (zh) Torque control device for electric screwdriver
CN209875865U (zh) 无间隙齿轮传动机构及减速电机
WO2020215733A1 (zh) 无间隙齿轮传动机构及减速电机
US3259025A (en) Rotary impact tool
WO1986005011A1 (en) Apparatus for detecting quantity of rotation of rotary shaft
JPS6124153B2 (zh)
TWM597206U (zh) 智慧型電動工具
CN218724244U (zh) 一种小体积的手动脉冲发生器
WO2009097804A1 (zh) 电动工具
JPH0632911B2 (ja) 出力軸の回転角度検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09832955

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09832955

Country of ref document: EP

Kind code of ref document: A1