WO2010067995A2 - 집전 그리드형 염료감응 태양전지 - Google Patents

집전 그리드형 염료감응 태양전지 Download PDF

Info

Publication number
WO2010067995A2
WO2010067995A2 PCT/KR2009/007266 KR2009007266W WO2010067995A2 WO 2010067995 A2 WO2010067995 A2 WO 2010067995A2 KR 2009007266 W KR2009007266 W KR 2009007266W WO 2010067995 A2 WO2010067995 A2 WO 2010067995A2
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
dye
current collection
grid
current collecting
Prior art date
Application number
PCT/KR2009/007266
Other languages
English (en)
French (fr)
Other versions
WO2010067995A3 (ko
Inventor
박태진
문형돈
배호기
김종복
양회택
Original Assignee
주식회사 동진쎄미켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 동진쎄미켐 filed Critical 주식회사 동진쎄미켐
Publication of WO2010067995A2 publication Critical patent/WO2010067995A2/ko
Publication of WO2010067995A3 publication Critical patent/WO2010067995A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • H01G9/2081Serial interconnection of cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2022Light-sensitive devices characterized by he counter electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • H10K30/83Transparent electrodes, e.g. indium tin oxide [ITO] electrodes comprising arrangements for extracting the current from the cell, e.g. metal finger grid systems to reduce the serial resistance of transparent electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Definitions

  • the present invention relates to a grid-type dye-sensitized solar cell, and more particularly, the collector grid electrodes formed on the working electrode substrate and the catalytic electrode substrate, respectively, are formed at a predetermined interval with respect to each other. And a current collector capable of improving the bonding process yield by preventing electrical connection between the current collecting grid electrodes in the process of bonding the cathode electrode substrate, and increasing the height of the current collecting electrode to improve the resistance of the current collecting electrode to improve the photoelectric conversion efficiency. It relates to a grid type dye-sensitized solar cell.
  • Dye-sensitized solar cells have the potential to replace conventional amorphous silicon solar cells because their manufacturing cost is significantly lower than conventional silicon-based solar cells. Unlike silicon solar cells, dye-sensitized solar cells absorb visible light It is a photoelectrochemical solar cell mainly composed of a dye molecule capable of generating electron-hole pairs and a transition metal oxide that transfers generated electrons.
  • the unit cell structure of a general dye-sensitized solar cell is based on a conductive transparent electrode made of an upper and lower transparent substrate (generally glass) and a transparent conductive oxide (TCO) formed on the surface of the transparent substrate, respectively.
  • a conductive transparent electrode made of an upper and lower transparent substrate (generally glass) and a transparent conductive oxide (TCO) formed on the surface of the transparent substrate, respectively.
  • TCO transparent conductive oxide
  • a transition metal oxide porous layer on which the dye is adsorbed is formed, and on the other conductive transparent electrode corresponding to the second electrode (catalyst), the catalyst thin film electrode ( Mainly Pt) is formed, and the transition metal oxide, for example, TiO 2 , has a structure in which an electrolyte is filled between the porous electrode and the catalyst thin film electrode.
  • a dye-sensitized solar cell supplies electrons to an oxidized dye between a working electrode substrate coated with a dye-attached photoelectrode (TiO 2 ) material that receives electrons and a catalyst electrode supplying electrons. It is composed based on electrolyte.
  • the practical use of such dye-sensitized solar cells is to realize modules that do not reduce efficiency even in large areas.
  • the modularization methods of dye-sensitized solar cells can be broadly classified into four types, among which crystalline Si-solar cells and As a similar method, there is a current collecting grid method with excellent current integration efficiency. That is, in the case of the large-area submodule, the increase in the cell area increases the electron moving distance in the substrate having a large resistance value, resulting in a decrease in efficiency due to the long-distance movement of electrons.
  • the current collector grid electrode is disposed inside the cell to reduce the movement distance of the electrons, thereby reducing the resistance and reducing the efficiency. Optimizing the power generation efficiency by optimizing, the introduction of the current collector grid electrode is easy to apply the large area because the process is simple.
  • the current collecting grid electrode of the current collecting grid type should be formed in a structure surrounded by a protective layer protecting the metal electrode used as the current collecting grid electrode from the electrolyte, and the cross-section of the grid electrode should be large enough to lower the resistance value, Since the light receiving area of the battery has to be increased, it is formed in a form facing the working electrode substrate and the catalytic electrode substrate, respectively, as shown in FIG. 1.
  • the distance between the two electrodes in which the dye-sensitized solar cell operates stably and efficiently is in the range of 10 to 60 ⁇ m, and most preferably 15 to 25 ⁇ m.
  • the current collecting grid type dye-sensitized solar cell submodule has a height of the current collecting grid electrode when the current collecting grid electrode of the working electrode substrate and the current collecting grid electrode of the catalytic electrode substrate face each other as usual.
  • the current collector has a method of widening the current collector line. Specific examples thereof are as shown in FIG. 2.
  • the dye having a structure capable of reducing the resistance value by sufficiently securing the light receiving area and securing the cross-sectional area of the current collecting grid electrode while maintaining the gap between the substrates to obtain the optimum photoelectric conversion efficiency by improving the above-described problems. Development of sensitive solar cells is urgently needed.
  • the present invention prevents electrical connection between the current collector grid electrode in the process of bonding the working electrode substrate and the catalytic electrode substrate, thereby improving the yield of the bonding process, and optimize the gap between the substrate
  • To improve the photoelectric conversion efficiency by improving the resistance of the current collecting electrode by increasing the height of the current collecting electrode, and to extend the endurance life by allowing the current collecting grid electrode to act as a spacer without introducing additional spacers.
  • An object of the present invention is to provide a current collecting grid type dye-sensitized solar cell.
  • a collecting grid electrode is formed on each of the working electrode and the catalytic electrode, and the collecting grid electrode of the working electrode and the collecting grid electrode of the catalytic electrode are spaced apart from each other, respectively. To provide.
  • the current collecting grid electrodes formed on the working electrode substrate and the catalytic electrode substrate are formed at a predetermined interval with respect to each other, thereby preventing the electrical connection between the current collecting grid electrodes in the process of bonding the working electrode substrate and the catalytic electrode substrate.
  • the yield can be improved, the gap between the substrates can be optimally maintained, the height of the current collecting electrodes can be increased, and the resistance of the current collecting electrodes can be improved, thereby improving photoelectric conversion efficiency.
  • the grid electrode serves as a spacer through a structure in which an insulating layer is pushed between the substrates and connected to each other as a protective layer to protect the current collecting grid electrode, the effect of improving durability can be obtained.
  • FIG. 1 is a view showing a cross-sectional structure of an embodiment of a conventional current collector grid type dye-sensitized solar cell.
  • FIG. 2 is a view showing a cross-sectional structure of another embodiment of a conventional current collector grid type dye-sensitized solar cell.
  • Figure 3 is a view showing a cross-sectional structure of an embodiment of the current collector grid type dye-sensitized solar cell of the present invention.
  • 10a upper surface glass substrate (catalyst electrode)
  • 10b lower surface glass substrate (action electrode)
  • catalyst layer (catalyst electrode, mainly Pt) 40: dye + transition metal oxide layer
  • the current collector grid type dye-sensitized solar cell of the present invention is a dye-sensitized solar cell comprising a working electrode substrate and a catalytic electrode substrate disposed opposite to each other, and an electrolyte filled between the substrates.
  • a current collector grid electrode is formed in each, and the current collector grid electrode of the working electrode and the current collector grid electrode of the catalyst electrode are disposed to be spaced apart from each other.
  • a dye-sensitized solar cell receives electrons in a dye oxidized between a working electrode substrate coated with a dye-attached photoelectrode (specifically, TiO 2 ) material that receives electrons to generate electrons, and a catalytic electrode substrate supplying electrons. It is composed of the electrolyte that supplies the basic structure. Therefore, a general dye-sensitized solar cell is composed of substrates having these two functions facing each other.
  • a dye-attached photoelectrode specifically, TiO 2
  • the present invention is applicable to all conventional dye-sensitized solar cells including opposingly disposed working electrode substrates and catalytic electrode substrates, and an electrolyte filled between these substrates. Application is possible, and in the case of a large area submodule, the application effect can be increased.
  • a collecting grid electrode is formed on each of the working electrode and the catalytic electrode, and the collecting grid electrode of the working electrode and the collecting grid electrode of the catalytic electrode are not disposed to face each other, but to each other. It is arranged to be spaced apart from each other, and are arranged to be staggered with each other.
  • the height of each grid electrode is to maximize the size thereof, and therefore, the height of the current collecting grid electrode of the working electrode is greater than the distance between the current collecting grid electrode and the working electrode of the catalytic electrode and between the working electrode and the catalytic electrode.
  • the height of the current collecting grid electrode of the catalytic pole is smaller than the interval of the larger than the distance between the current collector grid electrode and the catalytic electrode of the working electrode and configured to be smaller than the distance between the working electrode and the catalyst electrode to form a staggered arrangement of the grid electrode It is possible to minimize the reduction in the light receiving area.
  • the current collecting grid electrodes may have a protective layer (insulating film) for each of them in order to reduce damage from the electrolyte.
  • a protective layer insulating film
  • an insulating film (protective layer) is provided between the current collecting grid electrode of the working electrode and the current collecting grid electrode of the catalytic electrode. ) Is better to include.
  • the thickness of the insulating film can be reduced compared to the case where the insulating film is formed on each grid electrode, so that the light receiving area can be further secured.
  • the insulating film is shown in FIG. 3. It is preferable that the current collector grid electrode is filled and filled between the working electrode and the catalyst electrode to act as a spacer between the working electrode and the catalyst electrode.
  • the current collecting grid electrodes formed on the working electrode substrate and the catalytic electrode substrate are formed at a predetermined interval with respect to each other, thereby preventing the electrical connection between the current collecting grid electrodes in the process of bonding the working electrode substrate and the catalytic electrode substrate.
  • the yield can be improved, the gap between the substrates can be optimally maintained, the height of the current collecting electrodes can be increased, and the resistance of the current collecting electrodes can be improved, thereby improving photoelectric conversion efficiency.
  • the grid electrode serves as a spacer through a structure in which an insulating layer is pushed between the substrates and connected to each other as a protective layer to protect the current collecting grid electrode, the effect of improving durability can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

본 발명은 집전 그리드형 염료감응 태양전지에 관한 것으로, 대향하여 배치된 작용극 기판과 촉매극 기판 및, 이들 기판 사이에 충진되는 전해질을 포함하는 염료감응 태양전지에 있어서, 상기 작용극 및 촉매극 각각에 집전 그리드 전극이 형성되고, 상기 작용극의 집전 그리드 전극과 상기 촉매극의 집전 그리드 전극은 서로에 대하여 각각 이격되어 배치되는 것을 특징으로 하는 집전 그리드형 염료감응 태양전지에 관한 것이다. 이를 통하여 작용극 기판 및 촉매극 기판에 각각 형성된 집전 그리드 전극이 서로에 대하여 일정간격을 두고 형성되어 있어, 상기 작용극 기판 및 촉매극 기판을 합착하는 공정에서 집전 그리드 전극 사이의 전기적 연결을 방지하여, 합착 공정 수율을 개선하고, 집전 전극의 높이를 증가시켜 집전 전극의 저항을 개선하여 광전변환 효율을 개선할 수 있는 효과를 얻을 수 있다.

Description

집전 그리드형 염료감응 태양전지
본 발명은 집전 그리드(grid)형 염료감응 태양전지에 관한 것으로, 더욱 상세하게는 작용극 기판 및 촉매극 기판에 각각 형성된 집전 그리드 전극이 서로에 대하여 일정간격을 두고 형성되어 있어, 상기 작용극 기판 및 촉매극 기판을 합착하는 공정에서 집전 그리드 전극 사이의 전기적 연결을 방지하여, 합착 공정 수율을 개선하고, 집전 전극의 높이를 증가시켜 집전 전극의 저항을 개선하여 광전변환 효율을 개선할 수 있는 집전 그리드(grid)형 염료감응 태양전지에 관한 것이다.
1991년도 스위스 국립 로잔 고등기술원(EPFL)의 마이클 그라첼(Michael Gratzel) 연구팀에 의해 염료감응 나노입자 산화티타늄 태양전지가 개발된 이후 이 분야에 관한 많은 연구가 진행되고 있다. 염료감응태양전지는 기존의 실리콘계 태양전지에 비해 제조단가가 현저기 낮기 때문에 기존의 비정질 실리콘 태양전지를 대체할 수 있는 가능성을 가지고 있으며, 실리콘 태양전지와 달리 염료감응태양전지는 가시광선을 흡수하여 전자-홀 쌍을 생성할 수 있는 염료분자와, 생성된 전자를 전달하는 전이금속 산화물을 주 구성 재료로 하는 광전기화학적 태양전지이다.
일반적인 염료감응 태양전지의 단위 셀 구조는 상, 하부 투명한 기판(일반적으로 유리)과 그 투명기판의 표면에 각각 형성되는 투명 도전성 산화물(TCO)로 이루어진 도전성 투명전극을 기본으로 하여, 제1전극(작용극)에 해당하는 일 측의 도전성 투명전극위에는 그 표면에 염료가 흡착된 전이금속 산화물 다공질 층이 형성되어지고, 제2전극(촉매극)에 해당하는 타 측 도전성 투명전극 위에는 촉매박막전극(주로 Pt)이 형성되어지며, 상기 전이금속 산화물, 예를 들면 TiO2, 다공질 전극과 촉매박막전극 사이에는 전해질이 충진되어지는 구조를 가진다. 즉, 염료감응 태양전지는 빛을 받아 전자를 발생시키는 염료가 부착된 광전극(TiO2) 재료가 코팅된 작용극 기판과 전자를 공급하는 촉매극 기판 사이에 산화된 염료에 전자를 공급하여 주는 전해질을 기본으로 구성되어진다.
이와 같은 염료감응 태양전지의 실용화를 위해서는 대면적에서도 효율의 감소가 없는 모듈을 실현하는 것이며, 염료감응 태양전지의 모듈화 방법은 크게 4가지로 구분할 수 있고, 이 가운데, 결정질 Si-태양전지 셀과 같은 방식으로서 전류집적 효율이 우수한 집전그리드 방식이 있다. 즉, 대면적 서브 모듈의 경우, 셀 면적의 증대로 인하여 상대적으로 저항값이 큰 기판 내에서의 전자 이동거리가 늘어나 전자의 장거리 이동에 따른 효율 감소가 발생하는데, 집전 그리드 방식은 이러한 효율저하를 줄이기 위하여 셀 내부에 별도의 집전 그리드 전극을 배치하여 전자의 기판 내에서의 이동거리를 줄여 저항을 줄이고, 효율 감소를 막는 것으로, 이들 집전 그리드 전극의 도입을 통하여 작용극 기판과 촉매극 기판을 각각 최적화하여 발전효율 극대화 시킬 수 있으며, 이러한 집전 그리드 전극 도입은 그 공정이 단순하여 대면적화 적용에 용이하다.
따라서 이와 같은 집전 그리드 방식의 집전 그리드 전극은 집전 그리드 전극으로 사용하는 금속전극을 전해질로부터 보호하는 보호층으로 감싸여진 구조로 형성되어야 하며, 저항값을 낮추기 위하여 그리드 전극의 단면적이 충분히 커야 하고, 태양전지의 수광 면적을 증대하여야 하므로, 도 1에 그 구체적인 예를 도시한 바와 같이 작용극 기판과 촉매극 기판에 각각 마주보는 형태로 형성된다. 그러나 염료감응 태양전지가 안정적으로 효율 좋게 동작하는 두 전극간 거리는 10 ~ 60 ㎛ 범위에 있으며 가장 바람직하게는 15 ~ 25 ㎛ 이다. 따라서 이와 같은 전극간 거리를 감안하는 경우 집전 그리드 방식의 염료감응 태양전지 서브모듈은 작용극 기판의 집전 그리드 전극과 촉매극 기판의 집전 그리드 전극이 통상의 경우와 같이 마주보는 경우 집전 그리드 전극의 높이에 제한이 있으며, 높이 제한에 따른 저항 문제를 해결하기 위하여 집전선의 폭을 넓게 하는 방식을 채택하고 있다. 이에 대한 구체적인 예는 도 2에 도시한 바와 같다.
그러나 이와 같이 마주보는 형태의 집전그리드 전극을 형성하면 작용극 기판과 촉매극 기판을 상호 합착하는 경우 집전 그리드 전극 사이에 전기적 연결이 발생할 가능성이 매우 높은 문제점이 있으며, 높이 제한에 따라 도 2와 같이 폭을 넓게 형성하는 경우에는 수광 면적의 증대라는 효과를 얻을 수 없게 되는 문제점이 있다.
따라서 상기 기술한 문제점을 개선하여 최적의 광전변환효율을 얻을 수 있는 기판간 간극을 유지하면서도, 수광 면적을 충분히 확보하고, 집전 그리드 전극의 단면적을 충분히 확보하여 저항값을 낮출 수 있는 구조를 가지는 염료감응 태양전지의 개발이 절실한 실정이다.
상기와 같은 종래기술의 문제점을 해결하고자, 본 발명은 작용극 기판 및 촉매극 기판을 합착하는 공정에서 집전 그리드 전극 사이의 전기적 연결을 방지하여, 합착 공정 수율을 개선하고, 기판 사이의 간극을 최적으로 유지하고, 집전 전극의 높이를 증가시켜 집전 전극의 저항을 개선하여 광전변환 효율을 개선하고, 부가적인 스페이서의 도입 없이 집전 그리드 전극이 스페이서(spacer) 역할을 할 수 있도록 하여 내구 수명을 연장할 수 있는 집전 그리드(grid)형 염료감응 태양전지를 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위하여, 본 발명은
대향하여 배치된 작용극 기판과 촉매극 기판 및, 이들 기판 사이에 충진되는 전해질을 포함하는 염료감응 태양전지에 있어서,
상기 작용극 및 촉매극 각각에 집전 그리드 전극이 형성되고, 상기 작용극의 집전 그리드 전극과 상기 촉매극의 집전 그리드 전극은 서로에 대하여 각각 이격되어 배치되는 것을 특징으로 하는 집전 그리드형 염료감응 태양전지를 제공한다.
본 발명의 염료감응 태양전지의 제조방법에 따르면. 작용극 기판 및 촉매극 기판에 각각 형성된 집전 그리드 전극이 서로에 대하여 일정간격을 두고 형성되어 있어, 상기 작용극 기판 및 촉매극 기판을 합착하는 공정에서 집전 그리드 전극 사이의 전기적 연결을 방지하여 합착 공정 수율을 개선하고, 기판 사이의 간극을 최적으로 유지하고, 집전 전극의 높이를 증가시켜 집전 전극의 저항을 개선하여 광전변환 효율을 개선할 수 있는 효과를 얻을 수 있다.
또한 이와 같은 집전 그리드 전극을 보호하는 보호층으로 절연막을 상기 기판 사이에 추진하여 이를 연결하는 구조를 통하여 그리드 전극이 스페이서로서의 역할도 수행하게 하는 경우에는 이를 통하여 내구성 향상의 효과도 얻을 수 있다.
도 1은 종래의 집전 그리드형 염료감응 태양전지의 일 실시예에 대한 단면구조를 도시한 도면이다.
도 2는 종래의 집전 그리드형 염료감응 태양전지의 다른 실시예에 대한 단면구조를 도시한 도면이다.
도 3은 본 발명의 집전 그리드형 염료감응 태양전지의 일 실시예에 대한 단면구조를 도시한 도면이다.
* 도면의 주요부분에 대한 부호의 설명 *
10a: 상면 유리기판(촉매극) 10b: 하면 유리기판(작용극)
20a: 상면 TCO층(촉매극) 20b: 하면 TCO층(작용극)
30: 촉매층(촉매전극, 주로 Pt) 40: 염료+전이금속산화물층
50: 봉지부 55: 전해질
60: 집전 그리드 전극 70: 절연막(보호층)
이하 본 발명을 상세하게 설명한다.
본 발명의 집전 그리드(grid)형 염료감응 태양전지는 대향하여 배치된 작용극 기판과 촉매극 기판 및, 이들 기판 사이에 충진되는 전해질을 포함하는 염료감응 태양전지에 있어서, 상기 작용극 및 촉매극 각각에 집전 그리드 전극이 형성되고, 상기 작용극의 집전 그리드 전극과 상기 촉매극의 집전 그리드 전극은 서로에 대하여 각각 이격되어 배치되는 구성을 가진다.
이에 대한 상세한 설명은 도면을 참고하여 설명한다.
즉, 염료감응 태양전지는 빛을 받아 전자를 발생시키는 염료가 부착된 광전극(구체적인 예를 들면 TiO2) 재료가 코팅된 작용극 기판과 전자를 공급하는 촉매극 기판 사이에 산화된 염료에 전자를 공급하여 주는 전해질을 기본구조로 하여 구성되어 있다. 따라서 일반적인 염료감응 태양전지는 이들 두 기능을 가지는 기판이 서로 마주보는 형태로 구성되어 있다.
본 발명은 이와 같은 대향하여 배치된 작용극 기판과 촉매극 기판 및, 이들 기판 사이에 충진되는 전해질을 포함하는 통상의 염료감응 태양전지에 모두 적용 가능한 것으로 특히 이와 같은 염료감응 태양전지의 서브 모듈에 적용이 가능하고, 대면적 서브 모듈의 경우에 적용 효과가 증대될 수 있다.
즉, 이와 같은 염료감응 태양전지에 있어서, 상기 작용극 및 촉매극 각각에 집전 그리드 전극이 형성되고, 상기 작용극의 집전 그리드 전극과 상기 촉매극의 집전 그리드 전극은 서로 마주보고 배치되는 것이 아니라 서로에 대하여 각각 이격되어 배치되는 구성으로, 서로 엇갈리게 배치되는 것이다.
이를 통하여 그리드 전극의 높이를 충분히 크게 형성하여 수광 면적의 감소를 최소화하면서도 그리드 전극의 단면적을 증대할 수 있으며, 상기 작용극의 집전 그리드 전극과 상기 촉매극의 집전 그리드 전극 사이의 전기적 연결이 발생하는 것을 원천적으로 방지할 수 있다.
바람직하게는 상기 각 그리드 전극의 높이는 그 크기를 최대로 하는 것이 좋으며, 따라서 상기 작용극의 집전 그리드 전극의 높이는 상기 촉매극의 집전 그리드 전극과 작용극 사이의 간격보다 크고 상기 작용극과 촉매극 사이의 간격보다 작고, 상기 촉매극의 집전 그리드 전극의 높이는 상기 작용극의 집전 그리드 전극과 촉매극 사이의 간격보다 크고 상기 작용극과 촉매극 사이의 간격보다 작은 형태로 이를 구성하여 그리드 전극의 엇갈린 배치에 따른 수광 면적의 감소를 최소화할 수 있다.
이와 같은 집전 그리드 전극은 전해질로부터의 피해를 줄이기 위하여 각각에 대하여 보호층(절연막)을 가질 수 있으며, 바람직하게는 상기 작용극의 집전 그리드 전극과 상기 촉매극의 집전 그리드 전극 사이에는 절연막(보호층)을 더 포함하는 것이 좋다. 이를 통하여 각각의 그리드 전극에 절연막을 가지는 경우에 비하여 절연막의 두께를 줄일 수 있으므로 수광 면적을 더 확보할 수 있는 장점이 있고, 더욱 바람직하게는 도 3에 그 구체적인 예를 도시한 바와 같이, 상기 절연막은 상기 집전 그리드 전극을 내포하고 상기 작용극과 촉매극 사이에 충진되어 상기 작용극과 촉매극 사이의 스페이서로 작용하도록 하는 것이 좋다. 이를 통하여 도 2에 비하여 수광 면적을 더 확보하면서도 충분한 단면적을 가지는 그리드 전극을 형성할 수 있으며, 이와 같은 그리드 전극이 스페이서로의 역할도 수행하여 태양전지의 내구성 향상 및 구조적 강도 향상을 얻을 수 있도록 할 수 있다.
이상에서 설명한 본 발명은 전술한 상세한 설명, 실시예에 의하여 한정되는 것은 아니고, 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 해당 기술분야의 당업자가 다양하게 수정 및 변경시킨 것 또한 본 발명의 범위 내에 포함됨은 물론이다.
본 발명의 염료감응 태양전지의 제조방법에 따르면. 작용극 기판 및 촉매극 기판에 각각 형성된 집전 그리드 전극이 서로에 대하여 일정간격을 두고 형성되어 있어, 상기 작용극 기판 및 촉매극 기판을 합착하는 공정에서 집전 그리드 전극 사이의 전기적 연결을 방지하여 합착 공정 수율을 개선하고, 기판 사이의 간극을 최적으로 유지하고, 집전 전극의 높이를 증가시켜 집전 전극의 저항을 개선하여 광전변환 효율을 개선할 수 있는 효과를 얻을 수 있다.
또한 이와 같은 집전 그리드 전극을 보호하는 보호층으로 절연막을 상기 기판 사이에 추진하여 이를 연결하는 구조를 통하여 그리드 전극이 스페이서로서의 역할도 수행하게 하는 경우에는 이를 통하여 내구성 향상의 효과도 얻을 수 있다.

Claims (4)

  1. 대향하여 배치된 작용극 기판과 촉매극 기판 및, 이들 기판 사이에 충진되는 전해질을 포함하는 염료감응 태양전지에 있어서,
    상기 작용극 및 촉매극 각각에 집전 그리드 전극이 형성되고, 상기 작용극의 집전 그리드 전극과 상기 촉매극의 집전 그리드 전극은 서로에 대하여 각각 이격되어 배치되는 것을 특징으로 하는 집전 그리드형 염료감응 태양전지.
  2. 제1항에 있어서,
    상기 작용극의 집전 그리드 전극의 높이는 상기 촉매극의 집전 그리드 전극과 작용극 사이의 간격보다 크고 상기 작용극과 촉매극 사이의 간격보다 작고, 상기 촉매극의 집전 그리드 전극의 높이는 상기 작용극의 집전 그리드 전극과 촉매극 사이의 간격보다 크고 상기 작용극과 촉매극 사이의 간격보다 작은 것을 특징으로 하는 집전 그리드형 염료감응 태양전지.
  3. 제1항 또는 제2항에 있어서,
    상기 작용극의 집전 그리드 전극과 상기 촉매극의 집전 그리드 전극 사이에는 절연막을 더 포함하는 것을 특징으로 하는 집전 그리드형 염료감응 태양전지.
  4. 제3항에 있어서,
    상기 절연막은 상기 집전 그리드 전극을 내포하고 상기 작용극과 촉매극 사이에 충진되어 상기 작용극과 촉매극 사이의 스페이서로 작용하는 것을 특징으로 하는 집전 그리드형 염료감응 태양전지.
PCT/KR2009/007266 2008-12-08 2009-12-07 집전 그리드형 염료감응 태양전지 WO2010067995A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080123727A KR101520060B1 (ko) 2008-12-08 2008-12-08 집전 그리드형 염료감응 태양전지
KR10-2008-0123727 2008-12-08

Publications (2)

Publication Number Publication Date
WO2010067995A2 true WO2010067995A2 (ko) 2010-06-17
WO2010067995A3 WO2010067995A3 (ko) 2010-09-30

Family

ID=42243182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/007266 WO2010067995A2 (ko) 2008-12-08 2009-12-07 집전 그리드형 염료감응 태양전지

Country Status (2)

Country Link
KR (1) KR101520060B1 (ko)
WO (1) WO2010067995A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101872686A (zh) * 2010-06-22 2010-10-27 彩虹集团公司 一种染料敏化太阳能电池模块的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100658730B1 (ko) * 2005-11-30 2006-12-15 삼성에스디아이 주식회사 태양 전지
KR20070072986A (ko) * 2006-01-03 2007-07-10 삼성에스디아이 주식회사 태양 전지 모듈 및 이의 제조 방법
KR20070072985A (ko) * 2006-01-03 2007-07-10 삼성에스디아이 주식회사 태양 전지 및 이의 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100658730B1 (ko) * 2005-11-30 2006-12-15 삼성에스디아이 주식회사 태양 전지
KR20070072986A (ko) * 2006-01-03 2007-07-10 삼성에스디아이 주식회사 태양 전지 모듈 및 이의 제조 방법
KR20070072985A (ko) * 2006-01-03 2007-07-10 삼성에스디아이 주식회사 태양 전지 및 이의 제조 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101872686A (zh) * 2010-06-22 2010-10-27 彩虹集团公司 一种染料敏化太阳能电池模块的制备方法

Also Published As

Publication number Publication date
KR101520060B1 (ko) 2015-05-15
KR20100065411A (ko) 2010-06-17
WO2010067995A3 (ko) 2010-09-30

Similar Documents

Publication Publication Date Title
WO2010082794A2 (ko) 직/병렬 혼합형 염료감응형 태양전지 모듈
US20120216854A1 (en) Surface-Passivated Regenerative Photovoltaic and Hybrid Regenerative Photovoltaic/Photosynthetic Electrochemical Cell
CN102543972A (zh) 太阳能电池模块
CN111261782A (zh) 封装的大面积钙钛矿太阳能电池
KR101050471B1 (ko) 광전 변환 모듈
CN101866759A (zh) 一种染料敏化太阳能电池
WO2010067995A2 (ko) 집전 그리드형 염료감응 태양전지
CN109830601A (zh) 一种单节钙钛矿太阳能电池
CN201004465Y (zh) 导光式立体光伏电池
CN102945757A (zh) 染料敏化太阳能电池用ZnO/石墨烯复合纳米结构光阳极及制法
KR101177716B1 (ko) 이중 코팅 금속 기판을 이용한 금속 플렉시블 염료감응 태양전지 및 그 제조방법
CN202712196U (zh) 一种n型背接触双面太阳能电池的背面电极结构
CN104934226A (zh) 基于铁电单晶基底的敏化太阳能电池及其阳极
CN101154693B (zh) 太阳能电池组件及其模块
KR20130083709A (ko) 염료감응 태양전지의 그리드 전극 구조
JP2012079495A (ja) 色素増感太陽電池およびその製法
KR20130006982A (ko) 태양전지 결합형 한식 창호
JP4841574B2 (ja) 色素増感太陽電池モジュールおよびその製造方法
KR101151936B1 (ko) 염료감응 태양전지
CN204946726U (zh) 基于TiO2-ZnS光阳极的染料敏化太阳能电池
CN103560154A (zh) 背接触太阳能电池组件
CN211529978U (zh) 封装的大面积钙钛矿太阳能电池
US9196782B2 (en) Dye-sensitized solar cell with hybrid nanostructures and method for fabricating working electrodes thereof
CN104299790B (zh) 一种复合型叠层式染料敏化太阳能电池组件
CN217426766U (zh) 一种钙钛矿太阳电池的封装装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09832080

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09832080

Country of ref document: EP

Kind code of ref document: A2