WO2010067935A9 - 발광체 플래시 렌즈 및 렌즈 유닛 - Google Patents

발광체 플래시 렌즈 및 렌즈 유닛 Download PDF

Info

Publication number
WO2010067935A9
WO2010067935A9 PCT/KR2009/003530 KR2009003530W WO2010067935A9 WO 2010067935 A9 WO2010067935 A9 WO 2010067935A9 KR 2009003530 W KR2009003530 W KR 2009003530W WO 2010067935 A9 WO2010067935 A9 WO 2010067935A9
Authority
WO
WIPO (PCT)
Prior art keywords
lens
light
flash
shape
unit
Prior art date
Application number
PCT/KR2009/003530
Other languages
English (en)
French (fr)
Other versions
WO2010067935A1 (ko
Inventor
김주환
전종
최경수
Original Assignee
파워옵틱스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020080126867A external-priority patent/KR20100068313A/ko
Priority claimed from KR1020080126987A external-priority patent/KR101087569B1/ko
Application filed by 파워옵틱스 주식회사 filed Critical 파워옵틱스 주식회사
Publication of WO2010067935A1 publication Critical patent/WO2010067935A1/ko
Publication of WO2010067935A9 publication Critical patent/WO2010067935A9/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
    • G02B19/0066Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED in the form of an LED array
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements

Definitions

  • the present invention relates to a light-emitting flash lens used in the auxiliary light source of a camera mounted on a mobile device such as a mobile phone, and more particularly, by concentrating a light source into the camera's photographing area to improve the light efficiency when photographing, excellent in dark places
  • the present invention relates to a light-emitting flash lens and a lens unit which are secondary light sources capable of photographing quality.
  • the present invention relates to an auxiliary light source of a camera mounted in a mobile device such as a cellular phone.
  • a mobile device such as a cellular phone.
  • an LED flash is mainly used, and a xenon strobe is mainly used in a high pixel camera phone.
  • the performance of the flash, the secondary light source is not significantly improved compared to that of the camera.
  • Xenon Storobo is mainly used to be mounted on a digital camera, the size is too large and expensive to mount on a mobile phone, there is a disadvantage that can not be used for video.
  • the existing LED flash is not enough to the performance of the camera as a secondary light source due to insufficient brightness of the center and surroundings, and as the LED technology is developed, it is gradually changing to the trend of using high-power LED, but the performance of the lens is not sufficient. Due to the low light efficiency, the performance is not properly exhibited.
  • 1 is a view showing the illumination angle of a typical LED and the shooting area of the camera phone.
  • FIG. 1A illustrates a photographing area and an angle of view of a typical camera phone
  • a rectangular area 100 is an area substantially entering an image sensor
  • the smallest circle 101 represents a short change angle (40 to 45 °) of the camera.
  • the next circle 102 represents the long change angle (50 to 55 degrees)
  • the largest circle 103 represents the diagonal angle of view (62 to 65 degrees).
  • FIG. 1B shows an illumination angle of a general LED, and an angle having an intensity of about 50% of a center is represented as an illumination angle, and is usually about 120 °.
  • the illumination angle of the LED is larger than the angle of view of the camera, when using only the LED without using a lens, the light emitted from the LED enters the camera's shooting area as it is only about 18-20%. Therefore, multiple lenses are used in front of the LED.
  • FIG. 2A shows a lens that is widely used for LED flash
  • FIG. 2B shows a Fresnel lens 40.
  • Fresnel lens 40 that can reduce the size of the lens is generally used.
  • FIG. 3 is a view showing a light distribution illuminated when a general circular lens or Fresnel lens is used.
  • the rectangular area 300 is a photographing area of the camera
  • FIG. 3a is a lens designed to illuminate light up to the diagonal angle of view of the camera. In this case, the light efficiency is low because there is a lot of light outside the photographing area of the camera.
  • 3B is a lens designed according to the long angle of change of the camera, but the optical loss is less than that of FIG. 3A.
  • the identification number 310 denotes the light loss region and the identification number 320 denotes the tailings delivery region.
  • the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to secure a sufficient amount of light by using a high output light emitting body, that is, a light emitting device such as an LED, and emit as much light as possible from the LED in the camera shooting area. It is to provide a lens for a high output light-emitting flash that can maximize the light efficiency by designing the lens to be incident.
  • Another object is to irradiate light so that the light distribution is formed in a rectangular shape so as to match a desired subject photographing area, thereby minimizing a portion of light loss that has occurred conventionally so that the light of the emitter can be used as effectively as possible.
  • the lens is configured to control both the light emitted from the front and the side of the light emitter so that the maximum amount of light can be incident into the camera's field of view, and the shape of the illumination is not as in the conventional circular form, but as the shooting area of the camera. Another aim is to minimize the light lost by illuminating in shape.
  • the present invention has been made to solve the above-described problems, in the light emitting flash lens, the lens is illuminated in a square shape to correspond to the camera photographing area so that the overall shape in a square shape to maximize the light efficiency
  • An embodied flash lens comprising: one or more light emitters for generating a light source for emitting light; A primary refraction unit controlling light emitted from the front of the light emitter; A transmission unit through which light emitted from the side of the light emitting unit is transmitted; A total reflection part for controlling light emitted from the side of the light emitting body and passing through the transmission part; And a second refraction unit for finally outputting the light controlled by the first refraction unit and the total reflection unit out of the lens.
  • the total reflection part is a conic surface or an aspherical surface
  • the long side curved surface and the short side curved surface of the total reflection part are axially symmetric with respect to the optical axis, respectively, and the long side curved surface and the short side curved surface are characterized in that the curved surfaces of different shapes.
  • the total reflection part may be a conic surface or an aspherical surface, and four curved surfaces that form a long side and a short side of the total reflection part may be curved surfaces having different shapes.
  • the first refraction portion may be any one of a lens shape to which a pattern of a planar lens, a curved lens, and a Fresnel lens is added.
  • the curved lens may be any one selected from a spherical lens, an aspherical lens and a free curved lens.
  • the Fresnel lens shape has a circular or rectangular shape, in the case of a rectangular shape, the long side curved surface and the short side curved surface are axially symmetric with respect to the optical axis, and the long side curved surface and the short side curved surface are curved surfaces having different shapes. It is characterized by.
  • the Fresnel lens shape may be configured in a circular or rectangular shape, and in the case of a rectangular shape, four curved surfaces forming the long side and the short side of the total reflection part may be curved surfaces having different shapes.
  • the first refraction portion is characterized in that the cylinder lens with different XY.
  • the second refraction portion may be any one selected from a lens shape to which a pattern in the form of a planar lens, a curved lens, and a Fresnel lens is added.
  • the curved lens may be any one selected from a spherical lens, an aspherical lens and a free curved lens.
  • the transmission part is characterized in that the shape of any one selected from a straight line, a plane formed with a pattern, a circle and an ellipse.
  • the coating layer is formed to maximize the light emitting effect on any one or two or more of the first refraction, the transmission, the total reflection and the second refraction.
  • the coating layer is characterized in that the anti-reflective coating layer or mirror coating layer.
  • the light emitter is characterized in that the LED.
  • the lens shape for the light-emitting flash when implementing the lens shape for the light-emitting flash according to the present invention, by improving the shortcomings of the conventional flash lens to maximize the light efficiency to improve the brightness and to improve the uniformity through the squared illumination of the secondary light source of the camera Improved functionality allows for high quality photography. Furthermore, it will be able to replace the existing xenon strobe to enhance the flash price competitiveness.
  • a lens for a high-power emitter flash that irradiates light so that the light distribution is formed in a rectangular shape so as to match with a desired subject photographing area, thereby minimizing the occurrence of light loss that has occurred conventionally so that the emitter light can be used as effectively as possible. do.
  • 1 is a view showing a conventional LED lighting angle and the photographing area of the camera
  • FIG. 2 illustrates a conventional convex lens (a) and Fresnel lens (b).
  • FIG. 3 is an illuminance distribution diagram illuminated at a distance of 1 m according to the prior art
  • FIG. 4 is a view showing a lens for an LED flash of the present invention.
  • FIG. 5 is a view showing the refraction and total reflection of the lens for LED flash of the present invention
  • FIG. 6 is a 3D view at various angles of the LED flash lens of the present invention.
  • Figure 7 is an illuminance distribution diagram illuminated at a distance 1m by the LED flash of the present invention
  • FIG. 8 is an external perspective view of a flash lens showing another embodiment of the present invention
  • FIG. 9 is a perspective view of a flash lens showing another embodiment of the present invention.
  • FIG. 11 is a configuration of a flash lens showing another embodiment of the present invention
  • FIG. 12 is a lens diagram illustrating another embodiment of the present invention.
  • FIG. 13 is a sectional view of a lens unit in which a Fresnel lens is added to a PCB integrated flash lens.
  • FIG. 14 is a perspective view of a lens unit in which a triangular Fresnel lens is added to an F-PCB integrated flash lens;
  • 15 is an embodiment diagram for supplying power to an LED
  • Figure 16 is a perspective view from the bottom showing that the pattern for power supply to the PCB bottom surface
  • 17 is a view showing another embodiment for supplying power to an LED
  • 19 is a view showing two flash lines formed in a horizontal line.
  • FIG. 20 is an assembled perspective view illustrating a state in which each lens form of FIGS. 18 and 19 are assembled.
  • the light emitter for a flash lens according to the present invention may be composed of various members such as an LED or a xenon strobe, but the light emitter described in the following drawings and examples is assumed to be an LED which is further improved in performance and widely applied. Shall be. Of course, it is obvious that the matters described in the following Examples and claims are not limited to LEDs as light emitters.
  • FIG. 4 is a view showing a lens for the LED flash of the present invention
  • Figure 5 is a view showing the refractive portion and the total reflection portion of the lens for the LED flash of the present invention
  • Figure 6 is a different angle of the LED flash lens of the present invention
  • 7 is a diagram illustrating an illuminance distribution illuminated at a distance of 1 m by the LED flash of the present invention
  • FIG. 8 is a view showing another embodiment of the present invention
  • FIG. 9 is another embodiment of the present invention.
  • 10 is a diagram illustrating another embodiment of the present invention
  • FIG. 11 is a diagram illustrating another embodiment of the present invention.
  • LED flash lens 400 of the present invention for solving the above technical problem, as shown in Figure 4, is mounted on a conventional substrate upper surface is composed of one or more LED (410) for generating a light source for emitting light ), A first refraction unit 401 for controlling light emitted from the upper front of the LED 410, a transmission unit 402 through which light emitted from the side of the LED 410 is transmitted, and the LED 410. It consists of a total reflection portion 403 for controlling the light exiting from the side of the and the second refracting portion 404 for finally outputting the light controlled by the primary refracting portion 401 and the total reflection portion 403 out of the lens. .
  • the overall shape of the LED flash lens 400 is preferably configured in a quadrangular shape so that the emitted light can be illuminated in a quadrangular form corresponding to the photographing area of the camera.
  • the lower surface of the lens 400 and the upper surface of the lens 400 on which the LED 410 is mounted form a square shape with a flat shape, and the front, rear, left, and right sides of the lens 400 form a spherical or aspherical surface with a predetermined curved portion. Doing.
  • the first refraction unit 401 is a part for controlling the amount of light in the center of the upper surface of the LED 410, which is a light emitter, and comprises one of a lens shape to which a pattern in the form of a flat lens, a curved lens, and a Fresnel lens is added.
  • the curved lens is preferably composed of any one selected from a spherical lens, an aspherical lens and a free curved lens.
  • the first refraction unit 401 may be configured as a cylinder lens having different XY.
  • the cylindrical lens refers to a lens that has a cylindrical shape and has a zigzag shape up and down, and rotates around to form a round shape.
  • the Fresnel lens shape has a circular or quadrangular shape, and in the case of a quadrangular shape, the long side curved surface and the short side curved surface are axially symmetric with respect to the optical axis, and the long side curved surface and the short side curved surface are formed with different curved surfaces.
  • the four curved surfaces forming the long and short sides of the total reflection part may be formed of curved surfaces having different shapes.
  • the light is refracted by approximately ⁇ 40 ° with respect to the optical axis 430 to control the light so that the refracted light is incident on the photographing area of the camera.
  • the transmission part 402 is a part through which the light of the periphery is transmitted, and may be configured in any one shape selected from a straight line, a flat surface having a pattern, a circle, and an ellipse.
  • the total reflection part 403 totally reflects the light spreading out to the periphery so as to reach the rectangular camera photographing area without loss in order to implement the transmission range of the light passing through the transmission part in the shape of a square, which is a photographing area.
  • the curved surface of the total reflection portion 403 is composed of a conic surface or an aspherical surface
  • the long side curved surface and the short side curved surface of the total reflection portion is axially symmetric with respect to the optical axis, respectively
  • the long side curved surface and the short side curved surface are different shapes It is preferable to produce the curved surface of the. That is, in the conventional circular or elliptical lens form, the long side and the short side curved surface do not rotate rotationally about the optical axis, but have the same role as total reflection. It can be reduced as much as possible.
  • the four curved surfaces forming the long side and the short side of the total reflection part 403 may be configured as curved surfaces having different shapes.
  • the second refracting portion 404 may be manufactured as a conic surface or an aspherical surface as the light is emitted to the outside. And, it can be configured to any one selected from the lens shape to which the pattern of planar lens, curved lens and Fresnel lens is added. In general, it is preferable to form a planar shape, but it is also possible to construct a curved surface, and a pattern is added to a Fresnel lens having an aspherical shape or a pattern shape for reasons such as mechanical space constraint or improvement of light concentration efficiency according to lens thickness. You will be able to achieve your desired purpose.
  • the curved lens is preferably composed of any one selected from a spherical lens, an aspherical lens and a free curved lens.
  • the LED flash lens 400 is a constant air gap that is the height of the space of the upper surface of the LED 410 from the first refraction unit 401 in order to maximize the utilization of the front and side light emitted from the LED 410 (
  • the air gap 420 is too small, light emitted from the side of the LED 410 is incident on the refraction unit 401 and is incident outside the photographing area of the camera, resulting in a large loss of light.
  • the air gap 420 is too large, the total reflection part 402 becomes large accordingly, so that the size of the entire lens 400 becomes large.
  • the air gap 420 is preferably configured to range from 0.5 mm to 3 mm.
  • the aspherical surfaces of the Fresnel lens and the total reflection portion 403 of the refracting portion 401 are axially symmetric with respect to the optical axis 430 as shown in FIG. 5, and in this case, the aspherical surface of the total reflection portion 402 is As shown in Fig. 5A, the long side aspherical surface 501 and the short side aspherical surface 502 are preferably configured with different curved surfaces.
  • the Fresnel lens is preferably composed of a curved surface different from the long side and short side.
  • the height 521 of the first section of the long side Fresnel lens and the height 523 of the first section of the short side Fresnel lens are the same,
  • the length 511 of the first section and the length 513 of the first section of the short side Fresnel lens are different from each other, and the second section also has the same heights 522 and 524 but the lengths 512 and 514 are the same.
  • the lens shape was designed differently.
  • Fig. 5-C shows the shape of the Fresnel lens portion of the refraction portion.
  • the Fresnel lens and the total reflection portion of the aspherical surface are axially symmetrical with respect to the optical axis 430, and the overall lens 400 has a rectangular shape.
  • the long side section and the short side section are different curved surfaces.
  • FIG. 6 is a view illustrating the overall shape of the LED flash lens 400 from various angles. As shown in the figure, it can be seen that the overall lens 400 to which the light source of the mounted LED is transmitted has a rectangular shape, which is a photographing area, to reduce the lost light source as much as possible.
  • the internal shapes constituting the first refraction part 401 and the transmission part 402 may be implemented in various shapes as shown.
  • FIG. 7 is a diagram illustrating an illuminance distribution illuminated at a distance of 1 m when the LED flash is configured using the LED flash lens 400.
  • the lens shape according to the present invention when introduced, it can be seen that the light is concentrated in the photographing area 600 of the camera to form a rectangular shape. Therefore, the existing light loss area and the tailing area can be minimized.
  • the intensity of the LED light source is uniformly flattened.
  • FIG. 8 illustrates another embodiment of the present invention, in which the Fresnel lens of the first refraction unit 401 has a circular rotational symmetry, not a rectangular shape.
  • the first refraction portion 401 is a rotationally symmetric convex lens instead of a Fresnel lens, and the curved surface has a spherical or aspherical shape.
  • FIG. 10 shows that the transmission part 402 constituting the outer periphery of the first refraction part 401 in FIGS. 8 and 9 has a circular shape instead of a rectangular shape.
  • the internal shape of the first refraction part 401 and the external shape of the transmission part may be variously configured according to the shape of the flash lens 400 and the light emission intensity according to the application device.
  • FIG. 11 illustrates an LED flash lens using two or more LEDs as another embodiment of the present invention.
  • the auxiliary light source although it is possible to increase the light intensity of the auxiliary light source, there is also a disadvantage that the overall size of the lens can be increased. Therefore, it will be possible to manufacture by selectively adjusting the number of LEDs mounted according to the required light intensity.
  • FIG. 12 illustrates a Fresnel lens 450 disposed on the upper surface of the second refraction portion 404 at a predetermined distance. This is because of the appearance shape in terms of design design or to condense more light is configured to increase the flash light source efficiency.
  • the light emitting effect is applied to any one or two or more portions of the first refraction portion 401, the transmission portion 402, the total reflection portion 403, and the second refraction portion 404. It is also possible to form a coating layer to maximize the.
  • the coating layer may be composed of an antireflective coating layer or a mirror coating layer.
  • FIG. 13 is a sectional view of a lens unit in which a Fresnel lens is added to a PCB integrated flash lens
  • FIG. 14 is a perspective view of a lens unit in which a triangular fresnel lens is added to an F-PCB integrated flash lens
  • FIG. Figure 16 is a perspective view from the bottom showing the pattern formed for power supply to the PCB bottom surface
  • Figure 17 is another embodiment drawing for power supply to the LED
  • Figure 18 is a Fresnel lens fabrication
  • FIG. 19 is a view illustrating an example in which two flash lenses are formed in a horizontal line
  • FIG. 20 is an assembled perspective view illustrating a state in which the lens shapes of FIGS. 18 and 19 are assembled.
  • FIG. 13 is a hard PCB 400 or an F-PCB 410 attached to the bottom surface of the LED 300 of the LED flash lens 100 having the above configuration and connected integrally, and a Fresnel lens on the top surface of the flash lens 100.
  • An embodiment of a flash lens unit according to the present invention with the addition of 200 is shown.
  • the hard PCB 400 or the F-PCB 410 integrated type is configured by modularizing the flash lens 100, which contributes to ease of assembly as a mounting device.
  • the flash lens 100 may be separately provided or may be provided in the form of a hard PCB 400 or an F-PCB 410 to which the flash lens 100 and the LED 300 are attached.
  • the lens 200 may be provided in a form added to the image surface.
  • Fresnel lens 200 is used as a special lens for softening the contour, a lens for condensing spot light.
  • the curved surface of the lens is divided into a ring shape and extracted into a prism annular shape, which is arranged in a plane.
  • the Fresnel lens 200 is preferably composed of a rectangular plane, but is not limited thereto, and may be formed in a circle, triangle, rhombus, or the like.
  • the LED 300 is attached to the top surface of the hard PCB 400 and the flash lens 100 is formed on the top surface of the LED 300, and then the fresnel lens 200 has a triangular shape.
  • the F-PCB 410 is connected to the connector 420 to supply power to the LED 300.
  • the shape of the Fresnel lens 200 can be designed or changed according to the shape or size of the mechanism.
  • the power supply unit may be directly soldered to one side of the hard PCB 400, and the F-PCB may be formed on one side or the upper surface of the hard PCB 400.
  • Solder 450 may be connected to the 410 and the F-PCB 410 may be connected to the connector 420 for connecting the power supply.
  • a pattern 405 for power supply may be formed on the bottom surface of the hard PCB 400, and a contact member having a contact shape may be configured at a counterpart connected thereto to supply power to the LED 300.
  • a contact member having a contact shape may be configured at a counterpart connected thereto to supply power to the LED 300.
  • two such patterns 405 are formed, but the present invention is not limited thereto.
  • the contact member 470 has a spring shape or a pin shape as shown in FIG. 17 (a) or 17 (b). It may be configured using a member made of a press, as in 17 (c).
  • FIG. 18 illustrates a Fresnel lens shape.
  • the Fresnel lens shape is preferably manufactured in the form of a table chair having a “c” shape. This shape is to protect the flash lens 100 to have a Fresnel lens 200 having a variety of shapes and patterns on the upper surface of the center and a predetermined length in the downward direction from both sides of the Fresnel lens 200 It is preferable to extend the seating support portion 210 extending as much as. And, the mounting support 210 is preferably to form a protrusion on the lower portion to be coupled and fastened with the mounting member of the device to be mounted.
  • FIG. 19 illustrates a configuration in which two horizontal flash lenses 100 are attached in a horizontal line.
  • a rectangular protrusion ring 105 is formed at both centers of the second refraction portion of the flash lens 100 and the size of the upper side of the Fresnel lens 200 of FIG. It is preferable to configure so that it can be settled in the groove
  • two flash lenses may be extended, but the present invention is not limited thereto, and three or more flash lenses may be used.
  • FIG. 20 illustrates an assembled state in which the Fresnel lens 200 and the flash lens 100 are assembled as separate parts, respectively, as separate members. As shown in the drawing, it is possible to improve the ease of installation by integrally assembling one flash lens module so as to be used as one component.
  • the LED is assumed to be described as a light emitter, the light emitter is not limited thereto. If the overall shape of the lens is rectangular, the shape and shape of each lens component may be variously modified without being limited to the embodiment of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Stroboscope Apparatuses (AREA)
  • Led Device Packages (AREA)

Abstract

본 발명은 카메라의 보조광원으로 사용되는 발광체 플래시용 렌즈에 관한 것으로서, 광효율을 극대화하기 위해 발광체 정면에서 출사하는 광을 제어하는 굴절부와 발광체 측면에서 출사하는 광을 제어하는 전반사부로 구성하고, LED에서 출사하는 전 방향의 광을 모두 활용 가능하도록 렌즈의 형태를 사각 형태로 구성함으로써, 조명된 광이 카메라의 촬영영역에 대응하도록 사각 형태로 조명될 수 있도록 하여 조명 광 효율을 극대화시킬 수 있도록 한 것이다.

Description

 발광체 플래시 렌즈 및 렌즈 유닛
본 발명은 휴대폰 등 모바일 기기에 장착된 카메라의 보조광원에 이용되고 있는 발광체 플래시 렌즈에 관한 것으로서, 보다 상세하게는 카메라의 사진 촬영 영역 내로 광원을 집중시켜 사진 촬영시 광효율을 제고하여 어두운 곳에서도 우수한 품질의 촬영이 가능한 보조광원인 발광체 플래시 렌즈 및 렌즈 유닛에 관한 것이다.
본 발명은 휴대폰 등 모바일 기기에 많이 장착되어 있는 카메라의 보조광원에 관한 것으로서, 종래의 저화소 카메라폰에서는 LED 플래시가 주로 사용되었고 고화소 카메라폰에는 제논 스트로보가 주로 사용되어 왔다.
아울러, 최근 출시되는 대부분의 휴대폰은 카메라가 장착되어 있으며, 기존 1-2백만 화소가 주류였던 것이 점차적으로 3백만 화소 이상의 고화소폰의 비율이 증가하고 있는 실정이다. 이렇게 카메라폰의 성능이 점차 고급화되면서 그 품질 또한 디지털카메라와 같은 것을 요구하는 경우가 많아졌다.
즉, 최근 카메라가 내장된 휴대폰 출시가 증가하면서, 어두운 곳에서도 우수한 품질의 사진을 촬영할 수 있도록 하는 보조광원에 대한 관심이 높아지고 있는 상황이다.
그러나 카메라의 성능이 향상되는 것에 비해 그 보조광원인 플래시의 성능은 크게 향상되지 못하고 있는 실정이다.
종래 보조광원에 있어서, 제논스토로보의 경우는 디지털카메라에 주로 장착되어 사용되던 것으로 휴대폰에 장착하기에는 크기가 너무 크고 고가이며, 동영상에는 사용할 수 없는 단점이 있다.
그리고, 기존 LED 플래시는 중심 및 주변의 밝기가 충분하지 못해 카메라의 보조광원으로의 성능에 미치지 못한 실정이며, LED 기술이 발전하면서 점차 고출력 LED를 사용하는 추세로 바뀌고 있으나 렌즈의 성능이 충분하지 못하고 광효율이 낮아 그 성능을 제대로 발휘하지 못하고 있는 실정이다.
도 1은 일반적인 LED의 조명각과 카메라폰의 촬영영역을 나타낸 그림이다.
도 1a는 일반적인 카메라폰의 촬영영역과 화각을 나타낸 것이며, 사각영역(100)이 실질적으로 이미지센서에 입사하는 영역이고 가장 작은 원(101)이 카메라의 단변화각(40∼45°)을 나타내고 다음 원(102)이 장변화각(50∼55°), 제일 큰 원(103)이 대각화각(62∼65°)을 나타낸다.
도 1b는 일반적인 LED의 조명각을 나타낸 것으로 보통 중심의 50% 정도의 광도를 가지는 각을 조명각으로 표시하며 보통 120° 정도이다.
이와 같이 LED의 조명각이 카메라의 화각보다 크기 때문에 렌즈를 사용하지 않고 LED만으로 사용할 경우 LED에서 출사하는 광이 카메라의 촬영영역에 입사하는 비율은 18-20% 정도 밖에 되지 않아 광효율이 많이 떨어지기 때문에 LED 앞쪽에 다수개의 렌즈를 사용하고 있다.
도 2a는 LED Flash에 많이 사용되고 있는 렌즈, 도 2b는 프레넬렌즈(40)를 나타내고 있는데, 이 중 통상적으로는 렌즈의 크기를 소형화 할 수 있는 프레넬렌즈(40)를 많이 사용하고 있다.
그러나 이런 프레넬렌즈 형태의 경우에는 LED(41) 측면에서 출사하는 광을 제어하기 힘들기 때문에 광효율이 30∼40% 정도 밖에는 되지 않는다. 또한 렌즈 형태가 원형으로써 렌즈를 투과한 광도 원형 형태를 조명되기 때문에 카메라의 촬영영역인 사각형태와 최적화하기 힘들어 광손실이 클 수 밖에 없었다. 즉, 플래시에서 나오는 빛의 분포가 원형 또는 타원 형태로 구성되어 광량 손실 발생 부분이 많을 수 밖에 없는 문제점이 있었다.
도 3은 일반적인 원형 형태의 렌즈나 프레넬렌즈를 사용했을 때 조명되는 광분포를 나타낸 도면이다. 여기에서, 사각영역(300)은 카메라의 촬영영역이고 도3a는 카메라의 대각화각까지 광이 조명될 수 있도록 렌즈설계가 된 것으로 이 경우 카메라의 촬영영역을 벗어난 광이 많아서 광효율이 낮을 수 밖에 없으며, 도3b는 카메라의 장변화각에 맞추어 렌즈설계를 한 것으로 도3a에 비해 광손실은 적으나 카메라의 코너부분에 광이 거의 조명되지 않아 밝기 균일도가 나빠져 사진의 질이 떨어진다는 문제점이 있었다. 도면에서 식별번호 310은 광손실 영역을, 식별번호 320은 광미도달 영역을 나타낸다.
본 발명은 상기한 종래의 문제점을 해결하기 위하여 안출한 것으로서, 본 발명의 목적은, 고출력 발광체, 즉 LED 같은 발광소자를 사용하여 광량을 충분히 확보하고 LED에서 출사하는 광이 카메라 촬영영역에 최대한 많이 입사할 수 있도록 렌즈를 설계함으로서 광효율을 극대화할 수 있는 고출력 발광체 플래시용 렌즈을 제공하는 데 있다.
또 다른 목적은, 광분포도가 사각형 형태로 구성되도록 빛을 조사시켜 원하는 피사체 촬영 영역과 일치시켜 종래 발생하였던 빛 손실 발생 부분을 최소화시켜 발광체 빛을 최대한 효과적으로 사용할 수 있도록 하는 데 있다.
또한, 발광체 정면 및 측면에서 출사하는 광을 모두 제어할 수 있도록 렌즈를 구성하여 카메라의 시야각 안으로 최대한 많은 광이 입사할 수 있도록 하고, 조명의 형태를 기존의 원형 형태가 아닌 카메라의 촬영 영역처럼 사각 형태로 조명함으로서 손실되는 광을 최소화하고자 하는 데 또 다른 목적이 있다.
본 발명은 상기한 종래의 문제점을 해결하기 위하여 안출한 것으로서, 발광체 플래시용 렌즈에 있어서, 상기 렌즈는 카메라 촬영 영역에 대응되도록 사각 형태로 광조명되어 광효율이 극대화될 수 있도록 전체적인 형상을 사각 형태로 구현한 플래시 렌즈로서, 발광용 광원을 발생시키기 위한 하나 이상의 발광체와; 상기 발광체 정면에서 출사되는 광을 제어하는 1차 굴절부와; 상기 발광체 측면에서 출사되는 광이 투과되는 투과부와; 상기 발광체 측면에서 출사되어 상기 투과부를 통과한 광을 제어하는 전반사부; 및 상기 1차 굴절부 및 전반사부에 의하여 제어된 광을 렌즈 밖으로 최종 출사시키는 2차 굴절부;로 구성된 것을 특징으로 한다.
여기에서, 상기 전반사부는 코닉면 또는 비구면이며, 상기 전반사부의 장변 곡면과 단변 곡면은 각각 광축 기준으로 축대칭을 이루고 있고, 상기 장변 곡면과 단변 곡면은 서로 다른 형상의 곡면인 것을 특징으로 한다.
또는, 상기 전반사부는 코닉면 또는 비구면이며, 상기 전반사부의 장변과 단변을 이루는 네 개의 곡면은 각기 서로 다른 형상의 곡면인 것을 특징으로 한다.
그리고, 상기 제1 굴절부는, 평면렌즈, 곡면렌즈 및 프레넬렌즈 형태의 패턴을 추가한 렌즈 형상 중 어느 하나인 것을 특징으로 한다.
여기에서, 상기 곡면렌즈는, 구면렌즈, 비구면렌즈, 자유곡면렌즈 중 선택된 어느 하나인 것을 특징으로 한다.
또한, 상기 프레넬렌즈 형상은 원형 또는 사각형 형태로 구성하며, 사각형 형태인 경우, 장변 곡면과 단변 곡면은 각각 광축 기준으로 축대칭을 이루고 있고, 상기 장변 곡면과 단변 곡면은 서로 다른 형상의 곡면인 것을 특징으로 한다.
또는, 상기 프레넬렌즈 형상은 원형 또는 사각형 형태로 구성하며, 사각형 형태인 경우, 상기 전반사부의 장변 및 단변을 이루는 네 개의 곡면은 각기 서로 다른 형상의 곡면인 것을 특징으로 한다.
한편, 상기 제1 굴절부는 XY가 서로 다른 실린더 렌즈인 것을 특징으로 한다.
또한, 제2 굴절부는, 평면렌즈, 곡면렌즈 및 프레넬렌즈 형태의 패턴을 추가한 렌즈 형상 중 선택된 어느 하나인 것을 특징으로 한다.
여기에서, 상기 곡면렌즈는, 구면렌즈, 비구면렌즈, 자유곡면렌즈 중 선택된 어느 하나인 것을 특징으로 한다.
그리고, 상기 투과부는, 직선, 패턴이 형성된 평면, 원형 및 타원형 중 선택된 어느 하나의 형상인 것을 특징으로 한다.
또한, 상기 제1 굴절부, 투과부, 전반사부 및 제2 굴절부 중 어느 하나 또는 둘 이상 부위에 발광 효과를 극대화할 수 있도록 코팅층을 형성하는 것을 특징으로 한다.
또한, 상기 코팅층은 무반사코팅층 또는 미러코팅층인 것을 특징으로 한다.
또한, 상기한 구성에서 상기 발광체는 LED인 것을 특징으로 한다.
이상에서와 같이, 본 발명에 따른 발광체 플래시용 렌즈 형상 구현시에는, 기존의 플래시용 렌즈의 단점을 개선하여 광효율을 극대화시킴으로써 밝기를 향상시키고 조명의 사각화를 통해 균일도를 향상시켜 카메라의 보조광원 기능을 개선하여 우수한 품질의 사진 촬영이 가능하게 된다. 더 나아가 기존 제논스트로보를 대체할 수 있도록 하여 플래시 가격 경쟁력을 제고할 수 있는 효과를 가지게 된다.
또한, 광분포도가 사각형 형태로 구성되도록 빛을 조사시켜 원하는 피사체 촬영 영역과 일치시켜 종래 발생하였던 빛 손실 발생 부분을 최소화시켜 발광체 빛을 최대한 효과적으로 사용할 수 있도록 하는 고출력 발광체 플래시용 렌즈를 제공할 수 있게 된다.
도 1은 종래의 LED 조명각과 카메라의 촬영영역을 나타낸 도면
도 2는 종래 기술의 일반적인 볼록렌즈(a)와 프레넬렌즈(b)
도 3은 종래기술에 의한 1m 떨어진 거리에 조명된 조도분포 도시도
도 4는 본 발명의 LED 플래시용 렌즈를 도시한 도면
도 5는 본 발명의 LED 플래시용 렌즈의 굴절부와 전반사를 도시한 도면
도 6은 본 발명의 LED 플래시 렌즈의 여러 가지 각도에서의 3D 도면
도 7은 본 발명의 LED 플래시에 의한 1m 떨어진 거리에 조명된 조도분포 도시도
도 8은 본 발명의 또 다른 일 실시 예를 도시한 플래시 렌즈 외관 사시도
도 9는 본 발명의 또 다른 일 실시 예를 도시한 플래시 렌즈 외관 사시도
도 10은 본 발명의 또 다른 일 실시 예를 도시한 플래시 렌즈 구성도
도 11은 본 발명의 또 다른 일 실시 예를 도시한 플래시 렌즈 구성도
도 12는 본 발명의 또 다른 일 실시 예를 도시한 렌즈 구성도
도 13은 PCB 일체형 플래시 렌즈에 프레넬 렌즈를 부가한 렌즈 유닛 단면도
도 14는 F-PCB 일체형 플래시 렌즈에 삼각 형상의 프레넬 렌즈를 부가한 렌즈 유닛 사시도
도 15는 LED에 전원 공급을 위한 일 실시 예 도면
도 16은 PCB 바닥면에 전원 공급을 위한 패턴 형성한 것을 도시한 저부에서 본 사시도
도 17은 LED에 전원 공급을 위한 또 다른 일 실시 예 도면
도 18은 프레즈넬 렌즈 제작 일 예를 도시한 도면
도 19는 플래시 렌즈를 2개 수평 라인화하여 구성한 도면
도 20은 도 18 및 도 19의 각 렌즈 형태를 조립한 모습을 도시한 조립사시도
*** 도면의 주요 부분에 대한 설명 ***
400: 플래시 렌즈 401: 제1 굴절부
402: 투과부 403: 전반사부
404: 제2 굴절부 410: LED
420: 공기간격 430: 광축
이하, 첨부 도면을 참조하여 본 발명에 따른 실시예를 상세하게 설명하면 다음과 같다.
먼저, 본 발명에 따른 플래시 렌즈용 발광체는 LED 또는 제논 스트로보 등 다양한 부재로 구성이 가능하나, 이하 도면 및 실시 예에서 설명하는 발광체는 성능이 가일층 개선되며 광범위하게 적용되고 있는 LED로 상정하여 설명하기로 한다. 물론, 이하 실시 예 및 청구범위에 기재된 사항이 발광체로써 LED에 한정되지 않음은 자명하다.
도 4는 본 발명의 LED 플래시용 렌즈를 도시한 도면, 도 5는 본 발명의 LED 플래시용 렌즈의 굴절부와 전반사부를 도시한 도면, 도 6은 본 발명의 LED 플래시 렌즈의 여러 가지 각도에서의 3D 도면, 도 7은 본 발명의 LED 플래시에 의한 1m 떨어진 거리에 조명된 조도분포 도시도, 도 8은 본 발명의 또 다른 일 실시 예를 나타낸 도면, 도 9는 본 발명의 또 다른 일 실시 예를 도시한 도면, 도 10는 본 발명의 또 다른 일 실시 예를 도시한 도면, 도 11은 본 발명의 또 다른 일 실시 예를 도시한 도면이다.
이하, 기술되는 도면 및 실시 예 기재에 있어 동일 구성이면서 식별 번호가 상이하게 기재되어 있는 부분도 있으나, 이러한 부분은 플래시 렌즈 및 모듈 구성에 따른 상이함 때문이다. 식별번호에 명확하게 구성에 대한 설명이 있으므로 그렇게 이해되어야 할 것이다.
상기한 기술적 과제를 해결하기 위한 본 발명의 LED 플래시 렌즈(400) 구성은, 도 4에 도시된 바와 같이, 통상적인 기판 상면에 장착되어 발광용 광원을 발생시키기 위한 하나 이상으로 구성되는 LED(410)와, 상기 LED(410) 상부 정면에서 출사하는 광을 제어하는 제1 굴절부(401)와, 상기 LED(410) 측면에서 출사되는 광이 투과되는 투과부(402)와, 상기 LED(410)의 측면에서 출사하는 광을 제어하는 전반사부(403) 및 상기 1차 굴절부(401) 및 전반사부(403)에 의하여 제어된 광을 렌즈 밖으로 최종 출사시키는 제2 굴절부(404)로 구성한다.
이 경우, 도시된 바와 같이, 출사되는 광이 카메라의 촬영 영역에 대응되는 형상인 사각 형태로 조명될 수 있도록 LED 플래시 렌즈(400)의 전체적인 형상은 사각 형태로 구성함이 바람직하다.
즉, LED(410) 를 장착하는 렌즈(400) 하부면 및 렌즈(400) 상면은 평평한 형상의 사각 형상을 이루게 하고, 전후좌우 측면은 일정 부분 만곡된 형상의 구면 또는 비구면으로 렌즈 전체적인 형상을 구성하고 있다.
여기서, 상기 제1 굴절부(401)는 발광체인 LED(410) 상면 중심부 광량을 제어하는 부분으로서, 평면렌즈, 곡면렌즈 및 프레넬 렌즈 형태의 패턴을 추가한 렌즈 형상 중 어느 하나로 구성한다. 이때, 상기 곡면렌즈는, 구면렌즈, 비구면렌즈, 자유곡면렌즈 중 선택된 어느 하나로 구성함이 바람직하다.
또한, 상기 제1 굴절부(401)는 XY가 서로 다른 실린더 렌즈로 구성할 수도 있다. 여기에서, 실린더 렌즈는 원통형으로 위아래로는 길죽한 형상을 하면서 주위로 돌아가며 둥근 형태를 구성하는 렌즈를 의미한다.
상기 프레넬 렌즈 형상은 원형 또는 사각형 형태로 구성하며, 사각형 형태인 경우, 장변 곡면과 단변 곡면은 각각 광축 기준으로 축대칭을 이루고 있고, 상기 장변 곡면과 단변 곡면은 서로 다른 형상의 곡면으로 형성함이 바람직하나, 상기 전반사부의 장변 및 단변을 이루는 네 개의 곡면은 각기 서로 다른 형상의 곡면으로 형성할 수도 있을 것이다.
더욱 바람직하게는 광축(430)을 기준으로 대략 ±40° 사이의 광을 굴절시켜 굴절된 광이 카메라의 촬영 영역에 입사하도록 광을 제어하게 한다.
한편, 투과부(402)는 주변부 빛이 투과되는 부분으로, 직선, 패턴이 형성된 평면, 원형 및 타원형 중 선택된 어느 하나의 형상으로 구성할 수 있다.
전반사부(403)는 투과부를 투과한 주변의 빛의 전송 범위를 촬영 영역인 사각 형태로 구현시키기 위하여 주변으로 퍼져 나오는 빛을 전반사시켜 손실없이 사각 형태의 카메라 촬영 영역으로 도달되게 한다.
이때, 상기 전반사부(403)의 곡면 형상은 코닉면 또는 비구면으로 구성하며, 상기 전반사부의 장변 곡면과 단변 곡면은 각각 광축 기준으로 축 대칭을 이루게 하고, 상기 장변 곡면과 단변 곡면은 서로 다른 형상의 곡면으로 제작함이 바람직하다. 즉, 종래의 원형 또는 타원형 구조의 렌즈 형태에서 광축 기준으로 회전 대칭을 이루는 것이 아니라 장변과 단변 곡면은 전반사라는 같은 역할을 하며 형태 또한 유사하긴 하지만 크기 및 형상을 서로 달리 하여 구성함으로써 불필요한 광손실을 최대한 줄일 수 있게 된다.
이때, 상기 전반사부(403)의 장변과 단변을 이루는 네 개의 곡면은 각기 서로 다른 형상의 곡면으로 구성하는 것도 가능할 것이다.
한편, 제2 굴절부(404)는 빛이 외부로 표출되어 나가는 부분으로 코닉면 또는 비구면으로 제작할 수 있다. 그리고, 평면렌즈, 곡면렌즈 및 프레넬렌즈 형태의 패턴을 추가한 렌즈 형상 중 선택된 어느 하나로 구성 가능하다. 일반적으로는 평면 형태로 구성함이 바람직하나 곡면으로도 구성이 가능하며, 렌즈 두께에 따른 기구적 공간 제약 또는 광 집중효율 개선 등의 이유로 비구면 형태 또는 패턴 형태를 가진 프레넬 렌즈에 패턴을 추가하여 원하는 목적을 달성하게 할 수 잇을 것이다. 여기에서 상기 곡면렌즈는, 구면렌즈, 비구면렌즈, 자유곡면렌즈 중 선택된 어느 하나로 구성함이 바람직하다.
또한, 상기 LED 플래시 렌즈(400)는 상기LED(410)에서 출사하는 정면 및 측면 광 활용을 극대화하기 위하여 상기 제1 굴절부(401)로부터 상기 LED(410) 상면의 공간 높이인 일정한 공기간격(420)을 가져야 하는데, 이 경우 공기간격(420)이 너무 작으면 LED(410) 측면에서 출사하는 광이 상기 굴절부(401)에 입사하여 카메라의 촬영영역 밖으로 입사하여 광소실이 많이 생기게 되며, 반대로 공기간격(420)이 너무 크면 그에 따라 전반사부(402)가 커져 전체 렌즈(400) 크기가 커지기 때문에 핸드폰 등에 적용하기에는 무리가 있다. 일반적으로, 상기 공기간격(420)은 0.5 mm 내지 3mm 범위로 구성함이 바람직하다.
또한, 상기 굴절부(401)의 프레넬 렌즈와 전반사부(403)의 비구면은 도5와 같이 광축(430)을 기준으로 축 대칭을 이루고 있으며, 이 경우, 상기 전반사부(402)의 비구면은 도5-a와 같이 장변 비구면(501)과 단변 비구면(502)을 서로 다른 곡면으로 구성함이 바람직하다.
또한 도 5-b와 같이 상기 프레넬 렌즈는 장변과 단변이 서로 다른 곡면으로 구성하는 것이 바람직하다.
이는, 광이 굴절되는 굴절각 및 반사되는 반사각을 적절히 조절하여 카메라 화각인 촬영 영역에 조사되는 광효율을 최대한 높이기 위하여 최적화된 렌즈 형상을 구성하기 위함이다.
이에 따라서, 도 5에 도시된 바와 같이, 본 발명에서는 장변 프레넬 렌즈의 첫 번째 구간의 높이(521)와 단변 프레넬 렌즈의 첫 번째 구간의 높이(523)는 서로 같으나, 장변 프레넬 렌즈의 첫 번째 구간의 길이(511)와 단변 프레넬 렌즈의 첫 번째 구간의 길이(513)는 서로 다르며, 두 번째 구간도 장변과 단변의 높이(522, 524)는 같으나 길이(512, 514)는 서로 다르게 하여 렌즈 형상을 설계하였다.
도 5-c는 굴절부의 프레넬 렌즈 부분의 형상을 도시하고 있다. 도시된 바와 같이, 광축(430)을 기준으로 프레넬 렌즈 및 전반사부인 비구면이 축 대칭 형상으로 전체적인 렌즈(400) 형상은 사각형 형상을 하고 있다. 아울러, 장변 구간과 단변 구간이 서로 다른 곡면인 것을 알 수 있다.
도 6은 상기 LED 플래시 렌즈(400)의 전체 형상을 여러 각도에서 도시한 도면이다. 도시된 바와 같이, 장착되는 LED의 광원이 전달되는 전체적인 렌즈(400) 형상을 촬영 영역인 사각 형상으로 구성함으로써 손실되는 광원을 최대한 줄일 수 있도록 설계하였음을 알 수 있다. 이 경우, 제1 굴절부(401) 및 투과부(402)를 구성하는 내부 형상은 도시된 바와 같이 다양한 형상으로 구현할 수 있다.
도 7은 상기 LED 플래시 렌즈(400)를 사용하여 LED 플래시를 구성했을 때 1m 떨어진 거리에 조명되는 조도(Illuminance) 분포를 나타내는 도면이다. 도시된 바와 같이, 본 발명에 따른 렌즈 형상을 도입하였을 경우에는, 카메라의 촬영영역(600)에 광이 집중되어 조명이 사각 형태를 이루는 것을 볼 수 있다. 따라서, 기존의 광손실 영역과 광미도달 영역을 최소화할 수 있게 된다. 아울러, LED 광원의 Intensity가 균일하게 평탄화되어 있음을 알 수 있다.
도 8은 본 발명의 또 다른 일 실시 예로, 제1 굴절부(401)의 프레넬 렌즈의 형상을 사각 형태가 아닌 일반적인 회전 대칭의 원형으로 구성하고 있다.
도 9는 본 발명의 또 다른 일 실시 예로, 제1 굴절부(401)가 프레넬 렌즈가 아닌 회전 대칭형의 볼록렌즈로 되어 있음을 나타내고 있으며 곡면은 구면 또는 비구면 형상을 나타내고 있다.
도 10은 본 발명의 또 다른 일 실시 예로 도8 및 도 9 에서 제1 굴절부(401) 외곽을 구성하는 투과부(402) 형상을 사각 형태가 아닌 원형 형태로 구성하고 있음을 알 수 있다.
즉, 제1 굴절부(401)의 내부 형상 및 투과부 외각 모양은 플래시 렌즈(400) 형태 및 적용 기기에 따른 발광 세기 등에 따라서 다양하게 구성이 가능하다.
상기 도시된 도 8 및 도 9 와 도 10에 해당하는 플래시 렌즈(400)의 경우, 전반사부 및 공기 간격의 형성 등 기본적인 기술적 사상은 상술한 바와 동일하며, 굴절부와 투과부 형상만 다른 경우에 해당하므로, 이에 대한 상세한 설명은 생략하기로 한다.
도 11은 본 발명의 또 다른 일 실시 예로 LED를 2개 또는 다수를 사용한 LED 플래시 렌즈를 도시하고 있다. 이 경우에는 보조광원의 광세기를 증가시킬 수는 있으나 렌즈 전체 크기가 커질 수 있는 단점을 내재하기도 한다. 따라서, 필요 광세기에 따라서 선택적으로 장착 LED 수를 조절하여 제작할 수 있을 것이다.
도 12는 제2 굴절부(404) 상면에 일정 거리 이격되게 설치한 프레넬 렌즈(450)를 도시하고 있다. 이는, 디자인 설계 측면에서 외관 형상 때문이거나 보다 빛을 집광시켜 플래시 광원 효율을 높이기 위하여 구성한다.
그리고, 상기 예시된 다양한 형상의 렌즈 구성에 있어서, 상기 제1 굴절부(401), 투과부(402), 전반사부(403) 및 제2 굴절부(404) 중 어느 하나 또는 둘 이상 부위에 발광 효과를 극대화할 수 있도록 코팅층을 형성할 수도 있다. 여기에서, 코팅층은 무반사 코팅층 또는 미러 코팅층으로 구성이 가능하다.
이하, 상기한 발광체 플래시 렌즈가 적용되는 본 발명에 따른 유닛 구조에 대하여 설명한다. 도 13은 PCB 일체형 플래시 렌즈에 프레넬 렌즈를 부가한 렌즈 유닛 단면도, 도 14는 F-PCB 일체형 플래시 렌즈에 삼각 형상의 프레넬 렌즈를 부가한 렌즈 유닛 사시도, 도 15는 LED에 전원 공급을 위한 일 실시 예 도면, 도 16은 PCB 바닥면에 전원 공급을 위한 패턴 형성한 것을 도시한 저부에서 본 사시도, 도 17은 LED에 전원 공급을 위한 또 다른 일 실시 예 도면, 도 18은 프레즈넬 렌즈 제작 일 예를 도시한 도면, 도 19는 플래시 렌즈를 2개 수평 라인화하여 구성한 도면, 도 20은 도 18 및 도 19의 각 렌즈 형태를 조립한 모습을 도시한 조립사시도이다.
도 13은 상기한 구성을 갖는 LED 플래시 렌즈(100)의 LED(300) 저면에 Hard PCB(400) 또는 F-PCB(410)를 부착하여 일체로 연결하고 플래시 렌즈(100) 상면에는 프레넬 렌즈(200)를 부가한 본 발명에 따른 플래시 렌즈 유닛의 일 실시 예를 도시하고 있다.
상기 Hard PCB(400) 또는 F-PCB(410) 일체형은 플래시 렌즈(100)를 모듈화하여 구성한 것으로 이는 장착되는 기기로 조립시 용이하게 할 수 있도록 기여한다.
이 경우, 플래시 렌즈(100)만 별도로 제공할 수도 있고 플래시 렌즈(100)와 LED(300)가 부착된 Hard PCB(400) 또는 F-PCB(410) 형태로 제공할 수도 있고, 여기에 프레넬 렌즈(200)를 상면에 부가한 형태로 제공할 수도 있을 것이다.
프레넬 렌즈(200)는 윤곽을 부드럽게 하는 특수 렌즈, 스포트 라이트의 집광용 렌즈로 쓰인다. 집광 렌즈의 중심 두께를 얇게 하기 위해 렌즈의 곡면을 링 모양으로 나누어 프리즘 환상(環狀)으로 추출하고, 이것을 평면에 늘어 놓은 것을 말하며, 빛 확산 효율 및 미관을 위하여 부가할 수 있는 구성이다.
이 경우, 이러한 프레넬 렌즈(200)는 바람직하게는 사각 형상의 평면으로 구성하나, 이에 국한되지는 않고 원형, 삼각형, 마름모형 등으로 형성할 수도 있다.
즉, 도 14에서와 같이 Hard PCB(400) 중앙 상면에 LED(300)를 부착하고 LED(300) 상면으로는 플래시 렌즈(100)를 구성한 다음 이를 덮는 구조로 삼각 형상의 프레넬 렌즈(200)를 설치할 수 있을 것이다. 그리고, 상기 Hard PCB(400) 일측면으로는 F-PCB(410)를 커넥터(420)에 연결하여 LED(300)에 전원 공급을 하고 있음을 알 수 있다. 이러한 프레넬 렌즈(200) 형상은 기구 형상이나 사이즈에 따라서 디자인 또는 설계 변경이 가능하다.
이하, 도 15 내지 도 16을 참조하여 본 발명에 따른 LED 플래시 렌즈 유닛에 있어서 Hard PCB(400) 또는 F-PCB(410)를 통한 LED(300)로의 전원 공급 구조에 대하여 상세하게 설명한다.
먼저, 도 15에서와 같이 LED(300)에 전원을 원활하게 공급하기 위하여 Hard PCB(400) 일측에 전원공급부를 직접 납땜(450) 구성할 수도 있고 Hard PCB(400) 일측 또는 상면에 F-PCB(410)를 납땜(450) 연결하고 F-PCB(410)를 전원공급부와 접속시키는 커넥터(420)에 연결할 수도 있다.
또는 도 16에서와 같이 Hard PCB(400) 저면에 전원 공급을 위한 패턴(405)을 형성하고 이에 연결되는 상대 부분에서 접점 형태의 접점부재를 구성하여 LED(300)에 전원을 공급할 수 있다. 도 16에서는 이러한 패턴(405)을 2개 형성하였으나 이에 국한되지 않음은 자명하다 할 것이다.
또는, 상기 패턴(405) 위치에 전원공급부를 접점 형태(470)로 도통시키게 되는데 이러한 접점부재(470) 형태는 도 17 (a)에서와 같이 스프링 형상 또는 17 (b)에서와 같이 핀 형상 또는 17 (c)에서와 같이 프레스물로 제작한 부재 등을 사용하여 구성할 수 있을 것이다.
물론, Hard PCB(400) 저면에 접점 부재를 부착하고 상대편인 전원공급부(470) 측에 패턴을 형성하여 전원 공급을 하는 것도 가능하다.
이렇듯이, 전원 공급 및 발광제어를 수행하는 PCB(400, 410) 를 플래시 렌즈와 일체화하여 제공하는 경우 설치 용이성을 극대화할 뿐만 아니라 기기의 소형화도 꾀할 수 있는 이점을 제공한다.
이하, 도 18 내지 도 20을 참조하여 프레넬 렌즈 및 플래시 렌즈 조립 구조를 설명한다.
도 18은 프레넬 렌즈 형상을 도시하고 있는데, 도시된 바와 같이, "ㄷ"자 형상인 탁자 의자 형태로 제작함이 바람직하다. 이러한 형상은 플래시 렌즈(100)를 보호할 수 있는 구조로 다양한 형상 및 패턴을 가지는 프레넬 렌즈(200)를 중앙 상부면에 구비하도록 하고 상기 프레넬 렌즈(200) 양 측면에서 하부 방향으로 일정 길이만큼 뻗는 안착지지부(210)를 연장 구비하도록 함이 바람직하다. 그리고, 안착지지부(210)는 장착되는 기기의 안착부재와 결합 및 체결할 수 있도록 하부에는 돌기부를 형성하도록 함이 바람직하다.
도 19는 사각 형상의 플래시 렌즈(100)를 두 개 수평 라인화시켜 부착한 구성을 도시하고 있다. 도시된 바와 같이 상기 플래시 렌즈(100)의 제2 굴절부에서 연장된 양 측면 중앙으로는 사각 형상의 돌출고리부(105)가 형성되어 있고 그 크기는 도 10의 프레넬 렌즈(200) 상부 측면 중앙의 홈(205)에 안치될 수 있도록 구성함이 바람직하다. 도면에서는 플래시 렌즈를 2개 연장 구성하였지만 이에 국한되지 않음은 자명하며, 설치 기기의 용도에 따라서 3개 이상으로도 구성이 가능할 것이다.
도 20은 각각 별개 부재로 부품처럽 독립되어 제작된 프레넬 렌즈(200)와 플래시 렌즈(100)를 결합한 조립 상태를 도시하고 있다. 도시된 바와 같이 하나의 플래시 렌즈 모듈로 일체화 조립시켜 1개의 부품처럼 사용이 가능하도록 함으로써 설치 간편성을 제고할 수 있게 된다.
상기 기술된 상세한 설명 및 실시 예는 본 발명의 권리범위를 한정하는 것이 아닌 예시적인 것에 불과한 것으로, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시 예가 가능하다는 점을 이해할 것이다.
즉, 발광체로 LED를 상정하여 설명하였지만 발광체가 이에 국한되지는 않으며, 렌즈 전체적인 형상이 사각형이라면 각 렌즈 구성부의 형상 및 모양은 본 발명의 실시 예에 국한되지 않고 다양하게 변형이 가능할 것이다.
따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 등록청구범위의 기술적 사상에 의해 정해져야 할 것이다.

Claims (21)

  1. 발광체 플래시 렌즈에 있어서,
    상기 플래시 렌즈는 전체적인 형상을 사각 형태로 구현하여 카메라 촬영 영역과 대응되는 사각 형태로 광조명되어 광효율이 극대화될 수 있도록 한 것을 특징으로 하는 발광체 플래시 렌즈
  2. 제 1항에 있어서,
    발광용 광원을 발생시키기 위한 하나 이상의 발광체와;
    상기 발광체 정면에서 출사되는 광을 제어하는 제1굴절부와;
    상기 발광체 측면에서 출사되는 광이 투과되는 투과부와;
    상기 발광체 측면에서 출사되어 상기 투과부를 통과한 광을 제어하는 전반사부; 및
    상기 제1 굴절부 및 전반사부에 의하여 제어된 광을 렌즈 밖으로 최종 출사시키는 제2 굴절부;로 구성된 것을 특징으로 하는 발광체 플래시 렌즈
  3. 제 2항에 있어서,
    상기 전반사부는 코닉면 또는 비구면이며,
    상기 전반사부의 장변 곡면과 단변 곡면은 각각 광축 기준으로 축 대칭을 이루고 있고, 상기 장변을 이루는 두 개의 곡면과 단변을 이루는 두 개의 곡면은 서로 다른 형상의 곡면인 것을 특징으로 하는 발광체 플래시 렌즈
  4. 제 2항에 있어서,
    상기 전반사부는 코닉면 또는 비구면이며,
    상기 전반사부의 장변과 단변을 이루는 네 개의 곡면은 각기 서로 다른 형상의 곡면인 것을 특징으로 하는 발광체 플래시 렌즈
  5. 제 2항에 있어서,
    상기 제1 굴절부는,
    평면렌즈, 곡면렌즈 및 프레넬 렌즈 형태의 패턴을 추가한 렌즈 형상 중 어느 하나인 것을 특징으로 하는 발광체 플래시 렌즈
  6. 제 5항에 있어서,
    상기 곡면렌즈는,
    구면렌즈, 비구면렌즈, 자유곡면렌즈 중 선택된 어느 하나인 것을 특징으로 하는 발광체 플래시 렌즈
  7. 제 5항에 있어서,
    상기 프레넬 렌즈 형상은 원형 또는 사각형 형태로 구성하며, 사각형 형태인 경우, 장변 곡면과 단변 곡면은 각각 광축 기준으로 축 대칭을 이루고 있고, 상기 장변을 이루는 두 개의 곡면과 단변을 이루는 두 개의 곡면은 서로 다른 형상의 곡면인 것을 특징으로 하는 발광체 플래시 렌즈
  8. 제 5항에 있어서,
    상기 프레넬 렌즈 형상은 원형 또는 사각형 형태로 구성하며, 사각형 형태인 경우,
    상기 전반사부의 장변 및 단변을 이루는 네 개의 곡면은 각기 서로 다른 형상의 곡면인 것을 특징으로 하는 발광체 플래시 렌즈
  9. 제 2항에 있어서,
    상기 제1 굴절부는 XY가 서로 다른 실린더 렌즈인 것을 특징으로 하는 발광체 플래시 렌즈
  10. 제 2항에 있어서,
    제2 굴절부는,
    평면렌즈, 곡면렌즈 및 프레넬렌즈 형태의 패턴을 추가한 렌즈 형상 중 선택된 어느 하나인 것을 특징으로 하는 발광체 플래시 렌즈
  11. 제 10항에 있어서,
    상기 곡면렌즈는,
    구면렌즈, 비구면렌즈, 자유곡면렌즈 중 선택된 어느 하나인 것을 특징으로 하는 발광체 플래시 렌즈
  12. 제 2항에 있어서,
    상기 투과부는,
    직선, 패턴이 형성된 평면, 원형 및 타원형 중 선택된 어느 하나의 형상인 것을 특징으로 하는 발광체 플래시 렌즈
  13. 제 1항 내지 제 12항 중 어느 한 항에 있어서,
    상기 제1 굴절부, 투과부, 전반사부 및 제2 굴절부 중 어느 하나 또는 둘 이상 부위에 발광 효과를 극대화할 수 있도록 코팅층을 형성하는 것을 특징으로 하는 발광체 플래시 렌즈
  14. 제 13항에 있어서,
    상기 코팅층은 무반사 코팅층 또는 미러 코팅층인 것을 특징으로 하는 발광체 플래시 렌즈.
  15. 1항 내지 제 12항 중 어느 한 항에 있어서,
    상기 발광체는 LED인 것을 특징으로 하는 발광체 플래시 렌즈
  16. 제 15항에 따른 발광체 플래시 렌즈를 이용한 플래시 렌즈 유닛에 있어서,
    상기 유닛은, 카메라 촬영 영역에 대응하도록 사각 형태로 광조명되어 광효율이 극대화될 수 있도록 전체적인 렌즈 형상을 사각 형태로 구성한 플래시 렌즈를 포함하며, 상기 플래시 렌즈 하부에 형성된 LED 저면에 F-PCB 또는 HARD-PCB를 부착시켜 전원공급을 위한 일체형 구조로 구성하는 것을 특징으로 하는 LED 플래시 렌즈 유닛
  17. 제 16항에 있어서,
    상기 전원공급을 위하여 상기 HARD-PCB 일측면에 전원공급 부재를 납땜하거나, 컨넥터와 연결된 F-PCB를 상기HARD-PCB 일면에 납땜하는 것을 특징으로 하는 LED 플래시용 렌즈 유닛
  18. 제 16 항에 있어서,
    상기 전원공급을 위하여 상기 HARD-PCB 바닥면에 전원 공급을 위한 패턴을 형성하고 전원 공급부가 상기 패턴과 접점을 이루도록 접점부재를 구비하는 것을 특징으로 하는 LED 플래시용 렌즈 유닛
  19. 제 18항에 있어서,
    상기 접점부재 형상은 SPRING 구조, PIN 구조 및 프레스물로 제작한 구조 중 선택된 어느 하나인 것을 특징으로 하는 LED 플래시용 렌즈 유닛
  20. 제 16항에 있어서,
    상기 플래시 렌즈는 사각 형상의 플래시 렌즈 각각을 두 개 이상 수평 라인화시켜 부착하여 일체화시킨 것을 특징으로 하는 LED 플래시용 렌즈 유닛
  21. 제 20항에 있어서,
    상기 라인화되어 구성된 플래시 렌즈 상면을 덮을 수 있는 형상으로 상면에는 평면 형상의 프레넬 렌즈를 중앙 상부면에 구비하도록 하고 상기 프레넬 렌즈 양 측면에서 하부 방향으로 뻗는 판상의 안착지지부를 구비한 것을 특징으로 하는 LED 플래시용 렌즈 유닛
PCT/KR2009/003530 2008-12-13 2009-06-30 발광체 플래시 렌즈 및 렌즈 유닛 WO2010067935A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020080126867A KR20100068313A (ko) 2008-12-13 2008-12-13 발광체 플래시 렌즈
KR10-2008-0126867 2008-12-13
KR10-2008-0126987 2008-12-15
KR1020080126987A KR101087569B1 (ko) 2008-12-15 2008-12-15 엘이디 플래시 렌즈 유닛

Publications (2)

Publication Number Publication Date
WO2010067935A1 WO2010067935A1 (ko) 2010-06-17
WO2010067935A9 true WO2010067935A9 (ko) 2010-10-14

Family

ID=42242905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/003530 WO2010067935A1 (ko) 2008-12-13 2009-06-30 발광체 플래시 렌즈 및 렌즈 유닛

Country Status (1)

Country Link
WO (1) WO2010067935A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104763897A (zh) * 2015-03-31 2015-07-08 立达信绿色照明股份有限公司 Led照明装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6501103B1 (en) * 2001-10-23 2002-12-31 Lite-On Electronics, Inc. Light emitting diode assembly with low thermal resistance
KR101063269B1 (ko) * 2004-12-21 2011-09-07 엘지전자 주식회사 엘이디 조명 장치 및 광학시스템
KR100782128B1 (ko) * 2006-04-05 2007-12-05 한국광기술원 카메라 플래시용 led 패키지
KR100756174B1 (ko) * 2007-02-20 2007-09-05 주식회사 세코닉스 Led용 집광렌즈

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104763897A (zh) * 2015-03-31 2015-07-08 立达信绿色照明股份有限公司 Led照明装置
CN104763897B (zh) * 2015-03-31 2018-10-26 漳州立达信光电子科技有限公司 Led照明装置

Also Published As

Publication number Publication date
WO2010067935A1 (ko) 2010-06-17

Similar Documents

Publication Publication Date Title
WO2013039317A2 (ko) 아이시클형 확산유닛을 적용한 엘이디 조명 엔진
WO2017138679A1 (ko) 직하형 led 면조명 장치
WO2013015468A1 (ko) 양면 조명용 led 렌즈와 led 모듈 및 이를 이용한 led 양면 조명장치
WO2016010214A1 (ko) 광 확산 렌즈, 이를 구비한 발광 디바이스
WO2021083106A1 (zh) 摄像头模组及电子设备
WO2021227778A1 (zh) 补光透镜、补光灯模组、镜头组件及电子设备
WO2011019252A2 (en) Illuminator
WO2013095012A1 (ko) 조명용 광학 플레이트 및 이를 이용한 조명장치
WO2015088087A1 (ko) 파리눈 렌즈 및 이를 포함하는 프로젝터용 광학엔진
EP3695262B1 (en) Lens for use in flash device
KR20090128103A (ko) 엘이디 플래시 렌즈
WO2010067935A1 (ko) 발광체 플래시 렌즈 및 렌즈 유닛
WO2012050318A2 (ko) 착탈식 결합이 가능한 엘이디 조명등
WO2018093009A1 (ko) 휴대폰 조명용 집광 및 색광 장치
KR101087569B1 (ko) 엘이디 플래시 렌즈 유닛
WO2023284377A1 (zh) 摄像头模组及电子设备
WO2015023016A1 (ko) 각도 조정형 스커트모듈
JP2002199253A (ja) 書画カメラの原稿照明装置
WO2021232911A1 (zh) 移动终端
CN211956946U (zh) 一种背光模组、显示模组及显示装置
WO2017065461A1 (ko) 조명장치
TWM452347U (zh) 利用攜帶型電子裝置上的led閃光燈的薄型化導光結構
WO2016171504A1 (ko) 눈부심 방지용 엘이디 조명장치
CN113067968A (zh) 一种拍摄组件及移动终端
CN217213414U (zh) 一种柔光组件及柔光灯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09832021

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase in:

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - FORM 1205A (19.09.2011)

122 Ep: pct app. not ent. europ. phase

Ref document number: 09832021

Country of ref document: EP

Kind code of ref document: A1