WO2010067774A1 - Ultrasonic motor - Google Patents

Ultrasonic motor Download PDF

Info

Publication number
WO2010067774A1
WO2010067774A1 PCT/JP2009/070476 JP2009070476W WO2010067774A1 WO 2010067774 A1 WO2010067774 A1 WO 2010067774A1 JP 2009070476 W JP2009070476 W JP 2009070476W WO 2010067774 A1 WO2010067774 A1 WO 2010067774A1
Authority
WO
WIPO (PCT)
Prior art keywords
moving body
ultrasonic motor
moving
detection
contact
Prior art date
Application number
PCT/JP2009/070476
Other languages
French (fr)
Japanese (ja)
Inventor
梢平 今井
昭広 沖
隆 松尾
明 小坂
茂昭 栃本
勝一 浦谷
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Publication of WO2010067774A1 publication Critical patent/WO2010067774A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/001Driving devices, e.g. vibrators
    • H02N2/003Driving devices, e.g. vibrators using longitudinal or radial modes combined with bending modes
    • H02N2/004Rectangular vibrators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/005Mechanical details, e.g. housings
    • H02N2/0065Friction interface
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/103Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors by pressing one or more vibrators against the rotor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/202Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using longitudinal or thickness displacement combined with bending, shear or torsion displacement
    • H10N30/2023Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using longitudinal or thickness displacement combined with bending, shear or torsion displacement having polygonal or rectangular shape

Definitions

  • the present invention relates to an ultrasonic motor, and is particularly suitably used for a lens drive mechanism of a micro camera unit (MCU) that can be mounted on a digital still camera (DSC), a mobile phone, or the like, or an optical pickup unit such as a DVD.
  • MCU micro camera unit
  • DSC digital still camera
  • the present invention relates to a small ultrasonic motor.
  • Ultrasonic motors have advantages such as high torque, high holding power when stopped, and low noise compared to electromagnetic motors.
  • an ultrasonic motor needs to be separately equipped with a position detection sensor. For this reason, when the ultrasonic motor is applied to a small apparatus as described above, it is disadvantageous compared to an electromagnetic stepping motor or a voice coil motor in terms of its arrangement and size. was there. However, if this point is improved, the ultrasonic motor will be very superior to the electromagnetic type in terms of torque and efficiency.
  • Patent Document 1 proposed a self-sensing ultrasonic motor.
  • a protrusion is provided on the rotor, and a detection piezoelectric element is sandwiched between piezoelectric elements on the stator side.
  • the ultrasonic motor calculates the amount of rotation of the rotor from a detection signal corresponding to the orientation of the non-uniform structure and the detection piezoelectric element that appears in the output of the vibration detector due to unevenness of the surface pressure generated by the protrusion. Detected.
  • the above-described conventional technique is excellent in that it is not necessary to provide a means for detecting the rotation amount or the rotation position of an encoder or the like.
  • the detection sensitivity increases if the rotor contact portion is reduced.
  • adverse effects such as a decrease in driving performance are caused. More specifically, the smaller the protrusion, the higher the detection sensitivity and S / N.
  • the area of the portion where the driving force can be transmitted becomes smaller, the torque becomes insufficient, the contact stress of the protrusion increases, and the wear increases. It becomes easy to do.
  • the present invention has been made in view of the above circumstances, and its purpose is to improve the torque transmission while suppressing deformation and wear of the contact portion while maintaining detection sensitivity and resolution. And providing an ultrasonic motor capable of detecting a position.
  • the ultrasonic motor according to the present invention includes a vibrating body in which a piezoelectric element performs high-frequency vibration, and a moving body that is in pressure contact with the vibrating body and is moved by the high-frequency vibration, and the vibration in contact with the moving body.
  • the shape of the contact part of the body is formed longer in the direction intersecting the moving direction of the moving body than the length of the moving body in the moving direction.
  • the contact portion is a line contact formed by extending from the point contact so as to intersect the moving direction of the moving body. Therefore, the ultrasonic motor having such a configuration can suppress the deformation and wear of the contact portion by reducing the contact stress due to the increase in the contact area while maintaining the detection sensitivity and the resolution, and can transmit the torque (corrosion). ) Can be improved.
  • FIG. 2 is an axial sectional view showing a structure of the ultrasonic motor shown in FIG. 1.
  • FIG. 6 is a six-sided view of a vibrating body in the ultrasonic motor shown in FIG. 1.
  • FIG. 4 is a plan view and a bottom view showing both front and back surfaces of each layered piezoelectric element in the vibrating body shown in FIG. 3. It is a perspective view which shows the mode of a deformation
  • FIG. 4 is a development view for explaining driving of the moving body by vibration of the vibrating body shown in FIG. 3. It is a graph for demonstrating the detection mechanism of the rotation position of the moving body shown in FIG. It is a wave form diagram for demonstrating a mode that position detection is performed from the phase difference in the ultrasonic motor shown in FIG.
  • FIG. 3 is a block diagram of a drive circuit that performs position detection based on an amplitude value of a detection voltage according to an embodiment of the present invention.
  • FIG. 1 It is a perspective view which shows the structure of the contact part of the 4th modification in one Embodiment of this invention. It is a figure which shows typically a mode that the mobile body which concerns on the further another form of implementation of this invention is driven with a vibrating body. It is a figure for demonstrating the positional relationship (angle) of the contact part and detection area of a vibrating body.
  • FIG. 1 is a schematic configuration diagram of a lens driving unit 2 using an ultrasonic motor 1 according to an embodiment of the present invention.
  • This lens driving unit 2 is used for zooming of a digital still camera (DSC) or a digital video camera, or for correcting aberrations of a pickup lens of a DVD, and is a small ultrasonic wave having a thickness W1 of about 3 to 5 mm, for example. It is a motor.
  • a cylindrical ultrasonic motor 1 is attached to a frame 3 of a lens unit, an output shaft of which is a lead screw 11, and a linear motion lens feed mechanism that directly moves a lens 7 via a guide member 6. Is configured.
  • the frame 3 is provided with guide shafts 4 and 5 in parallel with the lead screw 11, and a lens 7 is held by a guide member 6 slidable on the guide shafts 4 and 5.
  • a lead screw 11 is engaged with the guide member 6, and when the lead screw 11 rotates, the guide member 6, and thus the lens 7, is moved to the lead screw 11 (ultrasonic motor 1) and the guide shafts 4, 5. Is displaced in the direction of the axis (left and right in the figure).
  • FIG. 2 is an axial sectional view showing the structure of the ultrasonic motor 1.
  • the ultrasonic motor 1 includes a vibrating body (stator) 12 in which a piezoelectric element 12a performs high-frequency vibration, a moving body (rotor) 13 that is in pressure contact with the vibrating body 12 and moved by the high-frequency vibration, and a vibrating body 12.
  • a pressure member 14 that presses against the moving body 13, a bottomed cylindrical case 15 that accommodates them, a lead screw 11 that is fixed to the moving body 13 integrally or by caulking, and the lead screw 11 is pivotally supported.
  • One bearing member 16 closes the open end of the bottomed cylindrical case 15 and supports the base end portion 11a at one end of the lead screw 11 in the radial direction.
  • the other bearing member 17 is composed of a ball bearing that fits into a cap 18 attached to the frame 3.
  • a concave surface 11 c formed at the free end portion 11 b of the other end of the lead screw 11 is fitted into the radial end of the free end portion 11 b. Support in direction and thrust direction.
  • the vibrating body 12 includes a piezoelectric element 12a, a contact member 12b on the moving body 13 side, and a weight member 12c for stability on the opposite side, and is rotated with respect to the case 15 by a regulating member (not shown). Is controlled, and the axis of the movable body 13 is positioned and held.
  • the vibrating body 12 is urged toward the moving body 13 (right side in the figure) by the pressing member 14, and the contact member 12 b is pressed against the moving body 13.
  • the second bearing member 17 receives the reaction force from the cap 18 due to the pressing force from the moving body 13 to the lead screw 11 at the center of rotation so that the friction loss can be minimized. It is configured.
  • a screw 18a is engraved between the cap 18 and the frame 3, and the pressing force can be adjusted by moving the cap 18 in the left-right direction in the figure by the amount of rotation of the screw 18a. Yes. Then, after the adjustment, for example, the cap 18 is fixed to the frame 3 by adhesion.
  • FIG. 3 is a hexahedral view of the vibrating body 12, (a) is a top view, (b) is a front view, (c) is a side view, and (d) is a bottom view.
  • the vibrating body 12 includes a stacked piezoelectric element 12a in which a plurality of piezoelectric layers 12f are stacked, a contact member 12b on the moving body 13 side, and a weight member 12c on the opposite side. They are composed by bonding.
  • the adhesive an epoxy adhesive having high rigidity and high adhesive strength is used.
  • the contact member 12b is made of ceramics such as alumina and zirconia having high wear resistance.
  • the weight member 12c is made of tungsten having a high specific gravity or a copper or iron-based tungsten alloy or the like in order to suppress the deflection on the base end side due to the bending vibration of the piezoelectric element 12a as described later.
  • FIG. 4 is a plan view and a bottom view showing both front and back surfaces per layer of the multilayer piezoelectric element 12a.
  • Each piezoelectric layer 12f has a piezoelectric layer 12g made of PZT (lead zirconate titanate) sandwiched between one surface (FIG. 4A) at equal intervals in the circumferential direction (90 ° intervals).
  • a plurality of drive electrodes IA, IB, IC, ID to which a drive signal from a drive circuit that is not input is input are formed and arranged, and include a region on the outer peripheral side as much as possible with the largest bending displacement of the piezoelectric element described later.
  • a detection electrode IS for outputting a detection signal to a detection circuit is formed and arranged by dividing into a plurality of drive electrodes IA, IB, IC, ID.
  • One surface (FIG. 4A) of the piezoelectric layer 12f (piezoelectric layer 12g) is divided into a plurality of regions, and the drive electrodes IA, IB, IC, ID, and detection electrodes are divided into the divided regions. IS is arranged.
  • the plurality of drive electrodes IA, IB, IC, ID are four in the example shown in FIG. In the example shown in FIG.
  • a detection electrode IS is arranged between the two drive electrodes ID and IC arranged adjacent to each other in the four drive electrodes IA, IB, IC, ID arranged at intervals of 90 ° in the circumferential direction.
  • a detection electrode IS is arranged.
  • a solid GND electrode IG is formed on the other surface (FIG. 4B) in common.
  • These internal electrodes IA, IB, IC, ID; IS and IG are formed by silver palladium printing or the like, and between the laminated piezoelectric layers 12g, the drive electrodes IA, IB, IC, ID and detection electrodes IS and GND electrodes IG are alternately formed.
  • the electrodes IA, IB, IC, ID; IS and IG in each piezoelectric layer 12f are common to the external electrodes OA, OB, OC, OD; OS and OG formed by screen printing or vapor deposition of silver or gold. (FIGS. 3B, 3C, and 4).
  • the external electrodes OA, OB, OC, OD; OS and OG are joined with a lead wire, a flexible substrate (lead wire 12h in the example of FIG. 3), etc. by solder, a conductive adhesive, etc.
  • a drive signal is input and a detection signal is output to and from the detection circuit.
  • the piezoelectric element 12a is preferably a cylinder or a prism, particularly a quadrangular prism.
  • Each piezoelectric layer 12f and electrodes IA, IB, IC, ID; IS and IG formed thereon are polarized in the same direction after lamination.
  • the regions of the drive electrodes IA, IB, IC, and ID perform stretching vibrations that are 90 ° out of phase.
  • the frequency of the drive signal is brought close to the resonance frequency, the bending primary mode vibration as shown in FIG. 5 is excited in the piezoelectric element 12a with the 90 ° phase shift.
  • the weight member 12c is attached to the proximal end side of the piezoelectric element 12a and is substantially fixed to the case 15 via the pressure member 14, and the contact portion on the distal end side is caused by the bending vibration.
  • 12d performs a predetermined motion corresponding to the bending vibration, for example, a revolving motion (oscillating vibration).
  • a revolving motion oscillating vibration
  • elliptical vibrations whose phases are shifted from each other by 120 ° are generated at the apexes 12e of the contact portion 12d, as indicated by reference numeral 12r in FIG.
  • the frictional force generated by the elliptical vibration 12r is rotationally driven around the axis of the piezoelectric element 12a.
  • FIG. 6A is a top view of the vibrating body 12
  • FIG. 6B is a front view.
  • FIG. 7 is a perspective view of the moving body 13
  • FIG. 8 is a cross-sectional view illustrating the vicinity of the contact portion between the moving body 13 and the contact member 12b of the vibrating body 12. Note that FIGS. 7 and 8 are upside down with respect to FIGS. 3 and 6.
  • the moving body 13 includes a lead screw 11 as a shaft for taking out the rotation, a moving body main body 13a fixed to the lead screw 11, and a cover plate 13b stacked on the moving body main body 13a. On the surface of the main body 13a on the cover plate 13b side, grooves 13c are formed at equal intervals in the circumferential direction extending in the radial direction.
  • channel 13c is a structurally non-uniform
  • the moving body 13 is created by forming a groove 13c on a moving body main body 13a made of a metal such as stainless steel by machining or etching and then laminating a thin cover plate 13b made of stainless steel or the like.
  • the cover plate 13b is subjected to nitriding treatment or the like in order to improve wear resistance.
  • Lamination of the cover plate 13b to the movable body main body 13a is performed by joining with a thin adhesive layer or the like or by spot welding or the like, and the movable body main body 13a and the cover plate 13b rotate integrally without any deviation. It only has to be like this.
  • the ultrasonic motor 1 of the same shape as the normal cylindrical motor from which an output shaft extends from a cylindrical main body is realizable.
  • FIG. 8 is a diagram schematically showing how the moving body 13 is driven by the vibrating body 12.
  • the moving body 13 is moved (rotated) to the left in the figure indicated by the arrow 13f by the elliptical vibration 12r of the vertex 12e of the contact portion 12d.
  • the apex 12e passes alternately over the drive area 13e and the detection area 13d of the moving body 13.
  • the groove 13c that is, the detection area 13d
  • FIG. 9A shows the amplitude value of the detection voltage, corresponding to the case where the reference symbol ⁇ 11 (solid line) is in the drive region 13e, and corresponding to the case where the reference symbol ⁇ 12 (broken line) is in the detection region 13d.
  • the frequency f0 at which the detected voltage is the maximum value, that is, the distortion is the maximum, is the resonance point, and the amplitude value greatly changes in the vicinity thereof.
  • Driving is performed at a frequency f0 'in the vicinity thereof.
  • the resonance frequency shifts to f0 ′′ on the low frequency side, and the amount of distortion of the piezoelectric element 12a decreases. This reduces the amplitude by ⁇ V.
  • the spring constant of the contact portion of the moving body 13 is different between the drive area 13e and the detection area 13d.
  • the moving body main body 13a is located directly below the cover plate 13b.
  • the space immediately below the cover plate 13b is a space, and the structure is such that the pressure at the contact point is supported by the elasticity of the cover plate 13b, and the rigidity is reduced.
  • the resonance frequency of the piezoelectric element 12a decreases, and the resonance state of the piezoelectric element 12a changes between the drive area 13e and the detection area 13d.
  • FIG. 9B shows the phase difference of the detection voltage with respect to the drive signal, corresponding to the case where the reference symbol ⁇ 21 (solid line) is the drive region 13e, and the case where the reference symbol ⁇ 22 (broken line) is the detection region 13d. It corresponds to.
  • the phase of the detection voltage advances by ⁇ .
  • FIGS. 10A and 10B are diagrams for explaining the phase difference.
  • FIG. 10A shows that the driving area 13e is passing
  • FIG. 10B shows that the detecting area 13d is passing. In both FIGS.
  • the drive signal is indicated by a solid line
  • the detection voltage is indicated by a broken line.
  • the deviation ⁇ 2 is large during the passage of the detection area 13d in which the rigidity is lowered with respect to the deviation ⁇ 1 while passing through the drive area 13e, that is, the phase difference (delay) is large.
  • the drive circuits 21 and 31 of the ultrasonic motor 1 are configured as shown in FIGS. 11 and 12, for example.
  • FIG. 11 shows a drive circuit 21 that detects the position of the detection electrode IS based on the amplitude value of the detection voltage shown in FIG. 9A.
  • FIG. 12 shows the phase difference shown in FIG.
  • the drive circuit 31 which performs position detection based on it is shown.
  • Each of the drive circuits 21 and 31 includes drive units 22 and 22, position detection units 23 and 33, and control units 24 and 34.
  • the drive unit 22 has a configuration common to the drive circuits 21 and 31, and includes a drive voltage generation unit 25, a phase shift unit 26, and a filter unit 27.
  • the drive voltage generator 25 can generate a high-frequency signal with sufficient power to drive the piezoelectric element 12a.
  • the high-frequency signal is input to the phase shift unit 26 to create a four-phase drive signal whose phases are shifted from each other by 90 ° as described above, and each of the drive electrodes IA, It is applied between IB, IC, ID and the GND electrode IG.
  • the position detector 23 includes an amplitude detector 28, a deviation calculator 29, and a position calculator 30 in order to detect the amplitude.
  • the amplitude detection unit 28 detects the amplitude value (output voltage) of the detection voltage output from the detection electrode IS, and the deviation calculation unit 29 calculates the amplitude value and the known ideal amplitude value (optimum drive amplitude value). The deviation is calculated, and the position calculation unit 30 detects the rotation position (rotation amount) and rotation speed of the moving body 13 from the calculation result.
  • the control unit 24 causes the drive voltage generation unit 25 to generate the drive signal in a desired direction.
  • the other position detection unit 33 includes a phase difference detection unit 38, a deviation calculation unit 39, and a position calculation unit 40 in order to perform the phase detection.
  • the phase difference detection unit 38 detects the phase difference between the detection voltage output from the detection electrode IS and the drive signal to any phase
  • the deviation calculation unit 39 detects the phase difference and a predetermined phase difference (optimum).
  • the position calculation unit 40 detects the rotation position (rotation amount) and rotation speed of the moving body 13 from the calculation result.
  • the ultrasonic motor 1 configured as described above has a moving body 13 in which the moving body 13 is moved in the moving direction (the arrow shown above) in order to change the vibration state of the vibrating body 12.
  • Grooves 13c are formed at equal intervals in the moving direction 13f of the moving body 13 and extending in a direction orthogonal to the direction of the reference numeral 13f and its opposite direction (hereinafter referred to as the moving direction including the reverse direction). Then, the detection unit detects a change in the vibration state of the vibration body 12 caused by the contact portion 12d of the vibration body 12 passing through the groove 13c as a vibration change of the piezoelectric element 12a constituting the vibration body 12.
  • the ultrasonic motor 1 is a self-sensing ultrasonic motor that can detect the rotational position (rotation amount) and rotational speed of the moving body 13 without a sensor such as an encoder.
  • the contact portion 12d is formed so as to extend in the direction 13g perpendicular to the moving direction 13f of the moving body 13, and makes line contact with the moving body 13.
  • FIG. 13 is a perspective view showing the structure of the contact portion 12d.
  • contact portion 12 d of the present embodiment divides the sphere into half cracks along moving direction 13 f of moving body 13, and between these half-broken hemispheres 12 x.
  • the connecting portion 12y extends in a direction 13g perpendicular to the moving direction 13f. That is, the contact portion 12d has a shape in which the hemisphere 12x is fitted into both ends of a connecting portion 12y having a hook-back shape obtained by horizontally extruding the arch (U).
  • the contact portion 12d is shaped such that each hemisphere 12x is coupled to both ends of a semi-cylindrical connecting portion 12y obtained by cutting the cylinder along the axial direction.
  • the contact portion 12d does not extend in the moving direction 13f of the moving body 13, so that detection sensitivity and resolution can be maintained.
  • the contact part 12d can suppress the deformation
  • the extending direction of the contact portion 12d is the direction 13g orthogonal to the moving direction 13f of the moving body 13.
  • the deviation from the orthogonal direction 13g causes a decrease in detection sensitivity and resolution. It does not have to be orthogonal to, and it is sufficient if it intersects.
  • the range of the extent deviated from the orthogonal direction 13g is defined according to an allowable range such as a rotational position (amount of rotation) in the ultrasonic motor 1 and a detection accuracy of the rotational speed, which is determined in advance by, for example, specifications.
  • FIG. 14 schematically shows a comparison of the structure of the detection element between Patent Document 1 and the present embodiment.
  • FIG. 14A shows the structure in Patent Document 1.
  • the elastic body 101 resonates due to the displacement of the piezoelectric element, and the structure expands the displacement of the piezoelectric element.
  • One or two electrodes for detection over the entire surface of the piezoelectric element are formed outside the piezoelectric element. That is, the electrode for detection in Patent Document 1 is not formed by dividing the surface of the piezoelectric element.
  • signal processing is performed layer by layer in order to increase the position resolution, so the configuration is substantially as shown in FIG.
  • each piezoelectric layer 12f (12g) has a drive electrode IA. , IB, IC, ID are divided into regions to form the detection electrode IS, and the detection electrode IS is formed in the same phase position across a plurality of layers and connected in parallel by the external electrode OS.
  • the present embodiment is Assuming that charges are generated n times the number of layers and the same amount of noise (Qn in the figure) is generated, an S / N of about n times the number of layers can be obtained.
  • the detection electrode IS is formed at the most strained portion in each piezoelectric layer 12f, a signal can be extracted efficiently, and this also increases sensitivity.
  • the ultrasonic motor of Patent Document 1 does not have a structure that can efficiently extract electric charges.
  • the piezoelectric element 12a itself resonates and the piezoelectric element 12a expands its displacement, and two nodes (both ends) in the vibration of the bending primary mode are used.
  • the detection electrode IS is formed in the vicinity of the central portion 12k, which is the antinode of vibration with the largest deformation between the two). For this reason, the ultrasonic motor 1 of the present embodiment can increase the detection sensitivity and can cope with high resolution.
  • Patent Document 1 in the case of a configuration in which a detection electrode is not provided and a change in voltage applied to the piezoelectric element is detected using an impedance matching element (coil), the frequency characteristics of the impedance matching element and the vibrating body The degree of change is determined by both of the frequency characteristics of the signal and it is difficult to detect it easily and stably due to individual differences.
  • the impedance matching element which increases the circuit scale.
  • the ultrasonic motor 1 of the present embodiment can perform stable detection without being influenced by the individual difference or the like.
  • the output from the detection electrode IS is extracted as a voltage
  • the output may be extracted by current detection that short-circuits between the detection electrode IS and the GND electrode IG.
  • the detection is stronger than the extraction by voltage with respect to the external noise Qn.
  • Patent Document 1 since the amount of generated charge is small, the current level is very small and the detection becomes difficult.
  • FIG. 15 is a perspective view of a contact portion 12d ′ according to another embodiment of the present invention.
  • the contact portion 12d ′ is similar to the contact portion 12d described above, and the corresponding portions are denoted by the same reference numerals and description thereof is omitted.
  • the contact portion 12d ′ is divided into two in the direction 13g in which the contact portion 12d is orthogonal to the moving direction 13f of the moving body 13. Therefore, although the contact area decreases and the contact stress increases, according to this configuration, it is possible to easily discharge the dust generated by the contact of the moving body 13 with the cover plate 13b.
  • FIG. 16 is a perspective view of a contact portion 42 according to still another embodiment of the present invention.
  • the contact portion 42 is similar to the contact portion 12d described above, and corresponding portions are denoted by the same reference numerals, and description thereof is omitted.
  • the contact portion 42 has a triangular prism shape, and the long axial direction of the triangular prism (direction from one surface (bottom surface) to the other surface (top surface) of the triangle)
  • the moving body 13 is formed in a shape (matched and aligned) in a direction 13g intersecting with the moving direction 13f. Even if it forms in this way, the line contact in the direction 13g orthogonal to the moving direction 13f of the said mobile body 13 is realizable.
  • FIG. 17 shows a contact portion 42 ′ in which the contact surface (vertex 12 e) is chamfered and the cross section perpendicular to the axis is formed in a trapezoidal shape.
  • FIG. 18 is a perspective view of a contact portion 52 according to still another embodiment of the present invention.
  • the contact portion 52 is similar to the contact portion 12d described above, and corresponding portions are denoted by the same reference numerals, and description thereof is omitted.
  • the contact portion 52 has a shape obtained by rotating an ellipse having a major axis 53 in a direction 13g perpendicular to the moving direction 13f of the moving body 13 into a semicircular arc around the major axis. is doing.
  • the contact portion 52 has a semicircular arc shape having curvatures in the moving direction 13f and the orthogonal direction 13g of the moving body 13, and the orthogonal direction 13g has a larger curvature than the moving direction 13f. Even if it forms in this way, the line contact in the direction 13g orthogonal to the moving direction 13f of the moving body 13 is realizable.
  • FIG. 19 is a diagram schematically illustrating a state in which the moving body 13x according to still another embodiment of the present invention is driven by the vibrating body 12.
  • the vibrating body 12 is the same as that in FIG.
  • the moving body 13x has a low friction coefficient layer 13z extending in the radial direction and having a predetermined friction coefficient at equal intervals in the circumferential direction instead of the groove 13c on the moving body main body 13y.
  • This low friction coefficient layer 13z is formed as the structurally non-uniform detection area 13d.
  • the low friction coefficient layer 13z is formed by patterning a material having a low friction coefficient such as DLC.
  • the low friction coefficient layer 13z becomes lower than the friction coefficient of the drive region 13e in the movable body main body 13y.
  • the detection electrode IS detects a change in the vibration state due to the difference in friction coefficient.
  • the vibration state does not change the resonance frequency as described above, and the vibration attenuation due to the slip is mainly caused.
  • the position detection units 22 and 33 can perform position detection in the same manner. Even in this case, an ultrasonic motor having the same shape as that of a normal cylindrical motor having an output shaft extending from the cylindrical main body can be realized.
  • each contact part 12d, 12d ', 42, 42', 52 of the vibrating body 12 has a predetermined width W1, and is orthogonal to the moving direction 13f of the moving bodies 13, 13x.
  • the maximum width W2 in the movement direction 13f may be configured to straddle the structurally non-uniform detection area 13d by the groove 13c or the low friction coefficient layer 13z, but the detection area 13d Since the detection sensitivity decreases as the distance straddling is increased, each contact portion 12d, 12d ′, 42, 42 ′, 52 of the vibrating body 12 does not straddle the detection region 13d and is structurally between the detection regions 13d. It is preferable to fit within a uniform drive region 13e.
  • An ultrasonic motor includes a piezoelectric element, the vibrating element that performs high-frequency vibration, a moving body that is in pressure contact with the vibrating body and moved by the high-frequency vibration, and a detection unit.
  • An ultrasonic motor provided, wherein the moving body extends in a direction intersecting with a moving direction of the moving body in order to change a vibration state of the vibrating body and is predetermined in a moving direction of the moving body.
  • a structurally non-uniform portion is formed at a predetermined interval, and the detection unit is in a vibration state of the vibrating body due to a contact portion of the vibrating body contacting the moving body passing through the non-uniform portion.
  • the position information or movement information of the moving body can be detected by detecting the change in the moving body, and the shape of the contact portion of the vibrating body is larger than the length of the moving body in the moving direction. Long in the direction that intersects the direction It is formed.
  • the contact portion is formed so as to extend from the point contact so as to intersect the moving direction of the moving body, and is in line contact. Therefore, the ultrasonic motor having such a configuration can suppress the deformation and wear of the contact portion by reducing the contact stress due to the increase in the contact area while maintaining the detection sensitivity and the resolution, and can transmit the torque (corrosion). ) Can be improved.
  • the structurally non-uniform portion is a groove or a ridge.
  • a structurally non-uniform portion is realized by a groove or a protrusion.
  • the piezoelectric element is formed by laminating a plurality of piezoelectric layers in which a plurality of drive electrodes divided in the circumferential direction are arranged, and each drive electrode Is provided with a high-frequency electric field whose phases corresponding to the positional displacement amount of the drive electrode are shifted from each other from the drive circuit, so that the vibrating body performs a motion corresponding to a predetermined vibration mode,
  • the moving body is rotated around the axis of the vibrating body by the contact portion attached to the tip of the vibrating body, and the moving body is a disk-shaped disk member having an output shaft for taking out rotation fixed to the center. It is to be.
  • the moving body is provided with the disk-shaped disk member in which the output shaft for extracting the rotation is fixed at the center, an ultrasonic motor similar to a normal motor in which the output shaft extends is realized.
  • the piezoelectric element is configured by laminating a plurality of piezoelectric layers in a columnar or prismatic shape.
  • an ultrasonic motor having the same shape as a normal cylindrical motor whose output shaft extends from the cylindrical main body is realized.
  • the detection unit includes an antinode region of vibration due to the high-frequency vibration in the plurality of piezoelectric layers, and is divided into the drive electrode and the region. And a detection electrode that can detect the vibration state, and a position detection unit that detects position information of the moving body from the amplitude or phase of the detection voltage at the detection electrode.
  • the detection electrode in each of the plurality of piezoelectric layers, includes an antinode region of vibration due to high-frequency vibration and is divided into regions from the drive electrode, so that the vibration state can be detected. Therefore, the detection electrode can detect the passage of the non-uniform portion with high sensitivity, that is, high resolution, and the detection unit can reliably detect the position information. In addition, according to this configuration, the detection unit can detect the non-uniform portion and the uniform portion with high sensitivity, so that the difference between them does not have to be larger than necessary. A decrease in driving performance due to the formation of a rough portion is minimized.
  • the detection electrodes are formed at the in-phase positions of the piezoelectric layers and connected in parallel to each other.
  • the detection electrodes are formed in the respective piezoelectric layers at the same phase position, and these are connected in parallel to each other. .
  • the capacitance between the detection electrode and the GND electrode formed on the opposite surface across the piezoelectric layer increases n times. Therefore, according to this configuration, the ultrasonic motor can further increase the detection sensitivity and increase the resistance to noise.
  • the contact portion divides the sphere in half along the moving direction of the moving body to form a half-cracked portion, and these half-cracked portions In other words, they are connected by a connecting portion extending so as to intersect the moving direction of the moving body.
  • the line contact in the direction intersecting the moving direction of the moving body can be realized by the contact portion having the shape including the half crack portion and the connecting portion therebetween.
  • the contact portion has a triangular prism shape, and a direction in which a long axis direction of the triangular prism intersects a moving direction of the movable body It is a shape that matches.
  • the line contact in the direction intersecting the moving direction of the moving body can be realized by the contact portion of the triangular prism.
  • the contact portion rotates an ellipse having a major axis in a direction intersecting the moving direction of the movable body in a semicircular arc around the major axis. It is the shape made to do.
  • the moving direction of the moving body and the intersection thereof have curvature, respectively, and the semicircular arc-shaped contact portion in which the curvature in the moving direction of the moving body and the direction of intersection is larger than the curvature of the moving direction, Line contact in a direction intersecting with the moving direction of the moving body can be realized.
  • an ultrasonic motor can be provided.

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

The ultrasonic motor is equipped with a vibrating body (12) in which a piezoelectric element (12a) vibrates at a high frequency, and a moving body which is brought into pressure contact with the vibrating body (12) and is moved by the aforementioned high-frequency vibration. The shape of the contact part (12d) of the vibrating body (12) that contacts the moving body is formed to be longer in the direction to intersect the direction the moving body moves than the length in the direction the moving body moves. With the ultrasonic motor that has such a construction, the vibrating body (12) and the moving body are brought into linear contact by the contact part (12d), so deformation and abrasion of the contact part can be limited by a reduction in the contact stress caused by increased contact area, and the transmission of torque can be improved while detection sensitivity and resolution are maintained.

Description

超音波モータUltrasonic motor
 本発明は、超音波モータに関し、特に、デジタルスチルカメラ(DSC)や携帯電話等に搭載可能なマイクロカメラユニット(MCU)のレンズ駆動機構、或いはDVD等の光ピックアップユニットなどに好適に使用される小型の超音波モータに関する。 The present invention relates to an ultrasonic motor, and is particularly suitably used for a lens drive mechanism of a micro camera unit (MCU) that can be mounted on a digital still camera (DSC), a mobile phone, or the like, or an optical pickup unit such as a DVD. The present invention relates to a small ultrasonic motor.
 超音波モータは、電磁モータに比較して、高トルクで停止時の保持力が高く、しかも騒音が少ないなどの利点を有している。その一方、超音波モータは、速度制御や位置制御を行う場合に、位置検出センサを別途に搭載する必要がある。このため、超音波モータは、前記のような小型の装置へ適用される場合には、その配置や大きさの点で、電磁式のステッピングモータやボイスコイルモータなどに比較して、不利な点があった。しかしながら、この点が改善されれば、超音波モータは、電磁式に対して、トルクや効率面で非常に優位なものとなる。 Ultrasonic motors have advantages such as high torque, high holding power when stopped, and low noise compared to electromagnetic motors. On the other hand, when performing speed control or position control, an ultrasonic motor needs to be separately equipped with a position detection sensor. For this reason, when the ultrasonic motor is applied to a small apparatus as described above, it is disadvantageous compared to an electromagnetic stepping motor or a voice coil motor in terms of its arrangement and size. was there. However, if this point is improved, the ultrasonic motor will be very superior to the electromagnetic type in terms of torque and efficiency.
 そこで、このような問題に対応するために、特許文献1にセルフセンシング方式の超音波モータが提案された。この従来技術の超音波モータでは、ロータに突起が設けられるとともに、ステータ側の圧電素子に検出用圧電素子が挟み込まれている。そして、この超音波モータは、前記突起で発生する面圧のむらによって、振動検出器の出力に現れる前記不均一な構造と検出用圧電素子との向きに応じた検出信号から、ロータの回転量を検出している。 Therefore, in order to cope with such a problem, Patent Document 1 proposed a self-sensing ultrasonic motor. In this conventional ultrasonic motor, a protrusion is provided on the rotor, and a detection piezoelectric element is sandwiched between piezoelectric elements on the stator side. The ultrasonic motor calculates the amount of rotation of the rotor from a detection signal corresponding to the orientation of the non-uniform structure and the detection piezoelectric element that appears in the output of the vibration detector due to unevenness of the surface pressure generated by the protrusion. Detected.
 上述の従来技術は、エンコーダなどの回転量や回転位置を検出するための手段を別途設けなくてもよい点で優れている。しかしながら、この従来技術は、ロータとステータ(振動体)との接触状態の変化によるステータ(振動体)の振動状態の変化を圧電素子で検知するので、ロータ接触部を小さくすると検出感度は上がるが、駆動性能が低下する等の悪影響を招いてしまう。より具体的には、突起が小さくなる程、検知感度やS/Nが高くなるが、駆動力を伝達できる部分の面積が小さくなってトルク不足となるとともに、突起の接触応力が大きくなり、摩耗し易くなってしまう。 The above-described conventional technique is excellent in that it is not necessary to provide a means for detecting the rotation amount or the rotation position of an encoder or the like. However, in this prior art, since the change in the vibration state of the stator (vibrating body) due to the change in the contact state between the rotor and the stator (vibrating body) is detected by the piezoelectric element, the detection sensitivity increases if the rotor contact portion is reduced. As a result, adverse effects such as a decrease in driving performance are caused. More specifically, the smaller the protrusion, the higher the detection sensitivity and S / N. However, the area of the portion where the driving force can be transmitted becomes smaller, the torque becomes insufficient, the contact stress of the protrusion increases, and the wear increases. It becomes easy to do.
特開平6-133570号公報JP-A-6-133570
 本発明は、上述の事情に鑑みて為された発明であり、その目的は、検出感度および分解能を維持しつつ、接触部の変形や摩耗を抑えることができるとともに、トルクの伝達を良くすることができ、位置を検出することができる超音波モータを提供することである。 The present invention has been made in view of the above circumstances, and its purpose is to improve the torque transmission while suppressing deformation and wear of the contact portion while maintaining detection sensitivity and resolution. And providing an ultrasonic motor capable of detecting a position.
 本発明にかかる超音波モータは、圧電素子が高周波振動を行う振動体と、前記振動体に加圧接触し、前記高周波振動によって移動される移動体とを備え、前記移動体と接触する前記振動体の接触部の形状は、前記移動体の移動方向の長さよりも、前記移動体の移動方向と交差する方向に長く形成されている。このような構成の超音波モータでは、接触部が、点接触から、移動体の移動方向と交差するように延びて形成される線接触とされる。したがって、このような構成の超音波モータは、検出感度および分解能を維持しつつ、接触面積の増大による接触応力の低減によって、接触部の変形や摩耗を抑えることができるとともに、トルク伝達(食い付き)を良くすることができる。 The ultrasonic motor according to the present invention includes a vibrating body in which a piezoelectric element performs high-frequency vibration, and a moving body that is in pressure contact with the vibrating body and is moved by the high-frequency vibration, and the vibration in contact with the moving body. The shape of the contact part of the body is formed longer in the direction intersecting the moving direction of the moving body than the length of the moving body in the moving direction. In the ultrasonic motor having such a configuration, the contact portion is a line contact formed by extending from the point contact so as to intersect the moving direction of the moving body. Therefore, the ultrasonic motor having such a configuration can suppress the deformation and wear of the contact portion by reducing the contact stress due to the increase in the contact area while maintaining the detection sensitivity and the resolution, and can transmit the torque (corrosion). ) Can be improved.
 上記並びにその他の本発明の目的、特徴及び利点は、以下の詳細な記載と添付図面から明らかになるであろう。 The above and other objects, features and advantages of the present invention will become apparent from the following detailed description and the accompanying drawings.
本発明の実施の一形態に係る超音波モータを用いるレンズ駆動ユニットの概略構成図である。It is a schematic block diagram of the lens drive unit using the ultrasonic motor which concerns on one Embodiment of this invention. 図1に示す超音波モータの構造を示す軸線方向断面図である。FIG. 2 is an axial sectional view showing a structure of the ultrasonic motor shown in FIG. 1. 図1に示す超音波モータにおける振動体の六面図である。FIG. 6 is a six-sided view of a vibrating body in the ultrasonic motor shown in FIG. 1. 図3に示す振動体における積層型の圧電素子の一層当りの表裏両面を示す平面図および底面図である。FIG. 4 is a plan view and a bottom view showing both front and back surfaces of each layered piezoelectric element in the vibrating body shown in FIG. 3. 図3に示す振動体における圧電素子の屈曲1次モードの変形の様子を示す斜視図である。It is a perspective view which shows the mode of a deformation | transformation of the bending primary mode of the piezoelectric element in the vibrating body shown in FIG. 図3に示す振動体における圧電素子の変形による当該振動体の振動の様子を示す図である。It is a figure which shows the mode of the vibration of the said vibrating body by the deformation | transformation of the piezoelectric element in the vibrating body shown in FIG. 図1に示す超音波モータにおける移動体の斜視図である。It is a perspective view of the moving body in the ultrasonic motor shown in FIG. 図3に示す振動体の振動による移動体の駆動を説明するための展開図である。FIG. 4 is a development view for explaining driving of the moving body by vibration of the vibrating body shown in FIG. 3. 図3に示す移動体の回転位置の検出メカニズムを説明するためのグラフである。It is a graph for demonstrating the detection mechanism of the rotation position of the moving body shown in FIG. 図1に示す超音波モータにおける位相差から位置検出を行う様子を説明するための波形図である。It is a wave form diagram for demonstrating a mode that position detection is performed from the phase difference in the ultrasonic motor shown in FIG. 本発明の実施の一形態の、検出電圧の振幅値に基づいて位置検出を行う駆動回路のブロック図である。FIG. 3 is a block diagram of a drive circuit that performs position detection based on an amplitude value of a detection voltage according to an embodiment of the present invention. 本発明の実施の他の一形態の、検出電圧の位相差に基づいて位置検出を行う駆動回路のブロック図である。It is a block diagram of the drive circuit which performs a position detection based on the phase difference of the detection voltage of other one Embodiment of this invention. 本発明の実施の一形態の接触部の構造を示す斜視図である。It is a perspective view which shows the structure of the contact part of one Embodiment of this invention. 特許文献1と本実施の形態とにおける検出素子の構造の比較を模式的に示す図である。It is a figure which shows typically the comparison of the structure of the detection element in patent document 1 and this Embodiment. 本発明の実施の一形態における第1変形形態の接触部の構造を示す斜視図である。It is a perspective view which shows the structure of the contact part of the 1st modification in one Embodiment of this invention. 本発明の実施の一形態における第2変形形態の接触部の構造を示す斜視図である。It is a perspective view which shows the structure of the contact part of the 2nd modification in one Embodiment of this invention. 本発明の実施の一形態における第3変形形態の接触部の構造を示す斜視図である。It is a perspective view which shows the structure of the contact part of the 3rd modification in one Embodiment of this invention. 本発明の実施の一形態における第4変形形態の接触部の構造を示す斜視図である。It is a perspective view which shows the structure of the contact part of the 4th modification in one Embodiment of this invention. 本発明の実施のさらに他の形態に係る移動体を振動体で駆動する様子を模式的に示す図である。It is a figure which shows typically a mode that the mobile body which concerns on the further another form of implementation of this invention is driven with a vibrating body. 振動体の接触部と検出域との位置関係(角度)を説明するための図である。It is a figure for demonstrating the positional relationship (angle) of the contact part and detection area of a vibrating body.
 以下、本発明にかかる実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。
(実施形態の構成)
Hereinafter, an embodiment according to the present invention will be described with reference to the drawings. In addition, the structure which attached | subjected the same code | symbol in each figure shows that it is the same structure, The description is abbreviate | omitted suitably.
(Configuration of the embodiment)
 [実施の形態1]
 図1は、本発明の実施の一形態に係る超音波モータ1を用いるレンズ駆動ユニット2の概略構成図である。このレンズ駆動ユニット2は、デジタルスチルカメラ(DSC)やデジタルビデオカメラのズーム用、或いはDVDのピックアップレンズの収差補正用などに用いられ、厚さW1が、たとえば3~5mm程度の小型の超音波モータである。円筒型の超音波モータ1は、レンズユニットのフレーム3に取付けられ、その出力軸は、リードスクリュー11となっており、案内部材6を介してレンズ7を直接的に移動する直動レンズ送り機構を構成している。また、フレーム3には、リードスクリュー11と並行に案内軸4,5が設けられており、それらの案内軸4,5上を摺動自在の案内部材6にレンズ7が保持されている。そして、案内部材6にはリードスクリュー11が噛合しており、該リードスクリュー11が回転することで、案内部材6、したがってレンズ7が、リードスクリュー11(超音波モータ1)および案内軸4,5の軸線(図の左右)方向に摺動変位する。
[Embodiment 1]
FIG. 1 is a schematic configuration diagram of a lens driving unit 2 using an ultrasonic motor 1 according to an embodiment of the present invention. This lens driving unit 2 is used for zooming of a digital still camera (DSC) or a digital video camera, or for correcting aberrations of a pickup lens of a DVD, and is a small ultrasonic wave having a thickness W1 of about 3 to 5 mm, for example. It is a motor. A cylindrical ultrasonic motor 1 is attached to a frame 3 of a lens unit, an output shaft of which is a lead screw 11, and a linear motion lens feed mechanism that directly moves a lens 7 via a guide member 6. Is configured. The frame 3 is provided with guide shafts 4 and 5 in parallel with the lead screw 11, and a lens 7 is held by a guide member 6 slidable on the guide shafts 4 and 5. A lead screw 11 is engaged with the guide member 6, and when the lead screw 11 rotates, the guide member 6, and thus the lens 7, is moved to the lead screw 11 (ultrasonic motor 1) and the guide shafts 4, 5. Is displaced in the direction of the axis (left and right in the figure).
 図2は、前記超音波モータ1の構造を示す軸線方向断面図である。この超音波モータ1は、圧電素子12aが高周波振動を行う振動体(ステータ)12と、振動体12に加圧接触し、前記高周波振動によって移動される移動体(ロータ)13と、振動体12を移動体13に押圧する加圧部材14と、それらを収納する有底円筒状のケース15と、移動体13に一体的またはかしめなどによって固着されるリードスクリュー11と、リードスクリュー11を枢支する一対の軸受け部材16,17とを備えて構成される。 FIG. 2 is an axial sectional view showing the structure of the ultrasonic motor 1. The ultrasonic motor 1 includes a vibrating body (stator) 12 in which a piezoelectric element 12a performs high-frequency vibration, a moving body (rotor) 13 that is in pressure contact with the vibrating body 12 and moved by the high-frequency vibration, and a vibrating body 12. A pressure member 14 that presses against the moving body 13, a bottomed cylindrical case 15 that accommodates them, a lead screw 11 that is fixed to the moving body 13 integrally or by caulking, and the lead screw 11 is pivotally supported. And a pair of bearing members 16, 17.
 一方の軸受け部材16は、前記有底円筒状のケース15の開口端を閉塞し、リードスクリュー11の一方端の基端部11aをラジアル方向に支持する。他方の軸受け部材17は、フレーム3に取付けられたキャップ18に嵌り込む玉軸受けから成り、リードスクリュー11の他方端の遊端部11bに形成された凹面11cが嵌り込み、遊端部11bをラジアル方向およびスラスト方向に支持する。 One bearing member 16 closes the open end of the bottomed cylindrical case 15 and supports the base end portion 11a at one end of the lead screw 11 in the radial direction. The other bearing member 17 is composed of a ball bearing that fits into a cap 18 attached to the frame 3. A concave surface 11 c formed at the free end portion 11 b of the other end of the lead screw 11 is fitted into the radial end of the free end portion 11 b. Support in direction and thrust direction.
 振動体12は、圧電素子12aに、移動体13側に接触部材12bを、その反対側に安定のための錘部材12cを備えて構成され、不図示の規制部材によって、ケース15に対して回転が規制されながら、移動体13との軸心が位置決めされて保持される。加圧部材14によって、振動体12は、移動体13側(図中右方)に付勢され、接触部材12bが移動体13に押付けられる。これに対して、前記第2の軸受け部材17は、移動体13からリードスクリュー11への押圧力によるキャップ18からの反力を回転中心で受け止め、これによって摩擦ロスを最小限に抑えられるように構成されている。そして、このキャップ18には、フレーム3との間にネジ18aが刻設されており、ネジ18aの回転量によってキャップ18が図中左右方向に移動することで、押圧力が調整可能とされている。そして、その調整後、例えば、接着によって該キャップ18は、フレーム3に固定される。 The vibrating body 12 includes a piezoelectric element 12a, a contact member 12b on the moving body 13 side, and a weight member 12c for stability on the opposite side, and is rotated with respect to the case 15 by a regulating member (not shown). Is controlled, and the axis of the movable body 13 is positioned and held. The vibrating body 12 is urged toward the moving body 13 (right side in the figure) by the pressing member 14, and the contact member 12 b is pressed against the moving body 13. On the other hand, the second bearing member 17 receives the reaction force from the cap 18 due to the pressing force from the moving body 13 to the lead screw 11 at the center of rotation so that the friction loss can be minimized. It is configured. A screw 18a is engraved between the cap 18 and the frame 3, and the pressing force can be adjusted by moving the cap 18 in the left-right direction in the figure by the amount of rotation of the screw 18a. Yes. Then, after the adjustment, for example, the cap 18 is fixed to the frame 3 by adhesion.
 図3は、前記振動体12の六面図であり、(a)は上面図であり、(b)は正面図であり、(c)は側面図であり、(d)は底面図である。図3において、前述のとおり、振動体12は、複数の圧電層12fが積層された積層型の圧電素子12aに、移動体13側に接触部材12bを、その反対側に錘部材12cを備え、それらが接着で結合されて構成される。接着剤には、剛性が高く、接着力の高いエポキシ系接着剤が使用される。接触部材12bは、耐摩耗性の高いアルミナ、ジルコニア等によるセラミックスから成る。この接触部材12bには、3つの球面状の接触部12dが、圧電素子12の周方向に等間隔(120°間隔)で形成されて配置されており、前述の加圧部材14の押圧力によって、前記接触部12dの各頂点12eが移動体13に接触する。錘部材12cは、後述するような圧電素子12aの屈曲振動による基端側の振れを抑えるために、比重の高いタングステン、或いは銅や鉄系のタングステン合金等から成る。 FIG. 3 is a hexahedral view of the vibrating body 12, (a) is a top view, (b) is a front view, (c) is a side view, and (d) is a bottom view. . In FIG. 3, as described above, the vibrating body 12 includes a stacked piezoelectric element 12a in which a plurality of piezoelectric layers 12f are stacked, a contact member 12b on the moving body 13 side, and a weight member 12c on the opposite side. They are composed by bonding. For the adhesive, an epoxy adhesive having high rigidity and high adhesive strength is used. The contact member 12b is made of ceramics such as alumina and zirconia having high wear resistance. In this contact member 12 b, three spherical contact portions 12 d are arranged at equal intervals (120 ° intervals) in the circumferential direction of the piezoelectric element 12, and are pressed by the pressing force of the pressure member 14 described above. Each vertex 12e of the contact portion 12d contacts the moving body 13. The weight member 12c is made of tungsten having a high specific gravity or a copper or iron-based tungsten alloy or the like in order to suppress the deflection on the base end side due to the bending vibration of the piezoelectric element 12a as described later.
 図4は、前記積層型の圧電素子12aの一層当りの表裏両面を示す平面図および底面図である。各圧電層12fは、PZT(チタン酸ジルコン酸鉛)から成る圧電体層12gを挟んで、一方の面(図4(a))には、周方向に等間隔(90°間隔)に、図示しない駆動回路からの駆動信号が入力される複数の駆動電極IA,IB,IC,IDが形成されて配置されるとともに、後述する該圧電素子の屈曲変位の最も大きいできるだけ外周側の領域を含むように、図示しない検出回路へ検出信号を出力する検出電極ISが複数の駆動電極IA,IB,IC,IDと領域分割されて形成され、配置される。圧電層12f(圧電体層12g)の一方の面(図4(a))が複数の領域に分割され、この領域分割されたそれぞれの領域に、駆動電極IA,IB,IC,IDおよび検出電極ISが配置されている。複数の駆動電極IA,IB,IC,IDは、図4に示す例では4個となっている。そして、図4(a)に示す例では、周方向に90゜間隔で配置される4個の駆動電極IA,IB,IC,IDにおける隣接配置された2個の駆動電極IDおよびIC間に、検出電極ISが配置されている。そして、他方の面(図4(b))には共通にベタのGND電極IGが形成される。これらの内部の電極IA,IB,IC,ID;ISおよびIGは、銀パラジウムの印刷等で形成され、積層される圧電体層12gの層間で、駆動電極IA,IB,IC,IDおよび検出電極ISと、GND電極IGとが交互に形成される。 FIG. 4 is a plan view and a bottom view showing both front and back surfaces per layer of the multilayer piezoelectric element 12a. Each piezoelectric layer 12f has a piezoelectric layer 12g made of PZT (lead zirconate titanate) sandwiched between one surface (FIG. 4A) at equal intervals in the circumferential direction (90 ° intervals). A plurality of drive electrodes IA, IB, IC, ID to which a drive signal from a drive circuit that is not input is input are formed and arranged, and include a region on the outer peripheral side as much as possible with the largest bending displacement of the piezoelectric element described later. In addition, a detection electrode IS for outputting a detection signal to a detection circuit (not shown) is formed and arranged by dividing into a plurality of drive electrodes IA, IB, IC, ID. One surface (FIG. 4A) of the piezoelectric layer 12f (piezoelectric layer 12g) is divided into a plurality of regions, and the drive electrodes IA, IB, IC, ID, and detection electrodes are divided into the divided regions. IS is arranged. The plurality of drive electrodes IA, IB, IC, ID are four in the example shown in FIG. In the example shown in FIG. 4A, between the two drive electrodes ID and IC arranged adjacent to each other in the four drive electrodes IA, IB, IC, ID arranged at intervals of 90 ° in the circumferential direction, A detection electrode IS is arranged. A solid GND electrode IG is formed on the other surface (FIG. 4B) in common. These internal electrodes IA, IB, IC, ID; IS and IG are formed by silver palladium printing or the like, and between the laminated piezoelectric layers 12g, the drive electrodes IA, IB, IC, ID and detection electrodes IS and GND electrodes IG are alternately formed.
 各圧電層12fにおける電極IA,IB,IC,ID;ISおよびIGは、銀や金等をスクリーン印刷や蒸着などで形成された外部電極OA,OB,OC,OD;OSおよびOGによって、それぞれ共通に接続される(図3(b)、(c)、図4)。その外部電極OA,OB,OC,OD;OSおよびOGには、リード線やフレキシブル基板(図3の例ではリード線12h)等がハンダや導電性接着剤等で接合され、図示しない前記駆動回路や検出回路との間で駆動信号の入力や検出信号の出力が行われる。これら外部電極OA,OB,OC,OD;OSおよびOGを形成し易くするために、圧電素子12aは、円柱または角柱状、特に四角柱が好ましい。各圧電層12fならびにそれに形成された電極IA,IB,IC,ID;ISおよびIGは、積層後に、同方向に分極される。 The electrodes IA, IB, IC, ID; IS and IG in each piezoelectric layer 12f are common to the external electrodes OA, OB, OC, OD; OS and OG formed by screen printing or vapor deposition of silver or gold. (FIGS. 3B, 3C, and 4). The external electrodes OA, OB, OC, OD; OS and OG are joined with a lead wire, a flexible substrate (lead wire 12h in the example of FIG. 3), etc. by solder, a conductive adhesive, etc. A drive signal is input and a detection signal is output to and from the detection circuit. In order to easily form these external electrodes OA, OB, OC, OD; OS and OG, the piezoelectric element 12a is preferably a cylinder or a prism, particularly a quadrangular prism. Each piezoelectric layer 12f and electrodes IA, IB, IC, ID; IS and IG formed thereon are polarized in the same direction after lamination.
 このように構成される圧電素子12aに対して、前記図示しない駆動回路から各駆動電極IA,IB,IC,IDとGND電極IGとの間に、前記等間隔(90°間隔)に対応する位相が互いに90°ずれた高周波の電界が与えられることで、各駆動電極IA,IB,IC,IDの領域は、90°位相がずれた伸縮振動を行う。そして、前記駆動信号の周波数を共振周波数に近付けると、該圧電素子12aには図5で示すような屈曲1次モードの振動が、前記90°位相がずれて励起される。 With respect to the piezoelectric element 12a configured in this manner, a phase corresponding to the equal interval (90 ° interval) between the drive circuit (not shown) and each of the drive electrodes IA, IB, IC, ID and the GND electrode IG. Are applied with high-frequency electric fields that are shifted from each other by 90 °, the regions of the drive electrodes IA, IB, IC, and ID perform stretching vibrations that are 90 ° out of phase. Then, when the frequency of the drive signal is brought close to the resonance frequency, the bending primary mode vibration as shown in FIG. 5 is excited in the piezoelectric element 12a with the 90 ° phase shift.
 ここで、前述のように圧電素子12aの基端側には錘部材12cが取付けられるとともに、加圧部材14を介してケース15に略固定されており、前記屈曲振動によって、先端側の接触部12dは、前記屈曲振動に応じた所定の運動、例えば公転運動(首振り振動)を行う。その結果、接触部12dの各頂点12eには、図6において参照符号12rで示すように、互いに位相が120°ずれた楕円振動が生成され、移動体13は、加圧部材14による押圧力とこの楕円振動12rとによって発生する摩擦力で、圧電素子12aの軸線回りに回転駆動される。前記図3と同様に、図6(a)は振動体12の上面図であり、図6(b)は正面図である。 Here, as described above, the weight member 12c is attached to the proximal end side of the piezoelectric element 12a and is substantially fixed to the case 15 via the pressure member 14, and the contact portion on the distal end side is caused by the bending vibration. 12d performs a predetermined motion corresponding to the bending vibration, for example, a revolving motion (oscillating vibration). As a result, elliptical vibrations whose phases are shifted from each other by 120 ° are generated at the apexes 12e of the contact portion 12d, as indicated by reference numeral 12r in FIG. The frictional force generated by the elliptical vibration 12r is rotationally driven around the axis of the piezoelectric element 12a. Similar to FIG. 3, FIG. 6A is a top view of the vibrating body 12, and FIG. 6B is a front view.
 これに対して、図7は、移動体13の斜視図であり、図8は、移動体13と振動体12の接触部材12bとの接触部付近を展開して示す断面図である。なお、これらの図7および図8は、図3および図6とは上下関係が逆になっている。移動体13は、前記回転を取出す軸としてのリードスクリュー11と、リードスクリュー11に固着される移動体本体13aと、移動体本体13aに積層されるカバー板13bとを備えて構成され、移動体本体13aのカバー板13b側の面において、半径方向に延びて周方向に等間隔に溝13cが形成されて配置されている。そして、この溝13cが構造的に不均一な部分であり、検出域13dとなる。また、溝13cが形成されていない部分が構造的に均一な部分であり、駆動(通常)域13eとなる。 On the other hand, FIG. 7 is a perspective view of the moving body 13, and FIG. 8 is a cross-sectional view illustrating the vicinity of the contact portion between the moving body 13 and the contact member 12b of the vibrating body 12. Note that FIGS. 7 and 8 are upside down with respect to FIGS. 3 and 6. The moving body 13 includes a lead screw 11 as a shaft for taking out the rotation, a moving body main body 13a fixed to the lead screw 11, and a cover plate 13b stacked on the moving body main body 13a. On the surface of the main body 13a on the cover plate 13b side, grooves 13c are formed at equal intervals in the circumferential direction extending in the radial direction. And this groove | channel 13c is a structurally non-uniform | heterogenous part, and becomes the detection area 13d. Further, a portion where the groove 13c is not formed is a structurally uniform portion, and becomes a drive (normal) region 13e.
 移動体13の作成は、ステンレスなどの金属から成る移動体本体13aに、機械加工やエッチング等で溝13cを形成した後、ステンレス等から成る薄板のカバー板13bを積層することで、行われる。カバー板13bには、耐摩耗性を向上させるために、窒化処理等が施されている。移動体本体13aへのカバー板13bの積層は、薄い接着層等で接合したり、スポット溶接等で結合することで行われ、移動体本体13aとカバー板13bとが、ずれなく一体で回転するようになっていればよい。このように構成することで、円筒の本体から出力軸が延びる通常の円筒型のモータと同じ形状の超音波モータ1を実現することができる。 The moving body 13 is created by forming a groove 13c on a moving body main body 13a made of a metal such as stainless steel by machining or etching and then laminating a thin cover plate 13b made of stainless steel or the like. The cover plate 13b is subjected to nitriding treatment or the like in order to improve wear resistance. Lamination of the cover plate 13b to the movable body main body 13a is performed by joining with a thin adhesive layer or the like or by spot welding or the like, and the movable body main body 13a and the cover plate 13b rotate integrally without any deviation. It only has to be like this. By comprising in this way, the ultrasonic motor 1 of the same shape as the normal cylindrical motor from which an output shaft extends from a cylindrical main body is realizable.
 上述のように構成される超音波モータ1において、図8は、振動体12による移動体13の駆動の様子を模式的に示す図である。この図8を参照して、圧電素子12aを共振状態で駆動すると、接触部12dの頂点12eの楕円振動12rによって、移動体13は、矢符13fで示す図の左方に移動(回転)され、前記頂点12eは、移動体13の駆動域13eと検出域13dとの上を交互に通過する。ここで、溝13c、すなわち検出域13dは、頂点12eが同じタイミングで通過するように、すなわち120°毎の頂点12eに対して、検出域13dは、120°/n(nは整数で、図8ではn=4)毎に形成されている。 In the ultrasonic motor 1 configured as described above, FIG. 8 is a diagram schematically showing how the moving body 13 is driven by the vibrating body 12. Referring to FIG. 8, when the piezoelectric element 12a is driven in a resonance state, the moving body 13 is moved (rotated) to the left in the figure indicated by the arrow 13f by the elliptical vibration 12r of the vertex 12e of the contact portion 12d. The apex 12e passes alternately over the drive area 13e and the detection area 13d of the moving body 13. Here, the groove 13c, that is, the detection area 13d, is arranged so that the vertex 12e passes at the same timing, that is, the detection area 13d is 120 ° / n (n is an integer, with respect to the vertex 12e every 120 °. 8 is formed every n = 4).
 これによると、検出電極ISから出力される検出電圧の電圧と位相とは、それぞれ図9(a)および図9(b)で示すようになる。先ず、図9(a)は、検出電圧の振幅値を示すもので、参照符号α11(実線)が駆動域13eの場合に対応し、参照符号α12(破線)が検出域13dの場合に対応している。検出電圧が最大値、すなわち歪が最大となる周波数f0が共振点であり、その近傍で振幅値は、大きく変化する。駆動は、その近傍の周波数f0’で行われている。頂点12eが検出域13dに入ると、共振周波数は、低周波側のf0''へシフトし、圧電素子12aの歪量も少なくなる。これによって、振幅は、ΔVだけ低下する。これは、駆動域13eと検出域13dとで移動体13の接触部のばね定数が異なるためで、駆動域13eではカバー板13bの直下に移動体本体13aがあるので、接触点での剛性が高いのに対して、検出域13dではカバー板13bの直下は空隙であり、接触点での圧を該カバー板13bの弾性で支える構造となり、剛性が低下しているためである。こうして、圧電素子12aの共振周波数は、低下し、駆動域13e上と検出域13d上とでは、圧電素子12aの共振状態が変化する。 According to this, the voltage and the phase of the detection voltage output from the detection electrode IS are as shown in FIG. 9A and FIG. 9B, respectively. First, FIG. 9A shows the amplitude value of the detection voltage, corresponding to the case where the reference symbol α11 (solid line) is in the drive region 13e, and corresponding to the case where the reference symbol α12 (broken line) is in the detection region 13d. ing. The frequency f0 at which the detected voltage is the maximum value, that is, the distortion is the maximum, is the resonance point, and the amplitude value greatly changes in the vicinity thereof. Driving is performed at a frequency f0 'in the vicinity thereof. When the apex 12e enters the detection region 13d, the resonance frequency shifts to f0 ″ on the low frequency side, and the amount of distortion of the piezoelectric element 12a decreases. This reduces the amplitude by ΔV. This is because the spring constant of the contact portion of the moving body 13 is different between the drive area 13e and the detection area 13d. In the drive area 13e, the moving body main body 13a is located directly below the cover plate 13b. On the other hand, in the detection area 13d, the space immediately below the cover plate 13b is a space, and the structure is such that the pressure at the contact point is supported by the elasticity of the cover plate 13b, and the rigidity is reduced. Thus, the resonance frequency of the piezoelectric element 12a decreases, and the resonance state of the piezoelectric element 12a changes between the drive area 13e and the detection area 13d.
 また、図9(b)は、駆動信号に対する検出電圧の位相差を示すもので、参照符号α21(実線)が駆動域13eの場合に対応し、参照符号α22(破線)が検出域13dの場合に対応している。上述と同様の理由で、頂点12eが検出域13dに入り、共振周波数が低周波側へシフトすると、検出電圧の位相は、Δθだけ進む。図10は、その位相差を説明するための図であり、図10(a)は、駆動域13eの通過中を示し、図10(b)は、検出域13dの通過中を示す。図10(a)および(b)において、共に、駆動信号が実線で示され、検出電圧が破線で示されている。駆動域13eを通過中の偏差θ1に対して、剛性が低下する検出域13dの通過中は、偏差θ2は、大きく、すなわち前記位相差(遅れ)は、大きくなる。 FIG. 9B shows the phase difference of the detection voltage with respect to the drive signal, corresponding to the case where the reference symbol α21 (solid line) is the drive region 13e, and the case where the reference symbol α22 (broken line) is the detection region 13d. It corresponds to. For the same reason as described above, when the vertex 12e enters the detection region 13d and the resonance frequency shifts to the low frequency side, the phase of the detection voltage advances by Δθ. FIGS. 10A and 10B are diagrams for explaining the phase difference. FIG. 10A shows that the driving area 13e is passing, and FIG. 10B shows that the detecting area 13d is passing. In both FIGS. 10A and 10B, the drive signal is indicated by a solid line, and the detection voltage is indicated by a broken line. The deviation θ2 is large during the passage of the detection area 13d in which the rigidity is lowered with respect to the deviation θ1 while passing through the drive area 13e, that is, the phase difference (delay) is large.
 これを利用して、この超音波モータ1の駆動回路21,31は、例えば、それぞれ図11および図12で示すように構成される。図11は、前記検出電極ISの図9(a)で示す検出電圧の振幅値に基づいて位置検出を行う駆動回路21を示すもので、図12は、図9(b)で示す位相差に基づいて位置検出を行う駆動回路31を示すものである。駆動回路21,31は、共に、駆動部22,22、位置検出部23,33および制御部24,34を備えて構成される。 Using this, the drive circuits 21 and 31 of the ultrasonic motor 1 are configured as shown in FIGS. 11 and 12, for example. FIG. 11 shows a drive circuit 21 that detects the position of the detection electrode IS based on the amplitude value of the detection voltage shown in FIG. 9A. FIG. 12 shows the phase difference shown in FIG. The drive circuit 31 which performs position detection based on it is shown. Each of the drive circuits 21 and 31 includes drive units 22 and 22, position detection units 23 and 33, and control units 24 and 34.
 この駆動部22は、駆動回路21,31で共通な構成で、駆動電圧発生部25と、位相シフト部26と、フィルタ部27とを備えて構成される。駆動電圧発生部25は、圧電素子12aを駆動するために充分なパワーの高周波信号を生成することができる。その高周波信号は、位相シフト部26に入力されて、前述のとおり、互いに位相が90°ずれた4相の駆動信号を作成し、高調波除去用のフィルタ27を介して、各駆動電極IA,IB,IC,IDとGND電極IGとの間に印加される。 The drive unit 22 has a configuration common to the drive circuits 21 and 31, and includes a drive voltage generation unit 25, a phase shift unit 26, and a filter unit 27. The drive voltage generator 25 can generate a high-frequency signal with sufficient power to drive the piezoelectric element 12a. The high-frequency signal is input to the phase shift unit 26 to create a four-phase drive signal whose phases are shifted from each other by 90 ° as described above, and each of the drive electrodes IA, It is applied between IB, IC, ID and the GND electrode IG.
 位置検出部23は、前記振幅検出を行うために、振幅検出部28、偏差算出部29および位置演算部30を備えて構成される。振幅検出部28は、検出電極ISから出力される検出電圧の振幅値(出力電圧)を検出し、偏差算出部29は、その振幅値と既知の理想振幅値(最適駆動の振幅値)との偏差を演算し、その演算結果から、位置演算部30は、移動体13の回転位置(回転量)や回転速度を検出する。制御部24は、駆動電圧発生部25に、正逆所望の方向の前記駆動信号を発生させる。 The position detector 23 includes an amplitude detector 28, a deviation calculator 29, and a position calculator 30 in order to detect the amplitude. The amplitude detection unit 28 detects the amplitude value (output voltage) of the detection voltage output from the detection electrode IS, and the deviation calculation unit 29 calculates the amplitude value and the known ideal amplitude value (optimum drive amplitude value). The deviation is calculated, and the position calculation unit 30 detects the rotation position (rotation amount) and rotation speed of the moving body 13 from the calculation result. The control unit 24 causes the drive voltage generation unit 25 to generate the drive signal in a desired direction.
 これに対して、もう1つの位置検出部33は、前記位相検出を行うために、位相差検出部38、偏差算出部39および位置演算部40を備えて構成される。位相差検出部38は、検出電極ISから出力される検出電圧と、いずれかの相への駆動信号との位相差を検出し、偏差算出部39は、その位相差と所定の位相差(最適駆動の位相差)との偏差を演算し、その演算結果から、位置演算部40は、移動体13の回転位置(回転量)や回転速度を検出する。 On the other hand, the other position detection unit 33 includes a phase difference detection unit 38, a deviation calculation unit 39, and a position calculation unit 40 in order to perform the phase detection. The phase difference detection unit 38 detects the phase difference between the detection voltage output from the detection electrode IS and the drive signal to any phase, and the deviation calculation unit 39 detects the phase difference and a predetermined phase difference (optimum). The position calculation unit 40 detects the rotation position (rotation amount) and rotation speed of the moving body 13 from the calculation result.
 上述のように構成される超音波モータ1は、図7および図8で示すように、移動体13には、振動体12の振動状態を変化させるために該移動体13の移動方向(前記矢符13f方向およびその逆方向、以下、逆方向を含めて移動方向と言う)と直交するように延びて、かつ該移動体13の移動方向13fに等間隔で溝13cが形成されている。そして、検出部は、この溝13cを振動体12の接触部12dが通過することによる該振動体12の振動状態の変化を、振動体12を構成する圧電素子12aの振動変化として検出する。これによって、超音波モータ1は、エンコーダ等のセンサを備えないセンサレスで、移動体13の回転位置(回転量)や回転速度の検出することができるセルフセンシング方式の超音波モータである。そして、本実施の形態では、接触部12dは、移動体13の移動方向13fと直交する方向13gに延びるように形成され、移動体13に線接触するものである。 As shown in FIG. 7 and FIG. 8, the ultrasonic motor 1 configured as described above has a moving body 13 in which the moving body 13 is moved in the moving direction (the arrow shown above) in order to change the vibration state of the vibrating body 12. Grooves 13c are formed at equal intervals in the moving direction 13f of the moving body 13 and extending in a direction orthogonal to the direction of the reference numeral 13f and its opposite direction (hereinafter referred to as the moving direction including the reverse direction). Then, the detection unit detects a change in the vibration state of the vibration body 12 caused by the contact portion 12d of the vibration body 12 passing through the groove 13c as a vibration change of the piezoelectric element 12a constituting the vibration body 12. Thus, the ultrasonic motor 1 is a self-sensing ultrasonic motor that can detect the rotational position (rotation amount) and rotational speed of the moving body 13 without a sensor such as an encoder. In the present embodiment, the contact portion 12d is formed so as to extend in the direction 13g perpendicular to the moving direction 13f of the moving body 13, and makes line contact with the moving body 13.
 図13は、前記接触部12dの構造を示す斜視図である。図3および図6ならびにこの図13を参照して、本実施の形態の接触部12dは、球体を移動体13の移動方向13fに沿って半割れとし、これら半割れされた半球12xの間を前記移動方向13fと直交する方向13gに延びる連結部12yで連結して構成される。すなわち、この接触部12dは、アーチ(U)を水平に押出したかまぼこ形状(hog-backed shape)の連結部12yの両端に、半球12xが嵌め込まれたような形となっている。さらに、言い換えれば、この接触部12dは、円柱を軸方向に沿って切断した半円柱の形状の連結部12yにおける両端に、各半球12xがそれぞれ結合したような形になっている。これによって、移動体13の移動方向13fと直交する方向13gで接触部12dが移動体13に線接触する構造が、実現されている。 FIG. 13 is a perspective view showing the structure of the contact portion 12d. Referring to FIGS. 3 and 6 and FIG. 13, contact portion 12 d of the present embodiment divides the sphere into half cracks along moving direction 13 f of moving body 13, and between these half-broken hemispheres 12 x. The connecting portion 12y extends in a direction 13g perpendicular to the moving direction 13f. That is, the contact portion 12d has a shape in which the hemisphere 12x is fitted into both ends of a connecting portion 12y having a hook-back shape obtained by horizontally extruding the arch (U). Furthermore, in other words, the contact portion 12d is shaped such that each hemisphere 12x is coupled to both ends of a semi-cylindrical connecting portion 12y obtained by cutting the cylinder along the axial direction. Thereby, a structure in which the contact portion 12d is in line contact with the moving body 13 in the direction 13g orthogonal to the moving direction 13f of the moving body 13 is realized.
 このように構成することによって、接触部12dは、移動体13の移動方向13fに延びてはいないので、検出感度および分解能を維持することができる。そして、接触部12dは、接触部12dの連結部12yによる接触面積の増大による接触応力の低減によって、接触部12dの変形や摩耗を抑えることができるとともに、トルク伝達(食い付き)を良くすることができる。なお、上述の説明では、接触部12dの延在方向を、移動体13の移動方向13fと直交する方向13gとしているけれども、直交方向13gからずれる程、検出感度および分解能の低下を招くが、厳密に直交していなくてもよく、交差していればよい。直交方向13gからずれる程度の範囲は、例えば仕様等によって予め決められる、超音波モータ1における回転位置(回転量)や回転速度の検出精度等の許容範囲に応じて規定される。 With this configuration, the contact portion 12d does not extend in the moving direction 13f of the moving body 13, so that detection sensitivity and resolution can be maintained. And the contact part 12d can suppress the deformation | transformation and wear of the contact part 12d by the reduction of the contact stress by the increase in the contact area by the connection part 12y of the contact part 12d, and improves torque transmission (biting). Can do. In the above description, the extending direction of the contact portion 12d is the direction 13g orthogonal to the moving direction 13f of the moving body 13. However, the deviation from the orthogonal direction 13g causes a decrease in detection sensitivity and resolution. It does not have to be orthogonal to, and it is sufficient if it intersects. The range of the extent deviated from the orthogonal direction 13g is defined according to an allowable range such as a rotational position (amount of rotation) in the ultrasonic motor 1 and a detection accuracy of the rotational speed, which is determined in advance by, for example, specifications.
 ここで、図14には、前記特許文献1と本実施の形態とにおける検出素子の構造の比較を模式的に示す。図14(a)は、特許文献1でのその構造を示すもので、特許文献1では、圧電素子の変位によって弾性体101が共振し、前記構造は、圧電素子の変位を拡大するようになっている。圧電素子の外部には、圧電素子の面全体に亘る検出用の電極が1層または2層形成されている。すなわち、特許文献1における検出用の電極は、圧電素子の面を領域分割して形成されていない。2層の場合は、位置分解能を上げるために、1層ずつ信号処理が行われるので、実質、この図14(a)の構成となる。 Here, FIG. 14 schematically shows a comparison of the structure of the detection element between Patent Document 1 and the present embodiment. FIG. 14A shows the structure in Patent Document 1. In Patent Document 1, the elastic body 101 resonates due to the displacement of the piezoelectric element, and the structure expands the displacement of the piezoelectric element. ing. One or two electrodes for detection over the entire surface of the piezoelectric element are formed outside the piezoelectric element. That is, the electrode for detection in Patent Document 1 is not formed by dividing the surface of the piezoelectric element. In the case of two layers, signal processing is performed layer by layer in order to increase the position resolution, so the configuration is substantially as shown in FIG.
 これに対して、本実施の形態では、圧電素子12a自身が共振変位を拡大し、しかも前述のように積層構造で、図4に示すように、各圧電層12f(12g)に、駆動電極IA,IB,IC,IDと領域分割して検出電極ISが形成され、しかもその検出電極ISが複数層に亘って同相位置に形成され、外部電極OSで並列に接続されている。 On the other hand, in the present embodiment, the piezoelectric element 12a itself expands the resonance displacement and has a laminated structure as described above. As shown in FIG. 4, each piezoelectric layer 12f (12g) has a drive electrode IA. , IB, IC, ID are divided into regions to form the detection electrode IS, and the detection electrode IS is formed in the same phase position across a plurality of layers and connected in parallel by the external electrode OS.
 したがって、検出電極ISと圧電層12gを挟んで反対側の面に形成されるGND電極OSとの間の容量が等しく、各圧電層12fの歪が等しいとすると、本実施の形態の方が、層数n倍の電荷が発生し、仮に、同量のノイズ(図中Qn)が発生したとすると、約層数n倍のS/Nを得ることができる。また、各圧電層12f内の歪みの最も大きい部分に検出電極ISを形成するので、効率良く信号を取出すことができ、これによってもまた、感度が高くなる。 Therefore, assuming that the capacitance between the detection electrode IS and the GND electrode OS formed on the opposite surface across the piezoelectric layer 12g is equal and the strain of each piezoelectric layer 12f is equal, the present embodiment is Assuming that charges are generated n times the number of layers and the same amount of noise (Qn in the figure) is generated, an S / N of about n times the number of layers can be obtained. In addition, since the detection electrode IS is formed at the most strained portion in each piezoelectric layer 12f, a signal can be extracted efficiently, and this also increases sensitivity.
 また、特許文献1の場合では、最も歪が大きくなる振動の腹は、棒状の弾性体101の中央部101aにあり、端部に設けられる圧電素子で検出できる歪の量は、比較的小さいものとなり、特許文献1の超音波モータは、効率的に電荷を取り出せる構造となっていない。これに対して、本実施の形態の場合では、圧電素子12a自身が共振し、圧電素子12aがその変位を拡大する構成であるとともに、前記屈曲1次モードの振動における2箇所の節(両端部)に挟まれた変形が最も大きい振動の腹となる中央部12k付近に、前記検出電極ISは、形成されている。このため、本実施の形態の超音波モータ1は、検出感度を高めることができ、また高分解能に対応することができる。 Further, in the case of Patent Document 1, the antinode of vibration with the largest strain is in the central portion 101a of the rod-like elastic body 101, and the amount of strain that can be detected by the piezoelectric element provided at the end is relatively small. Therefore, the ultrasonic motor of Patent Document 1 does not have a structure that can efficiently extract electric charges. On the other hand, in the case of the present embodiment, the piezoelectric element 12a itself resonates and the piezoelectric element 12a expands its displacement, and two nodes (both ends) in the vibration of the bending primary mode are used. The detection electrode IS is formed in the vicinity of the central portion 12k, which is the antinode of vibration with the largest deformation between the two). For this reason, the ultrasonic motor 1 of the present embodiment can increase the detection sensitivity and can cope with high resolution.
 さらに、特許文献1の構成では、別途に検出用の圧電層を設ける必要があり、振動体が長くなる。これに対して、本実施の形態では、駆動電極IA,IB,IC,IDと同一の面内で検出電極ISが領域分割することで配置されているので、振動体(圧電素子12a)を長くする必要がない。また、本実施の形態の超音波モータ1は、駆動電極IA,IB,IC,IDと検出電極ISとの双方を前記振動の腹の位置に配置できるので、効率良く振動を励起できるとともに、感度良く検出を行うことができる。 Furthermore, in the configuration of Patent Document 1, it is necessary to separately provide a piezoelectric layer for detection, and the vibrating body becomes long. On the other hand, in the present embodiment, since the detection electrode IS is arranged by dividing the region in the same plane as the drive electrodes IA, IB, IC, ID, the vibrating body (piezoelectric element 12a) is lengthened. There is no need to do. In addition, since the ultrasonic motor 1 of the present embodiment can arrange both the drive electrodes IA, IB, IC, ID and the detection electrode IS at the position of the antinode of the vibration, it can excite the vibration efficiently and has a sensitivity. Detection can be performed well.
 さらにまた、特許文献1のように、検出電極を設けず、インピーダンス整合素子(コイル)を用いて圧電素子に掛かる電圧の変化を検出するような構成の場合、インピーダンス整合素子の周波数特性と振動体の周波数特性との双方によって、その変化の度合いが決まるので、個体差などによって、容易かつ安定に検出することは困難である。また、前記構成の場合、前記インピーダンス整合素子を付加する必要があり、回路規模が大きくなる。これに対して、本実施の形態の超音波モータ1では、前記個体差などに左右されることがなく、安定した検出が可能である。 Further, as in Patent Document 1, in the case of a configuration in which a detection electrode is not provided and a change in voltage applied to the piezoelectric element is detected using an impedance matching element (coil), the frequency characteristics of the impedance matching element and the vibrating body The degree of change is determined by both of the frequency characteristics of the signal and it is difficult to detect it easily and stably due to individual differences. In the case of the above configuration, it is necessary to add the impedance matching element, which increases the circuit scale. On the other hand, the ultrasonic motor 1 of the present embodiment can perform stable detection without being influenced by the individual difference or the like.
 上述の説明では、検出電極ISからの出力が電圧として取出されたけれども、該検出電極ISとGND電極IGとの間を短絡する電流検出で出力が取出されてもよい。その場合、外部ノイズQnに対して、電圧による取出しよりも検出が強くなるが、特許文献1では、電荷の発生量が小さいので、電流レベルが非常に小さく、検出が困難となる。 In the above description, although the output from the detection electrode IS is extracted as a voltage, the output may be extracted by current detection that short-circuits between the detection electrode IS and the GND electrode IG. In this case, the detection is stronger than the extraction by voltage with respect to the external noise Qn. However, in Patent Document 1, since the amount of generated charge is small, the current level is very small and the detection becomes difficult.
 [実施の形態2]
 図15は、本発明の実施の他の形態に係る接触部12d’の斜視図である。この接触部12d’は、前述の接触部12dに類似し、対応する部分には同一の参照符号を付して示し、その説明を省略する。ここで、本実施の形態では、この接触部12d’は、前記接触部12dが、移動体13の移動方向13fとは直交する方向13gに2つに分割されている。したがって、接触面積が低下し、前記接触応力は、上昇するけれども、この構成によれば、移動体13のカバー板13bとの接触によって発生した塵を排出し易くすることができる。
[Embodiment 2]
FIG. 15 is a perspective view of a contact portion 12d ′ according to another embodiment of the present invention. The contact portion 12d ′ is similar to the contact portion 12d described above, and the corresponding portions are denoted by the same reference numerals and description thereof is omitted. Here, in the present embodiment, the contact portion 12d ′ is divided into two in the direction 13g in which the contact portion 12d is orthogonal to the moving direction 13f of the moving body 13. Therefore, although the contact area decreases and the contact stress increases, according to this configuration, it is possible to easily discharge the dust generated by the contact of the moving body 13 with the cover plate 13b.
 [実施の形態3]
 図16は、本発明の実施のさらに他の形態に係る接触部42の斜視図である。この接触部42は、前述の接触部12dに類似し、対応する部分には同一の参照符号を付して示し、その説明を省略する。ここで、本実施の形態では、この接触部42は、三角柱形状であって、三角柱の長尺な軸線方向(三角形の一方の面(底面)から他方の面(上面)へ向かう方向)を、移動体13の移動方向13fとは交差する方向13gに合わせた(一致させた、沿わせた)形状で形成されている。このように形成してもまた、前記移動体13の移動方向13fと直交する方向13gでの線接触を実現することができる。
[Embodiment 3]
FIG. 16 is a perspective view of a contact portion 42 according to still another embodiment of the present invention. The contact portion 42 is similar to the contact portion 12d described above, and corresponding portions are denoted by the same reference numerals, and description thereof is omitted. Here, in the present embodiment, the contact portion 42 has a triangular prism shape, and the long axial direction of the triangular prism (direction from one surface (bottom surface) to the other surface (top surface) of the triangle) The moving body 13 is formed in a shape (matched and aligned) in a direction 13g intersecting with the moving direction 13f. Even if it forms in this way, the line contact in the direction 13g orthogonal to the moving direction 13f of the said mobile body 13 is realizable.
 一方、図17には、接触面(頂点12e)を面取りした、軸直角断面が台形状に形成される接触部42’が、示されている。このように形成することで、前記検出感度および分解能の低下を招くけれども、接触面積を増大し、前記接触応力を低下することができる。 On the other hand, FIG. 17 shows a contact portion 42 ′ in which the contact surface (vertex 12 e) is chamfered and the cross section perpendicular to the axis is formed in a trapezoidal shape. By forming in this way, although the detection sensitivity and resolution are lowered, the contact area can be increased and the contact stress can be reduced.
 [実施の形態4]
 図18は、本発明の実施のさらに他の形態に係る接触部52の斜視図である。この接触部52は、前述の接触部12dに類似し、対応する部分には同一の参照符号を付して示し、その説明を省略する。ここで、本実施の形態では、この接触部52は、移動体13の移動方向13fとは直交する方向13gに長径53を有する楕円を、その長径回りに半円弧状に回転させた形状を有している。したがって、この接触部52は、移動体13の移動方向13fおよびその直交方向13gにそれぞれ曲率を有する半円弧状となり、前記直交方向13gが、移動方向13fよりも大きな曲率となる。このように形成してもまた、移動体13の移動方向13fと直交する方向13gでの線接触を実現することができる。
[Embodiment 4]
FIG. 18 is a perspective view of a contact portion 52 according to still another embodiment of the present invention. The contact portion 52 is similar to the contact portion 12d described above, and corresponding portions are denoted by the same reference numerals, and description thereof is omitted. Here, in the present embodiment, the contact portion 52 has a shape obtained by rotating an ellipse having a major axis 53 in a direction 13g perpendicular to the moving direction 13f of the moving body 13 into a semicircular arc around the major axis. is doing. Accordingly, the contact portion 52 has a semicircular arc shape having curvatures in the moving direction 13f and the orthogonal direction 13g of the moving body 13, and the orthogonal direction 13g has a larger curvature than the moving direction 13f. Even if it forms in this way, the line contact in the direction 13g orthogonal to the moving direction 13f of the moving body 13 is realizable.
 [実施の形態5]
 図19は、本発明の実施のさらに他の形態に係る移動体13xを振動体12で駆動する様子を模式的に示す図である。振動体12は、前述の図8等と同一である。本実施の形態では、この移動体13xには、移動体本体13y上に、前記溝13cに代えて、半径方向に延びて周方向に等間隔に所定の摩擦係数を持つ低摩擦係数層13zが形成され、この低摩擦係数層13zが、前記構造的に不均一な検出域13dと成る。この低摩擦係数層13zは、DLCなど摩擦係数の低い材料をパターニングして形成される。これによって低摩擦係数層13zは、移動体本体13yにおける駆動域13eの摩擦係数よりも低くなる。前記検出電極ISは、摩擦係数の差による振動状態の変化を検出することになり、その場合、前記振動状態には、上述のような共振周波数の変化は起こらず、主にすべりによる振動減衰の変化が生じるが、位置検出部22,33は、同様の方式で位置検出を行うことができる。このようにしてもまた、円筒の本体から出力軸が延びる通常の円筒型のモータと同じ形状の超音波モータを実現することができる。
[Embodiment 5]
FIG. 19 is a diagram schematically illustrating a state in which the moving body 13x according to still another embodiment of the present invention is driven by the vibrating body 12. The vibrating body 12 is the same as that in FIG. In the present embodiment, the moving body 13x has a low friction coefficient layer 13z extending in the radial direction and having a predetermined friction coefficient at equal intervals in the circumferential direction instead of the groove 13c on the moving body main body 13y. This low friction coefficient layer 13z is formed as the structurally non-uniform detection area 13d. The low friction coefficient layer 13z is formed by patterning a material having a low friction coefficient such as DLC. As a result, the low friction coefficient layer 13z becomes lower than the friction coefficient of the drive region 13e in the movable body main body 13y. The detection electrode IS detects a change in the vibration state due to the difference in friction coefficient. In this case, the vibration state does not change the resonance frequency as described above, and the vibration attenuation due to the slip is mainly caused. Although a change occurs, the position detection units 22 and 33 can perform position detection in the same manner. Even in this case, an ultrasonic motor having the same shape as that of a normal cylindrical motor having an output shaft extending from the cylindrical main body can be realized.
 なお、図20で示すように、振動体12の各接触部12d,12d’,42,42’,52が、所定の幅W1を有し、特に移動体13,13xの移動方向13fと直交していない場合に、その移動方向13fでの最大幅W2が、溝13cまたは低摩擦係数層13zによる構造的に不均一な検出域13dを跨ぐように構成されていてもよいが、その検出域13dを跨ぐ距離が長くなる程、検出感度が低下するので、振動体12の各接触部12d,12d’,42,42’,52は、検出域13dを跨ぐことなく、検出域13d間の構造的に均一な駆動域13e部分内に収まることが好ましい。 In addition, as shown in FIG. 20, each contact part 12d, 12d ', 42, 42', 52 of the vibrating body 12 has a predetermined width W1, and is orthogonal to the moving direction 13f of the moving bodies 13, 13x. The maximum width W2 in the movement direction 13f may be configured to straddle the structurally non-uniform detection area 13d by the groove 13c or the low friction coefficient layer 13z, but the detection area 13d Since the detection sensitivity decreases as the distance straddling is increased, each contact portion 12d, 12d ′, 42, 42 ′, 52 of the vibrating body 12 does not straddle the detection region 13d and is structurally between the detection regions 13d. It is preferable to fit within a uniform drive region 13e.
 本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various modes of technology as described above, and the main technologies are summarized below.
 一態様にかかる超音波モータは、圧電素子を備え、前記圧電素子が高周波振動を行う振動体と、前記振動体に加圧接触し、前記高周波振動によって移動される移動体と、検出部とを備えた超音波モータであって、前記移動体には、前記振動体の振動状態を変化させるために前記移動体の移動方向と交差するように延びて、かつ前記移動体の移動方向に予め定められた間隔で、構造的に不均一な部分が形成され、前記検出部は、前記移動体と接触する前記振動体の接触部が前記不均一な部分を通過することによる前記振動体の振動状態の変化を検出することによって、前記移動体の位置情報または移動情報を検出することができ、前記振動体の接触部の形状は、前記移動体の移動方向の長さよりも、前記移動体の移動方向と交差する方向に長く形成されている。 An ultrasonic motor according to one aspect includes a piezoelectric element, the vibrating element that performs high-frequency vibration, a moving body that is in pressure contact with the vibrating body and moved by the high-frequency vibration, and a detection unit. An ultrasonic motor provided, wherein the moving body extends in a direction intersecting with a moving direction of the moving body in order to change a vibration state of the vibrating body and is predetermined in a moving direction of the moving body. A structurally non-uniform portion is formed at a predetermined interval, and the detection unit is in a vibration state of the vibrating body due to a contact portion of the vibrating body contacting the moving body passing through the non-uniform portion. The position information or movement information of the moving body can be detected by detecting the change in the moving body, and the shape of the contact portion of the vibrating body is larger than the length of the moving body in the moving direction. Long in the direction that intersects the direction It is formed.
 このような構成の超音波モータでは、接触部が、点接触から、移動体の移動方向と交差するように延びて形成され、線接触とされる。したがって、このような構成の超音波モータは、検出感度および分解能を維持しつつ、接触面積の増大による接触応力の低減によって、接触部の変形や摩耗を抑えることができるとともに、トルク伝達(食い付き)を良くすることができる。 In the ultrasonic motor having such a configuration, the contact portion is formed so as to extend from the point contact so as to intersect the moving direction of the moving body, and is in line contact. Therefore, the ultrasonic motor having such a configuration can suppress the deformation and wear of the contact portion by reducing the contact stress due to the increase in the contact area while maintaining the detection sensitivity and the resolution, and can transmit the torque (corrosion). ) Can be improved.
 また、他の一態様では、上述の超音波モータにおいて、好ましくは、前記構造的に不均一な部分は、溝または突条であることである。 In another aspect, in the above-described ultrasonic motor, preferably, the structurally non-uniform portion is a groove or a ridge.
 このような構成によって、一例として、構造的に不均一な部分が溝または突条で実現される。 With such a configuration, as an example, a structurally non-uniform portion is realized by a groove or a protrusion.
 また、他の一態様では、これら上述の超音波モータにおいて、好ましくは、前記圧電素子は、周方向に分割された複数の駆動電極が配置された圧電層が複数積層されており、各駆動電極には駆動回路から前記駆動電極の位置的なずれ量に対応する位相が互いにずれた高周波の電界が与えられることで、前記振動体は、その先端が所定の振動モードに応じた運動を行い、該振動体の先端に取付けられた前記接触部によって前記移動体が該振動体の軸線回りに回転され、前記移動体は、回転を取り出す出力軸が中央に固着された円板状の円板部材であることである。 In another aspect, in the above-described ultrasonic motor, preferably, the piezoelectric element is formed by laminating a plurality of piezoelectric layers in which a plurality of drive electrodes divided in the circumferential direction are arranged, and each drive electrode Is provided with a high-frequency electric field whose phases corresponding to the positional displacement amount of the drive electrode are shifted from each other from the drive circuit, so that the vibrating body performs a motion corresponding to a predetermined vibration mode, The moving body is rotated around the axis of the vibrating body by the contact portion attached to the tip of the vibrating body, and the moving body is a disk-shaped disk member having an output shaft for taking out rotation fixed to the center. It is to be.
 この構成によれば、移動体が回転を取り出す出力軸を中央に固着した円板状の円板部材を備えるので、出力軸が延びる通常のモータと同様の超音波モータが実現される。そして、好ましくは、円柱状または角柱状に複数の圧電層を積層することによって圧電素子を構成する。これによって、円筒の本体から出力軸が延びる通常の円筒型のモータと同じ形状の超音波モータが実現される。 According to this configuration, since the moving body is provided with the disk-shaped disk member in which the output shaft for extracting the rotation is fixed at the center, an ultrasonic motor similar to a normal motor in which the output shaft extends is realized. Preferably, the piezoelectric element is configured by laminating a plurality of piezoelectric layers in a columnar or prismatic shape. As a result, an ultrasonic motor having the same shape as a normal cylindrical motor whose output shaft extends from the cylindrical main body is realized.
 また、他の一態様では、これら上述の超音波モータにおいて、好ましくは、前記検出部は、前記複数の圧電層において、前記高周波振動による振動の腹の領域を含み、かつ前記駆動電極と領域分割されて配置され、前記振動状態を検出可能な検出電極と、前記検出電極での検出電圧の振幅または位相から、前記移動体の位置情報を検出する位置検出部とを備えることである。 In another aspect, in the above-described ultrasonic motor, preferably, the detection unit includes an antinode region of vibration due to the high-frequency vibration in the plurality of piezoelectric layers, and is divided into the drive electrode and the region. And a detection electrode that can detect the vibration state, and a position detection unit that detects position information of the moving body from the amplitude or phase of the detection voltage at the detection electrode.
 この構成によれば、複数の圧電層のそれぞれにおいて、検出電極が、高周波振動による振動の腹の領域を含み、かつ駆動電極と領域分割されて配置され、振動状態を検出することができる。したがって、検出電極は、高感度、すなわち高い分解能で前記不均一な部分の接触部の通過を検出することができ、検出部は、確実に位置情報の検出を行うことができる。また、この構成によれば、検出部は、前記不均一な部分と均一な部分とを高感度に検出することができるので、それらの差が必要以上に大きくしなくてもよく、前記不均一な部分の形成による駆動性能の低下が最小限に抑えられる。 According to this configuration, in each of the plurality of piezoelectric layers, the detection electrode includes an antinode region of vibration due to high-frequency vibration and is divided into regions from the drive electrode, so that the vibration state can be detected. Therefore, the detection electrode can detect the passage of the non-uniform portion with high sensitivity, that is, high resolution, and the detection unit can reliably detect the position information. In addition, according to this configuration, the detection unit can detect the non-uniform portion and the uniform portion with high sensitivity, so that the difference between them does not have to be larger than necessary. A decrease in driving performance due to the formation of a rough portion is minimized.
 また、他の一態様では、これら上述の超音波モータにおいて、好ましくは、前記検出電極は、各圧電層の同相位置に形成され、相互に並列に接続されることである。 In another aspect, in the above-described ultrasonic motors, preferably, the detection electrodes are formed at the in-phase positions of the piezoelectric layers and connected in parallel to each other.
 この構成によれば、圧電素子が複数n層の圧電層が積層されて構成されている場合、その各圧電層に、しかも同相位置に検出電極が形成され、これらが相互に並列に接続される。このため、検出電極と圧電層を挟んで反対側の面に形成されるGND電極との間の容量がn倍に増加することになる。したがって、この構成によれば、超音波モータは、検出感度を一層高めることができるとともに、ノイズに対する耐性を高めることができる。 According to this configuration, when the piezoelectric element is configured by laminating a plurality of n layers of piezoelectric layers, the detection electrodes are formed in the respective piezoelectric layers at the same phase position, and these are connected in parallel to each other. . For this reason, the capacitance between the detection electrode and the GND electrode formed on the opposite surface across the piezoelectric layer increases n times. Therefore, according to this configuration, the ultrasonic motor can further increase the detection sensitivity and increase the resistance to noise.
 また、他の一態様では、これら上述の超音波モータにおいて、好ましくは、前記接触部は、球体を前記移動体の移動方向に沿って半分に割って半割れ部とするとともに、これら半割れ部の間に前記移動体の移動方向と交差するように延びる連結部で連結されて成ることである。 Moreover, in another aspect, in the above-described ultrasonic motor, preferably, the contact portion divides the sphere in half along the moving direction of the moving body to form a half-cracked portion, and these half-cracked portions In other words, they are connected by a connecting portion extending so as to intersect the moving direction of the moving body.
 この構成によれば、半割れ部とその間の連結部とを備える形状の接触部によって、移動体の移動方向と交差する方向での線接触を実現することができる。 According to this configuration, the line contact in the direction intersecting the moving direction of the moving body can be realized by the contact portion having the shape including the half crack portion and the connecting portion therebetween.
 また、他の一態様では、これら上述の超音波モータにおいて、好ましくは、前記接触部は、三角柱の形状であって、前記三角柱の長尺な軸線方向を前記移動体の移動方向と交差する方向に合わせた形状であることである。 Moreover, in another aspect, in the above-described ultrasonic motors, preferably, the contact portion has a triangular prism shape, and a direction in which a long axis direction of the triangular prism intersects a moving direction of the movable body It is a shape that matches.
 この構成によれば、三角柱の接触部によって、移動体の移動方向と交差する方向での線接触を実現することができる。 According to this configuration, the line contact in the direction intersecting the moving direction of the moving body can be realized by the contact portion of the triangular prism.
 また、他の一態様では、これら上述の超音波モータにおいて、好ましくは、前記接触部は、前記移動体の移動方向と交差する方向に長径を有する楕円を、その長径回りに半円弧状に回転させた形状であることである。 In another aspect, in the above-described ultrasonic motor, preferably, the contact portion rotates an ellipse having a major axis in a direction intersecting the moving direction of the movable body in a semicircular arc around the major axis. It is the shape made to do.
 この構成によれば、移動体の移動方向およびその交差にそれぞれ曲率を有し、前記移動体の移動方向と前記交差する方向における曲率が移動方向の曲率よりも大きい半円弧状の接触部によって、移動体の移動方向と交差する方向での線接触を実現することができる。 According to this configuration, the moving direction of the moving body and the intersection thereof have curvature, respectively, and the semicircular arc-shaped contact portion in which the curvature in the moving direction of the moving body and the direction of intersection is larger than the curvature of the moving direction, Line contact in a direction intersecting with the moving direction of the moving body can be realized.
 この出願は、2008年12月12日に出願された日本国特許出願特願2008-317219を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2008-317219 filed on Dec. 12, 2008, the contents of which are included in the present application.
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been properly and fully described through the embodiments with reference to the drawings. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that this is possible. Accordingly, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not covered by the claims. It is interpreted that it is included in
 本発明によれば、超音波モータを提供することができる。 According to the present invention, an ultrasonic motor can be provided.

Claims (8)

  1.  圧電素子を備え、前記圧電素子が高周波振動を行う振動体と、
     前記振動体に加圧接触し、前記高周波振動によって移動される移動体と、
     検出部とを備えた超音波モータであって、
     前記移動体には、前記振動体の振動状態を変化させるために前記移動体の移動方向と交差するように延びて、かつ前記移動体の移動方向に予め定められた間隔で、構造的に不均一な部分が形成され、
     前記検出部は、前記移動体と接触する前記振動体の接触部が前記不均一な部分を通過することによる前記振動体の振動状態の変化を検出することによって、前記移動体の位置情報または移動情報を検出することができ、
     前記振動体の接触部の形状は、前記移動体の移動方向の長さよりも、前記移動体の移動方向と交差する方向に長く形成されていること
     を特徴とする超音波モータ。
    A vibrating body comprising a piezoelectric element, wherein the piezoelectric element performs high-frequency vibration;
    A moving body that is in pressure contact with the vibrating body and is moved by the high-frequency vibration;
    An ultrasonic motor including a detection unit,
    The moving body is structurally indefinite to extend so as to intersect the moving direction of the moving body in order to change the vibration state of the vibrating body and at a predetermined interval in the moving direction of the moving body. A uniform part is formed,
    The detection unit detects positional change or movement of the moving body by detecting a change in a vibration state of the vibrating body caused by a contact portion of the vibrating body contacting the moving body passing through the non-uniform portion. Information can be detected,
    The shape of the contact part of the said vibrating body is formed longer in the direction crossing the moving direction of the said moving body than the length of the moving direction of the said moving body.
  2.  前記構造的に不均一な部分は、溝または突条であること
     を特徴とする請求項1に記載の超音波モータ。
    The ultrasonic motor according to claim 1, wherein the structurally nonuniform portion is a groove or a protrusion.
  3.  前記圧電素子は、周方向に分割された複数の駆動電極が配置された圧電層が複数積層されており、各駆動電極には駆動回路から前記駆動電極の位置的なずれ量に対応する位相が互いにずれた高周波の電界が与えられることで、前記振動体は、その先端が所定の振動モードに応じた運動を行い、該振動体の先端に取付けられた前記接触部によって前記移動体が該振動体の軸線回りに回転され、
     前記移動体は、回転を取り出す出力軸が中央に固着された円板状の円板部材であること
     を特徴とする請求項1に記載の超音波モータ。
    The piezoelectric element includes a plurality of piezoelectric layers in which a plurality of driving electrodes divided in the circumferential direction are stacked, and each driving electrode has a phase corresponding to a positional deviation amount of the driving electrode from a driving circuit. By applying a high-frequency electric field that is shifted from each other, the vibrating body moves in accordance with a predetermined vibration mode at the tip, and the moving body is vibrated by the contact portion attached to the tip of the vibrating body. Rotated around the body axis,
    The ultrasonic motor according to claim 1, wherein the moving body is a disk-shaped disk member in which an output shaft for extracting rotation is fixed in the center.
  4.  前記検出部は、前記複数の圧電層において、前記高周波振動による振動の腹の領域を含み、かつ前記駆動電極と領域分割されて配置され、前記振動状態を検出可能な検出電極と、前記検出電極での検出電圧の振幅または位相から、前記移動体の位置情報を検出する位置検出部とを備えること
     を特徴とする請求項3に記載の超音波モータ。
    The detection unit includes a detection electrode that includes an antinode region of vibration due to the high-frequency vibration in the plurality of piezoelectric layers, is divided into regions from the drive electrode, and can detect the vibration state; and the detection electrode The ultrasonic motor according to claim 3, further comprising: a position detection unit configured to detect position information of the moving body from an amplitude or a phase of a detection voltage at.
  5.  前記検出電極は、各圧電層の同相位置に形成され、相互に並列に接続されること
     を特徴とする請求項3に記載の超音波モータ。
    The ultrasonic motor according to claim 3, wherein the detection electrodes are formed at in-phase positions of the piezoelectric layers and are connected in parallel to each other.
  6.  前記接触部は、球体を前記移動体の移動方向に沿って半分に割って半割れ部とするとともに、これら半割れ部の間に前記移動体の移動方向と交差するように延びる連結部で連結されて成ること
     を特徴とする請求項1に記載の超音波モータ。
    The contact portion is divided by a half along the moving direction of the moving body to form a half-cracked portion, and is connected by a connecting portion extending between the half-cracked portions so as to intersect the moving direction of the moving body. The ultrasonic motor according to claim 1, wherein the ultrasonic motor is formed.
  7.  前記接触部は、三角柱の形状であって、前記三角柱の長尺な軸線方向を前記移動体の移動方向と交差する方向に合わせた形状であること
     を特徴とする請求項1に記載の超音波モータ。
    2. The ultrasonic wave according to claim 1, wherein the contact portion has a triangular prism shape, and has a shape in which a long axial direction of the triangular prism is matched with a direction intersecting a moving direction of the moving body. motor.
  8.  前記接触部は、前記移動体の移動方向と交差する方向に長径を有する楕円を、その長径回りに半円弧状に回転させた形状であること
     を特徴とする請求項1に記載の超音波モータ。
    2. The ultrasonic motor according to claim 1, wherein the contact portion has a shape obtained by rotating an ellipse having a major axis in a direction intersecting a moving direction of the moving body into a semicircular arc around the major axis. .
PCT/JP2009/070476 2008-12-12 2009-12-07 Ultrasonic motor WO2010067774A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008317219 2008-12-12
JP2008-317219 2008-12-12

Publications (1)

Publication Number Publication Date
WO2010067774A1 true WO2010067774A1 (en) 2010-06-17

Family

ID=42242761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070476 WO2010067774A1 (en) 2008-12-12 2009-12-07 Ultrasonic motor

Country Status (1)

Country Link
WO (1) WO2010067774A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002315364A (en) * 2001-04-09 2002-10-25 Canon Inc Vibration wave driver and apparatus provided therewith
JP2006078734A (en) * 2004-09-09 2006-03-23 Fuji Photo Film Co Ltd Photographing apparatus
JP2007089246A (en) * 2005-09-20 2007-04-05 Konica Minolta Opto Inc Driver and lens barrel, and imaging apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002315364A (en) * 2001-04-09 2002-10-25 Canon Inc Vibration wave driver and apparatus provided therewith
JP2006078734A (en) * 2004-09-09 2006-03-23 Fuji Photo Film Co Ltd Photographing apparatus
JP2007089246A (en) * 2005-09-20 2007-04-05 Konica Minolta Opto Inc Driver and lens barrel, and imaging apparatus

Similar Documents

Publication Publication Date Title
JP5730765B2 (en) Quasi-resonant drive system and method
JP6056224B2 (en) Vibration wave motor
US10541630B2 (en) Manufacturing method of vibrator
KR20110009705A (en) Vibration actuator
US8035276B2 (en) Vibration actuator, lens barrel and camera
WO2013161271A1 (en) Optical scanning device and image reading device
US8035906B2 (en) Vibration actuator, lens barrel and camera
US11165370B2 (en) Vibration actuator
JP2010141979A (en) Ultrasonic motor
JP3526298B2 (en) Vibrating body and vibration wave driving device
US7825566B2 (en) Ultrasonic actuator and method for manufacturing piezoelectric deformation portion used in the same
JP2009201322A (en) Vibrating actuator, manufacturing method therefor, lens barrel, and camera
WO2010067774A1 (en) Ultrasonic motor
JP2010074912A (en) Ultrasonic motor
WO2010041533A1 (en) Ultrasonic motor and piezoelectric oscillator
WO2016002917A1 (en) Vibration-type actuator, lens barrel, image-capturing device, and automatic stage
US20080061654A1 (en) Ultrasonic actuator and manufacturing method of vibration member thereof
JP6593411B2 (en) Vibration wave motor and optical equipment
CN101931339B (en) Piezoelectric actuator
JP2002165469A (en) Piezo-electric actuator
CN112636630A (en) Piezoelectric actuator, piezoelectric motor, and robot
JP6221521B2 (en) Vibration wave motor and optical equipment
JP4438029B2 (en) Vibration wave driving device and vibrator used in vibration wave driving device
JP4477915B2 (en) Ultrasonic motor
JP2020089161A (en) Piezoelectric drive device and robot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09831878

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09831878

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP