WO2010064603A1 - High-dielectric-constant multilayer film - Google Patents

High-dielectric-constant multilayer film Download PDF

Info

Publication number
WO2010064603A1
WO2010064603A1 PCT/JP2009/070107 JP2009070107W WO2010064603A1 WO 2010064603 A1 WO2010064603 A1 WO 2010064603A1 JP 2009070107 W JP2009070107 W JP 2009070107W WO 2010064603 A1 WO2010064603 A1 WO 2010064603A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
film
high dielectric
layer
vdf
Prior art date
Application number
PCT/JP2009/070107
Other languages
French (fr)
Japanese (ja)
Inventor
明天 高
幸治 横谷
麻有子 立道
美晴 太田
恵吏 向井
信之 小松
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to JP2010541309A priority Critical patent/JP5333456B2/en
Publication of WO2010064603A1 publication Critical patent/WO2010064603A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/443Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds
    • H01B3/445Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds from vinylfluorides or other fluoroethylenic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/18Organic dielectrics of synthetic material, e.g. derivatives of cellulose
    • H01G4/186Organic dielectrics of synthetic material, e.g. derivatives of cellulose halogenated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/16Capacitors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride

Definitions

  • the present invention relates to a laminated high dielectric film.
  • plastic insulators are characterized by high insulation resistance, excellent frequency characteristics, and excellent flexibility, so they are used for communication, electronic equipment, power, medium / low-pressure phase advance, and inverter. It is expected as a film material such as a film capacitor, a piezoelectric element, a pyroelectric element, and a dielectric for carrying a transfer body.
  • a film capacitor is usually composed of a film having a structure in which aluminum or zinc is vapor-deposited on the surface of a dielectric resin film, or a film in which an aluminum foil and a dielectric resin film are laminated. A material in which an electrode is formed is also frequently used.
  • Films for film capacitors are usually formed as a single layer using a dielectric resin as a film-forming resin.
  • a dielectric resin as a film-forming resin.
  • fluorine-based polymers such as vinylidene fluoride (VdF) having a high dielectric constant have been studied. Yes.
  • Patent Documents 1 to 3 Non-Patent Documents.
  • Patent Document 1 proposes that electrical insulation is improved by mixing polycarbonate (PC) or thermoplastic polyester (such as PET) with a VdF resin.
  • PC polycarbonate
  • PET thermoplastic polyester
  • Patent Document 2 proposes that the withstand voltage be improved by performing the film formation process of the VdF resin in a clean environment.
  • Patent Document 3 an attempt is made to improve the withstand voltage by overlapping a VdF resin film and a polyester film and winding them together.
  • Non-Patent Document 1 reports that the withstand voltage is improved by stacking a total of 32 layers of PC layers and polyvinylidene fluoride (PVdF) films.
  • Patent Document 1 the VdF resin and PC or PET have low compatibility, so that the mechanical strength is low.
  • Patent Document 2 the method to be solved by manufacturing in a clean environment
  • Patent Document 3 the method to be solved by manufacturing in a clean environment
  • the electrical insulation cannot be improved. It became clear that a molding method was required.
  • the inventors have further researched and found that not only electrical insulation but also withstand voltage is improved by a simple means of providing an insulating resin layer on at least one side of the VdF-based resin film, thereby completing the present invention. It came to do.
  • the present invention provides (A) a vinylidene fluoride resin film layer containing a vinylidene fluoride resin (a) as a film-forming resin, and (B) provided on at least one surface of the vinylidene fluoride resin film layer (A).
  • the present invention relates to a laminated high dielectric film comprising a layer of insulating resin (b).
  • the resin (b) constituting the insulating resin layer (B) is preferably a resin having a volume resistivity of 10 13 ⁇ ⁇ cm or more from the viewpoint of excellent effect of improving electrical insulation and withstand voltage.
  • the non-fluorine resin is preferably at least one selected from the group consisting of, for example, a cellulose resin, a polyester resin, a polystyrene resin, a polyolefin resin, and an acrylic resin.
  • the VdF-based resin (a) constituting the VdF-based resin film layer (A) includes 60 to 100 mol% of vinylidene fluoride units, 0 to 40 mol% of tetrafluoroethylene units, and 0 to 40 mol% of hexafluoropropylene.
  • a polymer is preferred from the viewpoint of high dielectric constant.
  • the vinylidene fluoride resin film layer (A) is (C1) high dielectric inorganic particles, It may contain at least one selected from the group consisting of (c2) a non-fluorinated thermoplastic resin and (c3) rubber particles.
  • a plurality of M 1 and N may be present), (C1b) Formula (c1b): M 2 a2 M 3 b2 O c2 (In the formula, M 2 and M 3 are different, M 2 is a Group 2 metal element of the periodic table, M 3 is a metal element of the fifth period of the periodic table; a2 is 0.9 to 1.1; 9 to 1.1; c2 is 2.8 to 3.2) And (c1c) at least selected from the group consisting of complex oxide particles containing at least three metal elements selected from the group consisting of Group 2 metal elements and Group 4 metal elements of the periodic table One is preferable because it is particularly effective for improving the dielectric constant.
  • thermoplastic resin (c2) at least one selected from the group consisting of a cellulose resin, a polyester resin, a polystyrene resin, a polyolefin resin, and an acrylic resin is preferable because the dielectric loss tangent can be improved.
  • the VdF resin film layer (A) has a thickness of 1 to 30 ⁇ m
  • the insulating resin layer (B) has a thickness of 0.5 to 5 ⁇ m. Is preferable from the viewpoint of good properties and voltage resistance.
  • the laminated high dielectric film is suitable as a film for a film capacitor.
  • the present invention also relates to a film capacitor in which an electrode layer is laminated on at least one surface of the laminated high dielectric film of the present invention.
  • the present invention also provides a laminated high dielectric, characterized in that an insulating resin layer (B) is formed by applying a coating composition containing an insulating resin on at least one surface of a VdF-based resin film layer (A).
  • the present invention also relates to a method for producing a conductive film.
  • a laminated high dielectric film capable of improving the electrical insulation and withstand voltage of a VdF resin film containing a VdF resin (a) as a film forming resin.
  • the laminated high dielectric film of the present invention is provided on at least one surface of a VdF resin film layer (A) containing a VdF resin (a) as a film-forming resin, and the VdF resin film layer (A). And a layer (B) of insulating resin (b).
  • VdF-based resin film layer The VdF-based resin layer (A) is a layer containing a VdF-based resin (a) as a film-forming resin, and may be composed of a VdF-based resin alone or a VdF-based resin. In addition to these, various additives and other resins may be contained.
  • VdF resin (a) examples include VdF homopolymers (PVdF) and copolymers with one or more of other monomers copolymerizable with VdF.
  • the dielectric constant is 4 or more, more 6 or more, especially 7 or more, especially 7.5 or more, withstand voltage, insulation, improvement in dielectric constant, and high dielectric constant when used as a film. To preferred.
  • the VdF resin (a) may be a vinylidene fluoride (VdF) homopolymer (PVdF) or a copolymer with another monomer copolymerizable with VdF. Further, it may be a blend of a VdF homopolymer and a VdF copolymer, or a blend of VdF copolymers.
  • VdF examples include tetrafluoroethylene (TFE), chlorotrifluoroethylene (CTFE), trifluoroethylene (TrFE), monofluoroethylene, hexafluoropropylene (HFP), Fluorinated olefins such as fluoro (alkyl vinyl ether) (PAVE); fluorinated acrylates, functional group-containing fluorinated monomers, and the like.
  • TFE tetrafluoroethylene
  • CTFE chlorotrifluoroethylene
  • TrFE trifluoroethylene
  • HFP hexafluoropropylene
  • Fluorinated olefins such as fluoro (alkyl vinyl ether) (PAVE); fluorinated acrylates, functional group-containing fluorinated monomers, and the like.
  • TFE, CTFE, and HFP are preferred from the viewpoint of good solvent solubility.
  • VdF is 50 mol% or more, preferably 60 mol% or more from the viewpoint of
  • a polymer containing 60 to 100 mol% of VdF units, 0 to 40 mol% of TFE units and 0 to 40 mol% of HFP is preferable because the relative dielectric constant is 6 or more.
  • VdF homopolymer PVdF
  • VdF / TFE copolymer VdF / TFE / HFP copolymer
  • VdF / HFP copolymer VdF / CTFE copolymer, etc.
  • PVdF, VdF / TFE copolymers, and VdF / HFP copolymers are preferred from the viewpoint of high dielectric constant and good solvent solubility.
  • the composition ratio is such that the VdF unit is 60 to 95 mol% and the TFE unit is 5 to 40 mol%, particularly the VdF unit is 70 to 90 mol% and the TFE unit is A content of 10 to 30 mol% is preferable from the viewpoint of increasing the withstand voltage.
  • the relative dielectric constant (1 kHz, 25 ° C.) of the VdF resin itself is preferably 5 or more, preferably 6 or more, and more preferably 7.5 or more from the viewpoint of further increasing the dielectric constant of the film.
  • the upper limit is not particularly limited, but is usually 15 and preferably 13.
  • the vinylidene fluoride resin film layer (A) is added to the VdF resin (a), (C1) high dielectric inorganic particles, It may contain at least one selected from the group consisting of (c2) a non-fluorinated thermoplastic resin and (c3) rubber particles.
  • the high dielectric inorganic particles (c1) can impart a higher dielectric constant to the VdF resin film layer (A).
  • the high dielectric inorganic particles (c1) are not particularly limited as long as they are high dielectric inorganic particles, but at least one selected from the group consisting of the following (c1a) to (c1c) is preferable.
  • Preferred examples of the group 2 metal element M 1 include Be, Mg, Ca, Sr, Ba, and the like, and examples of the group 4 metal element N include Ti, Zr, and the like.
  • magnesium stannate, calcium stannate, strontium stannate, barium stannate, magnesium antimonate, calcium antimonate, strontium antimonate, barium antimonate, magnesium zirconate examples thereof include calcium zirconate, strontium zirconate, barium zirconate, magnesium indium acid, calcium indium acid, strontium indium acid, and barium indium acid.
  • specific examples of the Group 2 metal element of the periodic table include Be, Mg, Ca, Sr, Ba, and the like.
  • Specific examples of the Group 4 metal element of the periodic table include, for example, , Ti, Zr, Hf and the like.
  • Preferred combinations of three or more selected from Group 2 metal elements and Group 4 metal elements of the periodic table include, for example, a combination of Sr, Ba, Ti, a combination of Sr, Ti, Zr, a combination of Sr, Ba, Zr, Ba, Ti, Zr combination, Sr, Ba, Ti, Zr combination, Mg, Ti, Zr combination, Ca, Ti, Zr combination, Ca, Ba, Ti combination, Ca, Ba, Zr combination, Combination of Ca, Ba, Ti, Zr, combination of Ca, Sr, Zr, combination of Ca, Sr, Ti, Zr, combination of Ca, Sr, Ti, Zr, combination of Mg, Sr, Zr, combination of Mg, Sr, Ti, Zr, Mg, Ba, A combination of Ti and Zr, a combination of Mg, Ba, and Zr are included.
  • composite oxide (c1c) examples include strontium zirconate titanate, barium zirconate titanate, barium strontium zirconate titanate, magnesium zirconate titanate, calcium zirconate titanate, and barium zirconate titanate. Examples include calcium.
  • composite oxide particles such as lead zirconate titanate, lead antimonate, zinc titanate, lead titanate, and titanium oxide may be used in combination.
  • the average particle size of the high dielectric inorganic particles (c1) is 2 ⁇ m or less, more preferably 1.2 ⁇ m or less, particularly about 0.01 to 0.5 ⁇ m. From the point which is excellent in it.
  • the blending amount of the high dielectric inorganic particles (c1) is 10 parts by mass or more, preferably 30 parts by mass or more, particularly preferably 50 parts by mass or more with respect to 100 parts by mass of the VdF resin. If the amount is too small, the effect of improving the dielectric constant of the film becomes small.
  • the upper limit is 500 parts by mass. If the amount is too large, problems occur in terms of strength as a film and surface roughness. A preferable upper limit is 200 parts by mass.
  • the non-fluorinated thermoplastic resin (c2) can impart properties such as reducing the dielectric loss tangent to the VdF-based resin film layer (A).
  • non-fluorinated thermoplastic resin (c2) at least one selected from a cellulose resin, a polyester resin, a polystyrene resin, a polyolefin resin and an acrylic resin from the viewpoint of high affinity with the VdF resin (a), In particular, at least one selected from the group consisting of cellulosic resins, polyester resins and acrylic resins is preferred.
  • non-fluorinated thermoplastic resins (c2) can be mixed within a range that does not impair the high dielectric constant characteristic of the VdF-based resin (a).
  • the VdF-based resin (a) / non-fluorinated thermoplastic resin can be mixed.
  • the ratio (mass ratio) of (c2) is 0.1 / 99.9 to 100/0, preferably 20/80 to 100/0, more preferably 30/70 to 100/0, especially 70/30 to 100/0. It is preferable that
  • thermoplastic resin (c2) a cellulose resin is particularly preferable because it is effective in improving the dielectric constant and reducing the dielectric loss.
  • cellulose-based resin examples include ester-substituted celluloses such as cellulose monoacetate, cellulose diacetate, cellulose triacetate, and cellulose acetate propionate; and celluloses substituted with ethers such as methylcellulose, ethylcellulose, and hydroxypropylmethylcellulose.
  • ester-substituted celluloses such as cellulose monoacetate, cellulose diacetate, cellulose triacetate, and cellulose acetate propionate
  • ethers such as methylcellulose, ethylcellulose, and hydroxypropylmethylcellulose.
  • (mono, di, tri) cellulose acetate and methyl cellulose are preferable from the viewpoint of low temperature coefficient of dielectric loss.
  • the proportion of the cellulose resin in the total mass of the VdF resin (a) and the cellulose resin is 99.9% by mass or less from the viewpoint of high dielectric constant and low dielectric loss, and 80 mass from the viewpoint of good mechanical properties. % Or less is preferable. Further, it is preferably 0.1% by mass or more from the viewpoint of low dielectric loss, good mechanical properties and high dielectric constant, and 2% by mass or more from the viewpoint of low temperature dependence of dielectric loss.
  • thermoplastic resin (c2) other than the cellulose resin for example, polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polyethylene naphthalate (PEN) from the viewpoint of good flexibility and workability.
  • Polyester resins such as polystyrene; poly (styrene-methacrylate) copolymers; polyolefin resins such as polyethylene, polypropylene, and polycycloolefin.
  • an acrylic resin such as polymethyl methacrylate (PMMA) is preferable.
  • polyphenylene sulfide PPS
  • polyphenylene oxide PPO
  • polyether ketone PEK
  • polyether sulfone PES
  • PC polycarbonate
  • silicone resin silicone resin
  • polyvinyl acetate epoxy resin
  • PSF polysulfone
  • PEO polyethylene oxide
  • PA polyamide
  • PA polyimide
  • PAI polyamideimide
  • PAI polybenzimidazole
  • the proportion of the non-fluorinated thermoplastic resin (c2) in the total mass of the non-fluorinated thermoplastic resin (c2) other than the VdF-based resin (a) and the cellulose-based resin is high in dielectric constant and low in dielectric loss. To 99.9% by mass or less, and 80% by mass or less is preferable from the viewpoint of good mechanical properties. Further, it is preferably 0.1% by mass or more from the viewpoint of low dielectric loss, good mechanical properties and high dielectric constant, and 2% by mass or more from the viewpoint of low temperature dependence of dielectric loss.
  • the rubber particles (c3) have a role of imparting mechanical strength, particularly elongation, to the VdF-based resin film layer (A) and further imparting properties such as rubber elasticity.
  • Suitable rubber particles for fulfilling such a role include, but are not limited to, acrylic rubber, butadiene rubber, silicone rubber, silicone acrylic composite rubber, natural rubber, nitrile rubber, urethane rubber, styrene-butadiene rubber, isoprene.
  • examples include diene rubbers such as rubber; fluorine rubbers such as VdF-tetrafluoroethylene (TFE) rubber.
  • acrylic rubber, butadiene rubber, and silicone rubber are preferred because of their high relative dielectric constant and good dispersibility.
  • so-called core-shell rubber particles in which the surfaces of these rubber particles are coated with at least one selected from the group consisting of polymethyl methacrylate and acrylonitrile / styrene copolymer may be used.
  • the core-shell rubber particles are used, the compatibility with the vinylidene fluoride resin is excellent.
  • the rubber particles may be uncrosslinked rubber (raw rubber) particles or crosslinked rubber particles, but crosslinked rubber particles are preferred from the viewpoint of good solvent resistance.
  • the rubber may be crosslinked according to a known method.
  • the particle size of the rubber particles (c3) is about 0.1 to 2.0 ⁇ m, more preferably about 0.15 to 1.5 ⁇ m, particularly about 0.2 to 1.0 ⁇ m in terms of average primary particle size. It is preferable from the viewpoint that both dispersibility and improvement in film strength can be achieved.
  • the compounding amount of the rubber particles (c3) is 1 part by mass or more, preferably 5 parts by mass or more, particularly preferably 10 parts by mass or more with respect to 100 parts by mass of the VdF resin. If the amount is too small, the effect of improving the mechanical strength, particularly elongation, of the film tends to be small.
  • the upper limit is 30 parts by mass. If the amount is too large, the dispersibility in the resin tends to be poor. A preferable upper limit is 20 parts by mass.
  • the VdF-based resin film layer (A) used in the present invention contains the VdF-based resin (a) described above (VdF containing the components (c1), (c2), (c3) described above as necessary). It can be formed by a conventionally known melt-kneading method or coating method using a resin-based resin composition, etc., but the coating method (casting method) from the standpoint of simplicity and excellent film homogeneity. ) Is advantageous.
  • various additives (c1), (c2), (c3) and the like are added to the VdF-based resin (a) as necessary, and dissolved or dispersed in a solvent.
  • a film is produced according to the coating method.
  • any solvent that can dissolve the VdF resin (a) can be used, and a polar organic solvent is particularly preferable.
  • a polar organic solvent for example, ketone solvents, ester solvents, carbonate solvents, cyclic ether solvents, and amide solvents are preferable.
  • knife coating method, cast coating method, roll coating method, gravure coating method, blade coating method, rod coating method, air doctor coating method, curtain coating method, fakunrun coating method, kiss coating method, screen coating Method, spin coating method, spray coating method, extrusion coating method, electrodeposition coating method, etc. can be used, but roll coating is easy because of its ease of operation, small variations in film thickness, and excellent productivity.
  • the method, the gravure coating method and the cast coating method are preferable.
  • the VdF resin film (layer) of the present invention is obtained from the viewpoint that a highly uniform composition having a high solubility in the solvent of the VdF resin (a) can be prepared and coating is easy.
  • the lower limit of the film thickness is 1 ⁇ m, preferably about 2 ⁇ m, from the viewpoint of maintaining mechanical strength.
  • an affinity improver (d) for the preparation of the coating composition containing the high dielectric inorganic particles (c1).
  • affinity improver (d) By blending the affinity improver (d), the affinity between the VdF resin (a) and the high dielectric inorganic particles (c1) is increased, and the high dielectric inorganic particles (c1) are converted into the VdF resin (a). And uniformly disperse the high dielectric inorganic particles (c1) and the VdF resin (a) in the film layer (A), thereby suppressing the generation of voids and increasing the dielectric constant. it can.
  • a coupling agent (d1), a surfactant (d2) or an epoxy group-containing compound (d3) is effective.
  • Examples of the coupling agent (d1) include a titanium coupling agent, a silane coupling agent, a zirconium coupling agent, and a zircoaluminate coupling agent.
  • titanium-based coupling agent examples include monoalkoxy type, chelate type, coordinate type and the like, and monoalkoxy type and chelate type are particularly preferable because of their good affinity with high dielectric inorganic particles (c1). preferable.
  • silane coupling agent examples include high molecular types and low molecular types, and monoalkoxysilanes, dialkoxysilanes, trialkoxysilanes, dipodal alkoxysilanes, etc. in terms of the number of functional groups.
  • a low molecular weight alkoxysilane is preferred from the viewpoint of good affinity with the high dielectric inorganic particles (c1).
  • zirconium-based coupling agent examples include monoalkoxyzirconium and trialkoxyzirconium.
  • zircoaluminate coupling agent examples include monoalkoxyzircoaluminate and trialkoxyzircoaluminate.
  • the surfactant (d2) there are a high molecular type and a low molecular type, and there are a nonionic surfactant, an anionic surfactant and a cationic surfactant from the viewpoint of the type of functional group, and these are used. From the viewpoint of good thermal stability, polymer type surfactants are preferred.
  • Nonionic surfactants include, for example, polyether derivatives, polyvinylpyrrolidone derivatives, alcohol derivatives and the like.
  • polyether derivatives are preferred because of their good affinity with the high dielectric inorganic particles (c1). preferable.
  • anionic surfactant examples include polymers containing sulfonic acid, carboxylic acid, and salts thereof, and in particular, from the viewpoint of good affinity with the VdF resin (a), Is preferably an acrylic acid derivative polymer, a methacrylic acid derivative polymer, or a maleic anhydride copolymer.
  • Examples of the cationic surfactant include compounds having a nitrogen-containing complex ring such as amine compounds and imidazolines, and halogenated salts thereof, but from the viewpoint of low aggressiveness to the VdF resin (a).
  • a compound having a nitrogen-containing complex ring is preferred.
  • Examples of the salt form include ammonium salts containing halogen anions such as alkyltrimethylammonium chloride. An ammonium salt containing a halogen anion is preferable from the viewpoint of a high dielectric constant.
  • Examples of the epoxy group-containing compound (d3) include an epoxy compound and a glycidyl compound, which may be a low molecular weight compound or a high molecular weight compound. Among these, a low molecular weight compound having one epoxy group is preferable from the viewpoint of particularly good affinity with the VdF resin (a).
  • an epoxy group-containing coupling agent classified as a coupling agent for example, epoxysilane is not included in the epoxy group-containing compound (d3), but is included in the coupling agent (d1).
  • the epoxy group-containing compound (d3) are those having the formula (d3): from the viewpoint of excellent affinity with the VdF resin (a).
  • R has a hydrogen atom, an oxygen atom, a nitrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms which may contain a carbon-carbon double bond or a substituent.
  • the affinity improver (d) can be blended in a range that does not impair the object of the present invention.
  • the blending amount is 100 parts by mass of the high dielectric inorganic particles (c1). 0.01 to 30 parts by mass, further 0.1 to 25 parts by mass, particularly 1 to 20 parts by mass can be uniformly dispersed, and are preferable from the viewpoint of high dielectric constant of the obtained film.
  • additives such as other reinforcing fillers may be included as optional components within a range not impairing the effects of the present invention.
  • reinforcing fillers examples include silica, silicon carbide, silicon nitride, magnesium oxide, potassium titanate, glass, alumina, and boron compound particles or fibers.
  • the insulating resin layer (B) is provided on at least one surface of the VdF-based resin film layer (A).
  • This insulating resin layer (B) improves the low electrical insulation, which is a problem of the VdF-based resin film layer (A), and at the same time improves the withstand voltage.
  • the reason is not clear, but the voltage is applied to the relatively thin film due to voltage division. That is, it is estimated that a high voltage is applied to the resin (B) having a high insulating property and the voltage load on (A) is reduced.
  • the insulating resin (b) constituting the insulating resin layer (B) is a non-fluorine resin having a volume resistivity of 10 13 ⁇ ⁇ cm or more, preferably 10 14 ⁇ ⁇ cm or more, particularly 10 15 ⁇ ⁇ cm or more. It is preferable from the viewpoint that the effect of improving electrical insulation and withstand voltage is excellent.
  • the upper limit is preferably as high as possible because it is preferable that the electrical insulation is as high as possible (the volume resistivity is large).
  • a cellulose resin for example, a polyester resin, a polystyrene resin, a polyolefin resin, an acrylic resin, and the like can be given.
  • these resins include those described above for the non-fluorinated thermoplastic resin (c2).
  • polyphenylene sulfide PPS
  • polyphenylene oxide PPO
  • polyether ketone PEK
  • polyether sulfone PES
  • PC polycarbonate
  • Silicone resin polyvinyl acetate, epoxy resin, polysulfone (PSF), polyethylene oxide (PEO), polypropylene oxide, polyamide (PA), polyimide (PI), polyamideimide (PAI), polybenzimidazole (PBI), etc.
  • PA polyamide
  • PA polyimide
  • PAI polyamideimide
  • PBI polybenzimidazole
  • a particularly preferred specific example is at least one selected from the group consisting of, for example, a cellulose resin, a polyester resin, a polystyrene resin, and an acrylic resin.
  • the insulating resin layer (B) may be composed only of the insulating resin (b), or may contain other additives.
  • additives examples include plasticizers, leveling agents, antifoaming agents, antioxidants, antistatic agents, flame retardants, inorganic oxides such as barium titanate, and rubber fine particles.
  • the type and blending amount may be selected within a range that does not impair the effect of improving the insulation and withstand voltage, which are the effects of the present invention.
  • the insulating resin layer (B) used in the present invention includes the insulating resin (b) described above (including non-fluorinated resin compositions containing other additives described above as necessary).
  • the same can be applied to the VdF resin film layer (A) by a conventionally known melt extrusion method or coating method. It is advantageous to laminate by a coating method (cast method) from the standpoint of simplicity and the resulting laminated high dielectric film being excellent in homogeneity.
  • a film is prepared according to various coating methods from a coating composition in which other additives are added to the insulating resin (b) as necessary and dissolved or dispersed in a solvent.
  • any solvent that can dissolve the insulating resin (b) can be used. However, when a solvent having an affinity for the VdF resin is used, it has excellent adhesion and durability. Insulating resin layer (B) can be formed.
  • a preferred organic solvent is a polar organic solvent.
  • the polar organic solvent for example, ketone solvents, ester solvents, carbonate solvents, cyclic ether solvents, and amide solvents are preferable.
  • ketone solvents for example, ketone solvents, ester solvents, carbonate solvents, cyclic ether solvents, and amide solvents are preferable.
  • knife coating method, cast coating method, roll coating method, gravure coating method, blade coating method, rod coating method, air doctor coating method, curtain coating method, fakunrun coating method, kiss coating method, screen coating Method, spin coating method, spray coating method, extrusion coating method, electrodeposition coating method, etc. can be used, but roll coating is easy because of its ease of operation, small variations in film thickness, and excellent productivity.
  • the method, the gravure coating method and the cast coating method are preferable.
  • the thickness of the obtained insulating resin layer (B) is preferably 0.5 ⁇ m or more, preferably 0.7 ⁇ m or more, and more preferably 1 ⁇ m or more from the viewpoint of obtaining good insulation and improved withstand voltage.
  • the upper limit is 5 ⁇ m, preferably 3 ⁇ m, from the viewpoint of maintaining high dielectric properties.
  • the laminated high dielectric film of the present invention is useful as a high dielectric film for a film capacitor.
  • a film capacitor can be produced by laminating an electrode layer on at least one side of the laminated high dielectric film of the present invention.
  • the surface on which the electrode layer is formed may be the insulating resin layer (B), or may be the VdF-based resin film layer (A) when the insulating resin layer is provided only on one side.
  • the structure of the film capacitor for example, a laminated type in which electrode layers and high dielectric films are alternately laminated (Japanese Patent Laid-Open Nos. 63-181411, 3-18113, etc.) or a tape-like high dielectric Winding type in which a body film and an electrode layer are wound (disclosed in Japanese Patent Application Laid-Open No. 60-262414 in which electrodes are not continuously laminated on a high dielectric film, or electrodes on a high dielectric film And the like disclosed in Japanese Patent Laid-Open No. 3-286514, etc.) are continuously laminated.
  • a wound film capacitor that has a simple structure and is relatively easy to manufacture
  • a wound film capacitor in which electrode layers are continuously laminated on a high dielectric film it is generally a high dielectric that has electrodes laminated on one side. Two films are rolled up so that the electrodes do not come into contact with each other. If necessary, the film is rolled and fixed so as not to be loosened.
  • the electrode layer is not particularly limited, but is generally a layer made of a conductive metal such as aluminum, zinc, gold, platinum, or copper, and is used as a metal foil or a deposited metal film.
  • a metal foil or a vapor-deposited metal film, or both may be used in combination.
  • a vapor-deposited metal film is preferable in that the electrode layer can be thinned, and as a result, the capacity can be increased with respect to the volume, the adhesiveness with the dielectric is excellent, and the thickness variation is small.
  • the vapor-deposited metal film is not limited to a single layer.
  • a method of forming an aluminum oxide layer of a semiconductor on an aluminum layer to form an electrode layer for example, JP-A-2-250306)
  • it may be laminated as necessary.
  • the thickness of the deposited metal film is not particularly limited, but is preferably in the range of 100 to 2000 angstroms, more preferably 200 to 1000 angstroms. When the thickness of the deposited metal film is within this range, the capacity and strength of the capacitor are balanced, which is preferable.
  • the method for forming the film is not particularly limited, and for example, a vacuum deposition method, a sputtering method, an ion plating method, or the like can be employed. Usually, a vacuum deposition method is used.
  • Vacuum deposition methods include, for example, the batch method for molded products, the semi-continuous method used for long products, and the air-to-air method.
  • the semi-continuous method is the mainstay. Has been done.
  • the semi-continuous metal vapor deposition method is a method in which after vapor deposition and winding of a metal in a vacuum system, the vacuum system is returned to the atmospheric system, and the deposited film is taken out.
  • the semi-continuous method can be specifically performed by the method described in Japanese Patent No. 3664342 with reference to FIG.
  • the surface of the high dielectric film can be subjected in advance to treatment for improving adhesive properties such as corona treatment or plasma treatment.
  • the thickness of the metal foil is not particularly limited, but is usually in the range of 0.1 to 100 ⁇ m, preferably 1 to 50 ⁇ m, more preferably 3 to 15 ⁇ m.
  • the fixing method is not particularly limited, and for example, fixing and protecting the structure may be performed simultaneously by sealing with resin or enclosing in an insulating case.
  • the method for connecting the lead wires is not limited, and examples thereof include welding, ultrasonic pressure welding, heat pressure welding, and fixing with an adhesive tape.
  • a lead wire may be connected to the electrode before it is wound.
  • the opening may be sealed with a thermosetting resin such as urethane resin or epoxy resin to prevent oxidative degradation.
  • the film capacitor of the present invention thus obtained is highly dielectric, highly insulating, and has a high withstand voltage.
  • the thickness of the insulating resin layer (B) is determined by measuring the total thickness of the final laminated high dielectric film in the same manner and subtracting the thickness of the VdF resin film.
  • the volume resistivity ( ⁇ ⁇ cm) is measured at room temperature (20 ° C.) at 500 VDC in a dry air atmosphere with a digital superinsulator / microammeter.
  • Example 1 Formation of VdF resin film layer (A1)
  • DMAc dimethylacetamide
  • PVdF polyvinylidene fluoride
  • a coating composition comprising a PVdF solution having a concentration of 20% by mass was obtained by adding 3 parts by mass and stirring with a three-one motor at 60 ° C. for 3 hours.
  • this coating composition was coated on a supporting non-porous polyester (PET) film having a thickness of 38 ⁇ m which was subjected to a release treatment.
  • the VdF resin film layer (A1) having a film thickness of 6.2 ⁇ m was formed on the supporting PET film by passing through a 6 m drying furnace at 150 ° C. and then a 6 m drying furnace at 180 ° C.
  • VdF resin film obtained by peeling the VdF resin film layer (A1) from the PET film was subjected to volume resistivity, withstand voltage, and frequencies at 20 ° C. and 80 ° C. (100 Hz, 1 kHz, 10 kHz). The dielectric loss and the relative dielectric constant of were calculated. The results are shown in Table 1 as Comparative Example 1.
  • the coating composition is coated on the VdF resin film layer (A1) on the supporting PET film using a micro gravure coater, and is passed through a 6 m drying oven at 150 ° C. and then a 6 m drying oven at 180 ° C.
  • a VdF resin film layer (A1) and an insulating resin (polyester) layer (B1) are formed on the PET film, and peeled from the PET film, whereby a VdF resin film layer having a film thickness of 7.3 ⁇ m ( A laminated high dielectric film of the present invention comprising A1) / insulating resin (polyester) layer (B1) was obtained.
  • the thickness of the insulating resin (polyester) layer (B1) was 1.1 ⁇ m.
  • Example 2 Formation of VdF resin film layer (A2)
  • DMAc manufactured by Kishida Chemical Co., Ltd.
  • This coating composition was cast using a micro gravure coater on a 38 ⁇ m-thick supporting PET film that had been subjected to mold release treatment, and then placed in a 6 m drying oven at 150 ° C., followed by a 6 m drying oven at 180 ° C. By passing, a 6.0 ⁇ m thick VdF resin film layer (A2) was formed on the supporting PET film.
  • VdF resin film obtained by peeling the VdF resin film layer (A2) from the PET film was subjected to volume resistivity, withstand voltage, and at each frequency (100 Hz, 1 kHz, 10 kHz) at 20 ° C. and 80 ° C.
  • the dielectric loss and the relative dielectric constant of were calculated.
  • the results are shown in Table 1 as Comparative Example 2.
  • Example 3 Formation of VdF resin film layer (A3)
  • DMAc DMAc
  • 160 parts by mass of PVdF were put, and stirred with a three-one motor at 80 ° C. for 3 hours to obtain a 20% by mass PVdF solution.
  • This PVdF solution was a transparent homogeneous solution.
  • BT barium titanate
  • MIBK methyl isobutyl ketone
  • This coating composition was cast using a micro gravure coater on a 38 ⁇ m-thick supporting PET film that had been subjected to mold release treatment, and then placed in a 6 m drying oven at 150 ° C., followed by a 6 m drying oven at 180 ° C. By passing, a VdF resin film layer (A3) having a film thickness of 6.5 ⁇ m was formed on the supporting PET film.
  • VdF resin film obtained by peeling the VdF resin film layer (A3) from the PET film was subjected to volume resistivity, withstand voltage, and frequencies at 20 ° C. and 80 ° C. (100 Hz, 1 kHz, 10 kHz). The dielectric loss and the relative dielectric constant of were calculated. The results are shown in Table 1 as Comparative Example 3.
  • the volume resistivity, withstand voltage, dielectric loss and relative dielectric constant at each frequency (100 Hz, 1 kHz, 10 kHz) at 20 ° C. and 80 ° C. were calculated for the obtained laminated high dielectric film of the present invention. The results are shown in Table 1.
  • Example 4 Example 3 except that the insulating resin layer (B3) was changed from polyester to cellulose acetate (L-20 manufactured by Daicel Chemical Industries, relative dielectric constant 1.5, volume resistivity 1 ⁇ 10 15 ⁇ ⁇ cm).
  • the laminated high dielectric film (film thickness 7.4 ⁇ m) of the present invention comprising a VdF resin film layer (film thickness 6.2 ⁇ m) / insulating resin (cellulose acetate) layer (film thickness 1.2 ⁇ m).
  • various physical properties were measured. The results are shown in Table 1.
  • Example 5 The same procedure as in Example 3 except that the insulating resin layer (B3) was changed from polyester to polystyrene (Sigma Aldrich Japan, relative dielectric constant 0.1, volume resistivity 1 ⁇ 10 16 ⁇ ⁇ cm).
  • the laminated high dielectric film (film thickness 7.2 ⁇ m) of the present invention consisting of a VdF-based resin film layer (film thickness 6.2 ⁇ m) / insulating resin (polystyrene) layer (film thickness 1.0 ⁇ m) was prepared. Physical properties were measured. The results are shown in Table 1.
  • Example 6 the VdF-based resin film layer (A1) was changed from polyvinylidene fluoride (PVdF) to VdF / TFE (VP-50 manufactured by Daikin Industries, Ltd., dielectric constant 9.0 (1 kHz, 25 ° C.)). Except for the change, a laminated high dielectric film of the present invention comprising a VdF resin film layer (A1) / insulating resin (polyester) layer (B1) having a thickness of 7.5 ⁇ m was obtained in the same manner. The thickness of the insulating resin (polyester) layer (B1) was 1.3 ⁇ m.
  • Example 7 A film thickness of 7 was similarly obtained in Example 1 except that the insulating resin layer (B1) was changed from polyester to methyl methacrylate (Kishida Chemical Co., Ltd., relative permittivity 2.5 (1 kHz, 25 ° C.)).
  • a laminated high dielectric film of the present invention consisting of a VdF resin film layer (A1) / insulating resin (acrylic resin) layer (B1) of 1 ⁇ m was obtained.
  • the thickness of the insulating resin (acrylic resin) layer (B1) was 0.9 ⁇ m.
  • volume resistivity, withstand voltage, dielectric loss and relative dielectric constant at each frequency (100 Hz, 1 kHz, 10 kHz) at 20 ° C. and 80 ° C. were calculated. The results are shown in Table 2.
  • Example 8 In the same manner as in Example 1, a laminated high dielectric film of the present invention comprising a VdF resin film layer (A1) / insulating resin (polyester) layer (B1) having a film thickness of 4.1 ⁇ m was obtained. The thickness of the insulating resin (polyester) layer (B1) was 1.2 ⁇ m. About the obtained laminated high dielectric film of the present invention, volume resistivity, withstand voltage, dielectric loss and relative dielectric constant at each frequency (100 Hz, 1 kHz, 10 kHz) at 20 ° C. and 80 ° C. were calculated. The results are shown in Table 2.
  • Example 9 In the same manner as in Example 1, a laminated high dielectric film of the present invention comprising a VdF resin film layer (A1) / insulating resin (polyester) layer (B1) having a film thickness of 22.2 ⁇ m was obtained. The thickness of the insulating resin (polyester) layer (B1) was 2.4 ⁇ m. About the obtained laminated high dielectric film of the present invention, volume resistivity, withstand voltage, dielectric loss and relative dielectric constant at each frequency (100 Hz, 1 kHz, 10 kHz) at 20 ° C. and 80 ° C. were calculated. The results are shown in Table 2.
  • Example 10 In the same manner as in Example 2, except that the cellulose acetate (AC) was changed to a polyester resin (Byron GK640 manufactured by Toyobo Co., Ltd.), a VdF-based resin film layer (A2) having a film thickness of 7.2 ⁇ m / insulating property was similarly used.
  • a laminated high dielectric film of the present invention comprising the resin layer (B2) was obtained.
  • the thickness of the insulating resin layer (B2) was 1.0 ⁇ m.
  • volume resistivity, withstand voltage, dielectric loss and relative dielectric constant at each frequency (100 Hz, 1 kHz, 10 kHz) at 20 ° C. and 80 ° C. were calculated. The results are shown in Table 3.
  • Example 11 In the same manner as in Example 2, except that cellulose acetate (AC) was changed to acrylic resin (polymethyl methacrylate manufactured by Kishida Chemical Co., Ltd.), a VdF-based resin film layer (A2) / A laminated high dielectric film of the present invention comprising an insulating resin layer (B2) was obtained. The thickness of the insulating resin layer (B2) was 1.0 ⁇ m. About the obtained laminated high dielectric film of the present invention, volume resistivity, withstand voltage, dielectric loss and relative dielectric constant at each frequency (100 Hz, 1 kHz, 10 kHz) at 20 ° C. and 80 ° C. were calculated. The results are shown in Table 3.
  • Example 12 A membrane was prepared in the same manner as in Example 2 except that PVdF and AC were mixed so that the mass ratio thereof was 70/30, and an arbitrary amount of tetrahydrofuran (THF) was added as a diluting solution to produce a coating composition.
  • a laminated high dielectric film of the present invention consisting of a 7.3 ⁇ m thick VdF resin film layer (A2) / insulating resin layer (B2) was obtained. The thickness of the insulating resin layer (B2) was 1.2 ⁇ m.
  • volume resistivity, withstand voltage, dielectric loss and relative dielectric constant at each frequency (100 Hz, 1 kHz, 10 kHz) at 20 ° C. and 80 ° C. were calculated. The results are shown in Table 3.
  • Example 13 In Example 3, except for mixing so that the mass ratio of PVdF and AC was 90/10, from a VdF-based resin film layer (A2) / insulating resin layer (B2) having a film thickness of 7.0 ⁇ m. A laminated high dielectric film of the present invention was obtained. The thickness of the insulating resin layer (B2) was 1.0 ⁇ m. About the obtained laminated high dielectric film of the present invention, volume resistivity, withstand voltage, dielectric loss and relative dielectric constant at each frequency (100 Hz, 1 kHz, 10 kHz) at 20 ° C. and 80 ° C. were calculated. The results are shown in Table 3.
  • Example 14 In Example 3, the high dielectric inorganic particles (c1) were changed from barium titanate (BT) (BT-4FB manufactured by Nippon Chemical Industry Co., Ltd.) to strontium zirconate (manufactured by Kojundo Chemical Laboratory Co., Ltd., average particles).
  • the laminated high dielectric film of the present invention consisting of a 7.5 ⁇ m thick VdF resin film layer (A3) / insulating resin (polyester) layer (B3) is obtained in the same manner except that the diameter is changed to 1 ⁇ m). It was.
  • the thickness of the insulating resin (polyester) layer (B3) was 1.0 ⁇ m.
  • Example 15 the high dielectric inorganic particles (c1) were changed from barium titanate (BT) (BT-4FB manufactured by Nippon Chemical Industry Co., Ltd.) to barium calcium zirconate titanate (BCTZ manufactured by Nippon Chemical Industry Co., Ltd.).
  • the laminated high dielectric of the present invention comprising a VdF resin film layer (A3) / insulating resin (polyester) layer (B3) having a film thickness of 7.2 ⁇ m is the same except that the average particle diameter is changed to 1 ⁇ m)) A characteristic film was obtained.
  • the thickness of the insulating resin (polyester) layer (B3) was 1.0 ⁇ m.
  • Example 16 the high dielectric inorganic particles (c1) were changed from barium titanate (BT) (BT-4FB manufactured by Nippon Chemical Industry Co., Ltd.) to barium titanate (BTO-100RF manufactured by Toda Kogyo Co., Ltd.)
  • the laminated high dielectric of the present invention comprising a VdF resin film layer (A3) / insulating resin (polyester) layer (B3) having a film thickness of 7.0 ⁇ m in the same manner except that the particle diameter is changed to 0.1 ⁇ m)) A characteristic film was obtained.
  • the thickness of the insulating resin (polyester) layer (B3) was 0.8 ⁇ m.
  • Example 17 In Example 3, 10 parts by mass of the dispersion solution (containing 5 parts by mass of barium titanate, 3 parts by mass of DMAc, 2 parts by mass of MIBK) and 50 parts by mass of the PVdF solution (containing 10.0 parts by mass of PVdF, 40.0 parts by mass of DMAc), MIBK
  • the laminate of the present invention consisting of a VdF-based resin film layer (A3) / insulating resin layer (B3) with a film thickness of 6.8 ⁇ m was prepared except that 38.5 parts by mass of was mixed to prepare a coating composition. A type high dielectric film was obtained.
  • the thickness of the insulating resin (polyester) layer (B3) was 0.8 ⁇ m.
  • Example 18 In a 1 L separable flask, 640 parts by mass of N, N-dimethylacetamide (DMAc) (manufactured by Kishida Chemical Co., Ltd.) and polyvinylidene fluoride (PVdF) (KAYNAR761 manufactured by ARKEMA), relative permittivity 9.2 (1 kHz, 20 ° C)) 160 parts by mass was added and stirred with a three-one motor at 80 ° C for 3 hours to obtain a PVdF solution having a concentration of 20% by mass. This PVdF solution was a transparent homogeneous solution.
  • DMAc N, N-dimethylacetamide
  • PVdF polyvinylidene fluoride
  • a film-forming composition was prepared by mixing 34 parts by mass of this dispersion, 50 parts by mass of the PVdF solution (containing 10 parts by mass of PVdF and 40 parts by mass of DMAc), and 26.7 parts by mass of MIBK.
  • the composition was cast on a PET film having a thickness of 38 ⁇ m using a microgravure coater and passed through a 6 m drying oven at 150 ° C., followed by a 6 m drying oven at 180 ° C. A laminated film in which a cast film having a film thickness of 7.7 ⁇ m was formed on the film was obtained. Next, by peeling from the PET film, a film capacitor film of VdF resin having a film thickness of 7.7 ⁇ m was obtained.
  • the volume resistivity ( 20 ° C.) is 5.5 ⁇ 10 14 ⁇ ⁇ cm
  • withstand voltage is 250 V / ⁇ m
  • tensile elongation at break is 41%
  • relative dielectric constant is 20 (degrees) 28 (100 Hz), 27 (1 kHz), 26 (10 kHz)
  • the dielectric loss (%) is 5.5 (100 Hz) at 20 ° C., 2.9 (1 kHz), 2.4 (10 kHz), 7.8 (100 Hz) at 80 ° C., 10.8 (1 kHz), It was 7.4 (10 kHz).
  • a coating composition comprising a 15% strength by weight polyester (Byron GK640 manufactured by Toyobo Co., Ltd.) solution was applied to one side of the obtained high dielectric film with a bar coater and dried by hot air at 180 ° C. for 3 minutes for insulation.
  • a conductive resin layer was formed to produce a laminated high dielectric film.
  • the thickness of the insulating resin layer was 1.1 ⁇ m.
  • the tensile elongation at break of this film was 45%.
  • Example 19 Electrodes were formed on both surfaces of the high dielectric film produced in Example 1 by depositing aluminum with a target of 3 ⁇ / ⁇ using a vacuum deposition apparatus (VE-2030 manufactured by Vacuum Device Co., Ltd.). A voltage-applying lead wire was attached to these aluminum electrodes to produce stamp-type (for simple evaluation) film capacitors.
  • a vacuum deposition apparatus VE-2030 manufactured by Vacuum Device Co., Ltd.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Insulating Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Disclosed is a high-dielectric-constant multilayer film comprising: (A) a vinylidene fluoride resin film layer which contains a vinylidene fluoride resin (a) as a film-forming resin; and (B) a layer of an insulating resin (b), which is formed on at least one surface of the vinylidene fluoride resin film layer (A).  The high-dielectric-constant multilayer film is characterized in that the vinylidene fluoride resin film layer containing a vinylidene fluoride resin (a) as a film-forming resin has improved electrical insulation and withstand voltage.

Description

積層型高誘電性フィルムLaminated high dielectric film
 本発明は、積層型高誘電性フィルムに関する。 The present invention relates to a laminated high dielectric film.
 近年、プラスチック絶縁体は、絶縁抵抗が高く、周波数特性に優れ、柔軟性にも優れるという特徴を有しているため、通信用、電子機器用、電力用、中・低圧進相用、インバータ用などのフィルムコンデンサや、圧電素子、焦電素子、転写体担持用誘電体などの膜材料として期待されている。 In recent years, plastic insulators are characterized by high insulation resistance, excellent frequency characteristics, and excellent flexibility, so they are used for communication, electronic equipment, power, medium / low-pressure phase advance, and inverter. It is expected as a film material such as a film capacitor, a piezoelectric element, a pyroelectric element, and a dielectric for carrying a transfer body.
 フィルムコンデンサは通常、誘電性樹脂フィルムの表面にアルミニウムまたは亜鉛を蒸着した構造のフィルム、またはアルミニウム箔と誘電性樹脂フィルムを積層したフィルムから構成されており、近年、金属蒸着により誘電性樹脂フィルム上に電極を形成したものも多用されている。 A film capacitor is usually composed of a film having a structure in which aluminum or zinc is vapor-deposited on the surface of a dielectric resin film, or a film in which an aluminum foil and a dielectric resin film are laminated. A material in which an electrode is formed is also frequently used.
 フィルムコンデンサ用フィルムは、通常、誘電性樹脂をフィルム形成樹脂とする単一層として形成されており、フィルム形成樹脂としては、誘電率の高いフッ化ビニリデン(VdF)などのフッ素系ポリマーが検討されている。 Films for film capacitors are usually formed as a single layer using a dielectric resin as a film-forming resin. As the film-forming resin, fluorine-based polymers such as vinylidene fluoride (VdF) having a high dielectric constant have been studied. Yes.
 しかし、VdF系樹脂は、誘電率は他の非フッ素系樹脂に比べて高いものの、電気絶縁性や耐電圧に問題があり、それらの向上策が提案されている(特許文献1~3、非特許文献1)。 However, although the VdF resin has a higher dielectric constant than other non-fluorine resins, there are problems in electrical insulation and withstand voltage, and measures for improving them have been proposed (Patent Documents 1 to 3, Non-Patent Documents). Patent Document 1).
 特許文献1では、VdF系樹脂にポリカーボネート(PC)または熱可塑性ポリエステル(PETなど)を混合することにより電気絶縁性を向上させることが提案されている。 Patent Document 1 proposes that electrical insulation is improved by mixing polycarbonate (PC) or thermoplastic polyester (such as PET) with a VdF resin.
 特許文献2では、VdF系樹脂のフィルム化工程をクリーンな環境で行うことで耐電圧を向上させることが提案されている。 Patent Document 2 proposes that the withstand voltage be improved by performing the film formation process of the VdF resin in a clean environment.
 特許文献3では、VdF系樹脂フィルムとポリエステルフィルムを重ねて共巻きすることで耐電圧の向上を図ろうとしている。 In Patent Document 3, an attempt is made to improve the withstand voltage by overlapping a VdF resin film and a polyester film and winding them together.
 非特許文献1では、PC層とポリフッ化ビニリデン(PVdF)フィルムを合計で32層積重ねることにより耐電圧が向上することが報告されている。 Non-Patent Document 1 reports that the withstand voltage is improved by stacking a total of 32 layers of PC layers and polyvinylidene fluoride (PVdF) films.
特開昭56-152103号公報JP-A-56-152103 特開平5-16209号公報Japanese Patent Laid-Open No. 5-16209 特表2002-512443号公報Japanese translation of PCT publication No. 2002-512443
 本発明者らは、先行する公知技術を検討したところ、PCまたはPETなどを混合する方法(特許文献1)では、VdF系樹脂とPCやPETとは相溶性が低いため機械的強度の点で改善の余地があると共に、薄膜化も困難であり、クリーン化環境での製造で解決しようとする方法(特許文献2)では、設備面でコスト高になるほか、薄膜化も困難であり、VdF系樹脂フィルムとポリエステルフィルムを重ねて共巻きする方法(特許文献3)では、電気絶縁性は改善できず、PC層とPVdF層を32層も重ねる方法(非特許文献1)では、極めて特殊な成形方法が要求されるといった点が判明した。 The inventors of the present invention have studied the prior art, and in the method of mixing PC or PET (Patent Document 1), the VdF resin and PC or PET have low compatibility, so that the mechanical strength is low. In addition to room for improvement, thinning is difficult, and the method to be solved by manufacturing in a clean environment (Patent Document 2) is expensive in terms of equipment and difficult to thin, VdF In the method (Patent Document 3) in which the resin film and the polyester film are overlapped and wound together, the electrical insulation cannot be improved. It became clear that a molding method was required.
 本発明者らはさらに研究を重ね、VdF系樹脂フィルムの少なくとも片面に絶縁性樹脂の層を設けるという簡単な手段により、電気絶縁性だけではなく耐電圧も向上することを見出し、本発明を完成するに至った。 The inventors have further researched and found that not only electrical insulation but also withstand voltage is improved by a simple means of providing an insulating resin layer on at least one side of the VdF-based resin film, thereby completing the present invention. It came to do.
 すなわち本発明は、(A)フィルム形成樹脂としてフッ化ビニリデン系樹脂(a)を含むフッ化ビニリデン系樹脂フィルム層、および
(B)該フッ化ビニリデン系樹脂フィルム層(A)の少なくとも片面に設けられている絶縁性樹脂(b)の層
を含む積層型高誘電性フィルムに関する。
That is, the present invention provides (A) a vinylidene fluoride resin film layer containing a vinylidene fluoride resin (a) as a film-forming resin, and (B) provided on at least one surface of the vinylidene fluoride resin film layer (A). The present invention relates to a laminated high dielectric film comprising a layer of insulating resin (b).
 絶縁性樹脂層(B)を構成する樹脂(b)としては、体積抵抗率が1013Ω・cm以上の樹脂であることが、電気絶縁性と耐電圧の向上効果が優れる点から好ましい。 The resin (b) constituting the insulating resin layer (B) is preferably a resin having a volume resistivity of 10 13 Ω · cm or more from the viewpoint of excellent effect of improving electrical insulation and withstand voltage.
 非フッ素系樹脂としては、具体的には、たとえばセルロース系樹脂、ポリエステル樹脂、ポリスチレン系樹脂、ポリオレフィン樹脂およびアクリル樹脂よりなる群から選ばれる少なくとも1種が好ましい。 Specifically, the non-fluorine resin is preferably at least one selected from the group consisting of, for example, a cellulose resin, a polyester resin, a polystyrene resin, a polyolefin resin, and an acrylic resin.
 VdF系樹脂フィルム層(A)を構成するVdF系樹脂(a)としては、フッ化ビニリデン単位60~100モル%、テトラフルオロエチレン単位0~40モル%およびヘキサフルオロプロピレン0~40モル%を含む重合体であることが、誘電率が高い点から好ましい。 The VdF-based resin (a) constituting the VdF-based resin film layer (A) includes 60 to 100 mol% of vinylidene fluoride units, 0 to 40 mol% of tetrafluoroethylene units, and 0 to 40 mol% of hexafluoropropylene. A polymer is preferred from the viewpoint of high dielectric constant.
 本発明において、フッ化ビニリデン系樹脂フィルム層(A)は、
(c1)高誘電性無機粒子、
(c2)非フッ素系の熱可塑性樹脂、および
(c3)ゴム粒子
よりなる群から選ばれる少なくとも1種を含んでいてもよい。
In the present invention, the vinylidene fluoride resin film layer (A) is
(C1) high dielectric inorganic particles,
It may contain at least one selected from the group consisting of (c2) a non-fluorinated thermoplastic resin and (c3) rubber particles.
 高誘電性無機粒子(c1)としては、
(c1a)式(c1a):
 M1 a1b1c1
(式中、M1は2族金属元素;Nは4族金属元素;a1は0.9~1.1;b1は0.9~1.1;c1は2.8~3.2である;M1とNはそれぞれ複数であってもよい)で示される複合酸化物粒子、
(c1b)式(c1b):
 M2 a23 b2c2
(式中、M2とM3は異なり、M2は周期表の2族金属元素、M3は周期表の第5周期の金属元素;a2は0.9~1.1;b2は0.9~1.1;c2は2.8~3.2である)
で示される複合酸化物粒子、および
(c1c)周期表の2族金属元素および4族金属元素よりなる群から選ばれる少なくとも3種の金属元素を含む複合酸化物粒子
よりなる群から選ばれた少なくとも1種が、誘電率の向上に特に有効であることから好ましい。
As the high dielectric inorganic particles (c1),
(C1a) Formula (c1a):
M 1 a1 N b1 O c1
(Wherein M 1 is a Group 2 metal element; N is a Group 4 metal element; a1 is 0.9 to 1.1; b1 is 0.9 to 1.1; c1 is 2.8 to 3.2. A plurality of M 1 and N may be present),
(C1b) Formula (c1b):
M 2 a2 M 3 b2 O c2
(In the formula, M 2 and M 3 are different, M 2 is a Group 2 metal element of the periodic table, M 3 is a metal element of the fifth period of the periodic table; a2 is 0.9 to 1.1; 9 to 1.1; c2 is 2.8 to 3.2)
And (c1c) at least selected from the group consisting of complex oxide particles containing at least three metal elements selected from the group consisting of Group 2 metal elements and Group 4 metal elements of the periodic table One is preferable because it is particularly effective for improving the dielectric constant.
 非フッ素系の熱可塑性樹脂(c2)としては、セルロース系樹脂、ポリエステル樹脂、ポリスチレン系樹脂、ポリオレフィン樹脂およびアクリル樹脂よりなる群から選ばれる少なくとも1種が、誘電正接を改善できる点から好ましい。 As the non-fluorinated thermoplastic resin (c2), at least one selected from the group consisting of a cellulose resin, a polyester resin, a polystyrene resin, a polyolefin resin, and an acrylic resin is preferable because the dielectric loss tangent can be improved.
 本発明の積層型高誘電性フィルムにおいて、VdF系樹脂フィルム層(A)の厚さは1~30μm、絶縁性樹脂層(B)の厚さは0.5~5μmであることが、電気絶縁性と耐電圧性が良好な点から好ましい。 In the laminated high dielectric film of the present invention, the VdF resin film layer (A) has a thickness of 1 to 30 μm, and the insulating resin layer (B) has a thickness of 0.5 to 5 μm. Is preferable from the viewpoint of good properties and voltage resistance.
 積層型高誘電性フィルムは、フィルムコンデンサ用のフィルムとして好適である。 The laminated high dielectric film is suitable as a film for a film capacitor.
 本発明はまた、本発明の積層型高誘電性フィルムの少なくとも片面に電極層が積層されているフィルムコンデンサにも関する。 The present invention also relates to a film capacitor in which an electrode layer is laminated on at least one surface of the laminated high dielectric film of the present invention.
 また本発明は、VdF系樹脂フィルム層(A)の少なくとも片面に、絶縁性樹脂を含むコーティング組成物を塗工して絶縁性樹脂層(B)を形成することを特徴とする積層型高誘電性フィルムの製造方法にも関する。 The present invention also provides a laminated high dielectric, characterized in that an insulating resin layer (B) is formed by applying a coating composition containing an insulating resin on at least one surface of a VdF-based resin film layer (A). The present invention also relates to a method for producing a conductive film.
 本発明によれば、フィルム形成樹脂としてVdF系樹脂(a)を含むVdF系樹脂フィルムの電気絶縁性と耐電圧を向上させることができる積層型高誘電性フィルムを提供することができる。 According to the present invention, it is possible to provide a laminated high dielectric film capable of improving the electrical insulation and withstand voltage of a VdF resin film containing a VdF resin (a) as a film forming resin.
 本発明の積層型高誘電性フィルムは、フィルム形成樹脂としてVdF系樹脂(a)を含むVdF系樹脂フィルム層(A)、および該VdF系樹脂フィルム層(A)の少なくとも片面に設けられている絶縁性樹脂(b)の層(B)とを含む。 The laminated high dielectric film of the present invention is provided on at least one surface of a VdF resin film layer (A) containing a VdF resin (a) as a film-forming resin, and the VdF resin film layer (A). And a layer (B) of insulating resin (b).
 以下、各層について説明する。 Hereinafter, each layer will be described.
(A)VdF系樹脂フィルム層
 VdF系樹脂層(A)は、フィルム形成樹脂としてVdF系樹脂(a)を含む層であって、VdF系樹脂単独で構成されていてもよいし、VdF系樹脂に加えて各種の添加剤や他の樹脂を含んでいてもよい。
(A) VdF-based resin film layer The VdF-based resin layer (A) is a layer containing a VdF-based resin (a) as a film-forming resin, and may be composed of a VdF-based resin alone or a VdF-based resin. In addition to these, various additives and other resins may be contained.
 VdF系樹脂(a)としては、VdFの単独重合体(PVdF)のほか、VdFと共重合可能な他の単量体の1種または2種以上との共重合体が例示でき、これらのうち、比誘電率が4以上、さらには6以上、なかでも7以上、特に7.5以上のものが、耐電圧、絶縁性、誘電率の向上、さらにはフィルムとしたときの誘電率が高い点から好ましい。 Examples of the VdF resin (a) include VdF homopolymers (PVdF) and copolymers with one or more of other monomers copolymerizable with VdF. Among these, The dielectric constant is 4 or more, more 6 or more, especially 7 or more, especially 7.5 or more, withstand voltage, insulation, improvement in dielectric constant, and high dielectric constant when used as a film. To preferred.
 VdF系樹脂(a)としては、フッ化ビニリデン(VdF)の単独重合体(PVdF)でも、VdFと共重合可能な他の単量体との共重合体であってもよい。また、VdFの単独重合体とVdF共重合体とのブレンド、またはVdF共重合体同士のブレンドであってもよい。 The VdF resin (a) may be a vinylidene fluoride (VdF) homopolymer (PVdF) or a copolymer with another monomer copolymerizable with VdF. Further, it may be a blend of a VdF homopolymer and a VdF copolymer, or a blend of VdF copolymers.
 VdFと共重合可能な他の単量体としては、たとえば、テトラフルオロエチレン(TFE)、クロロトリフルオロエチレン(CTFE)、トリフルオロエチレン(TrFE)、モノフルオロエチレン、ヘキサフルオロプロピレン(HFP)、パーフルオロ(アルキルビニルエーテル)(PAVE)などの含フッ素オレフィン類;含フッ素アクリレート、官能基含有含フッ素単量体などがあげられる。これらのうち、溶剤溶解性が良好な点から、TFE、CTFE、HFPが好ましい。共重合割合は、VdFが50モル%以上、好ましくは60モル%以上であることが、誘電率が高い点、溶剤溶解性が高い点から好ましい。 Examples of other monomers copolymerizable with VdF include tetrafluoroethylene (TFE), chlorotrifluoroethylene (CTFE), trifluoroethylene (TrFE), monofluoroethylene, hexafluoropropylene (HFP), Fluorinated olefins such as fluoro (alkyl vinyl ether) (PAVE); fluorinated acrylates, functional group-containing fluorinated monomers, and the like. Of these, TFE, CTFE, and HFP are preferred from the viewpoint of good solvent solubility. As for the copolymerization ratio, it is preferable that VdF is 50 mol% or more, preferably 60 mol% or more from the viewpoint of high dielectric constant and high solvent solubility.
 なかでも、VdF単位60~100モル%、TFE単位0~40モル%およびHFP0~40モル%を含む重合体であることが、比誘電率が6以上であり好ましい。 Among them, a polymer containing 60 to 100 mol% of VdF units, 0 to 40 mol% of TFE units and 0 to 40 mol% of HFP is preferable because the relative dielectric constant is 6 or more.
 具体的には、VdFの単独重合体(PVdF)、VdF/TFE系共重合体、VdF/TFE/HFP系共重合体、VdF/HFP系共重合体、VdF/CTFE系共重合体などが例示でき、特に誘電率が高い点、溶剤溶解性が良好な点から、PVdF、VdF/TFE系共重合体、VdF/HFP系共重合体が好ましい。 Specifically, VdF homopolymer (PVdF), VdF / TFE copolymer, VdF / TFE / HFP copolymer, VdF / HFP copolymer, VdF / CTFE copolymer, etc. are exemplified. In particular, PVdF, VdF / TFE copolymers, and VdF / HFP copolymers are preferred from the viewpoint of high dielectric constant and good solvent solubility.
 VdF/TFE系共重合体の場合、その組成比は、VdF単位が60~95モル%でTFE単位が5~40モル%であることが、特にVdF単位が70~90モル%でTFE単位が10~30モル%であることが、耐電圧が高くなる点から好ましい。また、VdF系樹脂自体の誘電損失を下げるために、エチレン、プロピレン、アルキルビニルエーテル、酢酸ビニル、塩化ビニル、塩化ビニリデン、CH2=CHCF3、CH2=CFCF3などと共重合することも好ましい。この場合、VdFとは直接反応しにくいので、TFEのような上記の共重合可能な他の単量体とともに共重合することもできる。また、VdF系樹脂自体の比誘電率(1kHz、25℃)は5以上、好ましくは6以上、さらには7.5以上であることが、フィルムの誘電率をさらに高める点から好ましい。なお、上限値はとくに制限はないが、通常15、好ましくは13である。 In the case of the VdF / TFE copolymer, the composition ratio is such that the VdF unit is 60 to 95 mol% and the TFE unit is 5 to 40 mol%, particularly the VdF unit is 70 to 90 mol% and the TFE unit is A content of 10 to 30 mol% is preferable from the viewpoint of increasing the withstand voltage. In order to reduce the dielectric loss of the VdF resin itself, it is also preferable to copolymerize with ethylene, propylene, alkyl vinyl ether, vinyl acetate, vinyl chloride, vinylidene chloride, CH 2 = CHCF 3 , CH 2 = CFCF 3 or the like. In this case, since it is difficult to react directly with VdF, it can also be copolymerized with other copolymerizable monomers such as TFE. The relative dielectric constant (1 kHz, 25 ° C.) of the VdF resin itself is preferably 5 or more, preferably 6 or more, and more preferably 7.5 or more from the viewpoint of further increasing the dielectric constant of the film. The upper limit is not particularly limited, but is usually 15 and preferably 13.
 本発明において、フッ化ビニリデン系樹脂フィルム層(A)は、VdF系樹脂(a)に加えて、
(c1)高誘電性無機粒子、
(c2)非フッ素系の熱可塑性樹脂、および
(c3)ゴム粒子
よりなる群から選ばれる少なくとも1種を含んでいてもよい。
In the present invention, the vinylidene fluoride resin film layer (A) is added to the VdF resin (a),
(C1) high dielectric inorganic particles,
It may contain at least one selected from the group consisting of (c2) a non-fluorinated thermoplastic resin and (c3) rubber particles.
 高誘電性無機粒子(c1)は、VdF系樹脂フィルム層(A)に、より一層高い誘電率を付与することができる。 The high dielectric inorganic particles (c1) can impart a higher dielectric constant to the VdF resin film layer (A).
 高誘電性無機粒子(c1)としては、高誘電性の無機粒子であれば特に制限されないが、つぎの(c1a)~(c1c)よりなる群から選ばれる少なくとも1種が好ましい。
(c1a)式(c1a):
 M1 a1b1C1
(式中、M1は2族金属元素;Nは4族金属元素;a1は0.9~1.1;b1は0.9~1.1;c1は2.8~3.2である;M1とNはそれぞれ複数であってもよい)で示される複合酸化物粒子。
The high dielectric inorganic particles (c1) are not particularly limited as long as they are high dielectric inorganic particles, but at least one selected from the group consisting of the following (c1a) to (c1c) is preferable.
(C1a) Formula (c1a):
M 1 a1 N b1 O C1
(Wherein M 1 is a Group 2 metal element; N is a Group 4 metal element; a1 is 0.9 to 1.1; b1 is 0.9 to 1.1; c1 is 2.8 to 3.2. A plurality of M 1 and N may be present, respectively).
 2族金属元素M1としては、Be、Mg、Ca、Sr、Baなどが、4族金属元素NとしてはTi、Zrなどが好ましく例示できる。 Preferred examples of the group 2 metal element M 1 include Be, Mg, Ca, Sr, Ba, and the like, and examples of the group 4 metal element N include Ti, Zr, and the like.
 具体的には、チタン酸バリウム、ジルコン酸バリウム、チタン酸カルシウム、ジルコン酸カルシウム、チタン酸ストロンチウム、ジルコン酸ストロンチウムなどが例示でき、特にチタン酸バリウムが誘電率が高い点から好ましい。
(c1b)式(c1b):
 M2 a23 b2c2
(式中、M2とM3は異なり、M2は周期表の2族金属元素、M3は周期表の第5周期の金属元素;a2は0.9~1.1;b2は0.9~1.1;c2は2.8~3.2である)で示される複合酸化物粒子。
Specific examples include barium titanate, barium zirconate, calcium titanate, calcium zirconate, strontium titanate, and strontium zirconate. Barium titanate is particularly preferable because of its high dielectric constant.
(C1b) Formula (c1b):
M 2 a2 M 3 b2 O c2
(In the formula, M 2 and M 3 are different, M 2 is a Group 2 metal element of the periodic table, M 3 is a metal element of the fifth period of the periodic table; a2 is 0.9 to 1.1; 9 to 1.1; c2 is 2.8 to 3.2).
 複合酸化物(c1b)としては、具体的には、スズ酸マグネシウム、スズ酸カルシウム、スズ酸ストロンチウム、スズ酸バリウム、アンチモン酸マグネシウム、アンチモン酸カルシウム、アンチモン酸ストロンチウム、アンチモン酸バリウム、ジルコン酸マグネシウム、ジルコン酸カルシウム、ジルコン酸ストロンチウム、ジルコン酸バリウム、インジウム酸マグネシウム、インジウム酸カルシウム、インジウム酸ストロンチウム、インジウム酸バリウムなどがあげられる。
(c1c)周期表の2族金属元素および4族金属元素よりなる群から選ばれる少なくとも3種の金属元素を含む複合酸化物粒子。
As the complex oxide (c1b), specifically, magnesium stannate, calcium stannate, strontium stannate, barium stannate, magnesium antimonate, calcium antimonate, strontium antimonate, barium antimonate, magnesium zirconate, Examples thereof include calcium zirconate, strontium zirconate, barium zirconate, magnesium indium acid, calcium indium acid, strontium indium acid, and barium indium acid.
(C1c) Composite oxide particles containing at least three metal elements selected from the group consisting of Group 2 metal elements and Group 4 metal elements in the periodic table.
 複合酸化物(c1c)において、周期表の2族金属元素の具体例としては、たとえばBe、Mg、Ca、Sr、Baなどがあげられ、周期表の4族金属元素の具体例としては、たとえば、Ti、Zr、Hfなどがあげられる。 In the composite oxide (c1c), specific examples of the Group 2 metal element of the periodic table include Be, Mg, Ca, Sr, Ba, and the like. Specific examples of the Group 4 metal element of the periodic table include, for example, , Ti, Zr, Hf and the like.
 周期表の2族金属元素と4族金属元素から選ばれる3種以上の好ましい組み合わせとしては、たとえば、Sr、Ba、Tiの組み合わせ、Sr、Ti、Zrの組み合わせ、Sr、Ba、Zrの組み合わせ、Ba、Ti、Zrの組み合わせ、Sr、Ba、Ti、Zrの組み合わせ、Mg、Ti、Zrの組み合わせ、Ca、Ti、Zrの組み合わせ、Ca、Ba、Tiの組み合わせ、Ca、Ba、Zrの組み合わせ、Ca、Ba、Ti、Zrの組み合わせ、Ca、Sr、Zrの組み合わせ、Ca、Sr、Ti、Zrの組み合わせ、Mg、Sr、Zrの組み合わせ、Mg、Sr、Ti、Zrの組み合わせ、Mg、Ba、Ti、Zrの組み合わせ、Mg、Ba、Zrの組み合わせなどがあげられる。 Preferred combinations of three or more selected from Group 2 metal elements and Group 4 metal elements of the periodic table include, for example, a combination of Sr, Ba, Ti, a combination of Sr, Ti, Zr, a combination of Sr, Ba, Zr, Ba, Ti, Zr combination, Sr, Ba, Ti, Zr combination, Mg, Ti, Zr combination, Ca, Ti, Zr combination, Ca, Ba, Ti combination, Ca, Ba, Zr combination, Combination of Ca, Ba, Ti, Zr, combination of Ca, Sr, Zr, combination of Ca, Sr, Ti, Zr, combination of Mg, Sr, Zr, combination of Mg, Sr, Ti, Zr, Mg, Ba, A combination of Ti and Zr, a combination of Mg, Ba, and Zr are included.
 複合酸化物(c1c)としては、具体的には、チタン酸ジルコン酸ストロンチウム、チタン酸ジルコン酸バリウム、チタン酸ジルコン酸バリウムストロンチウム、チタン酸ジルコン酸マグネシウム、チタン酸ジルコン酸カルシウム、チタン酸ジルコン酸バリウムカルシウムなどがあげられる。 Specific examples of the composite oxide (c1c) include strontium zirconate titanate, barium zirconate titanate, barium strontium zirconate titanate, magnesium zirconate titanate, calcium zirconate titanate, and barium zirconate titanate. Examples include calcium.
 なお、これらの複合酸化物粒子に加えて、チタン酸ジルコン酸鉛、アンチモン酸鉛、チタン酸亜鉛、チタン酸鉛、酸化チタンなどの他の複合酸化物粒子を併用してもよい。 In addition to these composite oxide particles, other composite oxide particles such as lead zirconate titanate, lead antimonate, zinc titanate, lead titanate, and titanium oxide may be used in combination.
 高誘電性無機粒子(c1)の粒子径は、平均粒子径で2μm以下、さらには1.2μm以下、特に0.01~0.5μm程度であることが、フィルムの表面平滑性や均一分散性に優れる点から好ましい。 The average particle size of the high dielectric inorganic particles (c1) is 2 μm or less, more preferably 1.2 μm or less, particularly about 0.01 to 0.5 μm. From the point which is excellent in it.
 高誘電性無機粒子(c1)の配合量は、VdF系樹脂100質量部に対して、10質量部以上、好ましくは30質量部以上、特に好ましくは50質量部以上である。少なすぎるとフィルムの誘電率の向上効果が小さくなる。上限は500質量部である。多くなりすぎるとフィルムとしての強度の点、表面荒れの点で問題が生じる。好ましい上限は200質量部である。 The blending amount of the high dielectric inorganic particles (c1) is 10 parts by mass or more, preferably 30 parts by mass or more, particularly preferably 50 parts by mass or more with respect to 100 parts by mass of the VdF resin. If the amount is too small, the effect of improving the dielectric constant of the film becomes small. The upper limit is 500 parts by mass. If the amount is too large, problems occur in terms of strength as a film and surface roughness. A preferable upper limit is 200 parts by mass.
 非フッ素系の熱可塑性樹脂(c2)は、VdF系樹脂フィルム層(A)に誘電正接を低減させるなどの特性を付与することができる。 The non-fluorinated thermoplastic resin (c2) can impart properties such as reducing the dielectric loss tangent to the VdF-based resin film layer (A).
 非フッ素系の熱可塑性樹脂(c2)としては、VdF系樹脂(a)と親和性が高い点から、セルロース系樹脂、ポリエステル樹脂、ポリスチレン系樹脂、ポリオレフィン樹脂およびアクリル樹脂から選ばれる少なくとも1種、特にセルロース系樹脂、ポリエステル樹脂およびアクリル樹脂よりなる群れから選ばれる少なくとも1種が好ましい。 As the non-fluorinated thermoplastic resin (c2), at least one selected from a cellulose resin, a polyester resin, a polystyrene resin, a polyolefin resin and an acrylic resin from the viewpoint of high affinity with the VdF resin (a), In particular, at least one selected from the group consisting of cellulosic resins, polyester resins and acrylic resins is preferred.
 これらの非フッ素系の熱可塑性樹脂(c2)は、VdF系樹脂(a)の特徴である高い誘電率を損なわない範囲で混合できるが、VdF系樹脂(a)/非フッ素系の熱可塑性樹脂(c2)の比率(質量比)を0.1/99.9~100/0、好ましくは20/80~100/0、さらには30/70~100/0、特に70/30~100/0とすることが好ましい。 These non-fluorinated thermoplastic resins (c2) can be mixed within a range that does not impair the high dielectric constant characteristic of the VdF-based resin (a). However, the VdF-based resin (a) / non-fluorinated thermoplastic resin can be mixed. The ratio (mass ratio) of (c2) is 0.1 / 99.9 to 100/0, preferably 20/80 to 100/0, more preferably 30/70 to 100/0, especially 70/30 to 100/0. It is preferable that
 非フッ素系の熱可塑性樹脂(c2)としては、誘電率の向上と誘電損失の低減に有効である点からセルロース系樹脂が特に好ましく例示できる。 As the non-fluorinated thermoplastic resin (c2), a cellulose resin is particularly preferable because it is effective in improving the dielectric constant and reducing the dielectric loss.
 セルロース系樹脂としては、たとえばモノ酢酸セルロース、ジ酢酸セルロース、トリ酢酸セルロース、酢酸セルロースプロピオネートなどのエステル置換セルロース;メチルセルロース、エチルセルロース、ヒドロキシプロピルメチルセルロースなどのエーテルで置換されたセルロースなどが例示できる。これらの中でも、誘電損失の温度係数が低い点から、(モノ、ジ、トリ)酢酸セルロース、メチルセルロースが好ましい。 Examples of the cellulose-based resin include ester-substituted celluloses such as cellulose monoacetate, cellulose diacetate, cellulose triacetate, and cellulose acetate propionate; and celluloses substituted with ethers such as methylcellulose, ethylcellulose, and hydroxypropylmethylcellulose. Among these, (mono, di, tri) cellulose acetate and methyl cellulose are preferable from the viewpoint of low temperature coefficient of dielectric loss.
 VdF系樹脂(a)とセルロース系樹脂の合計質量に占めるセルロース系樹脂の割合は、誘電率が高く、誘電損失が低い点から99.9質量%以下、さらに機械特性が良好な点から80質量%以下が好ましい。また、誘電損失が低く機械特性が良好で誘電率が高い点から0.1質量%以上、さらに誘電損失の温度依存性が低い点から2質量%以上が好ましい。 The proportion of the cellulose resin in the total mass of the VdF resin (a) and the cellulose resin is 99.9% by mass or less from the viewpoint of high dielectric constant and low dielectric loss, and 80 mass from the viewpoint of good mechanical properties. % Or less is preferable. Further, it is preferably 0.1% by mass or more from the viewpoint of low dielectric loss, good mechanical properties and high dielectric constant, and 2% by mass or more from the viewpoint of low temperature dependence of dielectric loss.
 そのほか、セルロース系樹脂以外の非フッ素系の熱可塑性樹脂(c2)としては、たとえば可撓性、加工性が良好な点からポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)などのポリエステル樹脂;ポリスチレン、ポリ(スチレン-メタアクリレート)共重合体などのポリスチレン系樹脂;ポリエチレン、ポリプロピレン、ポリシクロオレフィンなどのポリオレフィン樹脂が好ましい。さらに強度を高めるためにはポリメタクリル酸メチル(PMMA)などのアクリル樹脂が好ましい。さらに、耐熱性が良好な点から、ポリフェニレンスルフィド(PPS)、ポリフェニレンオキシド(PPO)、ポリエーテルケトン(PEK)、ポリエーテルスルホン(PES)などがあげられる。そのほか絶縁性を高めるためにはポリカーボネート(PC)、シリコーン樹脂、ポリ酢酸ビニル、エポキシ樹脂、ポリサルホン(PSF)、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド、ポリアミド(PA)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリベンゾイミダゾール(PBI)、また高誘電性を補足する点から奇数ポリアミド、シアノプルラン、銅フタロシアニン系ポリマーなどがあげられる。 In addition, as the non-fluorinated thermoplastic resin (c2) other than the cellulose resin, for example, polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polyethylene naphthalate (PEN) from the viewpoint of good flexibility and workability. Polyester resins such as polystyrene; poly (styrene-methacrylate) copolymers; polyolefin resins such as polyethylene, polypropylene, and polycycloolefin. In order to further increase the strength, an acrylic resin such as polymethyl methacrylate (PMMA) is preferable. Furthermore, from the viewpoint of good heat resistance, polyphenylene sulfide (PPS), polyphenylene oxide (PPO), polyether ketone (PEK), polyether sulfone (PES) and the like can be mentioned. In addition, in order to improve insulation, polycarbonate (PC), silicone resin, polyvinyl acetate, epoxy resin, polysulfone (PSF), polyethylene oxide (PEO), polypropylene oxide, polyamide (PA), polyimide (PI), polyamideimide ( PAI), polybenzimidazole (PBI), and odd polyamides, cyano pullulans, copper phthalocyanine-based polymers and the like from the viewpoint of supplementing high dielectric properties.
 VdF系樹脂(a)とセルロース系樹脂以外の非フッ素系の熱可塑性樹脂(c2)の合計質量に占める非フッ素系熱可塑性樹脂(c2)の割合は、誘電率が高く、誘電損失が低い点から99.9質量%以下、さらに機械特性が良好な点から80質量%以下が好ましい。また、誘電損失が低く機械特性が良好で誘電率が高い点から0.1質量%以上、さらに誘電損失の温度依存性が低い点から2質量%以上が好ましい。 The proportion of the non-fluorinated thermoplastic resin (c2) in the total mass of the non-fluorinated thermoplastic resin (c2) other than the VdF-based resin (a) and the cellulose-based resin is high in dielectric constant and low in dielectric loss. To 99.9% by mass or less, and 80% by mass or less is preferable from the viewpoint of good mechanical properties. Further, it is preferably 0.1% by mass or more from the viewpoint of low dielectric loss, good mechanical properties and high dielectric constant, and 2% by mass or more from the viewpoint of low temperature dependence of dielectric loss.
 ゴム粒子(c3)はVdF系樹脂フィルム層(A)に機械的強度、特に伸びを与え、さらにゴム弾性などの性質を付与する役割をもっている。 The rubber particles (c3) have a role of imparting mechanical strength, particularly elongation, to the VdF-based resin film layer (A) and further imparting properties such as rubber elasticity.
 そうした役割を果たすのに好適なゴム粒子のゴムとしては、限定的ではないが、アクリルゴム、ブタジエンゴム、シリコーンゴム、シリコンアクリル複合ゴム、天然ゴム、ニトリルゴム、ウレタンゴム、スチレン-ブタジエンゴム、イソプレンゴムなどのジエン系ゴム;VdF-テトラフルオロエチレン(TFE)系ゴムなどのフッ素系ゴムなどが例示できる。 Suitable rubber particles for fulfilling such a role include, but are not limited to, acrylic rubber, butadiene rubber, silicone rubber, silicone acrylic composite rubber, natural rubber, nitrile rubber, urethane rubber, styrene-butadiene rubber, isoprene. Examples include diene rubbers such as rubber; fluorine rubbers such as VdF-tetrafluoroethylene (TFE) rubber.
 これらのうち比誘電率が高く、分散性が良好な点から、アクリルゴム、ブタジエンゴムおよびシリコーンゴムが好ましい。 Of these, acrylic rubber, butadiene rubber, and silicone rubber are preferred because of their high relative dielectric constant and good dispersibility.
 また、これらのゴム粒子の表面をポリメタクリル酸メチル、およびアクリロニトリル/スチレン共重合体よりなる群から選ばれる少なくとも1種で被覆した、いわゆるコア-シェルゴム粒子であってもよい。このコア-シェルゴム粒子を用いるときは、フッ化ビニリデン系樹脂との相溶性の点で優れている。 Also, so-called core-shell rubber particles in which the surfaces of these rubber particles are coated with at least one selected from the group consisting of polymethyl methacrylate and acrylonitrile / styrene copolymer may be used. When the core-shell rubber particles are used, the compatibility with the vinylidene fluoride resin is excellent.
 また、ゴム粒子は未架橋ゴム(生ゴム)粒子でもよいし、架橋されたゴム粒子でもよいが、耐溶剤性が良好な点から、架橋ゴム粒子が好ましい。ゴムの架橋は公知の定法に従って行えばよい。 The rubber particles may be uncrosslinked rubber (raw rubber) particles or crosslinked rubber particles, but crosslinked rubber particles are preferred from the viewpoint of good solvent resistance. The rubber may be crosslinked according to a known method.
 ゴム粒子(c3)の粒子径は、平均一次粒子径で0.1~2.0μm、さらには0.15~1.5μm、特に0.2~1.0μm程度であることが、樹脂への分散性とフィルムの強度向上を両立させることができる点から好ましい。 The particle size of the rubber particles (c3) is about 0.1 to 2.0 μm, more preferably about 0.15 to 1.5 μm, particularly about 0.2 to 1.0 μm in terms of average primary particle size. It is preferable from the viewpoint that both dispersibility and improvement in film strength can be achieved.
 ゴム粒子(c3)の配合量は、VdF系樹脂100質量部に対して、1質量部以上、好ましくは5質量部以上、特に好ましくは10質量部以上である。少なすぎるとフィルムの機械的強度、特に伸びの向上効果が小さくなる傾向にある。上限は30質量部である。多くなりすぎると樹脂への分散性が不良となる傾向にある。好ましい上限は20質量部である。 The compounding amount of the rubber particles (c3) is 1 part by mass or more, preferably 5 parts by mass or more, particularly preferably 10 parts by mass or more with respect to 100 parts by mass of the VdF resin. If the amount is too small, the effect of improving the mechanical strength, particularly elongation, of the film tends to be small. The upper limit is 30 parts by mass. If the amount is too large, the dispersibility in the resin tends to be poor. A preferable upper limit is 20 parts by mass.
 本発明に用いるVdF系樹脂フィルム層(A)は、以上に説明したVdF系樹脂(a)(必要に応じて以上説明した各成分(c1)や(c2)、(c3)などを含有するVdF系樹脂組成物も含めて言う。以下同様)を用いて、従来公知の溶融混練法やコーティング法により形成することができるが、簡便さや得られるフィルムの均質性に優れる点からコーティング法(キャスト法)で製造することが有利である。 The VdF-based resin film layer (A) used in the present invention contains the VdF-based resin (a) described above (VdF containing the components (c1), (c2), (c3) described above as necessary). It can be formed by a conventionally known melt-kneading method or coating method using a resin-based resin composition, etc., but the coating method (casting method) from the standpoint of simplicity and excellent film homogeneity. ) Is advantageous.
 コーティング法では、VdF系樹脂(a)に、必要に応じて他の添加剤(c1)、(c2)、(c3)などを加えて溶剤に溶解または分散させたコーティング用組成物から、各種のコーティング法に従ってフィルムを作製する。 In the coating method, various additives (c1), (c2), (c3) and the like are added to the VdF-based resin (a) as necessary, and dissolved or dispersed in a solvent. A film is produced according to the coating method.
 コーティング用溶剤としては、VdF系樹脂(a)を溶解し得る任意の溶媒を使用できるが、特に、極性有機溶媒が好ましい。なかでも極性有機溶媒としては、たとえばケトン系溶剤、エステル系溶媒、カーボネート系溶媒、環状エーテル系溶媒、アミド系溶剤が好ましい。具体的には、メチルエチルケトン、メチルイソブチルケトン、アセトン、ジエチルケトン、ジプロピルケトン、酢酸エチル、酢酸メチル、酢酸プロピル、酢酸ブチル、乳酸エチル、ジメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート、メチルエチルカーボネート、テトラヒドロフラン、メチルテトラヒドロフラン、ジオキサン、ジメチルホルムアミド、ジメチルアセトアミド等が好ましくあげられる。 As the coating solvent, any solvent that can dissolve the VdF resin (a) can be used, and a polar organic solvent is particularly preferable. Among these, as the polar organic solvent, for example, ketone solvents, ester solvents, carbonate solvents, cyclic ether solvents, and amide solvents are preferable. Specifically, methyl ethyl ketone, methyl isobutyl ketone, acetone, diethyl ketone, dipropyl ketone, ethyl acetate, methyl acetate, propyl acetate, butyl acetate, ethyl lactate, dimethyl carbonate, diethyl carbonate, dipropyl carbonate, methyl ethyl carbonate, tetrahydrofuran , Methyltetrahydrofuran, dioxane, dimethylformamide, dimethylacetamide and the like are preferable.
 コーティング方法としては、ナイフコーティング法、キャストコーティング法、ロールコーティング法、グラビアコーティング法、ブレードコーティング法、ロッドコーティング法、エアドクタコーティング法、カーテンコーティング法、ファクンランコーティング法、キスコーティング法、スクリーンコーティング法、スピンコーティング法、スプレーコーティング法、押出コーティング法、電着コーティング法などが使用できるが、これらのうち操作性が容易な点、膜厚のバラツキが少ない点、生産性に優れる点からロールコーティング法、グラビアコーティング法、キャストコーティング法が好ましい。 As coating methods, knife coating method, cast coating method, roll coating method, gravure coating method, blade coating method, rod coating method, air doctor coating method, curtain coating method, fakunrun coating method, kiss coating method, screen coating Method, spin coating method, spray coating method, extrusion coating method, electrodeposition coating method, etc. can be used, but roll coating is easy because of its ease of operation, small variations in film thickness, and excellent productivity. The method, the gravure coating method and the cast coating method are preferable.
 コーティング法によれば、VdF系樹脂(a)の溶剤への溶解性が高く高濃度の均一な組成物が調製でき、コーティングが容易である点から、得られる本発明のVdF系樹脂フィルム(層)の膜厚を30μm以下、好ましくは20μm以下、さらには15μm以下、特に10μm以下にすることができる。膜厚の下限は機械的強度の維持の点から1μm、好ましくは約2μmである。 According to the coating method, the VdF resin film (layer) of the present invention is obtained from the viewpoint that a highly uniform composition having a high solubility in the solvent of the VdF resin (a) can be prepared and coating is easy. ) Can be reduced to 30 μm or less, preferably 20 μm or less, further 15 μm or less, and particularly 10 μm or less. The lower limit of the film thickness is 1 μm, preferably about 2 μm, from the viewpoint of maintaining mechanical strength.
 また、高誘電性無機粒子(c1)が配合されたコーティング用組成物の調製には、親和性向上剤(d)を配合することが好ましい。親和性向上剤(d)を配合することで、VdF系樹脂(a)と高誘電性無機粒子(c1)との親和性を高め、高誘電性無機粒子(c1)をVdF系樹脂(a)に均一に分散させると共に、高誘電性無機粒子(c1)とVdF系樹脂(a)をフィルム層(A)中でしっかり結合させる役割を果たし、ボイドの発生を抑制し、誘電率を高めることができる。 In addition, it is preferable to add an affinity improver (d) for the preparation of the coating composition containing the high dielectric inorganic particles (c1). By blending the affinity improver (d), the affinity between the VdF resin (a) and the high dielectric inorganic particles (c1) is increased, and the high dielectric inorganic particles (c1) are converted into the VdF resin (a). And uniformly disperse the high dielectric inorganic particles (c1) and the VdF resin (a) in the film layer (A), thereby suppressing the generation of voids and increasing the dielectric constant. it can.
 親和性向上剤(d)としては、カップリング剤(d1)、界面活性剤(d2)またはエポキシ基含有化合物(d3)が有効である。 As the affinity improver (d), a coupling agent (d1), a surfactant (d2) or an epoxy group-containing compound (d3) is effective.
 カップリング剤(d1)としては、たとえば、チタン系カップリング剤、シラン系カップリング剤、ジルコニウム系カップリング剤、ジルコアルミネート系カップリング剤などが例示できる。 Examples of the coupling agent (d1) include a titanium coupling agent, a silane coupling agent, a zirconium coupling agent, and a zircoaluminate coupling agent.
 チタン系カップリング剤としては、たとえば、モノアルコキシ型、キレート型、コーディネート型などがあげられ、とくに高誘電性無機粒子(c1)との親和性が良好な点から、モノアルコキシ型、キレート型が好ましい。 Examples of the titanium-based coupling agent include monoalkoxy type, chelate type, coordinate type and the like, and monoalkoxy type and chelate type are particularly preferable because of their good affinity with high dielectric inorganic particles (c1). preferable.
 シラン系カップリング剤としては、たとえば、高分子型、低分子型があり、また官能基の数の点からモノアルコキシシラン、ジアルコキシシラン、トリアルコキシシラン、ダイポーダルアルコキシシランなどがあげられ、とくに高誘電性無機粒子(c1)との親和性が良好な点から低分子型のアルコキシシランが好ましい。 Examples of the silane coupling agent include high molecular types and low molecular types, and monoalkoxysilanes, dialkoxysilanes, trialkoxysilanes, dipodal alkoxysilanes, etc. in terms of the number of functional groups. In particular, a low molecular weight alkoxysilane is preferred from the viewpoint of good affinity with the high dielectric inorganic particles (c1).
 ジルコニウム系カップリング剤としては、たとえば、モノアルコキシジルコニウム、トリアルコキシジルコニウムなどがあげられる。 Examples of the zirconium-based coupling agent include monoalkoxyzirconium and trialkoxyzirconium.
 ジルコアルミネート系カップリング剤としては、たとえば、モノアルコキシジルコアルミネート、トリアルコキシジルコアルミネートなどがあげられる。 Examples of the zircoaluminate coupling agent include monoalkoxyzircoaluminate and trialkoxyzircoaluminate.
 界面活性剤(d2)としては、高分子型、低分子型があり、官能基の種類の点から非イオン性界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤があり、これらが使用でき、熱安定性が良好な点から、高分子型の界面活性剤が好ましい。 As the surfactant (d2), there are a high molecular type and a low molecular type, and there are a nonionic surfactant, an anionic surfactant and a cationic surfactant from the viewpoint of the type of functional group, and these are used. From the viewpoint of good thermal stability, polymer type surfactants are preferred.
 非イオン性界面活性剤としては、たとえば、ポリエーテル誘導体、ポリビニルピロリドン誘導体、アルコール誘導体などがあげられ、とくに、高誘電性無機粒子(c1)との親和性が良好な点から、ポリエーテル誘導体が好ましい。 Nonionic surfactants include, for example, polyether derivatives, polyvinylpyrrolidone derivatives, alcohol derivatives and the like. In particular, polyether derivatives are preferred because of their good affinity with the high dielectric inorganic particles (c1). preferable.
 アニオン性界面活性剤としては、たとえば、スルホン酸やカルボン酸、およびそれらの塩を含有するポリマーなどがあげられ、とくに、VdF系樹脂(a)との親和性が良好な点から、具体的にはアクリル酸誘導体系ポリマー、メタクリル酸誘導体系ポリマー、無水マレイン酸系共重合体が好ましい。 Examples of the anionic surfactant include polymers containing sulfonic acid, carboxylic acid, and salts thereof, and in particular, from the viewpoint of good affinity with the VdF resin (a), Is preferably an acrylic acid derivative polymer, a methacrylic acid derivative polymer, or a maleic anhydride copolymer.
 カチオン性界面活性剤としては、たとえば、アミン系化合物やイミダゾリンなどの含チッ素系複合環を有する化合物やそのハロゲン化塩があげられるが、VdF系樹脂(a)への攻撃性が低い点から、含チッ素系複合環を有する化合物が好ましい。塩型としては、塩化アルキルトリメチルアンモニウムなどのハロゲンアニオンを含むアンモニウム塩があげられる。誘電率が高い点からハロゲンアニオンを含むアンモニウム塩が好ましい。 Examples of the cationic surfactant include compounds having a nitrogen-containing complex ring such as amine compounds and imidazolines, and halogenated salts thereof, but from the viewpoint of low aggressiveness to the VdF resin (a). A compound having a nitrogen-containing complex ring is preferred. Examples of the salt form include ammonium salts containing halogen anions such as alkyltrimethylammonium chloride. An ammonium salt containing a halogen anion is preferable from the viewpoint of a high dielectric constant.
 エポキシ基含有化合物(d3)としては、エポキシ化合物またはグリシジル化合物などがあげられ、低分子量化合物でも高分子量化合物でもよい。なかでも、VdF系樹脂(a)との親和性がとくに良好な点から、エポキシ基を1個有する低分子量の化合物が好ましい。なお、カップリング剤に分類されるエポキシ基含有カップリング剤(たとえばエポキシシランなど)は、本発明ではエポキシ基含有化合物(d3)には含めず、カップリング剤(d1)に含める。 Examples of the epoxy group-containing compound (d3) include an epoxy compound and a glycidyl compound, which may be a low molecular weight compound or a high molecular weight compound. Among these, a low molecular weight compound having one epoxy group is preferable from the viewpoint of particularly good affinity with the VdF resin (a). In the present invention, an epoxy group-containing coupling agent classified as a coupling agent (for example, epoxysilane) is not included in the epoxy group-containing compound (d3), but is included in the coupling agent (d1).
 エポキシ基含有化合物(d3)の好ましい例としては、とくにVdF系樹脂(a)との親和性に優れている点から、式(d3):
Figure JPOXMLDOC01-appb-C000001
(式中、Rは水素原子、または酸素原子、チッ素原子もしくは炭素-炭素二重結合を含んでいてもよい炭素数1~10の1価の炭化水素基または置換基を有していてもよい芳香環;lは0または1;mは0または1;nは0~10の整数)
で示される化合物があげられる。
Preferable examples of the epoxy group-containing compound (d3) are those having the formula (d3): from the viewpoint of excellent affinity with the VdF resin (a).
Figure JPOXMLDOC01-appb-C000001
(Wherein R has a hydrogen atom, an oxygen atom, a nitrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms which may contain a carbon-carbon double bond or a substituent. A good aromatic ring; l is 0 or 1; m is 0 or 1; n is an integer of 0 to 10)
The compound shown by these is mention | raise | lifted.
 具体例としては、
Figure JPOXMLDOC01-appb-C000002
などのケトン基やエステル基を有するものがあげられる。
As a specific example,
Figure JPOXMLDOC01-appb-C000002
And those having a ketone group or an ester group.
 親和性向上剤(d)は、本発明の目的を損なわない範囲で配合することができるが、具体的には、その配合量は、高誘電性無機粒子(c1)100質量部に対して、0.01~30質量部が、さらには0.1~25質量部が、とくには1~20質量部が、均一に分散させることができ、得られるフィルムの誘電率が高い点から好ましい。 The affinity improver (d) can be blended in a range that does not impair the object of the present invention. Specifically, the blending amount is 100 parts by mass of the high dielectric inorganic particles (c1). 0.01 to 30 parts by mass, further 0.1 to 25 parts by mass, particularly 1 to 20 parts by mass can be uniformly dispersed, and are preferable from the viewpoint of high dielectric constant of the obtained film.
 本発明で用いるコーティング用組成物には、任意成分として、他の補強用フィラーなどの添加剤を、本発明の効果を損なわない範囲内で含ませてもよい。 In the coating composition used in the present invention, additives such as other reinforcing fillers may be included as optional components within a range not impairing the effects of the present invention.
 補強用フィラーとしては、たとえばシリカ、炭化ケイ素、窒化ケイ素、酸化マグネシウム、チタン酸カリウム、ガラス、アルミナ、硼素化合物の粒子または繊維があげられる。 Examples of reinforcing fillers include silica, silicon carbide, silicon nitride, magnesium oxide, potassium titanate, glass, alumina, and boron compound particles or fibers.
(B)絶縁性樹脂層
 本発明において、絶縁性樹脂層(B)は、VdF系樹脂フィルム層(A)の少なくとも片面に設けられている。
(B) Insulating resin layer In the present invention, the insulating resin layer (B) is provided on at least one surface of the VdF-based resin film layer (A).
 この絶縁性樹脂層(B)は、VdF系樹脂フィルム層(A)の課題である低い電気絶縁性を向上させると同時に耐電圧も向上させる。その理由は明らかではないが、電圧の分圧により相対的に膜厚が薄い方により電圧がかかる。つまり高い絶縁性を有する樹脂(B)の方に高電圧がかかり、(A)への電圧負荷が低減されるためであるからと推定される。 This insulating resin layer (B) improves the low electrical insulation, which is a problem of the VdF-based resin film layer (A), and at the same time improves the withstand voltage. The reason is not clear, but the voltage is applied to the relatively thin film due to voltage division. That is, it is estimated that a high voltage is applied to the resin (B) having a high insulating property and the voltage load on (A) is reduced.
 片面のみに設ける場合は、絶縁抵抗を向上させかつ高誘電率を維持する点で有利であり、両面に設ける場合はより電気絶縁性を向上させる点で有利である。 When provided on only one side, it is advantageous in terms of improving insulation resistance and maintaining a high dielectric constant, and providing on only one side is advantageous in terms of improving electrical insulation.
 絶縁性樹脂層(B)を構成する絶縁性樹脂(b)は、体積抵抗率1013Ω・cm以上、好ましくは1014Ω・cm以上、特に1015Ω・cm以上の非フッ素系の樹脂であることが、電気絶縁性と耐電圧の向上効果が優れる点から好ましい。上限はできるだけ電気絶縁性が高い(体積抵抗率が大きい)方が好ましいことから、できるだけ大きいものが好ましい。 The insulating resin (b) constituting the insulating resin layer (B) is a non-fluorine resin having a volume resistivity of 10 13 Ω · cm or more, preferably 10 14 Ω · cm or more, particularly 10 15 Ω · cm or more. It is preferable from the viewpoint that the effect of improving electrical insulation and withstand voltage is excellent. The upper limit is preferably as high as possible because it is preferable that the electrical insulation is as high as possible (the volume resistivity is large).
 この点から、具体的には、たとえばセルロース系樹脂、ポリエステル樹脂、ポリスチレン系樹脂、ポリオレフィン樹脂、アクリル樹脂などがあげられる。これらの樹脂の具体例については、非フッ素系熱可塑性樹脂(c2)で前記したものがあげられる。 From this point, specifically, for example, a cellulose resin, a polyester resin, a polystyrene resin, a polyolefin resin, an acrylic resin, and the like can be given. Specific examples of these resins include those described above for the non-fluorinated thermoplastic resin (c2).
 さらに、耐熱性が良好な点から、ポリフェニレンスルフィド(PPS)、ポリフェニレンオキシド(PPO)、ポリエーテルケトン(PEK)、ポリエーテルスルホン(PES)など、そのほか絶縁性を高めるためにはポリカーボネート(PC)、シリコーン樹脂、ポリ酢酸ビニル、エポキシ樹脂、ポリサルホン(PSF)、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド、ポリアミド(PA)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリベンゾイミダゾール(PBI)などもあげられる。 Furthermore, from the viewpoint of good heat resistance, polyphenylene sulfide (PPS), polyphenylene oxide (PPO), polyether ketone (PEK), polyether sulfone (PES), etc., in order to improve insulation, polycarbonate (PC), Silicone resin, polyvinyl acetate, epoxy resin, polysulfone (PSF), polyethylene oxide (PEO), polypropylene oxide, polyamide (PA), polyimide (PI), polyamideimide (PAI), polybenzimidazole (PBI), etc. are also included. .
 特に好ましい具体例は、たとえばセルロース系樹脂、ポリエステル樹脂、ポリスチレン系樹脂およびアクリル樹脂よりなる群から選ばれる少なくとも1種である。 A particularly preferred specific example is at least one selected from the group consisting of, for example, a cellulose resin, a polyester resin, a polystyrene resin, and an acrylic resin.
 絶縁性樹脂層(B)は、絶縁性樹脂(b)のみで構成されていてもよいし、他の添加剤が含まれていてもよい。 The insulating resin layer (B) may be composed only of the insulating resin (b), or may contain other additives.
 他の添加剤としては、たとえば可塑剤、レベリング剤、消泡剤、酸化防止剤、帯電防止剤、難燃剤、チタン酸バリウムなどの無機酸化物、ゴム微粒子などが例示できる。その種類および配合量は、本発明の効果である絶縁性および耐電圧の向上効果を損なわない範囲で選定すればよい。 Examples of other additives include plasticizers, leveling agents, antifoaming agents, antioxidants, antistatic agents, flame retardants, inorganic oxides such as barium titanate, and rubber fine particles. The type and blending amount may be selected within a range that does not impair the effect of improving the insulation and withstand voltage, which are the effects of the present invention.
 本発明に用いる絶縁性樹脂層(B)は、以上に説明した絶縁性樹脂(b)(必要に応じて以上説明した他の添加剤などを含有する非フッ素系樹脂組成物も含めて言う。以下同様)を用いて、従来公知の溶融押出法やコーティング法により、VdF系樹脂フィルム層(A)上に積層(形成)することができる。簡便さや得られる積層型高誘電性フィルムが均質性に優れる点からコーティング法(キャスト法)で積層することが有利である。 The insulating resin layer (B) used in the present invention includes the insulating resin (b) described above (including non-fluorinated resin compositions containing other additives described above as necessary). The same can be applied to the VdF resin film layer (A) by a conventionally known melt extrusion method or coating method. It is advantageous to laminate by a coating method (cast method) from the standpoint of simplicity and the resulting laminated high dielectric film being excellent in homogeneity.
 コーティング法では、絶縁性樹脂(b)に、必要に応じて他の添加剤を加えて溶剤に溶解または分散させたコーティング用組成物から、各種のコーティング法に従ってフィルムを作製する。 In the coating method, a film is prepared according to various coating methods from a coating composition in which other additives are added to the insulating resin (b) as necessary and dissolved or dispersed in a solvent.
 絶縁性樹脂層の形成用溶剤としては、絶縁性樹脂(b)を溶解し得る任意の溶媒を使用できるが、VdF系樹脂に親和性を有する溶剤を用いるときは、密着性や耐久性に優れた絶縁性樹脂層(B)を形成できる。 As the solvent for forming the insulating resin layer, any solvent that can dissolve the insulating resin (b) can be used. However, when a solvent having an affinity for the VdF resin is used, it has excellent adhesion and durability. Insulating resin layer (B) can be formed.
 好ましい溶剤としては、極性有機溶媒が好ましい。なかでも極性有機溶媒としては、たとえばケトン系溶剤、エステル系溶媒、カーボネート系溶媒、環状エーテル系溶媒、アミド系溶剤が好ましい。具体的には、メチルエチルケトン、メチルイソブチルケトン、アセトン、ジエチルケトン、ジプロピルケトン、酢酸エチル、酢酸メチル、酢酸プロピル、酢酸ブチル、乳酸エチル、ジメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート、メチルエチルカーボネート、テトラヒドロフラン、メチルテトラヒドロフラン、ジオキサン、ジメチルホルムアミド、ジメチルアセトアミド等が好ましくあげられる。 A preferred organic solvent is a polar organic solvent. Among these, as the polar organic solvent, for example, ketone solvents, ester solvents, carbonate solvents, cyclic ether solvents, and amide solvents are preferable. Specifically, methyl ethyl ketone, methyl isobutyl ketone, acetone, diethyl ketone, dipropyl ketone, ethyl acetate, methyl acetate, propyl acetate, butyl acetate, ethyl lactate, dimethyl carbonate, diethyl carbonate, dipropyl carbonate, methyl ethyl carbonate, tetrahydrofuran , Methyltetrahydrofuran, dioxane, dimethylformamide, dimethylacetamide and the like are preferable.
 コーティング方法としては、ナイフコーティング法、キャストコーティング法、ロールコーティング法、グラビアコーティング法、ブレードコーティング法、ロッドコーティング法、エアドクタコーティング法、カーテンコーティング法、ファクンランコーティング法、キスコーティング法、スクリーンコーティング法、スピンコーティング法、スプレーコーティング法、押出コーティング法、電着コーティング法などが使用できるが、これらのうち操作性が容易な点、膜厚のバラツキが少ない点、生産性に優れる点からロールコーティング法、グラビアコーティング法、キャストコーティング法が好ましい。 As coating methods, knife coating method, cast coating method, roll coating method, gravure coating method, blade coating method, rod coating method, air doctor coating method, curtain coating method, fakunrun coating method, kiss coating method, screen coating Method, spin coating method, spray coating method, extrusion coating method, electrodeposition coating method, etc. can be used, but roll coating is easy because of its ease of operation, small variations in film thickness, and excellent productivity. The method, the gravure coating method and the cast coating method are preferable.
 得られる絶縁性樹脂層(B)の厚さは、良好な絶縁性および耐電圧の向上が得られる点から、0.5μm以上、好ましくは0.7μm以上、さらには1μm以上が好ましい。上限は、高誘電性を維持する点から5μm、好ましくは3μmである。 The thickness of the obtained insulating resin layer (B) is preferably 0.5 μm or more, preferably 0.7 μm or more, and more preferably 1 μm or more from the viewpoint of obtaining good insulation and improved withstand voltage. The upper limit is 5 μm, preferably 3 μm, from the viewpoint of maintaining high dielectric properties.
 本発明の積層型高誘電性フィルムは、フィルムコンデンサ用の高誘電性フィルムとして有用である。 The laminated high dielectric film of the present invention is useful as a high dielectric film for a film capacitor.
 本発明の積層型高誘電性フィルムの少なくとも片面に電極層を積層することにより、フィルムコンデンサを作製することができる。電極層を形成する面は、絶縁性樹脂層(B)であっても、片面にしか絶縁性樹脂層が設けられていない場合はVdF系樹脂フィルム層(A)であってもよい。 A film capacitor can be produced by laminating an electrode layer on at least one side of the laminated high dielectric film of the present invention. The surface on which the electrode layer is formed may be the insulating resin layer (B), or may be the VdF-based resin film layer (A) when the insulating resin layer is provided only on one side.
 フィルムコンデンサの構造としては、たとえば、電極層と高誘電体フィルムが交互に積層された積層型(特開昭63-181411号公報、特開平3-18113号公報など)や、テープ状の高誘電体フィルムと電極層を巻き込んだ巻回型(高誘電体フィルム上に電極が連続して積層されていない特開昭60-262414号公報などに開示されたものや、高誘電体フィルム上に電極が連続して積層されている特開平3-286514号公報などに開示されたものなど)などがあげられる。構造が単純で、製造も比較的容易な、高誘電体フィルム上に電極層が連続して積層されている巻回型フィルムコンデンサの場合は、一般的には片面に電極を積層した高誘電体フィルムを電極同士が接触しないように2枚重ねて巻き込んで、必要に応じて、巻き込んだ後に、ほぐれないように固定して製造される。 As the structure of the film capacitor, for example, a laminated type in which electrode layers and high dielectric films are alternately laminated (Japanese Patent Laid-Open Nos. 63-181411, 3-18113, etc.) or a tape-like high dielectric Winding type in which a body film and an electrode layer are wound (disclosed in Japanese Patent Application Laid-Open No. 60-262414 in which electrodes are not continuously laminated on a high dielectric film, or electrodes on a high dielectric film And the like disclosed in Japanese Patent Laid-Open No. 3-286514, etc.) are continuously laminated. In the case of a wound film capacitor that has a simple structure and is relatively easy to manufacture, and a wound film capacitor in which electrode layers are continuously laminated on a high dielectric film, it is generally a high dielectric that has electrodes laminated on one side. Two films are rolled up so that the electrodes do not come into contact with each other. If necessary, the film is rolled and fixed so as not to be loosened.
 電極層は、特に限定されないが、一般的に、アルミニウム、亜鉛、金、白金、銅などの導電性金属からなる層であって、金属箔として、または蒸着金属被膜として用いる。本発明においては、金属箔と蒸着金属被膜のいずれでも、また、両者を併用しても構わない。電極層を薄くでき、その結果、体積に対して容量を大きくでき、誘電体との密着性に優れ、また、厚さのバラつきが小さい点で、通常は、蒸着金属被膜が好ましい。蒸着金属被膜は、一層のものに限らず、例えば、耐湿性を持たせるためにアルミニウム層にさらに半導体の酸化アルミニウム層を形成して電極層とする方法(例えば特開平2-250306号公報など)など、必要に応じて積層にしてもよい。蒸着金属被膜の厚さも特に限定されないが、好ましくは100~2000オングストローム、より好ましくは200~1000オングストロームの範囲とする。蒸着金属被膜の厚さがこの範囲である時に、コンデンサの容量や強度がバランスされ好適である。 The electrode layer is not particularly limited, but is generally a layer made of a conductive metal such as aluminum, zinc, gold, platinum, or copper, and is used as a metal foil or a deposited metal film. In the present invention, either a metal foil or a vapor-deposited metal film, or both may be used in combination. In general, a vapor-deposited metal film is preferable in that the electrode layer can be thinned, and as a result, the capacity can be increased with respect to the volume, the adhesiveness with the dielectric is excellent, and the thickness variation is small. The vapor-deposited metal film is not limited to a single layer. For example, in order to provide moisture resistance, a method of forming an aluminum oxide layer of a semiconductor on an aluminum layer to form an electrode layer (for example, JP-A-2-250306) For example, it may be laminated as necessary. The thickness of the deposited metal film is not particularly limited, but is preferably in the range of 100 to 2000 angstroms, more preferably 200 to 1000 angstroms. When the thickness of the deposited metal film is within this range, the capacity and strength of the capacitor are balanced, which is preferable.
 電極層として蒸着金属被膜を用いる場合、被膜の形成方法は特に限定されず、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法などを採用することができる。通常は、真空蒸着法が用いられる。 When a deposited metal film is used as the electrode layer, the method for forming the film is not particularly limited, and for example, a vacuum deposition method, a sputtering method, an ion plating method, or the like can be employed. Usually, a vacuum deposition method is used.
 真空蒸着法としては、たとえば成形品のバッチ方式と、長尺品で使用される半連続(セミコンテニアス)方式と連続(air to air)方式などがあり、現在は、半連続方式が主力として行われている。半連続方式の金属蒸着法は、真空系の中で金属蒸着、巻き取りした後、真空系を大気系に戻し、蒸着されたフィルムを取り出す方法である。 Vacuum deposition methods include, for example, the batch method for molded products, the semi-continuous method used for long products, and the air-to-air method. Currently, the semi-continuous method is the mainstay. Has been done. The semi-continuous metal vapor deposition method is a method in which after vapor deposition and winding of a metal in a vacuum system, the vacuum system is returned to the atmospheric system, and the deposited film is taken out.
 半連続方式については、具体的にはたとえば、特許第3664342号明細書に図1を参照して記載されている方法で行うことができる。 The semi-continuous method can be specifically performed by the method described in Japanese Patent No. 3664342 with reference to FIG.
 高誘電体フィルム上に金属薄膜層を形成する場合、あらかじめ高誘電体フィルム表面に、コロナ処理、プラズマ処理など、接着性向上のための処理を施しておくこともできる。電極層として金属箔を用いる場合も、金属箔の厚さは特に限定されないが、通常は、0.1~100μm、好ましくは1~50μm、より好ましくは3~15μmの範囲である。 When a metal thin film layer is formed on a high dielectric film, the surface of the high dielectric film can be subjected in advance to treatment for improving adhesive properties such as corona treatment or plasma treatment. When a metal foil is used as the electrode layer, the thickness of the metal foil is not particularly limited, but is usually in the range of 0.1 to 100 μm, preferably 1 to 50 μm, more preferably 3 to 15 μm.
 固定方法は、特に限定されず、例えば、樹脂で封止したり絶縁ケースなどに封入することにより、固定と構造の保護とを同時に行えばよい。リード線の接続方法も限定されず、溶接、超音波圧接、熱圧接、粘着テープによる固定などが例示される。巻き込む前から電極にリード線を接続しておいてもよい。絶縁ケースに封入する場合など、必要に応じて、ウレタン樹脂、エポキシ樹脂などの熱硬化性樹脂で開口部などを封止して酸化劣化などを防止してもよい。 The fixing method is not particularly limited, and for example, fixing and protecting the structure may be performed simultaneously by sealing with resin or enclosing in an insulating case. The method for connecting the lead wires is not limited, and examples thereof include welding, ultrasonic pressure welding, heat pressure welding, and fixing with an adhesive tape. A lead wire may be connected to the electrode before it is wound. When encapsulating in an insulating case, if necessary, the opening may be sealed with a thermosetting resin such as urethane resin or epoxy resin to prevent oxidative degradation.
 このようにして得られた本発明のフィルムコンデンサは、高誘電性で、高絶縁性でかつ高耐電圧のものである。 The film capacitor of the present invention thus obtained is highly dielectric, highly insulating, and has a high withstand voltage.
 つぎに本発明を実施例などをあげて具体的に説明するが、本発明はかかる例のみに限定されるものではない。 Next, the present invention will be specifically described by way of examples, but the present invention is not limited to such examples.
 なお、本明細書で使用している特性値は、つぎの方法で測定したものである。 The characteristic values used in this specification are measured by the following method.
(厚さ)
 デジタル測長機((株)仙台ニコン製のMF-1001)を用いて、基板に載せたフィルムを室温下にて測定する。絶縁性樹脂層(B)の厚さは、最終的な積層型高誘電性フィルムの全厚を同様にして測定し、VdF系樹脂フィルムの厚さを引いた厚さとする。
(thickness)
Using a digital length measuring device (MF-1001 manufactured by Sendai Nikon Corporation), the film placed on the substrate is measured at room temperature. The thickness of the insulating resin layer (B) is determined by measuring the total thickness of the final laminated high dielectric film in the same manner and subtracting the thickness of the VdF resin film.
(誘電損失および比誘電率)
 複合フィルムを真空中で両面にアルミニウムを蒸着しサンプルとする。このサンプルをLCRメーター((株)エヌエフ回路設計ブロック製のZM2353)にて、ドライエアー雰囲気下、室温(20℃)および80℃下で、周波数100Hz~10kHzでの静電容量と誘電正接を測定する。得られた各静電容量と誘電正接の測定値から比誘電率および誘電損失(%)を算出する。
(Dielectric loss and dielectric constant)
Aluminum is vapor-deposited on both sides of the composite film in a vacuum to prepare a sample. Measure the capacitance and dielectric loss tangent of this sample at a frequency of 100 Hz to 10 kHz in a dry air atmosphere at room temperature (20 ° C) and 80 ° C using an LCR meter (ZM2353 manufactured by NF Circuit Design Block Co., Ltd.) To do. The relative dielectric constant and dielectric loss (%) are calculated from the measured values of the obtained capacitances and dielectric loss tangents.
(電気絶縁性)
 デジタル超絶縁計/微小電流計にて、体積抵抗率(Ω・cm)をドライエアー雰囲気下、DC500Vで室温(20℃)で測定する。
(Electrical insulation)
The volume resistivity (Ω · cm) is measured at room temperature (20 ° C.) at 500 VDC in a dry air atmosphere with a digital superinsulator / microammeter.
(耐電圧)
 耐電圧・絶縁抵抗試験器(菊水電子工業(株)製のTOS9201)を用いて、基板に載せたフィルムをドライエアー雰囲気下にて測定する。昇圧速度は100V/sで測定する。
(Withstand voltage)
Using a withstand voltage / insulation resistance tester (TOS9201 manufactured by Kikusui Electronics Co., Ltd.), the film placed on the substrate is measured in a dry air atmosphere. The step-up speed is measured at 100 V / s.
実施例1
(VdF系樹脂フィルム層(A1)の形成)
 1Lセパラブルフラスコ中にジメチルアセトアミド(DMAc)(キシダ化学(株)製)640質量部とポリフッ化ビニリデン(PVdF)(ARKEMA社製KAYNAR761。比誘電率9.6(1kHz、25℃))を160質量部入れ、60℃にて3時間、スリーワンモーターにて攪拌し、20質量%濃度のPVdF溶液からなるコーティング用組成物を得た。
Example 1
(Formation of VdF resin film layer (A1))
In a 1 L separable flask, 640 parts by mass of dimethylacetamide (DMAc) (manufactured by Kishida Chemical Co., Ltd.) and polyvinylidene fluoride (PVdF) (KAYNAR761 manufactured by ARKEMA Inc., dielectric constant 9.6 (1 kHz, 25 ° C.)) were 160. A coating composition comprising a PVdF solution having a concentration of 20% by mass was obtained by adding 3 parts by mass and stirring with a three-one motor at 60 ° C. for 3 hours.
 このコーティング用組成物をマイクログラビアコーター((株)康井精機製のOS-750)を用いて、離型処理を施した38μm厚の支持用の非多孔質ポリエステル(PET)フィルム上にコーティングし、150℃の6mの乾燥炉、続いて180℃の6mの乾燥炉に通すことにより、支持用のPETフィルム上に膜厚6.2μmのVdF系樹脂フィルム層(A1)を形成した。 Using a microgravure coater (OS-750 manufactured by Yasui Seiki Co., Ltd.), this coating composition was coated on a supporting non-porous polyester (PET) film having a thickness of 38 μm which was subjected to a release treatment. The VdF resin film layer (A1) having a film thickness of 6.2 μm was formed on the supporting PET film by passing through a 6 m drying furnace at 150 ° C. and then a 6 m drying furnace at 180 ° C.
 比較のためVdF系樹脂フィルム層(A1)をPETフィルムから剥離して得られたVdF系樹脂フィルムについて、体積抵抗率、耐電圧、20℃および80℃における各周波数(100Hz、1kHz、10kHz)での誘電損失および比誘電率を算出した。結果を比較例1として表1に示す。 For comparison, the VdF resin film obtained by peeling the VdF resin film layer (A1) from the PET film was subjected to volume resistivity, withstand voltage, and frequencies at 20 ° C. and 80 ° C. (100 Hz, 1 kHz, 10 kHz). The dielectric loss and the relative dielectric constant of were calculated. The results are shown in Table 1 as Comparative Example 1.
(絶縁性樹脂層(B1)の積層)
 1Lセパラブルフラスコ中にメチルエチルケトン(MEK)(キシダ化学(株)製)680質量部とポリエステル(東洋紡績(株)製バイロンGK640、比誘電率3.2(1kHz、25℃)、体積抵抗率1×1018Ω・cm)を120質量部入れ、60℃にて3時間、スリーワンモーターにて攪拌し、15質量%濃度のポリエステル溶液からなる絶縁性樹脂層形成用のコーティング用組成物を得た。
(Lamination of insulating resin layer (B1))
In a 1 L separable flask, 680 parts by mass of methyl ethyl ketone (MEK) (manufactured by Kishida Chemical Co., Ltd.) and polyester (byron GK640 manufactured by Toyobo Co., Ltd.), dielectric constant 3.2 (1 kHz, 25 ° C.), volume resistivity 1 × 10 18 Ω · cm) was added in 120 parts by mass, and the mixture was stirred with a three-one motor at 60 ° C. for 3 hours to obtain a coating composition for forming an insulating resin layer comprising a polyester solution having a concentration of 15% by mass. .
 このコーティング用組成物をマイクログラビアコーターを用いて、支持用PETフィルム上のVdF系樹脂フィルム層(A1)にコーティングし、150℃の6mの乾燥炉、続いて180℃の6mの乾燥炉に通すことにより、PETフィルム上にVdF系樹脂フィルム層(A1)と絶縁性樹脂(ポリエステル)層(B1)を形成し、PETフィルムから剥離することにより、膜厚7.3μmのVdF系樹脂フィルム層(A1)/絶縁性樹脂(ポリエステル)層(B1)からなる本発明の積層型高誘電性フィルムを得た。絶縁性樹脂(ポリエステル)層(B1)の厚さは、1.1μmであった。得られた積層型高誘電性フィルムについて、体積抵抗率、耐電圧、20℃および80℃における各周波数(100Hz、1kHz、10kHz)での誘電損失および比誘電率を算出した。結果を表1に示す。 The coating composition is coated on the VdF resin film layer (A1) on the supporting PET film using a micro gravure coater, and is passed through a 6 m drying oven at 150 ° C. and then a 6 m drying oven at 180 ° C. Thus, a VdF resin film layer (A1) and an insulating resin (polyester) layer (B1) are formed on the PET film, and peeled from the PET film, whereby a VdF resin film layer having a film thickness of 7.3 μm ( A laminated high dielectric film of the present invention comprising A1) / insulating resin (polyester) layer (B1) was obtained. The thickness of the insulating resin (polyester) layer (B1) was 1.1 μm. With respect to the obtained laminated high dielectric film, volume resistivity, withstand voltage, dielectric loss and relative dielectric constant at each frequency (100 Hz, 1 kHz, 10 kHz) at 20 ° C. and 80 ° C. were calculated. The results are shown in Table 1.
実施例2
(VdF系樹脂フィルム層(A2)の形成)
 1Lセパラブルフラスコ中にDMAc(キシダ化学(株)製)640質量部とPVdFを160質量部入れ、60℃にて3時間、スリーワンモーターにて攪拌し、20質量%濃度のPVdF溶液を得た。
Example 2
(Formation of VdF resin film layer (A2))
In a 1 L separable flask, 640 parts by mass of DMAc (manufactured by Kishida Chemical Co., Ltd.) and 160 parts by mass of PVdF were added and stirred with a three-one motor at 60 ° C. for 3 hours to obtain a 20% by mass PVdF solution. .
 別途、1Lセパラブルフラスコ中にDMAc640質量部と酢酸セルロース(AC)(ダイセル化学工業(株)製のL-20)を160質量部入れ、60℃にて3時間、スリーワンモーターにて攪拌し、20質量%濃度の酢酸セルロース溶液を得た。 Separately, 640 parts by mass of DMAc and 160 parts by mass of cellulose acetate (AC) (L-20 manufactured by Daicel Chemical Industries, Ltd.) were placed in a 1 L separable flask and stirred with a three-one motor at 60 ° C. for 3 hours. A 20% strength by weight cellulose acetate solution was obtained.
 これらの2つの溶液をPVdFとACの質量比が90/10となるように混合し、希釈溶液としてテトラヒドロフラン(THF)を任意の量添加し、コーティング用組成物を製造した。 These two solutions were mixed so that the mass ratio of PVdF and AC was 90/10, and an arbitrary amount of tetrahydrofuran (THF) was added as a diluted solution to produce a coating composition.
 このコーティング用組成物をマイクログラビアコーターを用いて、離型処理を施した38μm厚の支持用のPETフィルム上にキャストし、150℃の6mの乾燥炉、続いて180℃の6mの乾燥炉に通すことにより、支持用のPETフィルム上に膜厚6.0μmのVdF系樹脂フィルム層(A2)を形成した。 This coating composition was cast using a micro gravure coater on a 38 μm-thick supporting PET film that had been subjected to mold release treatment, and then placed in a 6 m drying oven at 150 ° C., followed by a 6 m drying oven at 180 ° C. By passing, a 6.0 μm thick VdF resin film layer (A2) was formed on the supporting PET film.
 比較のためVdF系樹脂フィルム層(A2)をPETフィルムから剥離して得られたVdF系樹脂フィルムについて、体積抵抗率、耐電圧、20℃および80℃における各周波数(100Hz、1kHz、10kHz)での誘電損失および比誘電率を算出した。結果を比較例2として表1に示す。 For comparison, the VdF resin film obtained by peeling the VdF resin film layer (A2) from the PET film was subjected to volume resistivity, withstand voltage, and at each frequency (100 Hz, 1 kHz, 10 kHz) at 20 ° C. and 80 ° C. The dielectric loss and the relative dielectric constant of were calculated. The results are shown in Table 1 as Comparative Example 2.
(絶縁性樹脂層(B2)の積層)
 実施例1の絶縁性樹脂層(B1)の積層方法と同様にしてVdF系樹脂フィルム層(A2)上にポリエステル(東洋紡績(株)製バイロンGK640)層を積層し、ついで、支持用のPETフィルムから剥離することにより、膜厚7.2μmのVdF系樹脂フィルム層(A2)/絶縁性樹脂(ポリエステル)層(B2)からなる本発明の積層型高誘電性フィルムを得た。絶縁性樹脂層(B2)の厚さは、1.2μmであった。得られた本発明の積層型高誘電性フィルムについて、体積抵抗率、耐電圧、20℃および80℃における各周波数(100Hz、1kHz、10kHz)での誘電損失および比誘電率を算出した。結果を表1に示す。
(Lamination of insulating resin layer (B2))
A polyester (Byron GK640 manufactured by Toyobo Co., Ltd.) layer was laminated on the VdF-based resin film layer (A2) in the same manner as in the method for laminating the insulating resin layer (B1) in Example 1, and then PET for support was used. By peeling from the film, a laminated high dielectric film of the present invention consisting of a 7.2 μm thick VdF resin film layer (A2) / insulating resin (polyester) layer (B2) was obtained. The thickness of the insulating resin layer (B2) was 1.2 μm. About the obtained laminated high dielectric film of the present invention, volume resistivity, withstand voltage, dielectric loss and relative dielectric constant at each frequency (100 Hz, 1 kHz, 10 kHz) at 20 ° C. and 80 ° C. were calculated. The results are shown in Table 1.
実施例3
(VdF系樹脂フィルム層(A3)の形成)
 1Lセパラブルフラスコ中にDMAc640質量部とPVdF160質量部を入れ、80℃、3時間スリーワンモーターにて攪拌し、20質量%濃度のPVdF溶液を得た。このPVdF溶液は透明の均一溶液であった。
Example 3
(Formation of VdF resin film layer (A3))
In a 1 L separable flask, 640 parts by mass of DMAc and 160 parts by mass of PVdF were put, and stirred with a three-one motor at 80 ° C. for 3 hours to obtain a 20% by mass PVdF solution. This PVdF solution was a transparent homogeneous solution.
 別途、平均粒子径1μmのチタン酸バリウム(BT)(日本化学工業(株)製のBT-4FB)100質量部をDMAc60質量部、メチルイソブチルケトン(MIBK)40質量部に加えた。この混合物に直径1mmのジルコニアビーズを同質量加えて卓上遊星ボールミル((有)Gokin Planetaring製のPlanet M)に入れ、室温下、回転数800rpmで15分間分散処理を行った。分散処理後の混合物をステンレススチール製のメッシュ(真鍋工業(株)製の80メッシュ)に通してジルコニアビーズを取り除いて、複合酸化物分散溶液とした。 Separately, 100 parts by mass of barium titanate (BT) having an average particle diameter of 1 μm (BT-4FB manufactured by Nippon Chemical Industry Co., Ltd.) was added to 60 parts by mass of DMAc and 40 parts by mass of methyl isobutyl ketone (MIBK). The same amount of zirconia beads having a diameter of 1 mm was added to this mixture, and the mixture was placed in a desktop planetary ball mill (Planet M manufactured by Gokin Planetaring), and subjected to dispersion treatment at room temperature for 15 minutes at a rotation speed of 800 rpm. The mixture after the dispersion treatment was passed through a stainless steel mesh (80 mesh manufactured by Manabe Kogyo Co., Ltd.) to remove zirconia beads to obtain a composite oxide dispersion solution.
 この分散溶液34質量部(チタン酸バリウム17質量部、DMAc10.4質量部、MIBK6.4質量部含有)と上記PVdF溶液を50質量部(PVdF10.0質量部、DMAc40.0質量部含有)、MIBKを26.7質量部混合し、コーティング用組成物を調製した。 34 parts by mass of this dispersion (containing 17 parts by mass of barium titanate, 10.4 parts by mass of DMAc, 6.4 parts by mass of MIBK) and 50 parts by mass of the PVdF solution (containing 10.0 parts by mass of PVdF and 40.0 parts by mass of DMAc), 26.7 parts by mass of MIBK was mixed to prepare a coating composition.
 このコーティング用組成物をマイクログラビアコーターを用いて、離型処理を施した38μm厚の支持用のPETフィルム上にキャストし、150℃の6mの乾燥炉、続いて180℃の6mの乾燥炉に通すことにより、支持用のPETフィルム上に膜厚6.5μmのVdF系樹脂フィルム層(A3)を形成した。 This coating composition was cast using a micro gravure coater on a 38 μm-thick supporting PET film that had been subjected to mold release treatment, and then placed in a 6 m drying oven at 150 ° C., followed by a 6 m drying oven at 180 ° C. By passing, a VdF resin film layer (A3) having a film thickness of 6.5 μm was formed on the supporting PET film.
 比較のためVdF系樹脂フィルム層(A3)をPETフィルムから剥離して得られたVdF系樹脂フィルムについて、体積抵抗率、耐電圧、20℃および80℃における各周波数(100Hz、1kHz、10kHz)での誘電損失および比誘電率を算出した。結果を比較例3として表1に示す。 For comparison, the VdF resin film obtained by peeling the VdF resin film layer (A3) from the PET film was subjected to volume resistivity, withstand voltage, and frequencies at 20 ° C. and 80 ° C. (100 Hz, 1 kHz, 10 kHz). The dielectric loss and the relative dielectric constant of were calculated. The results are shown in Table 1 as Comparative Example 3.
(絶縁性樹脂層(B3)の積層)
 実施例1の絶縁性樹脂層(B1)の積層方法と同様にしてVdF系樹脂フィルム層(A3)上にポリエステル(東洋紡績(株)製バイロンGK640)層を積層し、ついで、支持用のPETフィルムから剥離することにより、膜厚7.5μmのVdF系樹脂フィルム層(A3)/絶縁性樹脂(ポリエステル)層(B3)からなる本発明の積層型高誘電性フィルムを得た。絶縁性樹脂層(B3)の厚さは、1.0μmであった。
(Lamination of insulating resin layer (B3))
A polyester (Byron GK640 manufactured by Toyobo Co., Ltd.) layer was laminated on the VdF-based resin film layer (A3) in the same manner as in the method for laminating the insulating resin layer (B1) of Example 1, and then PET for support was used. By peeling from the film, a laminated high dielectric film of the present invention consisting of a 7.5 μm thick VdF resin film layer (A3) / insulating resin (polyester) layer (B3) was obtained. The thickness of the insulating resin layer (B3) was 1.0 μm.
 得られた本発明の積層型高誘電性フィルムについて、体積抵抗率、耐電圧、20℃および80℃における各周波数(100Hz、1kHz、10kHz)での誘電損失および比誘電率を算出した。結果を表1に示す。 The volume resistivity, withstand voltage, dielectric loss and relative dielectric constant at each frequency (100 Hz, 1 kHz, 10 kHz) at 20 ° C. and 80 ° C. were calculated for the obtained laminated high dielectric film of the present invention. The results are shown in Table 1.
実施例4
 絶縁性樹脂層(B3)をポリエステルから酢酸セルロース(ダイセル化学(株)製L-20、比誘電率1.5、体積抵抗率1×1015Ω・cm)に変更したほかは実施例3と同様の手順で、VdF系樹脂フィルム層(膜厚6.2μm)/絶縁性樹脂(酢酸セルロース)層(膜厚1.2μm)からなる本発明の積層型高誘電性フィルム(膜厚7.4μm)を作製し、各種物性を測定した。結果を表1に示す。
Example 4
Example 3 except that the insulating resin layer (B3) was changed from polyester to cellulose acetate (L-20 manufactured by Daicel Chemical Industries, relative dielectric constant 1.5, volume resistivity 1 × 10 15 Ω · cm). In the same procedure, the laminated high dielectric film (film thickness 7.4 μm) of the present invention comprising a VdF resin film layer (film thickness 6.2 μm) / insulating resin (cellulose acetate) layer (film thickness 1.2 μm). ) And various physical properties were measured. The results are shown in Table 1.
実施例5
 絶縁性樹脂層(B3)をポリエステルからポリスチレン(シグマアルドリッチジャパン社製、比誘電率0.1、体積抵抗率1×1016Ω・cm)に変更したほかは実施例3と同様の手順で、VdF系樹脂フィルム層(膜厚6.2μm)/絶縁性樹脂(ポリスチレン)層(膜厚1.0μm)からなる本発明の積層型高誘電性フィルム(膜厚7.2μm)を作製し、各種物性を測定した。結果を表1に示す。
Example 5
The same procedure as in Example 3 except that the insulating resin layer (B3) was changed from polyester to polystyrene (Sigma Aldrich Japan, relative dielectric constant 0.1, volume resistivity 1 × 10 16 Ω · cm). The laminated high dielectric film (film thickness 7.2 μm) of the present invention consisting of a VdF-based resin film layer (film thickness 6.2 μm) / insulating resin (polystyrene) layer (film thickness 1.0 μm) was prepared. Physical properties were measured. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
実施例6
 実施例1において、VdF系樹脂フィルム層(A1)をポリフッ化ビニリデン(PVdF)からVdF/TFE(ダイキン工業(株)社製VP-50。比誘電率9.0(1kHz、25℃))に変更したほかは、同様にして膜厚7.5μmのVdF系樹脂フィルム層(A1)/絶縁性樹脂(ポリエステル)層(B1)からなる本発明の積層型高誘電性フィルムを得た。絶縁性樹脂(ポリエステル)層(B1)の厚さは、1.3μmであった。得られた本発明の積層型高誘電性フィルムについて、体積抵抗率、耐電圧、20℃および80℃における各周波数(100Hz、1kHz、10kHz)での誘電損失および比誘電率を算出した。結果を表2に示す。
Example 6
In Example 1, the VdF-based resin film layer (A1) was changed from polyvinylidene fluoride (PVdF) to VdF / TFE (VP-50 manufactured by Daikin Industries, Ltd., dielectric constant 9.0 (1 kHz, 25 ° C.)). Except for the change, a laminated high dielectric film of the present invention comprising a VdF resin film layer (A1) / insulating resin (polyester) layer (B1) having a thickness of 7.5 μm was obtained in the same manner. The thickness of the insulating resin (polyester) layer (B1) was 1.3 μm. About the obtained laminated high dielectric film of the present invention, volume resistivity, withstand voltage, dielectric loss and relative dielectric constant at each frequency (100 Hz, 1 kHz, 10 kHz) at 20 ° C. and 80 ° C. were calculated. The results are shown in Table 2.
実施例7
 実施例1において、絶縁性樹脂層(B1)をポリエステルからメタクリル酸メチル(キシダ化学(株)。比誘電率2.5(1kHz、25℃))に変更したほかは、同様にして膜厚7.1μmのVdF系樹脂フィルム層(A1)/絶縁性樹脂(アクリル樹脂)層(B1)からなる本発明の積層型高誘電性フィルムを得た。絶縁性樹脂(アクリル樹脂)層(B1)の厚さは、0.9μmであった。得られた本発明の積層型高誘電性フィルムについて、体積抵抗率、耐電圧、20℃および80℃における各周波数(100Hz、1kHz、10kHz)での誘電損失および比誘電率を算出した。結果を表2に示す。
Example 7
A film thickness of 7 was similarly obtained in Example 1 except that the insulating resin layer (B1) was changed from polyester to methyl methacrylate (Kishida Chemical Co., Ltd., relative permittivity 2.5 (1 kHz, 25 ° C.)). A laminated high dielectric film of the present invention consisting of a VdF resin film layer (A1) / insulating resin (acrylic resin) layer (B1) of 1 μm was obtained. The thickness of the insulating resin (acrylic resin) layer (B1) was 0.9 μm. About the obtained laminated high dielectric film of the present invention, volume resistivity, withstand voltage, dielectric loss and relative dielectric constant at each frequency (100 Hz, 1 kHz, 10 kHz) at 20 ° C. and 80 ° C. were calculated. The results are shown in Table 2.
実施例8
 実施例1と同様にして、膜厚4.1μmのVdF系樹脂フィルム層(A1)/絶縁性樹脂(ポリエステル)層(B1)からなる本発明の積層型高誘電性フィルムを得た。絶縁性樹脂(ポリエステル)層(B1)の厚さは、1.2μmであった。得られた本発明の積層型高誘電性フィルムについて、体積抵抗率、耐電圧、20℃および80℃における各周波数(100Hz、1kHz、10kHz)での誘電損失および比誘電率を算出した。結果を表2に示す。
Example 8
In the same manner as in Example 1, a laminated high dielectric film of the present invention comprising a VdF resin film layer (A1) / insulating resin (polyester) layer (B1) having a film thickness of 4.1 μm was obtained. The thickness of the insulating resin (polyester) layer (B1) was 1.2 μm. About the obtained laminated high dielectric film of the present invention, volume resistivity, withstand voltage, dielectric loss and relative dielectric constant at each frequency (100 Hz, 1 kHz, 10 kHz) at 20 ° C. and 80 ° C. were calculated. The results are shown in Table 2.
実施例9
 実施例1と同様にして、膜厚22.2μmのVdF系樹脂フィルム層(A1)/絶縁性樹脂(ポリエステル)層(B1)からなる本発明の積層型高誘電性フィルムを得た。絶縁性樹脂(ポリエステル)層(B1)の厚さは、2.4μmであった。得られた本発明の積層型高誘電性フィルムについて、体積抵抗率、耐電圧、20℃および80℃における各周波数(100Hz、1kHz、10kHz)での誘電損失および比誘電率を算出した。結果を表2に示す。
Example 9
In the same manner as in Example 1, a laminated high dielectric film of the present invention comprising a VdF resin film layer (A1) / insulating resin (polyester) layer (B1) having a film thickness of 22.2 μm was obtained. The thickness of the insulating resin (polyester) layer (B1) was 2.4 μm. About the obtained laminated high dielectric film of the present invention, volume resistivity, withstand voltage, dielectric loss and relative dielectric constant at each frequency (100 Hz, 1 kHz, 10 kHz) at 20 ° C. and 80 ° C. were calculated. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
実施例10
 実施例2において、酢酸セルロース(AC)をポリエステル樹脂(東洋紡績(株)製のバイロンGK640)に変更したほかは、同様にして膜厚7.2μmのVdF系樹脂フィルム層(A2)/絶縁性樹脂層(B2)からなる本発明の積層型高誘電性フィルムを得た。絶縁性樹脂層(B2)の厚さは、1.0μmであった。得られた本発明の積層型高誘電性フィルムについて、体積抵抗率、耐電圧、20℃および80℃における各周波数(100Hz、1kHz、10kHz)での誘電損失および比誘電率を算出した。結果を表3に示す。
Example 10
In the same manner as in Example 2, except that the cellulose acetate (AC) was changed to a polyester resin (Byron GK640 manufactured by Toyobo Co., Ltd.), a VdF-based resin film layer (A2) having a film thickness of 7.2 μm / insulating property was similarly used. A laminated high dielectric film of the present invention comprising the resin layer (B2) was obtained. The thickness of the insulating resin layer (B2) was 1.0 μm. About the obtained laminated high dielectric film of the present invention, volume resistivity, withstand voltage, dielectric loss and relative dielectric constant at each frequency (100 Hz, 1 kHz, 10 kHz) at 20 ° C. and 80 ° C. were calculated. The results are shown in Table 3.
実施例11
 実施例2において、酢酸セルロース(AC)をアクリル樹脂(キシダ化学(株)製のポリメタクリル酸メチル)に変更したほかは、同様にして膜厚7.0μmのVdF系樹脂フィルム層(A2)/絶縁性樹脂層(B2)からなる本発明の積層型高誘電性フィルムを得た。絶縁性樹脂層(B2)の厚さは、1.0μmであった。得られた本発明の積層型高誘電性フィルムについて、体積抵抗率、耐電圧、20℃および80℃における各周波数(100Hz、1kHz、10kHz)での誘電損失および比誘電率を算出した。結果を表3に示す。
Example 11
In the same manner as in Example 2, except that cellulose acetate (AC) was changed to acrylic resin (polymethyl methacrylate manufactured by Kishida Chemical Co., Ltd.), a VdF-based resin film layer (A2) / A laminated high dielectric film of the present invention comprising an insulating resin layer (B2) was obtained. The thickness of the insulating resin layer (B2) was 1.0 μm. About the obtained laminated high dielectric film of the present invention, volume resistivity, withstand voltage, dielectric loss and relative dielectric constant at each frequency (100 Hz, 1 kHz, 10 kHz) at 20 ° C. and 80 ° C. were calculated. The results are shown in Table 3.
実施例12
 実施例2において、PVdFとACの質量比が70/30となるように混合し、希釈溶液としてテトラヒドロフラン(THF)を任意の量添加し、コーティング用組成物を製造したほかは、同様にして膜厚7.3μmのVdF系樹脂フィルム層(A2)/絶縁性樹脂層(B2)からなる本発明の積層型高誘電性フィルムを得た。絶縁性樹脂層(B2)の厚さは、1.2μmであった。得られた本発明の積層型高誘電性フィルムについて、体積抵抗率、耐電圧、20℃および80℃における各周波数(100Hz、1kHz、10kHz)での誘電損失および比誘電率を算出した。結果を表3に示す。
Example 12
A membrane was prepared in the same manner as in Example 2 except that PVdF and AC were mixed so that the mass ratio thereof was 70/30, and an arbitrary amount of tetrahydrofuran (THF) was added as a diluting solution to produce a coating composition. A laminated high dielectric film of the present invention consisting of a 7.3 μm thick VdF resin film layer (A2) / insulating resin layer (B2) was obtained. The thickness of the insulating resin layer (B2) was 1.2 μm. About the obtained laminated high dielectric film of the present invention, volume resistivity, withstand voltage, dielectric loss and relative dielectric constant at each frequency (100 Hz, 1 kHz, 10 kHz) at 20 ° C. and 80 ° C. were calculated. The results are shown in Table 3.
実施例13
 実施例3において、PVdFとACの質量比が90/10となるように混合したほかは、同様にして膜厚7.0μmのVdF系樹脂フィルム層(A2)/絶縁性樹脂層(B2)からなる本発明の積層型高誘電性フィルムを得た。絶縁性樹脂層(B2)の厚さは、1.0μmであった。得られた本発明の積層型高誘電性フィルムについて、体積抵抗率、耐電圧、20℃および80℃における各周波数(100Hz、1kHz、10kHz)での誘電損失および比誘電率を算出した。結果を表3に示す。
Example 13
In Example 3, except for mixing so that the mass ratio of PVdF and AC was 90/10, from a VdF-based resin film layer (A2) / insulating resin layer (B2) having a film thickness of 7.0 μm. A laminated high dielectric film of the present invention was obtained. The thickness of the insulating resin layer (B2) was 1.0 μm. About the obtained laminated high dielectric film of the present invention, volume resistivity, withstand voltage, dielectric loss and relative dielectric constant at each frequency (100 Hz, 1 kHz, 10 kHz) at 20 ° C. and 80 ° C. were calculated. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
実施例14
 実施例3において、高誘電性無機粒子(c1)をチタン酸バリウム(BT)(日本化学工業(株)製のBT-4FB)からジルコン酸ストロンチウム((株)高純度化学研究所製、平均粒子径1μm)に変更したほかは、同様にして膜厚7.5μmのVdF系樹脂フィルム層(A3)/絶縁性樹脂(ポリエステル)層(B3)からなる本発明の積層型高誘電性フィルムを得た。絶縁性樹脂(ポリエステル)層(B3)の厚さは、1.0μmであった。得られた本発明の積層型高誘電性フィルムについて、体積抵抗率、耐電圧、20℃および80℃における各周波数(100Hz、1kHz、10kHz)での誘電損失および比誘電率を算出した。結果を表4に示す。
Example 14
In Example 3, the high dielectric inorganic particles (c1) were changed from barium titanate (BT) (BT-4FB manufactured by Nippon Chemical Industry Co., Ltd.) to strontium zirconate (manufactured by Kojundo Chemical Laboratory Co., Ltd., average particles). The laminated high dielectric film of the present invention consisting of a 7.5 μm thick VdF resin film layer (A3) / insulating resin (polyester) layer (B3) is obtained in the same manner except that the diameter is changed to 1 μm). It was. The thickness of the insulating resin (polyester) layer (B3) was 1.0 μm. About the obtained laminated high dielectric film of the present invention, volume resistivity, withstand voltage, dielectric loss and relative dielectric constant at each frequency (100 Hz, 1 kHz, 10 kHz) at 20 ° C. and 80 ° C. were calculated. The results are shown in Table 4.
実施例15
 実施例3において、高誘電性無機粒子(c1)をチタン酸バリウム(BT)(日本化学工業(株)製のBT-4FB)からチタン酸ジルコン酸バリウムカルシウム(日本化学工業(株)製のBCTZ、平均粒子径1μm))に変更したほかは、同様にして膜厚7.2μmのVdF系樹脂フィルム層(A3)/絶縁性樹脂(ポリエステル)層(B3)からなる本発明の積層型高誘電性フィルムを得た。絶縁性樹脂(ポリエステル)層(B3)の厚さは、1.0μmであった。得られた本発明の積層型高誘電性フィルムについて、体積抵抗率、耐電圧、20℃および80℃における各周波数(100Hz、1kHz、10kHz)での誘電損失および比誘電率を算出した。結果を表4に示す。
Example 15
In Example 3, the high dielectric inorganic particles (c1) were changed from barium titanate (BT) (BT-4FB manufactured by Nippon Chemical Industry Co., Ltd.) to barium calcium zirconate titanate (BCTZ manufactured by Nippon Chemical Industry Co., Ltd.). In addition, the laminated high dielectric of the present invention comprising a VdF resin film layer (A3) / insulating resin (polyester) layer (B3) having a film thickness of 7.2 μm is the same except that the average particle diameter is changed to 1 μm)) A characteristic film was obtained. The thickness of the insulating resin (polyester) layer (B3) was 1.0 μm. About the obtained laminated high dielectric film of the present invention, volume resistivity, withstand voltage, dielectric loss and relative dielectric constant at each frequency (100 Hz, 1 kHz, 10 kHz) at 20 ° C. and 80 ° C. were calculated. The results are shown in Table 4.
実施例16
 実施例3において、高誘電性無機粒子(c1)をチタン酸バリウム(BT)(日本化学工業(株)製のBT-4FB)からチタン酸バリウム(戸田工業(株)製のBTO-100RF、平均粒子径0.1μm))に変更したほかは、同様にして膜厚7.0μmのVdF系樹脂フィルム層(A3)/絶縁性樹脂(ポリエステル)層(B3)からなる本発明の積層型高誘電性フィルムを得た。絶縁性樹脂(ポリエステル)層(B3)の厚さは、0.8μmであった。得られた本発明の積層型高誘電性フィルムについて、体積抵抗率、耐電圧、20℃および80℃における各周波数(100Hz、1kHz、10kHz)での誘電損失および比誘電率を算出した。結果を表4に示す。
Example 16
In Example 3, the high dielectric inorganic particles (c1) were changed from barium titanate (BT) (BT-4FB manufactured by Nippon Chemical Industry Co., Ltd.) to barium titanate (BTO-100RF manufactured by Toda Kogyo Co., Ltd.) The laminated high dielectric of the present invention comprising a VdF resin film layer (A3) / insulating resin (polyester) layer (B3) having a film thickness of 7.0 μm in the same manner except that the particle diameter is changed to 0.1 μm)) A characteristic film was obtained. The thickness of the insulating resin (polyester) layer (B3) was 0.8 μm. About the obtained laminated high dielectric film of the present invention, volume resistivity, withstand voltage, dielectric loss and relative dielectric constant at each frequency (100 Hz, 1 kHz, 10 kHz) at 20 ° C. and 80 ° C. were calculated. The results are shown in Table 4.
実施例17
 実施例3において、分散溶液10質量部(チタン酸バリウム5質量部、DMAc3質量部、MIBK2質量部含有)とPVdF溶液を50質量部(PVdF10.0質量部、DMAc40.0質量部含有)、MIBKを38.5質量部混合し、コーティング用組成物を調製したほかは、同様にして膜厚6.8μmのVdF系樹脂フィルム層(A3)/絶縁性樹脂層(B3)からなる本発明の積層型高誘電性フィルムを得た。絶縁性樹脂(ポリエステル)層(B3)の厚さは、0.8μmであった。得られた本発明の積層型高誘電性フィルムについて、体積抵抗率、耐電圧、20℃および80℃における各周波数(100Hz、1kHz、10kHz)での誘電損失および比誘電率を算出した。結果を表4に示す。
Example 17
In Example 3, 10 parts by mass of the dispersion solution (containing 5 parts by mass of barium titanate, 3 parts by mass of DMAc, 2 parts by mass of MIBK) and 50 parts by mass of the PVdF solution (containing 10.0 parts by mass of PVdF, 40.0 parts by mass of DMAc), MIBK In the same manner, the laminate of the present invention consisting of a VdF-based resin film layer (A3) / insulating resin layer (B3) with a film thickness of 6.8 μm was prepared except that 38.5 parts by mass of was mixed to prepare a coating composition. A type high dielectric film was obtained. The thickness of the insulating resin (polyester) layer (B3) was 0.8 μm. About the obtained laminated high dielectric film of the present invention, volume resistivity, withstand voltage, dielectric loss and relative dielectric constant at each frequency (100 Hz, 1 kHz, 10 kHz) at 20 ° C. and 80 ° C. were calculated. The results are shown in Table 4.
実施例18
 1Lセパラブルフラスコ中にN,N-ジメチルアセトアミド(DMAc)(キシダ化学(株)製)640質量部とポリフッ化ビニリデン(PVdF)(ARKEMA社製のKAYNAR761。比誘電率9.2(1kHz、20℃))160質量部を入れ、80℃、3時間スリーワンモーターにて攪拌し、20質量%濃度のPVdF溶液を得た。このPVdF溶液は透明の均一溶液であった。
Example 18
In a 1 L separable flask, 640 parts by mass of N, N-dimethylacetamide (DMAc) (manufactured by Kishida Chemical Co., Ltd.) and polyvinylidene fluoride (PVdF) (KAYNAR761 manufactured by ARKEMA), relative permittivity 9.2 (1 kHz, 20 ° C)) 160 parts by mass was added and stirred with a three-one motor at 80 ° C for 3 hours to obtain a PVdF solution having a concentration of 20% by mass. This PVdF solution was a transparent homogeneous solution.
 別途、平均粒子1μmのチタン酸ジルコン酸バリウムカルシウム(日本化学工業(株)製のBCTZ)18質量部をDMAc9質量部、メチルイソブチルケトン(MIBK)(キシダ化学(株)製)5質量部、上記20質量%濃度のPVdF溶液2質量部に加えた。この混合物に直径1mmのジルコニアビーズを同質量加えて卓上遊星ボールミル((有)Gokin Planetaring製のPlanet M)に入れ、室温下、回転数800rpmで5分間分散処理を行った。ついで、コアがアクリルゴムでシェルがポリメタクリル酸メチルであるゴム粒子(ローム・アンド・ハース・ジャパン(株)製のEXL2313。平均1次粒子径0.6μm)を2質量部添加し、さらに回転数800rpmで10分間分散処理を行った。分散処理後の混合物をステンレススチール製のメッシュ(真鍋工業(株)製の80メッシュ)に通してジルコニアビーズを取り除いて、複合酸化物分散液とした。 Separately, 18 parts by mass of barium calcium zirconate titanate with an average particle size of 1 μm (BCTZ manufactured by Nippon Chemical Industry Co., Ltd.) is 9 parts by mass of DMAc, 5 parts by mass of methyl isobutyl ketone (MIBK) (manufactured by Kishida Chemical Co., Ltd.), It added to 2 mass parts of PVdF solutions of 20 mass% concentration. The same mass of zirconia beads having a diameter of 1 mm was added to this mixture, and the mixture was placed in a desktop planetary ball mill (Planet M manufactured by Gokin Planetaring), and subjected to a dispersion treatment at room temperature for 5 minutes at a rotation speed of 800 rpm. Next, 2 parts by mass of rubber particles (EXL2313 manufactured by Rohm and Haas Japan Co., Ltd., average primary particle size 0.6 μm) whose core is acrylic rubber and whose shell is polymethyl methacrylate are added, and further rotated. Dispersion treatment was performed at several 800 rpm for 10 minutes. The mixture after the dispersion treatment was passed through a stainless steel mesh (80 mesh manufactured by Manabe Kogyo Co., Ltd.) to remove zirconia beads to obtain a composite oxide dispersion.
 この分散液34質量部と上記PVdF溶液を50質量部(PVdF10質量部、DMAc40質量部含有)、MIBKを26.7質量部混合し、フィルム形成組成物を調製した。 A film-forming composition was prepared by mixing 34 parts by mass of this dispersion, 50 parts by mass of the PVdF solution (containing 10 parts by mass of PVdF and 40 parts by mass of DMAc), and 26.7 parts by mass of MIBK.
 この組成物をマイクログラビアコーターを用いて、離型処理を施した38μm厚のPETフィルム上にキャストし、150℃の6mの乾燥炉、続いて180℃の6mの乾燥炉に通すことにより、PETフィルム上に膜厚7.7μmのキャストフィルムが形成された積層フィルムを得た。ついで、PETフィルムから剥離することにより、膜厚7.7μmのVdF系樹脂のフィルムコンデンサ用フィルムを得た。 The composition was cast on a PET film having a thickness of 38 μm using a microgravure coater and passed through a 6 m drying oven at 150 ° C., followed by a 6 m drying oven at 180 ° C. A laminated film in which a cast film having a film thickness of 7.7 μm was formed on the film was obtained. Next, by peeling from the PET film, a film capacitor film of VdF resin having a film thickness of 7.7 μm was obtained.
 得られたフィルムについて、体積抵抗率、耐電圧、引張破断伸度、20℃および80℃における各周波数(100Hz、1kHz、10kHz)での誘電損失および比誘電率を算出したところ、体積抵抗率(20℃)は5.5×1014Ω・cm、耐電圧は250V/μm、引張破断伸度は41%、比誘電率は20℃で28(100Hz)、27(1kHz)、26(10kHz)で、80℃で37(100Hz)、32(1kHz)、28(10kHz)であった。また、誘電損失(%)は20℃で5.5(100Hz)、2.9(1kHz)、2.4(10kHz)で、80℃で7.8(100Hz)、10.8(1kHz)、7.4(10kHz)であった。 When the volume resistivity, withstand voltage, tensile elongation at break, dielectric loss and relative dielectric constant at each frequency (100 Hz, 1 kHz, 10 kHz) at 20 ° C. and 80 ° C. were calculated for the obtained film, the volume resistivity ( 20 ° C.) is 5.5 × 10 14 Ω · cm, withstand voltage is 250 V / μm, tensile elongation at break is 41%, and relative dielectric constant is 20 (degrees) 28 (100 Hz), 27 (1 kHz), 26 (10 kHz) At 80 ° C., they were 37 (100 Hz), 32 (1 kHz), and 28 (10 kHz). The dielectric loss (%) is 5.5 (100 Hz) at 20 ° C., 2.9 (1 kHz), 2.4 (10 kHz), 7.8 (100 Hz) at 80 ° C., 10.8 (1 kHz), It was 7.4 (10 kHz).
(引張破断伸度の測定)
 引張試験機(ORIENTEC(株)製のRTC-1225A)を用いて、引張破断伸度(%)を測定する。
(Measurement of tensile elongation at break)
Using a tensile tester (RTC-1225A manufactured by ORIENTEC Co., Ltd.), the tensile elongation at break (%) is measured.
 得られた高誘電性フィルムの片面に15質量%濃度のポリエステル(東洋紡績(株)製バイロンGK640)溶液からなるコーティング用組成物をバーコーターで塗布し、180℃で3分間熱風乾燥して絶縁性樹脂層を形成し、積層型高誘電性フィルムを作製した。絶縁性樹脂層の厚さは、1.1μmであった。このフィルムの引張破断伸度は45%であった。 A coating composition comprising a 15% strength by weight polyester (Byron GK640 manufactured by Toyobo Co., Ltd.) solution was applied to one side of the obtained high dielectric film with a bar coater and dried by hot air at 180 ° C. for 3 minutes for insulation. A conductive resin layer was formed to produce a laminated high dielectric film. The thickness of the insulating resin layer was 1.1 μm. The tensile elongation at break of this film was 45%.
 得られた積層型高誘電性フィルムについて、体積抵抗率、耐電圧、20℃および80℃における各周波数(100Hz、1kHz、10kHz)での誘電損失および比誘電率を算出した。結果を表4に示す。 For the obtained laminated high dielectric film, the volume resistivity, withstand voltage, dielectric loss and relative dielectric constant at each frequency (100 Hz, 1 kHz, 10 kHz) at 20 ° C. and 80 ° C. were calculated. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
実施例19
 実施例1で製造した高誘電性フィルムの両面に、真空蒸着装置((株)真空デバイス製のVE-2030)により3Ω/□を目標にしてアルミニウムを蒸着して電極を形成した。これらのアルミニウム電極に電圧印加用のリード線を取り付け、スタンプ型(簡易評価用)のフィルムコンデンサを作製した。
Example 19
Electrodes were formed on both surfaces of the high dielectric film produced in Example 1 by depositing aluminum with a target of 3Ω / □ using a vacuum deposition apparatus (VE-2030 manufactured by Vacuum Device Co., Ltd.). A voltage-applying lead wire was attached to these aluminum electrodes to produce stamp-type (for simple evaluation) film capacitors.

Claims (12)

  1. (A)フィルム形成樹脂としてフッ化ビニリデン系樹脂(a)を含むフッ化ビニリデン系樹脂フィルム層、および
    (B)該フッ化ビニリデン系樹脂フィルム層(A)の少なくとも片面に設けられている絶縁性樹脂(b)の層
    を含む積層型高誘電性フィルム。
    (A) Vinylidene fluoride resin film layer containing vinylidene fluoride resin (a) as a film-forming resin, and (B) insulating property provided on at least one side of the vinylidene fluoride resin film layer (A) A laminated high dielectric film comprising a resin (b) layer.
  2. 絶縁性樹脂層(B)を構成する絶縁性樹脂(b)が、体積抵抗率が1013Ω・cm以上の樹脂である請求項1記載の積層型高誘電性フィルム。 The laminated high dielectric film according to claim 1, wherein the insulating resin (b) constituting the insulating resin layer (B) is a resin having a volume resistivity of 10 13 Ω · cm or more.
  3. 絶縁性樹脂層(B)を構成する絶縁性樹脂(b)が、非フッ素系樹脂である請求項1または2記載の積層型高誘電性フィルム。 The laminated high dielectric film according to claim 1 or 2, wherein the insulating resin (b) constituting the insulating resin layer (B) is a non-fluorine resin.
  4. 絶縁性樹脂層(B)を構成する絶縁性樹脂(b)が、セルロース系樹脂、ポリエステル樹脂、ポリスチレン系樹脂、ポリオレフィン樹脂およびアクリル樹脂よりなる群から選ばれる少なくとも1種である請求項1~3のいずれかに記載の積層型高誘電性フィルム。 The insulating resin (b) constituting the insulating resin layer (B) is at least one selected from the group consisting of a cellulose resin, a polyester resin, a polystyrene resin, a polyolefin resin, and an acrylic resin. The laminated high dielectric film according to any one of the above.
  5. フッ化ビニリデン系樹脂(a)が、フッ化ビニリデン単位60~100モル%、テトラフルオロエチレン単位0~40モル%およびヘキサフルオロプロピレン0~40モル%を含む重合体である請求項1~4のいずれかに記載の積層型高誘電性フィルム。 The vinylidene fluoride resin (a) is a polymer containing 60 to 100 mol% of vinylidene fluoride units, 0 to 40 mol% of tetrafluoroethylene units and 0 to 40 mol% of hexafluoropropylene. The laminated high dielectric film according to any one of the above.
  6. フッ化ビニリデン系樹脂フィルム層(A)が、
    (c1)高誘電性無機粒子、
    (c2)非フッ素系の熱可塑性樹脂、および
    (c3)ゴム粒子
    よりなる群から選ばれる少なくとも1種を含む請求項1~5のいずれかに記載の積層型高誘電性フィルム。
    The vinylidene fluoride resin film layer (A) is
    (C1) high dielectric inorganic particles,
    6. The laminated high dielectric film according to claim 1, comprising at least one selected from the group consisting of (c2) a non-fluorinated thermoplastic resin and (c3) rubber particles.
  7. 高誘電性無機粒子(c1)が、
    (c1a)式(c1a):
     M1 a1b1C1
    (式中、M1は2族金属元素;Nは4族金属元素;a1は0.9~1.1;b1は0.9~1.1;c1は2.8~3.2である;M1とNはそれぞれ複数であってもよい)で示される複合酸化物粒子、
    (c1b)式(c1b):
     M2 a23 b2c2
    (式中、M2とM3は異なり、M2は周期表の2族金属元素、M3は周期表の第5周期の金属元素;a2は0.9~1.1;b2は0.9~1.1;c2は2.8~3.2である)
    で示される複合酸化物粒子、および
    (c1c)周期表の2族金属元素および4族金属元素よりなる群から選ばれる少なくとも3種の金属元素を含む複合酸化物粒子
    よりなる群れから選ばれた少なくとも1種である請求項6記載の積層型高誘電性フィルム。
    High dielectric inorganic particles (c1)
    (C1a) Formula (c1a):
    M 1 a1 N b1 O C1
    (Wherein M 1 is a Group 2 metal element; N is a Group 4 metal element; a1 is 0.9 to 1.1; b1 is 0.9 to 1.1; c1 is 2.8 to 3.2. A plurality of M 1 and N may be present),
    (C1b) Formula (c1b):
    M 2 a2 M 3 b2 O c2
    (In the formula, M 2 and M 3 are different, M 2 is a Group 2 metal element of the periodic table, M 3 is a metal element of the fifth period of the periodic table; a2 is 0.9 to 1.1; 9 to 1.1; c2 is 2.8 to 3.2)
    And (c1c) at least selected from the group consisting of complex oxide particles containing at least three metal elements selected from the group consisting of Group 2 metal elements and Group 4 metal elements of the periodic table The laminated high dielectric film according to claim 6, which is one type.
  8. 非フッ素系の熱可塑性樹脂(c2)が、セルロース系樹脂、ポリエステル樹脂、ポリスチレン系樹脂、ポリオレフィン樹脂およびアクリル樹脂よりなる群から選ばれる少なくとも1種である請求項6または7記載の積層型高誘電性フィルム。 The laminated high dielectric constant according to claim 6 or 7, wherein the non-fluorinated thermoplastic resin (c2) is at least one selected from the group consisting of a cellulose resin, a polyester resin, a polystyrene resin, a polyolefin resin, and an acrylic resin. Sex film.
  9. フッ化ビニリデン系樹脂フィルム層(A)の厚さが1~30μmであり、絶縁性樹脂層(B)の厚さが0.5~5μmである請求項1~8のいずれかに記載の積層型高誘電性フィルム。 The laminate according to any one of claims 1 to 8, wherein the vinylidene fluoride resin film layer (A) has a thickness of 1 to 30 µm, and the insulating resin layer (B) has a thickness of 0.5 to 5 µm. Type high dielectric film.
  10. フィルムコンデンサ用である請求項1~9のいずれかに記載の積層型高誘電性フィルム。 The laminated high dielectric film according to any one of claims 1 to 9, which is used for a film capacitor.
  11. 請求項1~10のいずれかに記載の積層型高誘電性フィルムの少なくとも片面に電極層が積層されているフィルムコンデンサ。 A film capacitor in which an electrode layer is laminated on at least one surface of the laminated high dielectric film according to any one of claims 1 to 10.
  12. フッ化ビニリデン系樹脂フィルム層(A)の少なくとも片面に、絶縁性樹脂を含むコーティング組成物を塗工して絶縁性樹脂層(B)を形成することを特徴とする積層型高誘電性フィルムの製造方法。 A laminated high dielectric film characterized in that an insulating resin layer (B) is formed by applying a coating composition containing an insulating resin to at least one surface of a vinylidene fluoride resin film layer (A). Production method.
PCT/JP2009/070107 2008-12-01 2009-11-30 High-dielectric-constant multilayer film WO2010064603A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010541309A JP5333456B2 (en) 2008-12-01 2009-11-30 Laminated high dielectric film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-306277 2008-12-01
JP2008306277 2008-12-01

Publications (1)

Publication Number Publication Date
WO2010064603A1 true WO2010064603A1 (en) 2010-06-10

Family

ID=42233252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070107 WO2010064603A1 (en) 2008-12-01 2009-11-30 High-dielectric-constant multilayer film

Country Status (2)

Country Link
JP (1) JP5333456B2 (en)
WO (1) WO2010064603A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015114907A1 (en) * 2014-01-29 2015-08-06 三菱電機株式会社 Insulating tape and manufacturing method therefor, stator coil and manufacturing method therefor, and rotating electrical machine
WO2018062253A1 (en) * 2016-09-28 2018-04-05 ダイキン工業株式会社 Film
JP2018135482A (en) * 2017-02-23 2018-08-30 ダイキン工業株式会社 Fluororesin film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002512443A (en) * 1998-04-23 2002-04-23 インターメディクス インコーポレーテッド Metallized film capacitors for use in implantable defibrillators
JP2004146190A (en) * 2002-10-24 2004-05-20 Tomoegawa Paper Co Ltd Separator for lithium ion secondary battery and lithium ion secondary battery provided with same
JP2004281677A (en) * 2003-03-14 2004-10-07 Toray Ind Inc High molecular dielectric and film for capacitor
JP2006027024A (en) * 2004-07-14 2006-02-02 Asahi Kasei Chemicals Corp Multi-layer porous film
JP2006203037A (en) * 2005-01-21 2006-08-03 Seiko Epson Corp Method for forming organic thin film, method for manufacturing ferroelectric film, piezoelectric film, ferroelectric capacitor and piezoelectric element, ferroelectric memory, piezoelectric actuator, ink-jet record head, ink-jet printer, and electronic equipment
WO2008090947A1 (en) * 2007-01-26 2008-07-31 Daikin Industries, Ltd. High dielectric film having high withstand voltage

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002512443A (en) * 1998-04-23 2002-04-23 インターメディクス インコーポレーテッド Metallized film capacitors for use in implantable defibrillators
JP2004146190A (en) * 2002-10-24 2004-05-20 Tomoegawa Paper Co Ltd Separator for lithium ion secondary battery and lithium ion secondary battery provided with same
JP2004281677A (en) * 2003-03-14 2004-10-07 Toray Ind Inc High molecular dielectric and film for capacitor
JP2006027024A (en) * 2004-07-14 2006-02-02 Asahi Kasei Chemicals Corp Multi-layer porous film
JP2006203037A (en) * 2005-01-21 2006-08-03 Seiko Epson Corp Method for forming organic thin film, method for manufacturing ferroelectric film, piezoelectric film, ferroelectric capacitor and piezoelectric element, ferroelectric memory, piezoelectric actuator, ink-jet record head, ink-jet printer, and electronic equipment
WO2008090947A1 (en) * 2007-01-26 2008-07-31 Daikin Industries, Ltd. High dielectric film having high withstand voltage

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015114907A1 (en) * 2014-01-29 2015-08-06 三菱電機株式会社 Insulating tape and manufacturing method therefor, stator coil and manufacturing method therefor, and rotating electrical machine
JP6058169B2 (en) * 2014-01-29 2017-01-11 三菱電機株式会社 Insulating tape and manufacturing method thereof, stator coil and manufacturing method thereof, and rotating electric machine
US10199136B2 (en) 2014-01-29 2019-02-05 Mitsubishi Electric Corporation Insulating tape and production method thereof, stator coil and production method thereof, and rotating electric machine
WO2018062253A1 (en) * 2016-09-28 2018-04-05 ダイキン工業株式会社 Film
JPWO2018062253A1 (en) * 2016-09-28 2019-06-24 ダイキン工業株式会社 the film
JP2018135482A (en) * 2017-02-23 2018-08-30 ダイキン工業株式会社 Fluororesin film
JP7021427B2 (en) 2017-02-23 2022-02-17 ダイキン工業株式会社 Fluororesin film

Also Published As

Publication number Publication date
JPWO2010064603A1 (en) 2012-05-10
JP5333456B2 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
JP5310744B2 (en) Film capacitor film and film capacitor
JP5246256B2 (en) COATING COMPOSITION FOR FORMING HIGH DIELECTRIC FILM AND HIGH DIELECTRIC FILM
JP5494676B2 (en) High dielectric film
JP4952793B2 (en) High dielectric film
JP5679822B2 (en) High dielectric film forming composition for film capacitor
JP5135937B2 (en) High dielectric film
JP5070976B2 (en) High dielectric film
JP5338282B2 (en) Laminated high dielectric film
JP5333456B2 (en) Laminated high dielectric film
JP5472091B2 (en) COATING COMPOSITION FOR FORMING HIGH DIELECTRIC FILM AND HIGH DIELECTRIC FILM
JP5151588B2 (en) COATING COMPOSITION FOR FORMING HIGH DIELECTRIC FILM AND HIGH DIELECTRIC FILM

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09830369

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010541309

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09830369

Country of ref document: EP

Kind code of ref document: A1