WO2010064302A1 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
WO2010064302A1
WO2010064302A1 PCT/JP2008/071888 JP2008071888W WO2010064302A1 WO 2010064302 A1 WO2010064302 A1 WO 2010064302A1 JP 2008071888 W JP2008071888 W JP 2008071888W WO 2010064302 A1 WO2010064302 A1 WO 2010064302A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
water
emulsion fuel
injection
internal combustion
Prior art date
Application number
PCT/JP2008/071888
Other languages
French (fr)
Japanese (ja)
Inventor
西田 秀之
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2008/071888 priority Critical patent/WO2010064302A1/en
Publication of WO2010064302A1 publication Critical patent/WO2010064302A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0626Measuring or estimating parameters related to the fuel supply system
    • F02D19/0628Determining the fuel pressure, temperature or flow, the fuel tank fill level or a valve position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0649Liquid fuels having different boiling temperatures, volatilities, densities, viscosities, cetane or octane numbers
    • F02D19/0652Biofuels, e.g. plant oils
    • F02D19/0655Biofuels, e.g. plant oils at least one fuel being an alcohol, e.g. ethanol
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0665Tanks, e.g. multiple tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0673Valves; Pressure or flow regulators; Mixers
    • F02D19/0676Multi-way valves; Switch-over valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/081Adjusting the fuel composition or mixing ratio; Transitioning from one fuel to the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3827Common rail control systems for diesel engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/022Adding fuel and water emulsion, water or steam
    • F02M25/0221Details of the water supply system, e.g. pumps or arrangement of valves
    • F02M25/0225Water atomisers or mixers, e.g. using ultrasonic waves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/022Adding fuel and water emulsion, water or steam
    • F02M25/0227Control aspects; Arrangement of sensors; Diagnostics; Actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/022Adding fuel and water emulsion, water or steam
    • F02M25/0228Adding fuel and water emulsion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/0047Layout or arrangement of systems for feeding fuel
    • F02M37/0064Layout or arrangement of systems for feeding fuel for engines being fed with multiple fuels or fuels having special properties, e.g. bio-fuels; varying the fuel composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/25Layout, e.g. schematics with coolers having bypasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/0076Details of the fuel feeding system related to the fuel tank
    • F02M37/0088Multiple separate fuel tanks or tanks being at least partially partitioned
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a technical field of a control device for an internal combustion engine configured to be able to use emulsion fuel.
  • an internal combustion engine using light oil and water emulsion fuel which determines an engine operation control parameter according to the fuel content (see, for example, Patent Document 1).
  • Patent Document 1 According to the control apparatus for an internal combustion engine disclosed in Patent Document 1 (hereinafter referred to as “conventional technology”), the amount of fuel in the emulsion fuel and the fuel content determined according to the fuel content of the emulsion fuel are reduced.
  • the amount of fuel that actually contributes to combustion is calculated from the contribution rate, and the injection timing of main injection or pilot injection is calculated based on the amount of fuel that contributes to combustion. In this case, it is said that suitable combustion is ensured.
  • Patent Document 2 discloses that hydrogen and oxygen contribute to combustion.
  • the fuel injection amount satisfies the required output, for example. Less than the appropriate amount that can be determined accordingly.
  • the water in the emulsion fuel is treated as not contributing to combustion, and the fuel injection amount is corrected to the increasing side according to the fuel content ratio. Such a problem does not occur.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a control device for an internal combustion engine that can suitably control the injection amount of emulsion fuel.
  • an internal combustion engine control apparatus is mounted on a vehicle and configured to be able to use an emulsion fuel obtained by mixing a main fuel and a liquid containing at least water, and the emulsion.
  • a control apparatus for an internal combustion engine comprising an injection means capable of injecting fuel, wherein the first heat generation amount specifying means for specifying the heat generation amount of the water in the emulsion fuel, the operating condition of the vehicle and the specified Determining means for determining an injection amount of the emulsion fuel based on a heat generation amount of water; and injection control means for controlling the injection means so that the emulsion fuel corresponding to the determined injection amount is injected. It is characterized by doing.
  • the “emulsion fuel” refers to a mixed fuel obtained by mixing various main fuels such as light oil or gasoline and various liquids including at least water.
  • the liquid may be water alone or may contain various alcohols such as ethanol in addition to water, and the component ratio (for example, water content ratio or alcohol content ratio) in this emulsion fuel is , It may be fixed or variable.
  • the water contained in the liquid constituting the emulsion fuel is mainly reduced in combustion temperature due to latent heat of vaporization (that is, reduction in NOx emissions) or promotes atomization of the main fuel due to boiling (increase in smoke emissions due to uniform combustion).
  • latent heat of vaporization that is, reduction in NOx emissions
  • promotes atomization of the main fuel due to boiling increase in smoke emissions due to uniform combustion.
  • the carbon (C) produced from the fuel is oxidized to generate hydrogen (H2). Since the reaction in which hydrogen is oxidized to produce water (H 2 O) is an exothermic reaction, the amount of heat generated per unit weight of water in the emulsion fuel is lower than that of the main fuel, but is not zero.
  • the injection amount is the required amount. On the other hand, it becomes excessive by the amount corresponding to the heat generation amount of water, and the emission deteriorates.
  • the injection amount of water is treated as equivalent to the main fuel and the injection amount is not substantially corrected, the injection amount is insufficient with respect to the required amount and the power performance is reduced (strictly speaking,
  • the calorific value of the main fuel is not necessarily larger than the calorific value of water (note that it is of course larger for light oil or gasoline), but in that case, the injection amount becomes excessive with respect to the required amount. Emissions get worse).
  • the control apparatus for an internal combustion engine during operation, for example, various processing units such as an ECU (Electronic Control Unit), various controllers, various computer systems such as a microcomputer device, etc.
  • the calorific value of water in the emulsion fuel is identified by the first calorific value specifying means that can be used (in the present invention, “specification” is a concept that encompasses detection, estimation, calculation, derivation, identification, acquisition, etc.)
  • the determination means can grasp the specific object (in this case, the amount of heat generated from water) as information that can be referred to in the control, the process may have various aspects.
  • the final injection amount of the emulsion fuel is determined by the determining means that can take the form of various computer systems such as a microcomputer device, for example, the injection amount itself or various control amounts that can directly or indirectly define the injection amount (for example, Injection time).
  • the injection amount is determined, emulsion fuel corresponding to the determined injection amount is injected by an injection control means that can take the form of various processing units such as an ECU, various controllers or various computer systems such as a microcomputer device. In this way, the injection means such as an electronically controlled injector is controlled.
  • the mixing ratio between the main fuel and the liquid in the emulsion fuel is fixed or variable, but the injection amount is increased according to the heat generation amount of water (the heat generation of the main fuel per unit weight). (If the amount is larger), it is possible to correct or take measures such as determining the injection amount in consideration of the heat generated from the water from the beginning, and optimize the amount of emulsion fuel injected from the injection means It becomes possible to make it.
  • emulsion fuel is used to prevent a sudden change in the combustion temperature and to prevent fuel from being used.
  • This is remarkable when the injection is performed by so-called multi-point injection divided into a relatively small amount of pilot injection executed one or more times to promote mixing and main injection. That is, since the pilot injection amount is smaller than the main injection amount, it is easily affected by the accuracy of the injection amount. Therefore, combustion performance and NV (Noise and Vibration: noise and vibration) are likely to deteriorate with a relatively low accuracy pilot injection amount determined through an injection amount determination process in which the heat generation amount of water is not sufficiently considered.
  • NV Noise and Vibration: noise and vibration
  • the pilot injection control accuracy can be improved, so that a transient change in the combustion speed due to misfire or afterburning is suppressed, and emission, power performance, NV performance, etc. can be further improved. It becomes possible.
  • control apparatus further includes a water content specifying means for specifying a water content ratio of the emulsion fuel, and the first heat generation amount specifying means is based on the specified water content ratio.
  • the heat generation amount of water in the emulsion fuel is specified.
  • the water content ratio of the emulsion fuel is, for example, a desirable volume ratio by the water content ratio specifying means that can take the form of various processing units such as an ECU, various controllers or various computer systems such as a microcomputer device.
  • the water content of the emulsion fuel is the water content or various physical quantities correlated with the water content (for example, the ratio of the main fuel in the emulsion fuel, the liquid constituting the emulsion fuel). Or the water content ratio in the liquid, or the flow rate or flow rate ratio of each fuel constituting the emulsion fuel), and various signals corresponding to the detection results are acquired from detection means such as various sensors.
  • the emulsion fuel may be specified based on the mixing ratio. Further, when provision of information capable of specifying the water content ratio is received from various infrastructure facilities such as a service station for refueling, the water content ratio may be specified by referring to this type of information.
  • the maximum calorific value of water per unit weight is determined or can be uniquely defined, and the density difference between the main fuel and water can be defined in advance.
  • the 1 calorific value specifying means can specify the calorific value of water with high accuracy based on the water content of the emulsion fuel. Therefore, according to this aspect, the injection amount of the emulsion fuel can be determined with relatively high accuracy.
  • the first calorific value specifying means refers to a control map or the like stored in advance in the appropriate storage means in association with the water content ratio and the heat value of water, and each time the water content is determined.
  • the calorific value of water may be specified by selectively acquiring one value corresponding to the ratio.
  • the calorific value of water changes continuously according to the water content ratio, and the control map becomes more complicated if the accuracy of specifying the calorific value of water is improved.
  • no matter how complicated the control map is it is almost impossible to create an infinite number of control maps according to the water content ratio that can be continuously changed in a stepless manner at least within a range in which the effectiveness is ensured.
  • the first calorific value specifying means treats the specified water content ratio as one variable of calculation processing as a preferred form, and each time numerical calculation processing based on various algorithms, calculation formulas, etc.
  • the heat generation amount of water may be specified by performing logical operation processing.
  • control device further includes reaction efficiency specifying means for specifying the reaction efficiency of the water in the emulsion fuel, wherein the first heat generation amount specifying means is the specified reaction. Based on the efficiency, the heat generation amount of water in the emulsion fuel is specified.
  • reaction efficiency of water in the emulsion fuel is specified by reaction efficiency specifying means that can take the form of various processing units such as an ECU, various controllers or various computer systems such as a microcomputer device.
  • reaction efficiency specifying means can take the form of various processing units such as an ECU, various controllers or various computer systems such as a microcomputer device.
  • the “water reaction efficiency” refers to the above-described reaction process.
  • the proportion of water vapor that reacts with carbon to produce hydrogen in the entire water vapor or (2) produced This refers to the proportion of hydrogen used in combustion reactions, for example, when steam reacts with carbon with a probability of 100% and the generated hydrogen burns with a probability of 100%, standardized as “1” etc. May be specified as a value of 1 or less.
  • the first calorific value identifying means identifies the calorific value of water based on the identified reaction efficiency, it is possible to perform more realistic injection amount control considering the reaction efficiency, It is possible to further optimize the injection amount within the range of realistic restrictions on the driving conditions of the vehicle.
  • the water reaction efficiency is affected by, for example, the temperature distribution and spatial distribution of water vapor inside the cylinder. Therefore, the reaction efficiency specifying means can reflect the influence of this kind of temperature distribution and spatial distribution according to various driving conditions of the vehicle in advance experimentally, empirically, theoretically or based on simulation or the like. You may specify with the aspect of referring the control map defined.
  • the determination means corrects the basic injection amount of the emulsion fuel determined according to the operating condition of the vehicle based on the heat generation amount of the specified water. Thus, the injection amount of the emulsion fuel is determined.
  • the determining means in determining the final injection amount of the emulsion fuel, first determines the vehicle operating conditions, for example, the vehicle speed, the accelerator opening, the load factor or the intake air amount, or these various physical amounts,
  • the basic injection amount (which may be determined as the injection time) of the emulsion fuel is determined according to the required output, the required torque, the required driving force or the like that is calculated or determined as appropriate from the control amount or the index value.
  • This basic injection amount is, for example, an injection amount that satisfies the required output of the vehicle when the water content of the emulsion fuel takes an arbitrary fixed value (for example, zero, that is, the emulsion fuel is substantially the main fuel). Unaffected by the physical or chemical state of the emulsion fuel.
  • the final injection amount of the emulsion fuel is determined by correcting the basic injection amount in accordance with the heat generation amount of the specified water. Therefore, the control process for determining the injection amount is simplified, and the load on the determining means can be reduced.
  • the emulsion fuel includes alcohol as the liquid, and further includes a second calorific value identifying means for identifying the calorific value of the alcohol in the emulsion fuel,
  • the determining means determines the injection amount of the emulsion fuel based on the heat value of the specified alcohol.
  • the emulsion fuel contains various alcohols such as ethanol in addition to water as a liquid.
  • the emulsion fuel may take various processing units such as an ECU, various controllers or various computer systems such as a microcomputer device.
  • the calorific value specifying means identifies the calorific value of the alcohol in the emulsion fuel, and the final injection amount is determined based on the calorific value of the alcohol in addition to the calorific value of water. It is possible to optimize the injection amount for the emulsion fuel that can be taken. Alternatively, it is possible to improve the accuracy of the injection amount.
  • it further comprises alcohol content ratio specifying means for specifying the alcohol content ratio of the emulsion fuel, and the second calorific value specifying means is configured to determine the alcohol content in the emulsion fuel based on the specified alcohol content ratio.
  • the amount of heat generated may be specified.
  • the alcohol content ratio of the emulsion fuel for example, the volume ratio is desirable by the alcohol content ratio specifying means that can take the form of various processing units such as an ECU, various controllers or various computer systems such as a microcomputer device.
  • the maximum calorific value of each alcohol per unit weight is determined or can be uniquely defined, and since the density difference between the main fuel and each alcohol can be specified in advance,
  • the second heat generation amount specifying means can specify the heat generation amount of the alcohol with high accuracy based on the alcohol content of the emulsion fuel. Therefore, according to this aspect, the injection amount of the emulsion fuel can be determined with relatively high accuracy.
  • control device further includes a temperature specifying unit that specifies the temperature of the emulsion fuel, and the determining unit is configured to inject the emulsion fuel based on the specified temperature. To decide.
  • the temperature of the emulsion fuel is specified by temperature specifying means that can take the form of various processing units such as an ECU, various controllers or various computer systems such as a microcomputer device, etc.
  • the “emulsion fuel temperature” may include the temperature of the main fuel or the liquid constituting the emulsion fuel), and the determining means may add to the calorific value of water or, in some cases, the calorific value of various alcohols,
  • the injection amount of the emulsion fuel is determined based on the specified temperature. For this reason, according to this aspect, it becomes possible to correct an error in the calorific value due to changes in the density of the main fuel and / or liquid depending on the temperature, and optimally maintain the injection quantity regardless of the environmental conditions of the vehicle. It becomes possible to do.
  • the vehicle further includes a generating means capable of generating the emulsion fuel by mixing the main fuel and the liquid, and the control device for the internal combustion engine. Further comprises generation control means for controlling the generation means so that the main fuel and the liquid are mixed at a desired mixing ratio.
  • the internal combustion engine includes, for example, various pipes that feed each fuel from a supply source of each fuel, various pump devices that can be appropriately installed in the pipe, regardless of whether they are electric or mechanical, and in the pipe Physical and mechanical components that allow mixing of the main fuel and the liquid, which may appropriately include various valve devices capable of controlling the communication state of the above and a mixer for appropriately mixing the various pipes and mixing the corresponding fuel, Generation means as a concept encompassing electrical, magnetic or chemical means are provided.
  • the main fuel and the liquid are mixed at a desired mixing ratio by the generation control means that can take the form of various processing units such as an ECU, various controllers or various computer systems such as a microcomputer device.
  • This generating means is controlled. For this reason, for example, the condition that the mixing ratio of the main fuel should be increased if the remaining amount of liquid is small, and conversely the mixing ratio of the liquid should be increased if the remaining amount of main fuel is small, or the economy should be emphasized over the power performance.
  • the mixing ratio is variable as described above, a mechanism for changing the injection amount in accordance with the mixing ratio is required.
  • the heat generation amount of the liquid is specified by the first heat generation amount specifying means, or in some cases, further by the second heat generation amount specifying means, so that the mixing ratio is accompanied by any change mode. Even if it changes, it is possible to easily optimize the injection amount of the emulsion fuel. That is, this type of generating means can operate effectively only when the control device for an internal combustion engine according to the present invention exists.
  • FIG. 1 is a schematic configuration diagram conceptually showing a configuration of an engine system according to a first embodiment of the present invention. It is a schematic block diagram which represents notionally the structure of the fuel supply apparatus in the engine system of FIG. 2 is a flowchart of injection control executed by an ECU in the engine system of FIG. It is a schematic block diagram which represents notionally the structure of the fuel supply apparatus which concerns on 2nd Embodiment of this invention. It is a schematic block diagram which represents notionally the structure of the fuel supply apparatus which concerns on 3rd Embodiment of this invention. It is a schematic block diagram which represents notionally the structure of the fuel supply apparatus which concerns on 4th Embodiment of this invention.
  • FIG. 1 is a schematic configuration diagram conceptually showing the configuration of the engine system 10.
  • an engine system 10 is mounted on a vehicle (not shown) and includes an ECU 100, an engine 200, and a fuel supply device 300 described later.
  • the ECU 100 is an electronic control unit that includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like, and is configured to control operations of the engine 200 and the fuel supply device 300. It is an example of a “control device for an internal combustion engine” according to the present invention.
  • the ECU 100 is configured to be able to execute injection control described later according to a control program stored in the ROM.
  • the ECU 100 is one of the “first heat generation amount specifying means”, “determination means”, “injection control means”, “moisture content specifying means”, “reaction efficiency specifying means”, and “generation control means” according to the present invention. It is an integrated electronic control unit that functions as an example, and all the operations related to these means are configured to be executed by the ECU 100.
  • the physical, mechanical, and electrical configurations of each of the units according to the present invention are not limited to this.
  • each of these units includes a plurality of ECUs, various processing units, various controllers, a microcomputer device, and the like. It may be configured as various computer systems.
  • Engine 200 is an in-line four-cylinder diesel engine that is an example of an “internal combustion engine” according to the present invention that uses emulsion fuel described later as fuel.
  • the outline of the engine 200 will be described.
  • the engine 200 has a configuration in which four cylinders 202 are arranged in parallel in a cylinder block 201.
  • the force generated when the air-fuel mixture containing the fuel is compressed and ignited in each cylinder causes a piston (not shown) to reciprocate in a direction perpendicular to the paper surface, and is further connected to the piston via a connecting rod. It is configured to be converted into a rotational motion (both not shown).
  • the principal part structure of the engine 200 is demonstrated with a part of the operation
  • the engine 200 according to this embodiment is an in-line four-cylinder diesel engine in which four cylinders 202 are arranged in parallel in a direction perpendicular to the paper surface in FIG. 1, but the configuration of the individual cylinders 202 is equal to each other.
  • only one cylinder 202 will be described.
  • a diesel throttle valve 204 capable of adjusting the amount of intake air is disposed in the intake pipe 203.
  • the diesel throttle valve 204 is a rotary valve that is configured to be rotatable by a driving force supplied from a throttle valve motor (not shown) that is electrically connected to the ECU 100 and controlled by the ECU 100 in a higher level.
  • the rotational position is continuously controlled from the fully closed position where the upstream portion and the downstream portion of the intake pipe 203 at the boundary of 204 are substantially blocked to the fully opened position where the intake pipe 203 communicates almost entirely.
  • the engine 200 is a diesel engine, and its output is controlled through increase / decrease control of the injection amount, unlike air-fuel ratio control (control according to the intake air amount) performed in an engine using gasoline or the like as fuel.
  • the diesel throttle valve 204 is basically controlled to the fully open position (the position of the illustrated diesel throttle valve 204 corresponds to the fully open position) during the operation period of the engine 200.
  • a first intake air temperature sensor 205 capable of detecting the intake air temperature, which is the temperature of the intake air that has passed through the diesel throttle valve 204, is disposed on the downstream side (cylinder side) of the diesel throttle valve 204.
  • the first intake air temperature sensor 205 is electrically connected to the ECU 100, and the detected intake air temperature is referred to by the ECU 100 at a constant or indefinite period.
  • the intake pipe 203 communicates with the intake manifold 206 on the downstream side of the first intake air temperature sensor 205 (the direction concept based on the intake flow direction, in this case, the cylinder side). Further, it communicates with an intake port 207 provided in each cylinder.
  • the intake air guided to the intake pipe 203 is mixed with EGR gas, which will be described later, at the merging position downstream of the first intake temperature sensor 205 and upstream of the intake manifold 206, and communicates the intake port 207 and the inside of the cylinder.
  • EGR gas which will be described later
  • a fuel injection nozzle of a direct injection type unit injector 208 is exposed, and fuel is injected from this nozzle.
  • the injected fuel is mixed with the intake air inside each cylinder and becomes the above-described air-fuel mixture.
  • the fuel corresponding to the target injection amount in each cylinder 202 passes through the unit injector 208 to prevent a rapid temperature rise in the combustion chamber or to sufficiently premix the fuel and the intake air. Therefore, the fuel injection is divided into main injection corresponding to the difference between the target injection amount and the pilot injection amount.
  • the unit injector 208 includes a solenoid valve that operates based on a command supplied from the ECU 100, and a nozzle that injects fuel when the solenoid valve is energized (both not shown).
  • the solenoid valve is configured to be able to control the communication state between the pressure chamber to which the high-pressure fuel of the common rail 209 is applied and the low-pressure side low-pressure passage connected to the pressure chamber.
  • the chamber and the low pressure passage are communicated with each other, and the pressurizing chamber and the low pressure passage are shut off from each other when energization is stopped.
  • this nozzle has a built-in needle that opens and closes the nozzle hole, and the fuel pressure in the pressure chamber urges the needle in the valve closing direction (direction in which the nozzle hole is closed). Accordingly, when the pressure chamber and the low-pressure passage are connected by energization of the solenoid valve and the fuel pressure in the pressure chamber decreases, the needle rises in the nozzle and opens (opens the nozzle hole), thereby causing the common rail 209 to open. The high-pressure fuel supplied more can be injected from the injection hole.
  • the common rail 209 is high-pressure storage means that is electrically connected to the ECU 100 and configured to accumulate fuel supplied from the fuel supply device 300 up to a target rail pressure.
  • the common rail 209 is provided with a rail pressure sensor capable of detecting the rail pressure and a pressure limiter for limiting the amount of fuel accumulated so that the rail pressure does not exceed the upper limit value.
  • the illustration is omitted.
  • the unit injector 208 described above is mounted for each cylinder 202, and each unit injector 208 is connected to the common rail 209 via the high-pressure delivery 210.
  • the fuel supply device 300 will be described in detail later with reference to FIG.
  • the above-described air-fuel mixture burns by self-ignition in the compression process, and opens an exhaust valve (not shown) that opens and closes in conjunction with opening and closing of the intake valve as a burned gas or a partially unburned air-fuel mixture
  • the structure is sometimes led to the exhaust manifold 212 via the exhaust port 211.
  • the exhaust manifold 212 communicates with the exhaust pipe 213, and most of the exhaust gas is guided to the exhaust pipe 213.
  • a turbine 215 is installed in the exhaust pipe 213 so as to be accommodated in the turbine housing 214.
  • the turbine 215 is configured to be rotatable about a predetermined rotation axis by the pressure of exhaust gas (that is, exhaust pressure) guided to the exhaust pipe 213.
  • the rotating shaft of the turbine 215 is shared with the compressor 216 installed in the intake pipe 203 so as to be accommodated in the compressor housing 217.
  • the compressor 216 is also centered on the rotating shaft. It is configured to rotate.
  • the compressor 216 is configured to be able to pump and supply the intake air guided to the intake pipe 203 to the intake manifold 206 described above by the pressure accompanying the rotation thereof. Supercharging is realized.
  • the turbine 215 and the compressor 216 constitute a kind of turbocharger.
  • An intercooler may be installed between the compressor 216 and the intake manifold 206, and the supercharging efficiency may be improved by cooling the supercharged intake air.
  • an air flow meter 218 and a second intake air temperature sensor 219 are disposed on the upstream side of the compressor 216 in the intake pipe 203.
  • the air flow meter 218 is a device that detects the amount of intake air (intake air amount) guided to the intake pipe 203 and adopts a so-called hot wire type.
  • the second intake air temperature sensor 219 is a temperature sensor configured to be able to detect the temperature of intake air near the air flow meter 218.
  • the second intake air temperature sensor 219 is electrically connected to the ECU 100, and the detected intake air temperature is used to improve the detection accuracy of the intake air amount by the air flow meter 218.
  • the EGR passage 220 communicates with the exhaust manifold 212 separately from the exhaust pipe 213.
  • the EGR passage 220 is a metal and hollow tubular member that allows the exhaust manifold 212 and the intake pipe 203 to communicate with each other, and is configured to communicate with the intake pipe 203 at the above-described joining position.
  • the EGR passage 220 branches into a cooling passage 221 in which the EGR cooler 222 is installed and a bypass passage 223 in which the EGR cooler 222 is not installed in a part of the EGR passage 220.
  • the EGR cooler 222 is a cooling device provided in the EGR passage 220.
  • the EGR cooler 222 is a metal and hollow tubular member with the cooling water piping of the engine 200 stretched around the outer periphery, and is exhausted through the EGR cooler 222 through the cooling passage 221 through the cooling passage 221.
  • EGR gas which is an example of “EGR gas” according to the present invention, and hereinafter referred to as “EGR gas”
  • EGR gas is cooled by heat exchange with the cooling water and guided to the downstream side (that is, the intake pipe 203 side). It has become.
  • the EGR cooler 222 is connected to an inlet pipe and an outlet pipe that communicate with the water jacket described above.
  • the cooling water flows into the cooling water pipe from the inlet pipe and is discharged out of the cooling water pipe through the outlet pipe.
  • the discharged cooling water is returned to the cooling water circulation system of the engine 200, and is supplied again from the inlet pipe through a predetermined path.
  • the bypass passage 223 described above is configured to bypass at least the EGR cooler 222.
  • the switching valve 224 is a valve mechanism including an openable / closable valve body installed at a branch portion between the EGR passage 220 and the bypass passage 223 and a driving device for driving the valve body.
  • the valve body of the switching valve 224 is configured such that the open / close state is continuously changed by the driving device, and the flow rate ratio of EGR gas between the cooling passage 221 and the bypass passage 223 according to the open / close state. It is possible to control.
  • the driving device of the switching valve 224 is electrically connected to the ECU 100, and the opening / closing state of the valve body of the switching valve 224 is controlled to the upper level by the ECU 100.
  • the EGR valve 225 includes a valve body that is installed in the EGR passage 220 on the downstream side (intake pipe 203 side) where the cooling passage 221 and the bypass passage 223 are joined, and a driving device that drives the valve body.
  • the valve body of the EGR valve 225 is configured such that the open / close state is continuously changed by the driving device, and the flow rate of the EGR gas flowing through the EGR passage 220, that is, the EGR amount is controlled according to the open / close state. It is configured to be able to.
  • the drive device of the EGR valve 225 is electrically connected to the ECU 100, and the opening / closing state of the valve body of the EGR valve 225 is configured to be controlled higher by the ECU 100.
  • the EGR passage 220, the cooling passage 221, the EGR cooler 222, the bypass passage 223, the switching valve 224 and the EGR valve 225 constitute an EGR device as a whole.
  • a first oxidation catalyst 226, a DPF 227, and a second oxidation catalyst 228 are installed downstream of the turbine 215 in the exhaust pipe 213.
  • the first oxidation catalyst 226 is a catalytic converter configured to be able to oxidize CO, HC (mainly SOF), NO and the like in exhaust gas.
  • the DPF 227 is a filter configured to be able to capture PM in the exhaust.
  • the DPF has a structure in which a filter made of a ceramic carrier such as cordierite or SiC is accommodated in a metal casing.
  • This filter has a plurality of exhaust passages extending in the direction of exhaust flow and having a cross section perpendicular to the direction of exhaust flow forming a honeycomb shape.
  • the exhaust passages are alternately sealed so that one of the exhaust inlet side and the outlet side is not adjacent to each other, and the DPF 227 has a so-called ceramic wall flow type filter structure.
  • the second oxidation catalyst 228 is provided on the downstream side of the DPF 227, and is configured to oxidize each main component in the exhaust gas that passes through the ceramic carrier of the DPF 227.
  • the engine system 10 includes an NE sensor configured to be able to detect the engine rotational speed NE of the engine 200 and an accelerator position configured to be able to detect an accelerator opening Ta that is an opening of an accelerator pedal.
  • Various sensors including sensors are mounted, and each sensor is electrically connected to the ECU 100. The detection result is referred to by the ECU 100 at a constant or indefinite period, and is used for various operation controls.
  • FIG. 2 is a schematic configuration diagram conceptually showing the configuration of the fuel supply device 300.
  • the same reference numerals are given to the same portions as those in FIG. 1, and the description thereof will be omitted as appropriate.
  • the fuel supply device 300 is an example of the “generating means” according to the present invention configured to generate emulsion fuel and be supplied to the common rail 209 as the fuel described above.
  • the fuel supply apparatus 300 includes a main tank 301, a low pressure feed pipe 302, a filter 303, a low pressure electric pump 304, a first sub tank 305, a low pressure feed pipe 306, a filter 307, a low pressure electric pump 308, a mixer 309, a high pressure feed pipe 310, and a high pressure.
  • An electric pump 311, a relief pipe 312, a return pipe 313, a flow sensor 314 and a flow sensor 315 are provided.
  • the main tank 301 is a metal container configured to store the light oil FL.
  • the light oil FL stored in the main tank 301 is an example of the “main fuel” according to the present invention.
  • the low-pressure feed pipe 302 is a metal tubular member having one end fixed to the bottom of the main tank 301 and the other end connected to the mixer 309.
  • the filter 303 is a filtration device that is installed in the low-pressure feed pipe 302 and has a mesh-like filtration member configured to be able to filter the light oil FL guided to the low-pressure feed pipe 302.
  • the low-pressure electric pump 304 is a fluid discharge device installed between the mixer 309 and the filter 303.
  • the low-pressure electric pump 304 is configured to suck up the light oil FL stored from the main tank 301 and supply the light oil FL to the mixer 309 at a discharge speed (that is, a discharge amount per unit time) according to the discharge pressure ( Note that the supply direction is indicated by a solid arrow in the figure), which is a so-called electric drive type centrifugal pump using a motor (not shown) as a driving force source.
  • a driving device (not shown) that drives and controls the motor is electrically connected to the ECU 100, and the rotational speed of the motor is controlled by the ECU 100.
  • the rotational speed of the motor of the low-pressure electric pump 304 is uniquely related to the discharge pressure of the light oil FL in the low-pressure electric pump 304, the supply amount of the light oil FL to the mixer 309 in the fuel supply device 300 is eventually obtained. Is configured to be controlled by the ECU 100.
  • the first sub tank 305 is a metal container configured to be able to store water WT.
  • the water WT stored in the first sub tank 305 is an example of “liquid” and “water” according to the present invention.
  • the low-pressure feed pipe 306 is a metal tubular member having one end fixed to the bottom of the first sub tank 305 and the other end connected to the mixer 309.
  • the filter 307 is a filtration device that is installed in the low-pressure feed pipe 306 and has a mesh-like filtration member configured to filter the water WT guided to the low-pressure feed pipe 306.
  • the low-pressure electric pump 308 is a fluid discharge device installed between the mixer 309 and the filter 307.
  • the low-pressure electric pump 308 is configured to suck up the water WT stored from the first sub tank 305 and supply the water WT to the mixer 309 at a discharge speed (that is, discharge amount per unit time) according to the discharge pressure.
  • the supply direction is indicated by a solid arrow in the figure), which is a so-called electrically driven spiral pump using a motor (not shown) as a driving force source.
  • a driving device (not shown) that drives and controls the motor is electrically connected to the ECU 100, and the rotational speed of the motor is controlled by the ECU 100.
  • the rotational speed of the motor of the low-pressure electric pump 308 has a unique relationship with the discharge pressure of the water WT in the low-pressure electric pump 308, the supply amount of the water WT to the mixer 309 in the fuel supply device 300 is eventually obtained. Is configured to be controlled by the ECU 100.
  • the mixer 309 is configured to be capable of temporarily storing the light oil FL guided through the low-pressure feed pipe 302 and the water WT guided through the low-pressure feed pipe 306, and to be rotatable to the container unit. It is a mixing apparatus having an agitating member installed and an agitator configured to agitate light oil FL and water WT by rotating the agitating member.
  • the mixer 309 is configured so that the water WT and the light oil FL can be mixed substantially uniformly by the stirring action of the stirrer. That is, in the fuel supply device 300, the emulsion fuel is finally generated by the stirring action of the mixer 309.
  • the mixer 309 is provided with a backflow prevention mechanism that prevents backflow of emulsion fuel from the mixer 309 to the main tank 301 and the first sub tank 305.
  • a high-pressure feed pipe 310 is connected to the mixer 309.
  • the high-pressure feed pipe 310 is a metal tubular member, and the other end is connected to the common rail 209 described above.
  • the inside of the common rail 209 has a high pressure as described above, and the high pressure feed pipe 310 has higher physical strength than the low pressure feed pipes 302 and 306.
  • the high-pressure electric pump 311 is a fluid discharge device installed in a section between the mixer 309 and the common rail 209 in the high-pressure feed pipe 310.
  • the high-pressure electric pump 311 is configured to suck up the generated emulsion fuel from the mixer 309 and supply the emulsion fuel to the common rail 209 at a discharge speed (that is, a discharge amount per unit time) according to the discharge pressure ( Note that the supply direction is indicated by a solid arrow in the figure), which is a so-called electric drive type centrifugal pump using a motor (not shown) as a driving force source.
  • a drive device (not shown) that drives and controls the motor is electrically connected to the ECU 100, and the rotational speed of the motor is controlled by the ECU 100.
  • the rotational speed of the motor of the high-pressure electric pump 311 has a unique relationship with the discharge pressure of the emulsion fuel in the high-pressure electric pump 308, the supply of emulsion fuel to the common rail 209 in the fuel supply device 300 is eventually achieved.
  • the amount is controlled by the ECU 100. Note that the maximum discharge pressure of the high-pressure electric pump 308 is higher than that of the low-pressure electric pumps 304 and 308 so that the emulsion fuel can be sufficiently supplied to the high-pressure common rail 209.
  • the relief pipe 312 is a metal tubular member having one end connected to the common rail 209 and the other end connected to the return pipe 313.
  • the common rail 209 is provided with a pressure limiter so that the rail pressure that is the internal pressure of the common rail 209 does not exceed the upper limit value.
  • This pressure limiter is a kind of so-called pressure regulating valve, and has a configuration that opens when the rail pressure exceeds an upper limit value.
  • the relief pipe 312 is connected to the common rail 209 via this pressure limiter, and excess emulsion fuel is supplied to the return pipe 313 when the pressure limiter is opened (the supply direction is the same). , See the broken arrows in the figure).
  • the return pipe 313 is connected to each unit injector 210 and the relief pipe 312 at the end on the introduction side, and excess emulsion fuel flows from these.
  • the end on the discharge side of the return pipe 313 is connected to the mixer 209, and this excess emulsion fuel is finally returned to the mixer 209 (note that the supply direction is indicated by the broken line in the figure). (See arrow of).
  • the relief pipe 312 and the return pipe 313 are respectively provided with a backflow prevention valve so that the backflow of the emulsion fuel to the common rail 209 and the unit injector 210 is prevented.
  • the flow rate sensor 314 is a sensor configured to be able to detect the flow rate of the light oil FL in the low pressure feed pipe 302 in which the detection terminal is exposed inside the low pressure feed pipe 302.
  • the flow rate sensor 314 is electrically connected to the ECU 100, and the detected flow rate of the light oil FL is referred to by the ECU 100 at a constant or indefinite period.
  • the flow rate sensor 315 is a sensor configured to be able to detect the flow rate of the water WT in the low pressure feed pipe 306 in which the detection terminal is exposed inside the low pressure feed pipe 306.
  • the flow rate sensor 315 is electrically connected to the ECU 100, and the detected flow rate of the water WT is referred to by the ECU 100 at a constant or indefinite period.
  • the ECU 100 has a water content ratio x in the emulsion fuel generated by the mixer 309 (that is, a volume ratio of water in the fuel, which is an example of the “water content ratio” according to the present invention).
  • the motor rotation speed of each low-pressure electric pump is controlled based on the flow rates of the light oil FL and the water WT detected by the flow rate sensors 314 and 315 so as to obtain a desired value. For example, if the flow rate of each fuel (volume flow rate per unit time, that is, flow rate) is the same, water WT and light oil FL are present in the mixer 309 at a volume ratio of 1: 1. Therefore, the water content x is estimated to be 0.5. In other words, if the target value of the water content ratio x is 0.5, the rotational speed of each low-voltage electric motor is finally controlled so that the flow rates of the water WT and the light oil FL are equal.
  • the water content ratio x is estimated based on the flow rate of each fuel detected by the flow sensor in this way (that is, an example of the operation of the “water content ratio specifying means” according to the present invention).
  • this kind of flow sensor or flow meter is not necessarily required for estimating the water content ratio x.
  • the map is referred to.
  • the moisture content x may be estimated.
  • a metering mechanism such as a metering valve is installed in each low pressure feed pipe, and the water content ratio x is estimated based on the control state of each metering valve (for example, valve opening, valve opening time, etc.) Good.
  • a fuel property sensor or the like that can directly detect the water content ratio x in the fuel may be attached to the mixer 309.
  • the fuel supply apparatus 300 includes the mixer 309 so that the light oil FL stored in the main tank 301 and the water WT stored in the first sub-tank 305 have the target water content ratio x of the fuel that is the emulsion fuel. Therefore, the generated emulsion fuel is supplied to the common rail 209 as the above-described fuel. Here, the combustion characteristics of this fuel will be described.
  • H 2 O (liquid) H 2 O (gas) ⁇ 40.8 kJ / mol (1)
  • C + H2O (gas) CO + H2-131.3 kJ / mol (2)
  • H2 + 0.5O2 H2O (liquid) +286 kJ / mol (3)
  • the calorific value of light oil is about 43 MJ / kg, and when converted into volume per volume taking into account the difference in density between the two, the heat generated from water theoretically corresponds to the calorific value of about 11% of light oil. It is possible to obtain. Accordingly, the fuel injection amount in the unit injector 208 deviates from an appropriate value unless the heat generation amount of the water is taken into consideration.
  • the required calorific value is “1” in terms of light oil volume, and the water content of the fuel is 0.2.
  • FIG. 3 is a flowchart of the injection control.
  • the ECU 100 acquires the driving conditions of the vehicle (step S101).
  • step S101 the engine speed NE and the accelerator opening degree Ta of the engine 200 are acquired.
  • the ECU 100 acquires the basic injection time Tau0 (step S102).
  • the basic injection time Tau0 is a control amount that defines a basic injection amount that is a basic value of the fuel injection amount (that is, an example of the “basic injection amount” according to the present invention).
  • the fuel injection amount is proportional to the injection time TAU corresponding to the opening period of the injection hole in the unit injector 208 because the rail pressure of the common rail 209 is constant.
  • the unit injector 208 is configured to control the operation state (for example, the control duty ratio of the solenoid valve) using the injection time TAU as a control target.
  • the value of the basic injection time Tau0 is stored in advance in the basic injection time map in a form associated with the engine speed NE and the accelerator opening degree Ta. ECU 100 selectively acquires one value corresponding to these values acquired in step S101 from the basic injection time map as basic injection time Tau0.
  • the basic injection time Tau0 corresponds to the injection amount when the moisture content x of the fuel is 0, that is, when the fuel is light oil itself.
  • the ECU 100 acquires the water content ratio x (step S103). Since the water content ratio x is estimated by the ECU 100 itself based on the flow rates of the water WT and the light oil FL detected by the flow sensors 314 and 315 as described above, in step S103, the ECU 100 x can be easily obtained.
  • the reaction efficiency k of water in the fuel is acquired (step S104).
  • the reaction efficiency k is, for example, a correction coefficient that reflects the probability of occurrence of a reaction corresponding to the above formula (2) or (3), the probability that various reactions different from the above formula (2) or (3) occur, and the like.
  • the case where the occurrence of the reaction corresponding to the above equations (2) and (3) occurs 100% with respect to water or hydrogen contained in the fuel is standardized as “1”.
  • the reaction efficiency k is influenced by the fuel spatial distribution in the combustion chamber, the temperature distribution of the combustion chamber, and the like, it is set in advance for each engine 200 (that is, for each actual machine) through experimental adaptation.
  • the set reaction efficiency k is stored in the ROM of the ECU 100 as a fixed value or as a reaction efficiency map using the vehicle operating conditions as parameters.
  • the ECU 100 acquires this kind of preset reaction efficiency k from the ROM.
  • the ECU 100 uses the basic injection time Tau0 acquired in step S102 as the calorific value of water in the fuel calculated using the water content ratio x and the reaction efficiency k. And the injection time Tau1 that is the final fuel injection time is calculated (step S105).
  • the ECU 100 calculates the injection time Tau1 according to the following equation (4).
  • “ ⁇ ” is a multiplication operator.
  • Tau1 Tau0 ⁇ 1 / (x ⁇ (Q f / (Q w ⁇ k)) ⁇ ( ⁇ f / ⁇ w) + (1-x)) ...
  • Q f is the calorific value per unit weight of the main fuel (light oil in the present embodiment) (in the case of light oil, as described above, about 43 MJ / kg)
  • Q w is the unit weight of water.
  • ⁇ f is the density of the main fuel (0.8336 g / cc in the case of light oil)
  • ⁇ w is the density of water (as described above, approximately 4.1 MJ / kg). 1 g / cc).
  • the ECU 100 drives the unit injector 208 according to the calculated injection time Tau1 and executes fuel injection (step S106).
  • fuel injection is executed, the process returns to step S101.
  • the injection control is executed as described above.
  • the calorific value of water continuously changing according to the water content ratio x in the fuel generated as the emulsion fuel is accurately calculated, and the basic value reflecting the calorific value of the water is calculated. Accurate correction of the injection amount Tau0 becomes possible.
  • the concept of the reaction efficiency k of water in the fuel is further introduced, and based on this reaction efficiency k, the calorific value of water obtained in the water gas reaction as an actual phenomenon that may differ from the theoretical value ( That is, it is possible to calculate a more realistic water heat generation amount).
  • the final fuel injection amount (ie, The injection amount corresponding to the injection time Tau1) can be made as close as possible to the truly required injection amount. That is, it is possible to optimize the fuel injection amount, and it is possible to suitably suppress the deterioration of power performance and the deterioration of fuel consumption and emission due to the excess or shortage of the fuel injection amount.
  • FIG. 4 is a schematic configuration diagram conceptually showing the configuration of the fuel supply apparatus 400 according to the second embodiment of the present invention. 4 that are the same as those in FIG. 2 are given the same reference numerals, and descriptions thereof are omitted as appropriate.
  • water ethanol WTALC that is a mixture of water and ethanol (that is, another example of “alcohol” according to the present invention) is stored in the first sub tank 305 instead of the water WT.
  • the configuration is different from the fuel supply device 300 in the first embodiment.
  • Water ethanol WTALC is another example of the “liquid” according to the present invention. That is, the fuel in this embodiment is an emulsion fuel in which water, ethanol, and light oil are mixed. In the present embodiment, the volume ratio of water and ethanol in the water ethanol WTALC is fixed.
  • the flow rate sensor 315 detects the flow rate of the water ethanol WTALC in the low pressure feed pipe 306.
  • the ECU 100 detects the detected flow rate of the water ethanol WTALC and the flow rate sensor 314. Based on the flow rate of the light oil FL, it is possible to calculate the water content ratio x and the ethanol content ratio y (the volume ratio is the same as the water content ratio x).
  • the ECU 100 corrects the basic injection time Tau0 according to the following equation (5), and sets the injection time Tau2 in consideration of the heat generation amounts of water and ethanol. calculate.
  • Q e is the maximum calorific value per unit weight of the lower alcohol (ethanol in this embodiment) (about 27 MJ / kg in the case of ethanol), and ⁇ e is the lower alcohol The density is 0.789 g / cc in the case of ethanol.
  • FIG. 5 is a schematic configuration diagram conceptually showing the configuration of the fuel supply apparatus 500 according to the third embodiment of the present invention. 5 that are the same as those in FIG. 2 are denoted by the same reference numerals, and the description thereof is omitted as appropriate.
  • the fuel supply device 500 includes a second sub tank 501, a low pressure feed pipe 502, a filter 503, a low pressure electric pump 504, a mixer 505, a flow sensor 506, and a flow sensor 507, according to the first embodiment. This is different from the supply device 300.
  • the second sub tank 501 is a metal container configured to store ethanol ALC.
  • the ethanol ALC stored in the second sub tank 501 is an example of “liquid” and “alcohol” according to the present invention.
  • the low-pressure feed pipe 502 is a metal tubular member having one end fixed to the bottom of the second sub tank 501 and the other end connected to the mixer 505.
  • the filter 503 is a filtration device that is installed in the low-pressure feed pipe 502 and has a mesh-like filtration member configured to be able to filter ethanol ALC guided to the low-pressure feed pipe 502.
  • the low-pressure electric pump 504 is a fluid discharge device installed between the mixer 505 and the filter 503.
  • the low-pressure electric pump 504 is configured to suck up the ethanol ALC stored from the second sub tank 501 and supply the ethanol ALC to the mixer 505 at a discharge speed (that is, a discharge amount per unit time) according to the discharge pressure.
  • This is a so-called electrically driven centrifugal pump using a motor (not shown) as a driving force source.
  • a driving device (not shown) that drives and controls the motor is electrically connected to the ECU 100, and the rotational speed of the motor is controlled by the ECU 100.
  • the rotational speed of the motor of the low-pressure electric pump 504 is uniquely related to the discharge pressure of the ethanol ALC in the low-pressure electric pump 504, the amount of ethanol ALC supplied to the mixer 505 in the fuel supply device 500 is eventually obtained. Is configured to be controlled by the ECU 100.
  • the mixer 505 is configured to be capable of temporarily storing water WT guided through the low-pressure feed pipe 306 and ethanol ALC guided through the low-pressure feed pipe 502, and rotatable to the container unit. It is a mixing apparatus having an agitating member installed and an agitator configured to agitate water WT and ethanol ALC by rotating the agitating member.
  • the mixer 505 is configured so that water WT and ethanol ALC can be mixed substantially uniformly by the stirring action of the stirrer. That is, in the fuel supply device 500, first, a homogeneous mixture of water and ethanol similar to the water ethanol WTALC in the second embodiment is generated by the stirring action of the mixer 505, and this uniform mixture of water and ethanol is further generated. Then, it is mixed with the light oil FL by the mixer 309, and finally an emulsion fuel of the light oil, water and ethanol is generated.
  • the flow rate sensor 506 is a sensor configured to be able to detect the flow rate of ethanol ALC in the low-pressure feed pipe 502 in which the detection terminal is exposed inside the low-pressure feed pipe 502.
  • the flow rate sensor 506 is electrically connected to the ECU 100, and the detected flow rate of the ethanol ALC is referred to by the ECU 100 at a constant or indefinite period.
  • the flow rate sensor 507 measures the flow rate of the homogeneous mixture of water WT and ethanol ALC in the low-pressure feed pipe 306, with the detection terminal exposed inside the low-pressure feed pipe 306 on the downstream side (mixer 309 side) of the mixer 505. This is a sensor configured to be detectable.
  • the flow rate sensor 507 is electrically connected to the ECU 100, and the detected flow rate of the mixture is referred to by the ECU 100 at a constant or indefinite period.
  • the volume ratio of the water WT and the ethanol ALC in the mixer 505 can be estimated based on the flow rates of the water WT and the ethanol ALC detected by the flow sensors 315 and 506. It becomes possible. Therefore, as in the second embodiment, even if the volume ratio of water WT and ethanol ALC is not fixed, in the emulsion fuel having the light oil FL, water WT, and ethanol ALC generated in the mixer 309 as constituent elements. It is possible to accurately estimate the water content ratio x and the ethanol content ratio y.
  • x: y be the volume ratio of water WT and ethanol ALC.
  • the injection time TAU0 is corrected according to the following equation (6) to calculate the injection time TAU3.
  • FIG. 6 is a schematic configuration diagram conceptually showing the configuration of the fuel supply apparatus 600 according to the fourth embodiment of the present invention.
  • the same reference numerals are given to the same portions as those in FIG.
  • the fuel supply device 600 is different from the fuel supply device 500 according to the third embodiment in that it includes temperature sensors 601 and 602.
  • the temperature sensor 601 is a sensor configured to detect the temperature Tf of the light oil FL, the detection terminal of which is exposed inside the main tank 301.
  • the temperature sensor 601 is electrically connected to the ECU 100, and the detected temperature Tf of the light oil FL is referred to by the ECU 100 at a constant or indefinite period.
  • the temperature sensor 602 is a sensor configured to detect the temperature Te of ethanol ALC, the detection terminal of which is exposed inside the second sub tank 501.
  • the temperature sensor 602 is electrically connected to the ECU 100, and the detected temperature Te of the ethanol ALC is referred to by the ECU 100 at a constant or indefinite period.
  • the basic injection amount is further increased in consideration of the density change due to the temperature in each of the light oil FL and the ethanol ALC. It becomes possible to correct TAU0 accurately.
  • the ECU 100 calculates the injection amount TAU4 according to the following equation (7).
  • ⁇ f ′ is the density of the main fuel (light oil in this embodiment) after temperature correction, and in the case of light oil, is defined by the following equation (8).
  • ⁇ e ′ is the density of the lower alcohol (in this embodiment, ethanol) after temperature correction. In the case of ethanol, it is defined by the following equation (9).
  • volume ratio of water WT and ethanol ALC is variable
  • the injection amount can be similarly calculated by applying the density after temperature correction defined by the above equations (8) and (9).
  • the engine 200 is a diesel engine and the main fuel is light oil FL.
  • the fuel injection amount correction described in each of the above embodiments is not limited to the main fuel. The same applies to the case where gasoline is used as gasoline.
  • the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist or concept of the invention that can be read from the claims and the entire specification, and the control of the internal combustion engine accompanying such a change.
  • the apparatus is also included in the technical scope of the present invention.
  • the present invention can be used for controlling the injection amount of an emulsion fuel in an internal combustion engine that can be installed in a vehicle and can use an emulsion fuel in which a main fuel and a liquid containing at least water are mixed as fuel. is there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Botany (AREA)
  • Biotechnology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

The amount of injection of emulsion fuel is optimally controlled. An engine (200) has a fuel supply device (300) capable of supplying , as the fuel for a common rail (209), emulsion fuel formed by substantially uniformly mixing, by using a mixer (309), light oil (FL) contained in a main tank (301) and water (WT) contained in a first sub-tank (305). An ECU (100) controls fuel injection. In the process of control of the fuel injection, the ECU (100) calculates the amount of heat generated by water in the fuel by using both the percentage of water content in the fuel and the efficiency of reaction of water. The calculation by the ECU (100) is made according to a preset calculation formula, and the percentage of water content is estimated based on the flow rates of the light oil (FL) and the water (WT) that are detected by flow rate sensors (314, 315). According to the calculated heat generation amount, the ECU (100) corrects a basic fuel injection time (TAU0) previously determined according to operating conditions of a vehicle and calculates an accurate injection time (TAU1) in which the heat generation amount of the water is taken into consideration.

Description

内燃機関の制御装置Control device for internal combustion engine
 本発明は、エマルジョン燃料を使用可能に構成された内燃機関の制御装置の技術分野に関する。 The present invention relates to a technical field of a control device for an internal combustion engine configured to be able to use emulsion fuel.
 この種の装置として、軽油と水のエマルジョン燃料を使用する内燃機関において、燃料含有率に応じて機関の運転制御パラメータを求めるものが開示されている(例えば、特許文献1参照)。 As an apparatus of this type, an internal combustion engine using light oil and water emulsion fuel is disclosed which determines an engine operation control parameter according to the fuel content (see, for example, Patent Document 1).
 特許文献1に開示された内燃機関の制御装置(以下、「従来の技術」と称する)によれば、エマルジョン燃料中の燃料量、及びエマルジョン燃料の燃料含有率に応じて定まる燃料の燃焼への寄与率から実際に燃焼に寄与する燃料量が算出されると共に、この燃焼に寄与する燃料量に基づいてメイン噴射の噴射時期或いはパイロット噴射の噴射時期等が算出されることによって、エマルジョン燃料を用いた場合において好適な燃焼が確保されるとされている。 According to the control apparatus for an internal combustion engine disclosed in Patent Document 1 (hereinafter referred to as “conventional technology”), the amount of fuel in the emulsion fuel and the fuel content determined according to the fuel content of the emulsion fuel are reduced. The amount of fuel that actually contributes to combustion is calculated from the contribution rate, and the injection timing of main injection or pilot injection is calculated based on the amount of fuel that contributes to combustion. In this case, it is said that suitable combustion is ensured.
 尚、特許文献2には、水素及び酸素が燃焼に寄与することが開示されている。 Note that Patent Document 2 discloses that hydrogen and oxygen contribute to combustion.
 また、軽油と水を混合したエマルジョン燃料を供給する系統と、通常の燃料を供給する系統とを有する内燃機関において、燃料中の水の割合に応じて燃料噴射量を制御する技術も開示されている(例えば、特許文献3参照)。 Also disclosed is a technique for controlling the fuel injection amount in accordance with the proportion of water in the fuel in an internal combustion engine having a system for supplying emulsion fuel mixed with light oil and water and a system for supplying normal fuel. (For example, see Patent Document 3).
特開2004―68619号公報JP 2004-68619 A 特開2003-343275号公報JP 2003-343275 A 特開昭63-9639号公報JP-A-63-9939
 エマルジョン燃料における主燃料(例えば、ガソリンや軽油等)の含有比率を何ら考慮することなく、エマルジョン燃料中の水を当該主燃料と同等に扱った場合、燃料の噴射量は、例えば要求出力を満たすべく定められ得る適正量に対し少なくなる。それに対し、上記従来の技術においては、エマルジョン燃料中の水分は燃焼に寄与しないものとして扱われており、燃料の含有比率に応じて燃料噴射量が増加側に補正されることになるため、このような問題は生じない。 When the water content in the emulsion fuel is handled in the same way as the main fuel without considering the content ratio of the main fuel (e.g. gasoline, light oil, etc.) in the emulsion fuel, the fuel injection amount satisfies the required output, for example. Less than the appropriate amount that can be determined accordingly. On the other hand, in the above conventional technology, the water in the emulsion fuel is treated as not contributing to combustion, and the fuel injection amount is corrected to the increasing side according to the fuel content ratio. Such a problem does not occur.
 ところが、実際には、エマルジョン燃料中の水も、主燃料とは無論影響の度合いが異なるとは言え燃焼に寄与することが知られており、従来の技術に係る技術思想の範疇では、この水の発熱量の分だけ逆に燃料の噴射量が過多となる。即ち、従来の技術には、エマルジョン燃料の噴射量が適正値に対し増加側に乖離することに起因して、燃費及びエミッションの悪化が回避され難いという技術的な問題点がある。 However, in reality, water in emulsion fuel is known to contribute to combustion even though the degree of influence is different from that of main fuel, and in the category of technical ideas related to conventional technology, Conversely, the fuel injection amount becomes excessive by the amount of heat generated. That is, the conventional technique has a technical problem that it is difficult to avoid deterioration in fuel consumption and emission due to the deviation of the injection amount of the emulsion fuel from the appropriate value.
 また、従来の技術では、元々エマルジョン燃料中の水は燃焼に寄与しないとされているため、エマルジョン燃料における主燃料或いは水の含有率が把握されればよいが、水が燃焼に寄与することに鑑みれば、この種の含有率が把握されるのみでは正確に燃料噴射量を決定することは難しい。 In addition, in the conventional technology, water in emulsion fuel originally does not contribute to combustion, so it is only necessary to know the content of main fuel or water in emulsion fuel, but water contributes to combustion. In view of this, it is difficult to accurately determine the fuel injection amount only by grasping this kind of content rate.
 本発明は、上述した問題点に鑑みてなされたものであり、エマルジョン燃料の噴射量を好適に制御可能な内燃機関の制御装置を提供することを課題とする。 The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a control device for an internal combustion engine that can suitably control the injection amount of emulsion fuel.
 上述した課題を解決するため、本発明に係る内燃機関の制御装置は、車両に搭載され、主燃料と少なくとも水を含む液体とが混合されてなるエマルジョン燃料を使用可能に構成されると共に該エマルジョン燃料を噴射可能な噴射手段を備えてなる内燃機関の制御装置であって、前記エマルジョン燃料における前記水の発熱量を特定する第1発熱量特定手段と、前記車両の運転条件及び前記特定された水の発熱量に基づいて前記エマルジョン燃料の噴射量を決定する決定手段と、該決定された噴射量に相当する前記エマルジョン燃料が噴射されるように前記噴射手段を制御する噴射制御手段とを具備することを特徴とする。 In order to solve the above-described problems, an internal combustion engine control apparatus according to the present invention is mounted on a vehicle and configured to be able to use an emulsion fuel obtained by mixing a main fuel and a liquid containing at least water, and the emulsion. A control apparatus for an internal combustion engine comprising an injection means capable of injecting fuel, wherein the first heat generation amount specifying means for specifying the heat generation amount of the water in the emulsion fuel, the operating condition of the vehicle and the specified Determining means for determining an injection amount of the emulsion fuel based on a heat generation amount of water; and injection control means for controlling the injection means so that the emulsion fuel corresponding to the determined injection amount is injected. It is characterized by doing.
 本発明に係る「エマルジョン燃料」とは、例えば軽油或いはガソリン等の各種主燃料と、少なくとも水を含む各種液体とが混合されてなる混合燃料を指す。尚、係る液体は、水単体であっても、水に加えてエタノール等の各種アルコールが含まれていてもよく、また、このエマルジョン燃料における成分比率(例えば、含水比率或いは含アルコール比率等)は、固定であっても可変であってもよい。 The “emulsion fuel” according to the present invention refers to a mixed fuel obtained by mixing various main fuels such as light oil or gasoline and various liquids including at least water. The liquid may be water alone or may contain various alcohols such as ethanol in addition to water, and the component ratio (for example, water content ratio or alcohol content ratio) in this emulsion fuel is , It may be fixed or variable.
 ここで、エマルジョン燃料を構成する液体に含まれる水は、主として気化潜熱による燃焼温度の低減(即ち、NOx排出量の低減)、或いは沸騰による主燃料の霧化促進(均一燃焼によるスモーク排出量の低減)等を目的として主燃料と混合されるが、それとは別に、高温場にて水蒸気化された際に、燃料から生成された炭素(C)を酸化させ、水素(H2)を発生させる。この水素が酸化されて水(H2O)が生成される反応は発熱反応であるから、エマルジョン燃料において、水の単位重量当たりの発熱量は、主燃料のそれと較べれば低いもののゼロとはならない。 Here, the water contained in the liquid constituting the emulsion fuel is mainly reduced in combustion temperature due to latent heat of vaporization (that is, reduction in NOx emissions) or promotes atomization of the main fuel due to boiling (increase in smoke emissions due to uniform combustion). For the purpose of reduction, etc., it is mixed with the main fuel, but separately, when it is steamed in a high temperature field, the carbon (C) produced from the fuel is oxidized to generate hydrogen (H2). Since the reaction in which hydrogen is oxidized to produce water (H 2 O) is an exothermic reaction, the amount of heat generated per unit weight of water in the emulsion fuel is lower than that of the main fuel, but is not zero.
 従って、水が、燃焼室内における、車両の動力生成に係る燃焼反応に全く寄与しないものと扱って、エマルジョン燃料の含水比率に応じて噴射量を増量側に補正した場合、噴射量は、必要量に対し水の発熱量に相当する分だけ過剰となってエミッションが悪化する。一方で、水の発熱量を主燃料と同等として扱って噴射量の補正を実質的に行わない場合には、噴射量が必要量に対し不足して動力性能が低下する(尚、厳密に言えば、主燃料の発熱量は必ずしも水の発熱量よりも大きいとは限らない(尚、軽油又はガソリンであれば無論大きい)が、その場合には、噴射量が必要量に対し過剰となってエミッションが悪化する)。 Therefore, when water is treated as not contributing at all to the combustion reaction related to vehicle power generation in the combustion chamber, and the injection amount is corrected to the increase side according to the moisture content of the emulsion fuel, the injection amount is the required amount. On the other hand, it becomes excessive by the amount corresponding to the heat generation amount of water, and the emission deteriorates. On the other hand, if the heat generation amount of water is treated as equivalent to the main fuel and the injection amount is not substantially corrected, the injection amount is insufficient with respect to the required amount and the power performance is reduced (strictly speaking, For example, the calorific value of the main fuel is not necessarily larger than the calorific value of water (note that it is of course larger for light oil or gasoline), but in that case, the injection amount becomes excessive with respect to the required amount. Emissions get worse).
 即ち、水と主燃料とを全く区別しない(即ち、水の発熱量なる概念に想達する以前の問題である)場合は言うまでもなく、水の発熱量をゼロ或いはゼロとみなし得る程度に小さいとして単に含水比率に応じて噴射量を増量側に補正する(即ち、水の発熱量を一義的にしか規定しない)といった技術思想の範疇では、いずれにせよ、エマルジョン燃料の噴射量を最適化し得ない。 That is, it is obvious that water and main fuel are not distinguished at all (that is, a problem before the concept of water calorific value is conceived), and it is simply assumed that the calorific value of water is small enough to be regarded as zero or zero. In any case of the technical concept of correcting the injection amount to the increase side according to the water content ratio (that is, only defining the heat generation amount of water only), the emulsion fuel injection amount cannot be optimized anyway.
 それに対し、本発明に係る内燃機関の制御装置によれば、その動作時には、例えばECU(Electronic Control Unit:電子制御ユニット)等の各種処理ユニット、各種コントローラ或いはマイコン装置等各種コンピュータシステム等の形態を採り得る第1発熱量特定手段により、当該エマルジョン燃料における水の発熱量が特定され(尚、本発明に係る「特定」とは、検出、推定、算出、導出、同定及び取得等を包括する概念であり、真偽の程度はともかく、特定対象(この場合、水の発熱量)を、制御上参照し得る情報として決定手段に把握させ得る限りにおいて、そのプロセスは各種態様を有してよい趣旨である)、この特定された水の発熱量と、車両の運転条件とに基づいて、例えばECU等の各種処理ユニット、各種コントローラ或いはマイコン装置等各種コンピュータシステム等の形態を採り得る決定手段によりエマルジョン燃料の最終的な噴射量が、例えば噴射量そのもの或いは噴射量を直接的に又は間接的に規定し得る各種の制御量(例えば、噴射時間等)として決定される。噴射量が決定されると、例えばECU等の各種処理ユニット、各種コントローラ或いはマイコン装置等各種コンピュータシステム等の形態を採り得る噴射制御手段により、この決定された噴射量に相当するエマルジョン燃料が噴射されるように、例えば電子制御式インジェクタ等の噴射手段が制御される。 On the other hand, according to the control apparatus for an internal combustion engine according to the present invention, during operation, for example, various processing units such as an ECU (Electronic Control Unit), various controllers, various computer systems such as a microcomputer device, etc. The calorific value of water in the emulsion fuel is identified by the first calorific value specifying means that can be used (in the present invention, “specification” is a concept that encompasses detection, estimation, calculation, derivation, identification, acquisition, etc.) As long as the determination means can grasp the specific object (in this case, the amount of heat generated from water) as information that can be referred to in the control, the process may have various aspects. Based on the heat generation amount of the specified water and the driving conditions of the vehicle, for example, various processing units such as an ECU, various controllers, The final injection amount of the emulsion fuel is determined by the determining means that can take the form of various computer systems such as a microcomputer device, for example, the injection amount itself or various control amounts that can directly or indirectly define the injection amount (for example, Injection time). When the injection amount is determined, emulsion fuel corresponding to the determined injection amount is injected by an injection control means that can take the form of various processing units such as an ECU, various controllers or various computer systems such as a microcomputer device. In this way, the injection means such as an electronically controlled injector is controlled.
 このため、エマルジョン燃料における主燃料と液体との混合比率が固定にせよ可変にせよ如何なる値であろうが、水の発熱量に応じて噴射量を増量側に(単位重量当たりの主燃料の発熱量の方が大きいとした場合)補正する、或いは最初から水の発熱量を考慮して噴射量を決定する等の措置を講じることが可能となり、噴射手段から噴射されるエマルジョン燃料の量を最適化することが可能となるのである。 For this reason, the mixing ratio between the main fuel and the liquid in the emulsion fuel is fixed or variable, but the injection amount is increased according to the heat generation amount of water (the heat generation of the main fuel per unit weight). (If the amount is larger), it is possible to correct or take measures such as determining the injection amount in consideration of the heat generated from the water from the beginning, and optimize the amount of emulsion fuel injected from the injection means It becomes possible to make it.
 また、このような効果は、主燃料の種類によらず、また液体の種類にもよらず得られるものであるが、特に、エマルジョン燃料が、燃焼温度の急変を防止すべく、また燃料の予混合を促進すべく一又は複数回にわたって実行される相対的に少量のパイロット噴射と、メイン噴射とに分割して噴射される、所謂マルチポイント噴射によって噴射される場合には顕著である。即ち、パイロット噴射量は、メイン噴射量に対して少ないから、噴射量の精度に影響を受け易い。従って、水の発熱量が十分に考慮されない噴射量決定プロセスを経て決定された相対的に精度の低いパイロット噴射量では、燃焼性能及びNV(Noise and Vibration:騒音と振動)が悪化し易い。その点、本発明によれば、パイロット噴射の制御精度も向上させ得るため、失火或いは後燃え等による燃焼速度の過渡的変化が抑制され、エミッション、動力性能及びNV性能等をより向上させることが可能となるのである。 Such an effect can be obtained regardless of the type of main fuel and the type of liquid. In particular, emulsion fuel is used to prevent a sudden change in the combustion temperature and to prevent fuel from being used. This is remarkable when the injection is performed by so-called multi-point injection divided into a relatively small amount of pilot injection executed one or more times to promote mixing and main injection. That is, since the pilot injection amount is smaller than the main injection amount, it is easily affected by the accuracy of the injection amount. Therefore, combustion performance and NV (Noise and Vibration: noise and vibration) are likely to deteriorate with a relatively low accuracy pilot injection amount determined through an injection amount determination process in which the heat generation amount of water is not sufficiently considered. In that respect, according to the present invention, the pilot injection control accuracy can be improved, so that a transient change in the combustion speed due to misfire or afterburning is suppressed, and emission, power performance, NV performance, etc. can be further improved. It becomes possible.
 本発明に係る内燃機関の制御装置の一の態様では、前記エマルジョン燃料の含水比率を特定する含水比率特定手段を更に具備し、前記第1発熱量特定手段は、該特定された含水比率に基づいて前記エマルジョン燃料における水の発熱量を特定する。 In one aspect of the control apparatus for an internal combustion engine according to the present invention, the control apparatus further includes a water content specifying means for specifying a water content ratio of the emulsion fuel, and the first heat generation amount specifying means is based on the specified water content ratio. The heat generation amount of water in the emulsion fuel is specified.
 この態様によれば、例えばECU等の各種処理ユニット、各種コントローラ或いはマイコン装置等各種コンピュータシステム等の形態を採り得る含水比率特定手段により、エマルジョン燃料の含水比率が、例えば体積比率を望ましい形態の一として特定される。ここで、先に述べた特定の概念に従えば、エマルジョン燃料の含水比率は、当該含水比率又は含水比率と相関する各種物理量(例えば、エマルジョン燃料における、主燃料の比率、エマルジョン燃料を構成する液体の比率又は当該液体中の含水比率、或いは、エマルジョン燃料を構成する各燃料の流量又は流量比率等を含む)を検出可能な各種センサ等の検出手段から検出結果に対応する各種信号を取得することによって特定されてもよいし、エマルジョン燃料が、車両において主燃料と液体とが適宜混合されることにより生成される場合には、その混合比率に基づいて特定されてもよい。また、給油用のサービスステーション等、各種インフラ施設から、係る含水比率を特定可能な情報の提供が受けられる場合には、この種の情報を参照する形で含水比率が特定されてもよい。 According to this aspect, the water content ratio of the emulsion fuel is, for example, a desirable volume ratio by the water content ratio specifying means that can take the form of various processing units such as an ECU, various controllers or various computer systems such as a microcomputer device. Identified as Here, according to the specific concept described above, the water content of the emulsion fuel is the water content or various physical quantities correlated with the water content (for example, the ratio of the main fuel in the emulsion fuel, the liquid constituting the emulsion fuel). Or the water content ratio in the liquid, or the flow rate or flow rate ratio of each fuel constituting the emulsion fuel), and various signals corresponding to the detection results are acquired from detection means such as various sensors. In the case where the emulsion fuel is produced by appropriately mixing the main fuel and the liquid in the vehicle, the emulsion fuel may be specified based on the mixing ratio. Further, when provision of information capable of specifying the water content ratio is received from various infrastructure facilities such as a service station for refueling, the water content ratio may be specified by referring to this type of information.
 ここで、単位重量当たりの水の最大発熱量は決まっており、或いは一義に規定することが可能であり、また主燃料と水との密度差も予め規定され得る性質のものであるから、第1発熱量特定手段は、エマルジョン燃料の含水比率に基づいて水の発熱量を高精度に特定することが可能となる。従って、この態様によれば、エマルジョン燃料の噴射量が比較的高精度に決定され得る。 Here, the maximum calorific value of water per unit weight is determined or can be uniquely defined, and the density difference between the main fuel and water can be defined in advance. The 1 calorific value specifying means can specify the calorific value of water with high accuracy based on the water content of the emulsion fuel. Therefore, according to this aspect, the injection amount of the emulsion fuel can be determined with relatively high accuracy.
 尚、上記特定の概念に鑑みれば、第1発熱量特定手段は、予め然るべき記憶手段に記憶された、含水比率と水の発熱量とを対応付けてなる制御マップ等を参照し、その都度含水比率に応じた一の値を選択的に取得することによって水の発熱量を特定してもよい。但し、水の発熱量は含水比率に応じて連続的に変化するものであり、水の発熱量の特定精度を向上させようとすれば、それだけ当該制御マップが複雑化する。また、どれだけ制御マップを複雑化しても、少なくとも有効性が担保される範囲で無段階に連続的に変化し得る含水比率に応じて無数の制御マップを作成することは不可能に近い。その点に鑑みれば、第1発熱量特定手段は、好適な一形態として、特定された含水比率を、演算処理の一変数として扱って、その都度各種アルゴリズムや算出式等に基づいた数値演算処理や論理演算処理を行うことにより水の発熱量を特定してもよい。 In view of the above specific concept, the first calorific value specifying means refers to a control map or the like stored in advance in the appropriate storage means in association with the water content ratio and the heat value of water, and each time the water content is determined. The calorific value of water may be specified by selectively acquiring one value corresponding to the ratio. However, the calorific value of water changes continuously according to the water content ratio, and the control map becomes more complicated if the accuracy of specifying the calorific value of water is improved. Moreover, no matter how complicated the control map is, it is almost impossible to create an infinite number of control maps according to the water content ratio that can be continuously changed in a stepless manner at least within a range in which the effectiveness is ensured. In view of that, the first calorific value specifying means treats the specified water content ratio as one variable of calculation processing as a preferred form, and each time numerical calculation processing based on various algorithms, calculation formulas, etc. Alternatively, the heat generation amount of water may be specified by performing logical operation processing.
 本発明に係る内燃機関の制御装置の他の態様では、前記エマルジョン燃料における前記水の反応効率を特定する反応効率特定手段を更に具備し、前記第1発熱量特定手段は、該特定された反応効率に基づいて前記エマルジョン燃料における水の発熱量を特定する。 In another aspect of the control device for an internal combustion engine according to the present invention, the control device further includes reaction efficiency specifying means for specifying the reaction efficiency of the water in the emulsion fuel, wherein the first heat generation amount specifying means is the specified reaction. Based on the efficiency, the heat generation amount of water in the emulsion fuel is specified.
 エマルジョン燃料において、液体を構成する水は、常に100%の確率で上記の反応を生じるとは限らない。反応に供され得る水の割合が変化すれば、当然ながら、含水率に応じた水の発熱量は変化することとなる。そこで、この態様では、例えばECU等の各種処理ユニット、各種コントローラ或いはマイコン装置等各種コンピュータシステム等の形態を採り得る反応効率特定手段により、エマルジョン燃料における水の反応効率が特定される。ここで、「水の反応効率」とは、上記した反応過程を参照すれば、例えば、(1)水蒸気全体における、炭素と反応して水素を生成する水蒸気の割合、或いは(2)生成された水素のうち燃焼反応に供される水素の割合等を指し、例えば水蒸気が100%の確率で炭素と反応し且つ生成された水素が100%の確率で燃焼する場合を「1」等として規格化されてなる、1以下の値として特定されてもよい。 In emulsion fuel, water constituting the liquid does not always cause the above reaction with a probability of 100%. If the proportion of water that can be subjected to the reaction changes, the heat generation amount of water corresponding to the water content naturally changes. Therefore, in this aspect, the reaction efficiency of water in the emulsion fuel is specified by reaction efficiency specifying means that can take the form of various processing units such as an ECU, various controllers or various computer systems such as a microcomputer device. Here, the “water reaction efficiency” refers to the above-described reaction process. For example, (1) the proportion of water vapor that reacts with carbon to produce hydrogen in the entire water vapor, or (2) produced This refers to the proportion of hydrogen used in combustion reactions, for example, when steam reacts with carbon with a probability of 100% and the generated hydrogen burns with a probability of 100%, standardized as “1” etc. May be specified as a value of 1 or less.
 この態様によれば、第1発熱量特定手段は、この特定された反応効率に基づいて水の発熱量を特定するため、上記反応効率を勘案した、より現実的な噴射量制御が可能となり、車両の運転条件の現実的な制約の範囲で、一層の噴射量の最適化を図ることが可能となる。 According to this aspect, since the first calorific value identifying means identifies the calorific value of water based on the identified reaction efficiency, it is possible to perform more realistic injection amount control considering the reaction efficiency, It is possible to further optimize the injection amount within the range of realistic restrictions on the driving conditions of the vehicle.
 尚、上記水の反応効率は、例えば気筒内部における水蒸気の温度分布や空間分布等に影響を受ける。従って、反応効率特定手段は、予め実験的に、経験的に、理論的に又はシミュレーション等に基づいて車両の各種運転条件に応じたこの種の温度分布や空間分布の影響を反映し得るように定められてなる制御マップを参照する等の態様を伴って特定されてもよい。 The water reaction efficiency is affected by, for example, the temperature distribution and spatial distribution of water vapor inside the cylinder. Therefore, the reaction efficiency specifying means can reflect the influence of this kind of temperature distribution and spatial distribution according to various driving conditions of the vehicle in advance experimentally, empirically, theoretically or based on simulation or the like. You may specify with the aspect of referring the control map defined.
 本発明に係る内燃機関の制御装置の他の態様では、前記決定手段は、前記特定された水の発熱量に基づいて前記車両の運転条件に応じて定まる前記エマルジョン燃料の基本噴射量を補正することにより前記エマルジョン燃料の噴射量を決定する。 In another aspect of the control device for an internal combustion engine according to the present invention, the determination means corrects the basic injection amount of the emulsion fuel determined according to the operating condition of the vehicle based on the heat generation amount of the specified water. Thus, the injection amount of the emulsion fuel is determined.
 この態様によれば、決定手段は、エマルジョン燃料の最終的な噴射量を決定するにあたって、先ず、車両の運転条件、例えば、車速、アクセル開度、負荷率又は吸入空気量、或いはこれら各種物理量、制御量若しくは指標値等より適宜算出若しくは決定される要求出力、要求トルク又は要求駆動力等に応じて、エマルジョン燃料の基本噴射量(噴射時間として決定されてもよい)を決定する。この基本噴射量は、例えば、エマルジョン燃料の含水比率が任意の固定値を採る(例えば、ゼロ、即ちエマルジョン燃料が実質的に主燃料である)場合に車両の要求出力を満たす噴射量であり、エマルジョン燃料の物理的又は化学的状態には影響を受けない。 According to this aspect, in determining the final injection amount of the emulsion fuel, the determining means first determines the vehicle operating conditions, for example, the vehicle speed, the accelerator opening, the load factor or the intake air amount, or these various physical amounts, The basic injection amount (which may be determined as the injection time) of the emulsion fuel is determined according to the required output, the required torque, the required driving force or the like that is calculated or determined as appropriate from the control amount or the index value. This basic injection amount is, for example, an injection amount that satisfies the required output of the vehicle when the water content of the emulsion fuel takes an arbitrary fixed value (for example, zero, that is, the emulsion fuel is substantially the main fuel). Unaffected by the physical or chemical state of the emulsion fuel.
 この態様によれば、この基本噴射量が、特定された水の発熱量に応じて補正されることによって、最終的なエマルジョン燃料の噴射量が決定される。従って、噴射量を決定するにあたっての制御上のプロセスが簡素化され、決定手段の負荷を軽減することが可能である。 According to this aspect, the final injection amount of the emulsion fuel is determined by correcting the basic injection amount in accordance with the heat generation amount of the specified water. Therefore, the control process for determining the injection amount is simplified, and the load on the determining means can be reduced.
 本発明に係る内燃機関の制御装置の他の態様では、前記エマルジョン燃料は前記液体としてアルコールを含み、前記エマルジョン燃料における前記アルコールの発熱量を特定する第2発熱量特定手段を更に具備し、前記決定手段は、該特定されたアルコールの発熱量に基づいて前記エマルジョン燃料の噴射量を決定する。 In another aspect of the control device for an internal combustion engine according to the present invention, the emulsion fuel includes alcohol as the liquid, and further includes a second calorific value identifying means for identifying the calorific value of the alcohol in the emulsion fuel, The determining means determines the injection amount of the emulsion fuel based on the heat value of the specified alcohol.
 この態様によれば、エマルジョン燃料は、液体として水の他に例えばエタノール等の各種アルコールを含むが、例えばECU等の各種処理ユニット、各種コントローラ或いはマイコン装置等各種コンピュータシステム等の形態を採り得る第2発熱量特定手段によって、当該エマルジョン燃料におけるこのアルコールの発熱量が特定され、水の発熱量に加えこのアルコールの発熱量に基づいて最終的な噴射量が決定されるため、より広範な状態を採り得るエマルジョン燃料に対し噴射量を最適化することが可能となる。或いは噴射量の精度を向上させることが可能となる。 According to this aspect, the emulsion fuel contains various alcohols such as ethanol in addition to water as a liquid. For example, the emulsion fuel may take various processing units such as an ECU, various controllers or various computer systems such as a microcomputer device. 2 The calorific value specifying means identifies the calorific value of the alcohol in the emulsion fuel, and the final injection amount is determined based on the calorific value of the alcohol in addition to the calorific value of water. It is possible to optimize the injection amount for the emulsion fuel that can be taken. Alternatively, it is possible to improve the accuracy of the injection amount.
 尚、この態様では、前記エマルジョン燃料の含アルコール比率を特定する含アルコール比率特定手段を更に具備し、前記第2発熱量特定手段は、該特定された含アルコール比率に基づいて前記エマルジョン燃料におけるアルコールの発熱量を特定してもよい。 In this aspect, it further comprises alcohol content ratio specifying means for specifying the alcohol content ratio of the emulsion fuel, and the second calorific value specifying means is configured to determine the alcohol content in the emulsion fuel based on the specified alcohol content ratio. The amount of heat generated may be specified.
 この態様によれば、例えばECU等の各種処理ユニット、各種コントローラ或いはマイコン装置等各種コンピュータシステム等の形態を採り得る含アルコール比率特定手段により、エマルジョン燃料の含アルコール比率が、例えば体積比率を望ましい形態の一として特定される。ここで、単位重量当たりの各アルコールの最大発熱量は決まっており或いは一義に規定することが可能であり、また主燃料と各アルコールとの密度差も予め規定され得る性質のものであるから、第2発熱量特定手段は、エマルジョン燃料の含アルコール比率に基づいてアルコールの発熱量を高精度に特定することが可能となる。従って、この態様によれば、エマルジョン燃料の噴射量が比較的高精度に決定され得る。 According to this aspect, the alcohol content ratio of the emulsion fuel, for example, the volume ratio is desirable by the alcohol content ratio specifying means that can take the form of various processing units such as an ECU, various controllers or various computer systems such as a microcomputer device. Identified as one of Here, the maximum calorific value of each alcohol per unit weight is determined or can be uniquely defined, and since the density difference between the main fuel and each alcohol can be specified in advance, The second heat generation amount specifying means can specify the heat generation amount of the alcohol with high accuracy based on the alcohol content of the emulsion fuel. Therefore, according to this aspect, the injection amount of the emulsion fuel can be determined with relatively high accuracy.
 本発明に係る内燃機関の制御装置の他の態様では、前記エマルジョン燃料の温度を特定する温度特定手段を更に具備し、前記決定手段は、前記特定された温度に基づいて前記エマルジョン燃料の噴射量を決定する。 In another aspect of the control device for an internal combustion engine according to the present invention, the control device further includes a temperature specifying unit that specifies the temperature of the emulsion fuel, and the determining unit is configured to inject the emulsion fuel based on the specified temperature. To decide.
 この態様によれば、例えばECU等の各種処理ユニット、各種コントローラ或いはマイコン装置等各種コンピュータシステム等の形態を採り得る温度特定手段により、エマルジョン燃料の温度が特定され(尚、特定の概念に鑑みれば、「エマルジョン燃料の温度」とは、エマルジョン燃料を構成する主燃料の温度又は液体の温度を含み得る)、決定手段は、水の発熱量或いは場合によっては更に各種アルコールの発熱量に加え、更にこの特定された温度に基づいてエマルジョン燃料の噴射量を決定する。このため、本態様によれば、温度による主燃料又は液体或いはその両方の密度の変化に起因する発熱量の誤差を補正することが可能となり、車両の環境条件によらず噴射量を最適に維持することが可能となる。 According to this aspect, for example, the temperature of the emulsion fuel is specified by temperature specifying means that can take the form of various processing units such as an ECU, various controllers or various computer systems such as a microcomputer device, etc. The “emulsion fuel temperature” may include the temperature of the main fuel or the liquid constituting the emulsion fuel), and the determining means may add to the calorific value of water or, in some cases, the calorific value of various alcohols, The injection amount of the emulsion fuel is determined based on the specified temperature. For this reason, according to this aspect, it becomes possible to correct an error in the calorific value due to changes in the density of the main fuel and / or liquid depending on the temperature, and optimally maintain the injection quantity regardless of the environmental conditions of the vehicle. It becomes possible to do.
 本発明に係る内燃機関の制御装置の他の態様では、前記車両は、前記主燃料と前記液体とを混合することにより前記エマルジョン燃料を生成可能な生成手段を更に備え、前記内燃機関の制御装置は、前記主燃料と前記液体とが所望の混合比率で混合されるように前記生成手段を制御する生成制御手段を更に具備する。 In another aspect of the control device for an internal combustion engine according to the present invention, the vehicle further includes a generating means capable of generating the emulsion fuel by mixing the main fuel and the liquid, and the control device for the internal combustion engine. Further comprises generation control means for controlling the generation means so that the main fuel and the liquid are mixed at a desired mixing ratio.
 この態様によれば、内燃機関には、例えば各燃料の供給源から各燃料をフィードする各種配管、当該配管に適宜設置され得る電動式及び機械式の別を問わない各種ポンプ装置、当該配管内の連通状態を制御可能な各種弁装置及び当該各種配管を適宜集約して対応する燃料を混合するミキサ等を適宜に含み得る、主燃料と液体との混合を可能とする物理的、機械的、電気的、磁気的又は化学的手段を包括する概念としての生成手段が備わる。 According to this aspect, the internal combustion engine includes, for example, various pipes that feed each fuel from a supply source of each fuel, various pump devices that can be appropriately installed in the pipe, regardless of whether they are electric or mechanical, and in the pipe Physical and mechanical components that allow mixing of the main fuel and the liquid, which may appropriately include various valve devices capable of controlling the communication state of the above and a mixer for appropriately mixing the various pipes and mixing the corresponding fuel, Generation means as a concept encompassing electrical, magnetic or chemical means are provided.
 この態様によれば、例えばECU等の各種処理ユニット、各種コントローラ或いはマイコン装置等各種コンピュータシステム等の形態を採り得る生成制御手段により、主燃料と液体とが所望の混合比率で混合されるようにこの生成手段が制御される。このため、例えば液体の残量が少なければ主燃料の混合比率を高める、逆に主燃料の残量が少なければ液体の混合比率を高める、或いは経済性を動力性能よりも重視すべき旨の条件が満たされた場合等に液体の混合比率を高める等、例えば車両の運転条件や要求性能等に応じて、この混合比率を適切に変化させることも可能となる。反対に、常に混合比率を一定に維持することも可能となる。 According to this aspect, the main fuel and the liquid are mixed at a desired mixing ratio by the generation control means that can take the form of various processing units such as an ECU, various controllers or various computer systems such as a microcomputer device. This generating means is controlled. For this reason, for example, the condition that the mixing ratio of the main fuel should be increased if the remaining amount of liquid is small, and conversely the mixing ratio of the liquid should be increased if the remaining amount of main fuel is small, or the economy should be emphasized over the power performance. It is also possible to appropriately change the mixing ratio according to, for example, the driving conditions and required performance of the vehicle. On the contrary, it is possible to always maintain the mixing ratio constant.
 一方、このように混合比率が可変とされる場合、混合比率に応じて噴射量を変化させる仕組みが必要となる。その点、本発明によれば、第1発熱量特定手段により、或いは場合によっては更に第2発熱量特定手段により、液体の発熱量が特定されるため、当該混合比率が如何なる変化態様を伴って変化しようと、最終的にエマルジョン燃料の噴射量を最適化することが容易にして可能である。即ち、この種の生成手段は、本発明に係る内燃機関の制御装置が存在して初めて有効に動作し得るのである。 On the other hand, when the mixing ratio is variable as described above, a mechanism for changing the injection amount in accordance with the mixing ratio is required. In that respect, according to the present invention, the heat generation amount of the liquid is specified by the first heat generation amount specifying means, or in some cases, further by the second heat generation amount specifying means, so that the mixing ratio is accompanied by any change mode. Even if it changes, it is possible to easily optimize the injection amount of the emulsion fuel. That is, this type of generating means can operate effectively only when the control device for an internal combustion engine according to the present invention exists.
 本発明のこのような作用及び他の利得は次に説明する発明を実施するための最良の形態から明らかにされる。 Such an operation and other advantages of the present invention will be clarified from the best mode for carrying out the invention described below.
本発明の第1実施形態に係るエンジンシステムの構成を概念的に表してなる概略構成図である。1 is a schematic configuration diagram conceptually showing a configuration of an engine system according to a first embodiment of the present invention. 図1のエンジンシステムにおける燃料供給装置の構成を概念的に表してなる概略構成図である。It is a schematic block diagram which represents notionally the structure of the fuel supply apparatus in the engine system of FIG. 図1のエンジンシステムにおいてECUにより実行される噴射制御のフローチャートである。2 is a flowchart of injection control executed by an ECU in the engine system of FIG. 本発明の第2実施形態に係る燃料供給装置の構成を概念的に表してなる概略構成図である。It is a schematic block diagram which represents notionally the structure of the fuel supply apparatus which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る燃料供給装置の構成を概念的に表してなる概略構成図である。It is a schematic block diagram which represents notionally the structure of the fuel supply apparatus which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る燃料供給装置の構成を概念的に表してなる概略構成図である。It is a schematic block diagram which represents notionally the structure of the fuel supply apparatus which concerns on 4th Embodiment of this invention.
符号の説明Explanation of symbols
 10…エンジンシステム、100…ECU、200…エンジン、203…吸気管、204…スロットルバルブ、208…ユニットインジェクタ、213…排気管、300…燃料供給装置、301…メインタンク、302…低圧フィードパイプ、303…フィルタ、304…低圧電動ポンプ、305…第1サブタンク、306…低圧フィードパイプ、307…フィルタ、308…低圧電動ポンプ、309…ミキサ、310…高圧フィードパイプ、311…高圧電動ポンプ、312…リリーフパイプ、313…リターンパイプ、400…燃料供給装置、500…燃料供給装置、600…燃料供給装置。 DESCRIPTION OF SYMBOLS 10 ... Engine system, 100 ... ECU, 200 ... Engine, 203 ... Intake pipe, 204 ... Throttle valve, 208 ... Unit injector, 213 ... Exhaust pipe, 300 ... Fuel supply device, 301 ... Main tank, 302 ... Low pressure feed pipe, 303 ... Filter, 304 ... Low pressure electric pump, 305 ... First sub tank, 306 ... Low pressure feed pipe, 307 ... Filter, 308 ... Low pressure electric pump, 309 ... Mixer, 310 ... High pressure feed pipe, 311 ... High pressure electric pump, 312 ... Relief pipe, 313 ... return pipe, 400 ... fuel supply device, 500 ... fuel supply device, 600 ... fuel supply device.
<発明の実施形態>
 <第1実施形態>
  <実施形態の構成>
 始めに、図1を参照して、本発明の第1実施形態に係るエンジンシステム10の構成について説明する。ここに、図1は、エンジンシステム10の構成を概念的に表してなる概略構成図である。
<Embodiment of the Invention>
<First Embodiment>
<Configuration of Embodiment>
First, the configuration of the engine system 10 according to the first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic configuration diagram conceptually showing the configuration of the engine system 10.
 図1において、エンジンシステム10は、図示せぬ車両に搭載され、ECU100、エンジン200及び後述する燃料供給装置300を備える。 1, an engine system 10 is mounted on a vehicle (not shown) and includes an ECU 100, an engine 200, and a fuel supply device 300 described later.
 ECU100は、CPU(Central Processing Unit)、ROM(Read Only Memory)及びRAM(Random Access Memory)等を備え、エンジン200及び燃料供給装置300の動作を制御することが可能に構成された電子制御ユニットであり、本発明に係る「内燃機関の制御装置」の一例である。ECU100は、ROMに格納される制御プログラムに従って、後述する噴射制御を実行可能に構成されている。 The ECU 100 is an electronic control unit that includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like, and is configured to control operations of the engine 200 and the fuel supply device 300. It is an example of a “control device for an internal combustion engine” according to the present invention. The ECU 100 is configured to be able to execute injection control described later according to a control program stored in the ROM.
 尚、ECU100は、本発明に係る「第1発熱量特定手段」、「決定手段」、「噴射制御手段」、「含水比率特定手段」、「反応効率特定手段」及び「生成制御手段」の夫々一例として機能する一体の電子制御ユニットであり、これら各手段に係る動作は、全てECU100によって実行されるように構成されている。但し、本発明に係るこれら各手段の物理的、機械的及び電気的な構成はこれに限定されるものではなく、例えばこれら各手段は、複数のECU、各種処理ユニット、各種コントローラ或いはマイコン装置等各種コンピュータシステム等として構成されていてもよい。 Note that the ECU 100 is one of the “first heat generation amount specifying means”, “determination means”, “injection control means”, “moisture content specifying means”, “reaction efficiency specifying means”, and “generation control means” according to the present invention. It is an integrated electronic control unit that functions as an example, and all the operations related to these means are configured to be executed by the ECU 100. However, the physical, mechanical, and electrical configurations of each of the units according to the present invention are not limited to this. For example, each of these units includes a plurality of ECUs, various processing units, various controllers, a microcomputer device, and the like. It may be configured as various computer systems.
 エンジン200は、後述するエマルジョン燃料を燃料とする、本発明に係る「内燃機関」の一例たる直列4気筒ディーゼルエンジンである。エンジン200の概略について説明すると、エンジン200は、シリンダブロック201に4本のシリンダ202が並列配置された構成を有している。そして、各気筒内において燃料を含む混合気が圧縮自着火した際に生じる力が、不図示のピストンを紙面と垂直な方向に往復運動させ、更にコネクティングロッドを介してピストンに連結されるクランクシャフト(いずれも不図示)の回転運動に変換される構成となっている。以下に、エンジン200の要部構成を、その動作の一部と共に説明する。尚、本実施形態に係るエンジン200は、シリンダ202が図1において紙面と垂直な方向に4本並列してなる直列4気筒ディーゼルエンジンであるが、個々のシリンダ202の構成は相互に等しいため、ここでは一のシリンダ202についてのみ説明することとする。 Engine 200 is an in-line four-cylinder diesel engine that is an example of an “internal combustion engine” according to the present invention that uses emulsion fuel described later as fuel. The outline of the engine 200 will be described. The engine 200 has a configuration in which four cylinders 202 are arranged in parallel in a cylinder block 201. The force generated when the air-fuel mixture containing the fuel is compressed and ignited in each cylinder causes a piston (not shown) to reciprocate in a direction perpendicular to the paper surface, and is further connected to the piston via a connecting rod. It is configured to be converted into a rotational motion (both not shown). Below, the principal part structure of the engine 200 is demonstrated with a part of the operation | movement. The engine 200 according to this embodiment is an in-line four-cylinder diesel engine in which four cylinders 202 are arranged in parallel in a direction perpendicular to the paper surface in FIG. 1, but the configuration of the individual cylinders 202 is equal to each other. Here, only one cylinder 202 will be described.
 シリンダ202内における混合気の燃焼に際し、エアフィルタを介して外部から吸入された空気たる吸入空気は、吸気管203に導かれる。吸気管203には、吸入空気の量を調節可能なディーゼルスロットルバルブ204が配設されている。このディーゼルスロットルバルブ204は、ECU100と電気的に接続され且つECU100により上位に制御されるスロットルバルブモータ(不図示)から供給される駆動力により回転可能に構成された回転弁であり、ディーゼルスロットルバルブ204を境にした吸気管203の上流部分と下流部分とをほぼ遮断する全閉位置から、ほぼ全面的に連通させる全開位置まで、その回転位置が連続的に制御される構成となっている。 In the combustion of the air-fuel mixture in the cylinder 202, the intake air, which is the air sucked from the outside through the air filter, is guided to the intake pipe 203. A diesel throttle valve 204 capable of adjusting the amount of intake air is disposed in the intake pipe 203. The diesel throttle valve 204 is a rotary valve that is configured to be rotatable by a driving force supplied from a throttle valve motor (not shown) that is electrically connected to the ECU 100 and controlled by the ECU 100 in a higher level. The rotational position is continuously controlled from the fully closed position where the upstream portion and the downstream portion of the intake pipe 203 at the boundary of 204 are substantially blocked to the fully opened position where the intake pipe 203 communicates almost entirely.
 尚、エンジン200は、ディーゼルエンジンであり、その出力は、ガソリン等を燃料とするエンジンにおいてなされる空燃比制御(吸入空気量に応じた制御)と異なり、噴射量の増減制御を介してコントロールされる。従って、ディーゼルスロットルバルブ204は、エンジン200の動作期間において、基本的に全開位置(図示するディーゼルスロットルバルブ204の位置が全開位置に相当する)に制御される。また、このディーゼルスロットルバルブ204の下流側(気筒側)には、ディーゼルスロットルバルブ204を通過した吸入空気の温度たる吸気温を検出可能な第1吸気温センサ205が配設されている。第1吸気温センサ205は、ECU100と電気的に接続されており、検出された吸気温は、ECU100によって一定又は不定の周期で参照される構成となっている。 The engine 200 is a diesel engine, and its output is controlled through increase / decrease control of the injection amount, unlike air-fuel ratio control (control according to the intake air amount) performed in an engine using gasoline or the like as fuel. The Therefore, the diesel throttle valve 204 is basically controlled to the fully open position (the position of the illustrated diesel throttle valve 204 corresponds to the fully open position) during the operation period of the engine 200. A first intake air temperature sensor 205 capable of detecting the intake air temperature, which is the temperature of the intake air that has passed through the diesel throttle valve 204, is disposed on the downstream side (cylinder side) of the diesel throttle valve 204. The first intake air temperature sensor 205 is electrically connected to the ECU 100, and the detected intake air temperature is referred to by the ECU 100 at a constant or indefinite period.
 吸気管203は、第1吸気温センサ205の下流側(吸気の流れ方向を基準とする方向概念であって、この場合、シリンダ側)において吸気マニホールド206と連通しており、この吸気マニホールド206を介して更に、各シリンダに設けられた吸気ポート207に連通している。一方、吸気管203に導かれる吸入空気は、第1吸気温センサ205の下流側且つ吸気マニホールド206の上流側の合流位置において、後述するEGRガスと混合され、吸気ポート207とシリンダ内部とを連通させることが可能に構成された不図示の吸気バルブの開弁時にシリンダ202内に吸気として吸入される。 The intake pipe 203 communicates with the intake manifold 206 on the downstream side of the first intake air temperature sensor 205 (the direction concept based on the intake flow direction, in this case, the cylinder side). Further, it communicates with an intake port 207 provided in each cylinder. On the other hand, the intake air guided to the intake pipe 203 is mixed with EGR gas, which will be described later, at the merging position downstream of the first intake temperature sensor 205 and upstream of the intake manifold 206, and communicates the intake port 207 and the inside of the cylinder. When the intake valve (not shown) configured to be able to be opened is opened, it is sucked into the cylinder 202 as intake air.
 シリンダ202内には、筒内直噴型のユニットインジェクタ208の燃料噴射用のノズルが露出しており、このノズルから燃料が噴射される構成となっている。噴射された燃料は、各シリンダ内部で、当該吸気と混合され、上述した混合気となる。尚、燃料は、個々のシリンダ202において、ユニットインジェクタ208を介し、目標噴射量に相当する燃料が、燃焼室内の急激な温度上昇を防止するための、或いは燃料と吸気とを十分に予混合するためのパイロット噴射と、目標噴射量とパイロット噴射量との差分に相当するメイン噴射とに分割して噴射される構成となっている。 In the cylinder 202, a fuel injection nozzle of a direct injection type unit injector 208 is exposed, and fuel is injected from this nozzle. The injected fuel is mixed with the intake air inside each cylinder and becomes the above-described air-fuel mixture. In addition, the fuel corresponding to the target injection amount in each cylinder 202 passes through the unit injector 208 to prevent a rapid temperature rise in the combustion chamber or to sufficiently premix the fuel and the intake air. Therefore, the fuel injection is divided into main injection corresponding to the difference between the target injection amount and the pilot injection amount.
 ここで、ユニットインジェクタ208の構成について補足すると、ユニットインジェクタ208は、ECU100から供給される指令に基づいて作動する電磁弁と、この電磁弁への通電時に燃料を噴射するノズル(いずれも不図示)とを備える。当該電磁弁は、コモンレール209の高圧燃料が印加される圧力室と、当該圧力室に接続された低圧側の低圧通路との間の連通状態を制御可能に構成されており、通電時に当該加圧室と低圧通路とを連通させると共に、通電停止時に当該加圧室と低圧通路とを相互に遮断する。 Here, to supplement the configuration of the unit injector 208, the unit injector 208 includes a solenoid valve that operates based on a command supplied from the ECU 100, and a nozzle that injects fuel when the solenoid valve is energized (both not shown). With. The solenoid valve is configured to be able to control the communication state between the pressure chamber to which the high-pressure fuel of the common rail 209 is applied and the low-pressure side low-pressure passage connected to the pressure chamber. The chamber and the low pressure passage are communicated with each other, and the pressurizing chamber and the low pressure passage are shut off from each other when energization is stopped.
 一方、このノズルは、噴孔を開閉するニードルを内蔵し、圧力室の燃料圧力がニードルを閉弁方向(噴孔を閉じる方向)に付勢している。従って、電磁弁への通電により加圧室と低圧通路とが連通し、圧力室の燃料圧力が低下すると、ニードルがノズル内を上昇して開弁する(噴孔を開く)ことにより、コモンレール209より供給された高圧燃料を噴孔より噴射することが可能に構成される。また、電磁弁への通電停止により加圧室と低圧通路とが相互に遮断されて圧力室の燃料圧力が上昇すると、ニードルがノズル内を下降して閉弁することにより、噴射が終了する構成となっている。 On the other hand, this nozzle has a built-in needle that opens and closes the nozzle hole, and the fuel pressure in the pressure chamber urges the needle in the valve closing direction (direction in which the nozzle hole is closed). Accordingly, when the pressure chamber and the low-pressure passage are connected by energization of the solenoid valve and the fuel pressure in the pressure chamber decreases, the needle rises in the nozzle and opens (opens the nozzle hole), thereby causing the common rail 209 to open. The high-pressure fuel supplied more can be injected from the injection hole. In addition, when the energization of the solenoid valve is stopped, the pressurization chamber and the low pressure passage are cut off from each other and the fuel pressure in the pressure chamber rises, and the needle is lowered in the nozzle to close the valve, thereby terminating the injection. It has become.
 コモンレール209は、ECU100と電気的に接続され、燃料供給装置300から供給される燃料を、目標レール圧まで蓄積することが可能に構成された、高圧貯留手段である。尚、コモンレール209には、レール圧を検出することが可能なレール圧センサ及びレール圧が上限値を超えないように蓄積される燃料量を制限するプレッシャリミッタ等が配設されるが、ここではその図示を省略することとする。前述したユニットインジェクタ208は、シリンダ202毎に搭載されており、夫々が高圧デリバリ210を介してコモンレール209に接続されている。尚、図面の煩雑化を防ぐ目的から、燃料供給装置300については、後に図2を参照する形で詳述することとする。 The common rail 209 is high-pressure storage means that is electrically connected to the ECU 100 and configured to accumulate fuel supplied from the fuel supply device 300 up to a target rail pressure. The common rail 209 is provided with a rail pressure sensor capable of detecting the rail pressure and a pressure limiter for limiting the amount of fuel accumulated so that the rail pressure does not exceed the upper limit value. The illustration is omitted. The unit injector 208 described above is mounted for each cylinder 202, and each unit injector 208 is connected to the common rail 209 via the high-pressure delivery 210. For the purpose of preventing complication of the drawing, the fuel supply device 300 will be described in detail later with reference to FIG.
 上述した混合気は、圧縮工程において自着火して燃焼し、燃焼済みガスとして、或いは一部未燃の混合気として、吸気バルブの開閉に連動して開閉する排気バルブ(不図示)の開弁時に排気ポート211を介して排気マニホールド212に導かれる構成となっている。この排気マニホールド212は、排気管213に連通しており、排気の大部分は、この排気管213に導かれる構成となっている。 The above-described air-fuel mixture burns by self-ignition in the compression process, and opens an exhaust valve (not shown) that opens and closes in conjunction with opening and closing of the intake valve as a burned gas or a partially unburned air-fuel mixture The structure is sometimes led to the exhaust manifold 212 via the exhaust port 211. The exhaust manifold 212 communicates with the exhaust pipe 213, and most of the exhaust gas is guided to the exhaust pipe 213.
 一方、排気管213には、タービンハウジング214に収容される形でタービン215が設置されている。タービン215は、排気管213に導かれた排気の圧力(即ち、排気圧)により所定の回転軸を中心として回転可能に構成されている。このタービン215の回転軸は、コンプレッサハウジング217に収容される形で吸気管203に設置されたコンプレッサ216と共有されており、タービン215が排気圧により回転すると、コンプレッサ216も当該回転軸を中心として回転する構成となっている。 On the other hand, a turbine 215 is installed in the exhaust pipe 213 so as to be accommodated in the turbine housing 214. The turbine 215 is configured to be rotatable about a predetermined rotation axis by the pressure of exhaust gas (that is, exhaust pressure) guided to the exhaust pipe 213. The rotating shaft of the turbine 215 is shared with the compressor 216 installed in the intake pipe 203 so as to be accommodated in the compressor housing 217. When the turbine 215 is rotated by exhaust pressure, the compressor 216 is also centered on the rotating shaft. It is configured to rotate.
 コンプレッサ216は、吸気管203に導かれる吸入空気を、その回転に伴う圧力により上述した吸気マニホールド206へ圧送供給することが可能に構成されており、このコンプレッサ216による吸入空気の圧送効果により、所謂過給が実現される構成となっている。即ち、タービン215とコンプレッサ216とにより、一種のターボチャージャが構成されている。尚、コンプレッサ216と吸気マニホールド206との間には、インタークーラが設置され、過給された吸入空気を冷却することによって過給効率が向上せしめられてもよい。 The compressor 216 is configured to be able to pump and supply the intake air guided to the intake pipe 203 to the intake manifold 206 described above by the pressure accompanying the rotation thereof. Supercharging is realized. In other words, the turbine 215 and the compressor 216 constitute a kind of turbocharger. An intercooler may be installed between the compressor 216 and the intake manifold 206, and the supercharging efficiency may be improved by cooling the supercharged intake air.
 尚、吸気管203におけるコンプレッサ216の上流側には、エアフローメータ218及び第2吸気温センサ219が配設されている。エアフローメータ218は、吸気管203に導かれる吸入空気の量(吸入空気量)を検出する装置であり、所謂ホットワイヤー式と称される形態が採用されている。第2吸気温センサ219は、エアフローメータ218近傍の吸入空気の温度を検出することが可能に構成された温度センサである。第2吸気温センサ219は、ECU100と電気的に接続されており、検出された吸気温は、エアフローメータ218による吸入空気量の検出精度を向上させるべく使用される。 Note that an air flow meter 218 and a second intake air temperature sensor 219 are disposed on the upstream side of the compressor 216 in the intake pipe 203. The air flow meter 218 is a device that detects the amount of intake air (intake air amount) guided to the intake pipe 203 and adopts a so-called hot wire type. The second intake air temperature sensor 219 is a temperature sensor configured to be able to detect the temperature of intake air near the air flow meter 218. The second intake air temperature sensor 219 is electrically connected to the ECU 100, and the detected intake air temperature is used to improve the detection accuracy of the intake air amount by the air flow meter 218.
 排気マニホールド212には、排気管213とは別にEGR通路220が連通している。EGR通路220は、排気マニホールド212と吸気管203とを連通させる金属製且つ中空の管状部材であり、上述した合流位置において吸気管203と連通する構成となっている。EGR通路220は、その一部の区間においてEGRクーラ222が設置された冷却通路221とEGRクーラ222が設置されないバイパス通路223とに分岐している。 The EGR passage 220 communicates with the exhaust manifold 212 separately from the exhaust pipe 213. The EGR passage 220 is a metal and hollow tubular member that allows the exhaust manifold 212 and the intake pipe 203 to communicate with each other, and is configured to communicate with the intake pipe 203 at the above-described joining position. The EGR passage 220 branches into a cooling passage 221 in which the EGR cooler 222 is installed and a bypass passage 223 in which the EGR cooler 222 is not installed in a part of the EGR passage 220.
 EGRクーラ222は、EGR通路220に設けられた冷却装置である。EGRクーラ222は、外周部にエンジン200の冷却水配管が張り巡らされた金属製且つ中空の管状部材であり、EGRパイプ220に導かれ冷却通路221を介してEGRクーラ222を通過する排気(即ち、本発明に係る「EGRガス」の一例であり、以下、「EGRガス」と称する)は、この冷却水との熱交換により冷却され、下流側(即ち、吸気管203側)へ導かれる構成となっている。EGRクーラ222には、夫々が上述したウォータジャケットに連通するインレットパイプ及びアウトレットパイプ接続されている。この際、冷却水は、インレットパイプから当該冷却水配管に流入し、アウトレットパイプを介して当該冷却水配管の外に排出される。排出された冷却水は、エンジン200の冷却水循環系に還流され、所定の経路を経て再びインレットパイプから供給される。上述したバイパス通路223は、少なくともこのEGRクーラ222をバイパスするように構成されている。 The EGR cooler 222 is a cooling device provided in the EGR passage 220. The EGR cooler 222 is a metal and hollow tubular member with the cooling water piping of the engine 200 stretched around the outer periphery, and is exhausted through the EGR cooler 222 through the cooling passage 221 through the cooling passage 221. , Which is an example of “EGR gas” according to the present invention, and hereinafter referred to as “EGR gas”) is cooled by heat exchange with the cooling water and guided to the downstream side (that is, the intake pipe 203 side). It has become. The EGR cooler 222 is connected to an inlet pipe and an outlet pipe that communicate with the water jacket described above. At this time, the cooling water flows into the cooling water pipe from the inlet pipe and is discharged out of the cooling water pipe through the outlet pipe. The discharged cooling water is returned to the cooling water circulation system of the engine 200, and is supplied again from the inlet pipe through a predetermined path. The bypass passage 223 described above is configured to bypass at least the EGR cooler 222.
 切り換えバルブ224は、EGR通路220とバイパス通路223との分岐部位に設置された開閉可能な弁体と、当該弁体を駆動する駆動装置を含むバルブ機構である。切り換えバルブ224の弁体は、当該駆動装置により開閉状態が連続的に変化するように構成されており、当該開閉状態に応じて、冷却通路221とバイパス通路223との間のEGRガスの流量比率を制御することが可能に構成されている。切り換えバルブ224の駆動装置は、ECU100と電気的に接続されており、切り換えバルブ224の弁体の開閉状態は、ECU100により上位に制御される構成となっている。 The switching valve 224 is a valve mechanism including an openable / closable valve body installed at a branch portion between the EGR passage 220 and the bypass passage 223 and a driving device for driving the valve body. The valve body of the switching valve 224 is configured such that the open / close state is continuously changed by the driving device, and the flow rate ratio of EGR gas between the cooling passage 221 and the bypass passage 223 according to the open / close state. It is possible to control. The driving device of the switching valve 224 is electrically connected to the ECU 100, and the opening / closing state of the valve body of the switching valve 224 is controlled to the upper level by the ECU 100.
 EGRバルブ225は、冷却通路221とバイパス通路223との合流位置下流側(吸気管203側)においてEGR通路220に設置された開閉可能な弁体と、当該弁体を駆動する駆動装置を含むバルブ機構である。EGRバルブ225の弁体は、当該駆動装置により開閉状態が連続的に変化するように構成されており、当該開閉状態に応じて、EGR通路220を流れるEGRガスの流量、即ち、EGR量を制御することが可能に構成されている。EGRバルブ225の駆動装置は、ECU100と電気的に接続されており、EGRバルブ225の弁体の開閉状態は、ECU100により上位に制御される構成となっている。EGR通路220、冷却通路221、EGRクーラ222、バイパス通路223、切り換えバルブ224及びEGRバルブ225は、全体としてEGR装置を構成している。 The EGR valve 225 includes a valve body that is installed in the EGR passage 220 on the downstream side (intake pipe 203 side) where the cooling passage 221 and the bypass passage 223 are joined, and a driving device that drives the valve body. Mechanism. The valve body of the EGR valve 225 is configured such that the open / close state is continuously changed by the driving device, and the flow rate of the EGR gas flowing through the EGR passage 220, that is, the EGR amount is controlled according to the open / close state. It is configured to be able to. The drive device of the EGR valve 225 is electrically connected to the ECU 100, and the opening / closing state of the valve body of the EGR valve 225 is configured to be controlled higher by the ECU 100. The EGR passage 220, the cooling passage 221, the EGR cooler 222, the bypass passage 223, the switching valve 224 and the EGR valve 225 constitute an EGR device as a whole.
 排気管213におけるタービン215の下流側には、第1酸化触媒226、DPF227及び第2酸化触媒228が設置されている。 A first oxidation catalyst 226, a DPF 227, and a second oxidation catalyst 228 are installed downstream of the turbine 215 in the exhaust pipe 213.
 第1酸化触媒226は、排気中のCO、HC(主としてSOF)及びNO等を酸化可能に構成された触媒コンバータである。 The first oxidation catalyst 226 is a catalytic converter configured to be able to oxidize CO, HC (mainly SOF), NO and the like in exhaust gas.
 DPF227は、排気中のPMを捕捉可能に構成されたフィルタである。DPFは、金属製の筐体にコージェライトやSiC等のセラミック担体によって構成されたフィルタが収容された構造を有する。このフィルタは、排気の流れる方向に伸長し且つ排気の流れる方向と垂直な断面がハニカム状をなす複数の排気通路を形成している。この排気通路は、排気の入口側と出口側とのうち一方が、相互に隣接しないように互い違いに目封じされており、DPF227は、所謂セラミックウォールフロー型のフィルタ構造を有している。 The DPF 227 is a filter configured to be able to capture PM in the exhaust. The DPF has a structure in which a filter made of a ceramic carrier such as cordierite or SiC is accommodated in a metal casing. This filter has a plurality of exhaust passages extending in the direction of exhaust flow and having a cross section perpendicular to the direction of exhaust flow forming a honeycomb shape. The exhaust passages are alternately sealed so that one of the exhaust inlet side and the outlet side is not adjacent to each other, and the DPF 227 has a so-called ceramic wall flow type filter structure.
 第2酸化触媒228は、DPF227の下流側に設けられており、DPF227のセラミック担体を通過する排気中の各主成分を酸化可能に構成されている。 The second oxidation catalyst 228 is provided on the downstream side of the DPF 227, and is configured to oxidize each main component in the exhaust gas that passes through the ceramic carrier of the DPF 227.
 尚、図示は省略するが、エンジンシステム10には、エンジン200の機関回転速度NEを検出可能に構成されたNEセンサ及びアクセルペダルの開度たるアクセル開度Taを検出可能に構成されたアクセルポジションセンサを含む各種のセンサが搭載されており、夫々ECU100と電気的に接続され、検出結果が、ECU100により一定又は不定の周期で参照され、各種動作制御に供される構成となっている。 Although not shown, the engine system 10 includes an NE sensor configured to be able to detect the engine rotational speed NE of the engine 200 and an accelerator position configured to be able to detect an accelerator opening Ta that is an opening of an accelerator pedal. Various sensors including sensors are mounted, and each sensor is electrically connected to the ECU 100. The detection result is referred to by the ECU 100 at a constant or indefinite period, and is used for various operation controls.
 次に、図2を参照し、燃料供給装置300の構成について説明する。ここに、図2は、燃料供給装置300の構成を概念的に表してなる概略構成図である。尚、同図において、図1と重複する箇所には同一の符合を付してその説明を適宜省略することとする。 Next, the configuration of the fuel supply apparatus 300 will be described with reference to FIG. FIG. 2 is a schematic configuration diagram conceptually showing the configuration of the fuel supply device 300. In the figure, the same reference numerals are given to the same portions as those in FIG. 1, and the description thereof will be omitted as appropriate.
 図2において、燃料供給装置300は、エマルジョン燃料を生成し、且つ先に述べた燃料としてコモンレール209に供給可能に構成された、本発明に係る「生成手段」の一例である。燃料供給装置300は、メインタンク301、低圧フィードパイプ302、フィルタ303、低圧電動ポンプ304、第1サブタンク305、低圧フィードパイプ306、フィルタ307、低圧電動ポンプ308、ミキサ309、高圧フィードパイプ310、高圧電動ポンプ311、リリーフパイプ312、リターンパイプ313、流量センサ314及び流量センサ315を備える。 2, the fuel supply device 300 is an example of the “generating means” according to the present invention configured to generate emulsion fuel and be supplied to the common rail 209 as the fuel described above. The fuel supply apparatus 300 includes a main tank 301, a low pressure feed pipe 302, a filter 303, a low pressure electric pump 304, a first sub tank 305, a low pressure feed pipe 306, a filter 307, a low pressure electric pump 308, a mixer 309, a high pressure feed pipe 310, and a high pressure. An electric pump 311, a relief pipe 312, a return pipe 313, a flow sensor 314 and a flow sensor 315 are provided.
 メインタンク301は、軽油FLを貯留可能に構成された金属製の容器である。メインタンク301に貯留された軽油FLは、本発明に係る「主燃料」の一例である。 The main tank 301 is a metal container configured to store the light oil FL. The light oil FL stored in the main tank 301 is an example of the “main fuel” according to the present invention.
 低圧フィードパイプ302は、一端部がこのメインタンク301底部に固定され、他端部がミキサ309に接続されてなる金属製の管状部材である。フィルタ303は、この低圧フィードパイプ302に設置されており、低圧フィードパイプ302に導かれた軽油FLを濾過可能に構成されたメッシュ状の濾過部材を有する濾過装置である。 The low-pressure feed pipe 302 is a metal tubular member having one end fixed to the bottom of the main tank 301 and the other end connected to the mixer 309. The filter 303 is a filtration device that is installed in the low-pressure feed pipe 302 and has a mesh-like filtration member configured to be able to filter the light oil FL guided to the low-pressure feed pipe 302.
 低圧電動ポンプ304は、ミキサ309とフィルタ303との間に設置された流体吐出装置である。低圧電動ポンプ304は、メインタンク301から貯留された軽油FLを吸い上げ、その吐出圧に応じた吐出速度(即ち、単位時間当たりの吐出量)でミキサ309に軽油FLを供給可能に構成された(尚、供給方向が図示実線の矢線で示される)、不図示のモータを駆動力源とする所謂電気駆動式の渦巻きポンプである。このモータを駆動制御する不図示の駆動装置は、ECU100と電気的に接続されており、当該モータの回転速度は、ECU100により制御される構成となっている。この低圧電動ポンプ304のモータの回転速度は、低圧電動ポンプ304における軽油FLの吐出圧と一義的な関係を有しているため、結局、燃料供給装置300における軽油FLのミキサ309への供給量は、ECU100により制御される構成となっている。 The low-pressure electric pump 304 is a fluid discharge device installed between the mixer 309 and the filter 303. The low-pressure electric pump 304 is configured to suck up the light oil FL stored from the main tank 301 and supply the light oil FL to the mixer 309 at a discharge speed (that is, a discharge amount per unit time) according to the discharge pressure ( Note that the supply direction is indicated by a solid arrow in the figure), which is a so-called electric drive type centrifugal pump using a motor (not shown) as a driving force source. A driving device (not shown) that drives and controls the motor is electrically connected to the ECU 100, and the rotational speed of the motor is controlled by the ECU 100. Since the rotational speed of the motor of the low-pressure electric pump 304 is uniquely related to the discharge pressure of the light oil FL in the low-pressure electric pump 304, the supply amount of the light oil FL to the mixer 309 in the fuel supply device 300 is eventually obtained. Is configured to be controlled by the ECU 100.
 第1サブタンク305は、水WTを貯留可能に構成された金属製の容器である。第1サブタンク305に貯留された水WTは、本発明に係る「液体」及び「水」の一例である。 The first sub tank 305 is a metal container configured to be able to store water WT. The water WT stored in the first sub tank 305 is an example of “liquid” and “water” according to the present invention.
 低圧フィードパイプ306は、一端部がこの第1サブタンク305底部に固定され、他端部がミキサ309に接続されてなる金属製の管状部材である。フィルタ307は、この低圧フィードパイプ306に設置されており、低圧フィードパイプ306に導かれた水WTを濾過可能に構成されたメッシュ状の濾過部材を有する濾過装置である。 The low-pressure feed pipe 306 is a metal tubular member having one end fixed to the bottom of the first sub tank 305 and the other end connected to the mixer 309. The filter 307 is a filtration device that is installed in the low-pressure feed pipe 306 and has a mesh-like filtration member configured to filter the water WT guided to the low-pressure feed pipe 306.
 低圧電動ポンプ308は、ミキサ309とフィルタ307との間に設置された流体吐出装置である。低圧電動ポンプ308は、第1サブタンク305から貯留された水WTを吸い上げ、その吐出圧に応じた吐出速度(即ち、単位時間当たりの吐出量)でミキサ309に水WTを供給可能に構成された(尚、供給方向が図示実線の矢線で示される)、不図示のモータを駆動力源とする所謂電気駆動式の渦巻きポンプである。このモータを駆動制御する不図示の駆動装置は、ECU100と電気的に接続されており、当該モータの回転速度は、ECU100により制御される構成となっている。この低圧電動ポンプ308のモータの回転速度は、低圧電動ポンプ308における水WTの吐出圧と一義的な関係を有しているため、結局、燃料供給装置300における水WTのミキサ309への供給量は、ECU100により制御される構成となっている。 The low-pressure electric pump 308 is a fluid discharge device installed between the mixer 309 and the filter 307. The low-pressure electric pump 308 is configured to suck up the water WT stored from the first sub tank 305 and supply the water WT to the mixer 309 at a discharge speed (that is, discharge amount per unit time) according to the discharge pressure. (The supply direction is indicated by a solid arrow in the figure), which is a so-called electrically driven spiral pump using a motor (not shown) as a driving force source. A driving device (not shown) that drives and controls the motor is electrically connected to the ECU 100, and the rotational speed of the motor is controlled by the ECU 100. Since the rotational speed of the motor of the low-pressure electric pump 308 has a unique relationship with the discharge pressure of the water WT in the low-pressure electric pump 308, the supply amount of the water WT to the mixer 309 in the fuel supply device 300 is eventually obtained. Is configured to be controlled by the ECU 100.
 ミキサ309は、低圧フィードパイプ302を介して導かれた軽油FL及び低圧フィードパイプ306を介して導かれた水WTを一時的に貯留可能に構成された容器部と、当該容器部に回転可能に設置された攪拌部材を有し、この攪拌部材の回転により軽油FL及び水WTを攪拌可能に構成された攪拌機とを有する混合装置である。ミキサ309は、この攪拌機の攪拌作用により、水WTと軽油FLとを略均一に混合可能に構成されている。即ち、燃料供給装置300では、最終的に、このミキサ309の攪拌作用によってエマルジョン燃料が生成される。尚、ミキサ309には、ミキサ309からメインタンク301及び第1サブタンク305へのエマルジョン燃料の逆流を防止する逆流防止機構が付設されている。 The mixer 309 is configured to be capable of temporarily storing the light oil FL guided through the low-pressure feed pipe 302 and the water WT guided through the low-pressure feed pipe 306, and to be rotatable to the container unit. It is a mixing apparatus having an agitating member installed and an agitator configured to agitate light oil FL and water WT by rotating the agitating member. The mixer 309 is configured so that the water WT and the light oil FL can be mixed substantially uniformly by the stirring action of the stirrer. That is, in the fuel supply device 300, the emulsion fuel is finally generated by the stirring action of the mixer 309. The mixer 309 is provided with a backflow prevention mechanism that prevents backflow of emulsion fuel from the mixer 309 to the main tank 301 and the first sub tank 305.
 一方、ミキサ309には、高圧フィードパイプ310の一端部が接続されている。高圧フィードパイプ310は、金属製の管状部材であり、その他端部は、先述したコモンレール209に接続されている。コモンレール209の内部は既に述べた如く高圧であり、高圧フィードパイプ310は、低圧フィードパイプ302及び306と較べてより高い物理強度を有している。 On the other hand, one end of a high-pressure feed pipe 310 is connected to the mixer 309. The high-pressure feed pipe 310 is a metal tubular member, and the other end is connected to the common rail 209 described above. The inside of the common rail 209 has a high pressure as described above, and the high pressure feed pipe 310 has higher physical strength than the low pressure feed pipes 302 and 306.
 高圧電動ポンプ311は、高圧フィードパイプ310における、ミキサ309とコモンレール209とに挟まれた区間に設置された流体吐出装置である。高圧電動ポンプ311は、ミキサ309から、生成されたエマルジョン燃料を吸い上げ、その吐出圧に応じた吐出速度(即ち、単位時間当たりの吐出量)でコモンレール209にエマルジョン燃料を供給可能に構成された(尚、供給方向が図示実線の矢線で示される)、不図示のモータを駆動力源とする所謂電気駆動式の渦巻きポンプである。このモータを駆動制御する不図示の駆動装置は、ECU100と電気的に接続されており、モータの回転速度は、ECU100により制御される。この高圧電動ポンプ311のモータの回転速度は、高圧電動ポンプ308におけるエマルジョン燃料の吐出圧と一義的な関係を有しているため、結局、燃料供給装置300における、エマルジョン燃料のコモンレール209への供給量は、ECU100により制御される構成となっている。尚、高圧電動ポンプ308は、高圧のコモンレール209に対し十分にエマルジョン燃料の供給を行い得るように、その最大吐出圧が、低圧電動ポンプ304及び308と較べて高く構成されている。 The high-pressure electric pump 311 is a fluid discharge device installed in a section between the mixer 309 and the common rail 209 in the high-pressure feed pipe 310. The high-pressure electric pump 311 is configured to suck up the generated emulsion fuel from the mixer 309 and supply the emulsion fuel to the common rail 209 at a discharge speed (that is, a discharge amount per unit time) according to the discharge pressure ( Note that the supply direction is indicated by a solid arrow in the figure), which is a so-called electric drive type centrifugal pump using a motor (not shown) as a driving force source. A drive device (not shown) that drives and controls the motor is electrically connected to the ECU 100, and the rotational speed of the motor is controlled by the ECU 100. Since the rotational speed of the motor of the high-pressure electric pump 311 has a unique relationship with the discharge pressure of the emulsion fuel in the high-pressure electric pump 308, the supply of emulsion fuel to the common rail 209 in the fuel supply device 300 is eventually achieved. The amount is controlled by the ECU 100. Note that the maximum discharge pressure of the high-pressure electric pump 308 is higher than that of the low-pressure electric pumps 304 and 308 so that the emulsion fuel can be sufficiently supplied to the high-pressure common rail 209.
 リリーフパイプ312は、一端部がコモンレール209に接続され、他端部がリターンパイプ313と接続された金属製の管状部材である。ここで、先述したように、コモンレール209には、コモンレール209の内圧であるレール圧が上限値を超えないようにプレッシャリミッタが配設されている。このプレッシャリミッタは、所謂圧力調整弁の一種であり、レール圧が上限値を超えると開弁する構成を有している。リリーフパイプ312は、このプレッシャリミッタを介してコモンレール209に接続されており、余剰なエマルジョン燃料は、このプレッシャリミッタの開弁時にリターンパイプ313に供給される構成となっている(尚、供給方向は、図示破線の矢線参照)。 The relief pipe 312 is a metal tubular member having one end connected to the common rail 209 and the other end connected to the return pipe 313. Here, as described above, the common rail 209 is provided with a pressure limiter so that the rail pressure that is the internal pressure of the common rail 209 does not exceed the upper limit value. This pressure limiter is a kind of so-called pressure regulating valve, and has a configuration that opens when the rail pressure exceeds an upper limit value. The relief pipe 312 is connected to the common rail 209 via this pressure limiter, and excess emulsion fuel is supplied to the return pipe 313 when the pressure limiter is opened (the supply direction is the same). , See the broken arrows in the figure).
 リターンパイプ313は、導入側の端部が、各ユニットインジェクタ210及び上記リリーフパイプ312に接続され、これらから余剰なエマルジョン燃料が流入する構成となっている。一方、リターンパイプ313における排出側の端部は、ミキサ209に接続されており、この余剰なエマルジョン燃料は、最終的にミキサ209に還流する構成となっている(尚、供給方向は、図示破線の矢線参照)。尚、リリーフパイプ312及びリターンパイプ313には、夫々逆流防止弁が付設されており、夫々コモンレール209及びユニットインジェクタ210側へのエマルジョン燃料の逆流が防止される構成となっている。 The return pipe 313 is connected to each unit injector 210 and the relief pipe 312 at the end on the introduction side, and excess emulsion fuel flows from these. On the other hand, the end on the discharge side of the return pipe 313 is connected to the mixer 209, and this excess emulsion fuel is finally returned to the mixer 209 (note that the supply direction is indicated by the broken line in the figure). (See arrow of). The relief pipe 312 and the return pipe 313 are respectively provided with a backflow prevention valve so that the backflow of the emulsion fuel to the common rail 209 and the unit injector 210 is prevented.
 流量センサ314は、低圧フィードパイプ302内部に検出端子が露出してなる、低圧フィードパイプ302における軽油FLの流量を検出可能に構成されたセンサである。流量センサ314は、ECU100と電気的に接続されており、検出された軽油FLの流量は、ECU100により一定又は不定の周期で参照される構成となっている。 The flow rate sensor 314 is a sensor configured to be able to detect the flow rate of the light oil FL in the low pressure feed pipe 302 in which the detection terminal is exposed inside the low pressure feed pipe 302. The flow rate sensor 314 is electrically connected to the ECU 100, and the detected flow rate of the light oil FL is referred to by the ECU 100 at a constant or indefinite period.
 流量センサ315は、低圧フィードパイプ306内部に検出端子が露出してなる、低圧フィードパイプ306における水WTの流量を検出可能に構成されたセンサである。流量センサ315は、ECU100と電気的に接続されており、検出された水WTの流量は、ECU100により一定又は不定の周期で参照される構成となっている。 The flow rate sensor 315 is a sensor configured to be able to detect the flow rate of the water WT in the low pressure feed pipe 306 in which the detection terminal is exposed inside the low pressure feed pipe 306. The flow rate sensor 315 is electrically connected to the ECU 100, and the detected flow rate of the water WT is referred to by the ECU 100 at a constant or indefinite period.
 ここで、燃料供給装置300において、ECU100は、ミキサ309で生成されるエマルジョン燃料における含水比率x(即ち、燃料における水の体積比率であり、本発明に係る「含水比率」の一例である)が所望の値となるように、流量センサ314及び315により検出される軽油FL及び水WTの流量に基づいて、各低圧電動ポンプのモータ回転速度を制御している。例えば、各燃料の流量(単位時間当たりの体積流量であり、言うなれば流速である)が同一であれば、ミキサ309には水WTと軽油FLとが体積比1:1で存在することになるため、含水比率xは0.5であると推定される。逆の言い方をすれば、含水比率xの目標値が0.5であれば、最終的には、水WT及び軽油FLの流量が等しくなるように各低圧電動モータの回転速度が制御される。 Here, in the fuel supply apparatus 300, the ECU 100 has a water content ratio x in the emulsion fuel generated by the mixer 309 (that is, a volume ratio of water in the fuel, which is an example of the “water content ratio” according to the present invention). The motor rotation speed of each low-pressure electric pump is controlled based on the flow rates of the light oil FL and the water WT detected by the flow rate sensors 314 and 315 so as to obtain a desired value. For example, if the flow rate of each fuel (volume flow rate per unit time, that is, flow rate) is the same, water WT and light oil FL are present in the mixer 309 at a volume ratio of 1: 1. Therefore, the water content x is estimated to be 0.5. In other words, if the target value of the water content ratio x is 0.5, the rotational speed of each low-voltage electric motor is finally controlled so that the flow rates of the water WT and the light oil FL are equal.
 尚、本実施形態では、このように流量センサにより検出される各燃料の流量に基づいて含水比率xが推定される(即ち、本発明に係る「含水比率特定手段」の動作の一例である)。但し、含水比率xの推定には、必ずしもこの種の流量センサ或いは流量計を必要としない。例えば、予め各低圧電動ポンプのモータ回転速度或いは吐出圧と、各低圧フィードパイプにおける燃料の流量との関係がマップ化される等して得られている場合には、係るマップを参照する形で含水比率xが推定されてもよい。或いは、各低圧フィードパイプに調量弁等の調量機構が設置され、各調量弁の制御状態(例えば、弁開度や開弁時間等)に基づいて、含水比率xが推定されてもよい。或いは更に、ミキサ309に燃料中の含水比率xを直接検出可能な燃料性状センサ等が付設されていてもよい。 In this embodiment, the water content ratio x is estimated based on the flow rate of each fuel detected by the flow sensor in this way (that is, an example of the operation of the “water content ratio specifying means” according to the present invention). . However, this kind of flow sensor or flow meter is not necessarily required for estimating the water content ratio x. For example, when the relationship between the motor rotational speed or discharge pressure of each low-pressure electric pump and the flow rate of fuel in each low-pressure feed pipe is obtained in advance by mapping, the map is referred to. The moisture content x may be estimated. Alternatively, even if a metering mechanism such as a metering valve is installed in each low pressure feed pipe, and the water content ratio x is estimated based on the control state of each metering valve (for example, valve opening, valve opening time, etc.) Good. Alternatively, a fuel property sensor or the like that can directly detect the water content ratio x in the fuel may be attached to the mixer 309.
  <実施形態の動作>
   <噴射制御の概要>
 燃料供給装置300は、上述したようにメインタンク301に貯留された軽油FLと第1サブタンク305に貯留された水WTとが、エマルジョン燃料たる燃料の含水比率xが目標値となるようにミキサ309により略均一に混合される構成となっており、生成されたエマルジョン燃料が、上述した燃料としてコモンレール209に供給される構成となっている。ここで、この燃料の燃焼特性について説明する。
<Operation of Embodiment>
<Outline of injection control>
As described above, the fuel supply apparatus 300 includes the mixer 309 so that the light oil FL stored in the main tank 301 and the water WT stored in the first sub-tank 305 have the target water content ratio x of the fuel that is the emulsion fuel. Therefore, the generated emulsion fuel is supplied to the common rail 209 as the above-described fuel. Here, the combustion characteristics of this fuel will be described.
 先ず、ユニットインジェクタ208を介して高温高圧のシリンダ201内部に噴射された燃料において、水は高温場で沸騰することにより水蒸気となり、下記(1)~(3)式に示す水性ガス反応を生じる。 First, in the fuel injected into the high-temperature and high-pressure cylinder 201 through the unit injector 208, water boils in a high-temperature field to become water vapor, and a water gas reaction shown in the following formulas (1) to (3) occurs.
 H2O(液体)=H2O(気体)-40.8kJ/mol…(1)
 C+H2O(気体)=CO+H2-131.3kJ/mol…(2)
 H2+0.5O2=H2O(液体)+286kJ/mol…(3)
 これら水性ガス反応により、理論上は、燃料中の液体状態の水から、約4.1MJ/kgの発熱を得ることが可能となる。一方、軽油の発熱量は、約43MJ/kgであり、両者の密度の差を考慮して体積当たりに換算すると、水からは、理論上、軽油の約11%の発熱量に相当する発熱を得ることが可能である。従って、ユニットインジェクタ208における燃料の噴射量は、この水の発熱量を考慮しないと、適正値から乖離することとなる。
H 2 O (liquid) = H 2 O (gas) −40.8 kJ / mol (1)
C + H2O (gas) = CO + H2-131.3 kJ / mol (2)
H2 + 0.5O2 = H2O (liquid) +286 kJ / mol (3)
By these water gas reactions, it is theoretically possible to obtain an exotherm of about 4.1 MJ / kg from water in the liquid state in the fuel. On the other hand, the calorific value of light oil is about 43 MJ / kg, and when converted into volume per volume taking into account the difference in density between the two, the heat generated from water theoretically corresponds to the calorific value of about 11% of light oil. It is possible to obtain. Accordingly, the fuel injection amount in the unit injector 208 deviates from an appropriate value unless the heat generation amount of the water is taken into consideration.
 例えば、要求発熱量を、軽油の体積に換算して「1」であるとし、燃料の含水比率を0.2であるとする。この場合、水の発熱量を無視してゼロとして扱えば、燃料中の軽油の体積が1となるように、噴射量は、体積にして約1.25(1.25×0.8=1)とされ得るが、この1.25の体積を有する燃料中、0.25の体積を占有する水からは、先に述べた軽油比約11%の発熱が生じ得るから、燃料の発熱量は、理論的には1.0275(1+0.25×0.11=1.0275)となり、約3%の余剰な発熱が生じることとなる。一方で、水の発熱量を軽油と同等として扱えば(端的に言えば、水の存在自体を無視するとも言える)、噴射量は体積にして1とされ得るが、噴射量1の体積を有する燃料中、0.2の体積を占有する水からは、先に述べた軽油比約11%の発熱しか生じないため、燃料の発熱量は、理論的には0.822(0.8+0.2×0.11=0.822)となり、約17.8%もの発熱量の不足が生じることとなる。いずれにせよ、水の発熱量を実践上問題無い精度で噴射量に反映させ得ないこれらの技術思想の範疇では、燃料不足による動力性能の低下、並びに燃料過多によるエミッション又は燃費の悪化といった問題が回避され難い。 For example, it is assumed that the required calorific value is “1” in terms of light oil volume, and the water content of the fuel is 0.2. In this case, if the heat generation amount of water is ignored and treated as zero, the injection amount is about 1.25 (1.25 × 0.8 = 1) so that the volume of light oil in the fuel becomes 1. However, in the fuel having the volume of 1.25, the water occupying the volume of 0.25 can generate heat of about 11% as compared with the light oil described above. Theoretically, it becomes 1.0275 (1 + 0.25 × 0.11 = 1.0275), and about 3% of excessive heat generation occurs. On the other hand, if the calorific value of water is treated as equivalent to that of light oil (in short, the existence of water itself can be ignored), the injection amount can be 1 in volume, but it has a volume of injection amount 1 Since water that occupies a volume of 0.2 in the fuel only generates heat of about 11% of the light oil ratio described above, the calorific value of the fuel is theoretically 0.882 (0.8 + 0.2). × 0.11 = 0.822), resulting in a shortage of heat generation of about 17.8%. In any case, in the category of these technical ideas in which the calorific value of water cannot be reflected in the injection amount with accuracy that is practically acceptable, there are problems such as a decrease in power performance due to fuel shortage and emissions or deterioration in fuel consumption due to excessive fuel. It is difficult to avoid.
   <噴射制御の詳細>
 エンジンシステム10では、このような問題を解決するため、ECU100により実行される噴射制御により、燃料に含まれる水の発熱量を正確に反映した適正な燃料噴射が実現される。以下に、図3を参照し、噴射制御の詳細について説明する。ここに、図3は、噴射制御のフローチャートである。
<Details of injection control>
In the engine system 10, in order to solve such a problem, proper fuel injection that accurately reflects the amount of heat generated in water contained in the fuel is realized by injection control executed by the ECU 100. The details of the injection control will be described below with reference to FIG. FIG. 3 is a flowchart of the injection control.
 図3において、ECU100は、車両の運転条件を取得する(ステップS101)。ステップS101においては、エンジン200の機関回転速度NEとアクセル開度Taとが取得される。車両の運転条件として機関回転速度NEとアクセル開度Taとを取得すると、ECU100は、基本噴射時間Tau0を取得する(ステップS102)。 In FIG. 3, the ECU 100 acquires the driving conditions of the vehicle (step S101). In step S101, the engine speed NE and the accelerator opening degree Ta of the engine 200 are acquired. When the engine speed NE and the accelerator opening degree Ta are acquired as the vehicle operating conditions, the ECU 100 acquires the basic injection time Tau0 (step S102).
 ここで、基本噴射時間Tau0は、燃料の噴射量の基本値たる基本噴射量(即ち、本発明に係る「基本噴射量」の一例)を規定する制御量である。エンジン200において、燃料の噴射量は、コモンレール209のレール圧が一定であるため、ユニットインジェクタ208における噴孔の開弁期間に相当する噴射時間TAUに比例する。ユニットインジェクタ208では、この噴射時間TAUを制御目標としてその動作状態(例えば、電磁弁の制御デューティ比等)が制御される構成となっている。 Here, the basic injection time Tau0 is a control amount that defines a basic injection amount that is a basic value of the fuel injection amount (that is, an example of the “basic injection amount” according to the present invention). In the engine 200, the fuel injection amount is proportional to the injection time TAU corresponding to the opening period of the injection hole in the unit injector 208 because the rail pressure of the common rail 209 is constant. The unit injector 208 is configured to control the operation state (for example, the control duty ratio of the solenoid valve) using the injection time TAU as a control target.
 尚、基本噴射時間Tau0の値は、予め基本噴射時間マップに、機関回転速度NE及びアクセル開度Taに対応付けられる形で格納されている。ECU100は、ステップS101において取得されたこれらの値に対応する一の値を、基本噴射時間Tau0として基本噴射時間マップから選択的に取得する。尚、基本噴射時間Tau0は、燃料の含水比率xが0である場合、即ち、燃料が軽油そのものである場合の噴射量に対応している。 The value of the basic injection time Tau0 is stored in advance in the basic injection time map in a form associated with the engine speed NE and the accelerator opening degree Ta. ECU 100 selectively acquires one value corresponding to these values acquired in step S101 from the basic injection time map as basic injection time Tau0. The basic injection time Tau0 corresponds to the injection amount when the moisture content x of the fuel is 0, that is, when the fuel is light oil itself.
 基本噴射時間Tau0を取得すると、ECU100は、含水比率xを取得する(ステップS103)。含水比率xは、先に述べたように、ECU100自身が、流量センサ314及び315により検出される水WT及び軽油FLの流量に基づいて推定しているため、ステップS103において、ECU100は、含水比率xを簡便に取得することができる。 When acquiring the basic injection time Tau0, the ECU 100 acquires the water content ratio x (step S103). Since the water content ratio x is estimated by the ECU 100 itself based on the flow rates of the water WT and the light oil FL detected by the flow sensors 314 and 315 as described above, in step S103, the ECU 100 x can be easily obtained.
 含水比率xが取得されると、続いて、燃料における水の反応効率kが取得される(ステップS104)。ここで、反応効率kは、例えば上記(2)式或いは(3)式に相当する反応の発生確率や、上記(2)又は(3)式と異なる各種反応が生じる確率等を反映する補正係数であり、上記(2)式及び(3)式に相当する反応の発生が、燃料中に含まれる水或いは水素について100%生じる場合を「1」として規格化されている。反応効率kは、燃焼室における燃料の空間分布及び燃焼室の温度分布等に影響を受けるため、予めエンジン200毎に(即ち、実機毎に)、実験的な適合を経て設定される。設定された反応効率kは、固定値として、或いは、車両の運転条件をパラメータとする反応効率マップとして、ECU100のROMに格納されている。ECU100は、ステップS104において、この種の予め設定された反応効率kをROMから取得する。 When the moisture content x is acquired, the reaction efficiency k of water in the fuel is acquired (step S104). Here, the reaction efficiency k is, for example, a correction coefficient that reflects the probability of occurrence of a reaction corresponding to the above formula (2) or (3), the probability that various reactions different from the above formula (2) or (3) occur, and the like. The case where the occurrence of the reaction corresponding to the above equations (2) and (3) occurs 100% with respect to water or hydrogen contained in the fuel is standardized as “1”. Since the reaction efficiency k is influenced by the fuel spatial distribution in the combustion chamber, the temperature distribution of the combustion chamber, and the like, it is set in advance for each engine 200 (that is, for each actual machine) through experimental adaptation. The set reaction efficiency k is stored in the ROM of the ECU 100 as a fixed value or as a reaction efficiency map using the vehicle operating conditions as parameters. In step S104, the ECU 100 acquires this kind of preset reaction efficiency k from the ROM.
 含水比率x及び反応効率kが取得されると、ECU100は、ステップS102において取得された基本噴射時間Tau0を、これら含水比率x及び反応効率kを使用して算出される燃料中の水の発熱量に基づいて補正し、最終的な燃料の噴射時間である噴射時間Tau1を算出する(ステップS105)。ここで、ステップS105において、ECU100は、下記(4)式に従って、噴射時間Tau1を算出する。尚、式中「・」は、乗算演算子である。 When the water content ratio x and the reaction efficiency k are acquired, the ECU 100 uses the basic injection time Tau0 acquired in step S102 as the calorific value of water in the fuel calculated using the water content ratio x and the reaction efficiency k. And the injection time Tau1 that is the final fuel injection time is calculated (step S105). Here, in step S105, the ECU 100 calculates the injection time Tau1 according to the following equation (4). In the expression, “·” is a multiplication operator.
 Tau1=Tau0・1/(x・(Q/(Q・k))・(δ/δ)+(1-x))…(4)
 ここで、Qは、主燃料(本実施形態では軽油)の単位重量当たりの発熱量(軽油の場合、先述したように、約43MJ/kg)であり、Qは、水の単位重量当たりの最大発熱量(先述したように、約4.1MJ/kg)であり、δは、主燃料の密度(軽油の場合、0.8336g/cc)であり、δは、水の密度(1g/cc)である。
Tau1 = Tau0 · 1 / (x · (Q f / (Q w · k)) · (δ f / δ w) + (1-x)) ... (4)
Here, Q f is the calorific value per unit weight of the main fuel (light oil in the present embodiment) (in the case of light oil, as described above, about 43 MJ / kg), and Q w is the unit weight of water. Δ f is the density of the main fuel (0.8336 g / cc in the case of light oil), and δ w is the density of water (as described above, approximately 4.1 MJ / kg). 1 g / cc).
 噴射時間Tau1が算出されると、ECU100は、算出された噴射時間Tau1に従ってユニットインジェクタ208を駆動し、燃料噴射を実行する(ステップS106)。燃料噴射が実行されると、処理はステップS101に戻される。噴射制御は以上のようにして実行される。 When the injection time Tau1 is calculated, the ECU 100 drives the unit injector 208 according to the calculated injection time Tau1 and executes fuel injection (step S106). When fuel injection is executed, the process returns to step S101. The injection control is executed as described above.
 このように、本実施形態によれば、エマルジョン燃料として生成される燃料における、含水比率xに応じて連続的に変化する水の発熱量が正確に算出され、係る水の発熱量を反映した基本噴射量Tau0の正確な補正が可能となる。また本実施形態では特に、燃料中の水の反応効率kなる概念が更に導入され、この反応効率kに基づいて、理論値と異なり得る実現象としての水性ガス反応において得られる水の発熱量(即ち、より現実的な水の発熱量)を算出することが可能となる。このため、燃料の含水比率xが、固定値であるにせよ、予め設定された条件の下で可変であるにせよ、或いは過渡的に急変するにせよ、含水比率xを特定することが可能である限りにおいて、水の水性ガス反応が起こる過程で水素の酸化反応により生じる熱がエンジン200における動力生成に与える影響を反映しない如何なる技術思想に対しても、最終的な燃料の噴射量(即ち、噴射時間Tau1に相当する噴射量)を、真に必要とされる噴射量に限りなく近づけることが可能となる。即ち、燃料噴射量を最適化することが可能となり、燃料噴射量の過不足による動力性能の低下並びに燃費及びエミッションの悪化を好適に抑制することが可能となるのである。 As described above, according to the present embodiment, the calorific value of water continuously changing according to the water content ratio x in the fuel generated as the emulsion fuel is accurately calculated, and the basic value reflecting the calorific value of the water is calculated. Accurate correction of the injection amount Tau0 becomes possible. In this embodiment, in particular, the concept of the reaction efficiency k of water in the fuel is further introduced, and based on this reaction efficiency k, the calorific value of water obtained in the water gas reaction as an actual phenomenon that may differ from the theoretical value ( That is, it is possible to calculate a more realistic water heat generation amount). For this reason, it is possible to specify the water content ratio x whether the water content ratio x of the fuel is a fixed value, can be changed under a preset condition, or changes abruptly. Insofar as any technical idea that does not reflect the influence of heat generated by the oxidation reaction of hydrogen during the water gas reaction of water on the power generation in the engine 200, the final fuel injection amount (ie, The injection amount corresponding to the injection time Tau1) can be made as close as possible to the truly required injection amount. That is, it is possible to optimize the fuel injection amount, and it is possible to suitably suppress the deterioration of power performance and the deterioration of fuel consumption and emission due to the excess or shortage of the fuel injection amount.
 <第2実施形態>
 次に、図4を参照し、本発明の第2実施形態について説明する。ここに、図4は、本発明の第2実施形態に係る燃料供給装置400の構成を概念的に表してなる概略構成図である。尚、図4において、図2と重複する箇所には同一の符合を付してその説明を適宜省略することとする。
Second Embodiment
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 4 is a schematic configuration diagram conceptually showing the configuration of the fuel supply apparatus 400 according to the second embodiment of the present invention. 4 that are the same as those in FIG. 2 are given the same reference numerals, and descriptions thereof are omitted as appropriate.
 図4において、燃料供給装置400は、第1サブタンク305に水WTではなく水とエタノール(即ち、本発明に係る「アルコール」の他の一例)との混合体である水エタノールWTALCが貯留される点において、第1実施形態における燃料供給装置300と相違する構成となっている。水エタノールWTALCは、本発明に係る「液体」の他の一例である。即ち、本実施形態における燃料は、水とエタノールと軽油とが混合されたエマルジョン燃料である。尚、本実施形態において、水エタノールWTALCにおける水とエタノールとの体積比率は、固定されているものとする。 In FIG. 4, in the fuel supply apparatus 400, water ethanol WTALC that is a mixture of water and ethanol (that is, another example of “alcohol” according to the present invention) is stored in the first sub tank 305 instead of the water WT. In this respect, the configuration is different from the fuel supply device 300 in the first embodiment. Water ethanol WTALC is another example of the “liquid” according to the present invention. That is, the fuel in this embodiment is an emulsion fuel in which water, ethanol, and light oil are mixed. In the present embodiment, the volume ratio of water and ethanol in the water ethanol WTALC is fixed.
 本実施形態において、流量センサ315は、低圧フィードパイプ306における水エタノールWTALCの流量を検出する。先に述べたように、本実施形態において、水エタノールWTALCにおける水とエタノールとの体積比率は固定されているため、ECU100は、この検出された水エタノールWTALCの流量と流量センサ314により検出された軽油FLの流量とに基づいて、燃料の含水比率x及び含エタノール比率y(含水比率xと同様に体積比率である)とを算出することが可能である。 In the present embodiment, the flow rate sensor 315 detects the flow rate of the water ethanol WTALC in the low pressure feed pipe 306. As described above, in this embodiment, since the volume ratio of water to ethanol in the water ethanol WTALC is fixed, the ECU 100 detects the detected flow rate of the water ethanol WTALC and the flow rate sensor 314. Based on the flow rate of the light oil FL, it is possible to calculate the water content ratio x and the ethanol content ratio y (the volume ratio is the same as the water content ratio x).
 このような構成においては、水の発熱量と同様に、エタノールの発熱量を考慮する必要が生じる。そこで、第2実施形態に係る噴射制御(尚、フローチャートは省略する)において、ECU100は、下記(5)式に従って基本噴射時間Tau0を補正し、水及びエタノールの発熱量を考慮した噴射時間Tau2を算出する。尚、(5)式において、Qは、低級アルコール(本実施形態では、エタノール)の単位重量当たりの最大発熱量(エタノールの場合、約27MJ/kg)であり、δは、低級アルコールの密度(エタノールの場合、0.789g/cc)である。 In such a configuration, it is necessary to consider the heating value of ethanol as well as the heating value of water. Therefore, in the injection control according to the second embodiment (note that the flowchart is omitted), the ECU 100 corrects the basic injection time Tau0 according to the following equation (5), and sets the injection time Tau2 in consideration of the heat generation amounts of water and ethanol. calculate. In the formula (5), Q e is the maximum calorific value per unit weight of the lower alcohol (ethanol in this embodiment) (about 27 MJ / kg in the case of ethanol), and δ e is the lower alcohol The density is 0.789 g / cc in the case of ethanol.
 Tau2=Tau0・1/(x・(Q/(Q・k))・(δ/δ)+y・(Q/Q)・(δ/δ)+(1-x-y))…(5)
 上記式(5)に従えば、主燃料たる軽油の他に、水及びエタノールが含まれているエマルジョン燃料であっても、単位体積当たりの発熱量を正確に把握することが可能となり、動力性能並びに燃費及びエミッションの悪化を好適に抑制することが可能となる。特に、このようにエマルジョン燃料を構成する燃料要素が多い場合、予め適合等により含水比率x及び含エタノール率kに応じた最適な燃料噴射量を求めマップ等に格納しておくことは実践上不可能に近く、また適合に要するコストの増加が確実に顕在化し得る。その点、本実施形態のように噴射量を数値演算処理により導き得る術を有する構成は明らかに有利である。
Tau2 = Tau0 · 1 / (x · (Q f / (Q w · k)) · (δ f / δ w ) + y · (Q f / Q e ) · (δ f / δ e ) + (1-x -Y)) ... (5)
According to the above formula (5), it is possible to accurately grasp the calorific value per unit volume even in the case of an emulsion fuel containing water and ethanol in addition to the light oil as the main fuel. In addition, it is possible to suitably suppress deterioration of fuel consumption and emission. In particular, when there are many fuel elements constituting the emulsion fuel in this way, it is practically impossible to obtain an optimal fuel injection amount corresponding to the water content ratio x and ethanol content ratio k in advance by conformance or the like and store it in a map or the like. Nearly possible and an increase in the cost of adaptation can certainly be realized. In that respect, a configuration having a technique capable of deriving the injection amount by numerical calculation processing as in the present embodiment is clearly advantageous.
 <第3実施形態>
 次に、図5を参照し、本発明の第3実施形態について説明する。ここに、図5は、本発明の第3実施形態に係る燃料供給装置500の構成を概念的に表してなる概略構成図である。尚、図5において、図2と重複する箇所には同一の符合を付してその説明を適宜省略することとする。
<Third Embodiment>
Next, a third embodiment of the present invention will be described with reference to FIG. FIG. 5 is a schematic configuration diagram conceptually showing the configuration of the fuel supply apparatus 500 according to the third embodiment of the present invention. 5 that are the same as those in FIG. 2 are denoted by the same reference numerals, and the description thereof is omitted as appropriate.
 図5において、燃料供給装置500は、第2サブタンク501、低圧フィードパイプ502、フィルタ503、低圧電動ポンプ504、ミキサ505、流量センサ506及び流量センサ507を有する点において、第1実施形態に係る燃料供給装置300と相違している。 In FIG. 5, the fuel supply device 500 includes a second sub tank 501, a low pressure feed pipe 502, a filter 503, a low pressure electric pump 504, a mixer 505, a flow sensor 506, and a flow sensor 507, according to the first embodiment. This is different from the supply device 300.
 第2サブタンク501は、エタノールALCを貯留可能に構成された金属製の容器である。第2サブタンク501に貯留されたエタノールALCは、本発明に係る「液体」及び「アルコール」の一例である。 The second sub tank 501 is a metal container configured to store ethanol ALC. The ethanol ALC stored in the second sub tank 501 is an example of “liquid” and “alcohol” according to the present invention.
 低圧フィードパイプ502は、一端部がこの第2サブタンク501底部に固定され、他端部がミキサ505に接続されてなる金属製の管状部材である。フィルタ503は、この低圧フィードパイプ502に設置されており、低圧フィードパイプ502に導かれたエタノールALCを濾過可能に構成されたメッシュ状の濾過部材を有する濾過装置である。 The low-pressure feed pipe 502 is a metal tubular member having one end fixed to the bottom of the second sub tank 501 and the other end connected to the mixer 505. The filter 503 is a filtration device that is installed in the low-pressure feed pipe 502 and has a mesh-like filtration member configured to be able to filter ethanol ALC guided to the low-pressure feed pipe 502.
 低圧電動ポンプ504は、ミキサ505とフィルタ503との間に設置された流体吐出装置である。低圧電動ポンプ504は、第2サブタンク501から貯留されたエタノールALCを吸い上げ、その吐出圧に応じた吐出速度(即ち、単位時間当たりの吐出量)でミキサ505にエタノールALCを供給可能に構成された、不図示のモータを駆動力源とする所謂電気駆動式の渦巻きポンプである。このモータを駆動制御する不図示の駆動装置は、ECU100と電気的に接続されており、当該モータの回転速度は、ECU100により制御される構成となっている。この低圧電動ポンプ504のモータの回転速度は、低圧電動ポンプ504におけるエタノールALCの吐出圧と一義的な関係を有しているため、結局、燃料供給装置500におけるエタノールALCのミキサ505への供給量は、ECU100により制御される構成となっている。 The low-pressure electric pump 504 is a fluid discharge device installed between the mixer 505 and the filter 503. The low-pressure electric pump 504 is configured to suck up the ethanol ALC stored from the second sub tank 501 and supply the ethanol ALC to the mixer 505 at a discharge speed (that is, a discharge amount per unit time) according to the discharge pressure. This is a so-called electrically driven centrifugal pump using a motor (not shown) as a driving force source. A driving device (not shown) that drives and controls the motor is electrically connected to the ECU 100, and the rotational speed of the motor is controlled by the ECU 100. Since the rotational speed of the motor of the low-pressure electric pump 504 is uniquely related to the discharge pressure of the ethanol ALC in the low-pressure electric pump 504, the amount of ethanol ALC supplied to the mixer 505 in the fuel supply device 500 is eventually obtained. Is configured to be controlled by the ECU 100.
 ミキサ505は、低圧フィードパイプ306を介して導かれた水WT及び低圧フィードパイプ502を介して導かれたエタノールALCを一時的に貯留可能に構成された容器部と、当該容器部に回転可能に設置された攪拌部材を有し、この攪拌部材の回転により水WT及びエタノールALCを攪拌可能に構成された攪拌機とを有する混合装置である。ミキサ505は、この攪拌機の攪拌作用により、水WTとエタノールALCとを略均一に混合可能に構成されている。即ち、燃料供給装置500では、先ずこのミキサ505の攪拌作用によって第2実施形態における水エタノールWTALCと同様の水とエタノールとの均一混合体が生成され、更にこの水とエタノールとの均一混合体が、ミキサ309により軽油FLと混合され、最終的に軽油と水とエタノールとのエマルジョン燃料が生成される。 The mixer 505 is configured to be capable of temporarily storing water WT guided through the low-pressure feed pipe 306 and ethanol ALC guided through the low-pressure feed pipe 502, and rotatable to the container unit. It is a mixing apparatus having an agitating member installed and an agitator configured to agitate water WT and ethanol ALC by rotating the agitating member. The mixer 505 is configured so that water WT and ethanol ALC can be mixed substantially uniformly by the stirring action of the stirrer. That is, in the fuel supply device 500, first, a homogeneous mixture of water and ethanol similar to the water ethanol WTALC in the second embodiment is generated by the stirring action of the mixer 505, and this uniform mixture of water and ethanol is further generated. Then, it is mixed with the light oil FL by the mixer 309, and finally an emulsion fuel of the light oil, water and ethanol is generated.
 流量センサ506は、低圧フィードパイプ502内部に検出端子が露出してなる、低圧フィードパイプ502におけるエタノールALCの流量を検出可能に構成されたセンサである。流量センサ506は、ECU100と電気的に接続されており、検出されたエタノールALCの流量は、ECU100により一定又は不定の周期で参照される構成となっている。 The flow rate sensor 506 is a sensor configured to be able to detect the flow rate of ethanol ALC in the low-pressure feed pipe 502 in which the detection terminal is exposed inside the low-pressure feed pipe 502. The flow rate sensor 506 is electrically connected to the ECU 100, and the detected flow rate of the ethanol ALC is referred to by the ECU 100 at a constant or indefinite period.
 流量センサ507は、ミキサ505よりも下流側(ミキサ309側)において、低圧フィードパイプ306内部に検出端子が露出してなる、低圧フィードパイプ306における水WTとエタノールALCとの均一混合体の流量を検出可能に構成されたセンサである。流量センサ507は、ECU100と電気的に接続されており、検出された当該混合体の流量は、ECU100により一定又は不定の周期で参照される構成となっている。 The flow rate sensor 507 measures the flow rate of the homogeneous mixture of water WT and ethanol ALC in the low-pressure feed pipe 306, with the detection terminal exposed inside the low-pressure feed pipe 306 on the downstream side (mixer 309 side) of the mixer 505. This is a sensor configured to be detectable. The flow rate sensor 507 is electrically connected to the ECU 100, and the detected flow rate of the mixture is referred to by the ECU 100 at a constant or indefinite period.
 燃料供給装置500のこのような構成によれば、流量センサ315及び506により検出される水WT及びエタノールALCの流量に基づいて、ミキサ505における水WTとエタノールALCとの体積比率を推定することが可能となる。従って、第2実施形態のように、水WTとエタノールALCとの体積比率が固定されておらずとも、ミキサ309において生成される軽油FLと水WTとエタノールALCとを構成要素とするエマルジョン燃料における、含水比率x及び含エタノール比率yを正確に推定することが可能となる。 According to such a configuration of the fuel supply device 500, the volume ratio of the water WT and the ethanol ALC in the mixer 505 can be estimated based on the flow rates of the water WT and the ethanol ALC detected by the flow sensors 315 and 506. It becomes possible. Therefore, as in the second embodiment, even if the volume ratio of water WT and ethanol ALC is not fixed, in the emulsion fuel having the light oil FL, water WT, and ethanol ALC generated in the mixer 309 as constituent elements. It is possible to accurately estimate the water content ratio x and the ethanol content ratio y.
 例えば、水WTとエタノールALCとの体積比率をx:yとする。一方、軽油FLと、水WTとエタノールALCとの均一混合体との体積比率をv:wとする。これらの関係から、軽油FL、水WT及びエタノールALC相互間の体積比率は、1:((x/(x+y))・w/v):((y/(x+y))・w/v)=(x+y)・v:x・w:y・wとなる。 For example, let x: y be the volume ratio of water WT and ethanol ALC. On the other hand, the volume ratio of the light oil FL to the homogeneous mixture of water WT and ethanol ALC is defined as v: w. From these relationships, the volume ratio among the light oil FL, water WT, and ethanol ALC is 1: ((x / (x + y)) · w / v): ((y / (x + y)) · w / v) = (X + y) · v: x · w: y · w
 ここで、上記右辺第1、第2及び第3項を夫々Z、X及びYとし、x’=X/(X+Y+Z)、且つy’=Y/(X+Y+Z)とすると、結局、軽油FLと水WTとエタノールALCとの比は、(1-x’-y’):x’:y’となる。本実施形態では、このx’及びy’を使用して、下記(6)式に従って噴射時間TAU0を補正し、噴射時間TAU3を算出する。 Here, if the first, second and third terms on the right side are Z, X and Y, respectively, and x ′ = X / (X + Y + Z) and y ′ = Y / (X + Y + Z), the light oil FL and water The ratio of WT to ethanol ALC is (1−x′−y ′): x ′: y ′. In the present embodiment, using these x 'and y', the injection time TAU0 is corrected according to the following equation (6) to calculate the injection time TAU3.
 Tau3=Tau0・1/(x’・(Q/(Q・k))・(δ/δ)+y’・(Q/Q)・(δ/δ)+(1-x’-y’))…(6)
 このように、本実施形態によれば、軽油FLと水WTとエタノールALCとの比率が意図的に、偶発的に或いは過渡的に変化したとしても、燃料の噴射量を最適値に維持することが可能となる。従って、第2実施形態と同様に、動力性能並びに燃費及びエミッションの悪化を好適に抑制することが可能となる。
Tau3 = Tau0 · 1 / (x '· (Q f / (Q w · k)) · (δ f / δ w) + y' · (Q f / Q e) · (δ f / δ e) + (1 −x′−y ′)) (6)
Thus, according to this embodiment, even if the ratio of the light oil FL, the water WT, and the ethanol ALC changes intentionally, accidentally, or transiently, the fuel injection amount is maintained at the optimum value. Is possible. Therefore, similarly to the second embodiment, it is possible to suitably suppress the deterioration of power performance, fuel consumption, and emission.
 <第4実施形態>
 次に、図6を参照し、本発明の第4実施形態について説明する。ここに、図6は、本発明の第4実施形態に係る燃料供給装置600の構成を概念的に表してなる概略構成図である。尚、図6において、図5と重複する箇所には同一の符合を付してその説明を適宜省略することとする。
<Fourth embodiment>
Next, a fourth embodiment of the present invention will be described with reference to FIG. FIG. 6 is a schematic configuration diagram conceptually showing the configuration of the fuel supply apparatus 600 according to the fourth embodiment of the present invention. In FIG. 6, the same reference numerals are given to the same portions as those in FIG.
 図6において、燃料供給装置600は、温度センサ601及び602を有する点において第3実施形態に係る燃料供給装置500と相違している。 6, the fuel supply device 600 is different from the fuel supply device 500 according to the third embodiment in that it includes temperature sensors 601 and 602.
 温度センサ601は、メインタンク301の内部にその検出端子が露出してなる、軽油FLの温度Tfを検出可能に構成されたセンサである。温度センサ601は、ECU100と電気的に接続されており、検出された軽油FLの温度Tfは、ECU100により一定又は不定の周期で参照される構成となっている。 The temperature sensor 601 is a sensor configured to detect the temperature Tf of the light oil FL, the detection terminal of which is exposed inside the main tank 301. The temperature sensor 601 is electrically connected to the ECU 100, and the detected temperature Tf of the light oil FL is referred to by the ECU 100 at a constant or indefinite period.
 温度センサ602は、第2サブタンク501の内部にその検出端子が露出してなる、エタノールALCの温度Teを検出可能に構成されたセンサである。温度センサ602は、ECU100と電気的に接続されており、検出されたエタノールALCの温度Teは、ECU100により一定又は不定の周期で参照される構成となっている。 The temperature sensor 602 is a sensor configured to detect the temperature Te of ethanol ALC, the detection terminal of which is exposed inside the second sub tank 501. The temperature sensor 602 is electrically connected to the ECU 100, and the detected temperature Te of the ethanol ALC is referred to by the ECU 100 at a constant or indefinite period.
 このように軽油FLの温度Tf及びエタノールALCの温度Teを検出可能に構成された燃料供給装置600によれば、軽油FL及びエタノールALC各々における、温度による密度変化を考慮して、更に基本噴射量TAU0を正確に補正することが可能となる。本実施形態に係る噴射制御において、ECU100は、下記(7)式に従って噴射量TAU4を算出する。 Thus, according to the fuel supply apparatus 600 configured to be able to detect the temperature Tf of the light oil FL and the temperature Te of the ethanol ALC, the basic injection amount is further increased in consideration of the density change due to the temperature in each of the light oil FL and the ethanol ALC. It becomes possible to correct TAU0 accurately. In the injection control according to the present embodiment, the ECU 100 calculates the injection amount TAU4 according to the following equation (7).
 Tau4=Tau0・1/(x’・(Q/(Q・k))・(δ’/δ)+y’・(Q/Q)・(δ’/δ’)+(1-x’-y’))…(7)
 上記(7)式において、δf’は、温度補正後の主燃料(本実施形態では、軽油)の密度であり、軽油である場合、下記(8)式により規定される。また、上記(7)式において、δe’は、温度補正後の低級アルコール(本実施形態では、エタノール)の密度であり、エタノールである場合、下記(9)式により規定される。
Tau4 = Tau0 · 1 / (x '· (Q f / (Q w · k)) · (δ f' / δ w) + y '· (Q f / Q e) · (δ f' / δ e ') + (1−x′−y ′)) (7)
In the above equation (7), δf ′ is the density of the main fuel (light oil in this embodiment) after temperature correction, and in the case of light oil, is defined by the following equation (8). In the above equation (7), δe ′ is the density of the lower alcohol (in this embodiment, ethanol) after temperature correction. In the case of ethanol, it is defined by the following equation (9).
 δf’=δf・(1+0.85・0.001・(15-Tf[℃])…(8)
 δe’=δe・(1+1.0918・0.001・(15-Te[℃])…(9)
 本実施形態によれば、軽油FL及びエタノールALCに温度変化に起因する密度の変化が生じたとしても、上記(7)、(8)及び(9)式に基づいて、密度変化による発熱量の誤差を好適に補正することができる。従って、より広範な運転条件の下で、燃料の噴射量を最適化することが可能となり、実践上極めて有益である。尚、ここでは、水WTとエタノールALCとの体積比率が可変である場合について示したが、第2実施形態のように、当該体積比率が固定値である場合にも、(5)式に対し、上記(8)及び(9)式により規定される温度補正後の密度を適用することにより、同様に噴射量を算出することができることは言うまでもない。
δf ′ = δf · (1 + 0.85 · 0.001 · (15−Tf [° C.]) (8)
δe ′ = δe · (1 + 1.91818 · 0.001 · (15−Te [° C.]) (9)
According to this embodiment, even if the density change caused by the temperature change occurs in the light oil FL and the ethanol ALC, the calorific value due to the density change is calculated based on the above formulas (7), (8) and (9). The error can be suitably corrected. Therefore, the fuel injection amount can be optimized under a wider range of operating conditions, which is extremely useful in practice. Although the case where the volume ratio of water WT and ethanol ALC is variable is shown here, even when the volume ratio is a fixed value as in the second embodiment, Needless to say, the injection amount can be similarly calculated by applying the density after temperature correction defined by the above equations (8) and (9).
 尚、上記第1乃至第4実施形態において、いずれもエンジン200はディーゼルエンジンであり、主燃料は軽油FLとされているが、上記各実施形態に記載された燃料の噴射量補正は、主燃料をガソリンとする場合にも同様に適用可能である。 In each of the first to fourth embodiments, the engine 200 is a diesel engine and the main fuel is light oil FL. However, the fuel injection amount correction described in each of the above embodiments is not limited to the main fuel. The same applies to the case where gasoline is used as gasoline.
 本発明は、上述した実施形態に限られるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う内燃機関の制御装置もまた本発明の技術的範囲に含まれるものである。 The present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist or concept of the invention that can be read from the claims and the entire specification, and the control of the internal combustion engine accompanying such a change. The apparatus is also included in the technical scope of the present invention.
産業上の利用の可能性Industrial applicability
 本発明は、車両に搭載可能であり、且つ燃料として、主燃料と少なくとも水を含む液体とが混合されてなるエマルジョン燃料を使用可能な内燃機関における当該エマルジョン燃料の噴射量の制御に利用可能である。 INDUSTRIAL APPLICABILITY The present invention can be used for controlling the injection amount of an emulsion fuel in an internal combustion engine that can be installed in a vehicle and can use an emulsion fuel in which a main fuel and a liquid containing at least water are mixed as fuel. is there.

Claims (8)

  1.  車両に搭載され、主燃料と少なくとも水を含む液体とが混合されてなるエマルジョン燃料を使用可能に構成されると共に該エマルジョン燃料を噴射可能な噴射手段を備えてなる内燃機関の制御装置であって、
     前記エマルジョン燃料における前記水の発熱量を特定する第1発熱量特定手段と、
     前記車両の運転条件及び前記特定された水の発熱量に基づいて前記エマルジョン燃料の噴射量を決定する決定手段と、
     該決定された噴射量に相当する前記エマルジョン燃料が噴射されるように前記噴射手段を制御する噴射制御手段と
     を具備することを特徴とする内燃機関の制御装置。
    A control device for an internal combustion engine, mounted on a vehicle, configured to be able to use an emulsion fuel obtained by mixing a main fuel and a liquid containing at least water, and having an injection means capable of injecting the emulsion fuel. ,
    First heat value specifying means for specifying the heat value of the water in the emulsion fuel;
    Determining means for determining an injection amount of the emulsion fuel based on a driving condition of the vehicle and a heat generation amount of the specified water;
    An internal combustion engine control apparatus comprising: an injection control unit that controls the injection unit so that the emulsion fuel corresponding to the determined injection amount is injected.
  2.  前記エマルジョン燃料の含水比率を特定する含水比率特定手段を更に具備し、
     前記第1発熱量特定手段は、該特定された含水比率に基づいて前記エマルジョン燃料における水の発熱量を特定する
     ことを特徴とする請求の範囲第1項に記載の内燃機関の制御装置。
    Further comprising water content specifying means for specifying the water content of the emulsion fuel,
    2. The control device for an internal combustion engine according to claim 1, wherein the first heat generation amount specifying unit specifies a heat generation amount of water in the emulsion fuel based on the specified water content ratio. 3.
  3.  前記エマルジョン燃料における前記水の反応効率を特定する反応効率特定手段を更に具備し、
     前記第1発熱量特定手段は、該特定された反応効率に基づいて前記エマルジョン燃料における水の発熱量を特定する
     ことを特徴とする請求の範囲第1項又は第2項に記載の内燃機関の制御装置。
    Further comprising reaction efficiency specifying means for specifying the reaction efficiency of the water in the emulsion fuel,
    The internal combustion engine according to claim 1 or 2, wherein the first calorific value specifying means specifies the calorific value of water in the emulsion fuel based on the specified reaction efficiency. Control device.
  4.  前記決定手段は、前記特定された水の発熱量に基づいて前記車両の運転条件に応じて定まる前記エマルジョン燃料の基本噴射量を補正することにより前記エマルジョン燃料の噴射量を決定する
     ことを特徴とする請求の範囲第1項から第3項のいずれか一項に記載の内燃機関の制御装置。
    The determination means determines the injection amount of the emulsion fuel by correcting a basic injection amount of the emulsion fuel determined according to an operating condition of the vehicle based on the heat generation amount of the specified water. The control apparatus for an internal combustion engine according to any one of claims 1 to 3, wherein:
  5.  前記エマルジョン燃料は前記液体としてアルコールを含み、
     前記エマルジョン燃料における前記アルコールの発熱量を特定する第2発熱量特定手段を更に具備し、
     前記決定手段は、該特定されたアルコールの発熱量に基づいて前記エマルジョン燃料の噴射量を決定する
     ことを特徴とする請求の範囲第1項から第4項のいずれか一項に記載の内燃機関の制御装置。
    The emulsion fuel contains alcohol as the liquid,
    Further comprising second calorific value specifying means for specifying the calorific value of the alcohol in the emulsion fuel;
    The internal combustion engine according to any one of claims 1 to 4, wherein the determining means determines an injection amount of the emulsion fuel based on a heat generation amount of the specified alcohol. Control device.
  6.  前記エマルジョン燃料の含アルコール比率を特定する含アルコール比率特定手段を更に具備し、
     前記第2発熱量特定手段は、該特定された含アルコール比率に基づいて前記エマルジョン燃料におけるアルコールの発熱量を特定する
     ことを特徴とする請求の範囲第5項に記載の内燃機関の制御装置。
    Further comprising alcohol content ratio specifying means for specifying the alcohol content ratio of the emulsion fuel;
    The control device for an internal combustion engine according to claim 5, wherein the second calorific value specifying means specifies the calorific value of alcohol in the emulsion fuel based on the specified alcohol content ratio.
  7.  前記エマルジョン燃料の温度を特定する温度特定手段を更に具備し、
     前記決定手段は、前記特定された温度に基づいて前記エマルジョン燃料の噴射量を決定する
     ことを特徴とする請求の範囲第1項から第6項のいずれか一項に記載の内燃機関の制御装置。
    A temperature specifying means for specifying the temperature of the emulsion fuel;
    The control device for an internal combustion engine according to any one of claims 1 to 6, wherein the determining means determines an injection amount of the emulsion fuel based on the specified temperature. .
  8.  前記車両は、前記主燃料と前記液体とを混合することにより前記エマルジョン燃料を生成可能な生成手段を更に備え、
     前記内燃機関の制御装置は、
     前記主燃料と前記液体とが所望の混合比率で混合されるように前記生成手段を制御する生成制御手段を更に具備する
     ことを特徴とする請求の範囲第1項から第7項のいずれか一項に記載の内燃機関の制御装置。
    The vehicle further includes generating means capable of generating the emulsion fuel by mixing the main fuel and the liquid,
    The control device for the internal combustion engine includes:
    8. The method according to claim 1, further comprising generation control means for controlling the generation means so that the main fuel and the liquid are mixed at a desired mixing ratio. The control apparatus for an internal combustion engine according to the item.
PCT/JP2008/071888 2008-12-02 2008-12-02 Control device for internal combustion engine WO2010064302A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/071888 WO2010064302A1 (en) 2008-12-02 2008-12-02 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/071888 WO2010064302A1 (en) 2008-12-02 2008-12-02 Control device for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2010064302A1 true WO2010064302A1 (en) 2010-06-10

Family

ID=42232967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/071888 WO2010064302A1 (en) 2008-12-02 2008-12-02 Control device for internal combustion engine

Country Status (1)

Country Link
WO (1) WO2010064302A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012127569A1 (en) * 2011-03-18 2012-09-27 トヨタ自動車株式会社 Control device for internal combustion engine
WO2013087263A1 (en) * 2011-12-16 2013-06-20 Robert Bosch Gmbh Fuel system for an internal combustion engine which can be operated with at least two fuel types
EP2771556A1 (en) * 2011-10-28 2014-09-03 EHT Patents and Licensing Limited Improvement of a combustion engine
EP2602547A4 (en) * 2010-08-05 2017-12-20 Kawasaki Jukogyo Kabushiki Kaisha Specific gravity monitoring control device and fuel supply apparatus provided with same
NL2017311B1 (en) * 2016-08-12 2018-02-16 Fuel Mix B V Power source, dosing-mixing system and fuel mixture therefor
DE102018129954A1 (en) 2018-11-27 2020-05-28 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Mixing device for a fuel injection system of an internal combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08246961A (en) * 1995-03-07 1996-09-24 Kawasaki Heavy Ind Ltd Fuel feeding device for diesel engine
JP2004060468A (en) * 2002-07-25 2004-02-26 Komatsu Ltd Fuel injection system for diesel engine
JP2005289742A (en) * 2004-03-31 2005-10-20 Kyoto Univ Method for producing hydrogen by using hydrothermal reaction
JP2007231779A (en) * 2006-02-28 2007-09-13 Toyota Motor Corp Exhaust emission control device for internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08246961A (en) * 1995-03-07 1996-09-24 Kawasaki Heavy Ind Ltd Fuel feeding device for diesel engine
JP2004060468A (en) * 2002-07-25 2004-02-26 Komatsu Ltd Fuel injection system for diesel engine
JP2005289742A (en) * 2004-03-31 2005-10-20 Kyoto Univ Method for producing hydrogen by using hydrothermal reaction
JP2007231779A (en) * 2006-02-28 2007-09-13 Toyota Motor Corp Exhaust emission control device for internal combustion engine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2602547A4 (en) * 2010-08-05 2017-12-20 Kawasaki Jukogyo Kabushiki Kaisha Specific gravity monitoring control device and fuel supply apparatus provided with same
WO2012127569A1 (en) * 2011-03-18 2012-09-27 トヨタ自動車株式会社 Control device for internal combustion engine
JP5267745B2 (en) * 2011-03-18 2013-08-21 トヨタ自動車株式会社 Control device for internal combustion engine
EP2771556A1 (en) * 2011-10-28 2014-09-03 EHT Patents and Licensing Limited Improvement of a combustion engine
WO2013087263A1 (en) * 2011-12-16 2013-06-20 Robert Bosch Gmbh Fuel system for an internal combustion engine which can be operated with at least two fuel types
CN103987944A (en) * 2011-12-16 2014-08-13 罗伯特·博世有限公司 FUEL SYSTEM FOR INTERNAL COMBUSTION ENGINE capable of being operated with AT LEAST TWO FUEL TYPES
NL2017311B1 (en) * 2016-08-12 2018-02-16 Fuel Mix B V Power source, dosing-mixing system and fuel mixture therefor
DE102018129954A1 (en) 2018-11-27 2020-05-28 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Mixing device for a fuel injection system of an internal combustion engine
US10934974B2 (en) 2018-11-27 2021-03-02 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Mixing device for a fuel injection system of an internal combustion engine

Similar Documents

Publication Publication Date Title
US8396644B2 (en) Control device for internal combustion engine
US9556809B2 (en) System and method for optimal fueling of an engine
CN102213147B (en) For making the method for engine running
CN102213146B (en) For making the method for the engine running with variable charge density
CN102213152B (en) For making air inlet by the method for engine running of diluting
WO2010064302A1 (en) Control device for internal combustion engine
EP1607606A1 (en) Method and device for controlling the exhaust gas recirculation in an internal-combustion engine based on the measurement of the oxygen concentration in the gaseous mixture taken in by the engine
RU2719256C2 (en) Method and system for reducing particulate emissions
EP2216537A1 (en) Internal combustion engine
US20100180838A1 (en) Alternative fuel injection system and method for an internal combustion engine
CN101403343B (en) Fuel volatility compensation for engine cold start speed control
US9145850B2 (en) Power system comprising a condensation injection system
WO2011082373A2 (en) Methods for controlling combustion of blended biofuels
US8955310B2 (en) Adaptive regeneration of an exhaust aftertreatment device in response to a biodiesel fuel blend
CN109415985A (en) The control device of internal combustion engine and the control method of internal combustion engine
CN109415984A (en) The control device of internal combustion engine and the control method of internal combustion engine
CN103748339A (en) Control system for multiple-fuel internal combustion engine
US8276550B1 (en) Control system of internal combustion engine
WO2010059081A1 (en) Method and apparatus for operation of a multiple fuel engine
CN102787924A (en) Method for biodiesel blending detection based on fuel post-injection quantity evaluation
JP2010151036A (en) Injection amount control device for internal combustion engine
JP4548344B2 (en) Exhaust reformer system control device for internal combustion engine
JP3900034B2 (en) Control device for internal combustion engine
JP2010156312A (en) Control device for internal combustion engine
JP4305150B2 (en) Internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08878562

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08878562

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP