WO2010063428A1 - Objet pneumatique pourvu d'une couche etanche aux gaz a base d'un elastomere thermoplastique et de microspheres thermoplastiques expansees - Google Patents

Objet pneumatique pourvu d'une couche etanche aux gaz a base d'un elastomere thermoplastique et de microspheres thermoplastiques expansees Download PDF

Info

Publication number
WO2010063428A1
WO2010063428A1 PCT/EP2009/008504 EP2009008504W WO2010063428A1 WO 2010063428 A1 WO2010063428 A1 WO 2010063428A1 EP 2009008504 W EP2009008504 W EP 2009008504W WO 2010063428 A1 WO2010063428 A1 WO 2010063428A1
Authority
WO
WIPO (PCT)
Prior art keywords
pneumatic object
object according
pneumatic
layer
styrene
Prior art date
Application number
PCT/EP2009/008504
Other languages
English (en)
Inventor
Vincent Abad
Pierre Lesage
Emmanuel Custodero
Original Assignee
Societe De Technologie Michelin
Michelin Recherche Et Technique S A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe De Technologie Michelin, Michelin Recherche Et Technique S A. filed Critical Societe De Technologie Michelin
Priority to US13/132,769 priority Critical patent/US20110315291A1/en
Priority to CN2009801487604A priority patent/CN102239217A/zh
Priority to JP2011538886A priority patent/JP5539379B2/ja
Priority to EP09760498A priority patent/EP2373739A1/fr
Publication of WO2010063428A1 publication Critical patent/WO2010063428A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T152/00Resilient tires and wheels
    • Y10T152/10Tires, resilient
    • Y10T152/10495Pneumatic tire or inner tube
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1334Nonself-supporting tubular film or bag [e.g., pouch, envelope, packet, etc.]

Definitions

  • the present invention relates to "pneumatic" objects, i.e., by definition, objects that take their usable form when inflated with air or an equivalent inflation gas.
  • the radially inner face has an airtight layer (or more generally any inflation gas) which allows the swelling and maintaining the pressure of the tire.
  • airtight layer or more generally any inflation gas
  • Its sealing properties enable it to guarantee a relatively low rate of pressure loss, making it possible to maintain the swollen bandage in normal operating condition for a sufficient duration, normally of several weeks or several months. It also serves to protect the carcass reinforcement from the diffusion of air from the interior space to the bandage.
  • inner liner waterproof inner liner
  • butyl rubber-based compositions have significant hysteretic losses, moreover over a wide temperature spectrum, a disadvantage which penalizes the rolling resistance of pneumatic tires.
  • the present invention relates to a pneumatic object provided with an elastomer layer impervious to inflation gases, characterized in that said elastomer layer comprises at least, as majority elastomer, a thermoplastic block copolymer polystyrene and polyisobutylene and expanded thermoplastic microspheres.
  • thermoplastic copolymer above Compared to a butyl rubber, the thermoplastic copolymer above has the major advantage, because of its thermoplastic nature, to be worked as such in the molten state (liquid) and thus to offer improved processability; such a copolymer makes it possible in particular to prepare very thin layers of tight layer, easily integrate relatively difficult or relatively fragile fillers such as thermoplastic microspheres, significantly reducing the risk of degradation of such charges.
  • the invention particularly relates to pneumatic objects of rubber such as pneumatic tires, or inner tubes, in particular tubes for pneumatic tires.
  • the invention relates more particularly to pneumatic tires intended to equip tourism-type motor vehicles, SUVs ("Sport Utility Vehicles"), two wheels (in particular motorcycles), planes, such as industrial vehicles such as vans, heavy goods vehicles (that is, metros, buses, road transport vehicles such as trucks, tractors, trailers, off-the-road vehicles such as agricultural or civil engineering vehicles) and other transport or handling vehicles.
  • SUVs Sport Utility Vehicles
  • two wheels in particular motorcycles
  • planes such as industrial vehicles such as vans, heavy goods vehicles (that is, metros, buses, road transport vehicles such as trucks, tractors, trailers, off-the-road vehicles such as agricultural or civil engineering vehicles) and other transport or handling vehicles.
  • the invention also relates to the use, for sealing the inflating gases of a pneumatic object, of a thermoplastic copolymer elastomer with polystyrene and polyisobutylene blocks and thermally expandable thermoplastic microspheres.
  • any range of values designated by the expression "between a and b" represents the range of values from more than a to less than b (i.e. terminals a and b excluded) while any range of values designated by the term “from a to b” means the range from a to b (i.e., including the strict limits a and b).
  • the pneumatic object of the invention has the essential feature of being provided with a gastight layer formed of an elastomer composition (or "rubber", both of which are considered in a known manner as synonyms) of the thermoplastic type, said layer or composition comprising at least, as majority elastomer, a thermoplastic copolymer elastomer with polystyrene and polyisobutylene blocks, expanded thermoplastic microspheres and optionally an extension oil and any other additives. All of these components are described in detail below.
  • thermoplastic styrene elastomers are thermoplastic elastomers in the form of block copolymers based on styrene.
  • thermoplastic polymers and elastomers consist in a known manner of rigid polystyrene blocks connected by flexible elastomer blocks, for example polybutadiene, polyisoprene or poly (ethylene / butylene). They are often triblock elastomers with two rigid segments connected by a flexible segment. The rigid and flexible segments can be arranged linearly, star or connected.
  • These TPS elastomers may also be diblock elastomers with a single rigid segment connected to a flexible segment.
  • each of these segments or blocks contains at least more than 5, usually more than 10 base units (e.g., styrene units and isoprene units for a styrene / isoprene / styrene block copolymer).
  • base units e.g., styrene units and isoprene units for a styrene / isoprene / styrene block copolymer.
  • polystyrene and polyisobutylene block copolymer is intended to mean any styrenic thermoplastic copolymer comprising at least one polystyrene block (that is to say one or more polystyrene blocks) and at least one polyisobutylene block. (ie one or more polyisobutylene blocks), to which other saturated or unsaturated blocks (e.g. polyethylene and / or polypropylene) and / or other monomer units (e.g. unsaturated dienes).
  • TPS in the present application, is in particular chosen from the group consisting of styrene / isobutylene diblock copolymers (abbreviated as” SIB "), styrene triblock copolymers / isobutylene / styrene (abbreviated "SIBS”) and mixtures of these copolymers SIB and SIBS, by definition fully saturated.
  • SIB styrene / isobutylene diblock copolymers
  • SIBS styrene triblock copolymers / isobutylene / styrene
  • TPS copolymer particularly SIB or SIBS
  • SIB or SIBS provides the gastight layer with excellent sealing properties while significantly reducing hysteresis compared to conventional butyl rubber layers.
  • the weight content of styrene in the TPS copolymer is between 5% and 50%.
  • the thermoplastic nature of the elastomer may decrease significantly while above the maximum recommended, the elasticity of the seal layer may be affected.
  • the styrene content is more preferably between 10% and 40%, in particular between 15 and 35%.
  • styrene any styrene-based monomer, whether unsubstituted as substituted, should be understood in the present description; among the substituted styrenes may be mentioned, for example, methylstyrenes (for example ⁇ -methylstyrene, ⁇ -methylstyrene, p-methylstyrene, tert-butylstyrene) and chlorostyrenes (for example monochlorostyrene, dichlorostyrene).
  • methylstyrenes for example ⁇ -methylstyrene, ⁇ -methylstyrene, p-methylstyrene, tert-butylstyrene
  • chlorostyrenes for example monochlorostyrene, dichlorostyrene
  • the glass transition temperature (Tg, measured according to ASTM D3418) of the TPS copolymer is less than -20 ° C., more preferably less than -40 ° C.
  • Tg glass transition temperature
  • a value of Tg higher than these minima can reduce the performance of the waterproof layer during use at very low temperatures; for such use, the Tg of the TPS copolymer is more preferably still lower than -50 ° C.
  • the number-average molecular weight (denoted Mn) of the TPS copolymer is preferably between 30,000 and 500,000 g / mol, more preferably between 40,000 and 400,000 g / mol.
  • Mn number-average molecular weight
  • the cohesion between the chains of the elastomer may be affected, particularly because of a possible dilution of the latter by an extension oil.
  • a mass that is too high can be detrimental to the flexibility of the gas-tight layer.
  • a Mn value within a range of 50,000 to 300,000 g / mol is particularly well suited, especially to a use of the composition in a tire.
  • the number-average molecular weight (Mn) of the TPS copolymer is determined in known manner by steric exclusion chromatography (SEC).
  • SEC steric exclusion chromatography
  • the sample is first solubilized in tetrahydrofuran at a concentration of about 1 g / l; then the solution is filtered on a 0.45 ⁇ m porosity filter before injection.
  • the equipment used is a chromatographic chain "WATERS alliance”.
  • the elution solvent is tetrahydrofuran, the flow rate 0.7 ml / min, the system temperature 35 ° C and the analysis time 90 min.
  • a set of four WATERS columns in series, of trade names "STYRAGEL"("HMW7","HMW6E" and two "HT6E" is used.
  • the injected volume of the solution of the polymer sample is 100 ⁇ l.
  • the detector is a differential refractometer "WATERS 2410" and its associated software for the exploitation of chromatographic data is the “WATERS MILLENIUM” system.
  • the calculated average molar masses relate to a calibration curve made with polystyrene standards.
  • the TPS copolymer and the expanded thermoplastic microspheres may alone constitute the gas-tight elastomeric layer or may be associated in the elastomeric composition with other elastomers in a minor amount relative to the TPS copolymer.
  • the TPS copolymer constitutes the majority elastomer by weight. Its level is then preferably greater than 70 phr, in particular within a range of 80 to 100 phr (as a reminder, "phr" means parts by weight per hundred parts of total elastomer, that is to say of the total of elastomers present in the composition forming the gas-tight layer).
  • Such complementary elastomers, minority by weight could be, for example, diene elastomers such as natural rubber or synthetic polyisoprene, butyl rubber or thermoplastic elastomers other than styrenic, within the limit of the compatibility of their microstructures.
  • Such complementary elastomers which are minor in weight, could also be other styrenic thermoplastic elastomers, whether of the unsaturated type as saturated (that is to say in known manner, provided or not with ethylenic unsaturations or double bonds carbon-carbon).
  • unsaturated TPS elastomers there may be mentioned, for example, those comprising styrene blocks and diene blocks, in particular those chosen from the group consisting of styrene / butadiene block copolymers (SB) and styrene / isoprene block copolymers (IS).
  • SB styrene / butadiene block copolymers
  • IS styrene / isoprene block copolymers
  • saturated TPS elastomers mention may be made, for example, of those selected from the group consisting of styrene / ethylene / butylene (SEB), styrene / ethylene / propylene (SEP), styrene / ethylene / ethylene / block copolymers.
  • propylene (SEEP) styrene / ethylene / butylene / styrene (SEBS), styrene / ethylene / propylene / styrene (SEPS), styrene / ethylene / ethylene / propylene / styrene (SEEPS) and mixtures of these copolymers.
  • the gas-tight layer is devoid of such complementary elastomers; in other words, the TPS copolymer, in particular SIB or SIBS, previously described is the only thermoplastic elastomer and more generally the only elastomer present in the elastomeric composition of the gas-tight layer.
  • polystyrene and polyisobutylene block copolymers are commercially available, they can be implemented conventionally for TPS elastomers, by extrusion or molding, for example from a raw material available in the form of beads or granules. They are sold for example with regard to the SIB or SIBS by the company
  • KANEKA under the name "SIBSTAR” (e.g. "Sibstar 103T”, “Sibstar 102T”, "Sibstar
  • TPE elastomers were first developed for biomedical applications then described in various applications specific to TPE elastomers, as varied as medical equipment, parts for automobiles or household appliances, sleeves for electrical wires, sealing parts or elastics (see for example EP 1 431 343, EP 1 561 783, EP 1 566 405, WO 2005/103146).
  • thermoplastic microspheres used here are well known, they are spherical, resilient particles composed of a thermoplastic polymer capsule containing a liquid and / or a gas depending on their state of expansion. They can be used in an unexpanded form (for example as a "blowing agent") or in an expanded form. In unexpanded form, their average diameter is generally in a range of 5 to 50 microns.
  • the shells of these capsules are for example based on copolymers of acrylonitrile monomers, methyl methacrylate, vinylidene chloride; the liquid acting as swelling agent is typically an alkane (eg isobutane or isopentane).
  • thermoplastic microspheres For more details on these thermoplastic microspheres, we can refer to the many technical documents available from their suppliers (see for example Expancel Technical Bulletin No. 40 entitled “Expancel® Microspheres -A Technical Presentation", published by Akzo Nobel the 24/07/2006).
  • the level of thermoplastic microspheres foamed in the gas-tight layer is between 0.1 and 30 phr, preferably between 0.5 and 10 phr, particularly in a range of 1 to 8 phr.
  • the desired technical effect may be insufficient while beyond the recommended maxima, there is a risk of embrittlement and loss of endurance of the layer, not to mention its increase in cost.
  • thermoplastic microspheres are preferentially introduced in the initial state in unexpanded form. They are then foamed, in whole or in part, during the various mixing operations (with the TPS copolymer), of extrusion (of the elastomer composition forming the gas-tight layer) and / or of final cooking or vulcanization (by example of the tire), at the moment in fact when they reach a temperature sufficient for the expansion phase to be triggered.
  • TPS copolymer in particular SIB or SIBS
  • expanded thermoplastic microspheres previously described are sufficient on their own for the gas-tight function to be performed with respect to the pneumatic objects in which they are used.
  • the gas-tight layer may also comprise, as a plasticizer, an extension oil (or plasticizing oil) whose function is to facilitate the implementation, particularly the integration into the pneumatic object by a lowering of the module and an increase in the tackifying power of the gas-tight layer, at the cost, however, of a certain loss of tightness.
  • an extension oil or plasticizing oil
  • extension oil preferably of a slightly polar nature, capable of extending and plasticizing elastomers, especially thermoplastics, may be used. At room temperature (23 ° C.), these oils, more or less viscous, are liquids (that is to say, as a reminder, substances having the capacity to eventually take on the shape of their container), as opposed to especially to resins that are inherently solid.
  • the extender oil is chosen from the group consisting of polyolefinic oils (that is to say derived from the polymerization of olefins, monoolefins or diolefins), paraffinic oils, naphthenic oils (low or high viscosity), aromatic oils, mineral oils, and mixtures of these oils. More preferably, the extender oil is selected from the group consisting of polybutene oils, paraffinic oils and mixtures of these oils.
  • Polybutene oils preferably polyisobutylene oils (abbreviated to "PIB"), which have demonstrated the best compromise of properties compared to the other oils tested, in particular paraffinic oils, are particularly used.
  • PIB polyisobutylene oils
  • polyisobutylene oils are sold in particular by the company UNIVAR under the name "Dynapak PoIy” (eg "Dynapak PoIy 190"), by BASF under the names “Glissopal” (eg “Glissopal 1000") or "Oppanol "(eg” Oppanol B 12 "), by INEOS Oligomer under the name” Indopol H1200 ".
  • Paraffinic oils are sold for example by Exxon under the name "Telura 618" or by Repsol under the name "Extensol 51".
  • the number-average molecular mass (Mn) of the extender oil is preferably between 200 and 25,000 g / mol, more preferably between 300 and 10,000 g / mol.
  • Mn number-average molecular mass
  • the molecular weight M n of the extension oil is determined by SEC, the sample being solubilized beforehand in tetrahydrofuran at a concentration of approximately 1 g / l; then the solution is filtered on a 0.45 ⁇ m porosity filter before injection.
  • the equipment is the chromatographic chain "WATERS alliance”.
  • the elution solvent is tetrahydrofuran, the flow rate is 1 ml / min, the temperature of the system is 35 ° C. and the analysis time is 30 minutes.
  • the injected volume of the solution of the polymer sample is 100 ⁇ l.
  • the detector is a differential refractometer "WATERS 2410" and its associated software for the exploitation of chromatographic data is the “WATERS MILLENIUM” system.
  • the calculated average molar masses relate to a calibration curve made with polystyrene standards.
  • an extender oil it is preferred that its level be greater than 5 phr, more preferably between 5 and 100 phr. Below the minimum indicated, the elastomeric layer or composition may have too high rigidity for certain applications while beyond the maximum recommended, there is a risk of insufficient cohesion of the composition and loss of tightness may be harmful depending on the application. For all these reasons, particularly for use of the airtight layer in a tire, it is preferred that the extender oil content be greater than 10 phr, especially between 10 and 90 phr, more preferably still than greater than 20 phr, in particular between 20 and 80 phr.
  • the airtight layer or composition described above may furthermore comprise the various additives usually present in the airtight layers known to the man in the air. job.
  • reinforcing fillers such as carbon black or silica, non-reinforcing or inert fillers, lamellar fillers that further improve the seal (eg phyllosilicates such as kaolin, talc, mica, graphite, clays or modified clays) may be mentioned.
  • organo clays plasticizers other than the above-mentioned extension oils, protective agents such as antioxidants or antiozonants, anti-UV agents, coloring agents that can be advantageously used for coloring the composition, various agents for implementing or other stabilizers, or promoters capable of promoting adhesion to the rest of the structure of the pneumatic object.
  • lamellar fillers in the gas-tight layer advantageously makes it possible to further reduce the coefficient of permeability (and therefore of increasing the seal) of the thermoplastic elastomer composition, without excessively increasing its modulus, which makes it possible to preserve the ease of integration of the sealing layer in the pneumatic object.
  • Such fillers are generally in the form of plates, platelets, sheets or stacked sheets, with a more or less marked anisometry, whose average length is for example between a few microns and a few hundred microns. They can be used at variable weight rates according to the applications, for example greater than 20 phr, especially greater than 50 phr.
  • the gas-tight composition could also comprise, still in a minority weight fraction relative to the TPS copolymer, polymers other than elastomers, such as, for example, thermoplastic polymers compatible with TPS elastomers.
  • the layer or tight composition described above is a solid (at 23 ° C) and elastic compound, which is characterized in particular, thanks to its specific formulation, by a very high flexibility and very high deformability.
  • pneumatic object It can be used as an airtight layer (or any other inflation gas, for example nitrogen) in any type of pneumatic object.
  • pneumatic objects include pneumatic boats, balls or balls used for play or sport.
  • an airtight layer in a pneumatic object, finished or semi-finished product, of rubber, especially in a tire for a motor vehicle such as a two-wheeled vehicle, tourism or industrial.
  • Such an airtight layer is preferentially disposed on the inner wall of the pneumatic object, but it can also be completely integrated into its internal structure.
  • the thickness of the airtight layer is preferably greater than 0.05 mm, more preferably between 0.1 mm and 10 mm, especially between 0.1 and 1.0 mm.
  • the preferred thickness may be between 1 and 3 mm.
  • the preferred thickness may be between 2 and 10 mm.
  • the airtight composition described above has the advantage of having a significantly lower hysteresis, and thus of providing reduced rolling resistance to pneumatic tires, as demonstrated in the following embodiments.
  • the density of the sealed layer is less than 1 g / cm 3 , more preferably less than 0.9 g / cm 3 ; it can be in many cases less than 0.8 g / cm 3 .
  • the gas-tight elastomeric layer previously described is advantageously usable in pneumatic tires of all types of vehicles, in particular passenger vehicles or industrial vehicles such as heavy goods vehicles.
  • the single appended figure shows very schematically (without respecting a specific scale), a radial section of a tire according to the invention for a passenger vehicle.
  • This tire 1 has a crown 2 reinforced by a crown reinforcement or belt 6, two sidewalls 3 and two beads 4, each of these beads 4 being reinforced with a rod 5.
  • the crown 2 is surmounted by a tread represented in this schematic figure.
  • a carcass reinforcement 7 is wound around the two rods 5 in each bead 4, the upturn 8 of this armature 7 being for example disposed towards the outside of the tire 1 which is shown here mounted on its rim 9.
  • the carcass reinforcement 7 is in known manner constituted of at least one sheet reinforced by so-called "radial” cables, for example textile or metal, that is to say that these cables are arranged substantially parallel to each other and s' extend from one bead to the other so as to form an angle of between 80 ° and 90 ° with the median circumferential plane (plane perpendicular to the axis of rotation of the tire which is located halfway between the two beads 4 and goes through the middle of the crown frame 6).
  • radial cables for example textile or metal
  • the inner wall of the tire 1 comprises an airtight layer 10, for example of thickness equal to about 1.1 mm, on the side of the internal cavity 11 of the tire 1.
  • This inner layer covers the entire inner wall of the tire, extending from one side to the other, at least to the level of the rim hook when the tire is in the mounted position. It defines the radially inner face of said tire intended to protect the carcass reinforcement from the diffusion of air coming from the space 1 1 inside the bandage. It allows inflation and pressure maintenance of the tire; its sealing properties must enable it to guarantee a relatively low rate of pressure loss, to maintain the swollen bandage, in normal operating condition, for a sufficient duration, normally of several weeks or several months.
  • thermoplastic elastomer composition comprising the following components:
  • SIBS elastomer a single SIBS elastomer ("Sibstar 102T" with a styrene content of about 15%, a Tg of about -65 ° C and an average molecular weight Mn of about 90,000 g / mol); 2.5 parts of expanded thermoplastic microspheres (Expancel ® 09 Idul 40) per 100 parts by weight of elastomer SIBS (2.5 phr);
  • Layer 10 was prepared as follows.
  • the mixture of the three constituents (SIBS, thermoplastic microspheres and PIB) was made conventionally, using a twin-screw extruder (LfD equal to about 40), at a temperature typically above the melting temperature of the composition (about 190 ° C).
  • the extruder used had a feed (hopper) for the SIBS, another feed (hopper) for the thermoplastic microspheres (powdered, in unexpanded form) and a pressurized liquid injection pump for the polyisobutylene extension oil ; it was provided with a die for extruding the product to the desired dimensions.
  • the tire provided with its airtight layer (10) as described above can be made before or after vulcanization (or cooking).
  • the airtight layer is simply conventionally applied to the desired location, for formation of the layer 10. Vulcanization is then performed conventionally.
  • An advantageous manufacturing variant for those skilled in the tire industry, will for example consist in a first step of laying the airtight layer directly on a manufacturing drum in the form of a flat tire. a layer of suitable thickness, before covering the latter with the rest of the structure of the tire, according to manufacturing techniques well known to those skilled in the art.
  • the sealing layer is applied inside the baked tire by any appropriate means, for example by gluing, extrusion, spraying or else extrusion / blowing of a tire. film of appropriate thickness.
  • sealing properties were first analyzed on test specimens of butyl rubber-based compositions, on the one hand, and thermoplastic expanded SIBS and microspheres on the other hand (with and without oil).
  • extension PIB for the second composition based on SIBS and microspheres).
  • a rigid wall permeameter was used, placed in an oven (temperature of 60 ° C. in the present case), provided with a pressure sensor (calibrated in the range of 0 to 6 bar) and connected to a tube equipped with an inflation valve.
  • the permeameter can receive standard specimens in the form of a disc (for example 65 mm diameter in this case) and with a uniform thickness of up to 3 mm (0.5 mm in the present case).
  • the pressure sensor is connected to a National Instruments data acquisition card (four-channel analog 0-10V acquisition) which is connected to a computer performing a continuous acquisition with a frequency of 0.5 Hz (1 point every two seconds).
  • the coefficient of permeability (K) is measured from the linear regression line (average over 1000 points) giving the slope ⁇ of the pressure loss, through the tested test piece, as a function of time, after stabilization of the system, that is to say obtaining a steady state during which the pressure decreases linearly with time.
  • the composition comprising only the SIBS copolymer and the expanded thermoplastic microspheres, that is to say without extension oil or other additive, had a very low permeability coefficient, substantially equal to that of the usual composition based on butyl rubber, for the same thickness. This is already a remarkable result for such a composition.
  • an extension oil advantageously facilitates the integration of the elastomeric layer in the pneumatic object, by a lowering of the module and an increase in the tackifiant power of the latter.
  • pneumatic tires according to the invention of the type for passenger vehicle (size 195/65 Rl 5), were manufactured; their inner wall was covered by an airtight layer (10) with a thickness of 1.1 mm
  • pneumatic tires according to the invention were compared to control tires (Michelin "Energy 3" brand) comprising a conventional air-tight layer of the same thickness, based on butyl rubber.
  • the rolling resistance of pneumatic tires was measured on a steering wheel according to ISO 87-67 (1992).
  • the pneumatic tires of the invention have a very significant and unexpectedly reduced rolling resistance for those skilled in the art, of nearly 4% compared with the control tires.
  • the gas-tight layer of the pneumatic object of the invention not only has excellent sealing properties, but also a density and a hysteresis which are both reduced compared to butyl rubber-based layers. .
  • the invention thus offers tire designers the opportunity to reduce the fuel consumption of motor vehicles equipped with such tires, while reducing the density of the sealing layers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)

Abstract

L'invention concerne un objet pneumatique pourvu d'une couche élastomère étanche aux gaz de gonflage tel que l'air, ladite couche comportant au moins, à titre d'élastomère majoritaire, un copolymère thermoplastique à blocs polystyrène et polyisobutylène tel qu'un copolymère SIBS (styrène/ isobutylène/ styrène) et des microsphères thermoplastiques expansées à un taux préférentiel compris entre 1 et 30 pce. De préférence, ce copolymère comprend entre 5% et 50% en masse de styrène, sa masse moléculaire moyenne en nombre est comprise entre 30 000 et 500 000 g/mol, et sa Tg est inférieure à - 20°C. Optionnellement, la couche élastomère étanche comporte en outre, à titre de plastifiant, une huile d'extension, notamment une huile polybutène, à un taux préférentiel compris entre 5 et 100 pce. Cette couche étanche possède non seulement d'excellentes propriétés d'étanchéité, mais encore une masse volumique et une hystérèse qui sont toutes deux réduites comparativement à des couches à base de caoutchouc butyl. L'invention concerne en particulier un bandage pneumatique pour véhicule automobile.

Description

OBJET PNEUMATIQUE POURVU D'UNE COUCHE ETANCHE AUX GAZ
A BASE D'UN ELASTOMERE THERMOPLASTIQUE ET DE MICROSPHERES
THERMOPLASTIQUES EXPANSEES
La présente invention est relative aux objets "pneumatiques", c'est-à-dire, par définition, aux objets qui prennent leur forme utilisable quand on les gonfle d'air ou d'un gaz de gonflage équivalent.
Elle se rapporte plus particulièrement aux couches étanches aux gaz assurant l'étanchéité de ces objets pneumatiques, en particulier celle des bandages pneumatiques.
Dans un bandage pneumatique conventionnel du type "tubeless" (c'est-à-dire sans chambre à air), la face radialement interne comporte une couche étanche à l'air (ou plus généralement à tout gaz de gonflage) qui permet le gonflement et le maintien sous pression du bandage pneumatique. Ses propriétés d'étanchéité lui permettent de garantir un taux de perte de pression relativement faible, permettant de maintenir le bandage gonflé en état de fonctionnement normal pendant une durée suffisante, normalement de plusieurs semaines ou plusieurs mois. Elle a également pour fonction de protéger l'armature de carcasse de la diffusion d'air provenant de l'espace intérieur au bandage.
Cette fonction de couche interne ou "gomme intérieure" ("inner liner") étanche est aujourd'hui remplie par des compositions à base de caoutchouc butyl (copolymère d'isobutylène et d'isoprène), reconnues depuis fort longtemps pour leurs excellentes propriétés d'étanchéité.
Toutefois, un inconvénient bien connu des compositions à base de caoutchouc butyl est qu'elles présentent des pertes hystérétiques importantes, qui plus est sur un spectre large de température, inconvénient qui pénalise la résistance au roulement des bandages pneumatiques.
Diminuer l'hystérèse de ces couches internes d'étanchéité et donc in fine la consommation de carburant des véhicules automobiles, est un objectif général auquel se heurte la technologie actuelle.
Or, les Demanderesses ont découvert lors de leurs recherches qu'une couche élastomère autre qu'une couche butyl permet l'obtention de couches internes d'étanchéité répondant à un tel objectif, tout en offrant à ces dernières d'excellentes propriétés d'étanchéité. Ainsi, selon un premier objet, la présente invention concerne un objet pneumatique pourvu d'une couche élastomère étanche aux gaz de gonflage, caractérisé en ce que ladite couche élastomère comporte au moins, à titre d'élastomère majoritaire, un copolymère thermoplastique à blocs polystyrène et polyisobutylène et des microsphères thermoplastiques expansées.
Comparativement à un caoutchouc butyl, le copolymère thermoplastique ci-dessus présente l'avantage majeur, en raison de sa nature thermoplastique, de pouvoir être travaillé tel quel à l'état fondu (liquide) et d'offrir ainsi une processabilité améliorée ; un tel copolymère permet notamment de préparer des épaisseurs très fines de couche étanche, d'intégrer aisément des charges présentant une difficulté de dispersion ou relativement fragiles telles que les microsphères thermoplastiques ci-dessus, en réduisant notablement les risques de dégradation de telles charges.
L'invention concerne particulièrement les objets pneumatiques en caoutchouc tels que des bandages pneumatiques, ou les chambres à air, notamment les chambres à air pour bandage pneumatique.
L'invention concerne plus particulièrement les bandages pneumatiques destinés à équiper des véhicules à moteur de type tourisme, SUV {"Sport Utility Vehicles"), deux roues (notamment motos), avions, comme des véhicules industriels tels que camionnettes, poids-lourd (c'est-à- dire métro, bus, engins de transport routier tels que camions, tracteurs, remorques, véhicules hors-la-route tels qu'engins agricoles ou de génie civil) et autres véhicules de transport ou de manutention.
L'invention concerne également l'utilisation, pour assurer l'étanchéité aux gaz de gonflage d'un objet pneumatique, d'un élastomère thermoplastique copolymère à blocs polystyrène et polyisobutylène et de microsphères thermoplastiques thermiquement expansibles.
L'invention ainsi que ses avantages seront aisément compris à la lumière de la description et des exemples de réalisation qui suivent, ainsi que de la figure unique relative à ces exemples qui schématise, en coupe radiale, un bandage pneumatique conforme à l'invention.
I. DESCRIPTION DETAILLEE DE L'INVENTION
Dans la présente description, sauf indication expresse différente, tous les pourcentages (%) indiqués sont des % en masse. D'autre part, tout intervalle de valeurs désigné par l'expression "entre a et b" représente le domaine de valeurs allant de plus de a à moins de b (c'est-à-dire bornes a et b exclues) tandis que tout intervalle de valeurs désigné par l'expression "de a à b" signifie le domaine de valeurs allant de a jusqu'à b (c'est-à-dire incluant les bornes strictes a et b).
I- 1. Couche élastomère étanche aux gaz
L'objet pneumatique de l'invention a pour caractéristique essentielle d'être pourvu d'une couche étanche aux gaz formée d'une composition élastomère (ou "caoutchouc", les deux étant considérés de manière connue comme synonymes) du type thermoplastique, ladite couche ou composition comportant au moins, à titre d'élastomère majoritaire, un élastomère thermoplastique copolymère à blocs polystyrène et polyisobutylène, des microsphères thermoplastiques expansées et optionnellement une huile d'extension et d'éventuels autres additifs. Tous ces composants sont décrits en détail ci-après.
I- 1 -A. Elastomère thermoplastique styrénique
On rappellera tout d'abord que les élastomères thermoplastiques styréniques (en abrégé dénommés "TPS") sont des élastomères thermoplastiques se présentant sous la forme de copolymères blocs à base de styrène. De structure intermédiaire entre polymères thermoplastiques et élastomères, ils sont constitués de manière connue de séquences rigides polystyrène reliées par des séquences souples élastomère, par exemple polybutadiène, polyisoprène ou poly(éthylène/butylène). Ce sont souvent des élastomères triblocs avec deux segments rigides reliés par un segment souple. Les segments rigides et souples peuvent être disposés linéairement, en étoile ou branchés. Ces élastomères TPS peuvent être aussi des élastomères diblocs avec un seul segment rigide relié à un segment souple. Typiquement, chacun de ces segments ou blocs contient au minimum plus de 5, généralement plus de 10 unités de base (par exemple unités styrène et unités isoprène pour un copolymère blocs styrène/ isoprène/ styrène).
Ceci étant rappelé, par "copolymère à blocs polystyrène et polyisobutylène" doit être entendu dans la présente demande tout copolymère thermoplastique styrénique comportant au moins un bloc polystyrène (c'est-à-dire un ou plusieurs blocs polystyrène) et au moins un bloc polyisobutylène (c'est-à-dire un ou plusieurs blocs polyisobutylène), auxquels peuvent être associés ou non d'autres blocs saturés ou non (par exemple polyéthylène et/ou polypropylène) et/ou d'autres unités monomères (par exemple des unités insaturées telles que diéniques).
Ce copolymère à blocs polystyrène et polyisobutylène, dénommé également "copolymère
TPS" dans la présente demande, est en particulier choisi dans le groupe constitué par les copolymères dibloc styrène/ isobutylène (en abrégé "SIB"), les copolymères tribloc styrène/ isobutylène/ styrène (en abrégé "SIBS") et les mélanges de ces copolymères SIB et SIBS, par définition totalement saturés. L'invention s'applique également aux cas où le bloc polyisobutylène, dans les copolymères ci-dessus, peut être interrompu par une ou plusieurs unités insaturées, en particulier une ou plusieurs unités diéniques telles qu'isopréniques, éventuellement halogénées.
On a constaté que la présence du copolymère TPS, en particulier SIB ou SIBS, offre à la couche étanche aux gaz d'excellentes propriétés d'étanchéité tout en réduisant de manière notable l'hystérèse comparativement à des couches conventionnelles à base de caoutchouc butyl.
Selon un mode de réalisation préférentiel de l'invention, le taux pondéral de styrène, dans le copolymère TPS, est compris entre 5% et 50%. En dessous du minimum indiqué, le caractère thermoplastique de l'élastomère risque de diminuer de manière sensible tandis qu'au-dessus du maximum préconisé, l'élasticité de la couche étanche peut être affectée. Pour ces raisons, le taux de styrène est plus préférentiellement compris entre 10% et 40%, en particulier entre 15 et 35%. Par styrène, doit être entendu dans la présente description tout monomère à base de styrène, qu'il soit non substitué comme substitué ; parmi les styrènes substitués peuvent être cités par exemple les méthylstyrènes (par exemple α-méthylstyrène, β-méthylstyrène, p- méthylstyrène, tert-butylstyrène) les chlorostyrènes (par exemple monochlorostyrène, dichlorostyrène) .
On préfère que la température de transition vitreuse (Tg, mesurée selon ASTM D3418) du copolymère TPS soit inférieure à - 2O0C, plus préférentiellement inférieure à - 40°C. Une valeur de Tg supérieure à ces minima peut diminuer les performances de la couche étanche lors d'une utilisation à très basse température ; pour une telle utilisation, la Tg du copolymère TPS est plus préférentiellement encore inférieure à - 50°C.
La masse moléculaire moyenne en nombre (notée Mn) du copolymère TPS est préférentiellement comprise entre 30 000 et 500 000 g/mol, plus préférentiellement comprise entre 40 000 et 400 000 g/mol. En dessous des minima indiqués, la cohésion entre les chaînes de l'élastomère risque d'être affectée, notamment en raison d'une éventuelle dilution de ce dernier par une huile d'extension. Par ailleurs, une masse trop élevée peut être pénalisante pour la souplesse de la couche étanche aux gaz. Ainsi, on a constaté qu'une valeur Mn comprise dans un domaine de 50 000 à 300 000 g/mol était particulièrement bien adaptée, notamment à une utilisation de la composition dans un bandage pneumatique.
La masse moléculaire moyenne en nombre (Mn) du copolymère TPS est déterminée de manière connue, par chromatographie d'exclusion stérique (SEC). L'échantillon est préalablement solubilisé dans du tétrahydrofuranne à une concentration d'environ 1 g/1 ; puis la solution est filtrée sur filtre de porosité 0,45 μm avant injection. L'appareillage utilisé est une chaîne chromatographique "WATERS alliance". Le solvant d'élution est le tétrahydrofuranne, le débit de 0,7 ml/min, la température du système de 35°C et la durée d'analyse de 90 min. On utilise un jeu de quatre colonnes WATERS en série, de dénominations commerciales "STYRAGEL" ("HMW7", "HMW6E" et deux "HT6E"). Le volume injecté de la solution de l'échantillon de polymère est de 100 μl. Le détecteur est un réfractomètre différentiel "WATERS 2410" et son logiciel associé d'exploitation des données chromatographiques est le système "WATERS MILLENIUM". Les masses molaires moyennes calculées sont relatives à une courbe d'étalonnage réalisée avec des étalons de polystyrène.
L'indice de polydispersité Ip (rappel : Ip = Mw/Mn avec Mw masse moléculaire moyenne en poids) du copolymère TPS est de préférence inférieur à 3 ; plus préférentiellement Ip est inférieur à 2.
Le copolymère TPS et les microsphères thermoplastiques expansées peuvent constituer à eux seuls la couche élastomère étanche aux gaz ou bien être associés, dans la composition élastomère, à d'autres élastomères en quantité minoritaire relativement au copolymère TPS.
Si d'éventuels autres élastomères sont utilisés dans la composition, le copolymère TPS constitue l'élastomère majoritaire en poids. Son taux est alors préférentiellement supérieur à 70 pce, notamment compris dans un domaine de 80 à 100 pce (pour rappel, "pce" signifie parties en poids pour cent parties d'élastomère total, c'est-à-dire du total des élastomères présents dans la composition formant la couche étanche aux gaz). De tels élastomères complémentaires, minoritaires en poids, pourraient être par exemple des élastomères diéniques tels que du caoutchouc naturel ou un polyisoprène synthétique, un caoutchouc butyl ou des élastomères thermoplastiques autres que styréniques, dans la limite de la compatibilité de leurs microstructures.
De tels élastomères complémentaires, minoritaires en poids, pourraient être également d'autres élastomères thermoplastiques styréniques, qu'ils soient du type insaturés comme saturés (c'est-à-dire de manière connue, pourvus ou non d'insaturations éthyléniques ou doubles liaisons carbone-carbone).
A titre d'exemples d'élastomères TPS insaturés, on peut citer par exemple ceux comportant des blocs styrène et des blocs diène, en particulièrement ceux choisis dans le groupe constitué par les copolymères blocs styrène/ butadiène (SB), styrène/ isoprène (SI), styrène/ butadiène/ butylène (SBB), styrène/ butadiène/ isoprène (SBI), styrène/ butadiène/ styrène (SBS), styrène/ butadiène/ butylène/ styrène (SBBS), styrène/ isoprène/ styrène (SIS), styrène/ butadiène/ isoprène/ styrène (SBIS) et les mélanges de ces copolymères. A titre d'exemples d'élastomères TPS saturés, on peut citer par exemple ceux choisis dans le groupe constitué par les copolymères blocs styrène/ éthylène/ butylène (SEB), styrène/ éthylène/ propylène (SEP), styrène/ éthylène/ éthylène/ propylène (SEEP), styrène/ éthylène/ butylène/ styrène (SEBS), styrène/ éthylène/ propylène/ styrène (SEPS), styrène/ éthylène/ éthylène/ propylène/ styrène (SEEPS) et les mélanges de ces copolymères.
Toutefois, selon un mode de réalisation particulièrement préférentiel, la couche étanche aux gaz est dépourvue de tels élastomères complémentaires ; en d'autres termes, le copolymère TPS, en particulier SIB ou SIBS, précédemment décrit est le seul élastomère thermoplastique et plus généralement le seul élastomère présent dans la composition élastomère de la couche étanche aux gaz.
Les copolymères à blocs polystyrène et polyisobutylène sont disponibles commercialement, ils peuvent être mis en œuvre de façon classique pour des élastomères TPS, par extrusion ou moulage, par exemple à partir d'une matière première disponible sous la forme de billes ou de granulés. Ils sont vendus par exemple en ce qui concerne les SIB ou SIBS par la société
KANEKA sous la dénomination "SIBSTAR" (e.g. "Sibstar 103T", "Sibstar 102T", "Sibstar
073T" ou "Sibstar 072T" pour les SIBS, "Sibstar 042D" pour les SIB). Ils ont par exemple été décrits, ainsi que leur synthèse, dans les documents brevet EP 731 1 12, US 4 946 899, US 5
260 383. Ils ont été développés tout d'abord pour des applications biomédicales puis décrits dans diverses applications propres aux élastomères TPE, aussi variées que matériel médical, pièces pour automobile ou pour électroménager, gaines pour fils électriques, pièces d'étanchéité ou élastiques (voir par exemple EP 1 431 343, EP 1 561 783, EP 1 566 405, WO 2005/103146).
Toutefois, à la connaissance des Demanderesses, aucun document de l'état de la technique ne décrit l'utilisation dans un objet pneumatique tel que notamment un bandage pneumatique, d'une composition élastomère comportant en combinaison un copolymère à blocs polystyrène et polyisobutylène et des microsphères thermoplastiques expansées, composition qui s'est révélée, de manière tout à fait inattendue, apte à concurrencer des compositions conventionnelles à base de caoutchouc butyl comme couche d'étanchéité dans des objets pneumatiques.
I- 1 -B. Microsphères thermoplastiques expansées
Les microsphères thermoplastiques utilisées ici sont bien connues, ce sont des particules sphériques, résilientes, composées d'une capsule en polymère thermoplastique contenant un liquide et/ou un gaz selon leur état d'expansion. Elles peuvent être utilisées sous une forme non expansée (par exemple comme "blowing agent") ou sous une forme expansée. Sous forme non expansée, leur diamètre moyen est généralement compris dans un domaine de 5 à 50 μm. Les coques de ces capsules sont par exemple à base de copolymères de monomères acrylonitrile, méthylméthacrylate, chlorure de vinylidène ; le liquide jouant le rôle d'agent gonflant est typiquement un alcane (par exemple isobutane ou isopentane).
Sous l'effet de la chaleur, typiquement à des températures de 80 à 190°C selon les microsphères sélectionnées, la pression à l'intérieur de la sphère augmente, entraînant l'expansion irréversible de la capsule, par déformation plastique. Le volume final peut ainsi atteindre plusieurs dizaines de fois le volume initial. Ces microsphères expansées peuvent être utilisées dans différentes applications, elles servent notamment de charges allégeantes de très basse densité dans les peintures, mastics, adhésifs, enduits, etc. Elles peuvent aussi améliorer certaines propriétés d'usage des matrices les comportant ; en particulier, elles ont été décrites récemment dans des compositions à base de caoutchouc butyl pour bandage pneumatique, en vue d'améliorer l'étanchéité de ces compositions (voir notamment demande EP 1 967 543).
Pour plus de détails sur ces microsphères thermoplastiques, on pourra se reporter aux nombreuses documentations techniques disponibles auprès de leurs fournisseurs (voir par exemple Bulletin Technique N°40 de la société Expancel intitulé "Expancel® Microspheres -A Technical Présentation", publié par Akzo Nobel le 24/07/2006).
A titre d'exemples commerciaux de microsphères thermoplastiques expansibles utilisables dans la présente invention, on citera par exemple les produits proposés par la société Expancel sous les dénominations "Expancel 091DU-80", "Expancel 091DU-140", "Expancel 092DU-120".
De préférence, le taux de microsphères thermoplastiques expansées dans la couche étanche aux gaz est compris entre 0,1 et 30 pce, de préférence entre 0,5 et 10 pce, en particulièrement dans un domaine de 1 à 8 pce. En dessous des minima indiqués, l'effet technique visé peut être insuffisant tandis qu'au-delà des maxima préconisés, on se heurte à des risques de fragilisation et perte d'endurance de la couche, sans compter son augmentation de coût.
Dans la composition élastomère thermoplastique formant la couche étanche aux gaz, les microsphères thermoplastiques sont préférentiellement introduites à l'état initial sous une forme non expansée. Elles sont ensuite expansées, en tout ou partie, au cours des diverses opérations de mélangeage (avec le copolymère TPS), d'extrusion (de la composition élastomère formant la couche étanche aux gaz) et/ou de cuisson ou vulcanisation finale (par exemple du bandage pneumatique), au moment en fait où elles atteignent une température suffisante pour que se déclenche la phase d'expansion.
I- 1 -C. Huile d'extension
Le copolymère TPS, en particulier SIB ou SIBS, et les microsphères thermoplastiques expansées précédemment décrits sont suffisants à eux seuls pour que soit remplie la fonction d'étanchéité aux gaz vis-à-vis des objets pneumatiques dans lesquels ils sont utilisés.
Toutefois, selon un mode de réalisation particulier de l'invention, la couche étanche aux gaz peut comporter également, à titre d'agent plastifiant, une huile d'extension (ou huile plastifiante) dont la fonction est de faciliter la mise en œuvre, particulièrement l'intégration dans l'objet pneumatique par un abaissement du module et une augmentation du pouvoir tackifiant de la couche étanche aux gaz, au prix toutefois d'une certaine perte d'étanchéité.
On peut utiliser toute huile d'extension, de préférence à caractère faiblement polaire, apte à étendre, plastifier des élastomères, notamment thermoplastiques. A température ambiante (230C), ces huiles, plus ou moins visqueuses, sont des liquides (c'est-à-dire, pour rappel, des substances ayant la capacité de prendre à terme la forme de leur contenant), par opposition notamment à des résines qui sont par nature solides.
De préférence, l'huile d'extension est choisie dans le groupe constitué par les huiles polyoléfiniques (c'est-à-dire issues de la polymérisation d'oléfines, monooléfines ou dioléfines), les huiles paraffiniques, les huiles naphténiques (à basse ou haute viscosité), les huiles aromatiques, les huiles minérales, et les mélanges de ces huiles. Plus préférentiellement, l'huile d'extension est choisie dans le groupe constitué par les huiles polybutène, les huiles paraffiniques et les mélanges de ces huiles.
On utilise tout particulièrement des huiles polybutène, préférentiellement des huiles polyisobutylène (en abrégé "PIB"), qui ont démontré le meilleur compromis de propriétés comparativement aux autres huiles testées, notamment à des huiles du type paraffiniques.
A titre d'exemples, des huiles polyisobutylène sont commercialisées notamment par la société UNIVAR sous la dénomination "Dynapak PoIy" (e.g. "Dynapak PoIy 190"), par BASF sous les dénominations "Glissopal" (e.g. "Glissopal 1000") ou "Oppanol" (e.g. "Oppanol B 12"), par INEOS Oligomer sous la dénomination "Indopol H1200". Des huiles paraffiniques sont commercialisées par exemple par Exxon sous la dénomination "Telura 618" ou par Repsol sous la dénomination "Extensol 51". La masse moléculaire moyenne en nombre (Mn) de l'huile d'extension est préférentiellement comprise entre 200 et 25 000 g/mol, plus préférentiellement encore comprise entre 300 et 10 000 g/mol. Pour des masses Mn trop basses, il existe un risque de migration de l'huile à l'extérieur de la composition, tandis que des masses trop élevées peuvent entraîner une rigidification excessive de cette composition. Une masse Mn comprise entre 350 et 4 000 g/mol, en particulier entre 400 et 3 000 g/mol, s'est avérée constituer un excellent compromis pour les applications visées, en particulier pour une utilisation dans un bandage pneumatique.
La masse moléculaire Mn de l'huile d'extension est déterminée par SEC, l'échantillon étant préalablement solubilisé dans du tétrahydrofuranne à une concentration d'environ 1 g/1 ; puis la solution est filtrée sur filtre de porosité 0,45 μm avant injection. L'appareillage est la chaîne chromatographique "WATERS alliance". Le solvant d'élution est le tétrahydrofuranne, le débit de 1 ml/min, la température du système de 35°C et la durée d'analyse de 30 min. On utilise un jeu de deux colonnes "WATERS" de dénomination "STYRAGEL HT6E". Le volume injecté de la solution de l'échantillon de polymère est de 100 μl. Le détecteur est un réfractomètre différentiel "WATERS 2410" et son logiciel associé d'exploitation des données chromatographiques est le système "WATERS MILLENIUM". Les masses molaires moyennes calculées sont relatives à une courbe d'étalonnage réalisée avec des étalons de polystyrène.
L'homme du métier saura, à la lumière de la description et des exemples de réalisation qui suivent, ajuster la quantité d'huile d'extension en fonction des conditions particulières d'usage de la couche élastomère étanche aux gaz, notamment de l'objet pneumatique dans lequel elle est destinée à être utilisée.
Si une huile d'extension est utilisée, on préfère que son taux soit supérieur à 5 pce, plus préférentiellement compris entre 5 et 100 pce. En dessous du minimum indiqué, la couche ou composition élastomère risque de présenter une rigidité trop forte pour certaines applications tandis qu'au-delà du maximum préconisé, on s'expose à un risque de cohésion insuffisante de la composition et de perte d'étanchéité pouvant être néfaste selon l'application considérée. Pour toutes ces raisons, en particulier pour une utilisation de la couche étanche dans un bandage pneumatique, on préfère que le taux d'huile d'extension soit supérieur à 10 pce, notamment compris entre 10 et 90 pce, plus préférentiellement encore qu'il soit supérieur à 20 pce, notamment compris entre 20 et 80 pce.
I- 1 -D. Additifs divers
La couche ou composition étanche à l'air décrite ci-dessus peut comporter par ailleurs les divers additifs usuellement présents dans les couches étanches à l'air connues de l'homme du métier. On citera par exemple des charges renforçantes telles que du noir de carbone ou de la silice, des charges non renforçantes ou inertes, des charges lamellaires améliorant encore l'étanchéité (e.g. phyllosilicates tels que kaolin, talc, mica, graphite, argiles ou argiles modifiées ("organo claysιr), des plastifiants autres que les huiles d'extension précitées, des agents de protection tels que antioxydants ou antiozonants, anti-UV, des agents colorants avantageusement utilisables pour la coloration de la composition, divers agents de mise en œuvre ou autres stabilisants, ou encore des promoteurs aptes à favoriser l'adhésion au reste de la structure de l'objet pneumatique.
L'utilisation de charges lamellaires dans la couche étanche aux gaz permet avantageusement de réduire encore le coefficient de perméabilité (donc d'augmenter l'étanchéité) de la composition élastomère thermoplastique, sans augmenter de façon excessive son module, ce qui permet de conserver la facilité d'intégration de la couche étanche dans l'objet pneumatique. De telles charges se présentent généralement sous forme de plaques, plaquettes, feuilles ou feuillets empilés, avec une anisométrie plus ou moins marquée, dont la longueur moyenne est par exemple comprise entre quelques μm et quelques centaines de μm. Elles peuvent être utilisées à des taux pondéraux variables selon les applications, par exemple supérieurs à 20 pce, notamment supérieurs à 50 pce.
Outre les élastomères précédemment décrits, la composition étanche aux gaz pourrait aussi comporter, toujours selon une fraction pondérale minoritaire par rapport au copolymère TPS, des polymères autres que des élastomères, tels que par exemple des polymères thermoplastiques compatibles avec les élastomères TPS.
1-2. Utilisation de la couche élastomère dans un objet pneumatique
La couche ou composition étanche précédemment décrite est un composé solide (à 23 °C) et élastique, qui se caractérise notamment, grâce à sa formulation spécifique, par une très haute souplesse et très haute déformabilité.
Elle est utilisable comme couche étanche à l'air (ou tout autre gaz de gonflage, par exemple azote) dans tout type d'objet pneumatique. A titre d'exemples de tels objets pneumatiques, on peut citer les bateaux pneumatiques, les ballons ou balles utilisées pour le jeu ou le sport.
Elle est particulièrement bien adaptée à une utilisation comme couche étanche à l'air dans un objet pneumatique, produit fini ou semi-fini, en caoutchouc, tout particulièrement dans un bandage pneumatique pour véhicule automobile tel qu'un véhicule de type deux roues, tourisme ou industriel. Une telle couche étanche à l'air est préférentiellement disposée sur la paroi interne de l'objet pneumatique, mais elle peut être également intégrée complètement à sa structure interne.
L'épaisseur de la couche étanche à l'air est préférentiellement supérieure à 0,05 mm, plus préférentiellement comprise entre 0,1 mm et 10 mm, notamment entre 0,1 et 1,0 mm.
On comprendra aisément que, selon les domaines d'application spécifiques, les dimensions et les pressions enjeu, le mode de mise en œuvre de l'invention peut varier, la couche étanche à l'air comportant alors plusieurs gammes d'épaisseur préférentielles.
Ainsi par exemple, pour des bandages pneumatiques de type tourisme, elle peut avoir une épaisseur d'au moins 0,3 mm, préférentiellement comprise entre 0,5 et 2 mm. Selon un autre exemple, pour des bandages pneumatiques de véhicules poids-lourd ou agricole, l'épaisseur préférentielle peut se situer entre 1 et 3 mm. Selon un autre exemple, pour des bandages pneumatiques de véhicules dans le domaine du génie civil ou pour avions, l'épaisseur préférentielle peut se situer entre 2 et 10 mm.
Comparativement à une couche étanche à l'air usuelle à base de caoutchouc butyl, la composition étanche à l'air décrite ci-dessus a l'avantage de présenter une hystérèse nettement plus faible, et donc d'offrir une résistance au roulement réduite aux bandages pneumatiques, comme cela est démontré dans les exemples de réalisation qui suivent.
En outre, grâce à la présence de ses microsphères thermoplastiques expansées, sa masse volumique est notablement réduite par rapport à des couches d'étanchéité à base de caoutchouc butyl. Préférentiellement, la masse volumique de la couche étanche est inférieure à 1 g/cm3, plus préférentiellement inférieure à 0,9 g/cm3 ; elle peut être dans de nombreux cas inférieure à 0,8 g/cm3.
II. EXEMPLES DE REALISATION DE L'INVENTION
La couche élastomère étanche aux gaz précédemment décrite est avantageusement utilisable dans les bandages pneumatiques de tous types de véhicules, en particulier véhicules tourisme ou véhicules industriels tels que poids-lourd.
A titre d'exemple, la figure unique annexée représente de manière très schématique (sans respect d'une échelle spécifique), une coupe radiale d'un bandage pneumatique conforme à l'invention destiné à un véhicule tourisme. Ce bandage pneumatique 1 comporte un sommet 2 renforcé par une armature de sommet ou ceinture 6, deux flancs 3 et deux bourrelets 4, chacun de ces bourrelets 4 étant renforcé avec une tringle 5. Le sommet 2 est surmonté d'une bande de roulement non représentée sur cette figure schématique. Une armature de carcasse 7 est enroulée autour des deux tringles 5 dans chaque bourrelet 4, le retournement 8 de cette armature 7 étant par exemple disposé vers l'extérieur du pneumatique 1 qui est ici représenté monté sur sa jante 9. L'armature de carcasse 7 est de manière connue en soi constituée d'au moins une nappe renforcée par des câbles dits "radiaux", par exemple textiles ou métalliques, c'est-à-dire que ces câbles sont disposés pratiquement parallèles les uns aux autres et s'étendent d'un bourrelet à l'autre de manière à former un angle compris entre 80° et 90° avec le plan circonférentiel médian (plan perpendiculaire à l'axe de rotation du pneumatique qui est situé à mi-distance des deux bourrelets 4 et passe par le milieu de l'armature de sommet 6).
La paroi interne du bandage pneumatique 1 comporte une couche 10 étanche à l'air, par exemple d'épaisseur égale à environ 1,1 mm, du côté de la cavité interne 11 du bandage pneumatique 1.
Cette couche interne (ou "inner liner") couvre toute la paroi interne du bandage pneumatique, se prolongeant d'un flanc à l'autre, au moins jusqu'au niveau du crochet de jante lorsque le bandage pneumatique est en position montée. Elle définit la face radialement interne dudit bandage destinée à protéger l'armature de carcasse de la diffusion d'air provenant de l'espace 1 1 intérieur au bandage. Elle permet le gonflement et le maintien sous pression du bandage pneumatique ; ses propriétés d'étanchéité doivent lui permettre de garantir un taux de perte de pression relativement faible, de maintenir le bandage gonflé, en état de fonctionnement normal, pendant une durée suffisante, normalement de plusieurs semaines ou plusieurs mois.
Contrairement à un bandage pneumatique conventionnel utilisant une composition à base de caoutchouc butyl, le bandage pneumatique conforme à l'invention utilise comme couche 10 étanche à l'air, dans cet exemple, une composition élastomère thermoplastique comportant les composants suivants :
un seul élastomère SIBS ("Sibstar 102T" avec un taux de styrène d'environ 15%, une Tg d'environ - 65°C et une masse moléculaire moyenne Mn d'environ 90 000 g/mol) ; 2,5 parties de microsphères thermoplastiques expansées (Expancel® 09 IDUl 40) pour 100 parties en poids d'élastomère SIBS (soit 2,5 pce) ;
- 65 parties d'huile PIB ("Dynapak PoIy 190" - masse Mn de l'ordre de 1000 g/mol) pour 100 parties en poids d'élastomère SIBS (soit 65 pce).
La couche 10 a été préparée comme suit. Le mélange des trois constituants (SIBS, microsphères thermoplastiques et PIB) a été réalisé de manière conventionnelle, à l'aide d'une extrudeuse bi-vis (LfD égal à environ 40), à une température typiquement supérieure à la température de fusion de la composition (environ 190°C). L'extrudeuse utilisée comportait une alimentation (trémie) pour le SIBS, une autre alimentation (trémie) pour les microsphères thermoplastiques (en poudre, sous forme non expansée) et une pompe d'injection liquide sous pression pour l'huile d'extension polyisobutylène ; elle était pourvue d'une filière permettant d'extruder le produit aux dimensions souhaitées.
Le pneumatique pourvu de sa couche étanche à l'air (10) tel que décrit ci-dessus peut être réalisé avant ou après vulcanisation (ou cuisson).
Dans le premier cas (i.e., avant cuisson du bandage pneumatique), la couche étanche à l'air est simplement appliquée de façon conventionnelle à l'endroit souhaité, pour formation de la couche 10. La vulcanisation est ensuite effectuée classiquement. Une variante de fabrication avantageuse, pour l'homme du métier des bandages pneumatiques, consistera par exemple au cours d'une première étape, à déposer à plat la couche étanche à l'air directement sur un tambour de confection, sous la forme d'une couche d'épaisseur adaptée, avant de recouvrir cette dernière avec le reste de la structure du bandage pneumatique, selon des techniques de fabrication bien connues de l'homme du métier.
Dans le second cas (i.e., après cuisson du bandage pneumatique), la couche étanche est appliquée à l'intérieur du bandage pneumatique cuit par tout moyen approprié, par exemple par collage, par extrusion, par pulvérisation ou encore extrusion/ soufflage d'un film d'épaisseur appropriée.
Dans les exemples qui suivent, les propriétés d'étanchéité ont tout d'abord été analysées sur des éprouvettes de compositions à base de caoutchouc butyl d'une part, de SIBS et microsphères thermoplastiques expansées d'autre part (avec et sans huile d'extension PIB, pour ce qui concerne la deuxième composition à base de SIBS et des microsphères).
Pour cette analyse, on a utilisé un perméamètre à parois rigides, placé dans une étuve (température de 600C dans le cas présent), muni d'un capteur de pression (étalonné dans le domaine de 0 à 6 bars) et relié à un tube équipé d'une valve de gonflage. Le perméamètre peut recevoir des éprouvettes standard sous forme de disque (par exemple de diamètre 65 mm dans le cas présent) et d'épaisseur uniforme pouvant aller jusqu'à 3 mm (0,5 mm dans le cas présent). Le capteur de pression est connecté à une carte d'acquisition de données National Instruments (acquisition quatre voies analogiques 0-10 V) qui est reliée à un ordinateur réalisant une acquisition en continu avec une fréquence de 0,5 Hz (1 point toutes les deux secondes). Le coefficient de perméabilité (K) est mesuré à partir de la droite de régression linéaire (moyenne sur 1000 points) donnant la pente α de la perte de pression, à travers l'éprouvette testée, en fonction du temps, après stabilisation du système, c'est-à-dire obtention d'un régime stable au cours duquel la pression décroît linéairement en fonction du temps.
Tout d'abord, on a noté que la composition comportant uniquement le copolymère SIBS et les microsphères thermoplastiques expansées, c'est-à-dire sans huile d'extension ni autre additif, présentait un coefficient de perméabilité très bas, sensiblement égal à celui de la composition usuelle à base de caoutchouc butyl, pour une même épaisseur. Ceci constitue déjà un résultat remarquable pour une telle composition.
Comme déjà indiqué, si l'on accepte en contrepartie une certaine perte d'étanchéité, l'ajout d'une huile d'extension permet avantageusement de faciliter l'intégration de la couche élastomère dans l'objet pneumatique, par un abaissement du module et une augmentation du pouvoir tackifïant de cette dernière.
Ainsi, en utilisant 65 pce d'huile d'extension, on a constaté que le coefficient de perméabilité était augmenté (et donc l'étanchéité réduite) d'environ 2,3 fois en présence d'une huile conventionnelle telle que paraffïnique, alors que ce coefficient n'était augmenté que de 1,5 fois en présence d'une huile PIB ("Dynapak PoIy 190"), augmentation finalement peu pénalisante pour une utilisation dans un bandage pneumatique. C'est en cela que la combinaison du copolymère TPS (notamment SIB ou SIBS), des microsphères thermoplastiques expansées et d'huile polybutène (notamment PIB) s'est révélée offrir le meilleur compromis de propriétés pour la couche étanche aux gaz.
A la suite des tests de laboratoire ci-dessus, des bandages pneumatiques conformes à l'invention, du type pour véhicule tourisme (dimension 195/65 Rl 5), ont été fabriqués ; leur paroi interne a été recouverte par une couche étanche à l'air (10) d'une épaisseur de 1,1 mm
(sur tambour de confection, avant fabrication du reste du pneumatique), puis les pneumatiques ont été vulcanisés. Ladite couche étanche à l'air (10) était formée du SIBS
(100 pce), des microsphères thermoplastiques expansées (2,5 pce), et des 65 pce d'huile PIB, telle que décrite supra.
Ces bandages pneumatiques conformes à l'invention ont été comparés à des bandages témoins (marque Michelin "Energy 3") comportant une couche étanche à l'air conventionnelle, de même épaisseur, à base de caoutchouc butyl. La résistance au roulement des bandages pneumatiques a été mesurée sur un volant, selon la méthode ISO 87-67 (1992).
On a constaté que les bandages pneumatiques de l'invention présentaient une résistance au roulement réduite de manière très significative et inattendue pour l'homme du métier, de près de 4% par rapport aux bandages pneumatiques témoins. En conclusion, le couche étanche aux gaz de l'objet pneumatique de l'invention possède non seulement d'excellentes propriétés d'étanchéité, mais encore une masse volumique et une hystérèse qui sont toutes deux réduites comparativement à des couches à base de caoutchouc butyl.
L'invention offre ainsi aux concepteurs de bandages pneumatiques l'opportunité de réduire la consommation de carburant des véhicules automobiles équipés de tels bandages, tout en diminuant la masse volumique des couches d'étanchéité.

Claims

REVENDICATIONS
1. Objet pneumatique pourvu d'une couche élastomère étanche aux gaz de gonflage, caractérisé en ce que ladite couche élastomère comporte au moins, à titre d'élastomère majoritaire, un copolymère thermoplastique à blocs polystyrène et polyisobutylène et des microsphères thermoplastiques expansées.
2. Objet pneumatique selon la revendication 1, dans lequel le copolymère thermoplastique est choisi dans le groupe constitué par les copolymères styrène/ isobutylène, les copolymères styrène/ isobutylène/ styrène et les mélanges de ces copolymères.
3. Objet pneumatique selon la revendication 1 ou 2, dans lequel le copolymère thermoplastique comprend entre 5 et 50% en masse de styrène.
4. Objet pneumatique selon l'une quelconque des revendications 1 à 3, dans lequel la température de transition vitreuse du copolymère thermoplastique est inférieure à - 20°C.
5. Objet pneumatique selon l'une quelconque des revendications 1 à 4, dans lequel la masse moléculaire moyenne en nombre du copolymère thermoplastique est comprise entre 30 000 et 500 000 g/mol.
6. Objet pneumatique selon l'une quelconque des revendications 1 à 5, dans lequel la couche étanche comporte une huile d'extension du copolymère thermoplastique.
7. Objet pneumatique selon la revendication 6, dans lequel l'huile d'extension est choisie dans le groupe constitué par les huiles polyoléfiniques, les huiles paraffiniques, les huiles naphténiques, les huiles aromatiques, les huiles minérales, et les mélanges de ces huiles.
8. Objet pneumatique selon la revendication 7, dans lequel l'huile d'extension est choisie dans le groupe constitué par les polybutènes.
9. Objet pneumatique selon la revendication 8, dans lequel l'huile d'extension est une huile polyisobutylène.
10. Objet pneumatique selon l'une quelconque des revendications 6 à 9, dans lequel la masse moléculaire moyenne en nombre de l'huile d'extension est comprise entre 200 et 25 000 g/mol.
11. Objet pneumatique selon la revendication 10, dans lequel le taux d'huile d'extension est supérieur à 5 pce.
12. Objet pneumatique selon la revendication 11, dans lequel le taux d'huile d'extension est compris entre 5 et 100 pce.
13. Objet pneumatique selon l'une quelconque des revendications 1 à 12, dans lequel la couche étanche comporte une charge lamellaire.
14. Objet pneumatique selon l'une quelconque des revendications 1 à 13, dans lequel le taux de microsphères thermoplastiques expansées est compris entre 0,1 et 30 pce.
15. Objet pneumatique selon la revendication 14, dans lequel le taux de microsphères thermoplastiques expansées est compris entre 0,5 et 10 pce.
16. Objet pneumatique selon l'une quelconque des revendications 1 à 15, dans lequel la masse volumique de la couche élastomère étanche est inférieure à 1,0 g/cm3.
17. Objet pneumatique selon l'une quelconque des revendications 1 à 16, dans lequel la masse volumique de la couche étanche aux gaz est inférieure à 0,9 g/cm3.
18. Objet pneumatique selon l'une quelconque des revendications 1 à 17, dans lequel la couche étanche aux gaz a une épaisseur supérieure à 0,05 mm.
19. Objet pneumatique selon la revendication 18, dans lequel la couche étanche a une épaisseur comprise entre 0,1 mm et 10 mm.
20. Objet pneumatique selon l'une quelconque des revendications 1 à 19, dans lequel la couche étanche aux gaz est disposée sur la paroi interne de l'objet pneumatique.
21. Objet pneumatique selon l'une quelconque des revendications 1 à 20, caractérisé en ce que ledit objet est en caoutchouc.
22. Objet pneumatique selon la revendication 21, caractérisé en ce que ledit objet en caoutchouc est un bandage pneumatique.
23. Objet pneumatique selon la revendication 21, caractérisé en ce que ledit objet pneumatique est une chambre à air.
24. Utilisation, pour assurer l'étanchéité aux gaz de gonflage d'un objet pneumatique, d'un élastomère thermoplastique copolymère à blocs polystyrène et polyisobutylène et de microsphères thermoplastiques thermiquement expansibles.
PCT/EP2009/008504 2008-12-03 2009-11-30 Objet pneumatique pourvu d'une couche etanche aux gaz a base d'un elastomere thermoplastique et de microspheres thermoplastiques expansees WO2010063428A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/132,769 US20110315291A1 (en) 2008-12-03 2009-11-30 Pneumatic Object Provided with a Gas-Tight Layer Comprising a Thermoplastic Elastomer and Expanded Thermoplastic Microspheres
CN2009801487604A CN102239217A (zh) 2008-12-03 2009-11-30 带有包含热塑性弹性体和膨胀热塑性微球体的气密层的充气制品
JP2011538886A JP5539379B2 (ja) 2008-12-03 2009-11-30 熱可塑性エラストマーと発泡熱可塑性微小球を含む気密層を備えた空気式物品
EP09760498A EP2373739A1 (fr) 2008-12-03 2009-11-30 Objet pneumatique pourvu d'une couche etanche aux gaz a base d'un elastomere thermoplastique et de microspheres thermoplastiques expansees

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0858238A FR2939141B1 (fr) 2008-12-03 2008-12-03 Objet pneumatique pourvu d'une couche etanche aux gaz a base d'un elastomere thermoplastique et de microspheres thermoplastiques expansees
FR0858238 2008-12-03

Publications (1)

Publication Number Publication Date
WO2010063428A1 true WO2010063428A1 (fr) 2010-06-10

Family

ID=40551511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/008504 WO2010063428A1 (fr) 2008-12-03 2009-11-30 Objet pneumatique pourvu d'une couche etanche aux gaz a base d'un elastomere thermoplastique et de microspheres thermoplastiques expansees

Country Status (6)

Country Link
US (1) US20110315291A1 (fr)
EP (1) EP2373739A1 (fr)
JP (1) JP5539379B2 (fr)
CN (1) CN102239217A (fr)
FR (1) FR2939141B1 (fr)
WO (1) WO2010063428A1 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2954336B1 (fr) * 2009-12-23 2013-01-04 Michelin Soc Tech Objet pneumatique pourvu d'une couche etanche aux gaz a base d'un elastomere thermoplastique styrenique et d'un polyphenylene ether
RU2013110031A (ru) * 2010-08-25 2014-09-27 Сумитомо Раббер Индастриз,Лтд. Пневматическая шина и способ ее получения и диафрагма для вулканизации шины
JP5247852B2 (ja) 2010-11-05 2013-07-24 住友ゴム工業株式会社 空気入りタイヤの製造方法
DE102013110977A1 (de) 2013-10-02 2015-04-02 Continental Reifen Deutschland Gmbh Selbsttätig abdichtendes Reifendichtmittel und Fahrzeugluftreifen
FR3033571B1 (fr) * 2015-03-09 2017-03-10 Michelin & Cie Objet pneumatique pourvu d'une couche elastomere etanche aux gaz de gonflage a base d'un coupage d'elastomeres thermoplastiques sous forme de copolymeres a blocs
US11465376B2 (en) 2016-11-17 2022-10-11 Bridgestone Americas Tire Operations, Llc Pneumatic tires with applied air barrier layers
US11470908B2 (en) 2017-02-27 2022-10-18 Kornit Digital Technologies Ltd. Articles of footwear and apparel having a three-dimensionally printed feature
US20190039311A1 (en) 2017-02-27 2019-02-07 Voxel8, Inc. Systems and methods for 3d printing articles of footwear with property gradients
US20190039309A1 (en) * 2017-02-27 2019-02-07 VoxeI8,Inc. Methods of 3d printing articles with particles
US11857023B2 (en) 2017-02-27 2024-01-02 Kornit Digital Technologies Ltd. Digital molding and associated articles and methods
US11904614B2 (en) 2017-02-27 2024-02-20 Kornit Digital Technologies Ltd. Multi-input print heads for three-dimensionally printing and associated systems and methods
US11701813B2 (en) 2017-02-27 2023-07-18 Kornit Digital Technologies Ltd. Methods for three-dimensionally printing and associated multi-input print heads and systems

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0905156A1 (fr) * 1997-09-25 1999-03-31 Kuraray Co., Ltd. Copolymère à bloques, son procédé de préparation et son utilisation dans une composition de résine
US20050239963A1 (en) * 2002-04-24 2005-10-27 Kuraray Co., Ltd. Polymer composition and uses thereof
WO2005103146A1 (fr) * 2004-04-22 2005-11-03 Bridgestone Corporation Composition de résine et procédé de fabrication de celle-ci
US20060229402A1 (en) * 2001-02-13 2006-10-12 Varma Rajesh K Essentially gas-impermeable thermoplastic sealant
DE102006040533A1 (de) * 2006-08-30 2008-03-13 Beiersdorf Ag Stabilisiert geschäumte Klebemassen
US20080153952A1 (en) * 2006-12-20 2008-06-26 Owens-Illinois Closure Inc. Closure liner for high-temperature applications
EP1967543A1 (fr) * 2007-03-06 2008-09-10 Sumitomo Rubber Industries, Ltd. Composition de caoutchouc pour revêtement interne
EP1987962A1 (fr) * 2006-02-23 2008-11-05 The Yokohama Rubber Co., Ltd. Corps multicouche et pneu l'utilisant

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3343957B2 (ja) * 1992-09-30 2002-11-11 日本ゼオン株式会社 ゴム組成物
US6079465A (en) * 1995-01-23 2000-06-27 The Yokohama Rubber Co., Ltd. Polymer composition for tire and pneumatic tire using same
JP3305230B2 (ja) * 1997-05-19 2002-07-22 横浜ゴム株式会社 ゴム組成物およびそれを用いた空気入りタイヤ
JP2001279051A (ja) * 2000-03-31 2001-10-10 Kanegafuchi Chem Ind Co Ltd 加硫ゴム
JP2003192867A (ja) * 2001-12-26 2003-07-09 Kanegafuchi Chem Ind Co Ltd 熱可塑性エラストマー樹脂組成物
JP4471758B2 (ja) * 2004-07-20 2010-06-02 リケンテクノス株式会社 ディッピング成形用組成物及び溶剤ペースト
DE602005019797D1 (de) * 2005-10-27 2010-04-15 Yokohama Rubber Co Ltd Thermoplastische elastomerzusammensetzung und herstellungsverfahren dafür
FR2916679B1 (fr) * 2007-05-29 2009-08-21 Michelin Soc Tech Objet pneumatique pourvu d'une couche etanche aux gaz a base d'un elastomere thermoplastique

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0905156A1 (fr) * 1997-09-25 1999-03-31 Kuraray Co., Ltd. Copolymère à bloques, son procédé de préparation et son utilisation dans une composition de résine
US20060229402A1 (en) * 2001-02-13 2006-10-12 Varma Rajesh K Essentially gas-impermeable thermoplastic sealant
US20050239963A1 (en) * 2002-04-24 2005-10-27 Kuraray Co., Ltd. Polymer composition and uses thereof
WO2005103146A1 (fr) * 2004-04-22 2005-11-03 Bridgestone Corporation Composition de résine et procédé de fabrication de celle-ci
EP1987962A1 (fr) * 2006-02-23 2008-11-05 The Yokohama Rubber Co., Ltd. Corps multicouche et pneu l'utilisant
DE102006040533A1 (de) * 2006-08-30 2008-03-13 Beiersdorf Ag Stabilisiert geschäumte Klebemassen
US20080153952A1 (en) * 2006-12-20 2008-06-26 Owens-Illinois Closure Inc. Closure liner for high-temperature applications
EP1967543A1 (fr) * 2007-03-06 2008-09-10 Sumitomo Rubber Industries, Ltd. Composition de caoutchouc pour revêtement interne

Also Published As

Publication number Publication date
JP5539379B2 (ja) 2014-07-02
FR2939141B1 (fr) 2012-12-14
JP2012510403A (ja) 2012-05-10
FR2939141A1 (fr) 2010-06-04
EP2373739A1 (fr) 2011-10-12
CN102239217A (zh) 2011-11-09
US20110315291A1 (en) 2011-12-29

Similar Documents

Publication Publication Date Title
EP2152529B1 (fr) Objet pneumatique pourvu d'une couche étanche aux gaz a base d'un élastomère thermoplastique
EP2373476B1 (fr) Objet pneumatique pourvu d'une couche auto-obturante et etanche aux gaz, a base d'elastomere thermoplastique et d'une huile d'extension
EP2167332B1 (fr) Stratifie multicouches et anche aux gaz et anti-crevaison et objet pneumatique le comportant
EP2167328B1 (fr) Objet pneumatique pourvu d'une couche etanche aux gaz a base d'un elastomere thermoplastique et d'une charge lamellaire
EP2125949B1 (fr) Objet pneumatique
EP2373486B1 (fr) Stratifie multicouche etanche a l'air pour objet pneumatique
WO2010063428A1 (fr) Objet pneumatique pourvu d'une couche etanche aux gaz a base d'un elastomere thermoplastique et de microspheres thermoplastiques expansees
WO2008145277A1 (fr) Objet pneumatique pourvu d'une couche etanche aux gaz a base d'un elastomere thermoplastique et d'une huile polybutene
EP2569173B1 (fr) Objet pneumatique pourvu d'une couche étanche aux gaz à base d'un élastomère thermoplastique et d'un thermoplastique
WO2010063426A1 (fr) Objet pneumatique pourvu d'une couche etanche aux gaz a base de deux elastomeres thermoplastiques
FR2923409A1 (fr) Objet pneumatique pourvu d'une composition auto-obturante
FR2954335A1 (fr) Objet pneumatique pourvu d'une couche etanche aux gaz a base d'un melange d'un elastomere thermoplastique et d'un caoutchouc butyl partiellement reticule
EP2844500B1 (fr) Objet pneumatique pourvu d'une couche etanche aux gaz a base d'un elastomere thermoplastique et d'une charge lamellaire
FR2954334A1 (fr) Objet pneumatique pourvu d'une couche etanche aux gaz a base d'un melange d'un elastomere thermoplastique et d'un caoutchouc butyl
EP2358775A1 (fr) Objet pneumatique pourvu d'une couche etanche aux gaz a base d'un elastomere thermoplastique sibs specifique
WO2017109335A1 (fr) Couche etanche composite
WO2016142390A1 (fr) Objet pneumatique pourvu d'une couche elastomere etanche aux gaz de gonflage a base d'un coupage d'elastomeres thermoplastiques sous forme de copolymeres a blocs
FR3033567A1 (fr) Objet pneumatique pourvu d'une couche elastomere etanche aux gaz de gonflage a base d'un elastomere thermoplastique sous forme d'un copolymere a blocs

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980148760.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09760498

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009760498

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011538886

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13132769

Country of ref document: US