WO2010062119A2 - Semiconductor light emitting element - Google Patents

Semiconductor light emitting element Download PDF

Info

Publication number
WO2010062119A2
WO2010062119A2 PCT/KR2009/007001 KR2009007001W WO2010062119A2 WO 2010062119 A2 WO2010062119 A2 WO 2010062119A2 KR 2009007001 W KR2009007001 W KR 2009007001W WO 2010062119 A2 WO2010062119 A2 WO 2010062119A2
Authority
WO
WIPO (PCT)
Prior art keywords
quantum well
well layer
layer
sub
thickness
Prior art date
Application number
PCT/KR2009/007001
Other languages
French (fr)
Korean (ko)
Other versions
WO2010062119A3 (en
Inventor
안도열
박승환
김종욱
구분회
Original Assignee
우리엘에스티 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 우리엘에스티 주식회사 filed Critical 우리엘에스티 주식회사
Publication of WO2010062119A2 publication Critical patent/WO2010062119A2/en
Publication of WO2010062119A3 publication Critical patent/WO2010062119A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Definitions

  • the present disclosure relates to a semiconductor light emitting device as a whole, and more particularly, to a semiconductor light emitting device capable of improving degradation of light emission characteristics due to piezoelectric fields and spontaneous polarization.
  • the semiconductor light emitting device refers to a semiconductor optical device that generates light through recombination of electrons and holes, for example, a group III nitride semiconductor light emitting device.
  • the group III nitride semiconductor consists of a compound of Al (x) Ga (y) In (1-x-y) N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1).
  • GaAs type semiconductor light emitting elements used for red light emission, etc. are mentioned.
  • the cladding layer is a four-layered film, and the composition ratio of Al is increased to increase the binding effect of the transmitter to increase the luminous efficiency [Zhang et al., Appl. Phys. Lett. 77, 2668 (2000), Lai et al., IEEE Photonics Technol Lett. 13, 559 (2001).
  • the active layer is provided as a first compound semiconductor.
  • Quantum well layer and a barrier layer formed of the second compound semiconductor, wherein the quantum well layer includes: a first sub quantum well layer having a first band gap; And a second sub quantum well layer having a second band gap having a different size from the first band gap.
  • FIG. 1 is a view showing an example of a semiconductor light emitting device according to the present disclosure
  • FIG. 2 is a view showing a band gap of the active layer according to the prior art the band gap of the active layer according to the present disclosure
  • FIG. 4 is a view showing a relationship between a thickness Lw1 and an indium (In) composition ratio x of a first sub quantum well layer according to the present disclosure
  • FIG 5 is a view showing a relationship between a thickness Lw1 and a spontaneous emission rate of a first sub quantum well layer according to the present disclosure.
  • the semiconductor light emitting device 100 includes an active layer 103 for generating light by recombination of electrons and holes, the active layer 103 A quantum well layer 113 and a barrier layer 123 are included, and the quantum well layer 113 includes first and second sub quantum well layers 113a and 113b.
  • the active layer 103 may have a structure in which the quantum well layer 113 and the barrier layer 123 are alternately stacked several times, and the n-type contact layer injecting electrons (donors) into the active layer 103 ( 102, the p-type contact layer 104 and the n-type contact layer 102 which are disposed to face the n-type contact layer 102 with the active layer 103 therebetween and inject holes (acceptors) into the active layer 103. ),
  • a substrate 101 for sequential stacking of the active layer 103 and the p-type contact layer 104 may be provided.
  • the substrate 101 is a homogeneous substrate, GaN-based substrate is used as a heterogeneous substrate A sapphire substrate, a SiC substrate, a Si substrate, or the like may be used, and when the SiC substrate is used, the n-side electrode 105 may be formed on the SiC substrate side.
  • a buffer layer (not shown) may be further provided between the substrate 101 and the n-type contact layer 102.
  • the buffer layer functions to reduce crystal defects generated when the group III nitride semiconductor layer is grown on a dissimilar substrate.
  • the buffer layer may be formed of a Group III nitride semiconductor that does not contain a dopant.
  • n-type contact layer 102 and the p-type contact layer 104 may be formed of one or more Group III nitride semiconductor layers.
  • the quantum well layer 113 is provided with the first compound semiconductor
  • the barrier layer 123 is provided with the second compound semiconductor
  • the first and second sub quantum well layers 113a and 113b are mutually supported.
  • Each of the first and second band gaps has different sizes.
  • the first and second sub quantum well layers 113a and 113b may be provided by varying the composition ratio of each element forming the first compound semiconductor.
  • the quantum well layer 113 has a stepped band gap in the Ek space, and the light transition characteristic can be improved by being constrained to a position closer to the space between electrons and holes by the stepped band gap. have.
  • the lattice constants of the barrier layer 123 and the quantum well layer 113 are different, strain is generated. Since the quantum well layer 113 is provided with two sub quantum well layers 113a and 113b, the strain is dispersed. The piezoelectric field may be reduced due to the dispersion of the strain, and thus the light transition characteristic may be improved.
  • the active layer 103, the n-type contact layer 102 and the p-type contact layer 104 is provided with a Group III nitride semiconductor
  • the first compound semiconductor is provided with gallium nitride (InGaN)
  • the second compound The semiconductor is preferably provided with gallium nitride (GaN).
  • the first sub quantum well layer 113a is formed of In (x) Ga (1-x) N
  • the second sub quantum well layer 113b is formed of In (y) Ga (1-y) N. It is preferred that x and y have different values.
  • x has a value of 0.15 ⁇ x ⁇ 0.25
  • y preferably has a value of 0 ⁇ y ⁇ 0.075.
  • the band gap of the first sub quantum well layer 113a is smaller than the band gap of the second sub quantum well layer 113b, electrons and holes are mostly constrained to the first sub quantum well layer 113a. Most of the photons that contribute to the emission wavelength may be generated in the one sub quantum well layer 113a.
  • One way to prevent this is to reduce the thickness of the second sub quantum well layer 113b to a thickness in which the second sub quantum well layer 113b can only disperse the strain.
  • both of electrons and holes constrained by the first sub quantum well layer 113a and the second sub quantum well layer 113b may be involved in light emission, thereby preventing the emission wavelength from being increased.
  • the thickness of the first sub quantum well layer 113a is the second sub quantum well. It is preferably provided smaller than the thickness of the layer 113b.
  • a preferable ratio of the thickness of the first sub quantum well layer 113a and the thickness of the second sub quantum well layer 113b will be described later.
  • FIG. 2 is a diagram illustrating a bandgap of an active layer according to the present disclosure and a bandgap of an active layer according to the prior art, (a), wherein the barrier layer is formed of GaN, the quantum well layer is formed of InGaN, and in the quantum well layer The composition of In is constant at 0.085, (b) the barrier layer is made of GaN, the quantum well layer is made of InGaN, and the quantum well layer is made of two layers having an In composition of 0.116 and 0.05. to be.
  • the lattice constant of the barrier layer made of GaN and the quantum well layer made of InGaN are greatly different from each other, strain is generated.
  • the piezoelectric field is formed by adjusting the indium (In) content of InGaN to include two quantum well layers. It is possible to disperse the strain that generates.
  • the piezo electric field can be reduced, and as a result, the light transition characteristic can be improved.
  • FIG. 3 is a view comparing light gain between a quantum well layer according to the present disclosure and a quantum well layer according to the prior art, in which (a) is a thickness of 3 nm and (b) is a quantum well layer The thickness of 5 nm.
  • the light gain (solid line) corresponding to the quantum well layer according to the present disclosure is shown in both the graph located on the left side (wavelength is 440 nm) and the graph located on the right side (wavelength is 530 nm). It can be seen that the optical gain (dotted line) corresponding to the quantum well layer according to the prior art is greatly improved.
  • the size of the light gain is small in the case where the thickness of the quantum well layer is thick (b) as compared with the relatively thin thickness of the quantum well layer (a).
  • the degree of improvement of light gain by the quantum well layer according to the present disclosure that is, the light gain (dotted line) corresponding to the quantum well layer according to the prior art and the quantum well according to the present disclosure It can be seen that the difference in light gain (solid line) corresponding to the layer is larger when the thickness of the quantum well layer is thicker (b) than when the thickness of the quantum well layer is relatively thin (a).
  • the result shown in FIG. 3 is a result of numerical calculation using the following equation.
  • optical gain spectrum was calculated using a non-Macobian gain model with a multibody effect. (S. H. Park, S. L. Chung, and D Ahn, "Interband relaxation time effects on non-Markovian gain with many-body effects and comparison with experiment", Semicond. Sci. Technol., Vol. 15 pp. 2003-2008).
  • optical gain with the multibody effect including the effect of the anisotropy of valence versus dispersion is expressed by the following equation.
  • is the angular velocity
  • M 0 is the permeability in vacuum
  • is the dielectric constant
  • U (or L) is the upper (or lower) block of the effective mass Hamiltonian
  • e is the electron Charge
  • m 0 is the mass of free electrons
  • Lw is the width of the well
  • 2 is the matrix component of the strained quantum well.
  • f n c and f m v are Fermi functions for the probability of electron occupancy in the conduction band and valence band, respectively, and the subscripts n and m represent the electron and hole states in the conduction band, respectively.
  • Equation 2 the re-standardized transition energy of electrons and constant space is represented by Equation 2 below.
  • E g is the bandgap
  • ⁇ E 8X and ⁇ E CH are the screened exchange and Coulomb-hole contributions to the bandgap renormalization, respectively (see WW Chow, M. Hagerott, A. Bimdt, and SW Koch, "Threshold coditions for an ultraviolet wavelength GaN quantum-well laser", IEEE J. Select. Topics Quantum Electron., Vol. 4, pp. 514-519, 1998).
  • , ⁇ ) is expressed by Equation 3 below.
  • the interband relaxation time? In and the correlation time? C are regarded as constants and are calculated to be 25fs and 10fs, respectively.
  • the parameters of GaN and InN materials required for the calculation are given by Table 1 below.
  • the emission wavelength is 440nm
  • the thickness of the quantum well layer is 50 ⁇ .
  • In (x) Ga (1-x) N the thickness Lw1 of the first sub quantum well layer is changed, and the indium composition ratio x of the first sub quantum well layer is calculated.
  • the band gap of the first sub quantum well layer is relatively smaller than the band gap of the second sub quantum well layer, and is indium of the second sub quantum well layer provided with In (y) Ga (1-y) N.
  • the composition ratio y was set to 0.05.
  • the indium (In) composition ratio x of the first sub quantum well layer decreases as the thickness Lw1 of the first sub quantum well layer having a relatively small band gap is increased.
  • the thickness w1 of the first sub quantum well layer having the relatively small band gap increases, so that the influence of the relatively small band gap increases, so that the wavelength of the light emitted tends to increase. Since the band gap of the first sub quantum well layer is increased to compensate for this, the band gap increases as the indium (In) content decreases, so that the first gap is generated to generate light having a fixed emission wavelength. This is because the indium (In) content of the sub quantum well layer should be reduced.
  • FIG. 5 is a view illustrating a relationship between a thickness Lw1 of a first sub quantum well layer and a spontaneous emission rate according to the present disclosure.
  • the thickness of the quantum well layer is 50 ⁇ s
  • the thickness of the second sub quantum well layer is shown in FIG. This is the result of calculating the spontaneous emission rate while varying the thickness Lw1 of the first sub quantum well layer having the band gap relatively smaller than the band gap.
  • the spontaneous emission rate is It can be seen that the increase.
  • the spontaneous emission rate is excellent when the thickness Lw1 of the first sub quantum well layer is 8 kW to 22 kW.
  • the thickness Lw2 of the second sub quantum well layer is obtained by subtracting the thickness Lw1 of the first sub quantum well layer from the thickness of the quantum well layer, the thickness Lw1 of the first sub quantum well layer and the second sub quantum well layer
  • the ratio of the thickness Lw2 of the layer has excellent spontaneous emission rate in the range of 8/42 to 22/28.
  • the thickness Lw1 of the first sub quantum well layer is 15 ⁇ s and the thickness Lw2 of the second sub quantum well layer is 35 ⁇ m, that is, the thickness Lw1 and the second sub quantum of the first sub quantum well layer It can be seen that the spontaneous emission rate is maximum when the ratio of the thickness Lw2 of the well layer is 15/35.
  • the first sub quantum well layer and the second sub quantum well layer can contribute to light emission, and the spontaneous emission rate can be maintained excellent.
  • the quantum well layer has a stepped band gap in the E-k space, wherein the semiconductor light emitting element is characterized in that it is.
  • the first compound semiconductor is made of indium gallium nitride (InGaN), and the second compound semiconductor is made of gallium nitride (GaN).
  • the first sub quantum well layer is formed of In (x) Ga (1-x) N
  • the second sub quantum well layer is formed of In (y) Ga (1-y) N
  • x and y Is a semiconductor light emitting device, characterized in that different from each other.
  • x has a value of 0.15 ⁇ x ⁇ 0.25
  • y has a value of 0 ⁇ y ⁇ 0.075.
  • the light emitting characteristics of the semiconductor light emitting device emitting a wavelength corresponding to blue light can be improved, and the band gap difference between the second sub quantum well layer and the barrier layer becomes too large to prevent the strain dispersion effect from being reduced. Can be.
  • the ratio a / b of the thickness a of the first sub quantum well layer and the thickness b of the second sub quantum well layer has a value of 0.19 ⁇ a / b ⁇ 0.79.
  • the first and second sub quantum well layers having different band gaps have a quantum well layer having a stepped band gap in the Ek space, and such a stepped band gap.
  • the quantum well layer 113 includes two sub quantum well layers 113, the lattice constant difference between the barrier layer 123 and the quantum well layer 113 may be reduced. It is possible to obtain the effect that the generated strain is dispersed, the dispersion of the strain may have the advantage that the piezo electric field is reduced and thus the light transition characteristics are improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

The present disclosure relates to a semiconductor light emitting element that includes an active layer generating light through the recombination of electrons and holes. The active layer comprises: a quantum well made of a first compound semiconductor, and a barrier layer made of a second compound semiconductor. The quantum well includes: a first sub-quantum well having a first band gap; and a second sub-quantum well having a second band gap different from the first band gap.

Description

반도체 발광소자Semiconductor light emitting device
본 개시(Disclosure)는, 전체적으로 반도체 발광소자에 관한 것으로, 특히 피에조 전계와 자발 분극에 의한 발광특성의 저하를 개선할 수 있는 반도체 발광소자에 관한 것이다.The present disclosure relates to a semiconductor light emitting device as a whole, and more particularly, to a semiconductor light emitting device capable of improving degradation of light emission characteristics due to piezoelectric fields and spontaneous polarization.
여기서, 반도체 발광소자는 전자와 정공의 재결합을 통해 빛을 생성하는 반도체 광소자를 의미하며, 3족 질화물 반도체 발광소자를 예로 들 수 있다. 3족 질화물 반도체는 Al(x)Ga(y)In(1-x-y)N (0≤x≤1, 0≤y≤1, 0≤x+y≤1)로 된 화합물로 이루어진다. 이외에도 적색 발광에 사용되는 GaAs계 반도체 발광소자 등을 예로 들 수 있다.Here, the semiconductor light emitting device refers to a semiconductor optical device that generates light through recombination of electrons and holes, for example, a group III nitride semiconductor light emitting device. The group III nitride semiconductor consists of a compound of Al (x) Ga (y) In (1-x-y) N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ x + y ≦ 1). In addition, GaAs type semiconductor light emitting elements used for red light emission, etc. are mentioned.
여기서는, 본 개시에 관한 배경기술이 제공되며, 이들이 반드시 공지기술을 의미하는 것은 아니다(This section provides background information related to the present disclosure which is not necessarily prior art).This section provides background information related to the present disclosure which is not necessarily prior art.
반도체 발광소자의 발광 특성은 활성층에 인가되는 응력에 의한 피에조 전계와 자발 분극으로 인해 떨어지는 문제가 있으며, 이러한 문제는 청색 및 녹색 발광소자를 구성하는 3족 질화물 반도체에서 더욱 두드러진다.[Park et al., Appl. Phys. Lett. 75, 1354(1999)]. The luminescence properties of semiconductor light emitting devices are degraded due to piezoelectric field and spontaneous polarization due to stress applied to the active layer, and this problem is more prominent in the group III nitride semiconductors constituting the blue and green light emitting devices. [Park et al. , Appl. Phys. Lett. 75, 1354 (1999).
III족 질화물 반도체에서 피에조 전계 및 자발 분극을 최소화하기 위해 다음과 같은 방법이 제시되고 있다.In order to minimize piezo electric field and spontaneous polarization in group III nitride semiconductor, the following method has been proposed.
1) Non-polar 또는 semi-polar 기판을 이용하여 자발 분극 및 피에조 효과를 최소화 시키는 방법 [Park et al., Phys Rev B 59, 4725 (1999) 및 Waltereit et al., Nature 406, 865 (2000)].1) Method to minimize spontaneous polarization and piezo effect using non-polar or semi-polar substrate [Park et al., Phys Rev B 59, 4725 (1999) and Waltereit et al., Nature 406, 865 (2000) ].
2) 클래드 층을 4원막으로 하고 이중 Al의 조성비를 증가시켜 전송자의 구속효과를 높여 발광효율을 높이는 방법 [Zhang et al., Appl. Phys. Lett. 77, 2668 (2000), Lai et al., IEEE Photonics Technol Lett. 13, 559 (2001)].2) The cladding layer is a four-layered film, and the composition ratio of Al is increased to increase the binding effect of the transmitter to increase the luminous efficiency [Zhang et al., Appl. Phys. Lett. 77, 2668 (2000), Lai et al., IEEE Photonics Technol Lett. 13, 559 (2001).
그러나, 1)의 경우, 아직 이종결정 성장방향에 대한 성장기술의 성숙하지 않아 소자 제작시 결함(Defects)이 많아 이론적인 예상만큼 소자 특성이 안나오는 것으로 알려져 있고 제작과정이 매우 까다로운 문제가 있다 [K. Nishizuka et al., Appl. Phys. Lett. 87, 231901 (2005)].However, in the case of 1), the growth technology for the direction of heterocrystal growth is not yet mature, so there are many defects in device fabrication, so it is known that device characteristics are not as expected as the theoretical expectation, and the manufacturing process is very difficult [K] . Nishizuka et al., Appl. Phys. Lett. 87, 231901 (2005)].
2)의 경우, 자발분극 및 피에조 전계를 근본적으로 제거할 수 없기 때문에 근본적인 해결책이 될 수 없다. In case of 2), it is not a fundamental solution because spontaneous polarization and piezo electric field cannot be eliminated fundamentally.
다만, 4원막 클래드 층을 갖는 InGaN/InGaAlN 양자우물 구조에서 양자우물 내의 인듐 조성비가 정해지면 피에조 및 자발 분극에 의한 내부전계가 소멸되는 4원막의 조성비를 발견할 수 있다는 이론적 연구결과가 있다.[S. H Park, D. Ahn, J. W. Kim, Applied Physics Letters 92, 171115 (2008)]. However, there is a theoretical study that the composition ratio of quaternary membranes in which the internal electric field due to piezoelectric and spontaneous polarization is extinguished can be found if the indium composition ratio in the quantum wells is determined in the InGaN / InGaAlN quantum well structure having the quaternary cladding layer. S. H Park, D. Ahn, J. W. Kim, Applied Physics Letters 92, 171115 (2008).
그러나, 이 방법은 4원막 클래드 층의 성장 조건이 극히 까다롭다는 단점을 갖고 있다.However, this method has the disadvantage that the growth conditions of the four-layer cladding layer are extremely demanding.
이에 대하여 '발명의 실시를 위한 형태'의 후단에 기술한다.This will be described later in the section on Embodiments of the Invention.
여기서는, 본 개시의 전체적인 요약(Summary)이 제공되며, 이것이 본 개시의 외연을 제한하는 것으로 이해되어서는 아니된다(This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all of its features).This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all, provided that this is a summary of the disclosure. of its features).
본 개시에 따른 일 태양에 의하면(According to one aspect of the present disclosure), 전자와 정공의 재결합에 의해 빛을 생성하는 활성층이 구비된 반도체 발광소자에 있어서, 활성층은, 제1 화합물 반도체로 구비되는 양자 우물층; 및 제2 화합물 반도체로 구비되는 장벽층;을 포함하며, 양자 우물층은, 제1 밴드갭(band gap)을 갖는 제1 서브 양자 우물층; 및 제1 밴드갭과 다른 크기의 제2 밴드갭을 갖는 제2 서브 양자 우물층;을 포함하는 반도체 발광소자가 제공된다.According to one aspect of the present disclosure, in a semiconductor light emitting device having an active layer that generates light by recombination of electrons and holes, the active layer is provided as a first compound semiconductor. Quantum well layer; And a barrier layer formed of the second compound semiconductor, wherein the quantum well layer includes: a first sub quantum well layer having a first band gap; And a second sub quantum well layer having a second band gap having a different size from the first band gap.
이에 대하여 '발명의 실시를 위한 형태'의 후단에 기술한다.This will be described later in the section on Embodiments of the Invention.
도 1은 본 개시에 따른 반도체 발광소자의 일 예를 보인 도면,1 is a view showing an example of a semiconductor light emitting device according to the present disclosure;
도 2는 본 개시에 따른 활성층의 밴드갭을 종래 기술에 따른 활성층의 밴드갭을 보인 도면,2 is a view showing a band gap of the active layer according to the prior art the band gap of the active layer according to the present disclosure,
도 3은 본 개시에 따른 양자 우물층과 종래 기술에 따른 양자 우물층의 광이득을 비교한 도면,3 is a view comparing the light gain of the quantum well layer according to the present disclosure and the quantum well layer according to the prior art,
도 4는 본 개시에 따른 제1 서브 양자 우물층의 두께(Lw1)와 인듐(In) 조성비(x)의 관계를 보인 도면,4 is a view showing a relationship between a thickness Lw1 and an indium (In) composition ratio x of a first sub quantum well layer according to the present disclosure;
도 5는 본 개시에 따른 제1 서브 양자 우물층의 두께(Lw1)와 자발방출율(spontaneous emission rate)의 관계를 보인 도면.5 is a view showing a relationship between a thickness Lw1 and a spontaneous emission rate of a first sub quantum well layer according to the present disclosure.
이하, 본 개시를 첨부된 도면을 참고로 하여 자세하게 설명한다(The present disclosure will now be described in detail with reference to the accompanying drawing(s)). The present disclosure will now be described in detail with reference to the accompanying drawing (s).
도 1은 본 개시에 따른 반도체 발광소자의 일 예를 보인 도면으로서, 반도체 발광소자(100)는, 전자와 정공의 재결합에 의해 빛을 생성하는 활성층(103)을 포함하고, 활성층(103)은 양자 우물층(113)과 장벽층(123)을 포함하며, 양자 우물층(113)은 제1,2 서브 양자 우물층(113a,113b)을 포함한다.1 is a view showing an example of a semiconductor light emitting device according to the present disclosure, the semiconductor light emitting device 100 includes an active layer 103 for generating light by recombination of electrons and holes, the active layer 103 A quantum well layer 113 and a barrier layer 123 are included, and the quantum well layer 113 includes first and second sub quantum well layers 113a and 113b.
여기서, 활성층(103)은, 양자 우물층(113)과 장벽층(123)이 교대로 수회 적층되는 구조로 구비될 수 있으며, 활성층(103)에 전자(도우너)를 주입하는 n형 콘택층(102), 활성층(103)을 사이에 두고 n형 콘택층(102)과 대향하게 배치되며 활성층(103)에 정공(억셉터)을 주입하는 p형 콘택층(104) 및 n형 콘택층(102), 활성층(103) 및 p형 콘택층(104)의 순차적인 적층을 위한 기판(101)이 구비될 수 있다.Here, the active layer 103 may have a structure in which the quantum well layer 113 and the barrier layer 123 are alternately stacked several times, and the n-type contact layer injecting electrons (donors) into the active layer 103 ( 102, the p-type contact layer 104 and the n-type contact layer 102 which are disposed to face the n-type contact layer 102 with the active layer 103 therebetween and inject holes (acceptors) into the active layer 103. ), A substrate 101 for sequential stacking of the active layer 103 and the p-type contact layer 104 may be provided.
그리고, 반도체 발광소자(100)에 전압을 인가하기 위해 n형 콘택층(102)과 전기적으로 접속되는 n측 전극(105) 및 p형 콘택층(104)과 전기적으로 접속되는 p측 전극(106)이 구비될 수 있다.The n-side electrode 105 electrically connected to the n-type contact layer 102 and the p-side electrode 106 electrically connected to the p-type contact layer 104 in order to apply a voltage to the semiconductor light emitting device 100. ) May be provided.
n측 전극(105)와 p측 전극(106)을 통해 전압이 인가되면, n형 콘택층(102)으로부터 활성층(103)으로 전자가 주입되며, p형 콘택층(104)으로부터 활성층(103)으로 정공이 주입되며, 전자와 정공의 재결합에 의해 빛을 생성하게 된다.When voltage is applied through the n-side electrode 105 and the p-side electrode 106, electrons are injected from the n-type contact layer 102 to the active layer 103, and the active layer 103 from the p-type contact layer 104. Holes are injected into the light, and light is generated by recombination of electrons and holes.
한편, 활성층(103), n형 콘택층(102) 및 p형 콘택층(104)이 3족 질화물 반도체로 구비되는 경우, 기판(101)은 동종기판으로 GaN계 기판이 이용되며, 이종기판으로 사파이어 기판, SiC 기판 또는 Si 기판 등이 이용될 수 있고, SiC 기판이 사용될 경우에 n측 전극(105)은 SiC 기판 측에 형성될 수 있다.On the other hand, when the active layer 103, the n-type contact layer 102 and the p-type contact layer 104 is provided with a group III nitride semiconductor, the substrate 101 is a homogeneous substrate, GaN-based substrate is used as a heterogeneous substrate A sapphire substrate, a SiC substrate, a Si substrate, or the like may be used, and when the SiC substrate is used, the n-side electrode 105 may be formed on the SiC substrate side.
또한, 기판(101)과 n형 콘택층(102) 사이에는 버퍼층(도시안됨)이 더 구비될 수 있다. 버퍼층은 이종 기판에 3족 질화물 반도체층을 성장시킬 때, 발생되는 결정 결함을 감소시키는 기능을 한다.In addition, a buffer layer (not shown) may be further provided between the substrate 101 and the n-type contact layer 102. The buffer layer functions to reduce crystal defects generated when the group III nitride semiconductor layer is grown on a dissimilar substrate.
버퍼층은 도펀트를 포함하지 않는(undoped) 3족 질화물 반도체로 형성될 수 있다.The buffer layer may be formed of a Group III nitride semiconductor that does not contain a dopant.
또한, n형 콘택층(102) 및 p형 콘택층(104)은, 하나 이상의 3족 질화물 반도체층으로 형성될 수 있다. In addition, the n-type contact layer 102 and the p-type contact layer 104 may be formed of one or more Group III nitride semiconductor layers.
한편, 본 예에서, 양자 우물층(113)은 제1 화합물 반도체로 구비되고, 장벽층(123)은 제2 화합물 반도체로 구비되며, 제1,2 서브 양자 우물층(113a,113b)은 서로 다른 크기의 제1,2 밴드갭(band gap)을 각각 가진다. Meanwhile, in the present example, the quantum well layer 113 is provided with the first compound semiconductor, the barrier layer 123 is provided with the second compound semiconductor, and the first and second sub quantum well layers 113a and 113b are mutually supported. Each of the first and second band gaps has different sizes.
제1,2 서브 양자 우물층(113a,113b)은, 제1 화합물 반도체를 형성하는 각 원소의 조성비를 달리함으로써 구비될 수 있다. The first and second sub quantum well layers 113a and 113b may be provided by varying the composition ratio of each element forming the first compound semiconductor.
이에 의하면, 양자 우물층(113)이 E-k공간에서 계단 형상의 밴드갭을 갖게 되며, 이러한 계단 형상의 밴드갭에 의해 전자와 정공이 공간적으로 좀더 근접한 위치에 구속이 되어 광 천이특성이 개선될 수 있다.According to this, the quantum well layer 113 has a stepped band gap in the Ek space, and the light transition characteristic can be improved by being constrained to a position closer to the space between electrons and holes by the stepped band gap. have.
또한, 장벽층(123)과 양자 우물층(113)의 격자 상수가 다르므로, 스트레인이 발생되는데, 양자 우물층(113)이 두 개의 서브 양자 우물층(113a,113b)으로 구비되므로 스트레인이 분산되는 효과를 얻을 수 있으며, 스트레인의 분산으로 피에조 전계가 감소되고 이에 따라 광 천이특성의 개선되는 이점을 가질 수 있다.In addition, since the lattice constants of the barrier layer 123 and the quantum well layer 113 are different, strain is generated. Since the quantum well layer 113 is provided with two sub quantum well layers 113a and 113b, the strain is dispersed. The piezoelectric field may be reduced due to the dispersion of the strain, and thus the light transition characteristic may be improved.
특히, 활성층(103), n형 콘택층(102) 및 p형 콘택층(104)이 3족 질화물 반도체로 구비되는 경우, 제1 화합물 반도체는 질화갈륨(InGaN)으로 구비되고, 상기 제2 화합물 반도체는 질화갈륨(GaN)으로 구비되는 것이 바람직하다.In particular, when the active layer 103, the n-type contact layer 102 and the p-type contact layer 104 is provided with a Group III nitride semiconductor, the first compound semiconductor is provided with gallium nitride (InGaN), the second compound The semiconductor is preferably provided with gallium nitride (GaN).
이 경우, 제1 서브 양자 우물층(113a)은 In(x)Ga(1-x)N으로 구비되고, 제2 서브 양자 우물층(113b)은 In(y)Ga(1-y)N으로 구비되며, x와 y는 서로 다른 값을 갖는 것이 바람직하다.In this case, the first sub quantum well layer 113a is formed of In (x) Ga (1-x) N, and the second sub quantum well layer 113b is formed of In (y) Ga (1-y) N. It is preferred that x and y have different values.
특히, x는 0.15≤x≤0.25의 값을 가지며, y는 0<y≤0.075의 값을 가지는 것이 바람직하다.In particular, x has a value of 0.15 ≦ x ≦ 0.25, and y preferably has a value of 0 <y ≦ 0.075.
y의 값이 0.075 보다 커지는 경우, 질화갈륨(GaN)으로 구비되는 장벽층과의 밴드갭 차이가 너무 커져 스트레인 감소효과가 적어지기 때문이다.This is because when the value of y is larger than 0.075, the band gap difference with the barrier layer made of gallium nitride (GaN) becomes too large, so that the strain reduction effect is reduced.
또한, x의 값이 위의 범위를 벗어나는 경우, 청색 광에 대응되는 파장이 아닌 다른 파장이 방출되기 때문이다.Also, when the value of x is outside the above range, a wavelength other than the wavelength corresponding to blue light is emitted.
한편, 제1 서브 양자 우물층(113a)의 밴드갭이 제2 서브 양자 우물층(113b)의 밴드갭에 비해 작은 경우, 전자와 정공이 제1 서브 양자 우물층(113a)에 대부분 구속되므로 제1 서브 양자 우물층(113a)에서 발광파장에 기여하는 포톤의 대부분이 생성될 수 있다.On the other hand, when the band gap of the first sub quantum well layer 113a is smaller than the band gap of the second sub quantum well layer 113b, electrons and holes are mostly constrained to the first sub quantum well layer 113a. Most of the photons that contribute to the emission wavelength may be generated in the one sub quantum well layer 113a.
이 경우, 파동함수가 상대적으로 밴드갭이 큰 제2 서브 양자 우물층(113b)에 구속된 전자와 정공이 파동함수의 영향을 받아 발광 파장이 증가되는 문제가 발생될 수 있다.In this case, a problem may arise in that the emission wavelength is increased due to the influence of the wave function of electrons and holes confined to the second sub quantum well layer 113b having a relatively large band gap.
이를 방지하기 위한 하나의 방법으로, 제2 서브 양자 우물층(113b)의 두께를 제2 서브 양자 우물층(113b)이 스트레인의 분산 기능만 할 수 있는 두께로 감소시키는 것이다.One way to prevent this is to reduce the thickness of the second sub quantum well layer 113b to a thickness in which the second sub quantum well layer 113b can only disperse the strain.
그러나, 이를 위해서는, 매우 얇은 두께의 제2 서브 양자 우물층(113b)이 요구되므로 제조가 용이하지 못한 문제가 있다. However, for this purpose, since the second sub quantum well layer 113b having a very thin thickness is required, manufacturing is not easy.
다른 방법으로, 제1 서브 양자 우물층(113a)과 제2 서브 양자 우물층(113b)에 구속된 전자와 정공 모두가 발광에 관여할 수 있도록 하여 발광 파장이 증가되는 것을 방지할 수 있다.Alternatively, both of electrons and holes constrained by the first sub quantum well layer 113a and the second sub quantum well layer 113b may be involved in light emission, thereby preventing the emission wavelength from being increased.
이를 위해서는 적정한 제1 서브 양자 우물층(113a)과 제2 서브 양자 우물층(113b)의 두께를 정하는 것이 필요하다.To this end, it is necessary to determine appropriate thicknesses of the first sub quantum well layer 113a and the second sub quantum well layer 113b.
구체적으로, 제1 서브 양자 우물층(113a)의 밴드갭이 제2 서브 양자 우물층(113b)의 밴드갭에 비해 작은 경우, 제1 서브 양자 우물층(113a)의 두께는 제2 서브 양자 우물층(113b)의 두께보다 작게 구비되는 것이 바람직하다.Specifically, when the band gap of the first sub quantum well layer 113a is smaller than the band gap of the second sub quantum well layer 113b, the thickness of the first sub quantum well layer 113a is the second sub quantum well. It is preferably provided smaller than the thickness of the layer 113b.
제1 서브 양자 우물층(113a)의 두께와 제2 서브 양자 우물층(113b)의 두께의 바람직한 비율에 대해서는 후술하기로 한다.A preferable ratio of the thickness of the first sub quantum well layer 113a and the thickness of the second sub quantum well layer 113b will be described later.
도 2는 본 개시에 따른 활성층의 밴드갭을 종래 기술에 따른 활성층의 밴드갭을 보인 도면으로서, (a)는 장벽층이 GaN으로 구비되며, 양자우물층이 InGaN으로 구비되고, 양자 우물층에서 In의 조성은 0.085로 일정한 경우이며, (b)는 장벽층이 GaN으로 구비되며, 양자우물층이 InGaN으로 구비되고, 양자 우물층은 In의 조성이 0.116과 0.05인 두 개의 층으로 구비되는 경우이다.2 is a diagram illustrating a bandgap of an active layer according to the present disclosure and a bandgap of an active layer according to the prior art, (a), wherein the barrier layer is formed of GaN, the quantum well layer is formed of InGaN, and in the quantum well layer The composition of In is constant at 0.085, (b) the barrier layer is made of GaN, the quantum well layer is made of InGaN, and the quantum well layer is made of two layers having an In composition of 0.116 and 0.05. to be.
(a)와 (b)를 비교하면, (a)는 양자 우물층이 하나의 층으로 구비되므로, 양자 우물층의 밴드갭(Lw)에 계단이 형성되지 않는데 반해, (b)는 양자 우물층이 두 개의 층으로 구비되므로, 양자 우물층의 밴드갭(Lw1,Lw2)에 계단이 형성된다.Comparing (a) and (b), (a) has a quantum well layer as one layer, so that a step is not formed in the band gap Lw of the quantum well layer, whereas (b) is a quantum well layer Since the two layers are provided, a step is formed in the band gaps Lw1 and Lw2 of the quantum well layer.
이에 의해, 전자와 정공이 (a)의 경우에 비해 근접된 위치에 구속될 수 있으므로 광 천이특성이 개선될 수 있다.As a result, since the electrons and holes can be constrained in closer positions than in the case of (a), the light transition characteristics can be improved.
또한, GaN으로 구비되는 장벽층과 InGaN으로 구비되는 양자 우물층은 격자 상수가 크게 다르므로 스트레인이 발생되는데, InGaN의 인듐(In)함량을 조절하여 양자 우물층을 두 개의 층으로 구비함으로써 피에조 전계를 발생시키는 스트레인을 분산시킬 수 있다.In addition, since the lattice constant of the barrier layer made of GaN and the quantum well layer made of InGaN are greatly different from each other, strain is generated. The piezoelectric field is formed by adjusting the indium (In) content of InGaN to include two quantum well layers. It is possible to disperse the strain that generates.
따라서, 피에조 전계가 감소될 수 있으며, 결과적으로 광 천이특성의 개선될 수 있다.Therefore, the piezo electric field can be reduced, and as a result, the light transition characteristic can be improved.
도 3은 본 개시에 따른 양자 우물층과 종래 기술에 따른 양자 우물층의 광이득을 비교한 도면으로서, (a)는 양자 우물층의 두께가 3 nm인 경우이고, (b)는 양자 우물층의 두께가 5 nm인 경우이다. 3 is a view comparing light gain between a quantum well layer according to the present disclosure and a quantum well layer according to the prior art, in which (a) is a thickness of 3 nm and (b) is a quantum well layer The thickness of 5 nm.
(a)에서, 좌측에 위치된 그래프(파장이 440 nm)의 경우, 종래 기술에 따른 양자 우물층에 대응하는 광이득(점선)과 본 개시에 따른 양자 우물층에 대응하는 광이득(실선)은 큰 차이가 없으나, 우측에 위치된 그래프(파장이 530 nm)의 경우, 본 개시에 따른 양자 우물층에 대응하는 광이득(실선)이 종래 기술에 따른 양자 우물층에 대응하는 광이득(점선)에 비해 크게 개선됨을 알 수 있다.In (a), in the case of the graph located on the left side (wavelength is 440 nm), the light gain corresponding to the quantum well layer according to the prior art (dotted line) and the light gain corresponding to the quantum well layer according to the present disclosure (solid line) Although there is no significant difference, in the case of the graph located on the right side (wavelength is 530 nm), the light gain (solid line) corresponding to the quantum well layer according to the present disclosure corresponds to the light gain (dotted line) corresponding to the quantum well layer according to the prior art. It can be seen that significantly improved compared to).
또한, (b)에서, 좌측에 위치된 그래프(파장이 440 nm) 및 우측에 위치된 그래프(파장이 530 nm)의 경우 모두에서 본 개시에 따른 양자 우물층에 대응하는 광이득(실선)이 종래 기술에 따른 양자 우물층에 대응하는 광이득(점선)에 비해 크게 개선됨을 알 수 있다.Further, in (b), the light gain (solid line) corresponding to the quantum well layer according to the present disclosure is shown in both the graph located on the left side (wavelength is 440 nm) and the graph located on the right side (wavelength is 530 nm). It can be seen that the optical gain (dotted line) corresponding to the quantum well layer according to the prior art is greatly improved.
따라서, 본 개시에 따른 양자 우물층의 효과는 파장이 길어질수록 증가됨을 알 수 있다.Therefore, it can be seen that the effect of the quantum well layer according to the present disclosure increases with longer wavelength.
한편, 상대적으로 양자 우물층의 두께가 얇은 (a)에 비해 양자 우물층의 두께가 두꺼운 (b)의 경우에 광이득의 크기가 작음을 알 수 있다.On the other hand, it can be seen that the size of the light gain is small in the case where the thickness of the quantum well layer is thick (b) as compared with the relatively thin thickness of the quantum well layer (a).
이는, 양자 우물층의 두께가 증가할수록, 전자와 정공이 보다 넓은 영역에 분포하게 되어 상대적으로 결합확률이 감소하기 때문이다. This is because as the quantum well layer increases in thickness, electrons and holes are distributed in a wider area, and thus the bonding probability decreases.
그러나, (a)와 (b)에 있어서, 본 개시에 따른 양자 우물층에 의한 광이득의 개선 정도, 즉 종래 기술에 따른 양자 우물층에 대응하는 광이득(점선)과 본 개시에 따른 양자 우물층에 대응하는 광이득(실선)의 차이는, 상대적으로 양자 우물층의 두께가 얇은 (a)에 비해 양자 우물층의 두께가 두꺼운 (b)의 경우에 더 커짐을 알 수 있다.However, in (a) and (b), the degree of improvement of light gain by the quantum well layer according to the present disclosure, that is, the light gain (dotted line) corresponding to the quantum well layer according to the prior art and the quantum well according to the present disclosure It can be seen that the difference in light gain (solid line) corresponding to the layer is larger when the thickness of the quantum well layer is thicker (b) than when the thickness of the quantum well layer is relatively thin (a).
도 3에 도시된 결과는 아래의 수학식을 이용하여 수치 계산한 결과이다.The result shown in FIG. 3 is a result of numerical calculation using the following equation.
먼저, 광학이득 스펙트럼은 다체효과를 갖는 논-마코비안 이득모델을 이용하여 계산되었다. (S. H. Park, S. L. Chung, and D Ahn, "Interband relaxation time effects on non-Markovian gain with many-body effects and comparison with experiment", Semicond. Sci. Technol., vol. 15 pp. 2003-2008). First, the optical gain spectrum was calculated using a non-Macobian gain model with a multibody effect. (S. H. Park, S. L. Chung, and D Ahn, "Interband relaxation time effects on non-Markovian gain with many-body effects and comparison with experiment", Semicond. Sci. Technol., Vol. 15 pp. 2003-2008).
가전자대 분산의 이방성의 효과를 포함하는 다체효과를 갖는 광학이득은 아래의 수학식 1로 표현된다.The optical gain with the multibody effect including the effect of the anisotropy of valence versus dispersion is expressed by the following equation.
수학식 1
Figure PCTKR2009007001-appb-M000001
Equation 1
Figure PCTKR2009007001-appb-M000001
윗식에서, ω는 각속도, M0는 진공에서의 투자율(permeability), ε은 유전율(dielectric constant), σ=U(또는 L)은 유효질량 해밀토니안의 상부(또는 하부)블럭, e는 전자의 전하량, m0는 자유전자의 질량, k||는 양자우물평면에서 표면 웨이브벡터의 크기, Lw는 우물의 폭, |Mnm|2은 스트레인드 양자우물(strained Quantum Well)의 매트릭스 성분이다. 또한 fn c와 fm v는 각각 전도대와 가전자대에서 전자에 의한 점유확률을 위한 페르미 함수이며, 아래첨자의 n과 m은 각각 전도대에 서의 전자상태와 정공상태를 나타낸다.Where ω is the angular velocity, M 0 is the permeability in vacuum, ε is the dielectric constant, σ = U (or L) is the upper (or lower) block of the effective mass Hamiltonian, and e is the electron Charge, m 0 is the mass of free electrons, k || Is the magnitude of the surface wave vector in the quantum well plane, Lw is the width of the well, and | M nm | 2 is the matrix component of the strained quantum well. In addition, f n c and f m v are Fermi functions for the probability of electron occupancy in the conduction band and valence band, respectively, and the subscripts n and m represent the electron and hole states in the conduction band, respectively.
또한, 전자와 정공간의 재규격화된 전이 에너지는 아래의 수학식 2로 표현된다.In addition, the re-standardized transition energy of electrons and constant space is represented by Equation 2 below.
수학식 2
Figure PCTKR2009007001-appb-M000002
Equation 2
Figure PCTKR2009007001-appb-M000002
윗식에서, Eg는 밴드갭, ΔE8X 및 ΔECH는 각각 밴드갭 재규격화에 대한 스크린된 교환(Screened exchange)과 쿨롱홀 기여(Coulomb-hole contribution)이다 (참조, W.W. Chow, M. Hagerott, A. Bimdt, and S.W. Koch, "Threshold coditions for an ultraviolet wavelength GaN quantum-well laser", IEEE J. Select. Topics Quantum Electron., vol. 4, pp. 514-519, 1998).Where E g is the bandgap, ΔE 8X and ΔE CH are the screened exchange and Coulomb-hole contributions to the bandgap renormalization, respectively (see WW Chow, M. Hagerott, A. Bimdt, and SW Koch, "Threshold coditions for an ultraviolet wavelength GaN quantum-well laser", IEEE J. Select. Topics Quantum Electron., Vol. 4, pp. 514-519, 1998).
가우스라인 형상 함수(Gaussian line shape function) L(ω, k||, φ)는 아래의 수학식 3으로 표현된다.A Gaussian line shape function L (ω, k || , φ) is expressed by Equation 3 below.
수학식 3
Figure PCTKR2009007001-appb-M000003
Equation 3
Figure PCTKR2009007001-appb-M000003
윗식에서 는 엑시토닉(exitonic) 또는 밴드간 전이의 쿨롱상승의 원인이 된다. 상기의 라인형상 함수는 논-마코비안 퀀텀 키네틱스(Non-Marcobian Quantum kinetics)의 가장 간단한 가우시안(Gaussian)이고, 아래의 수학식 4 및 수학식 5로 기술된다.In the above equation, it is the cause of the coulomb rise of the exitonic or interband transition. The line shape function is the simplest Gaussian of Non-Marcobian Quantum kinetics and is described by Equations 4 and 5 below.
수학식 4
Figure PCTKR2009007001-appb-M000004
Equation 4
Figure PCTKR2009007001-appb-M000004
수학식 5
Figure PCTKR2009007001-appb-M000005
Equation 5
Figure PCTKR2009007001-appb-M000005
인터밴드 릴렉세이션 시간(interband relaxation time) τin과 코릴레이션시간(correlation time) τc는 상수로 간주되고, 각각 25fs 및 10fs로 계산된다. 계산에 필요한 GaN 및 InN 물질의 파라미터들은 다음의 표 1에 의해서 주어진다.The interband relaxation time? In and the correlation time? C are regarded as constants and are calculated to be 25fs and 10fs, respectively. The parameters of GaN and InN materials required for the calculation are given by Table 1 below.
표 1
Figure PCTKR2009007001-appb-T000001
Table 1
Figure PCTKR2009007001-appb-T000001
도 4는 본 개시에 따른 제1 서브 양자 우물층의 두께(Lw1)와 인듐(In) 조성비(x)의 관계를 보인 도면으로서, 발광 파장을 440nm로 하고, 양자 우물층의 두께를 50Å로 하였으며, In(x)Ga(1-x)N으로 구비되는 제1 서브 양자 우물층의 두께(Lw1)를 변화시켜가며, 제1 서브 양자 우물층의 인듐 조성비(x)를 계산한 결과이다.4 is a view showing the relationship between the thickness (Lw1) and the indium (In) composition ratio (x) of the first sub quantum well layer according to the present disclosure, the emission wavelength is 440nm, the thickness of the quantum well layer is 50Å. And In (x) Ga (1-x) N, the thickness Lw1 of the first sub quantum well layer is changed, and the indium composition ratio x of the first sub quantum well layer is calculated.
여기서, 제1 서브 양자 우물층의 밴드갭은 제2 서브 양자 우물층의 밴드갭에 비해 상대적으로 작으며, In(y)Ga(1-y)N로 구비되는 제2 서브 양자 우물층의 인듐(In) 조성비(y)는 0.05으로 하였다.Here, the band gap of the first sub quantum well layer is relatively smaller than the band gap of the second sub quantum well layer, and is indium of the second sub quantum well layer provided with In (y) Ga (1-y) N. (In) The composition ratio y was set to 0.05.
도 4를 참조하면, 밴드갭이 상대적으로 작은 제1 서브 양자 우물층의 두께(Lw1)를 증가시킬수록 제1 서브 양자 우물층의 인듐(In) 조성비(x)가 감소됨을 알 수 있다.Referring to FIG. 4, it can be seen that the indium (In) composition ratio x of the first sub quantum well layer decreases as the thickness Lw1 of the first sub quantum well layer having a relatively small band gap is increased.
이는, 상대적으로 작은 밴드갭을 갖는 제1 서브 양자 우물층의 두께(w1)가 증가하면, 상대적으로 작은 밴드갭의 영향이 커지므로 발광하는 빛의 파장이 증가하는 경향을 갖는데, 요구되는 발광파장이 440nm로 고정되어 있으므로 이를 보상하기 위해서는 제1 서브 양자 우물층의 밴드갭이 증가되어야 하며, 인듐(In)함량이 감소할수록 밴드갭은 증가되므로, 고정된 발광파장의 빛을 생성하기 위해서는 제1 서브 양자 우물층의 인듐(In) 함량이 감소되어야 하기 때문이다.This is because when the thickness w1 of the first sub quantum well layer having the relatively small band gap increases, the influence of the relatively small band gap increases, so that the wavelength of the light emitted tends to increase. Since the band gap of the first sub quantum well layer is increased to compensate for this, the band gap increases as the indium (In) content decreases, so that the first gap is generated to generate light having a fixed emission wavelength. This is because the indium (In) content of the sub quantum well layer should be reduced.
도 5는 본 개시에 따른 제1 서브 양자 우물층의 두께(Lw1)와 자발방출율(spontaneous emission rate)의 관계를 보인 도면으로서, 양자 우물층의 두께는 50Å로 하였으며, 제2 서브 양자 우물층의 밴드갭에 비해 상대적으로 작은 밴드갭을 가지는 제1 서브 양자 우물층의 두께(Lw1)를 변화시켜가면서 자발방출율을 계산한 결과이다.FIG. 5 is a view illustrating a relationship between a thickness Lw1 of a first sub quantum well layer and a spontaneous emission rate according to the present disclosure. The thickness of the quantum well layer is 50 μs, and the thickness of the second sub quantum well layer is shown in FIG. This is the result of calculating the spontaneous emission rate while varying the thickness Lw1 of the first sub quantum well layer having the band gap relatively smaller than the band gap.
도 5를 참조하면, 상대적으로 작은 밴드갭을 갖는 제1 서브 양자 우물층의 두께(Lw1)가 상대적으로 큰 밴드갭을 가지는 제2 서브 양자 우물층의 두께(Lw2)보다 작은 경우에 자발방출율이 증가함을 알 수 있다.Referring to FIG. 5, when the thickness Lw1 of the first sub quantum well layer having a relatively small band gap is smaller than the thickness Lw2 of the second sub quantum well layer having a relatively large band gap, the spontaneous emission rate is It can be seen that the increase.
구체적으로, 제1 서브 양자 우물층의 두께(Lw1)가 8Å ~ 22Å인 경우에 자발방출율이 우수함을 알 수 있다. Specifically, it can be seen that the spontaneous emission rate is excellent when the thickness Lw1 of the first sub quantum well layer is 8 kW to 22 kW.
제2 서브 양자 우물층의 두께(Lw2)는 양자 우물층의 두께에서 제1 서브 양자 우물층의 두께(Lw1)를 빼면 되므로, 제1 서브 양자 우물층의 두께(Lw1)와 제2 서브 양자 우물층의 두께(Lw2)의 비가 8/42 내지 22/28 범위에서 우수한 자발방출율을 가진다.Since the thickness Lw2 of the second sub quantum well layer is obtained by subtracting the thickness Lw1 of the first sub quantum well layer from the thickness of the quantum well layer, the thickness Lw1 of the first sub quantum well layer and the second sub quantum well layer The ratio of the thickness Lw2 of the layer has excellent spontaneous emission rate in the range of 8/42 to 22/28.
특히, 제1 서브 양자 우물층의 두께(Lw1)가 15Å이고, 제2 서브 양자 우물층의 두께(Lw2)가 35Å일 때, 즉 제1 서브 양자 우물층의 두께(Lw1)와 제2 서브 양자 우물층의 두께(Lw2)의 비가 15/35일 때 자발방출율이 최대임을 알 수 있다.In particular, when the thickness Lw1 of the first sub quantum well layer is 15 μs and the thickness Lw2 of the second sub quantum well layer is 35 μm, that is, the thickness Lw1 and the second sub quantum of the first sub quantum well layer It can be seen that the spontaneous emission rate is maximum when the ratio of the thickness Lw2 of the well layer is 15/35.
이하 본 개시의 다양한 실시 형태에 대하여 설명한다.Hereinafter, various embodiments of the present disclosure will be described.
(1) 제1 밴드갭의 크기는 제2 밴드갭의 크기 보다 작고, 제1 서브 양자 우물층의 두께는 제2 서브 양자 우물층의 두께 보다 얇은 것을 특징으로 하는 반도체 발광소자.(1) The semiconductor light emitting device according to claim 1, wherein the size of the first band gap is smaller than that of the second band gap, and the thickness of the first sub quantum well layer is thinner than that of the second sub quantum well layer.
이에 의해, 제1 서브 양자 우물층 및 제2 서브 양자 우물층이 발광에 기여할 수 있게 되며, 자발방출율이 우수하게 유지될 수 있다.As a result, the first sub quantum well layer and the second sub quantum well layer can contribute to light emission, and the spontaneous emission rate can be maintained excellent.
(2) 양자 우물층은, E-k공간에서 계단 형상의 밴드갭을 갖는 것을 특징으로 하는 반도체 발광소자.(2) The quantum well layer has a stepped band gap in the E-k space, wherein the semiconductor light emitting element is characterized in that it is.
(3) 제1 화합물 반도체는, 질화인듐갈륨(InGaN)으로 구비되고, 제2 화합물 반도체는, 질화갈륨(GaN)으로 구비되는 것을 특징으로 하는 반도체 발광소자.(3) The first compound semiconductor is made of indium gallium nitride (InGaN), and the second compound semiconductor is made of gallium nitride (GaN).
(4) 제1 서브 양자 우물층은 In(x)Ga(1-x)N으로 구비되고, 제2 서브 양자 우물층은 In(y)Ga(1-y)N으로 구비되며, x와 y는 서로 다른 것을 특징으로 하는 반도체 발광소자.(4) The first sub quantum well layer is formed of In (x) Ga (1-x) N, and the second sub quantum well layer is formed of In (y) Ga (1-y) N, x and y Is a semiconductor light emitting device, characterized in that different from each other.
(5) x는 0.15≤x≤0.25의 값을 가지며, y는 0<y≤0.075의 값을 가지는 것을 특징으로 하는 반도체 발광소자.(5) x has a value of 0.15 ≦ x ≦ 0.25, and y has a value of 0 <y ≦ 0.075.
이에 의해, 청색 광에 대응되는 파장을 방출하는 반도체 발광소자의 발광특성을 향상시킬 수 있으며, 제2 서브 양자 우물층과 장벽층 사이의 밴드갭 차이가 너무 커져 스트레인 분산 효과가 감소되는 것을 방지할 수 있다.As a result, the light emitting characteristics of the semiconductor light emitting device emitting a wavelength corresponding to blue light can be improved, and the band gap difference between the second sub quantum well layer and the barrier layer becomes too large to prevent the strain dispersion effect from being reduced. Can be.
(6) 제1 서브 양자 우물층의 두께(a)과 제2 서브 양자 우물층의 두께(b)의 비(a/b)는, 0.19≤a/b≤0.79의 값을 가지는 것을 특징으로 하는 반도체 발광소자.(6) The ratio a / b of the thickness a of the first sub quantum well layer and the thickness b of the second sub quantum well layer has a value of 0.19 ≦ a / b ≦ 0.79. Semiconductor light emitting device.
이에 의해, 자발방출율이 우수하게 유지될 수 있다.Thereby, the spontaneous release rate can be kept excellent.
본 개시에 따른 하나의 반도체 발광소자에 의하면, 밴드갭이 서로 다른 제1,2 서브 양자 우물층에 의해, 양자 우물층이 E-k공간에서 계단 형상의 밴드갭을 갖게 되며, 이러한 계단 형상의 밴드갭에 의해 전자와 정공이 공간적으로 좀더 근접한 위치에 구속되므로 광 천이특성이 개선될 수 있다.According to one semiconductor light emitting device according to the present disclosure, the first and second sub quantum well layers having different band gaps have a quantum well layer having a stepped band gap in the Ek space, and such a stepped band gap. By the electrons and holes are constrained in a position closer to the space can be improved light transition characteristics.
또한, 본 개시에 따른 다른 반도체 발광소자에 의하면, 양자 우물층(113)이 두 개의 서브 양자 우물층(113)로 구비되므로, 장벽층(123)과 양자 우물층(113)의 격자 상수 차이로 발생되는 스트레인이 분산되는 효과를 얻을 수 있으며, 스트레인의 분산으로 피에조 전계가 감소되고 이에 따라 광 천이특성의 개선되는 이점을 가질 수 있다.In addition, according to another semiconductor light emitting device according to the present disclosure, since the quantum well layer 113 includes two sub quantum well layers 113, the lattice constant difference between the barrier layer 123 and the quantum well layer 113 may be reduced. It is possible to obtain the effect that the generated strain is dispersed, the dispersion of the strain may have the advantage that the piezo electric field is reduced and thus the light transition characteristics are improved.
또한, 본 개시에 따른 또 다른 반도체 발광소자에 의하면, InGaN으로 구비되는 3원막의 양자 우물층이 사용되므로, 4원막 장벽층 형성에 비해 성장조건이 용이해지는 이점을 가지게 된다.In addition, according to another semiconductor light emitting device according to the present disclosure, since the quantum well layer of the three-element film made of InGaN is used, growth conditions are easier than that of the four-element film barrier layer.

Claims (12)

  1. 제1 전도성을 가지는 제1 반도체층;A first semiconductor layer having a first conductivity;
    제1 전도성과 다른 제2 전도성을 가지는 제2 반도체층;A second semiconductor layer having a second conductivity different from the first conductivity;
    제1 반도체층과 제2 반도체층 사이에 개재되는 활성층;을 포함하며,And an active layer interposed between the first semiconductor layer and the second semiconductor layer.
    활성층은, Active layer,
    제1 화합물 반도체로 구비되는 양자 우물층; 및A quantum well layer formed of the first compound semiconductor; And
    제2 화합물 반도체로 구비되는 장벽층;을 포함하고,A barrier layer formed of a second compound semiconductor;
    양자 우물층은, Quantum well layer,
    제1 밴드갭(band gap)을 갖는 제1 서브 양자 우물층; 및A first sub quantum well layer having a first band gap; And
    제1 밴드갭과 다른 크기의 제2 밴드갭을 갖는 제2 서브 양자 우물층;을 포함하는 반도체 발광소자.And a second sub quantum well layer having a second band gap having a different size from the first band gap.
  2. 청구항 1에 있어서,The method according to claim 1,
    양자 우물층은, E-k공간에서 계단 형상의 밴드갭을 갖는 것을 특징으로 하는 반도체 발광소자.The quantum well layer has a stepped band gap in the E-k space, the semiconductor light emitting device.
  3. 청구항 1에 있어서, The method according to claim 1,
    제1 밴드갭의 크기는 제2 밴드갭의 크기 보다 작고, The size of the first bandgap is smaller than the size of the second bandgap,
    제1 서브 양자 우물층의 두께는 제2 서브 양자 우물층의 두께 보다 얇은 것을 특징으로 하는 반도체 발광소자.The thickness of the first sub quantum well layer is thinner than the thickness of the second sub quantum well layer.
  4. 청구항 1에 있어서,The method according to claim 1,
    제1 화합물 반도체는, 질화인듐갈륨(InGaN)으로 구비되고, The first compound semiconductor is made of indium gallium nitride (InGaN),
    제2 화합물 반도체는, 질화갈륨(GaN)으로 구비되는 것을 특징으로 하는 반도체 발광소자.The second compound semiconductor is made of gallium nitride (GaN).
  5. 청구항 1에 있어서,The method according to claim 1,
    제1 서브 양자 우물층은 In(x)Ga(1-x)N으로 구비되고, The first sub quantum well layer is formed of In (x) Ga (1-x) N,
    제2 서브 양자 우물층은 In(y)Ga(1-y)N으로 구비되며,The second sub quantum well layer is formed of In (y) Ga (1-y) N,
    x와 y는 서로 다른 것을 특징으로 하는 반도체 발광소자.x and y are different from each other.
  6. 청구항 5에 있어서,The method according to claim 5,
    x는 0.15≤x≤0.25의 값을 가지며, x has a value of 0.15≤x≤0.25,
    y는 0<y≤0.075의 값을 가지는 것을 특징으로 하는 반도체 발광소자.y has a value of 0 <y≤0.075.
  7. 청구항 1에 있어서,The method according to claim 1,
    제1 밴드갭의 크기는 제2 밴드갭의 크기 보다 작고, The size of the first bandgap is smaller than the size of the second bandgap,
    제1 서브 양자 우물층의 두께(a)와 제2 서브 양자 우물층의 두께(b)의 비(a/b)는, 0.19≤a/b≤0.79의 값을 가지는 것을 특징으로 하는 반도체 발광소자.The ratio (a / b) of the thickness (a) of the first sub quantum well layer and the thickness (b) of the second sub quantum well layer has a value of 0.19 ≦ a / b ≦ 0.79. .
  8. 청구항 3에 있어서,The method according to claim 3,
    제1 화합물 반도체는, 질화인듐갈륨(InGaN)으로 구비되고, The first compound semiconductor is made of indium gallium nitride (InGaN),
    제2 화합물 반도체는, 질화갈륨(GaN)으로 구비되는 것을 특징으로 하는 반도체 발광소자.The second compound semiconductor is made of gallium nitride (GaN).
  9. 청구항 8에 있어서,The method according to claim 8,
    제1 서브 양자 우물층은 In(x)Ga(1-x)N으로 구비되고, The first sub quantum well layer is formed of In (x) Ga (1-x) N,
    제2 서브 양자 우물층은 In(y)Ga(1-y)N으로 구비되며,The second sub quantum well layer is formed of In (y) Ga (1-y) N,
    x와 y는 서로 다른 것을 특징으로 하는 반도체 발광소자.x and y are different from each other.
  10. 청구항 9에 있어서,The method according to claim 9,
    x는 0.15≤x≤0.25의 값을 가지며, x has a value of 0.15≤x≤0.25,
    y는 0<y≤0.075의 값을 가지는 것을 특징으로 하는 반도체 발광소자.y has a value of 0 <y≤0.075.
  11. 청구항 9에 있어서,The method according to claim 9,
    제1 서브 양자 우물층의 두께(a)와 제2 서브 양자 우물층의 두께(b)의 비(a/b)는, 0.19≤a/b≤0.79의 값을 가지는 것을 특징으로 하는 반도체 발광소자.The ratio (a / b) of the thickness (a) of the first sub quantum well layer and the thickness (b) of the second sub quantum well layer has a value of 0.19 ≦ a / b ≦ 0.79. .
  12. 청구항 9에 있어서, The method according to claim 9,
    제1 반도체층은 활성층에 전자를 주입하는 n형 콘택층으로 구비되며The first semiconductor layer is provided as an n-type contact layer for injecting electrons into the active layer
    제2 반도체층은 활성층에 정공을 주입하는 p형 콘택층으로 구비되고,The second semiconductor layer is provided as a p-type contact layer for injecting holes into the active layer,
    양자 우물층은, E-k공간에서 계단 형상의 밴드갭을 갖으며,The quantum well layer has a stepped band gap in the E-k space,
    제1 서브 양자 우물층의 두께(a)과 제2 서브 양자 우물층의 두께(b)의 비(a/b)는, 0.19≤a/b≤0.79의 값을 가지는 것을 특징으로 하는 반도체 발광소자.The ratio (a / b) of the thickness (a) of the first sub quantum well layer and the thickness (b) of the second sub quantum well layer has a value of 0.19 ≦ a / b ≦ 0.79. .
PCT/KR2009/007001 2008-11-27 2009-11-26 Semiconductor light emitting element WO2010062119A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2008-0119149 2008-11-27
KR1020080119149A KR101012636B1 (en) 2008-11-27 2008-11-27 Light generating device

Publications (2)

Publication Number Publication Date
WO2010062119A2 true WO2010062119A2 (en) 2010-06-03
WO2010062119A3 WO2010062119A3 (en) 2010-08-19

Family

ID=42226259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/007001 WO2010062119A2 (en) 2008-11-27 2009-11-26 Semiconductor light emitting element

Country Status (2)

Country Link
KR (1) KR101012636B1 (en)
WO (1) WO2010062119A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101462238B1 (en) * 2012-10-05 2014-12-04 대구가톨릭대학교산학협력단 High-efficiency blue InGaN/GaN quantum-well light-emitting diodes with saw-like later

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070098031A (en) * 2006-03-30 2007-10-05 삼성전기주식회사 Nitride semiconductor device
KR20080033666A (en) * 2006-10-13 2008-04-17 엘지전자 주식회사 Nitride light emitting device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3191363B2 (en) * 1991-11-06 2001-07-23 ソニー株式会社 Multiple quantum well semiconductor laser

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070098031A (en) * 2006-03-30 2007-10-05 삼성전기주식회사 Nitride semiconductor device
KR20080033666A (en) * 2006-10-13 2008-04-17 엘지전자 주식회사 Nitride light emitting device

Also Published As

Publication number Publication date
KR20100060524A (en) 2010-06-07
KR101012636B1 (en) 2011-02-09
WO2010062119A3 (en) 2010-08-19

Similar Documents

Publication Publication Date Title
WO2010018985A2 (en) Semiconductor light emitting device
WO2011083940A2 (en) Light-emitting diode and method for manufacturing same
WO2013018937A1 (en) Semiconductor light-emitting device
US20110220871A1 (en) Nitride semiconductor light-emitting device and semiconductor light-emitting device
WO2011046292A2 (en) High-quality nonpolar or semipolar semiconductor device on porous nitride semiconductor and fabrication method thereof
KR20050000846A (en) Nitride semiconductor LED and fabrication method for thereof
WO2013191406A1 (en) Light emitting device having electron blocking layer
WO2011021919A1 (en) Photovoltaic devices
WO2014003402A1 (en) Near uv light emitting device
WO2010147357A2 (en) Heterogeneous substrate, nitride-based semiconductor device using same and manufacturing method thereof
WO2022240179A1 (en) Multi-band light emitting diode
KR101644156B1 (en) Light emitting device having active region of quantum well structure
WO2010062119A2 (en) Semiconductor light emitting element
JPH10270756A (en) Gallium nitride compound semiconductor device
KR101051327B1 (en) Iii-nitride semiconductor light emitting device
KR101043345B1 (en) Nitride semiconductor device
Karpov et al. Visible light-emitting diodes
Lei et al. Improved Modulation Bandwidth of c-Plane Micro-LED Arrays by Varying Si Doping in the Quantum Barrier
WO2011081474A2 (en) Semiconductor light emitting device, and preparation method thereof
WO2014007419A1 (en) Nitride group semiconductor light-emitting element and method for manufacturing same
WO2016195342A1 (en) Ultraviolet light emitting device
WO2010080008A2 (en) Group iii nitride semiconductor light emitting device
KR101248383B1 (en) Semiconductor light emitting device
JP3470074B2 (en) Optical semiconductor device
WO2020218798A1 (en) Semiconductor light-emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09829326

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09829326

Country of ref document: EP

Kind code of ref document: A2