WO2010061832A1 - 送信装置、受信装置、通信システム、および、受信装置における処理方法 - Google Patents

送信装置、受信装置、通信システム、および、受信装置における処理方法 Download PDF

Info

Publication number
WO2010061832A1
WO2010061832A1 PCT/JP2009/069826 JP2009069826W WO2010061832A1 WO 2010061832 A1 WO2010061832 A1 WO 2010061832A1 JP 2009069826 W JP2009069826 W JP 2009069826W WO 2010061832 A1 WO2010061832 A1 WO 2010061832A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
preamble
signal
frame
ack frame
Prior art date
Application number
PCT/JP2009/069826
Other languages
English (en)
French (fr)
Inventor
伊藤 鎮
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to EP09829080A priority Critical patent/EP2352329A1/en
Priority to US13/129,954 priority patent/US8588098B2/en
Priority to CN200980146034.9A priority patent/CN102217364B/zh
Publication of WO2010061832A1 publication Critical patent/WO2010061832A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure

Definitions

  • the present invention relates to a transmission device, a reception device, and a communication system, and more particularly to a transmission device, a reception device, a communication system, and a processing method in the reception device for confirming delivery using an acknowledgment frame.
  • Wireless communication systems that perform data communication between terminals via high-frequency signals are widely used.
  • a transmission terminal in a wireless communication system generally has an acknowledgment method for confirming that transmitted data has correctly reached the transmission destination by receiving an acknowledgment (Acknowledgment: Ack) frame from the transmission destination. It is used.
  • the transmission source performs a retransmission process for transmitting the same data as the transmitted data again. Even when such retransmission processing is performed a predetermined number of times, if an Ack frame cannot be received, the frame modulation scheme is changed to a modulation scheme that is more resistant to interference, and the retransmission processing is repeated.
  • FIG. 4 Japanese Patent Laying-Open No. 2005-110245
  • the present invention has been made in view of such a situation, and an object thereof is to reduce collision of Ack frames.
  • the present invention has been made to solve the above-described problems, and a first aspect thereof is a preamble that generates only a preamble for adjusting a carrier frequency error of a high-frequency signal as an acknowledgment frame for reception confirmation.
  • a transmission apparatus comprising: a generation unit; and a transmission unit for transmitting the acknowledgment frame generated by the preamble generation unit as the high-frequency signal. This brings about the effect of transmitting an acknowledgment frame composed of only the preamble.
  • a receiving unit for receiving a packet signal including a preamble, and a signal strength for determining the end of the packet signal based on the strength of the signal received by the receiving unit.
  • a determination unit a timing generation unit that generates the end timing of the preamble by detecting the preamble, a result determined by the signal strength determination unit as the end of the packet signal, and the timing generation unit
  • a reception apparatus including an acknowledgment frame detection unit that detects that the packet signal is an acknowledgment frame configured only by the preamble based on the end timing of the preamble, and a processing method thereof. This brings about the effect that an acknowledgment frame composed only of the preamble is detected.
  • the confirmation response frame detection unit estimates the period determined by the signal strength determination unit as the end of the confirmation response frame based on the end timing of the preamble. It may be detected that the packet signal is the confirmation response frame based on the period determined and the result of the end of the packet signal. Thus, the period determined by the signal strength determination unit as the end of the acknowledgment frame is estimated based on the end timing of the preamble generated by the timing generation unit, and the estimated period and the signal strength determination unit determine Based on the result obtained, an acknowledgment frame is detected.
  • a decoding unit that decodes the packet signal received by the receiving unit, and a confirmation response for detecting that the data decoded by the decoding unit is data indicating a confirmation response. You may make it further comprise a data detection part.
  • the received packet signal is decoded, and the decoded data is detected as data indicating an acknowledgment frame.
  • the signal strength determination unit may determine the end of the packet signal based on the strength of the signal received by the reception unit and a predetermined threshold. This brings about the effect that the end of the packet signal is determined based on the strength of the signal received by the receiving unit and a certain threshold value. In this case, the signal strength determination unit may determine the end of the packet signal based on the fluctuation amount of the strength of the signal received by the reception unit. This brings about the effect that the end of the packet signal is determined based on the fluctuation amount of the signal strength.
  • the signal strength determining unit is configured to determine whether the packet signal is received by the receiving unit.
  • the threshold value may be set based on the signal intensity. This brings about the effect that the threshold is set based on the signal strength before reception.
  • a third aspect of the present invention provides a transmitting device that transmits an acknowledgment frame configured only by a preamble, a receiving unit that receives the acknowledgment frame transmitted by the transmitting device as a packet signal, A signal strength determining unit for determining the end of the packet signal based on the strength of the signal received by the receiving unit; a timing generating unit that generates the end timing of the preamble by detecting the preamble; Confirmation that the packet signal is the confirmation response frame based on a result of the signal strength determination unit determining the end of the packet signal and a timing of the end of the preamble generated by the timing generation unit
  • Communication system comprising: a receiving device comprising a response frame detecting unit A.
  • FIG. 5 is a conceptual diagram showing frame transmission timing in the wireless communication system shown in FIG. 4.
  • FIG. 5 is a conceptual diagram illustrating communication line utilization efficiency in the wireless communication system illustrated in FIG. 4. It is a figure which shows an example of the transmission procedure of the Ack frame 200 in the transmitter 100 of the 1st Embodiment of this invention.
  • FIG. 10 is a diagram illustrating an example of a communication procedure when an Ack frame 200 according to a second embodiment of the present invention and a conventional Ack frame 601 are used in combination.
  • First embodiment wireless communication system: example of transmitting / receiving an Ack frame
  • Second embodiment wireless communication system: an example of using together with a conventional Ack frame
  • FIG. 1 is a block diagram showing a configuration example of a wireless communication system according to the first embodiment of the present invention.
  • the wireless communication system includes a transmission device 100 that receives data from the reception device 300 and transmits an Ack frame 200 as an acknowledgment for the data, and a reception device 300 that receives the transmitted Ack frame 200.
  • the transmission device 100 and the reception device 300 have the same functional configuration as a wireless communication device, the names of the devices are given here with a focus on transmission / reception of the Ack frame 200.
  • the transmission device 100 includes an antenna 110, an RF (Radio Frequency) unit 120, a PHY (Physical Layer) unit 130, and a MAC (Medium Access Control) unit 160.
  • the transmission device 100 is an example of a transmission device described in the claims.
  • the MAC unit 160 controls the PHY unit 130 to transmit an Ack frame 200 or a Data frame other than the Ack frame 200. For example, when the data from the receiving apparatus 300 is normally received, the MAC unit 160 notifies the PHY unit 130 of a transmission start request for transmitting the Ack frame 200 as a confirmation response to the data.
  • the PHY unit 130 generates the Ack frame 200 in accordance with a transmission start request from the MAC unit 160.
  • the PHY unit 130 includes a PLCP (Physical Layer Convergence Protocol) unit 150 and a PMD (Physical Layer Medium Dependent) unit 140.
  • the PHY unit 130 is an example of a preamble generation unit described in the claims.
  • the PLCP unit 150 determines whether the frame to be transmitted is the Ack frame 200 based on the transmission start request from the MAC unit 160. If it is determined that the frame to be transmitted is the Ack frame 200, the PLCP unit 150 generates a PLCP preamble for adjusting the carrier frequency error of the high frequency signal. Then, the PLCP unit 150 supplies a frame composed only of the PLCP preamble as an Ack frame 200 to the RF unit 120 via the PMD unit 140. Furthermore, the PLCP unit 150 notifies the PMD unit 140 of the transmission level request for the Ack frame 200 and the transmission start request in accordance with the transmission start request from the MAC unit 160.
  • the PLCP unit 150 notifies the MAC unit 160 of the end of transmission. If it is determined that the frame to be transmitted is not the Ack frame 200, the PLCP unit 150 generates a Data frame based on the data supplied from the MAC unit 160 and the PLCP preamble.
  • PMD unit 140 sets the transmission level of Ack frame 200 based on the notification from PLCP unit 150. For example, the PMD unit 140 amplifies the Ack frame 200 according to the set transmission level. The PMD unit 140 supplies the amplified Ack frame 200 to the RF unit 120.
  • the RF unit 120 converts the Ack frame 200 supplied from the PMD unit 140 into a high-frequency signal and supplies it to the antenna 110.
  • the antenna 110 is used to transmit the high frequency signal frequency-converted by the RF unit 120 to the receiving apparatus 300 as a packet signal.
  • the antenna 110 may transmit a high-frequency signal in the 2.4 GHz band or the 5.2 GHz band.
  • the antenna 110 and the RF unit 120 are an example of a transmission unit described in the claims.
  • the receiving apparatus 300 includes an antenna 310, an RF unit 320, a PHY unit 330, and a MAC unit 360.
  • the receiving device 300 is an example of a receiving device described in the claims.
  • the antenna 310 receives a packet signal that is a transmitted high-frequency signal.
  • the antenna 310 may receive a packet signal in the 2.4 GHz band or the 5.2 GHz band.
  • the RF unit 320 converts the frequency of the packet signal received by the antenna 310.
  • the RF unit 320 supplies the frequency-converted packet signal to the PHY unit 330 as a frame. Further, the RF unit 320 supplies the signal strength of the packet signal received by the antenna 310 to the PHY unit 330.
  • the antenna 310 and the RF unit 320 are an example of a receiving unit described in the claims.
  • the PHY unit 330 is for detecting the Ack frame 200 among the frames supplied from the RF unit 320.
  • the PHY unit 330 includes a PMD unit 340 and a PLCP unit 350.
  • PMD unit 340 determines the start of packet signal reception and the end of packet signal reception based on the signal strength supplied from RF unit 320. That is, the PMD unit 340 determines the start and end of the packet signal based on the signal strength from the RF unit 320. Further, the PMD unit 340 detects the PLCP preamble included in the packet signal, thereby generating the end timing of the PLCP preamble. The PMD unit 340 also notifies the PLCP unit 350 of the determination result of the start and end of the packet signal and the timing of the end of the preamble.
  • the PLCP unit 350 detects that the received packet signal is the Ack frame 200 based on the determination result of the end of the packet signal notified from the PMD unit 340 and the end timing of the preamble. The PLCP unit 350 notifies the MAC unit 360 that the Ack frame 200 has been detected.
  • the PLCP unit 350 notifies the MAC unit 360 of the determination result of the start and end of the packet signal from the PMD unit 340. Further, the PLCP unit 350 decodes Data frames other than the Ack frame 200 and supplies the decoded Data frame to the MAC unit 360 as received data.
  • the MAC unit 360 processes received data based on the notification from the PLCP unit 350.
  • the MAC unit 360 determines that the data transmitted to the transmission device 100 has been normally received and performs transmission processing of the next data, for example. . Further, the MAC unit 360 processes the received data based on address information, identification information, and the like included in the received data supplied from the PLCP unit 350.
  • FIG. 2 is a diagram illustrating one configuration of the Data frame.
  • the IEEE 802.11a standard is a standard by the working group of the IEEE (American Institute of Electrical and Electronics Engineers) 802 Standardization Committee.
  • the frame according to the IEEE 802.11a standard includes a PLCP preamble 610, a signal 620, and data 630.
  • the PLCP preamble 610 is a predetermined fixed pattern signal for radio packet signal reception synchronization processing.
  • Signal 620 is an OFDM symbol that includes the transmission rate and data length of data 630.
  • Data 630 is a field including the body of information data.
  • the signal 620 terminates the convolutional encoding with a 4-bit transmission rate 641, a 1-bit reserved bit 642, a 12-bit data length 643, a 1-bit parity 644, and 6 bits. Bit tail 645. Both the transmission rate 641 and the data length 643 relate to the data 630.
  • the data 630 includes a 16-bit service 646 and variable-length data PSDU (PLCPPLService Data Unit) 650. Further, data 630 consists of a 6-bit tail 658 that terminates these convolutional encodings and padding bits 659 that fill the remaining bits of the OFDM symbol. Data PSDU 650 stores information related to a frame control field, an address field, a frame body field, and the like in the MAC frame. The service 646 includes 7 bits “0” for giving an initial state of the scrambler and 9 reserved bits. In addition, each field of the signal 620 and the service 646 constitute a PLCP header 640.
  • PSDU PLCPPLService Data Unit
  • the PLCP preamble 610 is composed of a short preamble including 10 short training symbols 611 and a long preamble including two long training symbols 613 and 614.
  • the short preamble is a predetermined fixed pattern signal with a period of 0.8 ⁇ s using 12 subcarriers, and a total of 8.0 ⁇ s is obtained from 10 signals from t1 to t10.
  • This short preamble is used for packet signal detection, signal amplification, rough adjustment of carrier frequency error, symbol timing detection, and the like in PMD section 340.
  • the long preamble is a repetitive signal of 2 symbols with 52 subcarriers, and a signal of 8.0 ⁇ s in total is obtained by two 3.2 ⁇ s long training symbols 613 and 614 following a guard interval 612 of 1.6 ⁇ s. Clearly.
  • This long preamble is used for fine adjustment of carrier frequency error in PMD unit 340 and channel estimation, that is, detection of reference amplitude and reference phase for each subcarrier.
  • a guard interval 621 of 0.8 ⁇ s is added in front of the main body of the signal 622 of 3.2 ⁇ s, and the signal becomes a total signal of 4 ⁇ s.
  • a signal of 4 ⁇ s in total, in which a guard interval 631 of 0.8 ⁇ s is added in front of the main body of the data 632 of 3.2 ⁇ s, is repeated according to the data length 643.
  • the Ack frame according to the IEEE 802.11a standard has the same configuration as that of the Data frame, and information regarding the confirmation response is stored in the data PSDU 650.
  • an Ack frame according to the IEEE 802.11a standard is referred to as a conventional Ack frame.
  • FIG. 3 is a diagram illustrating a configuration example of the Ack frame 200 according to the first embodiment of the present invention.
  • an Ack frame 200 including only the PLCP preamble 610 shown in FIG. 2 is shown.
  • the Ack frame 200 is an Ack frame configured only by the PLCP preamble 610 shown in FIG. As described with reference to FIG. 2, the Ack frame 200 is a signal of 16.0 ⁇ s in total with a short preamble of 8.0 ⁇ s and a long preamble of 8.0 ⁇ s.
  • the short training symbol 211, the guard interval 212, and the long training symbols 213 and 214 are the same as those shown in FIG.
  • the Ack frame 200 has a shorter frame length than the conventional Ack frame, collision between the Ack frame 200 and other frames due to the hidden terminal problem shown in the following figure can be avoided.
  • FIG. 4 is a conceptual diagram illustrating an example of a hidden terminal problem in a conventional wireless communication system.
  • FIG. 4 shows a wireless base station (AP) 410, wireless terminals (STAs) 420 to 440, and communication areas 411 to 431.
  • AP wireless base station
  • STAs wireless terminals
  • the wireless base station (AP) 410 communicates with wireless terminals (STAs) 420 to 440 located in the communication area 411.
  • the wireless terminal (STA) 420 communicates with a wireless base station (AP) 410 located in the communication area 421.
  • the wireless terminal (STA) 430 communicates with the wireless base station (AP) 410 located in the communication area 431.
  • the wireless terminal (STA) 420 when the wireless terminal (STA) 420 normally receives the Data frame from the wireless base station (AP) 410 in communication with the wireless base station (AP) 410, the wireless base station (AP) 410 Ack frame indicated by a dotted line is returned.
  • the wireless terminal (STA) 430 since the wireless terminal (STA) 430 is located outside the communication area 421, the Ack frame returned by the wireless terminal (STA) 420 cannot be detected. For this reason, the wireless terminal (STA) 430 may transmit a Data frame indicated by a dashed line to the wireless base station (AP) 410. Although not shown here, it is also assumed that the wireless terminal (STA) 430 transmits a Data frame to the wireless terminal (STA) 440.
  • FIG. 5 is a conceptual diagram showing frame transmission timing in the wireless communication system shown in FIG. Here, it is assumed that transmission is performed based on parameters according to the IEEE 802.11a standard.
  • 5A and 5B frames transmitted from the radio base station (AP) 410, the radio terminal (STA) 420, and the radio terminal (STA) 430 are shown from the top with the horizontal axis as the time axis. Each is shown in turn.
  • FIG. 5 is a figure when the conventional Ack frame 601 is returned from the wireless terminal (STA) 420 to the wireless base station (AP) 410.
  • the radio base station (AP) 410 transmits a Data frame 602 to the radio terminal (STA) 420.
  • the wireless terminal (STA) 420 returns the Ack frame 601 after waiting for SIFS (short frame interval) because it has normally received the Data frame 601 from the wireless base station (AP) 410.
  • SIFS short frame interval
  • the wireless terminal (STA) 430 transmits the Data frame 602 after waiting for the backoff (BackOff) time in addition to the DIFS (Distributed Control Frame Interval) from the end of transmission of the Data frame 601 by the wireless base station (AP) 410. To do.
  • DIFS Distributed Control Frame Interval
  • SIFS here is a fixed waiting time when an Ack frame is returned.
  • DIFS is a fixed waiting time when the Data frame 602 is transmitted.
  • the SIFS and DIFS are defined as 16 ⁇ s and 34 ⁇ s, respectively, in the IEEE 802.11a standard.
  • the back-off time is a multiple of a fixed time and is a waiting time set using a random value. These are waiting times set in order to avoid frame collisions.
  • a part of the Ack frame 601 transmitted from the wireless terminal (STA) 420 and a part of the Data frame 602 transmitted from the wireless terminal (STA) 430 May collide.
  • FIG. 5 is a diagram when the Ack frame 200 in the first embodiment of the present invention is returned from the wireless terminal (STA) 420 to the wireless base station (AP) 410.
  • a total of 32 ⁇ s is obtained in the SIFS (16 ⁇ s) period and the Ack frame 200 frame period (16 ⁇ s). Therefore, the Ack frame 200 and the Data frame 602 transmitted from the wireless terminal (STA) 430 do not collide with each other because they are within the period of DIFS (34 ⁇ s) in the wireless terminal (STA) 430.
  • FIG. 6 is a conceptual diagram showing communication line utilization efficiency in the wireless communication system shown in FIG.
  • FIGS. 6A and 6B show frames transmitted from the radio base station (AP) 410 and the radio terminal (STA) 420, with the horizontal axis as the time axis.
  • a data frame 602 is transmitted from the wireless base station (AP) 410 to the wireless terminal (STA) 420, and the wireless terminal (STA) 420 that has received the data frame 602 sends an Ack frame to the wireless base station (AP) 410.
  • the repetition of the reply procedure is shown.
  • FIG. 6A is a diagram in the case where a conventional Ack frame 601 is returned from the wireless terminal (STA) 420 to the wireless base station (AP) 410. Note that the wireless terminal (STA) 430 discards the received data 603 after identifying the destination of the received conventional Ack frame 601.
  • FIG. 6B is a diagram when the Ack frame 200 is returned from the wireless terminal (STA) 420 to the wireless base station (AP) 410 according to the first embodiment of the present invention.
  • the reception synchronization 604 is established by receiving the Ack frame 200.
  • the wireless terminal (STA) 430 immediately shifts to the standby state. .
  • the frame length of the Ack frame is shortened, so that the throughput of the communication line in the wireless communication system can be improved.
  • the operation of the transmission apparatus 100 for transmitting such an Ack frame 200 will be described with reference to the next diagram.
  • FIG. 7 is a diagram illustrating an example of a transmission procedure of the Ack frame 200 in the transmission device 100 according to the first embodiment of this invention.
  • the MAC unit 160 issues a transmission start request (PHY_TXSTART.req) for transmitting the Ack frame 200 to the PLCP unit 150.
  • This transmission start request (PHY_TXSTART.req) includes information for determining whether the frame to be transmitted is the Ack frame 200 or not. For example, a predefined numerical value may be set in the LENGTH information included in the transmission start request, and an Ack transmission request (PMD_Ack.req) for frame determination is newly provided in the transmission start request. Also good.
  • the PLCP unit 150 issues a transmission level request (PMD_TXPWRVLVL.req) and a transmission start request (PMD_TXSTART.req) to the PMD unit 140 based on the transmission start request (PHY_TXSTART.req) from the MAC unit 160.
  • the PMD unit 140 performs transmission level setting of the Ack frame 200 and other predetermined processing necessary for transmission.
  • the PLCP unit 150 generates a training symbol, and when the generation of the training symbol is completed, issues a transmission end confirmation (PHY_TXEND.conf) to the MAC unit 160.
  • FIG. 8 is a flowchart illustrating a procedure example of transmission processing of the Ack frame 200 in the transmission device 100 according to the first embodiment of this invention.
  • the MAC unit 160 issues a transmission start request (PHY_TXSTART.req) (step S911).
  • the PLCP unit 150 determines whether the frame to be transmitted is the Ack frame 200 based on the transmission start request (PHY_TXSTART.req) (step S912). If it is determined that the frame to be transmitted is a Data frame other than the Ack frame 200, a normal Data frame transmission process is executed (step S917).
  • the PLCP unit 150 issues a transmission level request (PMD_TXPWLVL.req) and a transmission start request (PMD_TXSTART.req) (step S913).
  • a training symbol is generated by the PLCP unit 150 (step S914).
  • a transmission end confirmation (PHY_TXEND.conf) is issued to the MAC unit 160 (step S915).
  • the communication state in the MAC part 160 changes to a reception state (step S916).
  • the transmission completion confirmation (PHY_TXEND.conf) is issued, whereby the Ack frame 200 configured only by the PLCP preamble is generated.
  • FIG. 9 is a diagram illustrating an example of a reception procedure of the Ack frame 200 in the reception device 300 according to the first embodiment of this invention.
  • PMD_RSSI.ind packet signal reception start notification
  • PMD_RSSI.ind Carrier Lost
  • the PLCL unit 350 detects that the received packet signal is the Ack frame 200 based on the packet signal reception end notification and the timing generation notification issued by the PMD unit 340. Thereby, the PLCP unit 350 issues the Ack detection result (PHY_RXEND.req (Ack Find)) to the MAC unit 360. Then, the MAC unit 360 transitions from the waiting state for the Ack frame 200 to the receiving state.
  • the Ack frame 200 can be detected by the PLCP unit 350 instead of the Ack frame being detected by the MAC unit 360, the power consumption of the receiving apparatus 300 can be reduced.
  • FIG. 10 is a flowchart illustrating a procedure example of reception processing of the Ack frame 200 by the reception device 300 according to the first embodiment of the present invention.
  • a packet signal reception end notification (PMD_RSSI.ind (Carrier Lost)) is issued to the PLCP unit 350 (step S923).
  • the PMD unit 340 detects the PLCP preamble, thereby issuing a timing generation notification (PMD_DATA.ind (preamble detect)) to the PLCP unit 350 (step S925).
  • the PLCL unit 350 detects the Ack frame 200 based on the packet signal reception end notification and the timing generation notification. Then, when the Ack frame 200 is detected, an Ack detection result (PHY_RXEND.req (Ack Find)) is issued (step S926).
  • FIG. 11 is a block diagram illustrating a functional configuration example of the PMD unit 340 and the PLCP unit 350 in the reception device 300 according to the first embodiment of this invention.
  • the configuration other than the PMD unit 340 and the PLCP unit 350 is the same as that shown in FIG. 1, the same reference numerals as those in FIG.
  • PMD unit 340 includes a timing generation unit 341 and a signal strength determination unit 342.
  • the PLCP unit 350 includes a decoding unit 351 and an Ack frame detection unit 352.
  • the timing generator 341 detects the PLCP preamble included in the frame from the RF unit 320, thereby generating the end timing of the preamble.
  • the timing generation unit 341 supplies the end timing of the generated preamble to the Ack frame detection unit 352.
  • the timing generation unit 341 adjusts signal amplification and carrier frequency error with respect to the received frame, for example, by detecting a PLCP preamble. Then, the timing generation unit 341 supplies the frame subjected to the signal amplification and the carrier frequency error adjustment to the decoding unit 351.
  • the timing generation unit 341 is an example of a timing generation unit described in the claims.
  • the signal strength determination unit 342 determines the start and end of the packet signal based on the signal strength of the packet signal from the RF unit 320.
  • the signal strength determination unit 342 determines the end of the packet signal based on, for example, the signal strength and a certain threshold value.
  • the signal strength determination unit 342 notifies the Ack frame detection unit 352 of the results determined as the start and end of the packet signal.
  • the signal strength determination unit 342 is an example of the signal strength determination unit described in the claims.
  • the decoding unit 351 decodes the frame supplied from the timing generation unit 341.
  • the decoding unit 351 supplies the decoded frame to the MAC unit 360 as received data.
  • the MAC unit 360 detects that the decoded data is a conventional Ack frame indicating an acknowledgment.
  • the decoding unit 351 and the MAC unit 360 are an example of the decoding unit and the confirmation response data detection unit described in the claims.
  • the Ack frame detection unit 352 detects the Ack frame 200 based on the termination timing of the PLCP preamble generated by the timing generation unit 341 and the result determined by the signal strength determination unit 342 as the termination of the packet signal. It is. When the Ack frame 200 is detected, the Ack frame detection unit 352 notifies the MAC unit 360 of the detection result.
  • the Ack frame detection unit 352 is an example of the confirmation response frame detection unit described in the claims.
  • FIG. 12 is a block diagram illustrating a functional configuration example of the Ack frame detection unit 352 according to the first embodiment of this invention.
  • the Ack frame detection unit 352 includes a counter 353, a signal end count value register 354, a preamble end count value register 355, a subtractor 356, comparators 357 and 358, an AND circuit 359, a threshold holding unit 371, and 372.
  • the counter 353 starts counting based on a counter activation request from the timing generation unit 341 supplied by the signal line 343.
  • the counter 353 supplies the started count value to the signal end count value register 354 and the preamble end count value register 355.
  • the counter 353 stops counting based on a counter stop request from the timing generation unit 341 supplied by the signal line 343.
  • the signal end count value register 354 holds the count value of the counter 353 based on the notification when it is determined from the signal strength determination unit 342 supplied from the signal line 345 that the packet signal ends.
  • the signal end count value register 354 supplies the held count value to the subtracter 356.
  • the preamble end count value register 355 holds the count value of the counter 353 based on the timing supplied from the timing generation unit 341 via the signal line 344.
  • the preamble end count value register 355 supplies the held count value to the subtracter 356.
  • the subtracter 356 subtracts both count values held in the signal end count value register 354 and in the preamble end count value register 355. That is, the count value difference is calculated by subtracting the count value held in the signal end count value register 354 from the count value held in the preamble end count value register 355.
  • the subtracter 356 supplies the difference between the count values to the comparators 357 and 358.
  • the threshold value holding units 371 and 372 hold a threshold value set in advance for detecting the Ack frame 200.
  • the threshold value B is larger than the threshold value A.
  • the threshold holding unit 371 supplies the held threshold A to the comparator 357.
  • the threshold holding unit 372 supplies the held threshold B to the comparator 358.
  • the comparator 357 compares the threshold value A held in the threshold value holding unit 371 with the difference between the count values supplied from the subtracter 356.
  • the comparator 357 supplies “1” to the AND circuit 359 when the difference between the count values from the subtractor 356 is equal to or greater than the threshold A, and “0” when it is smaller than the threshold A.
  • the comparator 358 compares the threshold value B held in the threshold value holding unit 372 with the difference between the count values supplied from the subtractor 356.
  • the comparator 358 supplies “0” to the logical product circuit 359 when the difference between the count values from the subtracter 356 is larger than the threshold B, and “1” when the difference is smaller than the threshold B.
  • the AND circuit 359 performs an AND operation based on the signals supplied from the comparators 357 and 358.
  • the AND circuit 359 supplies “1” to the MAC unit 360 only when the signal from the comparator 357 is “1” and the signal from the comparator 358 is “1”. That is, the AND circuit 359 indicates “1” indicating that the Ack frame 200 is present when the difference between the count values is equal to or greater than the threshold A and equal to or less than the threshold B, and otherwise. “0” indicating that the frame is not an Ack frame is supplied to the MAC unit 360.
  • the Ack frame 200 is detected based on the termination timing of the PLCP preamble supplied by the timing generation unit 341 and the result determined by the signal strength determination unit 342 as the termination of the packet signal. Further, by reducing the difference between the threshold A and the threshold B, the Ack frame 200 can be accurately detected. Next, the detection method of the Ack frame 200 by the Ack frame detection unit 352 will be described in detail with reference to the following diagram.
  • FIG. 13 is a conceptual diagram illustrating an example of the detection method of the Ack frame 200 by the Ack frame detection unit 352 according to the first embodiment of this invention.
  • the PLCP preamble received by the antenna 310 and the PLCP preamble supplied to the timing generator 341 are shown with the horizontal axis as the time axis.
  • the timing at which the count value of the counter 353 included in the Ack frame detection unit 352 is held and the signal strength in the signal strength determination unit 342 are shown.
  • the PLCP preamble in the timing generation unit 341 is transmitted later than the PLCP preamble in the antenna 310 due to a system delay due to passage of a filter or the like.
  • the signal strength of the packet signal in the antenna 310 is supplied to the signal strength determination unit 342 without delay for easy understanding.
  • the timing generation unit 341 notifies the activation request to the counter 353 in the Ack frame detection unit 352. For example, the timing generation unit 341 notifies the activation request at the timing of the termination of the short training symbol of t7 among the short training symbols of t1 to t10 in the PLCP preamble. As a result, the counter 353 starts counting. Thereafter, the signal strength determination unit 342 determines the end of the Ack frame 200 when the signal strength is equal to or lower than the threshold (reception end determination). Then, the signal strength determination unit 342 notifies the signal termination count value register 354 in the Ack frame detection unit 352 of the determined result. Based on the notification, the signal end count value register 354 holds the count value of the counter 353.
  • the timing generator 341 detects the PLCP preamble, thereby generating the end timing of the PLCP preamble. Then, the timing generation unit 341 notifies the generated timing to the preamble end count value register 355 in the Ack frame detection unit 352. Based on the notification of the timing generation, the preamble end count value register 355 holds the count value of the counter 353. At the same time, the timing generation unit 341 notifies a stop request for stopping the counter 353. Then, the counter 353 stops counting.
  • the Ack frame detection unit 352 generates an Ack based on the count value held by the notification of the determination result from the signal strength determination unit 342 and the count value held at the timing generated by the timing generation unit 341.
  • the frame 200 is detected. That is, the Ack frame detection unit 352 detects the Ack frame 200 by determining whether or not the reception end determination from the signal strength determination unit 342 is notified within the Ack frame estimation period.
  • the Ack frame estimation period is determined based on the timing generated by the timing generation unit 341 in consideration of the system delay, the determination error by the signal strength determination unit 342, the detection error by the timing generation unit 341, and the like. That is, the Ack frame estimation period is set by the threshold A and the threshold B with the end of the PLCP preamble generated by the timing generation unit 341 as a reference.
  • the Ack frame detection unit 352 calculates the difference between the count value held by the notification of the determination result from the signal strength determination unit 342 and the count value held at the timing generated by the timing generation unit 341. To do.
  • the Ack frame detection unit 352 detects that the packet signal received by the antenna 310 is the Ack frame 200 because the difference between the count values is greater than or equal to the threshold A and less than or equal to the threshold B.
  • the Ack frame detection unit 352 estimates the period during which the result of the reception end determination by the signal strength determination unit 342 is notified based on the termination timing of the PLCP preamble. Then, the Ack frame detection unit 352 can detect that the packet signal is the Ack frame 200 based on the estimated period and the result determined by the signal strength determination unit 342. That is, the Ack frame detection unit 352 can detect that the received packet signal is the Ack frame 200 based on the difference between the count values, the threshold value A, and the threshold value B.
  • FIG. 14 is a diagram illustrating an example of a packet signal termination determination method performed by the signal strength determination unit 342 according to the first embodiment of this invention.
  • 14A to 14C show changes in signal strength from the RF unit 320 when an Ack frame 200 composed only of a PLCP preamble is received with the horizontal axis as a time axis. .
  • the signal strength determination unit 342 determines the end of the packet signal based on the signal strength from the RF unit 320 with reference to an absolute level threshold that is a predetermined absolute value threshold. .
  • the signal strength determination unit 342 determines the end of the packet signal based on the change amount of the signal strength from the RF unit 320 with reference to a predetermined threshold value for the change amount.
  • the signal strength determination unit 342 uses a pre-reception threshold that is a threshold calculated by adding a predetermined value to the signal strength before receiving the packet signal, as a reference. Based on the signal strength from the RF unit 320, the end of the packet signal is determined.
  • the signal strength determination unit 342 may determine the end of the packet signal by combining at least two of the three determination methods (a) to (c) in FIG. 14 described above. .
  • the signal strength determination unit 342 may determine the end of the packet signal when both of the determination criteria in FIGS. 14A and 14B are satisfied.
  • FIG. 15 is a flowchart illustrating a procedure example of the confirmation response process of the reception device 300 according to the first embodiment of the present invention.
  • the MAC unit 360 issues a transmission start request for transmitting a Data frame (step S931).
  • a data frame is generated by the PHY unit 330 and transmitted to the transmission device 100 via the antenna 310 (step S932).
  • an Ack waiting timer for measuring the waiting time of the Ack frame 200 is started (step S933).
  • the signal strength determination unit 342 determines whether or not a packet signal has been received via the antenna 110 and the RF unit 120 (step S934). That is, the signal strength determination unit 342 determines whether the signal strength from the RF unit 320 has exceeded a threshold value.
  • step S934 is an example of a reception procedure and a signal strength determination procedure described in the claims.
  • step S942 it is determined whether or not the Ack waiting timer has elapsed for a predetermined time until the packet signal is received (step S942). If the predetermined time has not elapsed, the process returns to step S934. If the predetermined time has elapsed, the process returns to step S931 to perform retransmission processing.
  • step S935 is an example of a timing generation procedure described in the claims.
  • step S936 it is determined whether or not the signal strength determination unit 342 determines the end of the packet signal. That is, the signal strength determination unit 342 determines whether the end of the packet signal has been determined based on the signal strength. Note that step S936 is an example of a signal strength determination procedure described in the claims. If the end of the packet signal is not detected, the packet signal is a Data frame, and therefore, reception processing of the Data frame is performed (step S943).
  • step S937 when the end of the packet signal is detected, the Ack frame 200 is detected. That is, whether or not the frame is the Ack frame 200 is detected based on the timing determined by the signal strength determination unit 342 as the end of the packet signal and the timing of the end of the PLCP preamble generated by the timing generation unit. Note that step S937 is an example of the confirmation response frame detection procedure described in the claims.
  • step S938 it is determined whether or not the packet signal is an Ack frame 200 (step S938). If the packet signal is not the Ack frame 200, an erroneous synchronization process is performed (step S941), and the process returns to step S934. On the other hand, when the packet signal is the Ack frame 200, the MAC unit 360 is notified that the Ack frame 200 has been detected. Thereby, the MAC unit 360 recognizes that the data is correctly received in the transmission device 100 (step S939).
  • the Ack frame 200 by using the Ack frame 200, it is possible to avoid collision between the Ack frame and other frames due to the hidden terminal problem shown in FIG. Further, by using the Ack frame 200 having a short frame length, the throughput in the wireless communication system can be improved.
  • the example of the wireless communication system using the Ack frame 200 has been described.
  • the Ack frame 200 and the conventional Ack frame 601 may be mixed and used.
  • FIG. 16 is a diagram illustrating an example of a communication procedure when the Ack frame 200 and the conventional Ack frame 601 according to the second embodiment of the present invention are used in combination.
  • the Ack frame 200 according to the first embodiment of the present invention is used in communication between the radio base station (AP) 410 and the radio terminal (STA) 420.
  • a conventional Ack frame 601 is used for communication between the wireless terminal (STA) 430 and the wireless terminal (STA) 420.
  • frames transmitted from the radio base station (AP) 410, the radio terminal (STA) 420, and the radio terminal (STA) 430 are shown with the horizontal axis as the time axis.
  • a data frame 602 is transmitted from the wireless base station (AP) 410, and the wireless terminal (STA) 420 that has received the data frame 602 returns an Ack frame 200 after waiting for SIFS.
  • the wireless terminal (STA) 430 transmits the Data frame 602 to the wireless terminal (STA) 420 after DIFS and BackOff time have elapsed since the end of transmission of the Ack frame 200.
  • the wireless terminal (STA) 420 that has received the Data frame 602 from the wireless terminal (STA) 430 returns a conventional Ack frame 601 to the wireless terminal (STA) 430.
  • the radio base station (AP) 410 transmits the Data frame 602 to the radio terminal (STA) 420 after the DIFS and BackOff time has elapsed since the end of transmission of the conventional Ack frame 601. Then, the wireless terminal (STA) 420 that has received the Data frame 602 from the wireless base station (AP) 410 returns the Ack frame 200 to the wireless base station (AP) 410.
  • the Ack frame 200 and the conventional Ack frame are used. 601 can be used in combination.
  • the present invention is not limited to this.
  • a PLCP preamble according to a standard such as IEEE 802.11b / 11g may be applied.
  • the embodiment of the present invention is an example for embodying the present invention, and has a corresponding relationship with the invention specifying items in the claims as described above.
  • the present invention is not limited to the embodiments, and various modifications can be made without departing from the scope of the present invention.
  • the processing procedure described in the embodiment of the present invention may be regarded as a method having a series of these procedures, and a program for causing a computer to execute the series of procedures or a recording medium storing the program May be taken as
  • this recording medium for example, a CD (Compact Disc), an MD (Mini Disc), a DVD (Digital Versatile Disk), a memory card, a Blu-ray Disc (registered trademark), or the like can be used.
  • DESCRIPTION OF SYMBOLS 100 Transmitting device 110, 310 Antenna 120, 320 RF unit 130, 330 PHY unit 140, 340 PMD unit 150, 350 PLCP unit 160, 360 MAC unit 300
  • Decoding unit 352 Ack frame Detection unit 353
  • Counter 354 Signal end count value register 355
  • Preamble end count value register 356 Subtractor 357, 358 Comparator 359 AND circuit 371, 372 Threshold holding unit

Abstract

本発明は、Ackフレームの衝突を軽減することができる送信装置、受信装置、通信システム、および、受信装置における処理方法に関する。 送信装置100は、PLCPプリアンブルのみによって構成されるAckフレーム200を送信する。受信装置300において、RF部320は、アンテナ310により受信されたAckフレーム200をPMD部340に供給する。PMD部340は、RF部320から供給されるAckフレーム200の信号強度に基づいてAckフレーム200の終端を判定する。さらに、PMD部340は、Ackフレーム200のPLCPプリアンブルに基づいて、そのPLCPプリアンブルの終端のタイミングを生成する。PLCP部350は、信号強度によってAckフレーム200の終端と判定された結果と、Ackフレーム200のPLCPプリアンブルによって生成されたPLCPプリアンブルの終端のタイミングとに基づいてAckフレーム200であることを検出する。

Description

送信装置、受信装置、通信システム、および、受信装置における処理方法
本発明は、送信装置、受信装置および通信システムに関し、特に確認応答フレームにより送達確認を行うための送信装置、受信装置、通信システム、および、受信装置における処理方法に関する。
高周波信号を介して端末間のデータ通信を行う無線通信システムが広く利用されている。このような無線通信システムにおいては、送信端末から送信されたフレームが他のフレームと衝突する場合やフレームの信号強度が低い場合などに、送信元からのフレームが送信先に届かないことがある。そのため、無線通信システムにおける送信端末では、一般的に、送信先からの確認応答(Acknowledgment:Ack)フレームを受信することによって、送信したデータが正しく送信先に到達したことを確認する確認応答手法が用いられている。
 このような確認応答手法では、送信先からのAckフレームが所定時間経過しても受信できないときには、送信元は、送信したデータと同じデータを再び送信する再送処理を行う。このような再送処理を所定回数行った場合であっても、Ackフレームが受信できないときには、フレームの変調方式をより干渉に強い変調方式に変更して、さらに再送処理を繰り返し行う。
 この干渉に強い変調方式への変更は、フレーム長を長くすることになるため、トラヒックが輻輳するようなネットワークにおいては、フレーム間の衝突確率が高くなり、トラヒックをさらに増大させるおそれがある。このような変調方式の変更によるトラヒックの増大を抑制するため、Ackフレームを受信できない原因が衝突によるものか否かを判定する手法が考えられている。例えば、Ackメッセージの受信が期待される期間において受信信号のエネルギレベルを検出する装置が提案されている(例えば、特許文献1参照。)。
特開2005-110245号公報(図4)
 上述の従来技術では、Ackメッセージの受信が期待される期間内にAckメッセージを受信できず、かつ、受信信号のエネルギレベルが増加する場合には、Ackメッセージの受信できない原因を衝突によるものとみなしている。これにより、変調方式の変更の要否を制御することができるため、フレーム長が長くなることに起因するトラヒックの増大をある程度抑制することができる。しかしながら、Ackフレームの衝突自体を軽減することはできないため、再送処理によるトラヒックの増大は生じてしまう。
 本発明はこのような状況に鑑みてなされたものであり、Ackフレームの衝突を軽減することを目的とする。
 本発明は、上記課題を解決するためになされたものであり、その第1の側面は、高周波信号のキャリア周波数誤差を調整するためのプリアンブルのみを受信確認のための確認応答フレームとして生成するプリアンブル生成部と、上記プリアンブル生成部により生成された上記確認応答フレームを上記高周波信号として送信するための送信部とを具備する送信装置である。これにより、プリアンブルのみによって構成された確認応答フレームを送信させるという作用をもたらす。
 また、本発明の第2の側面は、プリアンブルを含むパケット信号を受信するための受信部と、上記受信部により受信された信号の強度に基づいて上記パケット信号の終端を判定するための信号強度判定部と、上記プリアンブルを検出することによって当該プリアンブルの終端のタイミングを生成するタイミング生成部と、上記信号強度判定部により上記パケット信号の終端と判定された結果と上記タイミング生成部により生成された上記プリアンブルの終端のタイミングとに基づいて上記パケット信号が上記プリアンブルのみによって構成された確認応答フレームであることを検出する確認応答フレーム検出部とを具備する受信装置およびその処理方法である。これにより、プリアンブルのみによって構成された確認応答フレームを検出させるという作用をもたらす。
 また、この第2の側面において、上記確認応答フレーム検出部は、上記信号強度判定部により上記確認応答フレームの終端と判定される期間を上記プリアンブルの終端のタイミングに基づいて推定して上記推定された期間および上記パケット信号の終端と判定された結果とに基づいて上記パケット信号が上記確認応答フレームであることを検出するようにしてもよい。これにより、タイミング生成部により生成されたプリアンブルの終端のタイミングに基づいて信号強度判定部により確認応答フレームの終端と判定される期間を推定し、その推定された期間と、信号強度判定部により判定された結果とに基づいて確認応答フレームを検出させるという作用をもたらす。
 また、この第2の側面において、上記受信部により受信された上記パケット信号を復号する復号部と、上記復号部により復号されたデータが確認応答を示すデータであることを検出するための確認応答データ検出部とをさらに具備するようにしてもよい。これにより、受信されたパケット信号を復号し、その復号されたデータが確認応答フレームを示すデータであることを検出させるという作用をもたらす。
 また、この第2の側面において、上記信号強度判定部は、上記受信部により受信された信号の強度と所定の閾値とに基づいて上記パケット信号の終端を判定するようにしてもよい。これにより、受信部により受信された信号の強度と一定の閾値とに基づいて、パケット信号の終端を判定させるという作用をもたらす。この場合において、上記信号強度判定部は、上記受信部により受信された信号の強度の変動量に基づいて上記パケット信号の終端を判定するようにしてもよい。これにより、信号強度の変動量に基づいて、パケット信号の終端を判定させるという作用をもたらす。
 また、上記受信部により受信された信号の強度と所定の閾値とに基づいて上記パケット信号の終端を判定する場合において、上記信号強度判定部は、上記受信部により上記パケット信号が受信される前の信号の強度に基づいて上記閾値を設定するようにしてもよい。これにより、受信前の信号強度を基準に閾値を設定させるという作用をもたらす。
 また、本発明の第3の側面は、プリアンブルのみによって構成される確認応答フレームを送信する送信装置と、上記送信装置により送信された上記確認応答フレームをパケット信号として受信するための受信部と、上記受信部により受信された信号の強度に基づいて上記パケット信号の終端を判定するための信号強度判定部と、上記プリアンブルを検出することによって当該プリアンブルの終端のタイミングを生成するタイミング生成部と、上記信号強度判定部により上記パケット信号の終端と判定された結果と上記タイミング生成部により生成された上記プリアンブルの終端のタイミングとに基づいて上記パケット信号が上記確認応答フレームであることを検出する確認応答フレーム検出部とを備える受信装置とを具備する通信システムである。これにより、送信装置によりプリアンブルのみによって構成される確認応答フレームを送信し、受信装置によりその受信されたパケット信号が確認応答フレームであることを検出させるという作用をもたらす。
 本発明によれば、Ackフレームの衝突を軽減することができるという優れた効果を奏し得る。
本発明の第1の実施の形態における無線通信システムの一構成例を示すブロック図である。 Dataフレームの一構成を示す図である。 本発明の第1の実施の形態におけるAckフレーム200の一構成例を示す図である。 従来の無線通信システムにおける隠れ端末問題の一例を示す概念図である。 図4に示した無線通信システムにおけるフレームの送信タイミングを示す概念図である。 図4に示した無線通信システムにおける通信回線の利用効率を示す概念図である。 本発明の第1の実施の形態の送信装置100におけるAckフレーム200の送信手続きの一例を示す図である。 本発明の第1の実施の形態の送信装置100におけるAckフレーム200の送信処理の手順例を示すフローチャートである。 本発明の第1の実施の形態の受信装置300におけるAckフレーム200の受信手続きの一例を示す図である。 本発明の第1の実施の形態における受信装置300によるAckフレーム200の受信処理の手順例を示すフローチャートである。 本発明の第1の実施の形態の受信装置300におけるPMD部340およびPLCP部350の一機能構成例を示すブロック図である。 本発明の第1の実施の形態におけるAckフレーム検出部352の一機能構成例を示すブロック図である。 本発明の第1の実施の形態におけるAckフレーム検出部352によるAckフレーム200の検出手法の一例を示す観念図である。 本発明の第1の実施の形態の信号強度判定部342によるパケット信号の終端の判定手法の例を示す図である。 本発明の第1の実施の形態における受信装置300の確認応答処理の手順例を示すフローチャートである。 、本発明の第2の実施の形態におけるAckフレーム200と従来のAckフレーム601とを併用する場合における通信手順の一例を示す図である。
 以下、本発明を実施するための最良の形態(以下、実施の形態と称する)について説明する。説明は以下の順序により行う。
 1.第1の実施の形態(無線通信システム:Ackフレームを送受信する例)
 2.第2の実施の形態(無線通信システム:従来のAckフレームと併用する例)
 <1.第1の実施の形態>
 [無線通信システムの構成例]
 図1は、本発明の第1の実施の形態における無線通信システムの一構成例を示すブロック図である。この無線通信システムは、受信装置300からのデータを受け取って、そのデータに対する確認応答としてAckフレーム200を送信する送信装置100と、その送信されたAckフレーム200を受信する受信装置300とを備える。この送信装置100および受信装置300は、無線通信装置としては同等の機能構成を備えるものであるが、ここでは、Ackフレーム200の送受信に着目して、装置の名称を付している。
 送信装置100は、アンテナ110と、RF(Radio Frequency)部120と、PHY(Physical Layer)部130と、MAC(Medium Access Control)部160とを備える。なお、送信装置100は、特許請求の範囲に記載の送信装置の一例である。
 MAC部160は、Ackフレーム200またはAckフレーム200以外のDataフレームを送信するためにPHY部130を制御するものである。このMAC部160は、例えば、受信装置300からのデータが正常に受信された場合には、そのデータに対する確認応答として、Ackフレーム200を送信するための送信開始要求をPHY部130に通知する。
 PHY部130は、MAC部160からの送信開始要求に従って、Ackフレーム200を生成するものである。このPHY部130は、PLCP(Physical Layer Convergence Protocol)部150およびPMD(Physical Medium Dependent)部140を備える。なお、PHY部130は、特許請求の範囲に記載のプリアンブル生成部の一例である。
 PLCP部150は、MAC部160からの送信開始要求に基づいて、送信すべきフレームがAckフレーム200か否かを判断する。そして、その送信すべきフレームがAckフレーム200と判断された場合には、PLCP部150は、高周波信号のキャリア周波数誤差を調整するためのPLCPプリアンブルを生成する。そして、PLCP部150は、そのPLCPプリアンブルのみによって構成されたフレームをAckフレーム200として、PMD部140を介してRF部120に供給する。さらに、PLCP部150は、MAC部160からの送信開始要求に従って、Ackフレーム200の送信レベル要求と、送信開始要求とをPMD部140に通知する。
 また、PLCP部150は、Ackフレーム200の生成が終了すると、送信の終了をMAC部160に通知する。なお、PLCP部150は、送信すべきフレームがAckフレーム200でないと判断された場合には、MAC部160から供給されたデータおよびPLCPプリアンブルに基づいてDataフレームを生成する。
 PMD部140は、PLCP部150からの通知に基づいて、Ackフレーム200の送信レベルの設定などを行うものである。例えば、PMD部140は、その設定された送信レベルによりAckフレーム200を増幅する。また、PMD部140は、その増幅されたAckフレーム200をRF部120に供給する。
 RF部120は、PMD部140から供給されたAckフレーム200を高周波信号に変換してアンテナ110に供給する。アンテナ110は、RF部120により周波数変換された高周波信号をパケット信号として受信装置300に送信するために用いられる。例えば、アンテナ110は、2.4GHz帯または5.2GHz帯の高周波信号を送信するものとしてもよい。なお、アンテナ110およびRF部120は、特許請求の範囲に記載の送信部の一例である。
 受信装置300は、アンテナ310と、RF部320と、PHY部330と、MAC部360とを備える。なお、受信装置300は、特許請求の範囲に記載の受信装置の一例である。
 アンテナ310は、送信された高周波信号であるパケット信号を受信するものである。例えば、アンテナ310は、2.4GHz帯または5.2GHz帯のパケット信号を受信するものとしてもよい。
 RF部320は、アンテナ310により受信されたパケット信号を周波数変換するものである。このRF部320は、その周波数変換されたパケット信号をフレームとしてPHY部330に供給する。さらに、RF部320は、アンテナ310により受信されたパケット信号の信号強度をPHY部330に供給する。なお、アンテナ310およびRF部320は、特許請求の範囲に記載の受信部の一例である。
 PHY部330は、RF部320から供給されるフレームのうち、Ackフレーム200を検出するためのものである。このPHY部330は、PMD部340およびPLCP部350を備える。PMD部340は、RF部320から供給された信号強度に基づいて、パケット信号の受信開始およびパケット信号の受信終了を判定する。すなわち、PMD部340は、RF部320からの信号強度に基づいて、パケット信号の始端および終端を判定する。また、PMD部340は、パケット信号に含まれるPLCPプリアンブルを検出することによって、そのPLCPプリアンブルの終端のタイミングを生成する。また、このPMD部340は、パケット信号の始端および終端の判定結果と、プリアンブルの終端のタイミングとをPLCP部350に通知する。
 PLCP部350は、PMD部340から通知されたパケット信号の終端の判定結果と、プリアンブルの終端のタイミングとに基づいて、受信されたパケット信号がAckフレーム200であることを検出するものである。このPLCP部350は、Ackフレーム200が検出された旨をMAC部360に通知する。
 また、PLCP部350は、PMD部340からのパケット信号の始端および終端の判定結果をMAC部360に通知する。また、PLCP部350は、Ackフレーム200以外のDataフレームを復号して、その復号されたDataフレームを受信データとしてMAC部360に供給する。
 MAC部360は、PLCP部350からの通知に基づいて、受信データの処理を行うものである。このMAC部360は、Ackフレーム200が検出された旨の通知を受け取った場合には、例えば、送信装置100に送信したデータが正常に受信されたと判断して、次のデータの送信処理を行う。また、MAC部360は、PLCP部350から供給された受信データに含まれるアドレス情報や識別情報などに基づいて、その受信データの処理を行う。
 次に、PHY部130により生成されるDataフレームおよびAckフレーム200のフレーム構成について、図面を参照して説明する。
 [無線通信システムのDataフレーム構成例]
 図2は、Dataフレームの一構成を示す図である。ここでは、一例として、IEEE802.11a規格におけるフレーム構成を示す。IEEE802.11a規格は、IEEE(米国電気電子学会)の802標準化委員会のワーキンググループによる規格である。
 このIEEE802.11a規格によるフレームは、PLCPプリアンブル610と、シグナル620と、データ630とから構成される。PLCPプリアンブル610は、無線パケット信号の受信同期処理のための既定の固定パターン信号である。シグナル620は、データ630の伝送速度とデータ長を含むOFDMシンボルである。データ630は、情報データの本体を含むフィールドである。
 論理フィールドに着目すると、シグナル620は、4ビットの伝送速度641と、1ビットの予約ビット642と、12ビットのデータ長643と、1ビットのパリティ644と、これらの畳み込み符号化を終端する6ビットのテール645とから成る。伝送速度641およびデータ長643は何れもデータ630に関するものである。シグナル620自身は、最も信頼性の高い6Mbpsの伝送速度、すなわち符号化率=1/2のBPSK(Binary Phase Shift Keying)変調により伝送される。
 データ630は、16ビットのサービス646と、可変長のデータPSDU(PLCP Service Data Unit)650とから成る。さらに、データ630は、これらの畳み込み符号化を終端する6ビットのテール658と、OFDMシンボルの余ったビットを充填するパディングビット659とから成る。データPSDU650には、MACフレームにおけるフレーム制御フィールド、アドレスフィールドやフレームボディフィールドなどに関する情報が格納される。なお、サービス646は、スクランブラの初期状態を与えるための7ビットの「0」と、9ビットの予約ビットとから成る。また、シグナル620の各フィールドとサービス646は、PLCPヘッダ640を構成する。
 フレーム内の物理信号に着目すると、PLCPプリアンブル610は、10個のショートトレーニングシンボル611を含むショートプリアンブルと、2個のロングトレーニングシンボル613および614を含むロングプリアンブルとから成る。ショートプリアンブルは、12波のサブキャリアによる周期0.8μsの既定の固定パターン信号であり、t1乃至t10の10個で計8.0μsの信号になる。このショートプリアンブルは、PMD部340におけるパケット信号の検出、信号増幅、キャリア周波数誤差の粗調整やシンボルタイミング検出などに用いられる。
 一方、ロングプリアンブルは、52波のサブキャリアによる2シンボルの繰り返し信号であり、1.6μsのガードインターバル612に続く2個の3.2μsのロングトレーニングシンボル613および614で計8.0μsの信号になる。このロングプリアンブルは、PMD部340におけるキャリア周波数誤差の微調整やチャネル推定、すなわちサブキャリア毎の基準振幅および基準位相の検出などに用いられる。
 シグナル620では、3.2μsのシグナル622本体の前に0.8μsのガードインターバル621が付加され、計4μsの信号になる。また、データ630についても、3.2μsのデータ632本体の前に0.8μsのガードインターバル631が付加された計4μsの信号がデータ長643に応じて繰り返されるようになっている。
 なお、IEEE802.11a規格によるAckフレームは、Dataフレームと同様の構成であり、確認応答に関する情報がデータPSDU650に格納される。ここでは、IEEE802.11a規格によるAckフレームを従来のAckフレームと呼ぶ。
 [無線通信システムのAckフレームの構成例]
 図3は、本発明の第1の実施の形態におけるAckフレーム200の一構成例を示す図である。ここでは、図2に示したPLCPプリアンブル610のみによって構成されるAckフレーム200が示されている。
 Ackフレーム200は、図2に示したPLCPプリアンブル610のみによって構成されるAckフレームである。このAckフレーム200は、図2で述べたとおり、8.0μsのショートプリアンブルと、8.0μsのロングプリアンブルとで計16.0μsの信号になる。ここでは、ショートトレーニングシンボル211と、ガードインターバル212と、ロングトレーニングシンボル213および214とは、図1に示したものと同様であるため、ここでの説明を省略する。
 このように、Ackフレーム200は、従来のAckフレームに比べて、フレーム長が短いことから、次図に示す隠れ端末問題によるAckフレーム200と他のフレームとの衝突を回避することができる。
 [隠れ端末問題の一例]
 図4は、従来の無線通信システムにおける隠れ端末問題の一例を示す概念図である。図4には、無線基地局(AP)410と、無線端末(STA)420乃至440と、通信領域411乃至431とが示されている。
 無線基地局(AP)410は、通信領域411内に位置する無線端末(STA)420乃至440と通信を行うものである。無線端末(STA)420は、通信領域421内に位置する無線基地局(AP)410と通信を行うものである。無線端末(STA)430は、通信領域431に位置する無線基地局(AP)410と通信を行うものである。
 この構成において、無線端末(STA)420は、無線基地局(AP)410との間の通信において、無線基地局(AP)410からのDataフレームを正常に受信すると、無線基地局(AP)410に対して点線により示すAckフレームを返信する。
 このとき、無線端末(STA)430は、通信領域421の外に位置することから、無線端末(STA)420により返信されたAckフレームを検出できない。そのため、無線端末(STA)430は、無線基地局(AP)410に対して一点破線により示すDataフレームを送信してしまう場合がある。また、ここでは図示していないが、無線端末(STA)430は、無線端末(STA)440に対してDataフレームを送信してしまう場合も想定される。
 このように、通信領域外のフレームを検出することができないため、無線端末(STA)420からのAckフレームと、無線端末(STA)430からのDataフレームとが衝突してしまうような問題を隠れ端末問題という。ここで、このような隠れ端末問題において、本発明の第1の実施の形態におけるAckフレーム200を用いた場合における通信手順の一例について図面を参照して説明する。
 [従来のAckフレームとの比較]
 図5は、図4に示した無線通信システムにおけるフレームの送信タイミングを示す概念図である。ここでは、IEEE802.11a規格によるパラメータに基づいて送信が行われることを想定している。図5の(a)および(b)には、横軸を時間軸して、無線基地局(AP)410、無線端末(STA)420および無線端末(STA)430から送信されるフレームが上から順にそれぞれ示されている。
 図5の(a)は、従来のAckフレーム601が無線端末(STA)420から無線基地局(AP)410に返信された場合の図である。まず、無線基地局(AP)410では、Dataフレーム602を無線端末(STA)420に送信する。そして、無線端末(STA)420では、無線基地局(AP)410からのDataフレーム601を正常に受信したことにより、SIFS(短フレーム間隔)待機した後にAckフレーム601を返信する。このとき、無線端末(STA)430は、無線端末(STA)420から返信されたAckフレーム601を検出できない。そのため、無線端末(STA)430は、無線基地局(AP)410によるDataフレーム601の送信終了からDIFS(分散制御用フレーム間隔)に加えてバックオフ(BackOff)時間待機した後にDataフレーム602を送信する。
 なお、ここにいうSIFSとは、Ackフレームを返信する場合における一定の待機時間である。また、DIFSとは、Dataフレーム602を送信する場合における一定の待機時間である。このSIFSおよびDIFSは、IEEE802.11a規格では、それぞれ16μsおよび34μsと定められている。また、バックオフ時間とは、一定時間の倍数であり、乱数値を用いて設定される待機時間である。これらは、フレームの衝突を回避するために設定される待機時間である。
 このように、図4に示した無線通信システムにおいては、無線端末(STA)420から送信されたAckフレーム601の一部と、無線端末(STA)430から送信されたDataフレーム602の一部とが衝突する場合がある。
 図5の(b)は、本発明の第1の実施の形態におけるAckフレーム200が無線端末(STA)420から無線基地局(AP)410に返信された場合の図である。この場合、SIFS(16μs)の期間、および、Ackフレーム200のフレーム期間(16μs)で計32μsとなる。そのため、無線端末(STA)430におけるDIFS(34μs)の期間内に収まることから、Ackフレーム200と、無線端末(STA)430から送信されたDataフレーム602とは衝突しない。
 このように、Ackフレーム200を用いることによって、図4に示した隠れ端末問題におけるAckフレーム200自身の衝突を回避することができる。
 また、Ackフレーム200を用いることにより、次図に示すように、通信回線の利用効率を向上することができる。
 図6は、図4に示した無線通信システムにおける通信回線の利用効率を示す概念図である。図6の(a)および(b)には、横軸を時間軸して、無線基地局(AP)410および無線端末(STA)420から送信されるフレームがそれぞれ示されている。ここでは、無線基地局(AP)410からDataフレーム602が無線端末(STA)420に送信され、そのDataフレーム602を受信した無線端末(STA)420がAckフレームを無線基地局(AP)410に返信する手順の繰り返しが示されている。
 図6の(a)は、従来のAckフレーム601が無線端末(STA)420から無線基地局(AP)410に返信される場合の図である。なお、無線端末(STA)430では、受信された従来のAckフレーム601のあて先を識別した後に、その受信データ603を破棄する。
 図6の(b)は、本発明の第1の実施の形態におけるAckフレーム200が無線端末(STA)420から無線基地局(AP)410に返信される場合の図である。なお、無線端末(STA)430では、Ackフレーム200を受信することによって受信同期604が確立されるが、パケット信号の受信終了もほぼ同じタイミングにより検出されることから、すぐに待機状態に遷移する。
 このように、Ackフレーム200を用いることによって、Ackフレームのフレーム長が短くなることから、無線通信システムにおける通信回線のスループットを改善することができる。次に、このようなAckフレーム200を送信するための送信装置100の動作について、次図を参照して説明する。
 [送信装置の動作例]
 図7は、本発明の第1の実施の形態の送信装置100におけるAckフレーム200の送信手続きの一例を示す図である。
 MAC部160は、Ackフレーム200を送信するための送信開始要求(PHY_TXSTART.req)をPLCP部150に発行する。この送信開始要求(PHY_TXSTART.req)には、送信すべきフレームがAckフレーム200であるか否かを判定するための情報が含まれる。例えば、送信開始要求に含まれるLENGTH情報に、予め定義された数値を設定するようにしてもよく、送信開始要求に新たにフレーム判定のためのAck送信要求(PMD_Ack.req)を設けるようにしてもよい。
 次に、PLCP部150は、MAC部160からの送信開始要求(PHY_TXSTART.req)に基づいて、送信レベル要求(PMD_TXPWRLVL.req)、および、送信開始要求(PMD_TXSTART.req)をPMD部140に発行する。これにより、PMD部140は、Ackフレーム200の送信レベルの設定およびその他の送信に必要な所定の処理を行う。そして、PLCP部150は、トレーニングシンボルを生成し、そのトレーニングシンボルの生成が終了すると、送信終了確認(PHY_TXEND.conf)をMAC部160に発行する。
 図8は、本発明の第1の実施の形態の送信装置100におけるAckフレーム200の送信処理の手順例を示すフローチャートである。
 まず、MAC部160により、送信開始要求(PHY_TXSTART.req)が発行される(ステップS911)。次に、PLCP部150により、送信開始要求(PHY_TXSTART.req)に基づいて、送信すべきフレームがAckフレーム200か否かが判断される(ステップS912)。そして、送信すべきフレームがAckフレーム200以外のDataフレームであると判断された場合には、通常のDataフレームの送信処理が実行される(ステップS917)。
 一方、Ackフレーム200であると判断された場合には、PLCP部150により、送信レベル要求(PMD_TXPWLVL.req)、および、送信開始要求(PMD_TXSTART.req)が発行される(ステップS913)。次に、PLCP部150により、トレーニングシンボルが生成される(ステップS914)。そして、トレーニングシンボルの生成終了後に、送信終了確認(PHY_TXEND.conf)がMAC部160に発行される(ステップS915)。これにより、MAC部160における通信状態が受信状態に遷移する(ステップS916)。
 このように、トレーニングシンボルの生成終了後に、送信終了確認(PHY_TXEND.conf)を発行することによって、PLCPプリアンブルのみによって構成されるAckフレーム200が生成される。次に、Ackフレーム200を受信する受信装置300の動作について、図面を参照して説明する。
 [受信装置の動作例]
 図9は、本発明の第1の実施の形態の受信装置300におけるAckフレーム200の受信手続きの一例を示す図である。
 PMD部340は、PLCPプリアンブルのみによって構成されたAckフレーム200が受信されると、パケット信号受信開始通知(PMD_RSSI.ind)をPLCP部350に発行する。そして、PLCP部350は、受信開始通知(PHY_CCA.ind(STATUS=busy))をMAC部360に発行する。これにより、MAC部360は、ビジー状態に遷移する。
 次に、PMD部340は、パケット信号の信号強度が一定の閾値以下になると、パケット信号受信終了通知(PMD_RSSI.ind(Carrier Lost))をPLCP部350に発行する。そして、PLCP部350は、受信終了通知(PHY_CCA.ind(STATUS=idle))をMAC部360に発行する。これにより、MAC部360は、待機状態に遷移する。そして、PMD部340は、PLCPプリアンブルを検出することによって、タイミング生成通知(PMD_DATA.ind(preamble Detect))をPLCP部350に発行する。これにより、PMD部340により検出されたPLCPプリアンブルの終端のタイミングがPLCP部350に通知される。
 次に、PLCL部350は、PMD部340により発行されたパケット信号受信終了通知およびタイミング生成通知に基づいて、受信されたパケット信号がAckフレーム200であることを検出する。これにより、PLCP部350は、そのAck検出結果(PHY_RXEND.req(Ack Find))をMAC部360に発行する。そして、MAC部360は、Ackフレーム200の待ち状態から受信状態に遷移する。
 このように、MAC部360においてAckフレームを検出するのではなく、PLCP部350においてAckフレーム200を検出することができるため、受信装置300の消費電力を軽減することができる。
 [受信装置の詳細構成例]
 図10は、本発明の第1の実施の形態における受信装置300によるAckフレーム200の受信処理の手順例を示すフローチャートである。
 まず、PMD部340により、RF部320から供給された信号強度が一定の閾値より高くなると、パケット信号受信開始通知(PMD_RSSI.ind)がPLCP部350に発行される(ステップS921)。そして、PLCP部350により、受信開始通知(PHY_CCA.ind(STATUS=busy))がMAC部360に発行される(ステップS922)。
 次に、PMD部340により、パケット信号の信号強度が一定の閾値以下になると、パケット信号受信終了通知(PMD_RSSI.ind(Carrier Lost))がPLCP部350に発行される(ステップS923)。そして、PLCP部350により、受信終了通知(PHY_CCA.ind(STATUS=idle))がMAC部360に発行される(ステップS924)。それとともに、PMD部340により、PLCPプリアンブルを検出することによって、タイミング生成通知(PMD_DATA.ind(preamble Detect))がPLCP部350に発行される(ステップS925)。
 次に、PLCL部350により、パケット信号受信終了通知およびタイミング生成通知に基づいて、Ackフレーム200の検出を行う。そして、Ackフレーム200が検出されたことにより、Ack検出結果(PHY_RXEND.req(Ack Find))が発行される(ステップS926)。
 図11は、本発明の第1の実施の形態の受信装置300におけるPMD部340およびPLCP部350の一機能構成例を示すブロック図である。ここでは、PMD部340およびPLCP部350以外の他の構成は、図1に示したものと同様であるため、図1と同一の符号を付してここでの説明を省略する。
 PMD部340は、タイミング生成部341および信号強度判定部342を備える。また、PLCP部350は、復号部351およびAckフレーム検出部352を備える。
 タイミング生成部341は、RF部320からのフレームに含まれるPLCPプリアンブルを検出することによって、そのプリアンブルの終端のタイミングを生成するものである。このタイミング生成部341は、その生成されたプリアンブルの終端のタイミングをAckフレーム検出部352に供給する。また、タイミング生成部341は、例えば、PLCPプリアンブルを検出することによって、受信されたフレームに対する信号増幅およびキャリア周波数誤差の調整を行う。そして、このタイミング生成部341は、その信号増幅およびキャリア周波数誤差の調整が行われたフレームを復号部351に供給する。なお、タイミング生成部341は、特許請求の範囲に記載のタイミング生成部の一例である。
 信号強度判定部342は、RF部320からのパケット信号の信号強度に基づいて、パケット信号の始端および終端を判定するものである。この信号強度判定部342は、例えば、その信号強度と一定の閾値とに基づいて、パケット信号の終端を判定する。この信号強度判定部342は、そのパケット信号の始端および終端と判定された結果をAckフレーム検出部352に通知する。なお、信号強度判定部342は、特許請求の範囲に記載の信号強度判定部の一例である。
 復号部351は、タイミング生成部341から供給されたフレームを復号するものである。この復号部351は、その復号されたフレームを受信データとしてMAC部360に供給する。そして、MAC部360は、例えば、その復号されたデータが確認応答を示す従来のAckフレームであることを検出する。なお、復号部351およびMAC部360は、特許請求の範囲に記載の復号部および確認応答データ検出部の一例である。
 Ackフレーム検出部352は、タイミング生成部341により生成されたPLCPプリアンブルの終端のタイミングと、信号強度判定部342によりパケット信号の終端と判定された結果とに基づいて、Ackフレーム200を検出するものである。このAckフレーム検出部352は、Ackフレーム200が検出された場合には、その検出結果をMAC部360に通知する。なお、Ackフレーム検出部352は、特許請求の範囲に記載の確認応答フレーム検出部の一例である。
 [Ackフレーム検出部の機能構成例]
 図12は、本発明の第1の実施の形態におけるAckフレーム検出部352の一機能構成例を示すブロック図である。
 Ackフレーム検出部352は、カウンタ353と、信号終端カウント値レジスタ354と、プリアンブル終端カウント値レジスタ355と、減算器356と、比較器357および358と、論理積回路359と、閾値保持部371および372とを備える。
 カウンタ353は、信号線343により供給されるタイミング生成部341からのカウンタ起動要求に基づいてカウントを開始するものである。このカウンタ353は、その開始されたカウント値を信号終端カウント値レジスタ354およびプリアンブル終端カウント値レジスタ355に供給する。また、カウンタ353は、信号線343により供給されるタイミング生成部341からのカウンタ停止要求に基づいてカウントを停止する。
 信号終端カウント値レジスタ354は、信号線345により供給される信号強度判定部342からのパケット信号の終端と判定された際の通知に基づいてカウンタ353のカウント値を保持するものである。この信号終端カウント値レジスタ354は、その保持されたカウント値を減算器356に供給する。
 プリアンブル終端カウント値レジスタ355は、信号線344を介してタイミング生成部341から供給されるタイミングに基づいてカウンタ353のカウント値を保持するものである。このプリアンブル終端カウント値レジスタ355は、その保持されたカウント値を減算器356に供給する。
 減算器356は、信号終端カウント値レジスタ354に保持されたおよびプリアンブル終端カウント値レジスタ355に保持された両者のカウント値を減算するものである。すなわち、プリアンブル終端カウント値レジスタ355に保持されたカウント値から信号終端カウント値レジスタ354に保持されたカウント値を減じることによって、カウント値の差分を算出する。この減算器356は、そのカウント値の差分を比較器357および358に供給する。
 閾値保持部371および372は、Ackフレーム200を検出するために予め設定された閾値を保持するものである。ここでは、閾値Aに比べて閾値Bが大きいことを想定する。また、閾値保持部371は、その保持された閾値Aを比較器357に供給する。閾値保持部372は、その保持された閾値Bを比較器358に供給する。なお、これら閾値AおよびBの設定例については次図を用いて後述する。
 比較器357は、閾値保持部371に保持された閾値Aと、減算器356から供給されたカウント値の差分とを比較するものである。この比較器357は、減算器356からのカウント値の差分が閾値A以上である場合には「1」を、閾値Aより小さい場合には「0」を論理積回路359に供給する。
 比較器358は、閾値保持部372に保持された閾値Bと、減算器356から供給されたカウント値の差分とを比較するものである。この比較器358は、減算器356からのカウント値の差分が閾値Bより大きい場合には「0」を、閾値B以下である場合には「1」を論理積回路359に供給する。
 論理積回路359は、比較器357および358から供給された信号に基づいて、論理積演算するものである。この論理積回路359は、比較器357からの信号が「1」であり、かつ、比較器358からの信号が「1」の場合にのみ、MAC部360に「1」を供給する。すなわち、論理積回路359は、カウント値の差分が閾値A以上であり、かつ、閾値B以下である場合には、Ackフレーム200であることを示す「1」を、それ以外の場合には、Ackフレームでないこと示す「0」をMAC部360に供給する。
 このように、タイミング生成部341により供給されたPLCPプリアンブルの終端のタイミングと、信号強度判定部342によりパケット信号の終端と判定された結果とに基づいて、Ackフレーム200を検出する。また、閾値Aと閾値Bとの差分を小さくすることによって、Ackフレーム200を正確に検出することができるようになる。次に、Ackフレーム検出部352によるAckフレーム200の検出手法について次図を参照して詳細に説明する。
 [Ackフレームの検出例]
 図13は、本発明の第1の実施の形態におけるAckフレーム検出部352によるAckフレーム200の検出手法の一例を示す観念図である。ここでは、横軸を時間軸として、アンテナ310において受信されたPLCPプリアンブルと、タイミング生成部341に供給されたPLCPプリアンブルとが示されている。さらに、Ackフレーム検出部352に含まれるカウンタ353のカウント値を保持するタイミングと、信号強度判定部342における信号強度とが示されている。
 ここでは、タイミング生成部341におけるPLCPプリアンブルが、フィルタの通過などによるシステム遅延によって、アンテナ310におけるPLCPプリアンブルに比べて遅れて伝送されることを想定している。また、アンテナ310におけるパケット信号の信号強度は、理解を容易にするために、信号強度判定部342に遅延なく供給されることとしている。
 まず、Ackフレーム200が受信されると、タイミング生成部341は、Ackフレーム検出部352におけるカウンタ353に起動要求を通知する。例えば、タイミング生成部341は、PLCPプリアンブルにおけるt1乃至t10のショートトレーニングシンボルのうち、t7のショートトレーニングシンボルの終端のタイミングにおいて起動要求を通知する。これにより、カウンタ353はカウントを開始する。その後、信号強度判定部342は、信号強度が閾値以下となることにより、Ackフレーム200の終端と判定する(受信終了判定)。そして、信号強度判定部342は、その判定された結果をAckフレーム検出部352における信号終端カウント値レジスタ354に通知する。その通知に基づいて、信号終端カウント値レジスタ354は、カウンタ353のカウント値を保持する。
 次に、タイミング生成部341は、PLCPプリアンブルを検出することによって、PLCPプリアンブルの終端のタイミングを生成する。そして、タイミング生成部341は、その生成されたタイミングをAckフレーム検出部352におけるプリアンブル終端カウント値レジスタ355に通知する。そのタイミング生成の通知に基づいて、プリアンブル終端カウント値レジスタ355はカウンタ353のカウント値を保持する。それとともに、タイミング生成部341は、カウンタ353を停止させるための停止要求を通知する。そして、カウンタ353は、カウントを停止する。
 次に、Ackフレーム検出部352は、信号強度判定部342からの判定結果の通知により保持されたカウント値と、タイミング生成部341によって生成されたタイミングにおいて保持されたカウント値とに基づいて、Ackフレーム200の検出を行う。すなわち、Ackフレーム検出部352は、Ackフレーム推定期間内に信号強度判定部342からの受信終了判定が通知されたか否かを判断することによって、Ackフレーム200を検出する。このAckフレーム推定期間は、タイミング生成部341により生成されるタイミングに基づいて、システム遅延、信号強度判定部342による判定誤差およびタイミング生成部341による検出誤差などを考慮して定められる。すなわち、このAckフレーム推定期間は、タイミング生成部341により生成されたPLCPプリアンブルの終端を基準として、閾値Aおよび閾値Bによって設定される。
 この例では、Ackフレーム検出部352は、信号強度判定部342からの判定結果の通知により保持されたカウント値と、タイミング生成部341によって生成されたタイミングにおいて保持されたカウント値との差分を算出する。そして、Ackフレーム検出部352は、そのカウント値の差分が閾値A以上であり、かつ、閾値B以下であるため、アンテナ310により受信されたパケット信号がAckフレーム200であると検出する。
 このように、Ackフレーム検出部352は、PLCPプリアンブルの終端のタイミングに基づいて、信号強度判定部342による受信終了判定の結果が通知される期間を推定する。そして、Ackフレーム検出部352は、その推定された期間および信号強度判定部342によって判定された結果に基づいて、パケット信号がAckフレーム200であることを検出することができる。すなわち、Ackフレーム検出部352は、カウント値の差分と、閾値Aと、閾値Bとに基づいて、受信されたパケット信号がAckフレーム200であることを検出することができる。
 [Ackフレームの終端の判定例]
 図14は、本発明の第1の実施の形態の信号強度判定部342によるパケット信号の終端の判定手法の例を示す図である。図14の(a)乃至(c)には、横軸を時間軸として、PLCPプリアンブルのみによって構成されたAckフレーム200が受信された場合におけるRF部320からの信号強度の変化が示されている。
 図14の(a)では、信号強度判定部342は、予め定められた絶対値の閾値である絶対レベル閾値を基準として、RF部320からの信号強度に基づいて、パケット信号の終端を判定する。図14の(b)では、信号強度判定部342は、予め定められた変化量に対する閾値を基準として、RF部320からの信号強度の変化量に基づいて、パケット信号の終端を判定する。図14の(c)では、信号強度判定部342は、パケット信号を受信する前の信号強度に対して予め定められた値を加えることによって算出される閾値である受信前閾値を基準にして、RF部320からの信号強度に基づいて、パケット信号の終端を判定する。なお、信号強度判定部342は、上述の図14の(a)乃至(c)の3つの判定手法のうち、少なくとも2つの手法を組み合わせることによって、パケット信号の終端を判定するようにしてもよい。例えば、信号強度判定部342は、図14の(a)および(b)における判定基準の両方を満足したときに、パケット信号の終端と判定するようにしてもよい。
 次に、本発明の第1の実施の形態における受信装置300の確認応答の動作について図面を参照して説明する。
 [受信装置の確認応答処理の例]
 図15は、本発明の第1の実施の形態における受信装置300の確認応答処理の手順例を示すフローチャートである。
 まず、MAC部360により、Dataフレームを送信するための送信開始要求が発行される(ステップS931)。次に、PHY部330により、Dataフレームが生成され、アンテナ310を介して送信装置100に送信される(ステップS932)。その際、Ackフレーム200の待ち時間を計測するためのAck待ちタイマが起動される(ステップS933)。そして、信号強度判定部342により、アンテナ110およびRF部120を介してパケット信号が受信されたか否かが判断される(ステップS934)。すなわち、信号強度判定部342により、RF部320からの信号強度が閾値を超えたか否かが判断される。なお、ステップS934は、特許請求の範囲に記載の受信手順および信号強度判定手順の一例である。
 そして、パケット信号が受信されるまでの間、Ack待ちタイマが所定時間経過したか否かが判断される(ステップS942)。そして、所定時間を経過していない場合には、ステップS934に戻り、所定時間を経過した場合には、ステップS931に戻って、再送処理を行う。
 一方、パケット信号が受信された場合には、タイミング生成部341により、受信されたパケット信号の同期が確立されたか否かが判断される(ステップS935)。そして、受信されたパケット信号の同期が確立されない場合には、ステップS934に戻る。一方、受信されたパケット信号の同期が確立された場合には、プリアンブル信号を検出することによって、PLCPプリアンブルの終端のタイミングが生成される。なお、ステップS935は、特許請求の範囲に記載のタイミング生成手順の一例である。
 次に、信号強度判定部342によりパケット信号の終了と判定されたか否かが判断される(ステップS936)。すなわち、信号強度判定部342により信号強度に基づいてパケット信号の終端が判定されたか否かが判断される。なお、ステップS936は、特許請求の範囲に記載の信号強度判定手順の一例である。そして、パケット信号の終端が検出されていなければ、そのパケット信号はDataフレームであるため、Dataフレームの受信処理が行われる(ステップS943)。
 一方、パケット信号の終端が検出された場合には、Ackフレーム200の検出を行う(ステップS937)。すなわち、信号強度判定部342によりパケット信号の終端と判定されたタイミングと、タイミング生成部により生成されたPLCPプリアンブルの終端のタイミングとに基づいて、Ackフレーム200であるか否かを検出する。なお、ステップS937は、特許請求の範囲に記載の確認応答フレーム検出手順の一例である。
 次に、パケット信号がAckフレーム200であるか否かが判断される(ステップS938)。そして、パケット信号がAckフレーム200でない場合には、誤同期処理を行い(ステップS941)、ステップS934に戻る。一方、パケット信号がAckフレーム200である場合には、Ackフレーム200が検出された旨がMAC部360に通知される。これにより、MAC部360は、送信装置100においてデータが正しく受け取られたことを認識する(ステップS939)。
 このように、本発明の第1の実施の形態によれば、Ackフレーム200を用いることによって、図4に示した隠れ端末問題によるAckフレームと他のフレームとの衝突を回避することができる。さらに、フレーム長の短いAckフレーム200を用いることによって、無線通信システムにおけるスループットを改善することができる。
 なお、本発明の第1の実施の形態では、Ackフレーム200を用いた無線通信システムの例について説明したが、Ackフレーム200と従来のAckフレーム601とを混在させて用いてもよい。
 <2.第2の実施の形態>
 [従来のAckフレームとの併用例]
 図16は、本発明の第2の実施の形態におけるAckフレーム200と従来のAckフレーム601とを併用する場合における通信手順の一例を示す図である。ここでは、無線基地局(AP)410と無線端末(STA)420との間の通信においては、本発明の第1の実施の形態におけるAckフレーム200を用いることを想定している。また、無線端末(STA)430と無線端末(STA)420との間の通信においては、従来のAckフレーム601を用いることとしている。また、横軸を時間軸として、無線基地局(AP)410、無線端末(STA)420および無線端末(STA)430から送信されるフレームがそれぞれ示されている。
 この例では、無線基地局(AP)410からDataフレーム602が送信され、それを受信した無線端末(STA)420がSIFS待機した後にAckフレーム200を返信する。次に、無線端末(STA)430は、Ackフレーム200の送信終了からDIFSおよびBackOff時間経過後に、Dataフレーム602を無線端末(STA)420に送信する。この場合においては、無線端末(STA)430からのDataフレーム602を受信した無線端末(STA)420は、従来のAckフレーム601を無線端末(STA)430に返信する。
 次に、無線基地局(AP)410は、従来のAckフレーム601の送信終了からDIFSおよびBackOff時間経過後に、Dataフレーム602を無線端末(STA)420に送信する。そして、無線基地局(AP)410からのDataフレーム602を受信した無線端末(STA)420は、Ackフレーム200を無線基地局(AP)410に返信する。
 このように、本発明の第2の実施の形態では、本発明の第1の実施の形態が従来の無線通信システムの構成を基本に改良したものであるため、Ackフレーム200と従来のAckフレーム601とを併用することができる。
 なお、本発明の実施の形態では、プリアンブルのみによって構成されるAckフレーム200の例として、IEEE802.11a規格によるPLCPプリアンブルを適用する例について説明したが、これに限られるものではない。例えば、IEEE802.11b/11gなどの規定によるPLCPプリアンブルを適用してもよい。
 なお、本発明の実施の形態は本発明を具現化するための一例を示したものであり、上述のように特許請求の範囲における発明特定事項とそれぞれ対応関係を有する。ただし、本発明は実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変形を施すことができる。
 また、本発明の実施の形態において説明した処理手順は、これら一連の手順を有する方法として捉えてもよく、また、これら一連の手順をコンピュータに実行させるためのプログラム乃至そのプログラムを記憶する記録媒体として捉えてもよい。この記録媒体として、例えば、CD(Compact Disc)、MD(Mini Disc)、DVD(Digital Versatile Disk)、メモリカード、ブルーレイディスク(Blu-ray Disc(登録商標))等を用いることができる。
 100 送信装置
 110、310 アンテナ
 120、320 RF部
 130、330 PHY部
 140、340 PMD部
 150、350 PLCP部
 160、360 MAC部
 300 受信装置
 341 タイミング生成部
 342 信号強度判定部
 351 復号部
 352 Ackフレーム検出部
 353 カウンタ
 354 信号終端カウント値レジスタ
 355 プリアンブル終端カウント値レジスタ
 356 減算器
 357、358 比較器
 359 論理積回路
 371、372 閾値保持部

Claims (9)

  1.  高周波信号のキャリア周波数誤差を調整するためのプリアンブルのみを受信確認のための確認応答フレームとして生成するプリアンブル生成部と、
     前記プリアンブル生成部により生成された前記確認応答フレームを前記高周波信号として送信するための送信部と
    を具備する送信装置。
  2.  プリアンブルを含むパケット信号を受信するための受信部と、
     前記受信部により受信された信号の強度に基づいて前記パケット信号の終端を判定するための信号強度判定部と、
     前記プリアンブルを検出することによって当該プリアンブルの終端のタイミングを生成するタイミング生成部と、
     前記信号強度判定部により前記パケット信号の終端と判定された結果と前記タイミング生成部により生成された前記プリアンブルの終端のタイミングとに基づいて前記パケット信号が前記プリアンブルのみによって構成された確認応答フレームであることを検出する確認応答フレーム検出部と
    を具備する受信装置。
  3.  前記確認応答フレーム検出部は、前記信号強度判定部により前記確認応答フレームの終端と判定される期間を前記プリアンブルの終端のタイミングに基づいて推定して前記推定された期間および前記パケット信号の終端と判定された結果とに基づいて前記パケット信号が前記確認応答フレームであることを検出する請求項2記載の受信装置。
  4.  前記受信部により受信された前記パケット信号を復号する復号部と、
     前記復号部により復号されたデータが確認応答を示すデータであることを検出するための確認応答データ検出部と
    をさらに具備する請求項2記載の受信装置。
  5.  前記信号強度判定部は、前記受信部により受信された信号の強度と所定の閾値とに基づいて前記パケット信号の終端を判定する請求項2記載の受信装置。
  6.  前記信号強度判定部は、前記受信部により受信された信号の強度の変動量に基づいて前記パケット信号の終端を判定する請求項5記載の受信装置。
  7.  前記信号強度判定部は、前記受信部により前記パケット信号が受信される前の信号の強度に基づいて前記閾値を設定する請求項5記載の受信装置。
  8.  プリアンブルのみによって構成される確認応答フレームを送信する送信装置と、
     前記送信装置により送信された前記確認応答フレームをパケット信号として受信するための受信部と、前記受信部により受信された信号の強度に基づいて前記パケット信号の終端を判定するための信号強度判定部と、前記プリアンブルを検出することによって当該プリアンブルの終端のタイミングを生成するタイミング生成部と、前記信号強度判定部により前記パケット信号の終端と判定された結果と前記タイミング生成部により生成された前記プリアンブルの終端のタイミングとに基づいて前記パケット信号が前記確認応答フレームであることを検出する確認応答フレーム検出部とを備える受信装置と
    を具備する通信システム。
  9.  プリアンブルを含むパケット信号を受信するための受信手順と、
     前記受信部により受信された信号の強度に基づいて前記パケット信号の終端を判定する信号強度判定手順と、
     前記プリアンブルを検出することによって当該プリアンブルの終端のタイミングを生成するタイミング生成手順と、
     前記信号強度判定手順において前記パケット信号の終端と判定された結果と前記タイミング生成手順において生成された前記プリアンブルの終端のタイミングとに基づいて前記パケット信号が前記プリアンブルのみによって構成された確認応答フレームであることを検出する確認応答フレーム検出手順と
    を具備する確認応答フレーム検出方法。
PCT/JP2009/069826 2008-11-25 2009-11-25 送信装置、受信装置、通信システム、および、受信装置における処理方法 WO2010061832A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09829080A EP2352329A1 (en) 2008-11-25 2009-11-25 Transmitter apparatus, receiver apparatus, communication system, and processing method for use in receiver apparatus
US13/129,954 US8588098B2 (en) 2008-11-25 2009-11-25 Transmission apparatus, reception apparatus, communication system, and processing method used in reception apparatus
CN200980146034.9A CN102217364B (zh) 2008-11-25 2009-11-25 发送装置、接收装置、通信系统和接收装置用的处理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-300219 2008-11-25
JP2008300219A JP2010130118A (ja) 2008-11-25 2008-11-25 送信装置、受信装置、通信システム、および、受信装置における処理方法

Publications (1)

Publication Number Publication Date
WO2010061832A1 true WO2010061832A1 (ja) 2010-06-03

Family

ID=42225705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069826 WO2010061832A1 (ja) 2008-11-25 2009-11-25 送信装置、受信装置、通信システム、および、受信装置における処理方法

Country Status (5)

Country Link
US (1) US8588098B2 (ja)
EP (1) EP2352329A1 (ja)
JP (1) JP2010130118A (ja)
CN (1) CN102217364B (ja)
WO (1) WO2010061832A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103597770A (zh) * 2011-06-09 2014-02-19 高通股份有限公司 用于减少确认消息开销的系统和方法
US10980063B2 (en) 2016-12-19 2021-04-13 Sony Corporation Communication device and communication control method

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010130118A (ja) * 2008-11-25 2010-06-10 Sony Corp 送信装置、受信装置、通信システム、および、受信装置における処理方法
WO2010129887A2 (en) 2009-05-07 2010-11-11 Massachusetts Institute Of Technology Light emitting device including semiconductor nanocrystals
JP4978757B1 (ja) * 2012-01-24 2012-07-18 オムロン株式会社 データ設定装置
JP5852486B2 (ja) * 2012-03-23 2016-02-03 パナソニック株式会社 信号検出装置及び信号検出方法
WO2013136774A1 (ja) 2012-03-15 2013-09-19 パナソニック株式会社 信号検出装置及び信号検出方法
KR20150013481A (ko) * 2012-03-30 2015-02-05 엘지전자 주식회사 무선랜 시스템에서 채널 액세스 제어 방법 및 장치
US20140341100A1 (en) * 2013-05-15 2014-11-20 Qualcomm Incorporated Access point-aided coexistence/concurrency at mobile devices
CN107567075B (zh) * 2016-06-30 2020-06-26 华为技术有限公司 一种功率控制方法及装置
CN107994976B (zh) 2016-10-26 2021-06-22 华为技术有限公司 一种快速应答回复方法及装置
US10462706B2 (en) 2017-06-23 2019-10-29 Nokia Technologies Oy Use of wait period to obtain on-demand system information for wireless networks

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005110245A (ja) 2003-09-26 2005-04-21 Agere Systems Inc キャリアセンス多元サクセス無線システム内において衝突を検出するための方法及び装置
JP2008160237A (ja) * 2006-12-21 2008-07-10 Matsushita Electric Ind Co Ltd 無線装置および無線通信方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5638375A (en) * 1988-11-30 1997-06-10 Motorola, Inc. AGC isolation of information in TDMA systems
US5479408A (en) * 1994-02-22 1995-12-26 Will; Craig A. Wireless personal paging, communications, and locating system
US5881102A (en) * 1996-02-07 1999-03-09 Intel Corporation Method and apparatus for minimizing modem power while maximizing modem throughput
US6389034B1 (en) * 1998-09-04 2002-05-14 Nortel Networks Limited System for providing stream based and packet based services
US20040127161A1 (en) * 2002-12-31 2004-07-01 Motorola, Inc. Mobile communication unit with self-diagnostic capability
US20040151146A1 (en) * 2003-01-30 2004-08-05 Hammerschmidt Joachim S. Multi-branch OFDM transceiver
US7616698B2 (en) * 2003-11-04 2009-11-10 Atheros Communications, Inc. Multiple-input multiple output system and method
JP2006197173A (ja) * 2005-01-13 2006-07-27 Oki Electric Ind Co Ltd 無線通信装置、無線通信システム、及び無線通信方法
JP4468832B2 (ja) * 2005-02-07 2010-05-26 シャープ株式会社 通信装置及び端末装置ならびにその通信方法、それに用いるプログラム
AU2007355920A1 (en) * 2007-06-29 2009-01-08 Telefonaktiebolaget Lm Ericsson (Publ) Method for fast acknowledgement and identification of a service access request message or a preamble thereof
US8295196B2 (en) * 2007-09-19 2012-10-23 Telecom Italia S.P.A. Method for transmitting information packets within an asynchronous wireless communication network and network node implementing it
JP2010130118A (ja) * 2008-11-25 2010-06-10 Sony Corp 送信装置、受信装置、通信システム、および、受信装置における処理方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005110245A (ja) 2003-09-26 2005-04-21 Agere Systems Inc キャリアセンス多元サクセス無線システム内において衝突を検出するための方法及び装置
JP2008160237A (ja) * 2006-12-21 2008-07-10 Matsushita Electric Ind Co Ltd 無線装置および無線通信方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103597770A (zh) * 2011-06-09 2014-02-19 高通股份有限公司 用于减少确认消息开销的系统和方法
US10980063B2 (en) 2016-12-19 2021-04-13 Sony Corporation Communication device and communication control method

Also Published As

Publication number Publication date
CN102217364B (zh) 2014-12-24
US8588098B2 (en) 2013-11-19
JP2010130118A (ja) 2010-06-10
US20110222429A1 (en) 2011-09-15
CN102217364A (zh) 2011-10-12
EP2352329A1 (en) 2011-08-03

Similar Documents

Publication Publication Date Title
WO2010061832A1 (ja) 送信装置、受信装置、通信システム、および、受信装置における処理方法
US8942123B2 (en) Deferral mechanism for improved medium reuse in wireless networks with transmit power imbalances
US9584383B2 (en) Coexistence of a normal-rate physical layer and a low-rate physical layer in a wireless network
US9713065B2 (en) Coexistence of devices operating at different data rates in wireless networks
KR102161170B1 (ko) 송신 기회(txop) 기반 채널 재사용
CA2553917C (en) Method and apparatus for setting, transmitting and receiving data for virtual carrier sensing in wireless network communication
CN108605291B (zh) 一种发送和接收wur帧的方法及设备
US9848442B2 (en) Method for transmitting and receiving frame in wireless local area network
KR101096419B1 (ko) 무선 네트워크들에서 블라인드 노드 문제들을 해결하기 위한 방법 및 장치
US20160197700A1 (en) Method and apparatus for communicating with extended range in a wireless network
JP6053197B2 (ja) 通常レートの物理層および低レートの物理層の無線ネットワークにおける共存
WO2004071021A1 (ja) 通信方法及び通信装置、並びにコンピュータプログラム
KR20170137763A (ko) 무선 네트워크들에서 충돌들을 감소시키기 위한 시스템 및 방법
US20180249500A1 (en) Terminal device and communication method
US20090274167A1 (en) Communication terminal apparatus and transmitting method
CN110892751A (zh) 无线通信设备、通信系统和通信方法
KR100703686B1 (ko) 무선 네트워크 통신에 있어 가상 캐리어 센싱을 위한 정보송수신 및 정보 설정 방법과 이를 구현하는 장치
EP3120479B1 (en) Method and apparatus for combining frames in wlan

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980146034.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09829080

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2009829080

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13129954

Country of ref document: US

Ref document number: 3694/DELNP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE