WO2010061819A1 - Thermochromic composition and thermochromic microcapsule - Google Patents

Thermochromic composition and thermochromic microcapsule Download PDF

Info

Publication number
WO2010061819A1
WO2010061819A1 PCT/JP2009/069799 JP2009069799W WO2010061819A1 WO 2010061819 A1 WO2010061819 A1 WO 2010061819A1 JP 2009069799 W JP2009069799 W JP 2009069799W WO 2010061819 A1 WO2010061819 A1 WO 2010061819A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron
thermochromic
thermochromic composition
color
compound
Prior art date
Application number
PCT/JP2009/069799
Other languages
French (fr)
Japanese (ja)
Inventor
盛作 大城
Original Assignee
株式会社サクラクレパス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社サクラクレパス filed Critical 株式会社サクラクレパス
Publication of WO2010061819A1 publication Critical patent/WO2010061819A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • C09K9/02Organic tenebrescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B

Definitions

  • the present invention relates to a thermochromic composition having reversibility and a thermochromic microcapsule containing the thermochromic composition.
  • thermochromic composition containing an electron-donating color-forming organic compound, an electron-accepting compound, and a desensitizer has already been proposed and put to practical use. Recently, in order to obtain a higher quality thermochromic composition, it has been proposed to use any one or more components as a specific compound.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 6-88070
  • a thermochromic composition that is excellent in terms of color density, background color development, and color change an electron-donating color-forming organic compound, electron-accepting property is disclosed.
  • thermochromic composition containing a compound and at least one desensitizer selected from carbazole derivatives represented by a specific general formula is disclosed.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2000-297277
  • a reversible thermochromic composition having improved fastness, particularly water resistance, high color density at the time of color development and low toxicity
  • a composition comprising a developer having a specific general formula has been proposed.
  • Patent Document 3 Japanese Patent Laid-Open No. 2001-29483 discloses a reversible thermochromic UV curable ink that exhibits permanent reversible thermochromic properties without impairing the color change sensitivity and has an efficient UV curable property.
  • a reversible thermochromic composition and a microcapsule pigment encapsulating a light fastness-imparting agent represented by a specific general formula are dispersed in a photopolymerizable composition containing an ultraviolet absorber and a photopolymerization initiator. Inks have been proposed.
  • Patent Document 4 Japanese Patent Laid-Open No.
  • JP-A-6-88070 JP 2000-297277 A Japanese Patent Laid-Open No. 2001-294783 JP 2001-31884 A JP 2003-119309 A
  • thermochromic composition not only has the property of developing / decoloring at a predetermined temperature, but also has the property that its density (color density) does not easily change over time after color development, that is, the color density. It is sometimes required to have stability over time. For example, in applications where the thermochromic composition is colored for a long period of time (for example, decoration of tableware such as cups and mugs), the color density of the thermochromic composition is low and the stability over time is predetermined. It is not preferable because the appearance and the characters are difficult to see. Accordingly, the thermochromic composition used in the above applications is required to have high color density stability over time.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a thermochromic composition having excellent color density stability over time.
  • the present invention includes an electron-donating color-forming organic compound, an electron-accepting compound, and a desensitizer.
  • the electron-accepting compound is represented by any one of the following general formulas (1) to (3) and has a melting point
  • a thermochromic composition comprising one or more compounds having a temperature of 150 ° C. or lower is provided.
  • R1 and R2 are each independently a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, a phenyl group, a cyclohexyl group, and X, Y And Z are each independently a halogen, an OH group, an alkoxy group, an alkoxyallyl group, an allyl group, a linear or branched alkyl group having 1 to 4 carbon atoms, a phenyl group, or a cyclohexyl group, and C is A C5-C8 cycloalkane which may have a substituent or a fluorene ring which may have a substituent.
  • thermochromic composition of the present invention is an electron-accepting compound, that is, a compound represented by a specific chemical formula and having a melting point of 150 ° C. or lower (hereinafter referred to as “low-melting color developer for convenience”). Is used).
  • low-melting color developer a compound represented by a specific chemical formula and having a melting point of 150 ° C. or lower
  • a low melting point developer By using a low melting point developer, a reversible thermochromic composition having excellent color developability and decoloring property and excellent color density stability with time can be obtained.
  • thermochromic composition is a compound represented by any one of the above general formulas (1) to (3) as a developer and having a melting point higher than 150 ° C. (hereinafter, for convenience) There is provided a thermochromic composition further comprising a “high melting point developer”. One or more high melting point developers may be included.
  • thermochromic composition of the present invention shows excellent color density stability over time as long as a low melting point developer is contained, even when a high melting point developer is contained.
  • a high melting point developer it is possible to utilize the characteristics (for example, high color developability or high decoloring property) and to improve the color density stability over time by using the low melting point developer. .
  • the present invention also provides a thermochromic microcapsule in which the thermochromic composition of the present invention is encapsulated.
  • the thermochromic composition is encapsulated in the microcapsules, the microcapsules are less susceptible to the influence of substances present in the surroundings.
  • thermochromic composition of the present invention exhibits excellent color density concentration stability over time by using a compound represented by the above specific formula and having a melting point of 150 ° C. or less as a developer. Therefore, the thermochromic composition of the present invention is suitable for applications in which a colored state is maintained for a long time. For example, textile products, inks, paints, pottery, glass products, plastic moldings, packaging materials, recording materials And as a colorant for imparting reversible thermochromic properties to printed matter.
  • thermochromic composition of the present invention includes an electron-donating color-forming organic compound, an electron-accepting compound, and a desensitizer, It contains at least one compound represented by a specific general formula and having a melting point of 150 ° C. or lower. Below, the component which comprises the thermochromic composition of this invention is demonstrated.
  • the electron-donating color-forming organic compound is also called a color former and reacts with the electron-accepting compound to give a color.
  • a known compound may be arbitrarily used as the electron-donating color-forming organic compound.
  • the electron donating color-forming organic compound is preferably 2- (2-chloroanilino) -6-dibutylaminofluorane or 3,6-bis (diphenylamino) fluorane.
  • the content of the electron-donating color-forming organic compound is preferably 0.1% by weight to 50% by weight, based on the weight of the entire composition, and 0.8% by weight to 15% by weight. More preferably.
  • the content of the electron-donating color-forming organic compound is small, the color density may be low.
  • the background color color density in the decolored state
  • the electron-accepting compound is also called a color developer, and is a compound that reacts with an electron-donating color-forming organic compound to develop a color.
  • a compound having pores Furthermore, in the present invention, a compound (low melting color developer) represented by any one of the following general formulas (1) to (3) and having a melting point of 150 ° C. or lower is used as the electron accepting compound.
  • R1 and R2 are each independently a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, a phenyl group, a cyclohexyl group, and X, Y and Z is independently halogen, OH group, alkoxy group, alkoxyallyl group, allyl group, straight or branched alkyl group having 1 to 4 carbon atoms, phenyl group, or cyclohexyl group, and C is substituted A cycloalkane having 5 to 8 carbon atoms which may have a group or a fluorene ring which may have a substituent.
  • an arc containing C means that the carbon atom bonded to the two aromatic rings is a carbon atom constituting a cycloalkane. Accordingly, in the general formula (2), when C is a cycloalkane having 6 carbon atoms (that is, cyclohexane), the general formula (2) is represented by the following formula.
  • p-cumylphenol bis (4-hydroxyphenyl) ethane, 4-hydroxy-4′-isopropoxydiphenylsulfone, 4-hydroxy-4′-methoxydiphenylsulfone, 2,2′-diallyl -4,4'dihydroxydiphenylsulfone and 1,1-bis (4-hydroxyphenyl) cyclohexane are preferably used as the electron-accepting compound.
  • 2,2′-diallyl-4,4′dihydroxydiphenylsulfone and 4-hydroxy-4′-isopropoxydiphenylsulfone are excellent in heat resistance.
  • kneaded into a thermoplastic resin Is suitable.
  • thermochromic composition having better characteristics can be obtained utilizing the characteristics of each compound.
  • the compound represented by any one of the above three general formulas and having a melting point exceeding 150 ° C. Colorants may be used as electron accepting compounds.
  • High melting point compounds are generally excellent in heat resistance. Therefore, by using a combination of a low melting point compound and a high melting point compound, it is possible to obtain a composition having excellent color density stability over time and excellent heat resistance.
  • the high melting point compound examples include 4-hydroxy-4′-propoxydiphenyl sulfone, 1,1-bis (4-hydroxyphenyl) -1-isobutylethane, and 2,2-bis (4-hydroxyphenyl) propane. 4-hydroxy-4′-allyloxydiphenyl sulfone, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, and biscresol fluorene are preferably used.
  • 1,1-bis (4-hydroxyphenyl) -1-phenylethane, biscresol fluorene, 4-hydroxy-4'-allyloxydiphenyl sulfone, 1,1-bis (4-hydroxyphenyl) cyclohexane and 4- Hydroxy-4'-propoxydiphenyl sulfone has excellent heat resistance, and is suitable for use in, for example, kneading into a thermoplastic resin.
  • the content of the electron-accepting compound is preferably 0.05% by weight to 98% by weight, more preferably 0.5% by weight to 77% by weight, based on the weight of the entire composition. preferable.
  • the electron-accepting compound is preferably contained in an amount of 0.1 to 100 parts by weight, preferably 0.5 to 20 parts by weight, with respect to 1 part by weight of the electron-donating color-forming organic compound. More preferably.
  • the weight ratio thereof is 1:99 to 99: 1 (low-melting color developer: high-melting color developer). It is preferable that they are mixed, and it is more preferable that they are mixed so as to be 10:90 to 90:10. If the proportion of the low melting point developer is too large, heat resistance by the high melting point developer may not be obtained. If the proportion of the low melting point developer is too small, good color density stability over time can be obtained. There may not be.
  • the desensitizer is a compound that can dissolve the electron-donating color-forming organic compound and the electron-accepting compound, and can control the color reaction by the solidification or melting characteristics thereof.
  • the color can be changed at ⁇ 10 ° C. to 60 ° C. by selecting a commonly used desensitizer.
  • a hardly volatile hydrophobic organic medium or solvent or solvent is used as a desensitizer.
  • examples of the desensitizer include aliphatic monohydric alcohols having 10 or more carbon atoms, fatty acids having 10 or more carbon atoms, fatty acid monoamides having 6 or more carbon atoms, and ester compounds having 13 or more carbon atoms in total. it can
  • the general-purpose desensitizer acid is a polybasic acid.
  • the general-purpose desensitizer alcohol is a polyhydric alcohol.
  • the general-purpose desensitizer acid is a polybasic acid and the alcohol is a polyhydric alcohol.
  • an aliphatic ketone compound having a total carbon number of 10 or more and an aliphatic ether compound having a total carbon number of 10 or more which are general-purpose desensitizers, can be used in the present invention.
  • the content of the desensitizer is preferably 1% by weight to 99% by weight, and more preferably 19% by weight to 99% by weight, based on the weight of the entire composition.
  • the desensitizer is preferably contained in an amount of 1 to 500 parts by weight, more preferably 5 to 100 parts by weight with respect to 1 part by weight of the electron donating color-forming organic compound. .
  • thermochromic composition of the present invention may contain other components contained in a normal thermochromic composition. Hereinafter, other components will be described.
  • the composition of the present invention may contain an ultraviolet absorber.
  • the ultraviolet absorber selectively absorbs ultraviolet rays contained in sunlight. Ultraviolet rays cause the color former to deteriorate by photoreaction. UV absorbers are used to prevent this.
  • UV absorbers are broadly classified into benzophenone, benzotriazole, cyanoacrylate, triazine, salicylic acid, oxalic anilide, malonic ester, benzoic acid, cinnamic acid, and dibenzoylmethane.
  • benzotriazole-based Tinuvin 326, triazine-based Tinuvin 40 (both manufactured by Ciba Specialty Chemicals), and benzophenone-based Siasorb UV531 (manufactured by Cytec Industries) can be used.
  • the content of the ultraviolet absorber is preferably up to 96% by weight, and more preferably up to 61% by weight, based on the weight of the entire composition.
  • the content of the ultraviolet absorber is large, the color density may be lowered, discoloration may not be sharp, and / or discoloration temperature hysteresis may be increased.
  • an ultraviolet absorber is contained in the quantity up to 50 weight part with respect to 1 weight part of electron-donating colorable organic compounds, and it is more preferable that it is contained in the quantity up to 10 weight part.
  • the composition of the present invention may contain an ultraviolet scattering agent.
  • the ultraviolet scattering agent physically reflects or scatters ultraviolet rays contained in sunlight. As a result, the action of ultraviolet rays on the color former is prevented.
  • the ultraviolet scattering agent is, for example, metal oxide fine particles such as zinc oxide, titanium oxide, ⁇ -iron oxide, and cerium oxide.
  • the composition of the present invention may contain a light stabilizer.
  • the light stabilizer prevents the coloring agent from deteriorating due to the reaction between the radicals generated by ultraviolet rays and the coloring agent.
  • hindered phenols or hindered amines may be used as light stabilizers.
  • antioxidants phenolic, phosphorous, and sulfur-based
  • infrared absorbers fluorescent brighteners
  • non-thermochromic dyes non-thermochromic pigments
  • non-thermochromic pigments one or more components may be included.
  • thermochromic composition of the present invention can be produced by heating and dissolving an electron-donating color-forming organic compound, an electron-accepting compound, a desensitizer, and, if necessary, other components.
  • the temperature at that time is selected so that the component having the highest melting point out of all the components is dissolved, and is generally in the range of 120 ° C. to 180 ° C.
  • thermochromic composition of the present invention may be encapsulated in microcapsules. Due to the microencapsulation, the problems that arise when the thermochromic composition is used as it is, for example, in ink or plastic moldings, ie, 1) the migration of components to repeat the solid-liquid state change during discoloration. 2) In particular, in the case of ink, vehicle components (resins, solvents, etc.) tend to affect the discoloration and may have an adverse effect. Is avoided or reduced. This is because the microencapsulation blocks the contact with the surrounding atmosphere during use, thereby preventing the influence of substances present in the vicinity.
  • thermochromic composition The microencapsulation of the thermochromic composition can be performed according to the following procedure.
  • the capsule wall raw material and the thermochromic composition are uniformly dissolved in the desensitizer using a dissolution aid as necessary.
  • the solubilizing agent can uniformly dissolve the thermochromic composition and the capsule wall raw material, and does not impair the thermochromic performance or needs to be removed in a subsequent process.
  • an ester solvent, a ketone solvent, an ether solvent, a glycol ether solvent, a hydrocarbon solvent, an aromatic solvent, a nitrogen-containing solvent, a silicon solvent, and a halogen-containing solvent are dissolved.
  • the capsule wall raw material contains a resin main agent and a crosslinking agent.
  • the resin main component is a compound that reacts with a crosslinking agent at the interface of an O / W emulsion having a capsule inclusion as a dispersed phase to form a capsule wall.
  • the crosslinking agent is a compound that reacts with the resin main component at the interface of the O / W emulsion having the capsule inclusion as a dispersed phase to form a capsule wall.
  • a solution containing the capsule wall raw material and the thermochromic composition is added to the aqueous emulsifier solution heated to 30 to 60 ° C. with medium shear stirring. After the addition, high shear stirring is performed to obtain an O / W emulsion having an average particle size of several ⁇ m.
  • An emulsifier is an amphiphilic substance that is adsorbed on the interface of an O / W emulsion having a capsule inclusion as a dispersed phase to stabilize the system.
  • the emulsifier is a natural water-soluble polymer, a synthetic water-soluble polymer, a low molecular surfactant, and inorganic fine particles.
  • the emulsifiers according to the combination of the resin main agent and the crosslinking agent are as follows.
  • the aqueous emulsifier solution is preferably an aqueous solution containing 0.1 to 15% by weight of an emulsifier, and more preferably an aqueous solution containing 0.5 to 8% by weight of an emulsifier. If the concentration of the emulsifier is too high, foaming may occur, and if it is too low, the particle size may increase or emulsification may not be possible.
  • Thermochromic composition 5-50 parts by weight (10-40 parts by weight)
  • Dissolving aid 0 to 100 parts by weight (0 to 40 parts by weight)
  • Emulsifier aqueous solution 100 parts by weight
  • Resin main ingredient 1-50 parts by weight (2-10 parts by weight)
  • Cross-linking agent 0.5 to 25 parts by weight (1 to 5 parts by weight)
  • thermochromic composition If the amount of the thermochromic composition is too large, emulsification may not be possible, and if it is too small, the productivity may deteriorate. If the amount of the solubilizing agent is too large, the productivity may be deteriorated, and if it is too small, the color density may be lowered. If the amount of the resin main component is too large or too small, the reaction may be insufficient and the capsule strength and heat resistance may be reduced. Similarly, if the amount of the crosslinking agent is too large or too small, the reaction may be insufficient and the strength and heat resistance of the capsule may be reduced.
  • thermochromic composition of the present invention can be used to impart reversible thermochromic properties to plastic molded articles such as polyethylene and polypropylene, printing inks, inks, paints, packaging materials, fibers, recording materials, and the like. it can. Or you may use the thermochromic composition of this invention as a coloring agent of a writing instrument and a drawing material (for example, crayon). In that case, the line drawing and painting written or drawn with them can be thermochromic.
  • thermochromic composition of the present invention may be provided in a form encapsulated in microcapsules. Even when microencapsulated, the above-mentioned article can be imparted with thermochromic properties.
  • the microencapsulated thermochromic composition is preferable for imparting thermochromic properties to aqueous emulsion inks, solvent volatile drying inks, two-component curable epoxy resin inks, printing pastes, and ultraviolet curable inks. Used.
  • thermochromic composition was prepared using an electron-donating color-forming organic compound (color former), an electron-accepting compound (developer) and a desensitizer shown in Tables 3-6. Specifically, these three components were heated and dissolved at a temperature in the range of 120 to 180 ° C.
  • thermochromic composition heated to 70-100 ° C.
  • a sample for measurement was prepared by dropping 0.05 g onto 5C filter paper and heating and impregnating at 70 ° C. for 10 minutes.
  • the impregnation condition was 100 ° C. for 10 minutes.
  • the white color proofing of the initial color development state and ground color development state of the obtained measurement sample and the color development state (color density) after storage Evaluation was made by determining the color difference from the plate.
  • the color difference is expressed by the following formula.
  • L * indicates a lightness index
  • a * and b * indicate a chromaticness index. Details are described in the instruction manual of the device (especially page 77). It can be said that the larger the ⁇ E *, the higher the color density or background color density.
  • the measurement of ⁇ E * in the colored state was performed in a ⁇ 5 ° C. cooler box, and the measurement of ⁇ E * in the ground colored (decolored) state was performed on a 100 ° C. hot plate.
  • the color development state after storage was evaluated by measuring ⁇ E * after storing at 32 ° C. for 4 days. From the ⁇ E * before and after storage, the rate of change in color density was calculated according to the following formula.
  • Tables 3 to 6 show the evaluation results of the measurement samples prepared with the discoloration compositions of each Example and each Comparative Example.
  • the melting point of the electron-accepting compound was measured using TG / DTA6220 manufactured by SII Nanotechnology. The measurement was performed at an N2 flow rate of 200 ml / min and a heating rate of 10 ° C./min, and the melting start temperature appearing on the DTA curve was taken as the melting point.
  • Examples 27 to 34 Microcapsules containing a composition selected from the thermochromic compositions prepared in Examples 1 to 26 and Comparative Examples 1 to 20 were produced.
  • the materials and amounts used for the production of the microcapsules are as follows.
  • thermochromic composition and the resin main agent are uniformly dissolved in the solubilizer, and then this solution is added to the aqueous emulsifier solution heated to 60 ° C. with medium shear stirring. did.
  • high shear stirring was performed to obtain an O / W emulsion having an average particle size of several ⁇ m.
  • low shear stirring was performed and the aqueous crosslinking agent solution was gradually added dropwise. After dropping, the mixture was reacted at 60 ° C. for 1 hour and 90 ° C. for 1 hour, cooled to room temperature, and a slurry in which microcapsules were dispersed was obtained.
  • thermochromic composition obtained by cooling a sample for measurement to room temperature, One filter paper was coated with a doctor blade (200 ⁇ m) and dried at room temperature for 2 hours. Using this sample, ⁇ E * was measured in a colored state and a ground colored (decolored) state, and ⁇ E * was measured in a colored state after storage. These measurements were made by the method described in connection with Examples 1-26. Table 8 shows the initial color development and ground color development of each example and each comparative example, the rate of change in color density after storage, and the color density stability over time.
  • Examples and Comparative Examples are reversible thermochromic compositions that can develop a black color at a temperature lower than that at a color change temperature of about 30 ° C. and repeat the change of colorlessness at a higher temperature.
  • Examples 1 to 4 using an electron-accepting compound having a melting point ⁇ 150 ° C. all had an absolute value of the change rate after storage of 10 or less, and showed excellent color density stability over time.
  • Comparative Examples 1 to 6 using only an electron-accepting compound having a melting point> 150 ° C. the absolute value of the change rate of ⁇ E * after storage exceeded 10 in all cases, and the color density greatly changed over time. The stability was low.
  • Examples 9 to 15 in which two types of electron-accepting compounds having a melting point ⁇ 150 ° C. were combined or an electron-accepting compound having a melting point ⁇ 150 ° C. and an electron-accepting compound having a melting point> 150 ° C.
  • the absolute values of the rate of change were 10 or less, indicating excellent color density stability over time.
  • Comparative Examples 13 to 17 in which two kinds of electron accepting compounds having melting points> 150 ° C. were used in combination, the absolute value of the change rate of ⁇ E * after storage exceeded 10 in all cases, and the color density increased with time. Changed and less stable.
  • Example 20 to 22 and 24-26 in which a developer having a melting point ⁇ 150 ° C. was used alone or in combination of two, and an ultraviolet absorber was added, the absolute value of the change rate of ⁇ E * after storage was 10 or less. Yes, it showed excellent color density stability over time.
  • Comparative Example 20 using a developer having a melting point> 150 ° C. and adding an ultraviolet absorber the absolute value of the change rate of ⁇ E * after storage exceeds 10, and the color density increases with time. Changed and less stable.
  • Example 23 in which two kinds of electron-donating color-forming organic compounds were used in combination and an electron-accepting compound having a melting point ⁇ 150 ° C. was used, the absolute value of the change rate of ⁇ E * after storage was 10 or less.
  • thermochromic composition Examples 1, 3, 5, 7, 23 to 26
  • the change rate of ⁇ E * after storage The absolute values of these were all 10 or less, indicating excellent color density stability over time.
  • Comparative Examples 21 to 24 in which the thermochromic compositions of Comparative Examples 5, 11, 19, and 20 were microencapsulated, the absolute value of the change rate of ⁇ E * after storage exceeded 10 in all cases. As time passed, the color density changed greatly and the stability was low.
  • thermochromic composition of the present invention can be reversibly discolored and has excellent color density stability over time, so that it can be used for textiles, inks, paints, ceramics, glass products, plastic moldings, packaging materials, It can be used as a colorant for imparting reversible thermochromic properties to recording materials and printed matter.

Abstract

Disclosed is a thermochromic composition which is reversibly thermochromic and has excellent developed color density stability over time. The thermochromic composition contains an electron-donating coloring organic compound, an electron-accepting compound and a desensitizer.  One or more compounds represented by a specific general formula and having two aromatic rings and a melting point of not more than 150°C are used as the electron-accepting compound. As a result, the thermochromic composition exhibits excellent developed color density stability over time.  Consequently, the thermochromic composition is suitable for applications where a developed color needs to last for a long time, and can be used, for example, as a coloring agent which provides fiber products, inks, coating materials, potteries, glass products, plastic molded bodies, packaging materials, recording materials and printed matter, with reversible thermochromism.

Description

熱変色性組成物および熱変色性マイクロカプセルThermochromic composition and thermochromic microcapsule
 本発明は、可逆性を有する熱変色性組成物および当該熱変色性組成物を内包した熱変色性マイクロカプセルに関する。 The present invention relates to a thermochromic composition having reversibility and a thermochromic microcapsule containing the thermochromic composition.
 電子供与性呈色性有機化合物、電子受容性化合物、および減感剤を含む熱変色性組成物は、既に提案され、また、実用に供せられている。最近では、さらに高品質の熱変色性組成物を得るために、いずれか1または複数の成分を特定の化合物とすることが、提案されている。例えば、特許文献1(特開平6-88070号公報)においては、発色濃度、地発色および変色色差の点で優れている熱変色性組成物として、電子供与性呈色性有機化合物、電子受容性化合物、および特定の一般式で表されるカルバゾール誘導体から選ばれる少なくとも1種の減感剤を含有する熱変色性組成物が提案されている。特許文献2(特開2000-297277号公報)においては、諸堅牢度、特に耐水性が向上され、発色時の色濃度が高く、かつ毒性の低い可逆感温変色性組成物として、ロイコ色素、および特定の一般式で示される顕色性物質から成る組成物が提案されている。 A thermochromic composition containing an electron-donating color-forming organic compound, an electron-accepting compound, and a desensitizer has already been proposed and put to practical use. Recently, in order to obtain a higher quality thermochromic composition, it has been proposed to use any one or more components as a specific compound. For example, in Patent Document 1 (Japanese Patent Application Laid-Open No. 6-88070), as a thermochromic composition that is excellent in terms of color density, background color development, and color change, an electron-donating color-forming organic compound, electron-accepting property is disclosed. There has been proposed a thermochromic composition containing a compound and at least one desensitizer selected from carbazole derivatives represented by a specific general formula. In Patent Document 2 (Japanese Patent Application Laid-Open No. 2000-297277), as a reversible thermochromic composition having improved fastness, particularly water resistance, high color density at the time of color development and low toxicity, And a composition comprising a developer having a specific general formula has been proposed.
 特許文献3(特開2001-294783号公報)においては、変色感度を損なうことなく、しかも永続的な可逆熱変色性を示すと共に、効率的な紫外線硬化性を有する可逆熱変色性紫外線硬化型インキとして、可逆熱変色性組成物、および特定の一般式で示される耐光性付与剤を内包したマイクロカプセル顔料を紫外線吸収剤および光重合開始剤を含有する光重合性組成物中に分散してなるインキが提案されている。特許文献4(特開2001-31884号公報)には、耐熱性に富む可逆熱変色性顔料として、電子供与性呈色性有機化合物、特定の一般式で示され、分子量250以上のビスフェノール化合物である電子受容性化合物、および変色温度調節剤を含む顔料が提案されている。特許文献5(特開2003-119309号公報)においては、特許文献4に記載の顔料を内包した可逆熱変色性マイクロカプセル顔料と、ポリオレフィン系樹脂と、発泡剤とから成る可逆熱変色性発泡体が提案されている。 Patent Document 3 (Japanese Patent Laid-Open No. 2001-29483) discloses a reversible thermochromic UV curable ink that exhibits permanent reversible thermochromic properties without impairing the color change sensitivity and has an efficient UV curable property. As a reversible thermochromic composition and a microcapsule pigment encapsulating a light fastness-imparting agent represented by a specific general formula are dispersed in a photopolymerizable composition containing an ultraviolet absorber and a photopolymerization initiator. Inks have been proposed. Patent Document 4 (Japanese Patent Laid-Open No. 2001-31884) discloses an electron-donating color-changing organic compound, a specific general formula, and a bisphenol compound having a molecular weight of 250 or more as a reversible thermochromic pigment rich in heat resistance. A pigment containing an electron-accepting compound and a color-change temperature adjusting agent has been proposed. In Patent Document 5 (Japanese Patent Laid-Open No. 2003-119309), a reversible thermochromic foam comprising a reversible thermochromic microcapsule pigment encapsulating the pigment described in Patent Document 4, a polyolefin resin, and a foaming agent. Has been proposed.
特開平6-88070号公報JP-A-6-88070 特開2000-297277号公報JP 2000-297277 A 特開2001-294783号公報Japanese Patent Laid-Open No. 2001-294783 特開2001-31884号公報JP 2001-31884 A 特開2003-119309号公報JP 2003-119309 A
 熱変色性組成物は、所定の温度を境に発色/消色する性質を有するだけでなく、発色した後に時間が経っても、その濃度(発色濃度)が変化しにくい性質、即ち、発色濃度経時安定性を有することが、場合により、求められる。例えば、熱変色性組成物を発色させた状態を、長時間保持する用途(例えば、コップおよびマグカップ等の食器類の装飾)において、熱変色性組成物の発色濃度経時安定性が低いと、所定の柄および文字等が見えにくくなる等、見た目が変化して好ましくない。したがって、前記用途において使用する熱変色性組成物には、高い発色濃度経時安定性が要求される。 The thermochromic composition not only has the property of developing / decoloring at a predetermined temperature, but also has the property that its density (color density) does not easily change over time after color development, that is, the color density. It is sometimes required to have stability over time. For example, in applications where the thermochromic composition is colored for a long period of time (for example, decoration of tableware such as cups and mugs), the color density of the thermochromic composition is low and the stability over time is predetermined. It is not preferable because the appearance and the characters are difficult to see. Accordingly, the thermochromic composition used in the above applications is required to have high color density stability over time.
 本発明は、かかる実情に鑑みてなされたものであり、発色濃度経時安定性に優れた、熱変色性組成物を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object thereof is to provide a thermochromic composition having excellent color density stability over time.
 本発明は、電子供与性呈色性有機化合物、電子受容性化合物、および減感剤を含み、電子受容性化合物として、下記一般式(1)~(3)のいずれかで示され、かつ融点が150℃以下である化合物を1種または複数種含む、熱変色性組成物を提供する。 The present invention includes an electron-donating color-forming organic compound, an electron-accepting compound, and a desensitizer. The electron-accepting compound is represented by any one of the following general formulas (1) to (3) and has a melting point A thermochromic composition comprising one or more compounds having a temperature of 150 ° C. or lower is provided.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(一般式(1)~(3)において、R1およびR2はそれぞれ独立して、水素原子、炭素数1~4の直鎖もしくは分岐アルキル基、フェニル基、シクロへキシル基であり、X、YおよびZはそれぞれ独立して、ハロゲン、OH基、アルコキシ基、アルコキシアリル基、アリル基、炭素数1~4の直鎖もしくは分岐アルキル基、フェニル基、またはシクロへキシル基であり、Cは、置換基を有してもよい炭素数5~8のシクロアルカンまたは置換基を有してもよいフルオレン環である。) (In the general formulas (1) to (3), R1 and R2 are each independently a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, a phenyl group, a cyclohexyl group, and X, Y And Z are each independently a halogen, an OH group, an alkoxy group, an alkoxyallyl group, an allyl group, a linear or branched alkyl group having 1 to 4 carbon atoms, a phenyl group, or a cyclohexyl group, and C is A C5-C8 cycloalkane which may have a substituent or a fluorene ring which may have a substituent.
 本発明の熱変色性組成物は、電子受容性化合物、すなわち、顕色剤として、特定の化学式で示され、かつ融点が150℃以下である化合物(以下、便宜的に「低融点顕色剤」と呼ぶ)を使用することを特徴とする。低融点顕色剤を使用することにより、発色性および消色性に優れ、かつ発色濃度経時安定性に優れた、可逆性の熱変色性組成物を得ることができる。 The thermochromic composition of the present invention is an electron-accepting compound, that is, a compound represented by a specific chemical formula and having a melting point of 150 ° C. or lower (hereinafter referred to as “low-melting color developer for convenience”). Is used). By using a low melting point developer, a reversible thermochromic composition having excellent color developability and decoloring property and excellent color density stability with time can be obtained.
 本発明はまた、上記熱変色性組成物が、顕色剤として、上記一般式(1)~(3)のいずれかで示され、かつ融点が150℃よりも高い化合物(以下、便宜的に「高融点顕色剤」と呼ぶ)をさらに含む、熱変色性組成物を提供する。高融点顕色剤は、1種または複数種含まれてよい。 In the present invention, the thermochromic composition is a compound represented by any one of the above general formulas (1) to (3) as a developer and having a melting point higher than 150 ° C. (hereinafter, for convenience) There is provided a thermochromic composition further comprising a “high melting point developer”. One or more high melting point developers may be included.
 本発明の熱変色性組成物は、低融点顕色剤が含まれる限りにおいて、高融点顕色剤が含まれている場合でも、優れた発色濃度経時安定性を示す。高融点顕色剤を使用することによって、それが有する特性(例えば、高発色性または高消色性)を利用するとともに、低融点顕色剤により、発色濃度経時安定性を向上させることができる。 The thermochromic composition of the present invention shows excellent color density stability over time as long as a low melting point developer is contained, even when a high melting point developer is contained. By using a high melting point developer, it is possible to utilize the characteristics (for example, high color developability or high decoloring property) and to improve the color density stability over time by using the low melting point developer. .
 本発明はまた、上記本発明の熱変色性組成物がマイクロカプセルに内包された、熱変色性マイクロカプセルを提供する。マイクロカプセルに熱変色性組成物が内包されると、周囲に存在する物質による影響を受けにくくなる。 The present invention also provides a thermochromic microcapsule in which the thermochromic composition of the present invention is encapsulated. When the thermochromic composition is encapsulated in the microcapsules, the microcapsules are less susceptible to the influence of substances present in the surroundings.
 本発明の熱変色性組成物は、上記特定の一般式で示され、かつ融点が150℃以下である化合物を顕色剤として使用することにより、優れた発色濃度経時安定性を発揮する。よって、本発明の熱変色性組成物は、発色させた状態を長時間維持する用途に適しており、例えば、繊維製品、インキ、塗料、陶器、ガラス製品、プラスチック成形体、包装材料、記録材料、および印刷物に、可逆的な熱変色性を付与するための着色剤として使用することができる。 The thermochromic composition of the present invention exhibits excellent color density concentration stability over time by using a compound represented by the above specific formula and having a melting point of 150 ° C. or less as a developer. Therefore, the thermochromic composition of the present invention is suitable for applications in which a colored state is maintained for a long time. For example, textile products, inks, paints, pottery, glass products, plastic moldings, packaging materials, recording materials And as a colorant for imparting reversible thermochromic properties to printed matter.
 本発明の熱変色性組成物(以下、単に「組成物」と呼ぶことがある)は、電子供与性呈色性有機化合物、電子受容性化合物および減感剤を含み、電子受容性化合物として、特定の一般式で示され、かつ150℃以下の融点を有する化合物を少なくとも一種含む。以下に、本発明の熱変色性組成物を構成する成分について説明する。 The thermochromic composition of the present invention (hereinafter sometimes simply referred to as “composition”) includes an electron-donating color-forming organic compound, an electron-accepting compound, and a desensitizer, It contains at least one compound represented by a specific general formula and having a melting point of 150 ° C. or lower. Below, the component which comprises the thermochromic composition of this invention is demonstrated.
 [電子供与性呈色性有機化合物]
 電子供与性呈色性有機化合物は、発色剤とも呼ばれ、電子受容性化合物と反応して呈色する。電子供与性呈色性有機化合物として、公知の化合物を、任意に使用してよい。具体的には、フルオラン類、フルオレン類、ジフェニルメタンフタリド類、ジフェニルメタンアザフタリド類、インドリルフタリド類、フェニルインドリルフタリド類、フェニルインドリルアザフタリド類、スチリルキノリン類、ジアザローダミンラクトン類、ピリジン系化合物、キナゾリン系化合物、ビスキナゾリン系化合物、エチレノフタリド系化合物、およびエチレノアザフタリド系化合物が、電子供与性呈色性有機化合物として挙げられる。
電子供与性呈色性有機化合物は、2種以上混合して使用してよい。
[Electron-donating colored organic compound]
The electron-donating color-forming organic compound is also called a color former and reacts with the electron-accepting compound to give a color. A known compound may be arbitrarily used as the electron-donating color-forming organic compound. Specifically, fluorans, fluorenes, diphenylmethane phthalides, diphenylmethane azaphthalides, indolyl phthalides, phenyl indolyl phthalides, phenyl indolyl azaphthalides, styrylquinolines, diazarhodamines Lactones, pyridine compounds, quinazoline compounds, bisquinazoline compounds, ethylenophthalide compounds, and ethylenoazaphthalide compounds are examples of electron donating color-forming organic compounds.
Two or more kinds of electron-donating color-forming organic compounds may be used in combination.
 電子供与性呈色性有機化合物は、好ましくは、2-(2-クロロアニリノ)-6-ジブチルアミノフルオラン、 3,6-ビス(ジフェニルアミノ)フルオランである。 The electron donating color-forming organic compound is preferably 2- (2-chloroanilino) -6-dibutylaminofluorane or 3,6-bis (diphenylamino) fluorane.
 電子供与性呈色性有機化合物の含有率は、組成物全部の重量を基準としたときに、0.1重量%~50重量%であることが好ましく、0.8重量%~15重量%であることがより好ましい。電子供与性呈色性有機化合物の含有率が小さい場合には、発色濃度が低くなることがあり、含有率が大きい場合には、地発色(消色状態での発色濃度)が大きくなることがある。 The content of the electron-donating color-forming organic compound is preferably 0.1% by weight to 50% by weight, based on the weight of the entire composition, and 0.8% by weight to 15% by weight. More preferably. When the content of the electron-donating color-forming organic compound is small, the color density may be low. When the content is high, the background color (color density in the decolored state) may be large. is there.
 [電子受容性化合物]
 電子受容性化合物は、顕色剤とも呼ばれ、電子供与性呈色性有機化合物と反応して呈色する化合物であり、具体的には、活性プロトンを有する化合物、偽酸性化合物、または電子空孔を有する化合物である。さらに、本発明においては、下記一般式(1)~(3)のいずれかで示され、かつ融点が150℃以下である化合物(低融点顕色剤)を、電子受容性化合物として使用する。
[Electron-accepting compound]
The electron-accepting compound is also called a color developer, and is a compound that reacts with an electron-donating color-forming organic compound to develop a color. A compound having pores. Furthermore, in the present invention, a compound (low melting color developer) represented by any one of the following general formulas (1) to (3) and having a melting point of 150 ° C. or lower is used as the electron accepting compound.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 一般式(1)~(3)において、R1およびR2はそれぞれ独立して、水素原子、炭素数1~4の直鎖もしくは分岐アルキル基、フェニル基、シクロへキシル基であり、X、YおよびZはそれぞれ独立して、ハロゲン、OH基、アルコキシ基、アルコキシアリル基、アリル基、炭素数1~4の直鎖もしくは分岐アルキル基、フェニル基、またはシクロへキシル基であり、Cは、置換基を有してもよい炭素数5~8のシクロアルカンまたは置換基を有してもよいフルオレン環である。 In the general formulas (1) to (3), R1 and R2 are each independently a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, a phenyl group, a cyclohexyl group, and X, Y and Z is independently halogen, OH group, alkoxy group, alkoxyallyl group, allyl group, straight or branched alkyl group having 1 to 4 carbon atoms, phenyl group, or cyclohexyl group, and C is substituted A cycloalkane having 5 to 8 carbon atoms which may have a group or a fluorene ring which may have a substituent.
 一般式(2)において、Cを含む弧は、2つの芳香族環に結合している炭素原子が、シクロアルカンを構成する炭素原子であることを意味する。したがって、一般式(2)において、Cが炭素数6のシクロアルカン(即ち、シクロヘキサン)である場合、一般式(2)は下記式のように表される。 In general formula (2), an arc containing C means that the carbon atom bonded to the two aromatic rings is a carbon atom constituting a cycloalkane. Accordingly, in the general formula (2), when C is a cycloalkane having 6 carbon atoms (that is, cyclohexane), the general formula (2) is represented by the following formula.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 より具体的には、p-クミルフェノール、ビス(4-ヒドロキシフェニル)エタン、4-ヒドロキシ-4’-イソプロポキシジフェニルスルホン、4-ヒドロキシ-4’-メトキシジフェニルスルホン、2,2’-ジアリル-4,4’ジヒドロキシジフェニルスルホンおよび1,1-ビス(4-ヒドロキシフェニル)シクロヘキサンが、電子受容性化合物として好ましく使用される。特に、2,2’-ジアリル-4,4’ジヒドロキシジフェニルスルホンおよび4-ヒドロキシ-4’-イソプロポキシジフェニルスルホンは、耐熱性に優れており、例えば、熱可塑性樹脂へ練り込んで使用するのに適している。 More specifically, p-cumylphenol, bis (4-hydroxyphenyl) ethane, 4-hydroxy-4′-isopropoxydiphenylsulfone, 4-hydroxy-4′-methoxydiphenylsulfone, 2,2′-diallyl -4,4'dihydroxydiphenylsulfone and 1,1-bis (4-hydroxyphenyl) cyclohexane are preferably used as the electron-accepting compound. In particular, 2,2′-diallyl-4,4′dihydroxydiphenylsulfone and 4-hydroxy-4′-isopropoxydiphenylsulfone are excellent in heat resistance. For example, kneaded into a thermoplastic resin. Is suitable.
 低融点顕色剤を電子受容性化合物として使用すると、発色濃度経時安定性に優れた組成物を得ることが可能となる。その理由は定かではないが、融点の低い顕色剤は、電子供与性呈色性有機化合物との結晶分離を起こしにくいためであると考えられる。 When a low melting point developer is used as the electron accepting compound, it is possible to obtain a composition having excellent color density stability over time. The reason for this is not clear, but it is considered that the developer having a low melting point is less likely to cause crystal separation from the electron-donating color-forming organic compound.
 上記特定の3つの一般式のいずれかで示され、かつ融点が150℃以下である化合物は1種類または複数種を混合して使用してよい。複数種の化合物を混合することにより、各化合物の特性を利用して、より良好な特性を有する熱変色性組成物を得ることができる。 The compound represented by any one of the above three general formulas and having a melting point of 150 ° C. or lower may be used alone or in combination. By mixing a plurality of types of compounds, a thermochromic composition having better characteristics can be obtained utilizing the characteristics of each compound.
 あるいは、前記特定の一般式および前記特定の融点を有する化合物を少なくとも1種類使用する限りにおいて、上記特定の3つの一般式のいずれかで示され、かつ融点が150℃を超える化合物(高融点顕色剤)を、電子受容性化合物として使用してよい。高融点化合物は、一般に、耐熱性に優れている。したがって、低融点化合物と高融点化合物とを組み合わせて使用することにより、発色濃度経時安定性に優れ、かつ耐熱性に優れた組成物を得ることができる。 Alternatively, as long as at least one compound having the specific general formula and the specific melting point is used, the compound represented by any one of the above three general formulas and having a melting point exceeding 150 ° C. Colorants) may be used as electron accepting compounds. High melting point compounds are generally excellent in heat resistance. Therefore, by using a combination of a low melting point compound and a high melting point compound, it is possible to obtain a composition having excellent color density stability over time and excellent heat resistance.
 高融点化合物として、具体的には、4-ヒドロキシ-4’-プロポキシジフェニルスルホン、1,1-ビス(4-ヒドロキシフェニル)-1-イソブチルエタン、2,2-ビス(4-ヒドロキシフェニル)プロパン、4-ヒドロキシ-4’-アリルオキシジフェニルスルホン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、およびビスクレゾールフルオレンが好ましく用いられる。特に、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、ビスクレゾールフルオレン、4-ヒドロキシ-4’-アリルオキシジフェニルスルホン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサンおよび4-ヒドロキシ-4’-プロポキシジフェニルスルホンは、耐熱性に優れており、例えば、熱可塑性樹脂へ練り込んで使用するのに適している。 Specific examples of the high melting point compound include 4-hydroxy-4′-propoxydiphenyl sulfone, 1,1-bis (4-hydroxyphenyl) -1-isobutylethane, and 2,2-bis (4-hydroxyphenyl) propane. 4-hydroxy-4′-allyloxydiphenyl sulfone, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, and biscresol fluorene are preferably used. In particular, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, biscresol fluorene, 4-hydroxy-4'-allyloxydiphenyl sulfone, 1,1-bis (4-hydroxyphenyl) cyclohexane and 4- Hydroxy-4'-propoxydiphenyl sulfone has excellent heat resistance, and is suitable for use in, for example, kneading into a thermoplastic resin.
 電子受容性化合物の含有率は、組成物全部の重量を基準としたときに、0.05重量%~98重量%であることが好ましく、0.5重量%~77重量%であることがより好ましい。電子受容性化合物の含有率が小さい場合には、発色濃度が低くなることがあり、含有率が大きい場合には、地発色が大きくなることがある。また、電子受容性化合物は、電子供与性呈色性有機化合物1重量部に対して、0.1~100重量部の量で含まれることが好ましく、0.5~20重量部の量で含まれることがより好ましい。 The content of the electron-accepting compound is preferably 0.05% by weight to 98% by weight, more preferably 0.5% by weight to 77% by weight, based on the weight of the entire composition. preferable. When the content of the electron-accepting compound is small, the color density may be low, and when the content is high, the background color may be large. The electron-accepting compound is preferably contained in an amount of 0.1 to 100 parts by weight, preferably 0.5 to 20 parts by weight, with respect to 1 part by weight of the electron-donating color-forming organic compound. More preferably.
 低融点顕色剤および高融点顕色剤の両方を含む場合には、両者は、重量比で、1:99~99:1(低融点顕色剤:高融点顕色剤)となるように混合されることが好ましく、10:90~90:10となるように混合されることがより好ましい。低融点顕色剤の割合が大きすぎると、高融点顕色剤による耐熱性を得られないことがあり、低融点顕色剤の割合が小さすぎると、良好な発色濃度経時安定性を得られないことがある。 When both the low-melting color developer and the high-melting color developer are included, the weight ratio thereof is 1:99 to 99: 1 (low-melting color developer: high-melting color developer). It is preferable that they are mixed, and it is more preferable that they are mixed so as to be 10:90 to 90:10. If the proportion of the low melting point developer is too large, heat resistance by the high melting point developer may not be obtained. If the proportion of the low melting point developer is too small, good color density stability over time can be obtained. There may not be.
 [減感剤]
 減感剤は、電子供与性呈色性有機化合物および電子受容性化合物を溶解させることができ、その凝固または融解特性によって、呈色反応を制御することができる化合物である。
本発明においては、例えば、汎用されている減感剤を選択することによって、-10℃~60℃で変色するようにできる。具体的には、難揮発性疎水性有機媒体(または溶剤もしくは溶媒)が、減感剤として使用される。
[Desensitizer]
The desensitizer is a compound that can dissolve the electron-donating color-forming organic compound and the electron-accepting compound, and can control the color reaction by the solidification or melting characteristics thereof.
In the present invention, for example, the color can be changed at −10 ° C. to 60 ° C. by selecting a commonly used desensitizer. Specifically, a hardly volatile hydrophobic organic medium (or solvent or solvent) is used as a desensitizer.
 より具体的には、減感剤として、炭素数10以上の脂肪族1価アルコール、炭素数10以上の脂肪酸、炭素数6以上の脂肪酸モノアミド、および総炭素数13以上のエステル化合物を挙げることができる More specifically, examples of the desensitizer include aliphatic monohydric alcohols having 10 or more carbon atoms, fatty acids having 10 or more carbon atoms, fatty acid monoamides having 6 or more carbon atoms, and ester compounds having 13 or more carbon atoms in total. it can
 また、汎用減感剤として使用されている、脂肪族、芳香族および脂環式の1塩基酸と、脂肪族、芳香族および脂環式のいずれかの1価アルコールとの任意の組合せから構成される、総炭素数13以上のエステル化合物であって、下記の形態のものを、本発明において使用することができる。
・汎用減感剤の酸が多塩基酸であるもの。
・汎用減感剤のアルコールが多価アルコールであるもの。
・汎用減感剤の酸が多塩基酸で、アルコールが多価アルコールであるもの。
Further, it is composed of an arbitrary combination of an aliphatic, aromatic and alicyclic monobasic acid and any one of an aliphatic, aromatic and alicyclic monohydric alcohol used as a general-purpose desensitizer. An ester compound having a total carbon number of 13 or more and having the following form can be used in the present invention.
-The general-purpose desensitizer acid is a polybasic acid.
-The general-purpose desensitizer alcohol is a polyhydric alcohol.
-The general-purpose desensitizer acid is a polybasic acid and the alcohol is a polyhydric alcohol.
 あるいはまた、汎用減感剤である、総炭素数10以上の脂肪族ケトン化合物、および総炭素数10以上の脂肪族エーテル化合物を、本発明において、使用することができる。 Alternatively, an aliphatic ketone compound having a total carbon number of 10 or more and an aliphatic ether compound having a total carbon number of 10 or more, which are general-purpose desensitizers, can be used in the present invention.
 さらにより具体的には、減感剤として、ラウリン酸メチル、ラウリン酸アミド、ミリスチン酸メチル、パルミチン酸アミド、パルミチン酸メチル、ミリスチン酸アミド、ステアリン酸メチル、ステアリン酸アミド、ベヘニン酸メチル、およびベヘニン酸アミドを挙げることができる。 Even more specifically, as a desensitizer, methyl laurate, lauric acid amide, methyl myristate, palmitic acid amide, methyl palmitate, myristic acid amide, stearic acid methyl, stearic acid amide, methyl behenic acid, and behenine Mention may be made of acid amides.
 減感剤の含有率は、組成物全部の重量を基準としたときに、1重量%~99重量%であることが好ましく、19重量%~99重量%であることがより好ましい。電子供与性呈色性有機化合物の含有率が小さい場合には、地発色が大きくなることがあり、含有率が大きい場合には、発色濃度が低くなることがある。また、減感剤は、電子供与性呈色性有機化合物1重量部に対して、1~500重量部の量で含まれることが好ましく、5~100重量部の量で含まれることがより好ましい。 The content of the desensitizer is preferably 1% by weight to 99% by weight, and more preferably 19% by weight to 99% by weight, based on the weight of the entire composition. When the content of the electron-donating color-forming organic compound is small, the background color may increase, and when the content is large, the color density may decrease. Further, the desensitizer is preferably contained in an amount of 1 to 500 parts by weight, more preferably 5 to 100 parts by weight with respect to 1 part by weight of the electron donating color-forming organic compound. .
 本発明の熱変色性組成物は、通常の熱変色性組成物に含まれる、その他の成分を含んでよい。以下、その他の成分について説明する。 The thermochromic composition of the present invention may contain other components contained in a normal thermochromic composition. Hereinafter, other components will be described.
 [紫外線吸収剤]
 本発明の組成物は、紫外線吸収剤を含んでよい。紫外線吸収剤は、太陽光に含まれる紫外線を選択的に吸収するものである。紫外線は、発色剤を、光反応により劣化させる。紫外線吸収剤はこれを防止するために用いられる。
[Ultraviolet absorber]
The composition of the present invention may contain an ultraviolet absorber. The ultraviolet absorber selectively absorbs ultraviolet rays contained in sunlight. Ultraviolet rays cause the color former to deteriorate by photoreaction. UV absorbers are used to prevent this.
 紫外線吸収剤は、ベンゾフェノン系、ベンゾトリアゾール系、シアノアクリレート系、トリアジン系、サリチル酸系、シュウ酸アニリド系、マロン酸エステル系、安息香酸系、ケイ皮酸系、およびジベンゾイルメタン系に大別される。より具体的には、ベンゾトリアゾール系のTinuvin326、トリアジン系のTinuvin40(いずれも、チバスペシャルティケミカルズ製)、ベンゾフェノン系のサイアソーブUV531(サイテックインダストリーズ製)を使用することができる。 UV absorbers are broadly classified into benzophenone, benzotriazole, cyanoacrylate, triazine, salicylic acid, oxalic anilide, malonic ester, benzoic acid, cinnamic acid, and dibenzoylmethane. The More specifically, benzotriazole-based Tinuvin 326, triazine-based Tinuvin 40 (both manufactured by Ciba Specialty Chemicals), and benzophenone-based Siasorb UV531 (manufactured by Cytec Industries) can be used.
 紫外線吸収剤の含有率は、組成物全部の重量を基準としたときに、96重量%までであることが好ましく、61重量%までであることがより好ましい。紫外線吸収剤の含有率が大きい場合には、発色濃度が低くなる、変色がシャープでなくなる、および/または変色温度ヒステリシスが大きくなることがある。また、紫外線吸収剤は、電子供与性呈色性有機化合物1重量部に対して、50重量部までの量で含まれることが好ましく、10重量部までの量で含まれることがより好ましい。 The content of the ultraviolet absorber is preferably up to 96% by weight, and more preferably up to 61% by weight, based on the weight of the entire composition. When the content of the ultraviolet absorber is large, the color density may be lowered, discoloration may not be sharp, and / or discoloration temperature hysteresis may be increased. Moreover, it is preferable that an ultraviolet absorber is contained in the quantity up to 50 weight part with respect to 1 weight part of electron-donating colorable organic compounds, and it is more preferable that it is contained in the quantity up to 10 weight part.
 [紫外線散乱剤]
 本発明の組成物は、紫外線散乱剤を含んでよい。紫外線散乱剤は、太陽光に含まれる紫外線を物理的に反射又は散乱させる。その結果、紫外線の発色剤への作用が防止される。
紫外線散乱剤は、例えば、酸化亜鉛、酸化チタン、α-酸化鉄、および酸化セリウム等の金属酸化物微粒子である。
[Ultraviolet scattering agent]
The composition of the present invention may contain an ultraviolet scattering agent. The ultraviolet scattering agent physically reflects or scatters ultraviolet rays contained in sunlight. As a result, the action of ultraviolet rays on the color former is prevented.
The ultraviolet scattering agent is, for example, metal oxide fine particles such as zinc oxide, titanium oxide, α-iron oxide, and cerium oxide.
 [光安定剤]
 本発明の組成物は、光安定剤を含んでよい。光安定剤は、紫外線によって発生するラジカルと発色剤とが反応して、発色剤が劣化することを防止する。具体的には、ヒンダードフェノールまたはヒンダードアミンを、光安定剤として使用してよい。
[Light stabilizer]
The composition of the present invention may contain a light stabilizer. The light stabilizer prevents the coloring agent from deteriorating due to the reaction between the radicals generated by ultraviolet rays and the coloring agent. Specifically, hindered phenols or hindered amines may be used as light stabilizers.
 [その他]
 上記に示した成分以外の成分として、酸化防止剤(フェノール系、リン系、および硫黄系等)、赤外線吸収剤、蛍光増白剤、非熱変色性染料、および非熱変色性顔料のいずれか一または複数の成分を含んでよい。
[Others]
As a component other than the components shown above, any of antioxidants (phenolic, phosphorous, and sulfur-based), infrared absorbers, fluorescent brighteners, non-thermochromic dyes, and non-thermochromic pigments One or more components may be included.
 次に、本発明の熱変色性組成物の製造方法を説明する。本発明の組成物は、電子供与性呈色性有機化合物、電子受容性化合物および減感剤、ならびに必要に応じて他の成分を、加熱溶解して製造することができる。その際の温度は、全成分のうち最も融点の高い成分が溶解するように選択され、一般には、120℃~180℃の範囲内にある。 Next, a method for producing the thermochromic composition of the present invention will be described. The composition of the present invention can be produced by heating and dissolving an electron-donating color-forming organic compound, an electron-accepting compound, a desensitizer, and, if necessary, other components. The temperature at that time is selected so that the component having the highest melting point out of all the components is dissolved, and is generally in the range of 120 ° C. to 180 ° C.
 あるいは、本発明の熱変色性組成物は、マイクロカプセルに内包させてよい。マイクロカプセル化により、熱変色性組成物をそのまま、例えば、インキまたはプラスチック成形体において使用する場合に生じる問題、即ち、1)変色の際に、固体-液体の状態変化を繰り返すため、成分のマイグレーションが起こりやすく、可逆的な変色性が持続する寿命が短くなる、2)特にインキの場合、ビヒクル成分(樹脂、溶剤等)が変色性に影響を及ぼしやすく、悪影響を及ぼすことがある、という問題が、回避または軽減される。マイクロカプセル化により、使用する際に周りの雰囲気との接触が遮断されることになるので、周辺に存在する物質による影響を防止できるからである。 Alternatively, the thermochromic composition of the present invention may be encapsulated in microcapsules. Due to the microencapsulation, the problems that arise when the thermochromic composition is used as it is, for example, in ink or plastic moldings, ie, 1) the migration of components to repeat the solid-liquid state change during discoloration. 2) In particular, in the case of ink, vehicle components (resins, solvents, etc.) tend to affect the discoloration and may have an adverse effect. Is avoided or reduced. This is because the microencapsulation blocks the contact with the surrounding atmosphere during use, thereby preventing the influence of substances present in the vicinity.
 熱変色性組成物のマイクロカプセル化は次の手順に従って実施できる。まず、溶解助剤を必要に応じて用いて、カプセル壁原料と熱変色性組成物を、減感剤に均一に溶解させる。溶解助剤は、熱変色性組成物とカプセル壁原料を均一に溶解させることができ、熱変色性能を阻害しないこと、または後工程で取り除けることを要する。具体的には、エステル系溶剤、ケトン系溶剤、エーテル系溶剤、グリコールエーテル系溶剤、炭化水素系溶剤、芳香族系溶剤、含窒素系溶剤、シリコン系溶剤、および含ハロゲン系溶剤を、溶解助剤として使用できる。より具体的には、酢酸エチル、アセトン、およびメチルエチルケトンが、好ましく用いられる。 The microencapsulation of the thermochromic composition can be performed according to the following procedure. First, the capsule wall raw material and the thermochromic composition are uniformly dissolved in the desensitizer using a dissolution aid as necessary. The solubilizing agent can uniformly dissolve the thermochromic composition and the capsule wall raw material, and does not impair the thermochromic performance or needs to be removed in a subsequent process. Specifically, an ester solvent, a ketone solvent, an ether solvent, a glycol ether solvent, a hydrocarbon solvent, an aromatic solvent, a nitrogen-containing solvent, a silicon solvent, and a halogen-containing solvent are dissolved. Can be used as an agent. More specifically, ethyl acetate, acetone, and methyl ethyl ketone are preferably used.
 カプセル壁原料は、樹脂主剤および架橋剤を含む。樹脂主剤は、カプセル内包物を分散相とするO/Wエマルションの界面で架橋剤と反応し、カプセル壁を形成する化合物である。架橋剤は、カプセル内包物を分散相とするO/Wエマルションの界面で樹脂主剤と反応し、カプセル壁を形成する化合物である。 The capsule wall raw material contains a resin main agent and a crosslinking agent. The resin main component is a compound that reacts with a crosslinking agent at the interface of an O / W emulsion having a capsule inclusion as a dispersed phase to form a capsule wall. The crosslinking agent is a compound that reacts with the resin main component at the interface of the O / W emulsion having the capsule inclusion as a dispersed phase to form a capsule wall.
 樹脂主剤および架橋剤の組み合わせの例は、次のとおりである。 Examples of combinations of the resin main agent and the crosslinking agent are as follows.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 次に、30~60℃に加温した乳化剤水溶液中に、中せん断撹拌しながら、カプセル壁原料と熱変色性組成物とを含む溶液を添加する。添加後、高せん断撹拌を行い、平均粒径数μmのO/Wエマルションを得る。乳化剤は、カプセル内包物を分散相とするO/Wエマルションの界面に吸着して、系を安定化させる両親媒性物質である。乳化剤は、具体的には、天然水溶性高分子、合成水溶性高分子、低分子界面活性剤、および無機微粒子である。樹脂主剤および架橋剤の組み合わせに応じた、乳化剤は次のとおりである。 Next, a solution containing the capsule wall raw material and the thermochromic composition is added to the aqueous emulsifier solution heated to 30 to 60 ° C. with medium shear stirring. After the addition, high shear stirring is performed to obtain an O / W emulsion having an average particle size of several μm. An emulsifier is an amphiphilic substance that is adsorbed on the interface of an O / W emulsion having a capsule inclusion as a dispersed phase to stabilize the system. Specifically, the emulsifier is a natural water-soluble polymer, a synthetic water-soluble polymer, a low molecular surfactant, and inorganic fine particles. The emulsifiers according to the combination of the resin main agent and the crosslinking agent are as follows.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 乳化剤水溶液は、乳化剤を0.1~15重量%含む水溶液であることが好ましく、乳化剤を0.5~8重量%含む水溶液であることがより好ましい。乳化剤の濃度が高すぎると、発泡することがあり、低すぎると、粒径が大きくなる、または乳化できなくなることがある。 The aqueous emulsifier solution is preferably an aqueous solution containing 0.1 to 15% by weight of an emulsifier, and more preferably an aqueous solution containing 0.5 to 8% by weight of an emulsifier. If the concentration of the emulsifier is too high, foaming may occur, and if it is too low, the particle size may increase or emulsification may not be possible.
 高せん断撹拌後、低せん断撹拌に切り換え、架橋剤水溶液を徐々に滴下する。滴下後、60-90℃で3-12時間反応を行った後、室温まで冷却する。それにより、マイクロカプセルが分散したスラリーを得ることができる。 後 After high-shear stirring, switch to low-shear stirring, and slowly drop the aqueous crosslinking agent solution. After dropping, the reaction is carried out at 60-90 ° C. for 3-12 hours, and then cooled to room temperature. Thereby, a slurry in which microcapsules are dispersed can be obtained.
 マイクロカプセル化において使用する、上記原料および添加剤の好ましい使用量(括弧内はより好ましい使用量)は次のとおりである。
 熱変色性組成物:5~50重量部(10~40重量部)
 溶解助剤:0~100重量部(0~40重量部)
 乳化剤水溶液:100重量部
 樹脂主剤:1~50重量部(2~10重量部)
 架橋剤:0.5~25重量部(1~5重量部)
The preferred amounts of the above raw materials and additives used in microencapsulation (more preferred amounts in parentheses) are as follows.
Thermochromic composition: 5-50 parts by weight (10-40 parts by weight)
Dissolving aid: 0 to 100 parts by weight (0 to 40 parts by weight)
Emulsifier aqueous solution: 100 parts by weight Resin main ingredient: 1-50 parts by weight (2-10 parts by weight)
Cross-linking agent: 0.5 to 25 parts by weight (1 to 5 parts by weight)
 熱変色性組成物の量が多すぎると、乳化できないことがあり、少なすぎると、生産性が悪くなることがある。溶解助剤の量が多すぎると、生産性が悪くなることがあり、少なすぎると、発色濃度が低くなることがある。樹脂主剤の量が多すぎても、または少なすぎても、反応が不十分となり、カプセルの強度および耐熱性が低下することがある。同様に、架橋剤の量が多すぎても、または少なすぎても、反応が不十分となり、カプセルの強度および耐熱性が低下することがある。 If the amount of the thermochromic composition is too large, emulsification may not be possible, and if it is too small, the productivity may deteriorate. If the amount of the solubilizing agent is too large, the productivity may be deteriorated, and if it is too small, the color density may be lowered. If the amount of the resin main component is too large or too small, the reaction may be insufficient and the capsule strength and heat resistance may be reduced. Similarly, if the amount of the crosslinking agent is too large or too small, the reaction may be insufficient and the strength and heat resistance of the capsule may be reduced.
 本発明の熱変色性組成物は、ポリエチレンおよびポリプロピレン等のプラスチック成形体、印刷インキ、インキ、塗料、包装材料、繊維、記録材料等に、可逆的な熱変色性を付与するために用いることができる。あるいは、本発明の熱変色性組成物は、筆記具および描画材(例えばクレヨン)の着色剤として用いてよい。その場合、それらで筆記または描画された線図および塗りつぶしを、熱変色性とすることができる。 The thermochromic composition of the present invention can be used to impart reversible thermochromic properties to plastic molded articles such as polyethylene and polypropylene, printing inks, inks, paints, packaging materials, fibers, recording materials, and the like. it can. Or you may use the thermochromic composition of this invention as a coloring agent of a writing instrument and a drawing material (for example, crayon). In that case, the line drawing and painting written or drawn with them can be thermochromic.
 本発明の熱変色性組成物は、マイクロカプセルに内包された形態で提供されてよい。マイクロカプセル化された場合も、上記の物品に熱変色性を付与することができる。特に、マイクロカプセル化された熱変色性組成物は、水性エマルジョンインキ、溶剤揮発性乾燥型インキ、二液硬化型エポキシ樹脂インキ、捺染糊および紫外線硬化型インキに熱変色性を付与するのに好ましく用いられる。 The thermochromic composition of the present invention may be provided in a form encapsulated in microcapsules. Even when microencapsulated, the above-mentioned article can be imparted with thermochromic properties. In particular, the microencapsulated thermochromic composition is preferable for imparting thermochromic properties to aqueous emulsion inks, solvent volatile drying inks, two-component curable epoxy resin inks, printing pastes, and ultraviolet curable inks. Used.
 (実施例1~26、比較例1~20)
 表3~6に示す、電子供与性呈色性有機化合物(発色剤)、電子受容性化合物(顕色剤)および減感剤を使用して、熱変色性組成物を調製した。具体的には、これらの3つの成分を、120~180℃の範囲内にある温度で加熱溶解した。
(Examples 1 to 26, Comparative Examples 1 to 20)
A thermochromic composition was prepared using an electron-donating color-forming organic compound (color former), an electron-accepting compound (developer) and a desensitizer shown in Tables 3-6. Specifically, these three components were heated and dissolved at a temperature in the range of 120 to 180 ° C.
 (測定用サンプルの作製)
 70-100℃に加熱した熱変色性組成物を、No.5Cろ紙上に、0.05g滴下し、70℃10分加熱して含浸させたものを測定用サンプルとした。ただし、融点が100℃以上である電子受容性化合物を使用した熱変色性組成物の測定用サンプルは、含浸条件を100℃10分とした。
(Preparation of measurement sample)
A thermochromic composition heated to 70-100 ° C. A sample for measurement was prepared by dropping 0.05 g onto 5C filter paper and heating and impregnating at 70 ° C. for 10 minutes. However, for the sample for measuring a thermochromic composition using an electron-accepting compound having a melting point of 100 ° C. or higher, the impregnation condition was 100 ° C. for 10 minutes.
 得られた測定用サンプルの初期の発色状態および地発色状態、ならびに保存後の発色状態(発色濃度)を、コニカミノルタ(旧ミノルタ)株式会社製の色彩色差計CR-300を用いて、白板校正板との色差を求めることにより評価した。色差は、下記の式で表わされる。式中、L*は明度指数、a*およびb*はクロマティクネス指数を示す。詳細は、同装置の取扱説明書(特に第77頁)に記載されている。ΔE*が大きいほど、発色濃度または地発色濃度が高いといえる。 Using the color difference meter CR-300 manufactured by Konica Minolta (formerly Minolta), the white color proofing of the initial color development state and ground color development state of the obtained measurement sample and the color development state (color density) after storage Evaluation was made by determining the color difference from the plate. The color difference is expressed by the following formula. In the formula, L * indicates a lightness index, and a * and b * indicate a chromaticness index. Details are described in the instruction manual of the device (especially page 77). It can be said that the larger the ΔE *, the higher the color density or background color density.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 発色状態におけるΔE*の測定は-5℃のクーラーボックス内で行い、地発色(消色)状態におけるΔE*の測定は100℃のホットプレート上で行った。保存後の発色状態は、32℃で4日間保存してから、ΔE*を測定して評価した。保存前後のΔE*から、発色濃度の変化率を下式に従って算出した。 The measurement of ΔE * in the colored state was performed in a −5 ° C. cooler box, and the measurement of ΔE * in the ground colored (decolored) state was performed on a 100 ° C. hot plate. The color development state after storage was evaluated by measuring ΔE * after storing at 32 ° C. for 4 days. From the ΔE * before and after storage, the rate of change in color density was calculated according to the following formula.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 さらに、変化率の値(絶対値)から、発色濃度の経時安定性を、次の基準に従って、評価した。
 良好(○):|変化率|≦10
 悪い(×):|変化率|>10
Furthermore, from the change rate value (absolute value), the temporal stability of the color density was evaluated according to the following criteria.
Good (O): | Change rate | ≦ 10
Bad (×): | Change rate |> 10
 各実施例および各比較例の変色組成物で作製した測定用サンプルの評価結果を表3~表6に示す。各実施例および各比較例において、電子受容性化合物の融点は、SIIナノテクノロジー製TG/DTA6220を用いて測定した。測定は、N2流量200ml/分、昇温速度10℃/分にて行い、DTA曲線に現れた融解開始温度を融点とした。 Tables 3 to 6 show the evaluation results of the measurement samples prepared with the discoloration compositions of each Example and each Comparative Example. In each Example and each Comparative Example, the melting point of the electron-accepting compound was measured using TG / DTA6220 manufactured by SII Nanotechnology. The measurement was performed at an N2 flow rate of 200 ml / min and a heating rate of 10 ° C./min, and the melting start temperature appearing on the DTA curve was taken as the melting point.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 (実施例27~34、比較例21~24)
 実施例1~26、および比較例1~20で調製した熱変色性組成物から選択した組成物を内包物とする、マイクロカプセルを作製した。マイクロカプセルの作製に使用した材料およびその量は次のとおりである。
(Examples 27 to 34, Comparative Examples 21 to 24)
Microcapsules containing a composition selected from the thermochromic compositions prepared in Examples 1 to 26 and Comparative Examples 1 to 20 were produced. The materials and amounts used for the production of the microcapsules are as follows.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 これらの材料を用いて、溶解助剤に、熱変色性組成物と樹脂主剤とを均一に溶解させ、それから、この溶液を、60℃に加温した乳化剤水溶液中に、中せん断撹拌しながら添加した。次に、高せん断撹拌して、平均粒径数μmのO/Wエマルションを得た。その後、低せん断撹拌を行って、架橋剤水溶液を徐々に滴下した。滴下後、60℃で1時間、90℃で1時間反応させ、室温まで冷却して、マイクロカプセルが分散したスラリーを得た。 Using these materials, the thermochromic composition and the resin main agent are uniformly dissolved in the solubilizer, and then this solution is added to the aqueous emulsifier solution heated to 60 ° C. with medium shear stirring. did. Next, high shear stirring was performed to obtain an O / W emulsion having an average particle size of several μm. Then, low shear stirring was performed and the aqueous crosslinking agent solution was gradually added dropwise. After dropping, the mixture was reacted at 60 ° C. for 1 hour and 90 ° C. for 1 hour, cooled to room temperature, and a slurry in which microcapsules were dispersed was obtained.
 測定用のサンプルを、室温まで冷却したマイクロカプセル化熱変色性組成物を、No.1ろ紙にドクターブレード(200μm)で塗布し、室温で2時間乾燥して作製した。このサンプルを使用して、発色状態および地発色(消色)状態におけるΔE*の測定、保存後の発色状態におけるΔE*の測定を行った。これらの測定は、実施例1~26に関連して説明した方法で行った。表8に、各実施例および各比較例の初期発色および地発色、保存後の発色濃度の変化率および発色濃度経時安定性を示す。 A microencapsulated thermochromic composition obtained by cooling a sample for measurement to room temperature, One filter paper was coated with a doctor blade (200 μm) and dried at room temperature for 2 hours. Using this sample, ΔE * was measured in a colored state and a ground colored (decolored) state, and ΔE * was measured in a colored state after storage. These measurements were made by the method described in connection with Examples 1-26. Table 8 shows the initial color development and ground color development of each example and each comparative example, the rate of change in color density after storage, and the color density stability over time.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 全ての実施例および比較例は、変色温度約30℃を境にそれよりも低い温度で黒色に発色し、高い温度で無色となる変化を繰り返すことが出来る、可逆熱変色性組成物である。融点≦150℃の電子受容性化合物を用いた実施例1~4は、保存後の変化率の絶対値がいずれも10以下であり、優れた発色濃度経時安定性を示した。融点>150℃の電子受容性化合物のみを用いた比較例1~6は、保存後のΔE*の変化率の絶対値がいずれも10を超えており、時間が経つにつれて、発色濃度が大きく変化し、安定性が低かった。 All Examples and Comparative Examples are reversible thermochromic compositions that can develop a black color at a temperature lower than that at a color change temperature of about 30 ° C. and repeat the change of colorlessness at a higher temperature. Examples 1 to 4 using an electron-accepting compound having a melting point ≦ 150 ° C. all had an absolute value of the change rate after storage of 10 or less, and showed excellent color density stability over time. In Comparative Examples 1 to 6 using only an electron-accepting compound having a melting point> 150 ° C., the absolute value of the change rate of ΔE * after storage exceeded 10 in all cases, and the color density greatly changed over time. The stability was low.
 実施例1~4の熱変色性組成物に、減感剤としてステアリン酸アミドを加えた実施例5~8は、保存後の変化率の絶対値がいずれも10以下であり、優れた発色濃度経時安定性を示した。比較例1~6の熱変色性組成物に、減感剤としてステアリン酸アミドを加えた比較例7~12は、保存後のΔE*の変化率の絶対値がいずれも10を超えており、時間が経つにつれて、発色濃度が大きく変化し、安定性が低かった。 In Examples 5 to 8, in which stearamide was added as a desensitizer to the thermochromic compositions of Examples 1 to 4, the absolute values of the change rate after storage were all 10 or less, and excellent color density It showed stability over time. In Comparative Examples 7 to 12, in which stearic acid amide was added as a desensitizer to the thermochromic compositions of Comparative Examples 1 to 6, the absolute value of the change rate of ΔE * after storage exceeded 10 in all cases, Over time, the color density changed greatly and the stability was low.
 融点≦150℃の電子受容性化合物を2種類併用した、または融点≦150℃の電子受容性化合物と融点>150℃の電子受容性化合物を組み合わせた実施例9~15は、保存後のΔE*の変化率の絶対値がいずれも10以下であり、優れた発色濃度経時安定性を示した。融点>150℃の電子受容性化合物を2種類併用した比較例13~17は、保存後のΔE*の変化率の絶対値がいずれも10を超えており、時間が経つにつれて、発色濃度が大きく変化し、安定性が低かった。 Examples 9 to 15 in which two types of electron-accepting compounds having a melting point ≦ 150 ° C. were combined or an electron-accepting compound having a melting point ≦ 150 ° C. and an electron-accepting compound having a melting point> 150 ° C. The absolute values of the rate of change were 10 or less, indicating excellent color density stability over time. In Comparative Examples 13 to 17 in which two kinds of electron accepting compounds having melting points> 150 ° C. were used in combination, the absolute value of the change rate of ΔE * after storage exceeded 10 in all cases, and the color density increased with time. Changed and less stable.
 融点≦150℃の電子受容性化合物を2種類と、融点>150℃の電子受容性化合物を1種類とを併用した、実施例16~18は、保存後のΔE*の変化率の絶対値がいずれも10以下であり、優れた発色濃度経時安定性を示した。融点>150℃の電子受容性化合物を3種類併用した比較例18は、保存後のΔE*の変化率の絶対値が10を超えており、時間が経つにつれて、発色濃度が大きく変化し、安定性が低かった。 In Examples 16 to 18, in which two types of electron-accepting compounds having a melting point ≦ 150 ° C. and one type of electron-accepting compound having a melting point> 150 ° C. were used in combination, the absolute value of the change rate of ΔE * after storage was All were 10 or less and showed excellent color density stability over time. In Comparative Example 18 in which three kinds of electron accepting compounds having melting points> 150 ° C. were used in combination, the absolute value of the rate of change of ΔE * after storage exceeded 10, and the color density greatly changed over time, and was stable. The sex was low.
 融点≦150℃の顕色剤を単独あるいは2種併用し、紫外線吸収剤を添加した実施例20~22、24~26は、保存後のΔE*の変化率の絶対値がいずれも10以下であり、優れた発色濃度経時安定性を示した。融点>150℃の顕色剤を使用し、紫外線吸収剤を添加した比較例20は、保存後のΔE*の変化率の絶対値が10を超えており、時間が経つにつれて、発色濃度が大きく変化し、安定性が低かった。電子供与性呈色性有機化合物を2種類併用し、融点≦150℃の電子受容性化合物を使用した実施例23は、保存後の保存後のΔE*の変化率の絶対値が10以下であり、優れた発色濃度経時安定性を示した。電子供与性呈色性有機化合物を2種類併用し、融点>150℃の電子受容性化合物を使用した比較例19は、保存後のΔE*の変化率の絶対値が10を超えており、時間が経つにつれて、発色濃度が大きく変化し、安定性が低かった。 In Examples 20 to 22 and 24-26, in which a developer having a melting point ≦ 150 ° C. was used alone or in combination of two, and an ultraviolet absorber was added, the absolute value of the change rate of ΔE * after storage was 10 or less. Yes, it showed excellent color density stability over time. In Comparative Example 20 using a developer having a melting point> 150 ° C. and adding an ultraviolet absorber, the absolute value of the change rate of ΔE * after storage exceeds 10, and the color density increases with time. Changed and less stable. In Example 23 in which two kinds of electron-donating color-forming organic compounds were used in combination and an electron-accepting compound having a melting point ≦ 150 ° C. was used, the absolute value of the change rate of ΔE * after storage was 10 or less. Excellent color density stability over time was exhibited. In Comparative Example 19, in which two kinds of electron-donating color-forming organic compounds were used in combination and an electron-accepting compound having a melting point> 150 ° C., the absolute value of the change rate of ΔE * after storage exceeded 10, and the time As time passed, the color density changed greatly and the stability was low.
 発色濃度経時安定性が良好である、熱変色性組成物(実施例1、3、5、7、23~26)をマイクロカプセル化した実施例27~34は、保存後のΔE*の変化率の絶対値がいずれも10以下であり、優れた発色濃度経時安定性を示した。比較例5、11、19、20の熱変色性組成物をマイクロカプセル化した、比較例21~24は、保存後のΔE*の変化率の絶対値がいずれも10を超えており、時間が経つにつれて、発色濃度が大きく変化し、安定性が低かった。 Examples 27 to 34, in which the thermochromic composition (Examples 1, 3, 5, 7, 23 to 26) having good color density stability with time, was microencapsulated, the change rate of ΔE * after storage The absolute values of these were all 10 or less, indicating excellent color density stability over time. In Comparative Examples 21 to 24, in which the thermochromic compositions of Comparative Examples 5, 11, 19, and 20 were microencapsulated, the absolute value of the change rate of ΔE * after storage exceeded 10 in all cases. As time passed, the color density changed greatly and the stability was low.
 本発明の熱変色性組成物は、可逆的に変色することができ、かつ発色濃度経時安定性に優れているので、繊維製品、インキ、塗料、陶器、ガラス製品、プラスチック成形体、包装材料、記録材料、および印刷物に、可逆的な熱変色性を付与するための着色剤として使用され得る。 The thermochromic composition of the present invention can be reversibly discolored and has excellent color density stability over time, so that it can be used for textiles, inks, paints, ceramics, glass products, plastic moldings, packaging materials, It can be used as a colorant for imparting reversible thermochromic properties to recording materials and printed matter.

Claims (4)

  1.  電子供与性呈色性有機化合物、電子受容性化合物、および減感剤を含み、電子受容性化合物として、下記一般式(1)~(3)のいずれかで示され、かつ融点が150℃以下である化合物を1種または複数種含む、熱変色性組成物。
    Figure JPOXMLDOC01-appb-C000001

    Figure JPOXMLDOC01-appb-C000002

    Figure JPOXMLDOC01-appb-C000003

    (一般式(1)~(3)において、R1およびR2はそれぞれ独立して、水素原子、炭素数1~4の直鎖もしくは分岐アルキル基、フェニル基、シクロへキシル基であり、X、YおよびZはそれぞれ独立して、ハロゲン、OH基、アルコキシ基、アルコキシアリル基、アリル基、炭素数1~4の直鎖もしくは分岐アルキル基、フェニル基、またはシクロへキシル基であり、Cは、置換基を有してもよい炭素数5~8のシクロアルカンまたは置換基を有してもよいフルオレン環である。)
    Including an electron-donating color-forming organic compound, an electron-accepting compound, and a desensitizer, the electron-accepting compound is represented by any one of the following general formulas (1) to (3) and has a melting point of 150 ° C. or lower A thermochromic composition comprising one or more compounds which are:
    Figure JPOXMLDOC01-appb-C000001

    Figure JPOXMLDOC01-appb-C000002

    Figure JPOXMLDOC01-appb-C000003

    (In the general formulas (1) to (3), R1 and R2 are each independently a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, a phenyl group, a cyclohexyl group, and X, Y And Z are each independently a halogen, an OH group, an alkoxy group, an alkoxyallyl group, an allyl group, a linear or branched alkyl group having 1 to 4 carbon atoms, a phenyl group, or a cyclohexyl group, and C is A C5-C8 cycloalkane which may have a substituent or a fluorene ring which may have a substituent.
  2.  前記電子受容性化合物として、2,2’-ジアリル-4,4’ジヒドロキシジフェニルスルホン、または4-ヒドロキシ-4’-イソプロポキシジフェニルスルホンを含む、請求項1に記載の熱変色性組成物。 The thermochromic composition according to claim 1, comprising 2,2'-diallyl-4,4'dihydroxydiphenylsulfone or 4-hydroxy-4'-isopropoxydiphenylsulfone as the electron-accepting compound.
  3.  前記電子受容性化合物として、前記一般式(1)~(3)のいずれかで示され、かつ融点が150℃よりも高い化合物を少なくとも1種、さらに含む、請求項1または2に記載の熱変色性組成物。 The heat according to claim 1 or 2, further comprising at least one compound represented by any one of the general formulas (1) to (3) and having a melting point higher than 150 ° C as the electron-accepting compound. Discoloring composition.
  4.  請求項1~3のいずれか1項に記載の熱変色性組成物が内包された、熱変色性マイクロカプセル。 A thermochromic microcapsule containing the thermochromic composition according to any one of claims 1 to 3.
PCT/JP2009/069799 2008-11-25 2009-11-24 Thermochromic composition and thermochromic microcapsule WO2010061819A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-299476 2008-11-25
JP2008299476A JP5595652B2 (en) 2008-11-25 2008-11-25 Thermochromic composition and thermochromic microcapsule

Publications (1)

Publication Number Publication Date
WO2010061819A1 true WO2010061819A1 (en) 2010-06-03

Family

ID=42225693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069799 WO2010061819A1 (en) 2008-11-25 2009-11-24 Thermochromic composition and thermochromic microcapsule

Country Status (2)

Country Link
JP (1) JP5595652B2 (en)
WO (1) WO2010061819A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018123204A (en) * 2017-01-30 2018-08-09 パイロットインキ株式会社 Reversible thermochromic composition and reversible thermochromic microcapsule pigment containing the same
CN111542736A (en) * 2017-12-21 2020-08-14 株式会社日立产机系统 Temperature detection material and system for estimating temperature deviation time using same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6239933B2 (en) * 2013-10-25 2017-11-29 三菱鉛筆株式会社 Microcapsule coloring material and ink composition for writing instrument
JP6245511B2 (en) * 2013-10-25 2017-12-13 三菱鉛筆株式会社 Microcapsule coloring material and ink composition for writing instrument
KR101988916B1 (en) * 2017-05-25 2019-06-13 주식회사 엑티브온 Irreversible thermochromic molded object for preventing overheating and process for the preparation thereof
WO2022065230A1 (en) * 2020-09-28 2022-03-31 パイロットインキ株式会社 Reversible thermochromic composition and reversible thermochromic microcapsule pigment encapsulating same
JPWO2022065228A1 (en) * 2020-09-28 2022-03-31
CN116209725A (en) * 2020-09-28 2023-06-02 百乐墨水株式会社 Reversible thermochromic composition and reversible thermochromic microcapsule pigment having the same encapsulated therein

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60149685A (en) * 1984-01-17 1985-08-07 Matsui Shikiso Kagaku Kogyosho:Kk Thermochromic composition
JPH0688070A (en) * 1992-09-08 1994-03-29 Sakura Color Prod Corp Thermochromic composition
JPH0995633A (en) * 1995-09-29 1997-04-08 Sakura Color Prod Corp Ink composition for displaying heating history
JPH09176628A (en) * 1995-12-27 1997-07-08 Pilot Ink Co Ltd Method for improving light resistance during color developing of reversible thermochromic composition
JPH09208850A (en) * 1996-02-06 1997-08-12 Pilot Ink Co Ltd Method for improving light resistance of reversibly thermochromic composition in darkened state
JP2000330321A (en) * 1999-05-21 2000-11-30 Pilot Ink Co Ltd Temperature sensitive discolorable dry toner
JP2003136845A (en) * 2001-10-30 2003-05-14 Pilot Ink Co Ltd Metal gloss tone, temperature-sensitive, discoloring print
JP2004264830A (en) * 2003-02-12 2004-09-24 Oji Paper Co Ltd Indicator, label, and temperature/time history detection method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3694795B2 (en) * 1994-07-01 2005-09-14 パイロットインキ株式会社 Thermochromic process printed matter

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60149685A (en) * 1984-01-17 1985-08-07 Matsui Shikiso Kagaku Kogyosho:Kk Thermochromic composition
JPH0688070A (en) * 1992-09-08 1994-03-29 Sakura Color Prod Corp Thermochromic composition
JPH0995633A (en) * 1995-09-29 1997-04-08 Sakura Color Prod Corp Ink composition for displaying heating history
JPH09176628A (en) * 1995-12-27 1997-07-08 Pilot Ink Co Ltd Method for improving light resistance during color developing of reversible thermochromic composition
JPH09208850A (en) * 1996-02-06 1997-08-12 Pilot Ink Co Ltd Method for improving light resistance of reversibly thermochromic composition in darkened state
JP2000330321A (en) * 1999-05-21 2000-11-30 Pilot Ink Co Ltd Temperature sensitive discolorable dry toner
JP2003136845A (en) * 2001-10-30 2003-05-14 Pilot Ink Co Ltd Metal gloss tone, temperature-sensitive, discoloring print
JP2004264830A (en) * 2003-02-12 2004-09-24 Oji Paper Co Ltd Indicator, label, and temperature/time history detection method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018123204A (en) * 2017-01-30 2018-08-09 パイロットインキ株式会社 Reversible thermochromic composition and reversible thermochromic microcapsule pigment containing the same
CN111542736A (en) * 2017-12-21 2020-08-14 株式会社日立产机系统 Temperature detection material and system for estimating temperature deviation time using same
US11635335B2 (en) 2017-12-21 2023-04-25 Hitachi Industrial Equipment Systems Co., Ltd. Temperature sensing material, and temperature deviation time estimating system employing same

Also Published As

Publication number Publication date
JP2010126549A (en) 2010-06-10
JP5595652B2 (en) 2014-09-24

Similar Documents

Publication Publication Date Title
JP5595652B2 (en) Thermochromic composition and thermochromic microcapsule
JP5833457B2 (en) Temperature-sensitive discoloration composition
KR100753199B1 (en) Decolorable image forming material
JP6995753B2 (en) Compounds used in discolorable compositions
JP5324128B2 (en) Thermochromic composition and thermochromic microcapsule
BR112015023622B1 (en) Small-scale microencapsulated pigments and their uses
JP3726217B2 (en) Temperature-sensitive color change color memory microcapsule pigment
JP4568027B2 (en) Photochromic material
KR102215243B1 (en) Thermochromic composition and thermochromic microcapsule comprising the same
JP5819773B2 (en) Reversible thermochromic microcapsule pigment
US6770125B2 (en) Reversible thermochromic composition
JP5968755B2 (en) Reversible thermochromic microcapsule pigment
JP3833563B2 (en) Thermosensitive color-changing composition with excellent light fastness
JP5937833B2 (en) Reversible thermochromic microcapsule pigment
KR102172624B1 (en) Thermochromic composition and thermochromic microcapsule comprising the same
JPS63308087A (en) Temperature-dependent photochromic composition
JP2010127634A (en) Reusable time indicator
JPH0781089B2 (en) Thermoreversible discoloration microcapsules and method for producing the same
JP5840483B2 (en) Method for producing reversible thermochromic solid cursive
JP2523350B2 (en) Thermoreversible color changing composition and thermo reversible color changing granular material
JP2008031313A (en) Thermal discoloring composition and thermal discoloring micro-capsule
JP2022542696A (en) Discoloration composition and compound
WO2019074008A1 (en) Irreversible ultraviolet colour developing composition, and technology related thereto
CA2133932C (en) Temperature-sensitive color-memorizing microcapsulated pigment
Khanjankhani et al. Preparation of Reversible Thermochromic Ink for Flexography Printing on Paper and Study its Colorimetric Properties

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09829067

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09829067

Country of ref document: EP

Kind code of ref document: A1