WO2010061474A1 - 連結磁性体、連結磁性体製造方法、連結磁性体注入装置、連結磁性体注入制御システム、磁場制御装置、および、連結磁性体注入制御方法 - Google Patents

連結磁性体、連結磁性体製造方法、連結磁性体注入装置、連結磁性体注入制御システム、磁場制御装置、および、連結磁性体注入制御方法 Download PDF

Info

Publication number
WO2010061474A1
WO2010061474A1 PCT/JP2008/071676 JP2008071676W WO2010061474A1 WO 2010061474 A1 WO2010061474 A1 WO 2010061474A1 JP 2008071676 W JP2008071676 W JP 2008071676W WO 2010061474 A1 WO2010061474 A1 WO 2010061474A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnetic body
magnetic field
coupled
magnetic element
Prior art date
Application number
PCT/JP2008/071676
Other languages
English (en)
French (fr)
Inventor
宏 小野寺
敦 中平
Original Assignee
独立行政法人国立病院機構 西多賀病院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人国立病院機構 西多賀病院 filed Critical 独立行政法人国立病院機構 西多賀病院
Priority to US12/377,774 priority Critical patent/US20110234345A1/en
Priority to PCT/JP2008/071676 priority patent/WO2010061474A1/ja
Publication of WO2010061474A1 publication Critical patent/WO2010061474A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6923Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being an inorganic particle, e.g. ceramic particles, silica particles, ferrite or synsorb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6957Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a device or a kit, e.g. stents or microdevices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0002Galenical forms characterised by the drug release technique; Application systems commanded by energy
    • A61K9/0009Galenical forms characterised by the drug release technique; Application systems commanded by energy involving or responsive to electricity, magnetism or acoustic waves; Galenical aspects of sonophoresis, iontophoresis, electroporation or electroosmosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs

Definitions

  • the present invention relates to a coupled magnetic body, a coupled magnetic body manufacturing method, a coupled magnetic body injection apparatus, a coupled magnetic body injection control system, a magnetic field control apparatus, and a coupled magnetic body injection control method.
  • Patent Document 1 discloses a nanowire made of a magnetic material in which an antibody, a drug, or the like is bound to a surface in order to control the position of a nerve fiber extending drug extending from a nerve cell in a living body.
  • iron is the main component
  • the diameter is 300 nm or less
  • the length is 300 ⁇ m or less.
  • Patent Document 1 has a problem that the tissue penetration force is inferior because it cannot penetrate the tissue such as the buffy coat located between the blood vessel and the brain or spinal cord.
  • the nanowire size is below a certain level (for example, about the same size as bacteria and about 50 nm in diameter), it will be phagocytosed by phagocytic cells such as microglia quickly after a certain period, and a scaffold for long-term neural circuit construction
  • a certain level for example, about the same size as bacteria and about 50 nm in diameter
  • the size of the nanowire is set to a certain value (for example, about 200 nm in diameter)
  • phagocytic cells such as microglia cannot be phagocytosed and are inferior in removability. It had the problem that.
  • nanowires can bind antibodies, drugs, etc. to the surface
  • there are limits to the amount and size that can be bound to the surface such as more than a certain amount of drugs, stem cells, etc.
  • the present invention has been made in view of the above problems, and is superior in tissue penetration than before, and can achieve both long-term indwellability and removability by phagocytic cells.
  • An object of the present invention is to provide a magnetic material injection control method.
  • the coupled magnetic body of the present invention is characterized in that a plurality of nanowires made of a magnetic body are coupled to each other and molded into a cylindrical shape or a bowl shape.
  • the linked magnetic body of the present invention contains cells, proteins, hormones, peptides, drugs, organic compounds, nucleic acids, carbohydrates, or lipids in the cylindrical or cage-like structure. It is stored.
  • the coupled magnetic body of the present invention has a function of using the nanowire as a core layer, an intermediate layer containing a phagocytic signal on the core layer, and a biofunctional molecule on the upper layer of the intermediate layer.
  • a layer is laminated.
  • the linked magnetic body of the present invention is the above described invention, wherein the functional layer is a drug, protein, sugar, virus vector, siRNA (small interfering RNA), antibody, nutritional factor, or the biofunctional molecule, Comprising an extracellular matrix.
  • the functional layer is a drug, protein, sugar, virus vector, siRNA (small interfering RNA), antibody, nutritional factor, or the biofunctional molecule, Comprising an extracellular matrix.
  • the linked magnetic material of the present invention is the above-described invention, wherein the intermediate layer or the functional layer is formed of methacrylate or other organic material, fibrin, matrix protein, polysaccharide, heparin, heparin-like molecule, polylactic acid, other Including a release substrate.
  • the present invention also relates to a method for producing a coupled magnetic body, comprising a first step of preparing a suspension by suspending a plurality of nanowires made of a magnetic body, and a rod-shaped body having solubility in the suspension. A second step of immersing the rod-like body, a third step of drying the suspension adhering to the rod-shaped body, and dissolving the rod-shaped body to connect the plurality of nanowires to each other, in a cylindrical or bowl-like shape And a fourth step of generating a coupled magnetic body.
  • the present invention also relates to a connected magnetic substance injection device, for filling a tubular connected magnetic substance having a hole larger than the diameter of the above-described connected magnetic substance and made of a light-transmitting nonmagnetic material.
  • a tube, a light detection mechanism for detecting light crossing a cross section near the tip of the coupling magnetic material filling tube, and a shutter mechanism for controlling opening and closing of the hole of the coupling magnetic material filling tube It is characterized by.
  • the coupled magnetic body injection device of the present invention is the above-described coupled magnetic body injection device, wherein the shutter mechanism has a stopper structure that prevents the coupling magnetic body from being injected from the coupling magnetic body filling cylinder.
  • the plug structure is slidably inserted and removed to control the opening and closing of the hole of the connecting magnetic material filling cylinder.
  • the present invention also relates to a connected magnetic substance injection control system, and has a tubular connected magnetic substance filling having a hole larger than the diameter of the above-described connected magnetic substance and made of a light-transmitting non-magnetic substance.
  • Magnetic field injection apparatus including at least a cylinder for use, a magnetic field generator for generating a magnetic field for inducing the coupling magnetic body, and a magnetic field including at least a control unit for controlling movement of the magnetic shielding plate for blocking the magnetic field And a control device.
  • the present invention also relates to a magnetic field control device, a magnetic field generator for generating a magnetic field for inducing the above-described coupled magnetic body, and an induction needle for increasing the magnetic flux density of the magnetic field generated from the magnetic field generator; And a control unit that controls movement of a magnetic shielding plate that blocks a magnetic field between the magnetic field generator and the guide needle.
  • the present invention also relates to a method for controlling the coupling magnetic material injection, and is filled with a tubular coupling magnetic material having a hole larger than the diameter of the coupling magnetic material described above and made of a non-magnetic material having optical transparency.
  • a connecting magnet provided with a shutter mechanism for controlling the opening and closing of the hole of the connecting magnetic body filling tube, and a light detection mechanism for detecting light crossing the cross section near the tip of the connecting magnetic body filling tube
  • a connection comprising: a body injection device; a magnetic field generator that generates a magnetic field that induces the coupled magnetic body; and a magnetic field control device that includes at least a control unit that controls movement of the magnetic shielding plate that blocks the magnetic field
  • a coupled magnetic material injection control method executed in a magnetic material injection control system, wherein the magnetic field generated by the magnetic field generator by moving the magnetic shielding plate, which is executed by the control unit of the magnetic field control device.
  • the coupled magnetic body manufacturing method, coupled magnetic body injection apparatus, coupled magnetic body injection control system, magnetic field control apparatus, and coupled magnetic body injection control method for the coupled magnetic body can be provided.
  • FIG. 1 is a diagram showing an example of the structure of a coupled magnetic body according to the present invention.
  • FIG. 2 is a flowchart showing an example of a nanowire manufacturing method together with a schematic diagram.
  • FIG. 3 is a diagram schematically showing an example of how to make porous alumina.
  • FIG. 4 is a diagram showing an example of an electron microscope image of the manufactured nanowire.
  • FIG. 5 is a view showing an example of the structure of the nanowire surface subjected to the silane coupling treatment.
  • FIG. 6 is a diagram illustrating an example of SEM images before and after coating a nanowire made of iron with a silane coupling agent.
  • FIG. 7 is a diagram showing the result of EDX analysis of the nanowire after the silane coupling treatment.
  • FIG. 1 is a diagram showing an example of the structure of a coupled magnetic body according to the present invention.
  • FIG. 2 is a flowchart showing an example of a nanowire manufacturing method together with a schematic diagram.
  • FIG. 8 is a diagram showing an example of the structure of the nanowire surface coated with gold.
  • FIG. 9 is a flowchart showing, as an example, a method of molding a bowl-shaped connecting magnetic body together with a schematic diagram.
  • FIG. 10 is a diagram showing an example of the overall configuration of the coupled magnetic material injection control system.
  • FIG. 11 is a diagram showing an example of the configuration of the coupled magnetic body injection device 100.
  • FIG. 12 is a diagram illustrating an example of the configuration of the connecting magnetic body filling cylinder 10.
  • FIG. 13 is a view showing a cross section of the applicator 40 as an example.
  • FIG. 14 is a view showing a cross section of the applicator 40 as an example.
  • FIG. 15 is a view showing an example of a filling device 11 for mounting the coupled magnetic substance filling tube 10 to the applicator 40.
  • FIG. 16 is a diagram schematically showing a state in which the coupling magnetic body 1 is injected from the coupling magnetic body filling cylinder 10 by the shutter 30.
  • FIG. 17 is a diagram showing a shutter rotation type or applicator rotation type shutter 30 as an example.
  • FIG. 18 is a diagram showing another embodiment of the shutter mechanism as an example.
  • FIG. 19 is a diagram schematically illustrating magnetic field control by the control unit 60 as an example.
  • FIG. 20 is a diagram illustrating an improved type of the control unit 60 illustrated in FIG.
  • FIG. 21 is a diagram illustrating an improved type of the control unit 60 illustrated in FIG. FIG.
  • FIG. 22 is a diagram schematically showing how the magnetic bodies are connected in a chain shape in the long axis direction.
  • FIG. 23 is a diagram showing an example of the structure of a general-purpose antibody-binding wire surface.
  • FIG. 24 is a diagram showing an example of the structure of a drug-eluting nanowire surface.
  • FIG. 25 shows an example of a cross-sectional structure when a nanowire is used as a core layer and an intermediate layer containing phagocyte signals is formed on the upper layer of the core layer and a functional layer containing biofunctional molecules is formed on the upper layer of the intermediate layer.
  • FIG. FIG. 26 is a micrograph showing a state in which the macrophages are removing the nanowire from the transplanted part.
  • FIG. 27 is a view showing a micrograph of a mesh-type wire (connected magnetic body) obtained by processing a 50-nm wire into a mesh shape.
  • FIG. 28 shows a state in which the connected magnetic bodies are arranged so as to cross the damaged portion by a magnetic field when the nerve communication (double arrows) between the regions A and B is blocked due to the nerve damage and the function is lost. It is the figure shown typically.
  • FIG. 29 shows a state in which a neural circuit is formed with a target nerve cell by moving a nerve fiber or a nerve cell on a nanowire (connected magnetic body) to which a nerve function control molecule such as a cell spreading factor is bound.
  • FIG. FIG. 30 is a diagram showing a three-dimensional CT image of the rat brain.
  • FIG. 31 is a view showing a micrograph when nanowires are induced by injecting nanowires (50 nm) into the rat brain and applying a magnetic field from the outside by a permanent magnet.
  • FIG. 1 is a diagram showing an example of the structure of a coupled magnetic body according to the present invention.
  • the coupled magnetic body of the present invention is a magnetic body (for example, a cylindrical body or a bowl shape formed by coupling a plurality of nanowires made of a magnetic body (for example, a diameter of 50 nm or more and a length of 1 ⁇ m or more).
  • a diameter is 1000 ⁇ m or less and the length is 3 mm or less.
  • the material of the nanowire include metals such as iron, gold, copper, lead, nickel, and platinum.
  • the linked magnetic substance of the present invention includes, for example, a cell (nerve cell etc.), protein, hormone, peptide, drug, organic compound, nucleic acid, carbohydrate, lipid, virus inside a cylindrical or cage-like structure.
  • proteins adheresion molecules, nutrient factors, antibodies, growth factors, etc.
  • hormones, peptides, drugs immunosuppressants
  • organic compounds substances for controlling drug release rate
  • Visualization dyes fluorescent dyes
  • magnetic substance stabilizers genes (virus vectors, DNA, RNA), carbohydrates, polysaccharides (polylactic acid, etc.), lipids, glycolipids, metals (platinum, gold, iron, titanium) Etc.
  • lipids glycolipids
  • metals platinum, gold, iron, titanium
  • the coupled magnetic body of the present invention includes nanowires as a core layer and phagocyte signals (such as polylysine signals) such as macrophages and microglia in the upper layer of the core layer, as shown in the lower view (cross-sectional view) of FIG. You may laminate
  • phagocyte signals such as polylysine signals
  • biological functional molecules include drugs, proteins, sugars, viral vectors, nucleic acids (RNA, DNA, etc.), antibodies (anti-Nogo antibody, anti-myelin protein antibody, etc.), nutrient factors (GDNF, HGF, etc.), extracellular Matrix, laminin, fibronectin, NCAM, nectin, cadherin, chemokine, cytokine and the like.
  • functional layer, intermediate layer, or bowl-shaped / cylindrical interior methacrylates and other organic materials, fibrin, matrix proteins, polysaccharides (lectins that bind sugars, etc.), heparin, heparin-like molecules, polylactic acid, Polylysine, other release substrates, and the like may also be included.
  • the present invention relates to a method for producing the above-mentioned coupled magnetic body, and includes a first step of adjusting a suspension by suspending a plurality of nanowires made of a magnetic body, and a suspended rod-like body.
  • the coupled magnetic body is manufactured by including a second step of immersing in the liquid, a third step of drying the suspension adhering to the rod-shaped body, and a fourth step of dissolving the rod-shaped body.
  • the present invention also relates to the above-described coupling magnetic body injection device, and has a hole larger than the diameter of the coupling magnetic body, and is a tubular coupling magnetic body filling cylinder made of a light-transmitting non-magnetic body. And a light detection mechanism that detects light crossing the cross section near the tip of the coupling magnetic body filling cylinder, and a shutter mechanism that controls opening and closing of the hole of the coupling magnetic body filling cylinder.
  • the present invention also relates to a magnetic field control device for inducing the above-mentioned coupled magnetic body, and a magnetic field generator for generating a magnetic field for inducing the coupled magnetic body, and a magnetic flux density of the magnetic field generated from the magnetic field generator. And a control unit that controls movement of the magnetic shielding plate that blocks the magnetic field between the magnetic field generator and the induction needle.
  • the present invention relates to a system including the above-described injecting device for a coupled magnetic body and a magnetic field control device, and a method in the system, and generating a magnetic field by moving a magnetic shielding plate executed by a control unit of the magnetic field control device.
  • FIG. 2 is a flowchart which shows an example of the manufacturing method of nanowire with a schematic diagram.
  • step SA-1 an aluminum plate is prepared (step SA-1) and degreased with acetone (step SA-2).
  • step SA-3 aluminum (aluminum plate) is anodized in an electrolyte such as oxalic acid or sulfuric acid to produce anodized porous alumina having pores formed on the surface (step SA-3).
  • the electrolyte is 0.05 to 1.0 M sulfuric acid H 2 SO 4
  • the voltage is DC 15 V
  • the electrolysis time is 1 to 24 hours
  • the cathode is compared to the aluminum plate on the anode side.
  • a carbon electrode is used on the side.
  • the pore diameter and length of the pores formed on the surface of aluminum can be controlled by appropriately setting the composition of the electrolytic solution, the current density, the electrolysis time, and the like.
  • a nanoporous film having a diameter of about 10 to 300 nm and a length of about 1 to 300 ⁇ m can be formed.
  • FIG. 3 is a diagram schematically showing an example of how to make porous alumina.
  • the oxide film grows by reaction of Al 3+ ions and O 2 ⁇ ions moving in the opposite directions in the oxide at the solution / aluminum boundary.
  • the electrolyte begins to dissolve the oxide layer, and at the part where dissolution begins, the film becomes thinner and the electrolysis in the film becomes stronger, which accelerates the movement of Al 3+ and O 2 ⁇ , so the film of Al 2 O 3 grows steadily I will do it.
  • dissolution and film growth proceed simultaneously, and film growth takes place in a portion where the concentration of the electrolytic solution is high, so that nanopores arranged uniformly can be formed.
  • the nanoporous material is filled with iron by electrolytic deposition (so-called electroplating) (step SA-4).
  • electroplating electrolytic deposition
  • the composition of the electrolytic solution is FeSO 4 .7H 2 O (5.0 g), H 3 BO 4 (2.5 g), H 2 O (100 ml), L-Ascorbic Acid. (0.1 g), Glycerol (0.2 ml), the voltage is AC15V, and the electrolysis time is 5 minutes.
  • the electrolysis time is 5 minutes.
  • metals other than iron include gold, nickel, and platinum.
  • the formed nanowire is taken out by dissolving the anodized porous alumina with a weak acid or alkali (step SA-5).
  • the composition of the solution is H 2 O (100 ml), H 3 PO 4 (1.6 g), CrO 3 (0.8 g), and the dissolution time is 0-25. Minutes.
  • Step SA-7 it is cleaned by sonication in ethanol (Step SA-6) to complete the nanowire (Step SA-7).
  • FIG. 4 is a diagram illustrating an example of an electron microscope image of the manufactured nanowire.
  • various organic substances polylysine, antibody, drug, etc.
  • the nanowire surface may be surface-treated with a metal such as gold in order to prevent oxidation.
  • the surface treatment of the nanowire may be performed with a silane coupling agent.
  • silane coupling First, an example of a process for coating the nanowire surface with gold using a silane coupling agent will be described below.
  • the nanowire is sonicated in a 1.0 wt% 3-mercaptopropyltrimethoxysilane (3-Mercaptopropyltrimethoxysilane) solution.
  • a 1.0 wt% 3-mercaptopropyltrimethoxysilane solution is prepared with 0.2 g of 3-mercaptopropyltrimethoxysilane, 10 mg of ion exchange water, and 10 mg of ethanol.
  • FIG. 5 is a view showing an example of the structure of the nanowire surface subjected to the silane coupling treatment.
  • FIG. 5 is a diagram showing an example of SEM images before and after coating the nanowire made of iron with the silane coupling agent.
  • FIG. 7 is a figure which shows the result of having performed the EDX analysis of the nanowire after performing a silane coupling process.
  • the silane-coupled nanowires as described above are incubated for 1 day in a colloidal gold solution for coating with gold.
  • the gold colloid solution is prepared by adjusting 1 ml of 1 wt% HAuCl 4 .4H 2 O and 79 ml of ion exchange water at 60 ° C., adding 4 ml of 1 wt% citric acid, and incubating at 80 ° C. for 5 minutes.
  • FIG. 8 is a diagram showing an example of the structure of the nanowire surface coated with gold.
  • the mercapto group is replaced with gold by incubation in a colloidal gold solution.
  • the above is an example of the process of coating the nanowire surface with gold using a silane coupling agent.
  • the above-mentioned silane coupling treatment is an example, and a coupling agent such as a titanium coupling agent may be used.
  • a vinyl group, an epoxy group, an amino group, a methacryl group A silane coupling agent having a substituent such as a carboxyl group or a phosphonic acid group may be used.
  • a silane coupling agent having an amino group a nanowire having an amino group attached to the surface can be obtained.
  • the amino group has a fluorescent substance, a single-stranded DNA, an antibody, a chemokine, Organic substances such as dextran, polylactic acid, and polystyrene can be bound by a normal organic chemical reaction.
  • the nanowire may be used as a core layer, and an intermediate layer containing a phagocytic signal may be laminated on the upper layer of the core layer and a functional layer containing a biofunctional molecule may be laminated on the upper layer of the intermediate layer.
  • the treatment for bonding some substance to the nanowire surface may be performed during molding of the following coupled magnetic body or may be performed after molding the coupled magnetic body.
  • the nanowire by performing surface treatment of the nanowire, it is also possible to impart molecular recognition to the nanowire.
  • the surface is gold
  • thiols, fluorescent substances, and cells can be recognized
  • hydroxyl groups In the case of a carboxyl group, cytochrome, which is a protein, can be recognized, and in the case of a phosphonic acid group, DNA can be recognized and can also be used as a biosensor.
  • FIG. 9 is a flowchart showing, as an example, a method for molding a bowl-shaped connecting magnetic body together with a schematic diagram.
  • a plurality of nanowires made of a magnetic material are suspended to prepare a nanowire suspension (step SB-1).
  • a soluble molding agent easily soluble material such as fibrin, carbohydrate, polylactic acid, etc.
  • a soluble molding agent easily soluble material such as fibrin, carbohydrate, polylactic acid, etc.
  • the rod-shaped body having solubility is immersed in the nanowire suspension (step SB-2).
  • step SB-3 the nanowire suspension adhering to the rod-shaped body is dried.
  • step SB-4 the rod-shaped body is dissolved to take out the bowl-shaped coupled magnetic body.
  • the cylindrical connecting magnetic body can be molded by, for example, immersing so that the nanowire suspension does not adhere to the tip of the rod-like body in Step SB-2.
  • FIG. 10 is a diagram illustrating an example of the overall configuration of the coupled magnetic material injection control system.
  • the coupled magnetic material injection control system includes a coupled magnetic material injection device 100 and a magnetic field control device 200.
  • FIG. 11 is a diagram illustrating the configuration of the coupled magnetic body injection device 100 as an example.
  • the coupled magnetic body injection device 100 includes a coupled magnetic body filling tube 10, a light detection device 20, a shutter 30, and an applicator 40.
  • FIG. 12 is a diagram illustrating a configuration of the connecting magnetic body filling cylinder 10 as an example.
  • the coupled magnetic body filling cylinder 10 has a hole with an inner diameter larger than the diameter of the coupled magnetic body, and is a tubular cylinder for filling the coupled magnetic body made of a light-transmitting nonmagnetic material.
  • the connecting magnetic body filling cylinder 10 is a cylinder used to fill the inside with the connecting magnetic body, and a necessary number is prepared in advance according to the purpose of transplantation treatment and the like, and attached to the applicator 40.
  • a nonmagnetic material for example, a metal such as stainless steel or aluminum, or an organic material such as plastic can be used.
  • the coupling magnetic body filling cylinder 10 may have an inner diameter of 10 to 200 ⁇ m and a length of 100 ⁇ m to 10 cm, for example, so that it can be easily attached to the applicator 40.
  • the outer diameter may be 200 ⁇ m to 2000 ⁇ m.
  • the connected magnetic body filling cylinder 10 is filled in a state in which the connected magnetic body is suspended in the artificial spinal fluid or a lubricant added thereto so that the connected magnetic body does not stick to the inside of the connected magnetic body filling cylinder 10. May be.
  • the applicator 40 is a mechanism in which a hole is formed so that the connecting magnetic material filling cylinder 10 can be attached and detached in a cartridge manner, and is used in close contact with a tissue such as the spinal cord on the opposite side of the mounting direction. .
  • the upper and lower scales are shown small for easy viewing.
  • the applicator 40 has a lotus-like form as an example, and may be made of a material such as acrylic or plastic, such as an indwelling needle, and may have a non-sharp tip.
  • FIG. 13 and FIG. 14 are views showing a cross section of the applicator 40 as an example. As shown in FIGS.
  • the applicator 40 has a circular or square cross section, and as an example, an insertion hole is formed in a honeycomb shape.
  • the illustrated applicator 40 is a cerebrospinal surface contact type, the applicator 40 may be configured to be inserted into a tissue and used by setting the cross-sectional diameter of the applicator 40 to 3 mm or less.
  • FIG. 15 is a view showing an example of the filling device 11 used when the connecting magnetic body filling tube 10 is mounted on the applicator 40.
  • the filling device 11 when the connecting magnetic body filling tube 10 is attached to the applicator 40, the filling device 11 is used as an example.
  • the filling device 11 is configured by miniaturizing a mechanism similar to that of a multi-channel pipette, and a connecting magnetic material filling tube 10 corresponding to a tip can be removably inserted.
  • the connecting magnetic body filling tube 10 when the connecting magnetic body filling tube 10 is attached to the applicator 40, the connecting magnetic body filling tube 10 is inserted into the insertion hole of the applicator 40, By depressing the removal lever, the connected magnetic substance filling tube 10 can be removed from the filling device 11 and mounted on the applicator 40.
  • the light detection device 20 is a light detection mechanism that detects light crossing the cross section near the tip of the coupled magnetic body filling tube 10. That is, the light detection device 20 is a device for monitoring the injection state of the coupling magnetic body 1 from the side surface of the coupling magnetic body filling cylinder 10, and the coupling magnetic body 1 aggregates inside the coupling magnetic body filling cylinder 10. It is monitored whether or not the injection of the coupling magnetic body 1 is completed. The principle is that, compared with the state in which the coupling magnetic body 1 is filled in the coupling magnetic body filling cylinder 10, if the coupling magnetic body 1 is aggregated inside the coupling magnetic body filling cylinder 10, the light transmission is reduced.
  • the detection is performed by increasing the light transmittance.
  • you may comprise the photon detection apparatus 20 so that the number of the connection magnetic body 1 which passed may be counted.
  • the monitoring status by the light detection device 20 may be output to a display screen such as a computer.
  • the shutter 30 is a shutter mechanism that performs opening / closing control of the hole of the connecting magnetic body filling cylinder 10.
  • the shutter 30 is controlled to open and close by a control device such as a computer (not shown).
  • the shutter 30 is a member that is disposed on the opposite side (that is, the tissue side) of the applicator 40 from the insertion side of the connecting magnetic substance filling tube 10 and is in direct contact with the tissue.
  • FIG. 16 is a diagram schematically showing a state in which the coupling magnetic body 1 is injected from the coupling magnetic body filling cylinder 10 by the shutter 30.
  • the shutter 30 is a shutter rotation / movement type in which the hole of the coupling magnetic substance filling cylinder 10 is exposed to the opening portion of the shutter 30 when the shutter 30 rotates / moves with respect to the applicator 40 and is opened.
  • the applicator 40 rotates / moves with respect to the shutter 30, and the applicator rotates / moves in which the hole of the coupling magnetic substance filling cylinder 10 is exposed in the opening portion of the shutter 30 to be opened. It is good also as a type.
  • FIG. 17 is a diagram showing a shutter rotation type or applicator rotation type shutter 30 as an example.
  • FIG. 18 is a diagram illustrating another embodiment of the shutter mechanism as an example.
  • the shutter mechanism in another embodiment has a stopper structure (for example, a non-magnetic material) that prevents injection of the coupling magnetic body from the hole of the coupling magnetic body filling cylinder 10.
  • a linear body such as a lead wire 32 made of metal.
  • a tunnel 33 is formed in the applicator 40 of the coupled magnetic substance injection device 100, and the shutter mechanism can slide the lead wire 32 in the tunnel 33.
  • the lead wire 32 prevents the coupling magnetic body 1 from moving to the injection side.
  • the tip of the lead wire 32 retreats from the hole of the connecting magnetic material filling tube 10 and the connecting magnetic material 1 can enter the tissue in accordance with the magnetic field.
  • the coupled magnetic substance injection device 100 including the shutter mechanism shown as an example in FIGS. 17 and 18, the structure can be inserted into a tissue such as a brain that can accept a diameter of 2 mm. it can.
  • the magnetic field control device 200 includes an induction needle 50, a control unit 60, and a magnet 70.
  • the magnet 70 is a magnetic field generator that generates a magnetic field that induces a coupled magnetic body.
  • the magnet 70 is a permanent magnet, an electromagnet, a superconducting magnet, or the like, and may be properly used to change the strength of the magnetic field or the like according to the application.
  • the guide needle 50 is a needle that increases the magnetic flux density due to the magnetic field generated from the magnet 70 at the tip portion, and increases the magnetic field most at the tip of the guide needle 50.
  • a plurality of guide needles 50 may be used.
  • the guide needle 50 may be used in the vicinity of a target tissue such as a wounded part or in close contact with a tissue surface.
  • the control unit 60 is a control unit that controls the magnetic field between the magnet 70 and the guide needle 50.
  • FIG. 19 is a diagram schematically illustrating magnetic field control by the control unit 60 as an example. As shown in FIG. 19, in a state where the magnetic part of the control unit 60 is between the magnet 70 and the guide needle 50, the magnetic field generated from the magnet 70 reaches the guide needle 50, so that the tip of the guide needle 50 is strong. Magnetic field is generated. On the other hand, when the magnetic body portion of the control unit 60 slides in the direction perpendicular to the major axis direction of the magnetic field control device 200 and moves away from between the magnet 70 and the guide needle 50, the magnetic field generated from the magnet 70 is applied to the guide needle 50.
  • FIG. 20 and FIG. 21 are diagrams showing an improved type of the control unit 60 illustrated in FIG.
  • control unit 60 includes a magnetic shielding plate 62 that blocks the magnetic field in addition to the magnetic body 61 that guides the magnetic field to the guiding needle 50.
  • a magnetic shielding plate 62 that blocks the magnetic field in addition to the magnetic body 61 that guides the magnetic field to the guiding needle 50.
  • FIG. 20 when the magnetic body 61 is located between the guide needle 50 and the magnet 70, a strong magnetic field is generated at the tip of the guide needle 50 in order to guide the magnetic field generated from the magnet 70 to the guide needle 50. appear.
  • FIG. 21 when the magnetic shielding plate 62 is located between the guide needle 50 and the magnet 70, the magnetic field generated at the tip of the guide needle 50 is completely lost to block the magnetic field generated from the magnet 70. Can be made.
  • the above is an example of the configuration of the coupled magnetic material injection control system in the present embodiment.
  • the connected magnetic substance injection control system configured as described above has a feature that it can be configured to be small and inexpensive, has almost no leakage magnetic field, and has high safety.
  • the applicator 40 and the shutter 30 of the coupled magnetic substance injecting device 100 are previously brought into contact with the surface of a planned injection site (tissue such as brain, spinal cord, liver, heart, kidney, tumor tissue, etc.), and the coupled magnetism is started from the planned injection site.
  • the guide needle 50 is inserted into the desired position or brought into surface contact according to the direction in which the body is to be moved.
  • the control unit 60 is set in the magnetic field induction state and the coupled magnetic bodies are arranged at the target site. A magnetic field necessary for the generation is generated.
  • the connected magnetic body filling cylinder 10 is mounted on the connected magnetic body injection device 100 with the shutter 30 closed, and the connected magnetic body is stored under the control of a computer or the like connected to the shutter 30.
  • the hole of the cylinder 10 is opened at a desired position.
  • the coupled magnetic body itself enters the tissue and is arranged at the target site along the magnetic field gradient.
  • pouring apparatus 100 the injection
  • neuronal cell transplantation is expected as a trump card for functional reconstruction in brain and spinal cord diseases, that is, as an ideal method for restoring the function of damaged brain and spinal cord. Has been.
  • nerve transplantation is said to be the ultimate treatment method for brain diseases, but there are significant barriers to clinical application.
  • trophic factors and dopamine can be applied to host neurons. It is only expected to serve as a supply source.
  • the development of nerve cell transplantation technology that can be applied to pathological conditions where nerve fiber elongation is indispensable, such as the motor nervous system, is awaited.
  • the inventors of the present invention have made great progress in research on iPS cells and ES cells. If the technology to reconstruct a neural circuit by freely controlling the elongation and direction of nerve fibers in the brain and spinal cord can be established. The idea was that the treatment of brain and spinal cord diseases should make great progress. In other words, nerve fibers reach the target site using various molecules as signposts (scaffolds) in the development process of the brain, so if the transplanted nerve cells are guided to the signpost but not blocked by the barrier, If we can synapse with neurons, we should be able to recover neural functions lost due to disease.
  • the present invention is a new nerve cell transplantation technique in which a linking magnetic substance (preferably a magnetic substance to which an adhesion molecule or a nutrient factor is bound) is “wired” in the brain by a high magnetic field, and a neural circuit is reconstructed by using it as a scaffold.
  • a linking magnetic substance preferably a magnetic substance to which an adhesion molecule or a nutrient factor is bound
  • the present invention aims at the completion of a technique necessary for applying a new nerve cell transplantation technique to the treatment of nerve and spinal cord diseases and early clinical application.
  • the inventors of the present application have developed a technique for laying a magnetic material that serves as a scaffold for nerve fibers in an arbitrary part and direction in the brain through a medical engineering collaboration research.
  • a medical application example of a conventional magnetic structure there is a technique for separating DNA and lymphocytes using magnetic nanobeads.
  • a magnetic susceptibility sufficient for the movement of nerve cells and nerve fibers in brain tissue cannot be obtained with nanobeads.
  • the inventor of the present application analyzes health effects on human cells with ultra-high magnetic fields (10 Tesla) and conducts research on the effects of magnetic fields on living organisms. We focused on magnetic wires with a much larger contact area.
  • FIG. 22 is a diagram schematically showing how the magnetic bodies are connected in a chain shape in the long axis direction.
  • the manufacturing method employed in this example can manufacture a large number of nanowires having the same shape and size at the same time.
  • the nanowires immediately after production can be chemically modified by suspending them in ethanol or water.
  • Research and development so far has made it possible to bind organic compounds to the nanowire surface and to bind protein molecules via organic compound spacers (see [Method for producing linked magnetic material] above).
  • material development and magnetic field control technology an environment where magnetic field and nanotechnology can be used as a means to solve the above medical problems has been prepared.
  • the magnetic materials produced in this example are classified with respect to functionality (A1, A2) and classified with respect to shape (B1, B2).
  • the magnetic wire may be configured in combination such as A1B2 type or A2B1 type depending on the application.
  • FIG. 23 is a diagram showing a structure of a general-purpose antibody binding wire as an example.
  • the general-purpose antibody-binding wire is obtained by binding a (humanized) anti-mouse IgG antibody to the nanowire surface, and various mouse IgG antibodies can be freely attached to the nanowire surface without impairing their functions.
  • the ability to bind to nanowires allows simultaneous control of multiple molecules that affect neuronal function. This also makes it possible to reconstruct an effective neural circuit that mimics the nervous system development process.
  • FIG. 24 is a diagram illustrating the structure of the surface of the drug-eluting nanowire as an example.
  • the effect of a nerve functional molecule or a drug can be exerted on nerve cells or nerve fibers that are not in direct contact with the nanowire.
  • concentration-dependent liquid factors and nutrient factors can be administered over a wide range without damaging brain tissue.
  • the drug-eluting metal coating technology is clinically used as a drug-eluting stent for the treatment of myocardial infarction (preventing re-occlusion of coronary arteries).
  • the development proceeded with reference to these established technologies. That is, organic materials such as methacrylate (methacrylic resin, acrylic resin) used for coronary drug-eluting stents, biomolecules fibrin, matrix proteins, polysaccharides, polylactic acid, polylysine, etc. can be used as release substrates. It was confirmed that.
  • polylactic acid base polylactic acid matrix
  • brain tumors anti-cancer drug release
  • a polylactic acid base polylactic acid matrix
  • Such drug-eluting nanowires are expected to be usable for treatment of various neurological diseases.
  • FIG. 25 shows a case where a nanowire is used as a core layer, and an intermediate layer including a phagocyte signal (polylysine or the like) is stacked on the upper layer of the core layer and a functional layer including a biofunctional molecule is stacked on the upper layer of the intermediate layer It is a figure which shows an example of no cross-sectional structure.
  • the 50 nm nanowire is approximately the same size as bacteria, and when a macrophage phagocytic signal (for example, polylysine) is bound to the surface, the macrophage is rapidly phagocytosed and the wire is removed from the brain tissue. However, if the wire cannot be phagocytosed, the magnetic wire will remain in the brain.
  • a macrophage phagocytic signal for example, polylysine
  • a functional layer such as a drug or nutritional factor is coated on the intermediate layer (a layer using polylysine as a phagocytic signal)
  • the functional layer dissolves and the polylysine layer is exposed after macrophages are exposed, and macrophages locally
  • tissue damage caused by nanowires originally considered to be almost none
  • a functional molecule of the functional layer a drug, a nutrition molecule, an adhesion molecule, a monoclonal antibody, a virus vector, siRNA, or the like may be used.
  • the intelligent magnetic material can be used for treatment alone.
  • a magnetic wire having a drug eluting function can be used for treatment of various neurological diseases.
  • the nanowire newly developed in the present embodiment is produced by depositing a ferromagnetic material such as iron in the hole by an electrolytic method using a nanoporous made by anodizing on an aluminum plate as a template. With this method, it is possible to produce nano-sized wires (several tens of nanometers in length, several ⁇ m to several tens of ⁇ m) having the same size and shape in large quantities (about 10 10 to 10 12 wires) at a time. The length can also be freely controlled.
  • a nanowire made of iron was produced as an example.
  • a nanowire made of a material having higher affinity and less toxicity such as platinum or titanium was also developed.
  • the 50 nm diameter rod-shaped wire is about the same size as bacteria and can be removed by phagocytosis of macrophages (microglia, etc.), but is not suitable as a scaffold for constructing a neural circuit from a target site after a certain period of time. Examples thereof include activation of immune cells (treatment of infectious diseases), supply of nutrient factors (adjustment of administration period), and fabrication of a large wire (connected magnetic material) by molding.
  • the characteristics of the 200 nm rod-type wire are that phagocytic cells such as microglia cannot be phagocytosed and can be left in the target site for a long time, and the tissue penetration ability is inferior to 50 nm wire.
  • Applications such as local continuous administration (treatment of intractable neurological diseases), short-distance neural circuit construction (higher brain function recovery), and the like.
  • the surface organic compound of the nanowire is preferably coated.
  • SAM Self Assembled Mono-layer
  • nickel nanowires were treated with hematoporyl IX, which is an organic fluorescent material, and a fluorescent material was attached to the surface of the nickel nanowire, so that the organic material could be bonded to the nanowires.
  • an alkyl group was bonded to the surface of the iron nanowire, and a nanowire having poly L lysine on the outermost surface via the alkyl group was developed to enable use in brain transplantation experiments.
  • We also analyzed and improved the characteristics of organic compound coating on the nanowire surface bond stability, degree of coating, strength, etc.).
  • the material of the nanowire which is kind to the living body, the nanowire having the optimum surface for coating, and the anchor molecule that mediates the surface of the nanowire and the organic substance having affinity with cells and the cell spreading factor were optimized.
  • various combinations of substances were examined, and optimum coating conditions, solute types, temperature, pH, stirring, and drying conditions were investigated.
  • a scanning electron microscope and an infrared spectrometer were used to evaluate the surface state and bonding state of the prepared magnetic wire.
  • FIG. 26 is a photomicrograph showing a state in which the macrophages are removing the nanowire from the transplanted part.
  • FIG. 27 is a view showing a micrograph of a mesh type wire (connected magnetic body) obtained by processing a 50 nm wire into a mesh shape.
  • Mesh type wire (linkage magnetic body) is formed by using a soluble molding agent (materials that are easy to dissolve, such as fibrin, sugar, polylactic acid) so that it dissolves after a certain period of time in the body. It is possible to adjust the time until the wire is disassembled and removed.
  • the simple wire (B1) is advantageous in terms of penetrating force and cost, but the mesh wire (B2) has the advantage that it can be removed from the tissue due to its large surface area and macrophages. It is also possible to encapsulate the transplanted nerve cells in a cage wire having a diameter of 50 to 100 ⁇ m or a cylindrical wire and accurately transfer it to a target site.
  • the mesh type wire with a diameter of 50 ⁇ m can be easily moved in the brain tissue, and if the magnetic field intensity is selected appropriately, the moving range can be limited by the hardness of the tissue, so it is limited only to the brain edema site. It can be moved, a wire circuit can be laid from the surface of the brain to the inside of the brain, wiring can be made without scratching (injection hole) in the brain, and it has excellent versatility and safety. Applications such as trauma treatment, stroke treatment (especially motor / sensory disorders), and cerebral edema disease treatment are expected.
  • the mesh-type wire with a diameter of 100 ⁇ m has the strongest tissue penetration force and can lay a tunnel in which nerve cells can move in the brain by passing, and a wire circuit can be laid from the brain surface to the inside of the brain.
  • Applications such as drug transport to brain tumor sites, tumor destruction, brain transplanted cell migration (long distance), stroke treatment (neural circuit reconstruction), and brain / machine interface electrodes are expected.
  • the ultra high purity iron nanowires with polylysine surface treatment can remain stable without rusting in physiological saline for a year, but we also made iron / platinum wires with the aim of perfect safety for clinical applications. .
  • DDS drug delivery
  • angiogenesis As a cancer treatment for malignant tumors, local suppression of oncogenes, local administration of anticancer drugs is possible, and as a treatment for myocardial infarction, cardiomyopathy, arteriovenous embolism, angiogenic factors
  • angiogenesis it is possible to perform angiogenesis at a specific site, supply a myocardial trophic factor locally, or control gene expression at a specific site using siRNA or a vector.
  • the inventors of the present application have already developed a method of arranging with a neodymium permanent magnet at a depth of 1 to 2 cm from the surface of the brain.
  • An injection device (microinjector) has been developed for precise control of wire injection direction and injection volume.
  • a small magnetic field control device using a permanent magnet When applying the present invention to the treatment of spinal cord trauma, a small magnetic field control device using a permanent magnet is sufficient, and refurbishment of the operating room is unnecessary.
  • a superconducting magnet of 3 Tesla or more is required to arrange nanowires (connected magnetic bodies) at a location 5 cm or more away from the brain surface.
  • magnetic field shielding is used to prevent the influence on other medical devices. Is essential.
  • Using a superconducting thin film and a superconducting bulk material manufactured by Nippon Steel
  • using superconducting bulk material it was demonstrated that an ultrahigh magnetic field can be focused in a specific direction of the brain, and it was concluded that superconducting magnets could be used in operating rooms.
  • the alignment error increases.
  • the nanowire connected magnetic material
  • striatum the nanowire (connected magnetic material) deep in the brain (striatum).
  • it is considered to be safe and reliable to insert a magnetic field control guide needle joined to a magnet into the striatum by stereotaxic surgery to accurately guide the magnetic wire.
  • the magnetic wire could be accurately localized in the rat striatum with the guide needle.
  • Parkinson's disease motor function is improved at the experimental level by substituting nigrodopamine neurons, and even in humans, if dopamine-producing cells can be placed extensively in the striatum, the therapeutic effect is expected to be sufficient to the brain Candidates for transplantation of neural cells.
  • improvement of the motor function of a stroke patient is also a major theme of this embodiment.
  • the rat brain was transplanted with a nanofunction control-type nanowire and a neuron (a neuron prepared from a fetus, a neuron differentiated from an iPS cell or an ES cell), and the nanowire was arranged in a magnetic field. Evaluation of nerve elongation is based on nerve cell transplantation derived from GFP transgenic rats (the transplanted nerve cells and fibers emit green fluorescence and can be easily detected).
  • the above-mentioned in vitro experiment measures the tolerance limit to the external force of neurons (measurement of cell fluidity by Rauldan, cytoskeleton) Basic data of protein staining becomes important. Furthermore, there is a possibility that the nanowire penetrates the brain and reaches the meninges and the skull. However, since the nanowire moves in the long axis direction (diameter 50 nm), the risk of tissue destruction and bleeding is considered to be extremely low.
  • nerve death can be prevented by binding a nutritional factor (HGF, GDNF, etc.) to the nanowire and moving it to the target site.
  • HGF nutritional factor
  • GDNF GDNF
  • an intelligent magnetic substance (diameter: 50 nm to 100 ⁇ m) was created by releasably binding a functional molecule that induces nerve fiber elongation to a nanowire.
  • a linked magnetic material created by binding a functional molecule such as an antibody, drug, or neurotrophic factor that suppresses nerve extension factor or nerve repulsion factor to a nanowire is arranged at a specific site in the cerebrospinal cord by a high magnetic field.
  • the functional molecules are presented to nerve fibers or released for a certain period. Thereby, a synapse can be formed between the transplanted nerve fiber and the target nerve cell to reconstruct the neural circuit.
  • FIG. 29 shows that a neural circuit is formed between a target nerve cell and a nerve fiber or a nerve cell moving on a nanowire (connected magnetic body) to which a nerve function control molecule such as a cell spreading factor is bound.
  • a coupled magnetic body in which a nerve function control factor is bonded to a nanowire is aligned in a chain shape so as to connect the region A and the region B by a magnetic field to form a nerve fiber extension rail. That is, as shown in FIG.
  • FIG. 30 is a diagram showing a three-dimensional CT image of the rat brain.
  • the left side represents the cerebrum and the right side represents the cerebellum.
  • FIG. 31 is a diagram showing a micrograph when nanowires are induced by injecting nanowires (50 nm) into the rat brain and applying a magnetic field from the outside with a permanent magnet.
  • nanowire injected into the cerebral cortex is attracted by the magnet and moves about 2 mm in the brain from the injection point (the nanowire in which the black dots are aggregated). From the above, it was revealed that nanowires can be controlled by a magnetic field in the rat brain.
  • the wire extends over 1 cm in the brain in about 2 minutes. Were arranged in a continuous manner.
  • a 3 Tesla superconducting magnet was used, it was possible to move a magnetic material 10 cm or more away. It was possible to guide the magnetic substance more accurately by inserting a guide needle connected to the magnet tip into the brain to create a magnetic field gradient (0.5 cm in the case of localization to the striatum) Move precisely).
  • a small magnetic field control device using permanent magnets can be used in the case of normal brain / spinal cord transplantation (travel distance of about 1 cm), indicating that clinical application is sufficiently possible without remodeling the operating room. It was done.
  • poly-L-lysine-conjugated nanowires did not show a decrease in survival rate compared to cultured rat cerebral cortical neurons (observed for 5 days).
  • poly-L-lysine-linked nanowires were administered to cerebral infarcted rats, poly-L-lysine detachment from the nanowires was hardly observed, abnormal behavior, deterioration of paralysis, and decreased survival rate were not observed, and seizures also appeared. Did not (until 3 months later).
  • Nerve cells are transplanted at the same time as nanowires (coupled magnetic bodies) to which neuroregulatory molecules are bound, or after nanowires (coupled magnetic bodies) are arranged in advance in the brain, so that transplanted nerve fibers and even hosts
  • nanowires coupled magnetic bodies
  • the development of this example is aimed at restoring nerve function by reconstructing the nerve circuit of the brain that has been damaged, and has established a technology to move and expand nerve fibers freely in the cerebrospinal cord. Regardless of the cause of neurological diseases, it is considered useful for the treatment of patients suffering from brain dysfunction.
  • drug-free nanowires can be used to supply drugs and nutrients to specific parts of the brain, which is impossible with conventional drug delivery systems, so neurodegenerative diseases (Parkinson's disease, motor neuron disease, Alzheimer's disease, etc.) It is also useful for treatment.
  • the ultrahigh magnetic field / cell function control type nanowire system has a function as an in vivo nanomachine. This can be applied not only to brain transplantation aimed at in this embodiment, but also to treatment of diseases of other organs, and is a highly universal technique.
  • the elemental technologies developed in this example are nano-magnetic material manufacturing methods, nano-magnetic material control technologies, and detection technologies tailored to the purpose.
  • one of the purposes is to apply these in the body, but many application developments such as in vivo biological substance inspection technology can be considered.
  • in vivo biological substance inspection technology can be considered.
  • cancer cells can be detected, it can also be applied to the cancer medical field.
  • it can use for a biosensor and an artificial nerve as another biological application.
  • the nanomaterial control / detection technology developed in this example can be applied to a pure industrial field such as non-destructive inspection. Since this embodiment is a technique for controlling and detecting the motion of a substance injected into a living body, its application range is wide. For example, the control and position detecting technique is used even for treatment using a micro robot or a nano robot. Therefore, this embodiment can be applied. It can also be used as an environmental material by adsorbing harmful substances using a magnetic substance as a filter.
  • the coupled magnetic body injection device 100 and the magnetic field control device 200 perform processing in a stand-alone form
  • the coupled magnetic body injection device 100 or the magnetic field control device 200 is configured as a separate housing. Processing may be performed in response to a request from an arithmetic control device such as a computer, and the processing result may be returned to the arithmetic control device.
  • all or part of the processes described as being automatically performed can be performed manually, or the processes described as being performed manually can be performed. All or a part can be automatically performed by a known method.
  • the illustrated components are functionally conceptual, and need not be physically configured as illustrated.
  • each of the coupled magnetic substance injection device 100 and the magnetic field control device 200 are realized by a CPU (Central Processing Unit) and a program that is interpreted and executed by the CPU.
  • a program that is interpreted and executed by the CPU.
  • the program is recorded on a recording medium to be described later, and is mechanically read by the coupled magnetic material injection device 100 as necessary.
  • a storage unit such as a ROM or an HD stores a computer program for performing various processes by giving instructions to the CPU in cooperation with an OS (Operating System).
  • This computer program is executed by being loaded into the RAM, and constitutes a control unit that performs processing functions in cooperation with the CPU.
  • “recording medium” refers to any “portable physical medium” such as a flexible disk, magneto-optical disk, ROM, EPROM, EEPROM, CD-ROM, MO, DVD, LAN, WAN, or the Internet. It includes a “communication medium” that holds a program in a short period of time, such as a communication line or a carrier wave in the case of transmitting the program via a representative network.
  • the “program” is a data processing method described in an arbitrary language or description method, and may be in any format such as source code or binary code. Note that the “program” is not necessarily limited to a single configuration, and functions are achieved in cooperation with a separate configuration such as a plurality of modules and libraries or a separate program represented by the OS. Including things. Note that a well-known configuration and procedure can be used for a specific configuration for reading a recording medium, a reading procedure, an installation procedure after reading, and the like in each device described in the embodiment.
  • the coupled magnetic substance injection device 100 and the magnetic field control device 200 are connected to an information processing device such as a known personal computer or workstation, and software (programs, data, etc.) for realizing the method of the present invention in the information processing device. May be implemented.
  • the specific form of distribution / integration of the devices is not limited to that shown in the figure, and all or a part of them may be functional or physical in arbitrary units according to various additions or according to functional loads. Can be distributed and integrated.
  • the coupled magnetic body As described above in detail, according to the coupled magnetic body, the coupled magnetic body manufacturing method, the coupled magnetic body injection apparatus, the coupled magnetic body injection control system, the magnetic field control apparatus, and the coupled magnetic body injection control method according to the present invention.
  • it has superior tissue penetration ability compared to the past, can achieve both long-term indwellability and removability by phagocytic cells, and can carry a larger amount of substances and larger-sized objects than before.
  • a coupled magnetic body manufacturing method, a coupled magnetic body injection device, a coupled magnetic body injection control system, a magnetic field control device, and a coupled magnetic body injection control method can be provided. It is extremely useful in various fields such as drug discovery, biological research, nanotechnology and clinical testing.

Abstract

 本発明は、磁性体からなる複数のナノワイヤを互いに連結して筒状または籠状に成型したことを特徴とする連結磁性体、並びに、当該連結磁性体のための、連結磁性体製造方法、連結磁性体注入装置、連結磁性体注入制御システム、磁場制御装置、および、連結磁性体注入制御方法であり、当該連結磁性体によれば、組織貫通力に優れ、長期的な留置可能性と食細胞による除去性を両立することができ、大量の物質や大きなサイズの物体を運搬することができる。

Description

連結磁性体、連結磁性体製造方法、連結磁性体注入装置、連結磁性体注入制御システム、磁場制御装置、および、連結磁性体注入制御方法
 本発明は、連結磁性体、連結磁性体製造方法、連結磁性体注入装置、連結磁性体注入制御システム、磁場制御装置、および、連結磁性体注入制御方法に関する。
 従来、生体内での位置制御を行うことが可能な磁性体からなるナノワイヤが開発されている。
 例えば、特許文献1は、生体内で神経細胞から伸びる神経線維の伸展用薬剤の位置を制御するために、抗体や薬剤等を表面に結合させた磁性体からなるナノワイヤについて開示しており、ナノワイヤは、一例として、鉄を主成分とし、直径300nm以下、長さ300μm以下であることが示されている。
特開2008-7478号公報
 しかしながら、従来の特許文献1に代表されるナノワイヤにおいては、血管と脳や脊髄との間に位置する軟膜等の組織を貫通することができず組織貫通力が劣るという問題があった。
 また、ナノワイヤのサイズを一定以下(例えば、細菌と同程度のサイズ、直径50nm程度)とすると、一定期間後に速やかにミクログリア等の食細胞に貪食されてしまい、長期的な神経回路の構築の足場等の目的には適さなくなる一方、ナノワイヤのサイズを一定以上(例えば、直径200nm程度)とすれば、標的部位に長期間留置可能となるものの、ミクログリア等の食細胞が貪食できず除去性に劣るという問題点を有していた。
 また、従来のナノワイヤでは、表面に抗体や薬剤等を結合させることができるものの、表面に結合させることができる量およびサイズには限界があり、一定量以上の薬剤等や、幹細胞等のように大きなサイズのものを輸送することはできないという問題を有していた。
 本発明は、上記問題点に鑑みてなされたもので、従来よりも組織貫通力に優れ、長期的な留置可能性と食細胞による除去性を両立させることができ、従来よりも大量の物質や大きなサイズの物体を運搬することができる連結磁性体、並びに、当該連結磁性体のための、連結磁性体製造方法、連結磁性体注入装置、連結磁性体注入制御システム、磁場制御装置、および、連結磁性体注入制御方法を提供することを目的とする。
 このような目的を達成するため、本発明の連結磁性体は、磁性体からなる複数のナノワイヤを互いに連結して筒状または籠状に成型したことを特徴とする。
 また、本発明の連結磁性体は、上記記載の発明において、上記筒状または上記籠状の構造内部に、細胞、タンパク質、ホルモン、ペプチド、薬物、有機化合物、核酸、糖質、または、脂質を格納したこと、を特徴とする。
 また、本発明の連結磁性体は、上記記載の発明において、上記ナノワイヤをコア層として、上記コア層の上層に食細胞シグナルを含む中間層と、上記中間層の上層に生体機能分子を含む機能層と、を積層させたこと、を特徴とする。
 また、本発明の連結磁性体は、上記記載の発明において、上記機能層は、上記生体機能分子として、薬物、タンパク質、糖、ウイルスベクタ、siRNA(small interfering RNA)、抗体、栄養因子、または、細胞外マトリックスを含むこと、を特徴とする。
 また、本発明の連結磁性体は、上記記載の発明において、上記中間層または上記機能層は、メタクリレートその他の有機素材、フィブリン、マトリックスタンパク質、多糖類、ヘパリン、ヘパリン様分子、ポリ乳酸、その他の遊離用基質を含むこと、を特徴とする。
 また、本発明は、連結磁性体製造方法に関するものであり、磁性体からなる複数のナノワイヤを懸濁させて懸濁液を調整する第一工程と、溶解性を有する棒状体を上記懸濁液に浸漬させる第二工程と、上記棒状体に付着した上記懸濁液を乾燥させる第三工程と、上記棒状体を溶解させることにより、複数の上記ナノワイヤが互いに連結した、筒状または籠状の連結磁性体を生成する第四工程と、を含むことを特徴とする。
 また、本発明は、連結磁性体注入装置に関するものであり、上記記載の連結磁性体の径よりも大なる孔を有し、光透過性のある非磁性体からなる管状の連結磁性体充填用筒と、上記連結磁性体充填用筒の先端付近の断面を横断する光を検出する光検出機構と、上記連結磁性体充填用筒の上記孔の開閉制御を行うシャッタ機構と、を備えたことを特徴とする。
 また、本発明の連結磁性体注入装置は、上記記載の連結磁性体注入装置において、上記シャッタ機構は、上記連結磁性体充填用筒からの上記連結磁性体の注入を防止する栓構造を有し、上記栓構造を摺動可能に挿脱することにより、上記連結磁性体充填用筒の上記孔の開閉制御を行うこと、を特徴とする。
 また、本発明は、連結磁性体注入制御システムに関するものであり、上記記載の連結磁性体の径よりも大なる孔を有し、光透過性のある非磁性体からなる管状の連結磁性体充填用筒を少なくとも備えた連結磁性体注入装置と、上記連結磁性体を誘導する磁場を発生させる磁場発生体、および、上記磁場を遮断する磁場遮蔽板の移動制御を行う制御部を少なくとも備えた磁場制御装置と、を備えたことを特徴とする。
 また、本発明は、磁場制御装置に関するものであり、上記記載の連結磁性体を誘導する磁場を発生させる磁場発生体と、上記磁場発生体から発生される上記磁場の磁束密度を高める誘導針と、上記磁場発生体と上記誘導針との間の磁場を遮断する磁場遮蔽板の移動制御を行う制御部と、を少なくとも備えたことを特徴とする。
 また、本発明は、連結磁性体注入制御方法に関するものであり、上記記載の連結磁性体の径よりも大なる孔を有し、光透過性のある非磁性体からなる管状の連結磁性体充填用筒、上記連結磁性体充填用筒の先端付近の断面を横断する光を検出する光検出機構、および、上記連結磁性体充填用筒の上記孔の開閉制御を行うシャッタ機構を備えた連結磁性体注入装置と、上記連結磁性体を誘導する磁場を発生させる磁場発生体、および、上記磁場を遮断する磁場遮蔽板の移動制御を行う制御部を少なくとも備えた磁場制御装置と、を備えた連結磁性体注入制御システムにおいて実行される連結磁性体注入制御方法であって、上記磁場制御装置の上記制御部により実行される、上記磁場遮蔽板を移動させて上記磁場発生体から発生する上記磁場を透過させる第一工程と、上記連結磁性体注入装置により実行させる、上記シャッタ機構を制御して上記連結磁性体充填用筒の上記孔を開状態にする第二工程と、上記光検出機構を制御して上記連結磁性体充填用筒の上記断面を横断する上記光を検出することにより上記連結磁性体が注入されたことを確認する第三工程と、を含むことを特徴とする。
 この発明によれば、組織貫通力に優れ、長期的な留置可能性と食細胞による除去性を両立することができ、大量の物質や大きなサイズの物体を運搬することができる連結磁性体、並びに、当該連結磁性体のための、連結磁性体製造方法、連結磁性体注入装置、連結磁性体注入制御システム、磁場制御装置、および、連結磁性体注入制御方法を提供することができるという効果を奏する。
図1は、本発明の連結磁性体の構造を一例として示す図である。 図2は、ナノワイヤの製造方法の一例を模式図とともに示すフローチャートである。 図3は、ポーラスアルミナのでき方の一例を模式的に示した図である。 図4は、製造されたナノワイヤの電子顕微鏡画像の一例を示す図である。 図5は、シランカップリング処理を行ったナノワイヤ表面の構造の一例を示す図である。 図6は、鉄製のナノワイヤにシランカップリング剤をコーティングする前と後のSEM画像の一例を示した図である。 図7は、シランカップリング処理した後のナノワイヤをEDX分析した結果を示す図である。 図8は、金でコーティングされたナノワイヤ表面の構造の一例を示す図である。 図9は、籠状の連結磁性体を成型する方法を模式図とともに一例として示すフローチャートである。 図10は、連結磁性体注入制御システムの全体構成を一例として示した図である。 図11は、連結磁性体注入装置100の構成を一例として示した図である。 図12は、連結磁性体充填用筒10の構成を一例として示す図である。 図13は、アプリケータ40の断面を一例として示した図である。 図14は、アプリケータ40の断面を一例として示した図である。 図15は、連結磁性体充填用筒10をアプリケータ40に装着する充填器11の一例を示した図である。 図16は、シャッタ30により連結磁性体充填用筒10から連結磁性体1が注入される様子を模式的に示した図である。 図17は、シャッタ回転型またはアプリケータ回転型のシャッタ30を一例として示す図である。 図18は、シャッタ機構の他の実施の形態を一例として示す図である。 図19は、制御部60による磁場制御を一例として模式的に表した図である。 図20は、図19に例示した制御部60の改良型を示した図である。 図21は、図19に例示した制御部60の改良型を示した図である。 図22は、磁性体が長軸方向に鎖状に繋がる様子を模式的に示した図である。 図23は、汎用型抗体結合ワイヤ表面の構造を一例として示す図である。 図24は、薬剤溶出型のナノワイヤ表面の構造を一例として示す図である。 図25は、ナノワイヤをコア層として、コア層の上層に食細胞シグナルを含む中間層と、中間層の上層に生体機能分子を含む機能層と、を積層させた場合の断面構造の一例を示す図である。 図26は、大食細胞が移植部からナノワイヤを除去している様子を示す顕微鏡写真図である。 図27は、50nmワイヤをメッシュ状に加工したメッシュ型ワイヤ(連結磁性体)の顕微鏡写真を示す図である。 図28は、神経障害により、AとBの領域間の神経連絡(両矢印)が遮断されて機能が失われた場合に、連結磁性体を磁場により障害部位を横断するように配列させる様子を模式的に示した図である。 図29は、細胞伸展因子などの神経機能制御分子を結合したナノワイヤ(連結磁性体)の上を神経線維や神経細胞が移動することにより、標的神経細胞との間で神経回路が形成される様子を模式的に表した図である。 図30は、ラット脳の3次元CT画像を示す図である。 図31は、ラットの脳内にナノワイヤ(50nm)を注入し外部から永久磁石によって磁場をかけて、ナノワイヤを誘導した時の顕微鏡写真を示す図である。
符号の説明
1 連結磁性体
10 連結磁性体充填用筒
11 充填器
20 光検出装置
30 シャッタ
40 アプリケータ
50 誘導針
60 制御部
61 磁性体
62 磁場遮蔽板
70 磁石
100 連結磁性体注入装置
200 磁場制御装置
 以下に、本発明にかかる連結磁性体、連結磁性体製造方法、および、連結磁性体注入装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。特に、以下の実施の形態においては、本発明の連結磁性体を、神経機能の改善等のために臨床応用した例について説明することがあるが、本実施の形態はこれに限られず、新たなドラッグデリバリーシステムや、新薬スクリーニングや脳機能解析等の基礎研究に用いてもよいものである。
[本発明の概要]
 以下、本発明の概要について図1を参照して説明し、その後、本発明の構成および処理等について詳細に説明する。図1は、本発明の連結磁性体の構造を一例として示す図である。
 図1に示すように、本発明の連結磁性体は、磁性体からなる複数のナノワイヤ(例えば、直径50nm以上、長さ1μm以上)を互いに連結して筒状または籠状に成型した磁性体(例えば、直径1000μm以下、長さ3mm以下)であることを特徴とする。ここで、ナノワイヤの材質としては、例えば、鉄、金、銅、鉛、ニッケル、白金等の金属が挙げられる。
 ここで、本発明の連結磁性体は、筒状または籠状の構造内部に、一例として、細胞(神経細胞等)、タンパク質、ホルモン、ペプチド、薬物、有機化合物、核酸、糖質、脂質、ウイルス等を格納してもよく、ナノワイヤ表面に、一例として、蛋白(接着分子、栄養因子、抗体、成長因子等)や、ホルモン、ペプチド、薬物、免疫抑制剤、有機化合物(薬物放出速度制御用物質、可視化用色素、蛍光色素、磁性体安定化薬)、遺伝子(ウイルスベクタ、DNA、RNA)、糖質、多糖類(ポリ乳酸など)、脂質、糖脂質、金属(白金、金、鉄、チタンなど、組織内での安全性・安定性・磁性制御用物質等)等を結合させてもよい。
 ここで、本発明の連結磁性体は、図1の下図(断面図)に示すように、ナノワイヤをコア層として、コア層の上層にマクロファージやミクログリア等の食細胞シグナル(ポリリジンシグナル等)を含む中間層と、中間層の上層に生体機能分子を含む機能層と、を積層させてもよい。生体機能分子としては、一例として、薬物、タンパク質、糖、ウイルスベクタ、核酸(RNA、DNA等)、抗体(抗Nogo抗体、抗ミエリン蛋白抗体等)、栄養因子(GDNF、HGF等)、細胞外マトリックス、ラミニン、フィブロネクチン、NCAM、ネクチン、カドヘリン、ケモカイン、サイトカイン等が挙げられる。また、機能層や中間層、あるいは、籠状・筒状内部には、メタクリレートその他の有機素材、フィブリン、マトリックスタンパク質、多糖類(糖を結合するレクチン等)、ヘパリン、ヘパリン様分子、ポリ乳酸、ポリリジン、その他の遊離用基質等を含んでもよい。
 また、本発明は、上記連結磁性体の製造方法に関するものであり、磁性体からなる複数のナノワイヤを懸濁させて懸濁液を調整する第一工程と、溶解性を有する棒状体を懸濁液に浸漬させる第二工程と、棒状体に付着した懸濁液を乾燥させる第三工程と、棒状体を溶解させる第四工程を含むことにより連結磁性体を製造する。
 また、本発明は、上記連結磁性体の注入装置に関するものであり、連結磁性体の径よりも大なる孔を有し、光透過性のある非磁性体からなる管状の連結磁性体充填用筒と、連結磁性体充填用筒の先端付近の断面を横断する光を検出する光検出機構と、連結磁性体充填用筒の孔の開閉制御を行うシャッタ機構と、を備える。
 また、本発明は、上記連結磁性体を誘導するための磁場制御装置に関するものであり、連結磁性体を誘導する磁場を発生させる磁場発生体と、磁場発生体から発生される磁場の磁束密度を高める誘導針と、磁場発生体と誘導針との間の磁場を遮断する磁場遮蔽板の移動制御を行う制御部と、を備える。
 また、本発明は、上記連結磁性体の注入装置と磁場制御装置を備えたシステム、および、当該システムにおける方法に関し、磁場制御装置の制御部により実行される、磁場遮蔽板を移動させて磁場発生体から発生する磁場を透過させる第一工程と、連結磁性体注入装置により実行させる、シャッタ機構を制御して連結磁性体充填用筒の孔を開状態にする第二工程と、光検出機構を制御して連結磁性体充填用筒の断面を横断する光を検出することにより連結磁性体が注入されたことを確認する第三工程と、を含むことにより連結磁性体の注入制御を行う。
 以上で、本発明の概要の説明を終える。
[連結磁性体の製造方法]
 以下に、連結磁性体の製造方法の一例について説明する。
(ナノワイヤの製造方法)
 連結磁性体は、磁性体からなる複数のナノワイヤが互いに連結したものであるため、まず初めに、ナノワイヤの製造方法について説明する。ここで、図2は、ナノワイヤの製造方法の一例を模式図とともに示すフローチャートである。
 図2に示すように、アルミ板を準備し(ステップSA-1)、アセトンにて脱脂処理を行う(ステップSA-2)。
 そして、シュウ酸や硫酸などの電解液中でアルミニウム(アルミ板)を陽極酸化してその表面に細孔が形成された陽極酸化ポーラスアルミナを作製する(ステップSA-3)。ここで、各条件を一例として挙げると、電解液は、硫酸HSOを0.05~1.0Mとし、電圧はDC15V、電解時間は1~24時間、陽極側のアルミ板に対し陰極側は炭素電極を用いる。なお、当該条件は一例であり、アルミニウムの表面に形成される細孔の孔径や長さは、電解液の組成や電流密度、電解時間等を適宜に設定することで制御することができる。本方法では、直径が約10~300nm程度、長さ約1~300μm程度のナノポーラスを形成させることができる。ここで、図3は、ポーラスアルミナのでき方の一例を模式的に示した図である。
 酸化皮膜は、酸化物中を逆向きに動くAl3+イオンとO2-イオンがそれぞれ溶液・アルミニウム境界で反応を起こすことにより成長する。電解液が酸化物層を溶かし始め、溶解が始まった部分は膜が薄くなり膜内の電解が強まり、それがAl3+とO2-の動きを加速するためAlの膜がどんどん成長していく。そして、図3に示すように、溶解と皮膜成長は同時に進行し、電解溶液の濃度が高い部分は皮膜成長が優先して起こるので、一様に配列されたナノポーラスを形成させることができる。
 そして、陽極酸化ポーラスアルミナを鋳型として、ナノポーラス内に鉄を電解析出(いわゆる電気メッキ)により充填する(ステップSA-4)。ここで、各条件を一例として挙げると、電解液の組成は、FeSO・7HO(5.0g)、HBO(2.5g)、HO(100ml)、L-Ascorbic Acid(0.1g)、Glycerol(0.2ml)であり、電圧はAC15V、電解時間は5分である。なお、鉄を含む複数種の金属を交互に電解析出させることで、鉄とそれ以外の金属とが長手方向に交互に並んだナノワイヤを形成することも可能である。鉄以外の金属としては、例えば、金、ニッケル、白金などが挙げられる。
 そして、弱い酸またはアルカリで陽極酸化ポーラスアルミナを溶かすことで、形成されたナノワイヤを取り出す(ステップSA-5)。ここで、各条件を一例として挙げると、溶解液の組成は、HO(100ml)、HPO(1.6g)、CrO(0.8g)であり、溶解時間は0~25分である。
 最後に、エタノール中で超音波処理により洗浄し(ステップSA-6)、ナノワイヤを完成させる(ステップSA-7)。
 以上が、ナノワイヤの製造方法の一例である。ここで、図4は、製造されたナノワイヤの電子顕微鏡画像の一例を示す図である。なお、ナノワイヤには、目的に応じて種々の有機質(ポリリジン、抗体、薬物等)を結合させてもよく、酸化を防ぐためにナノワイヤ表面を金などの金属で表面処理してもよい。その場合、好適には、ナノワイヤとの結合度を高めるために、シランカップリング剤でナノワイヤの表面処理を行ってもよい。
(シランカップリング)
 まず、シランカップリング剤を用いて、ナノワイヤ表面を金でコーティングする処理の一例について以下に説明する。
 まず、ナノワイヤを、1.0wt% 3-メルカプトプロピルトリメトキシシラン(3-Mercaptopropyltrimethoxysilane)溶液中で、超音波処理する。溶液の条件を例示すると、3-メルカプトプロピルトリメトキシシラン0.2g、イオン交換水10mg、エタノール10mgにて、1.0wt% 3-メルカプトプロピルトリメトキシシラン溶液を調整する。
 そして、超音波処理したナノワイヤを80℃で1時間、乾燥させて、シランカップリング処理したナノワイヤを生成する。図5は、シランカップリング処理を行ったナノワイヤ表面の構造の一例を示す図である。
 図5に示すように、この例の場合、シランカップリング剤として、3-メルカプトプロピルトリメトキシシランを用いているため、メルカプト基が置換基として提示される。また、ここで、図6は、鉄製のナノワイヤにシランカップリング剤をコーティングする前と後のSEM画像の一例を示した図である。また、図7は、シランカップリング処理した後のナノワイヤをEDX分析した結果を示す図である。
 図6に示すように、上述したシランカップリング処理により、鉄製のナノワイヤはシランカップリング剤でコーティングされていることが観察された。また、図7に示すように、シランカップリング処理後のナノワイヤをEDX分析すると、シランカップリング剤の原子SiとSが含まれていることが確認できた。
 つづいて、上述のようにシランカップリング処理したナノワイヤを、金でコーティングするために、金コロイド溶液中で1日間インキュベーションする。ここで、金コロイド溶液は、一例として、1wt% HAuCl・4HO1mlとイオン交換水79mlを60℃で調整して、1wt%クエン酸4mlを加え、80℃5分間インキュベーションすることにより調整する。ここで、図8は、金でコーティングされたナノワイヤ表面の構造の一例を示す図である。
 図8に示すように、金コロイド溶液中でインキュベーションすることにより、メルカプト基が金に置換される。これにより、鉄のような酸化しやすい素材で作成したナノワイヤであっても、酸化を防止することができる。
 以上が、シランカップリング剤を用いて、ナノワイヤ表面を金でコーティングする処理の一例である。なお、上述したシランカップリング処理は一例であり、チタンカップリング剤等のカップリング剤を用いてもよく、また、結合させる物質の目的に応じて、ビニル基やエポキシ基、アミノ基、メタクリル基、カルボキシル基、ホスホン酸基といった置換基をもつシランカップリング剤を用いてもよい。例えば、アミノ基を持つシランカップリング剤でナノワイヤを処理することにより、アミノ基を表面に付けたナノワイヤを得ることができ、当該アミノ基に、蛍光物質や、一本鎖DNA、抗体、ケモカイン、デキストラン、ポリ乳酸、ポリスチレンなどの有機物を、通常の有機化学反応により結合させることができる。また、ナノワイヤをコア層として、コア層の上層に食細胞シグナルを含む中間層と、中間層の上層に生体機能分子を含む機能層と、を積層させてもよい。また、以上のようにナノワイヤ表面に何らかの物質を結合させる処理は、以下の連結磁性体を成型中に行ってもよく、連結磁性体に成型した後に行ってもよいものである。
 このように、ナノワイヤの表面処理を行うことにより、ナノワイヤに分子認識性を付与することも可能であり、例えば、表面が金の場合、チオールや蛍光物質や細胞を認識させることができ、水酸基、カルボキシル基の場合、タンパク質であるチトクロームを認識させることができ、ホスホン酸基の場合、DNAを認識させることができ、バイオセンサーとしても用いることが可能となる。
(連結磁性体の成型方法)
 つづいて、上述のように製造したナノワイヤを用いて、複数のナノワイヤを互いに連結させて筒状または籠状の連結磁性体を成型する方法について以下に説明する。ここで、図9は、籠状の連結磁性体を成型する方法を模式図とともに一例として示すフローチャートである。
 まず、図9に示すように、磁性体からなる複数のナノワイヤを懸濁させて、ナノワイヤ懸濁液を調整する(ステップSB-1)。ここで、作成した連結磁性体が、生体内で一定時間経過後に溶解するよう可溶性成型剤(フィブリン、糖質、ポリ乳酸など溶解しやすい材質)を懸濁液に添加しておいてもよい。
 そして、溶解性を有する棒状体をナノワイヤ懸濁液に浸漬させる(ステップSB-2)。
 そして、棒状体に付着したナノワイヤ懸濁液を乾燥させる(ステップSB-3)。
 そして、棒状体を溶解させることにより、籠状の連結磁性体を取り出す(ステップSB-4)。
 以上が、籠状の連結磁性体の成型方法である。なお、筒状の連結磁性体も同様に、例えば、ステップSB-2において棒状体の先端にナノワイヤ懸濁液が付着しないように浸漬させることにより成型することができる。
[連結磁性体注入制御システムの構成]
 次に、連結磁性体注入制御システムの構成について図10~図21を参照して説明する。ここで、図10は、連結磁性体注入制御システムの全体構成を一例として示した図である。
 図10に示すように、連結磁性体注入制御システムは、連結磁性体注入装置100と磁場制御装置200により構成される。ここで、図11は、連結磁性体注入装置100の構成を一例として示した図である。
 図11に示すように、連結磁性体注入装置100は、連結磁性体充填用筒10と、光検出装置20と、シャッタ30と、アプリケータ40から構成される。ここで、図12は、連結磁性体充填用筒10の構成を一例として示す図である。
 図12に示すように、連結磁性体充填用筒10は、連結磁性体の直径よりも大きな内径の孔を有し、光透過性のある非磁性体からなる連結磁性体充填用の管状の筒である。すなわち、この連結磁性体充填用筒10は、内部に連結磁性体を充填するために用いる筒であり、移植治療等の目的に応じて必要な本数を予め準備してアプリケータ40に装着することにより用いられる。非磁性体の材質としては、一例として、ステンレスやアルミ等の金属や、プラスティック等の有機素材を用いることができる。また、連結磁性体充填用筒10は、連結磁性体の直径および長さを考慮して、例えば、内径10~200μm、長さは100μm~10cmとしてもよく、アプリケータ40への装着が容易となるよう外径を200μm~2000μmとしてもよい。また、連結磁性体が連結磁性体充填用筒10の内側に固着しないように、人工脊髄液またはこれに滑剤を添加したものに連結磁性体をサスペンドした状態で連結磁性体充填用筒10に充填してもよい。
 また、アプリケータ40は、連結磁性体充填用筒10を装着してカートリッジ式に着脱できるように孔が形成された機構であり、装着方向の反対側で脊髄等の組織に密着させて用いられる。なお、図11においては、見やすいように上下の縮尺を小さく表現している。アプリケータ40は、一例としてレンコン様の形態を有し、留置針のように、アクリルやプラスティック等の素材で構成し、鋭利でない先端を有していてもよい。ここで、図13および図14は、アプリケータ40の断面を一例として示した図である。図13および図14に示すように、アプリケータ40の断面は円形や四角形等であり、一例として蜂の巣状に挿入孔が形成されている。なお、図示したアプリケータ40は、脳脊髄表面密着型であるが、アプリケータ40の断面直径を3mm以下にすることにより、組織内に刺入して使用できるように構成してもよい。ここで、図15は、連結磁性体充填用筒10をアプリケータ40に装着する場合に用いられる充填器11の一例を示した図である。
 図15に示すように、アプリケータ40に連結磁性体充填用筒10を装着する場合には、一例として充填器11を用いる。この充填器11は、一例として、マルチチャンネルピペットと同様のメカニズムを超小型化して構成されており、チップに相当する連結磁性体充填用筒10を取り外し可能に挿嵌することができる。そして、図15に示すように、アプリケータ40に連結磁性体充填用筒10を装着する場合には、連結磁性体充填用筒10をアプリケータ40の挿入孔に挿入して、充填器11の取り外しレバーを押下することにより、連結磁性体充填用筒10を充填器11から取り外しアプリケータ40に装着することができる。
 また、連結磁性体注入装置100の構成のうち、光検出装置20は、連結磁性体充填用筒10の先端付近の断面を横断する光を検出する光検出機構である。すなわち、光検出装置20は、連結磁性体充填用筒10の側面から連結磁性体1の注入状況を監視するための装置であり、連結磁性体1が連結磁性体充填用筒10内部で凝集していないか、連結磁性体1の注入が完了したか等をモニタする。その原理は、連結磁性体1が連結磁性体充填用筒10に充填されている状態と比較して、連結磁性体1が連結磁性体充填用筒10内部で凝集すれば光透過性は小さくなり、連結磁性体1の注入が完了すれば光透過性が大きくなることで検出する。ここで、光検出装置20は、通過した連結磁性体1の本数をカウントするよう構成してもよい。また、光検出装置20によるモニタ状況はコンピュータ等の表示画面に出力されてもよい。
 また、シャッタ30は、連結磁性体充填用筒10の孔の開閉制御を行うシャッタ機構である。シャッタ30は、一例として、図示しないコンピュータ等の制御装置により開閉制御される。図11に示すように、一例として、シャッタ30は、アプリケータ40の連結磁性体充填用筒10挿入側とは反対側(すなわち、組織側)に設置され、組織と直接、接触する部材である。ここで、図16は、シャッタ30により連結磁性体充填用筒10から連結磁性体1が注入される様子を模式的に示した図である。
 図16に示すように、シャッタ30の制御により連結磁性体充填用筒10の孔が開状態となると、連結磁性体1は自発的に神経組織等の組織内に侵入する。ここで、シャッタ30は、アプリケータ40に対してシャッタ30が回転・移動することによりシャッタ30の開口部分に連結磁性体充填用筒10の孔が露出して開状態となるシャッタ回転・移動型として構成してもよく、シャッタ30に対してアプリケータ40が回転・移動することによりシャッタ30の開口部分に連結磁性体充填用筒10の孔が露出して開状態となるアプリケータ回転・移動型としてもよい。さらに、シャッタ30の開閉機構は、レボルバ式に開口されていてもよく、各開口穴が独立して開閉制御可能に構成されてもよい。このようなシャッタ30の機構により、種々の機能(分子)を付加した連結磁性体の注入順序や注入位置が制御可能となる。ここで、図17は、シャッタ回転型またはアプリケータ回転型のシャッタ30を一例として示す図である。
 図17左図(断面図)に示すように、連結磁性体充填用筒10の孔が閉状態の場合、シャッタ31の開口部分に連結磁性体充填用筒10の孔が露出せず、連結磁性体1は組織内に注入されることがない。一方、シャッタ31の位置がアプリケータ40に対して相対的に回転移動することにより、シャッタ31の開口部分に連結磁性体充填用筒10の孔が露出すると、図17右図に示すように、連結磁性体充填用筒10の孔は開状態となり、連結磁性体1は組織内に注入される。ここで、図18は、シャッタ機構の他の実施の形態を一例として示す図である。
 図18左図(断面図)に示すように、他の実施の形態におけるシャッタ機構は、連結磁性体充填用筒10の孔からの連結磁性体の注入を防止する栓構造(例えば、非磁性体製のリード線32等の線状体)を有する。例えば、図18右図(斜視図)に示すように、連結磁性体注入装置100のアプリケータ40には、トンネル33が形成されており、シャッタ機構は、トンネル33にリード線32を摺動可能に挿脱することにより、連結磁性体充填用筒10の孔の開閉制御が行えるよう構成されている。すなわち、リード線32を連結磁性体充填用筒10の孔に突出するようトンネル33に挿入した状態では、リード線32は連結磁性体1の注入側への移動を阻止する。ここで、リード線32を図の上方向に引き上げると、リード線32の先端は連結磁性体充填用筒10の孔から退き、連結磁性体1は組織内に磁場に従って進入可能となる。このように、図17および図18に一例として示したシャッタ機構を備えた連結磁性体注入装置100によれば、直径2mmまで許容できる脳内等の組織内に刺入可能な構成とすることができる。
 図10に示すように、磁場制御装置200は、誘導針50と、制御部60と、磁石70から構成される。
 このうち、磁石70は、連結磁性体を誘導する磁場を発生させる磁場発生体である。例えば、磁石70は、永久磁石や電磁石や超伝導磁石等であり、用途に応じて磁場の強さ等を変更するために使い分けてもよい。
 また、誘導針50は、先端部分において、磁石70から発生された磁場による磁束密度を高める針であり、誘導針50先端で最も磁場を高める。誘導針50は、磁性体からなり、図10に示すように、複数本使用してもよく、受傷部等の標的組織付近に、刺入あるいは組織表面に密着させて用いられる。
 また、制御部60は、磁石70と誘導針50との間の磁場を制御する制御部である。図19は、制御部60による磁場制御を一例として模式的に表した図である。図19に示すように、制御部60の磁性体部分が磁石70と誘導針50の間にある状態では、磁石70から発生した磁場を誘導針50に到達させるため、誘導針50の先端で強力な磁場が生じる。一方、制御部60の磁性体部分が磁場制御装置200の長軸方向に対して垂直方向にスライドして磁石70と誘導針50の間から離れると、磁石70から発生した磁場が誘導針50に到達しなくなるため、誘導針50の先端で磁場が発生しなくなる。これにより、誘導針50を組織から抜去あるいは除去する場合でも、誘導針50の先端で磁場が発生しないので、組織内を磁場勾配に従って移動してきた連結磁性体1の組織内の位置がずれることがなくなる。ここで、図20および図21は、図19に例示した制御部60の改良型を示した図である。
 この改良型は、臨床応用のために安全性を更に高めたものであり、制御部60は、磁場を誘導針50に誘導する磁性体61のほかに、磁場を遮断する磁場遮蔽板62を備える。図20に示すように、磁性体61が誘導針50と磁石70の間に位置する場合は、磁石70から発生した磁場を誘導針50に誘導するため、誘導針50の先端で強力な磁場が発生する。一方、図21に示すように、磁場遮蔽板62が誘導針50と磁石70の間に位置する場合は、磁石70から発生した磁場を遮断するため、誘導針50の先端における磁場を完全に消失させることができる。
 以上が、本実施の形態における連結磁性体注入制御システムの構成の一例である。このように構成された連結磁性体注入制御システムは、小型で安価に構成することができ、漏れ磁場はほとんど発生せず安全性が高いという特徴を有する。
[連結磁性体注入制御システムの処理]
 次に、このように構成された本実施の形態における連結磁性体注入制御システムの処理の一例について、以下に説明を行う。
 まず、予め、注入予定部位(脳や脊髄、肝臓、心臓、腎臓、腫瘍組織等の組織)の表面に連結磁性体注入装置100のアプリケータ40およびシャッタ30を接触させ、注入予定部位から連結磁性体を移動させたい方向に応じて所望の位置に誘導針50を刺入ないし表面接触させておく。
 そして、所望の位置に設置された誘導針50に、制御部60を非誘導状態とした磁場制御装置200を結合させた後、制御部60を磁場誘導状態として、連結磁性体を目的部位に配列させるために必要な磁場を発生させる。
 そして、シャッタ30を閉状態にした連結磁性体注入装置100に連結磁性体充填用筒10を装着し、シャッタ30に接続されたコンピュータ等の制御により、連結磁性体を格納した連結磁性体充填用筒10の孔を所望の位置で開状態とする。これにより、連結磁性体は自ら組織に侵入して、磁場勾配に沿って目的部位に配列される。
 なお、連結磁性体注入装置100の光検出装置20により、連結磁性体の注入状況はモニタリングされており、注入が完了したことを確認することができる。また、連結磁性体の組織内の位置は、手術用CT・ナビゲータで確認してもよい。
 以上が、連結磁性体注入制御システムの処理の一例である。
[実施例]
 まず、本実施の形態における実施例について、以下に説明する。まず、本実施例が開発された背景について説明する。
 WHOの報告によれば、神経疾患による死者は毎年680万人におよび、欧州での神経疾患による経済的コストは2004年で1390億ユーロと推計される。我が国では高齢化が急速に進行し、脳血管障害(現在20万例発症/年)やパーキンソン病(推定患者数10万)などの神経疾患患者数は今後さらに増加していく。また我が国の将来を担うべき青少年に多い脊髄損傷患者数も10万人に達する。医療・福祉コストの面からも障害を受けた神経回路の再構築(とくに運動系)が可能になれば医療・福祉への貢献度はきわめて大きい。
 近年の万能細胞・幹細胞関連技術の発展によって、神経細胞移植は、脳・脊髄疾患における機能再建の切り札として、すなわち障害を受けた脳・脊髄の機能回復法の中で理想的な方法として、期待されている。
 しかし、従来の移植技術(神経細胞移植法)では、移植ニューロンとその神経線維を脳内で(1ミリメートルさえも)伸長させることができず神経回路を再構築し得ないため、満足すべき治療効果は得られていない。脳血管障害の場合には、病巣とその周囲にグリア瘢痕が形成されて移植神経や神経線維の移動はブロックされており(物理的障壁)、さらにミエリン等による神経線維伸長抑止機構の存在も障害となっている(細胞生物学的障壁)。一方、神経線維は様々な分子を道標として標的部位に到達するので、無秩序な神経線維の伸長はてんかん発作の危険も内包する(海馬苔状線維の異所性発芽など)。
 このため神経細胞移植の臨床応用にあたっては線維の伸展方向の制御も必要となる。このように神経移植は、究極の脳疾患治療法といわれながらも臨床応用には大きな壁が立ちはだかっており、現実的な神経細胞移植の臨床利用としては、宿主神経細胞への栄養因子やドパミンの補給源としての役割が期待されるにすぎない。運動神経系のように神経線維の伸長が不可欠な病態に適用できる神経細胞移植技術の開発が待ち望まれている。
 さらに、現行の移植技術では、注入針で組織が破壊されるため移植箇所は数カ所に限定されるという問題も存在する。
 本願発明の発明者らは、iPS細胞やES細胞研究が飛躍的に進歩した今日、もし脳・脊髄で神経線維の伸長と方向性を自由に制御して神経回路を再構築する技術を確立できれば、脳・脊髄疾患治療は飛躍的に進歩するはずであるとの着想を得た。すなわち、神経線維は、脳の発生過程において様々な分子を道標(足場)として標的部位に到達するので、もし、移植された神経細胞が道標に誘導されつつもバリアに阻害されずに目的地のニューロンとシナプス形成できれば、疾病のために失われた神経機能を回復できるはずである。
 本発明は、連結磁性体(好適には接着分子や栄養因子を結合した磁性体)を高磁場によって脳内に“配線”し、それを足場に神経回路を再構築するという新しい神経細胞移植技術の実用化を目的の一つとするものである。すなわち、本発明は、新しい神経細胞移植技術を神経・脊髄疾患治療に適用するうえで必要な技術の完成と早期の臨床応用を目的の一つとしている。
 そこで、本願発明者らは、医工学連携研究により、脳内の任意の部位と方向に神経線維の足場となる磁性体を敷設する技術を開発した。ここで、従来の磁性構造物の医学応用例として、磁性ナノビーズによるDNAやリンパ球の分離技術があげられる。しかし、脳組織内で神経細胞や神経線維の移動に十分な磁化率はナノビーズでは得られない。本願発明者は、超高磁場(10テスラ)のヒト細胞への健康影響解析を行い磁場の生体への作用に関する研究を行う中で、磁性ナノビーズよりも磁化が大きいため運動制御が可能で細胞との接触面積も遙かに大きい磁性ワイヤに着目した。
 近年のナノテクノロジーの進歩により本実施例で利用する直径50nm~100μm、長さ1~500μmの磁性ワイヤを均質かつ大量に製造できるようになった。磁性ワイヤの利点は、(1)種々の直径のワイヤを作成可能(50nm~100μm)、(2)細長いため、長軸方向に磁化、(3)大量生産が可能、(4)表面処理により十分量の機能分子を結合、塗布できる(5)神経組織内で連続的に配列可能であること等が挙げられる。ここで、図22は、磁性体が長軸方向に鎖状に繋がる様子を模式的に示した図である。
 図22に示すように、磁場の中では、磁性体は、その形状(例えば、長さ/半径=約1000)により長軸方向にしか磁化されない(異方性が大きい)ので、長く鎖状に繋がる(chain formation)。すなわち、磁性体(ナノワイヤ)は、磁気モーメントにより磁場方向に平行に配列し、それぞれの磁性体(ナノワイヤ)のS,N極が結合して一直線に並ぶ(chain formation)。そのため磁場方向を制御すれば磁性体(ナノワイヤ)の“レール”を脳内に容易に敷設可能となる。
 本実施例で採用する製造方法では、一度に大量の同形、同サイズのナノワイヤを製造可能である。製造直後のナノワイヤはエタノールや水中に懸濁して化学的に修飾できる。これまでの研究開発によりナノワイヤ表面に有機化合物を結合させたり、有機化合物のスペーサを介してタンパク分子を結合させることが可能になった(上記[連結磁性体の製造方法]参照)。このように、材料開発、磁場制御技術の発展により、上記の医学的課題を解決する手段に磁場とナノテクノロジーを利用できる環境が整った。
 超伝導技術の発達により、高磁場を発生させる非常に小さな超伝導マグネットを製作できるようになり、本実施例でも高磁場の利用を検討した。本実施例では、多種多様な超高磁場発生装置を利用して、現在13テスラまでの超電導磁石を用いて実用化に向けた検討を行った。
 以下に、本実施例として、[(1)インテリジェント・磁性ワイヤの開発]、[(2)高磁場で脳内の目的部位に磁性構造物を整列させる技術、脳内の磁性ナノ構造物を非破壊的に検出する技術の開発]、[(3)臨床への実用化検討]について順に説明を行う。
[(1)インテリジェント・磁性ワイヤの開発]
 脳内に注入した際に毒性が無く、磁場によって容易に配列する強磁性ナノ物質(ナノワイヤ)を開発した。ナノワイヤに有機化合物のアンカーを結合させることに成功し、非特異神経接着分子であるポリLリジン結合ナノワイヤで実験を行った。神経線維の伸長を誘導するため、接着分子結合ナノワイヤ(A1)を足場として磁場制御による神経回路を再構築させる。さらに、拡散作用により近傍の組織へも効果が発揮できる溶解型樹脂結合ナノワイヤ(A2)を設計し、神経機能因子(神経栄養因子などのタンパク質、機能制御のための抗体、薬物、タンパク発現抑制のためのsiRNA等)を脳内特定部位に必要な時間だけ作用させる新しいドラッグデリバリーシステム(drug delivery system(DDS))技術を開発した。以下は、本実施例で作製した磁性体を、機能性に関して分類(A1,A2)、形状に関して分類(B1,B2)したものである。磁性ワイヤは、用途に応じて、A1B2タイプや、A2B1タイプ等のように組合せて構成してもよい。
(A1.細胞接着分子結合ワイヤ)
 特定の化合物を結合させたものであり、一例として、ポリLリジン結合ワイヤ、汎用型の抗体結合ワイヤ等として構成する。ポリLリジンは最も安価で機能が安定した非特異的な神経線維接着因子である。ここで、図23は、汎用型抗体結合ワイヤの構造を一例として示す図である。
 図23に示すように、汎用型抗体結合ワイヤは、ナノワイヤ表面に(ヒト化)抗マウスIgG抗体を結合したものであり、ナノワイヤ表面に種々のマウスIgG抗体を、その機能を損なうことなく自由にナノワイヤに結合することができるので、神経機能に影響をあたえる複数の分子の同時制御が可能になる。これにより、神経系発生過程を模倣した効果的な神経回路再構築も可能となる。
(A2.薬物溶出型インテリジェント・ワイヤ~中枢神経用DDS)
 タンパク(栄養因子、接着分子、抗体)や薬物、siRNA(RNA干渉によるタンパク発現抑制用)等を脳脊髄で持続放出させることを目的として構成されたワイヤである。脳内で一定時間経過後に、磁性体表面から分子が脱落する表面コーティング技術を開発した。ここで、図24は、薬剤溶出型のナノワイヤ表面の構造を一例として示す図である。
 図24に示すように、これによりナノワイヤに直接接触していない神経細胞や神経線維に対しても、神経機能分子や薬物の効果をおよぼすことができる。特に、濃度勾配依存性の液性因子や栄養因子を、脳組織にダメージを与えることなく広範囲に投与することが可能となる。
 薬物溶出型の金属コーティング技術は、心筋梗塞治療(冠動脈の再閉塞予防)のために薬物溶出型ステントとして臨床利用されている。本実施例では確立されたこれらの技術も参考にして開発を進めた。すなわち、冠動脈用薬剤溶出ステントに使用されるメタクリレート(メタクリル樹脂、アクリル樹脂)などの有機素材、生体分子であるフィブリン、マトリックスタンパク、多糖類、ポリ乳酸、ポリリジン等を遊離用基質として用いることが可能であることを確認した。
 すでに脳腫瘍治療(抗ガン剤遊離)に向けてポリ乳酸系基剤(ポリ乳酸系マトリックス)の開発が進んでおり、神経組織への毒性も少なく、有望なインテリジェント磁性体の表面コーティング基剤として検討を行った。このような薬物溶出型ナノワイヤは様々な神経疾患治療に利用できると期待される。
 更に、磁性ワイヤ表面に多層のコーティングを施すことによりワイヤを多機能化できる。ここで、図25は、ナノワイヤをコア層として、コア層の上層に食細胞シグナル(ポリリジン等)を含む中間層と、中間層の上層に生体機能分子を含む機能層と、を積層させた場合の断面構造の一例を示す図である。
 50nmナノワイヤは、ほぼ細菌と同サイズであり、その表面にマクロファージの貪食シグナル(例えばポリリジン)を結合させると、マクロファージは速やかに貪食して脳組織からワイヤは除去される。ただし、貪食不可能なサイズであれば磁性ワイヤは脳局所に留まることになる。
 従って、薬物や栄養因子等の機能層を中間層(ポリリジンを貪食シグナルとした層)の上にコーティングすれば、役目を終えて機能層が溶解してポリリジン層が露出して、マクロファージにより脳局所から除去されることになり、ナノワイヤによる組織障害の可能性(本来、ほとんど無いものと考えられる。)は除かれる。なお、機能層の機能分子としては、薬物、栄養分子、接着分子、モノクローナル抗体、ウイルスベクタ、siRNA等を用いてもよい。
 なお、インテリジェント磁性体は単独でも治療応用が可能である。脳内で一定時間経過後に、磁性体表面から分子が脱落する表面コーティング技術を用いることで、薬物溶出機能を持つ磁性ワイヤは様々な神経疾患治療にも利用できる。
(B1.ロッド型ワイヤ)
 形態として、一本のナノワイヤそのものであり、磁化率に優れるが表面積は比較的小さい。本実施例で新たに開発したナノワイヤは、アルミの板に陽極酸化法によって作られたナノポーラスを鋳型として、その穴の中に鉄などの強磁性体を電解法で析出させて作製する。この方法では、全く同じ大きさと形のナノサイズ(直径数十nm、長さ数μm~数十μm)のワイヤを一度に大量(1010~1012本程度)に作製可能であり、ナノワイヤの長さも自由に制御することが可能である。本実施例では一例として鉄を素材としたナノワイヤを作製したが、白金やチタンなどの生体により親和性があり毒性の少ない材料でのナノワイヤも開発した。
 直径50nmのロッド型ワイヤの特徴は、細菌と同程度のサイズであり、大食細胞(microglia等)の貪食により除去可能であるが、一定期間後に標的部位から神経回路構築の足場には適さないこと等であり、免疫細胞の賦活(感染症治療)、栄養因子供給(投与期間の調節可能)、成型して大型ワイヤ(連結磁性体)の作製用途等が挙げられる。一方、200nmのロッド型ワイヤの特徴は、ミクログリア等の食細胞が貪食できず標的部位に長期間留置可能であること、50nmワイヤに比べて組織貫通力は劣ること等であり、栄養・成長因子の局所持続投与(神経難病治療)、短距離の神経回路構築(高次脳機能回復)等の用途が挙げられる。
 製造されたナノワイヤに神経機能制御分子等を結合させるためには、好適には、ナノワイヤの表面有機化合物をコーティングする。その方法として、SAM(Self Assenbled Mono-layer)作製技術等を応用する。例えば、有機蛍光物質であるhematoporphryn IXでニッケルナノワイヤを処理し、蛍光物質をその表面に付けることで有機物をナノワイヤに結合させることができた。また、鉄ナノワイヤの表面にアルキル基を結合させ、アルキル基を介してポリLリジンを最表面に持つナノワイヤを開発して脳移植実験への利用を可能とした。ナノワイヤ表面の有機化合物コーティングの特性(結合の安定性、被覆の程度・強度等)について解析・改良も行った。
 本実施例では、生体に優しいナノワイヤの材料、コーティングに最適な表面を有するナノワイヤ、ナノワイヤの表面と細胞と親和性のある有機物や細胞伸展因子とを仲介するアンカー分子の最適化を行った。そのために、多くの物質の組み合わせを検討するとともに、最適なコーティング条件、溶質の種類、温度、pH、撹拌、乾燥の条件を調べた。作成した磁性ワイヤの表面状態と結合状態の評価に走査電子顕微鏡と赤外分光装置を活用した。
(B2.メッシュ型ワイヤ(連結磁性体))
 ナノワイヤ(例えば、50nm径)をメッシュ状に結合し、直径50~100μmの筒状に成型したものである。メッシュ型ワイヤ(連結磁性体)のメリットは、(1)単位体積あたりの表面積が大きく神経線維の足場として優れること、(2)可溶性成型剤(フィブリン、糖質、ポリ乳酸)を用いれば、一定期間後に元の単一の50nmワイヤ(細菌サイズ)に分解されるため役目を終えたワイヤがマクロファージ等の食細胞により局所から除去されること、(3)内部に幹細胞等を封入して細胞の組織内移動を可能とすること等が挙げられる。なお、図26は、大食細胞が移植部からナノワイヤを除去している様子を示す顕微鏡写真図である。
 図27は、50nmワイヤをメッシュ状に加工したメッシュ型ワイヤ(連結磁性体)の顕微鏡写真を示す図である。メッシュ型ワイヤ(連結磁性体)は、生体内で一定時間経過後に溶解するよう可溶性成型剤(フィブリン、糖質、ポリ乳酸など溶解しやすい材質)を用いて成型することにより、メッシュの溶解性を調節することが可能であり、ワイヤの分解・除去までの時間を制御可能となる。
 単純型ワイヤ(B1)は貫通力とコストの点で有利だが、メッシュ型ワイヤ(B2)には表面積の大きさとマクロファージ等により組織から除去可能等のメリットがある。直径50~100μmのカゴ形ワイヤ、または、円筒形ワイヤに移植神経細胞を封入して目的部位に正確に移送することも可能である。
 また、直径50μmのメッシュ型ワイヤの特徴は、脳組織内を容易に移動可能であり、磁場強度を適切に選択すると、組織の硬さによって移動範囲を限定できるので、脳浮腫部位のみに限定した移動も可能となったり、脳表面から脳内部にワイヤ回路を敷設可能となったり、脳にキズ(注入穴)をつけずに配線が可能となったりし、汎用性と安全性に優れ、脊髄外傷治療や、脳卒中治療(とくに運動・感覚障害)、脳浮腫疾患治療等の用途が期待される。一方、直径100μmのメッシュ型ワイヤの特徴は、最強の組織貫通力を持ち、通過により脳内に神経細胞が移動できるトンネルを敷設することができ、脳表面から脳内部にワイヤ回路を敷設可能となること等であり、脳腫瘍部位への薬品輸送や、腫瘍破壊、脳内移植細胞移動(長距離)、脳卒中治療(神経回路再構築)、ブレイン・マシンインターフェースの電極に用いる等の用途が期待される。
 以上のように、体内に注入しても毒性が無く、磁場によって容易に配列する種々の磁性ワイヤを開発した。現在、超高純度鉄製ナノワイヤをラット(正常および脳梗塞ラット)脳に注入し3ヶ月間迄観察したが(N=10)、脳局所炎症やけいれん発作は観察されず死亡した動物はなかった。ポリリジン表面加工を施した超高純度鉄製ナノワイヤは、生理食塩水内でも一年間錆びることなく安定した状態を保つことができるが、臨床応用にあたり完璧な安全性を目指して鉄・白金ワイヤも制作した。また、脳脊髄内で、タンパク質(接着分子、栄養因子、神経反発因子等)やそれらの機能を制御する分子(モノクローナル抗体、siRNA、薬物)を結合および遊離できる技術を完成した。また、タンパクや薬物を脳内特定部位に必要な時間だけ作用させる新しいドラッグデリバリー(DDS)技術が開発できた。例えば、悪性腫瘍等に対する癌治療として、局所的に癌遺伝子を抑制したり、抗がん剤の局所投薬が可能となったり、心筋梗塞や心筋症、動静脈塞栓症の治療として、血管新生因子等で特定部位の血管新生を施したり、心筋栄養因子を局所的に供給したり、siRNAやベクタを用いて特定部位の遺伝子発現制御を行うこと等が可能となる。
[(2)高磁場で脳脊髄内の目的部位に磁性構造物を整列させる技術、脳脊髄内のナノワイヤ(連結磁性体)を検出する技術の開発]
(磁場制御装置の開発)
 本実施例では、強磁性ワイヤを神経組織内で整列させるための磁性体注入制御システム(磁場発生・制御装置)を開発した。すなわち、臨床の現場で、ナノワイヤ(連結磁性体)を脳脊髄内で移動、整列させるための高磁場制御技術を開発した。この技術は、脳のみならず他臓器でのナノワイヤ(連結磁性体)移動制御にも応用できる。すでに、本願発明者らは、脳表面から1~2センチの深さであればネオジウム永久磁石により配列する方法を開発しているが、配列誤差の最小化(現在は誤差2ミリメートル以内)や磁性ワイヤ注入方向と注入量の精密制御のために、注入装置(マイクロインジェクター)を開発した。
 脊髄外傷治療に本発明を応用する場合には、永久磁石による小型の磁場制御装置で十分であり手術室の改修も不要である。一方、脳表面から5センチ以上離れた部位にナノワイヤ(連結磁性体)を配列するには3テスラ以上の超電導磁石が必要となるが、この場合、他の医療機器への影響を防ぐため磁場遮蔽が不可欠となる。超伝導薄膜と超伝導バルク材(新日鐵製)を用いて漏洩磁場の制御実験をおこない、磁束方向制御に成功した。さらに超伝導バルク材を用いると脳の特定方向に超高磁場を絞れることも実証し、超電導磁石の手術室での利用は可能との結論を得た。
 一方、磁石と脳内目的部位との距離が離れるにつれ配列誤差は大きくなるが、特にパーキンソン病への移植治療では脳深部(線条体)に正確にナノワイヤ(連結磁性体)を配列する必要がある。その場合、磁石に接合した磁場制御誘導針を定位脳手術により線条体に刺入して正確に磁性ワイヤを誘導する方法が安全確実であると考えられる。誘導針によりラット線条体にも正確に磁性ワイヤを局在させることができた。
[(3)臨床への実用化検討]
(対象疾患)
 最も治療効果が期待される脊髄外傷とパーキンソン病を本実施例の対象疾患とするが、特に脊髄外傷に注力した。その理由は脊髄外傷では運動機能回復(皮質脊髄路)という明快な治療目標があり患者数も多いこと、脊髄では線維走行が直線的でワイヤ配列のための磁場設計が容易なこと、直視下にワイヤを配置できること、脳移植に比べて倫理的抵抗感が少ないことである。
 パーキンソン病については、黒質ドパミンニューロンの代替により実験レベルでは運動機能が改善すること、ヒトの場合にも線条体にドパミン産生細胞を広範に配置できれば治療効果が十分期待されることから脳への神経系細胞移植の候補とした。なお、脳卒中患者(錐体路障害)の運動機能改善も本実施例の大きなテーマである。
 脊髄外傷とパーキンソン病には、患者数が多く運動障害の改善がADL向上に直結するという共通点がある。全国には10万人もの脊髄外傷後遺症に苦しむ患者がおり(パーキンソン病患者総数に匹敵)、毎年5000名の患者が新たに加わっている。脊髄外傷は青年期に多く、患者のみならず社会にとっても深刻な問題である。見方を変えれば、脳の可塑性に優れる若年患者が多いわけで、効率的リハビリテーションと組み合わせれば更なる運動機能改善も期待される。パーキンソン病患者は社会の高齢化とともに増加していくため、神経移植の実用化は福祉介護行政の面でも待ち望まれる。
(実験動物による基礎研究)
 ラット脳に神経機能制御型ナノワイヤと神経細胞(胎児から調製したニューロン、iPS細胞あるいはES細胞から分化させたニューロン)を移植して磁場でナノワイヤを配列した。神経伸長の評価はGFPトランスジェニックラット由来の神経細胞移植による(移植神経細胞や線維が緑色蛍光を発するので容易に検出できる)。
 超高磁場によりナノワイヤが予想外の移動性を示して神経細胞に障害を与える危険性については、上記のin vitro実験による神経細胞の外力への耐性限界測定(ラウルダンによる細胞流動性測定、細胞骨格タンパク染色)の基礎データが重要になる。さらにナノワイヤが脳を突き抜けて髄膜や頭蓋骨に到達する可能性があるが、ナノワイヤは長軸方向(直径50nm)に移動するため組織破壊や出血の危険は極めて低いと考えられる。
(移植する細胞について)
 ラット胎児神経細胞に加えて、移植医療に重要な位置を占めるiPS細胞やES細胞由来神経細胞を使用することを検討する。神経幹細胞の分化誘導因子を薬物溶出型ナノワイヤを用いて持続的に投与することも可能であり、神経幹細胞が脳内で腫瘍化する危険性が薬物溶出型ナノワイヤの同時注入(幹細胞分化因子)により抑制されるかについても検討した。
(新しいDDSとしてのナノワイヤ(神経栄養因子の投与))
 障害部位との線維連絡を絶たれた神経細胞は徐々に萎縮・脱落していくが、神経栄養因子の補給により障害の進行をある程度予防できる。ナノワイヤに栄養因子(HGF、GDNFなど)を結合して目的の部位に移動させれば神経死を予防できる可能性がある。本実施例による方法は、安全に脳の特定部位に薬物を放出させる効率的な中枢神経系へのDDSになるものである。
(本実施例による手法)
 従来、国内外の研究結果において、ナノワイヤを利用して脳移植、神経細胞死(老化)の予防を目指した研究は皆無であった。現在の神経移植の限界は、脳内での神経線維の伸長が不可能なことであるが、これを打破するアイデアはほとんど無い。神経栄養因子の遺伝子をウイルス遺伝子に組み込んで神経組織に感染させ、栄養因子を供給したとする報告は多いが、標的部位のみに限局して十分量の栄養因子を持続的に供給することは従来、不可能であった。
 本実施例は、神経線維伸長を誘導する機能分子をナノワイヤに遊離可能に結合して、インテリジェントな磁性体(直径50nm~100μm)を作成した。具体的には、神経伸展因子や神経反発因子を抑制する抗体や薬物、神経栄養因子などの機能分子をナノワイヤに結合して作成した連結磁性体を、高磁場により脳脊髄の特定部位に配列後、神経線維に機能分子を提示させ、または、一定期間放出させる。これにより、移植神経線維と標的神経細胞との間でシナプスを形成させて神経回路を再構築させることができる。ここで、図28は、神経障害により、AとBの領域間の神経連絡(両矢印)が遮断されて機能が失われた場合に、連結磁性体を磁場により障害部位を横断するように配列させる様子を模式的に示した図である。また、図29は、細胞伸展因子などの神経機能制御分子を結合したナノワイヤ(連結磁性体)の上を神経線維や神経細胞が移動することにより、標的神経細胞との間で神経回路が形成される様子を模式的に表した図である。
 図28に示すように、神経障害により領域Aと領域Bの間の神経連絡が遮断されて機能が失われると、通常はグリア瘢痕とミエリン等の神経伸長阻害因子に阻まれて移植神経細胞(移植ニューロン)は1ミリメートルさえも神経線維を組織内に伸長させられず領域Aと領域Bの間の連絡は回復できない。そこで、ナノワイヤに神経機能制御因子を結合させた連結磁性体を、磁場により領域Aと領域Bとを連絡するように鎖状に整列させて神経線維伸長のレールとする。すなわち、図29に示すように、移植神経細胞は、障害部位に阻まれることなく連結磁性体のナノワイヤ上に提示された細胞伸展因子に沿って移動あるいは神経線維を伸展することができる。ここで、ナノワイヤには、細胞接着分子や非特異的接着物質ポリLリジン等を結合させてもよい。ここで、図30は、ラット脳の3次元CT画像を示す図である。なお、図に向かって左側が大脳、右側が小脳を表している。
 表面処理済の磁性体を左右の大脳皮質表面に注入し(図30の「注入部位」)、磁性体を脳底方向に0.6テスラ磁石で誘導した。その結果、図30に示すように、両矢印の範囲にわたって、磁性体が線状に並んで配列された様子が観察された。図30の左側の両矢印の範囲では、脳を貫通させ、右側の両矢印の範囲では、大脳皮質から間脳の間に配列させることに成功した。なお、本実験では、脳表面(軟膜直下)に磁性体を滴下して誘導しているため脳に注入針は刺入していない(所用時間約10分)。ここで、図31は、ラットの脳内にナノワイヤ(50nm)を注入し外部から永久磁石によって磁場をかけて、ナノワイヤを誘導した時の顕微鏡写真を示す図である。
 図31に示すように、大脳皮質に注入したナノワイヤが磁石に誘引されて、注入点より脳内を約2mm移動していることが分かる(黒い点が凝集したナノワイヤ)。以上により、ラットの脳内でも磁場によってナノワイヤを制御可能であることが明らかになった。
 また、ラット大脳皮質表面(脳硬膜とクモ膜は除去)に磁性体を滴下し、0.4テスラ永久磁石を脳の対側に配置すると、約2分間でワイヤは脳内1センチに渡って連続的に横断配列した。3テスラの超伝導磁石を用いると10センチ以上離れた磁性体を移動させることができた。磁石先端に接続した誘導針を脳に刺入して磁場勾配を作ることにより、さらに正確に磁性体を誘導することが可能であった(線条体への局在化の場合は0.5cmを正確に移動)。この結果、通常の脳・脊髄移植手術の場合(移動距離1cm程度)には永久磁石による小型の磁場制御装置が使用できるため、手術室を改造しなくとも臨床応用は十分可能であることが示された。
 また、ラット脳への機能分子結合ナノワイヤ・神経細胞同時移植による安全性について、培養ラット大脳皮質神経細胞に対しポリLリジン結合ナノワイヤは、生存率低下を示さなかった(5日間観察)。また、ポリLリジン結合ナノワイヤを、脳梗塞ラットに投与により、ナノワイヤからポリLリジンの脱落は殆ど認められず、また異常行動や、麻痺の悪化、生存率低下は認められず、けいれん発作も出現しなかった(3ヶ月後まで)。
 また、超高解像度CTによってラット脳内ナノワイヤ分布の非侵襲的な画像化に成功した。磁性ナノ粒子の3次元位置検出のための基本技術、脊髄移植技術、動物の運動機能評価技術、位相差X線CT技術を開発した。また、放射光により、通常のX線では検出困難な微量の磁性体検出に成功した。位相差CTによる高解像度解析も可能であった。
 上述した磁場によるナノ構造体の移動実験により、50μm径かつ100~300μm長のワイヤが、脳内移動能力と制御性のバランスに最も優れることが明らかになった。このサイズの場合、注入針を用いなくとも(定位脳手術なしで)脳表から直接目的部位に到達させることも可能であった。
(結果と考察)
 神経細胞(神経幹細胞)を、神経制御分子を結合したナノワイヤ(連結磁性体)と同時に、あるいは、予めナノワイヤ(連結磁性体)を脳内で配列した後に移植することにより、移植神経線維さらにはホスト神経線維に新しい神経回路を構築させる技術を開発した。これにより、現在の脳移植では不可能とされるグリア瘢痕を超えた神経連絡を可能にし、失われた神経機能、とくに運動回路を再建させる方法を確立した。また、パーキンソン病やALS等の神経変性疾患への栄養因子供給を目的として、薬物遊離型ナノワイヤ(連結磁性体)を目的部位に移動させて神経栄養因子や薬物を一定期間放出する技術を開発した。
 また、ある特定の分子(神経接着、神経栄養因子等)や薬物の作用を動物脳において迅速かつ低コストに観察する技術もあわせて開発した。例えば、脳局所に特定の分子を結合したナノワイヤ(連結磁性体)を配列して持続放出させることにより、その分子の機能を病理学、生化学、行動薬理学的に解析することができる。ノックアウトマウスやトランスジェニックマウスと組み合わせれば神経科学のみならず多くの医学研究分野において有用なツールとなる。
 本実施例の開発は、障害を受けた脳の神経回路を再構築して神経機能の回復を目的の一つとしており、神経線維を脳脊髄内で自由に移動・伸張させる技術を確立したので、神経疾患の原因にかかわらず、脳機能障害に苦しむ患者への治療に有用と考えられる。さらに、従来の薬物搬送システムでは不可能とされる脳の特定部位への薬物や栄養因子の供給も薬物遊離型ナノワイヤにより可能となるので、神経変性疾患(パーキンソン病、運動ニューロン病、アルツハイマー病等)への治療にも有用である。超高磁場/細胞機能制御型ナノワイヤシステムは生体内ナノマシンとしての機能を持つ。このことは本実施例で目指す脳移植のみならず、他臓器の疾患の治療にも応用することが可能であり、普遍性の高い技術である。
 本実施例で開発された要素技術は、目的にあわせたナノ磁性物質の製作法、ナノ磁性物質の制御技術、検出技術である。本実施例では、これらを体内で応用することを目的の一つとしているが、in vivoでの生体物質の検査技術などの多くの応用展開が考えられる。例えば、がん細胞の検出が可能になると考えられるので、ガン医療分野への応用も可能である。また、その他の生物学的応用として、バイオセンサーや人工神経に用いることができる。
 また、本実施例で開発されたナノ物質の制御・検出技術は、例えば非破壊検査などの純工業的分野への適用も可能である。本実施例は、生体内に注入した物質の運動の制御・検出技術であることから、その応用範囲は広く、例えば、マイクロロボット、ナノロボットを使った治療にしても制御・位置検出技術を用いるため、本実施例を応用可能である。また、磁性体をフィルターとして有害物質を吸着させることにより環境材料としても用いることができる。
[他の実施の形態]
 さて、これまで本発明の実施の形態について説明したが、本発明は、上述した実施の形態以外にも、特許請求の範囲に記載した技術的思想の範囲内において種々の異なる実施の形態にて実施されてよいものである。
 例えば、連結磁性体注入装置100および磁場制御装置200がスタンドアローンの形態で処理を行う場合を一例に説明したが、連結磁性体注入装置100または磁場制御装置200とは別筐体で構成されるコンピュータ等の演算制御装置からの要求に応じて処理を行い、その処理結果を当該演算制御装置に返却するように構成してもよい。
 また、実施の形態において説明した各処理のうち、自動的に行われるものとして説明した処理の全部または一部を手動的に行うこともでき、あるいは、手動的に行われるものとして説明した処理の全部または一部を公知の方法で自動的に行うこともできる。
 このほか、上記文献中や図面中で示した処理手順、制御手順、具体的名称、各処理の登録データや検索条件等のパラメータを含む情報、画面例、データベース構成については、特記する場合を除いて任意に変更することができる。
 また、連結磁性体注入装置100および磁場制御装置200に関して、図示の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。
 例えば、連結磁性体注入装置100および磁場制御装置200の各装置が備える処理機能は、その全部または任意の一部を、CPU(Central Processing Unit)および当該CPUにて解釈実行されるプログラムにて実現してもよく、また、ワイヤードロジックによるハードウェアとして実現してもよい。尚、プログラムは、後述する記録媒体に記録されており、必要に応じて連結磁性体注入装置100に機械的に読み取られる。すなわち、ROMまたはHDなどの記憶部などは、OS(Operating System)として協働してCPUに命令を与え、各種処理を行うためのコンピュータプログラムが記録されている。このコンピュータプログラムは、RAMにロードされることによって実行され、CPUと協働して処理機能を担う制御部を構成する。ここで、「記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、EPROM、EEPROM、CD-ROM、MO、DVD等の任意の「可搬用の物理媒体」、あるいは、LAN、WAN、インターネットに代表されるネットワークを介してプログラムを送信する場合の通信回線や搬送波のように、短期にプログラムを保持する「通信媒体」を含むものとする。また、「プログラム」とは、任意の言語や記述方法にて記述されたデータ処理方法であり、ソースコードやバイナリコード等の形式を問わない。なお、「プログラム」は必ずしも単一的に構成されるものに限られず、複数のモジュールやライブラリとして分散構成されるものや、OSに代表される別個のプログラムと協働してその機能を達成するものをも含む。なお、実施の形態に示した各装置において記録媒体を読み取るための具体的な構成、読み取り手順、あるいは、読み取り後のインストール手順等については、周知の構成や手順を用いることができる。
 また、連結磁性体注入装置100および磁場制御装置200は、既知のパーソナルコンピュータ、ワークステーション等の情報処理装置に接続し、該情報処理装置に本発明の方法を実現させるソフトウェア(プログラム、データ等を含む)を実装することにより実現してもよい。
 更に、装置の分散・統合の具体的形態は図示するものに限られず、その全部または一部を、各種の付加等に応じて、または、機能負荷に応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。
 以上詳述に説明したように、本発明にかかる連結磁性体、連結磁性体製造方法、連結磁性体注入装置、連結磁性体注入制御システム、磁場制御装置、および、連結磁性体注入制御方法によれば、従来よりも組織貫通力に優れ、長期的な留置可能性と食細胞による除去性を両立することができ、従来よりも大量の物質や大きなサイズの物体を運搬することができる連結磁性体、および、当該連結磁性体の連結磁性体製造方法、連結磁性体注入装置、連結磁性体注入制御システム、磁場制御装置、および、連結磁性体注入制御方法を提供することができるので、医療や製薬や創薬や生物学研究、ナノテクノロジーや臨床検査などの様々な分野において極めて有用である。

Claims (11)

  1.  磁性体からなる複数のナノワイヤを互いに連結して筒状または籠状に成型したことを特徴とする連結磁性体。
  2.  請求項1に記載の連結磁性体において、
     上記筒状または上記籠状の構造内部に、細胞、タンパク質、ホルモン、ペプチド、薬物、有機化合物、核酸、糖質、または、脂質を格納したこと、
     を特徴とする連結磁性体。
  3.  請求項1に記載の連結磁性体において、
     上記ナノワイヤをコア層として、上記コア層の上層に食細胞シグナルを含む中間層と、上記中間層の上層に生体機能分子を含む機能層と、を積層させたこと、
     を特徴とする連結磁性体。
  4.  請求項3に記載の連結磁性体において、
     上記機能層は、上記生体機能分子として、薬物、タンパク質、糖、ウイルスベクタ、siRNA、抗体、栄養因子、または、細胞外マトリックスを含むこと、
     を特徴とする連結磁性体。
  5.  請求項3に記載の連結磁性体において、
     上記中間層または上記機能層は、メタクリレートその他の有機素材、フィブリン、マトリックスタンパク質、多糖類、ヘパリン、ヘパリン様分子、ポリ乳酸、その他の遊離用基質を含むこと、
     を特徴とする連結磁性体。
  6.  磁性体からなる複数のナノワイヤを懸濁させて懸濁液を調整する第一工程と、
     溶解性を有する棒状体を上記懸濁液に浸漬させる第二工程と、
     上記棒状体に付着した上記懸濁液を乾燥させる第三工程と、
     上記棒状体を溶解させることにより、複数の上記ナノワイヤが互いに連結した、筒状または籠状の連結磁性体を生成する第四工程と、
     を含むことを特徴とする連結磁性体製造方法。
  7.  請求項1乃至5のいずれか一つに記載の連結磁性体の径よりも大なる孔を有し、光透過性のある非磁性体からなる管状の連結磁性体充填用筒と、
     上記連結磁性体充填用筒の先端付近の断面を横断する光を検出する光検出機構と、
     上記連結磁性体充填用筒の上記孔の開閉制御を行うシャッタ機構と、
     を備えたことを特徴とする連結磁性体注入装置。
  8.  請求項7に記載の連結磁性体注入装置において、
     上記シャッタ機構は、
     上記連結磁性体充填用筒の上記孔からの上記連結磁性体の注入を防止する栓構造を有し、上記栓構造を摺動可能に挿脱することにより、上記連結磁性体充填用筒の上記孔の開閉制御を行うこと、
     を特徴とする連結磁性体注入装置。
  9.  請求項1乃至5のいずれか一つに記載の連結磁性体の径よりも大なる孔を有し、光透過性のある非磁性体からなる管状の連結磁性体充填用筒を少なくとも備えた連結磁性体注入装置と、
     上記連結磁性体を誘導する磁場を発生させる磁場発生体、および、上記磁場を遮断する磁場遮蔽板の移動制御を行う制御部を少なくとも備えた磁場制御装置と、
     を備えたことを特徴とする連結磁性体注入制御システム。
  10.  請求項1乃至5のいずれか一つに記載の連結磁性体を誘導する磁場を発生させる磁場発生体と、
     上記磁場発生体から発生される上記磁場の磁束密度を高める誘導針と、
     上記磁場発生体と上記誘導針との間の磁場を遮断する磁場遮蔽板の移動制御を行う制御部と、
     を少なくとも備えたことを特徴とする磁場制御装置。
  11.  請求項1乃至5のいずれか一つに記載の連結磁性体の径よりも大なる孔を有し、光透過性のある非磁性体からなる管状の連結磁性体充填用筒、上記連結磁性体充填用筒の先端付近の断面を横断する光を検出する光検出機構、および、上記連結磁性体充填用筒の上記孔の開閉制御を行うシャッタ機構を備えた連結磁性体注入装置と、
     上記連結磁性体を誘導する磁場を発生させる磁場発生体、および、上記磁場を遮断する磁場遮蔽板の移動制御を行う制御部を少なくとも備えた磁場制御装置と、
     を備えた連結磁性体注入制御システムにおいて実行される連結磁性体注入制御方法であって、
     上記磁場制御装置の上記制御部により実行される、
     上記磁場遮蔽板を移動させて上記磁場発生体から発生する上記磁場を透過させる第一工程と、
     上記連結磁性体注入装置により実行させる、
     上記シャッタ機構を制御して上記連結磁性体充填用筒の上記孔を開状態にする第二工程と、
     上記光検出機構を制御して上記連結磁性体充填用筒の上記断面を横断する上記光を検出することにより上記連結磁性体が注入されたことを確認する第三工程と、
     を含むことを特徴とする連結磁性体注入制御方法。
PCT/JP2008/071676 2008-11-28 2008-11-28 連結磁性体、連結磁性体製造方法、連結磁性体注入装置、連結磁性体注入制御システム、磁場制御装置、および、連結磁性体注入制御方法 WO2010061474A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/377,774 US20110234345A1 (en) 2008-11-28 2008-11-28 Combined magnetic body, combined magnetic body production method, combined magnetic body injection apparatus, combined magnetic body injection control system, magnetic field control apparatus and combined magnetic body injection control method
PCT/JP2008/071676 WO2010061474A1 (ja) 2008-11-28 2008-11-28 連結磁性体、連結磁性体製造方法、連結磁性体注入装置、連結磁性体注入制御システム、磁場制御装置、および、連結磁性体注入制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/071676 WO2010061474A1 (ja) 2008-11-28 2008-11-28 連結磁性体、連結磁性体製造方法、連結磁性体注入装置、連結磁性体注入制御システム、磁場制御装置、および、連結磁性体注入制御方法

Publications (1)

Publication Number Publication Date
WO2010061474A1 true WO2010061474A1 (ja) 2010-06-03

Family

ID=42225367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/071676 WO2010061474A1 (ja) 2008-11-28 2008-11-28 連結磁性体、連結磁性体製造方法、連結磁性体注入装置、連結磁性体注入制御システム、磁場制御装置、および、連結磁性体注入制御方法

Country Status (2)

Country Link
US (1) US20110234345A1 (ja)
WO (1) WO2010061474A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017024154A1 (en) * 2015-08-04 2017-02-09 President And Fellows Of Harvard College Techniques and systems for injection and/or connection of electrical devices
KR101714733B1 (ko) * 2015-08-13 2017-03-09 한국기계연구원 로봇용 로딩유닛의 탈부착장치, 이를 이용한 로봇 및 로봇의 제어방법
JP6544461B2 (ja) * 2018-04-23 2019-07-17 大日本印刷株式会社 バイオセンサ用導電材およびバイオセンサ
JP6702488B2 (ja) * 2019-06-19 2020-06-03 大日本印刷株式会社 バイオセンサ用導電材およびバイオセンサ

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001017405A (ja) * 1999-07-05 2001-01-23 Hitachi Medical Corp Mri装置
JP2001502937A (ja) * 1996-09-27 2001-03-06 アメリカン・ホーム・プロダクツ・コーポレイション 固体材料の配置のための医療用装置
WO2005084582A1 (en) * 2004-03-02 2005-09-15 Nanosys, Inc. Medical device applications of nanostructured surfaces
WO2005095621A1 (ja) * 2004-03-31 2005-10-13 Genomidea Inc. 人工磁性体による、遺伝子導入調節法およびシステム
JP2006507692A (ja) * 2002-09-30 2006-03-02 ナノシス・インコーポレイテッド 大面積ナノ可能マクロエレクトロニクス基板およびその使用
JP2008007478A (ja) * 2006-06-30 2008-01-17 National Institute For Materials Science 神経線維の伸展用薬剤の位置を制御する方法
JP2008069086A (ja) * 2006-09-12 2008-03-27 Nagoya Institute Of Technology 超分子構造を有する超極細ホースの合成
JP2008521531A (ja) * 2004-12-01 2008-06-26 ソシエテ ド コンセイル ド リシェルシェ エト ダプリカシオン サイエンティフィーク(エス.シー.アール.エー.エス.)エスエーエス インプラントの後部注入装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001502937A (ja) * 1996-09-27 2001-03-06 アメリカン・ホーム・プロダクツ・コーポレイション 固体材料の配置のための医療用装置
JP2001017405A (ja) * 1999-07-05 2001-01-23 Hitachi Medical Corp Mri装置
JP2006507692A (ja) * 2002-09-30 2006-03-02 ナノシス・インコーポレイテッド 大面積ナノ可能マクロエレクトロニクス基板およびその使用
WO2005084582A1 (en) * 2004-03-02 2005-09-15 Nanosys, Inc. Medical device applications of nanostructured surfaces
WO2005095621A1 (ja) * 2004-03-31 2005-10-13 Genomidea Inc. 人工磁性体による、遺伝子導入調節法およびシステム
JP2008521531A (ja) * 2004-12-01 2008-06-26 ソシエテ ド コンセイル ド リシェルシェ エト ダプリカシオン サイエンティフィーク(エス.シー.アール.エー.エス.)エスエーエス インプラントの後部注入装置
JP2008007478A (ja) * 2006-06-30 2008-01-17 National Institute For Materials Science 神経線維の伸展用薬剤の位置を制御する方法
JP2008069086A (ja) * 2006-09-12 2008-03-27 Nagoya Institute Of Technology 超分子構造を有する超極細ホースの合成

Also Published As

Publication number Publication date
US20110234345A1 (en) 2011-09-29

Similar Documents

Publication Publication Date Title
Sensenig et al. Magnetic nanoparticle-based approaches to locally target therapy and enhance tissue regeneration in vivo
Zimpel et al. Imparting functionality to MOF nanoparticles by external surface selective covalent attachment of polymers
Ling et al. Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications
Mahmoudi et al. Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy
Hasanzadeh Kafshgari et al. Insights into theranostic properties of titanium dioxide for nanomedicine
Dobson Magnetic micro-and nano-particle-based targeting for drug and gene delivery
Reddy et al. Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications
JP6901166B2 (ja) 磁気駆動関節軟骨再生システム
RU2593331C2 (ru) Лечения рака и опухоли, стимулируемое высвобождением тепла, вырабатываемого различными цепочками магнитосом, выделенных из магнетотаксических бактерий и подвергнутых воздействию переменного магнитного поля
Young et al. Neuro‐nano interfaces: utilizing nano‐coatings and nanoparticles to enable next‐generation electrophysiological recording, neural stimulation, and biochemical modulation
EP1674128A1 (en) Magnetic pole matrices useful for tissue engineering and treatment of disease
KR101406632B1 (ko) 회전하는 나노선 및 이를 이용한 세포 괴사 유도 방법
JP2007518710A (ja) 方法
US20060270030A1 (en) Multimodally altered cells as a form for administering active substances and as diagnostic particles
Jena et al. Nanotechnology-future prospect in recent medicine: a review
Naghdi et al. Magnetic nanocomposites for biomedical applications
Gonçalves et al. Magnetic responsive cell-based strategies for diagnostics and therapeutics
Funnell et al. Magnetic composite biomaterials for neural regeneration
WO2010061474A1 (ja) 連結磁性体、連結磁性体製造方法、連結磁性体注入装置、連結磁性体注入制御システム、磁場制御装置、および、連結磁性体注入制御方法
Moore et al. Diamond-based nanomedicine: Enhanced drug delivery and imaging
Patel et al. Nanotechnology in cardiovascular medicine
Xu et al. Recent advancements of specific functionalized surfaces of magnetic nano-and microparticles as a theranostics source in biomedicine
Almeida et al. Magnetic triggers in biomedical applications–prospects for contact free cell sensing and guidance
US20130337034A1 (en) Biofunctionalized magnetic nanowires
Castellanos-Rubio et al. Multilayered inorganic–organic microdisks as ideal carriers for high magnetothermal actuation: assembling ferrimagnetic nanoparticles devoid of dipolar interactions

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 12377774

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08878431

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08878431

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP