WO2010060915A2 - Procédé et dispositif de mesure comprenant un éclairage par del, pour réaliser des mesures spectroscopiques - Google Patents

Procédé et dispositif de mesure comprenant un éclairage par del, pour réaliser des mesures spectroscopiques Download PDF

Info

Publication number
WO2010060915A2
WO2010060915A2 PCT/EP2009/065795 EP2009065795W WO2010060915A2 WO 2010060915 A2 WO2010060915 A2 WO 2010060915A2 EP 2009065795 W EP2009065795 W EP 2009065795W WO 2010060915 A2 WO2010060915 A2 WO 2010060915A2
Authority
WO
WIPO (PCT)
Prior art keywords
led units
led
spectral width
measuring
units
Prior art date
Application number
PCT/EP2009/065795
Other languages
German (de)
English (en)
Other versions
WO2010060915A3 (fr
Inventor
Maximilian Fleischer
Paul Herrmann
Remigiusz Pastusiak
Rainer Speh
Rainer Strzoda
Kerstin Wiesner
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2010060915A2 publication Critical patent/WO2010060915A2/fr
Publication of WO2010060915A3 publication Critical patent/WO2010060915A3/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • G01N21/474Details of optical heads therefor, e.g. using optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • G01J3/108Arrangements of light sources specially adapted for spectrometry or colorimetry for measurement in the infrared range
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • G01J2003/102Plural sources
    • G01J2003/104Monochromatic plural sources
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N2021/3155Measuring in two spectral ranges, e.g. UV and visible
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/062LED's
    • G01N2201/0627Use of several LED's for spectral resolution

Definitions

  • Spectroscopy is a contactless method for material analysis, which works mostly with infrared (IR) light, but generally with light with a wavelength between 1 nm and 500,000 nm.
  • IR infrared
  • the spectroscopy is used primarily for the quantitative determination of known substances whose
  • a spectroscopic measurement setup includes a spectrometer that can operate in different wavelength ranges, such as: UV - ultraviolet light / VIS - visible light; NIR - near infrared light, MIR - middle infrared light and FIR - far infrared light, for the separation and measurement of the different light components, as well as a light for optical coupling to a sample.
  • VIS and NIR spectroscopy typically uses halogen lamps or mercury vapor lamps or deuterium lamps as the light source. These have a spectral distribution of the power density according to the Planck radiation law, which is illustrated in Figure 1.
  • the spectral emissivity and right spectral radiance are left ⁇ give is on the ordinate. That is, the available spectral energy density I varies as a function of wavelength ⁇ and temperature T, which must be taken into account in the evaluation of the spectrum.
  • Lichtmtensitat ⁇ surface light sources for transmission measurements and / or reflection measurements can be used. For reflection measurements, it is advantageous if the light source has a very high light intensity.
  • the power of a halogen light source is particularly important.
  • High power light sources usually need to be cooled by large heatsinks or fans.
  • the cooling ent ⁇ stand during operation very high temperatures, which considerably shorten the life of the light source of today, for example, between 50 and 5000 hours.
  • the effort to replace a halogen lamp, especially in industrial applications such.
  • Onlme production monitoring systems cause difficulties.
  • LEDs light-emitting diodes
  • An LED generally has a width with respect to the emission wavelength of on average 100 nm, which is usually not broadband enough for a spectroscopy measurement.
  • a halogen lamp serving as a light source in the IR region emits light in the wavelength range of 300 nm to 2200 nm.
  • the object underlying the invention is to provide a measuring device and a method for spectroscopy with a long-lasting illumination and increased spectral bandwidth with respect to the emission wavelength of the illumination.
  • the measuring apparatus In the considered here spectroscopy method, or when the measuring apparatus for reflection or Transmissionsmes ⁇ solution, the measuring apparatus consists of illumination that emits light in the desired wavelength range, and a measuring probe for receiving the reflected or Transmit oriented light.
  • a construction of a measuring head for spectroscopy measurements in particular with a Measuring probe and own, active lighting with LEDs presented.
  • LED unit preferably consists of several, up to a few hundred individual diodes (diode array system).
  • a very advantageous combination of the LEDs is obtained if the distances between the center frequencies of the individual LEDs result from the sum of the wavelength deviations of adjacent LEDs from the center frequency, at which the power density has fallen to 50%, as is also indicated in FIG.
  • high current / power LEDs instead of a halogen lamp are used in the illustration of a measuring head, wherein a series of six so-called power LEDs, i. LED units with particularly high light output, with coordinated wavelength ranges, is available. Each individual LED unit emits the light in a different wavelength range, as shown in FIG.
  • the spectrally matched tuning ranges of the LED units are selected in such a way that overlapping the light beam results in an extended tuning width of, for example, 900 nm to 1500 nm.
  • the individual LED units consisting of at least one LED can be used in one measuring head. hen, be installed. If the measurement is to be carried out in a smaller wavelength range, the number of LED units can be reduced. Due to the flexibility in the optical design, probes can be built that are active in several wavelength ranges and whose measuring range simultaneously covers zones in the UV, VIS to NIR. It Kings ⁇ nen So two, three, or four, 2, five, or six, or more as shown in FIG three LED units are used as in.
  • the spectral positions of the different spectral widths of the LED units in each case in accordance with the number and the distribution of spectral lines of a target substance.
  • gaps may be present in the extended tunable spectral width of a plurality of adjacent LED units arranged in a row.
  • the measuring device is used several times, each with intermediate free frequency ranges.
  • LEDs in contrast to ther ⁇ mischen emitters are their very fast on and off times, which are in the range of less than 1 ms.
  • LEDs for illumination allows two operating methods for a spectrometer:
  • the LEDs are off most of the time and are only turned on for a very short time - preferably 2 s - 100 s to take a measurement. In addition to the already efficient lighting, the timing will saved energy. This is particularly advantageous in portable spectrometer arrangements, as well as wireless montier ⁇ ten stations with battery power and wireless connectivity.
  • the dark current measurement can also be performed cyclically to improve the result.
  • FIG. 1 shows a comparison of the spectral radiance of a body of Gluh according to Plank's law of radiation
  • FIGS. 4 to 8 show components of the measuring device, such as a measuring probe with the lens carrier, LED carrier,
  • FIG. 9 shows an exemplary measuring principle with converging lenses
  • Figure 10 shows an exemplary measuring principle with glass conductors, such as glass rod.
  • FIG. 2 shows the extended spectral width of at least two, here four, LED units located in the emission wavelength.
  • Power LEDs are usually powered by constant current sources, which keeps the current flowing through the LED constant and thus independent of line fluctuations. For example, power LEDs can achieve a much longer service life, such as 20,000 - 50,000 hours, unlike conventional LEDs and halogen bulbs that can reach several thousand hours. This is an essential factor in continuous systems.
  • LED lighting has a much smaller form factor than a light bulb.
  • the lighting can be di- rectly mounted in a small measuring head, where previously a Jerusalemwandige and sensitive Lichtzuschreibung over glass fiber reinforced ⁇ ser had experience dictate.
  • LEDs are much more energy efficient than thermal radiators. They have a greater light output and require correspondingly less input power. LEDs can be switched on and off in times of ⁇ Is. As a result, for example, parallel measuring spectrometers with long Ru ⁇ hey and very short operating times are conceivable. On the other hand, a chopper-like modulation of the luminous intensity for improving the signal-to-noise ratio is possible.
  • FIGS. 4 to 8 show a diagram for a further exemplary embodiment of a new measuring head.
  • Figures 9-10 show two illumination p ⁇ nzipien.
  • the exemplary measuring device or the measuring head consists of six components: housing 10, protective glass 15, Lmsen-carrier 11, LED carrier 12, reflection probe / probe 1 and a cover 14th
  • the housing 10 is made of stainless VA steel. Depending on the application, other raw materials can be used.
  • a protective glass 15 for the entire optics a cylindrical window made of quartz glass (sapphire glass), on both sides po ⁇ profiled, with chamfers 0.2-0.5 mm used.
  • the protective glass 15 assumes a protective function against dust, mechanical damage, etc., for the optical components of the probe. It should be noted that the protective glass must be sufficiently permeable to the desired wavelength range.
  • the Lmsen-Trager 11 is also made of stainless steel VA / stainless steel and is used for attachment of collimators.
  • the carrier 11 is fastened by means of three threaded pins with the housing.
  • the function of the lenses 4 is to focus the light emitted by LEDs or LED clusters and to transmit them bundled to the sample 13 or absorption path.
  • the lenses 4 and the protective glass 15 must be transparent in the desired wavelength range.
  • the size, thickness and physical-optical specification of the LM sen 4 is to be determined for each application. The general optical laws apply here.
  • the LED carrier 12 is made of aluminum or copper because of the better heat conduction compared to a VA steel and serves to accommodate and attach the LEDs.
  • the carrier 12 is connected by two long screws, adjusting screws with the lid. With the visible adjustment screws, the distance between the lens carrier 11 and the LED carrier 12 can be adjusted. This feature allows additional adjustment possibilities for the entire optical design, e.g. based on the distance between probe and sample 13.
  • the measuring probe 1 used is a fiber-coupled process measuring head with a variable measuring field or spot diameter.
  • the optical components are advantageously achroma ⁇ table corrected and antireflection-coated.
  • a ring made of stainless steel VA is used with a hole for the power and glass conductor connections.
  • FIGS. 4-8 show, in detail, measuring probe 1 with the lens carrier 11, LED carrier 12, and protective glass 15.
  • FIG. 9 shows a measuring principle with converging lenses and collimators.
  • FIG. 10 shows a measuring principle with glass conductors, such as glass rods.
  • the measuring principle with collimators is based on the overlapping beam path of all LEDs.
  • the emitted light is collimated by the collimators and radiates specifically to the absorption route.
  • the light spot of each LED should be calculated and adjusted so that all the beams overlap, creating a spot where all desired wavelength ranges coincide.
  • the reflected light is received by the reflection probe and sent via fiber to the detector of the spectrometer.
  • a glass rod is set at a specific angle to each individual LED or LED unit 6, the angle resulting from the distance between the sample and the measuring probe, which focuses the focused light in the focus the reflection probe should go.
  • reflected light is received by the reflection probe and transmitted to a spectrometer.
  • the probe with the collimators and the adjustable LED carrier 12 brings another advantage.
  • the possibility of a change in distance between the LED carrier 12 and Lmsen-Trager 11, the focus of the collimated light and the size of the measuring spot can be changed, which makes the probe more versatile, since the distance between the sample and the probe can be changed arbitrarily.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

La présente invention concerne un dispositif de mesure spectroscopique, comprenant : au moins deux unités DEL (6) comprenant respectivement au moins une diode luminescente / DEL (5) accordable en ce qui concerne la longueur d'onde d'émission pour l'éclairage d'une section d'absorption, les unités DEL étant conçues de sorte que la largeur spectrale accordable en ce qui concerne la longueur d'onde d'émission d'une unité DEL (6), se chevauche avec la largeur spectrale accordable des autres unités DEL (6), pour matérialiser une largeur spectrale accordable accrue; et au moins un récepteur destiné à recevoir de la lumière réfléchie ou transmise; ainsi qu'une tête de mesure spectroscopique présentant un boîtier (10) comprenant des unités DEL (5), des lentilles (4) pour guider le faisceau sur la section d'absorption et une sonde de mesure (1) disposée au centre côté frontal et destinée à recevoir la lumière réfléchie. Selon l'invention, les unités DEL (5) sont disposées en cercle autour d'une sonde de mesure; au moins deux unités DEL (6) comprenant respectivement au moins une DEL (5) accordable en ce qui concerne la longueur d'onde d'émission, servent à éclairer une section d'absorption; les unités DEL (6) sont conçues de sorte qu'une largeur spectrale accordable en ce qui concerne la longueur d'onde d'émission d'une unités DEL (6), se chevauche avec une largeur spectrale accordable des autres unités DEL (6), pour matérialiser une largeur spectrale accordable accrue.
PCT/EP2009/065795 2008-11-28 2009-11-25 Procédé et dispositif de mesure comprenant un éclairage par del, pour réaliser des mesures spectroscopiques WO2010060915A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008059457.1 2008-11-28
DE102008059457 2008-11-28

Publications (2)

Publication Number Publication Date
WO2010060915A2 true WO2010060915A2 (fr) 2010-06-03
WO2010060915A3 WO2010060915A3 (fr) 2010-07-22

Family

ID=41718724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/065795 WO2010060915A2 (fr) 2008-11-28 2009-11-25 Procédé et dispositif de mesure comprenant un éclairage par del, pour réaliser des mesures spectroscopiques

Country Status (1)

Country Link
WO (1) WO2010060915A2 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102788754A (zh) * 2012-08-13 2012-11-21 浙江大学 用于测定梨的多指标参数的装置和方法
CN102829865A (zh) * 2012-09-24 2012-12-19 上海汉谱光电科技有限公司 45度环形照明反射光谱分光光度光路装置
CN102829849A (zh) * 2012-08-13 2012-12-19 浙江大学 一种梨的多指标参数测定装置和方法
WO2014009139A1 (fr) * 2012-07-12 2014-01-16 Siemens Aktiengesellschaft Sonde spectromètre à base de diodes électroluminescentes
US8859969B2 (en) 2012-03-27 2014-10-14 Innovative Science Tools, Inc. Optical analyzer for identification of materials using reflectance spectroscopy
WO2016012276A1 (fr) * 2014-07-25 2016-01-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Ensemble de détection avec résolution de position et de longueur d'onde d'un rayonnement lumineux qui est émis par au moins une oled ou une led
US9297749B2 (en) 2012-03-27 2016-03-29 Innovative Science Tools, Inc. Optical analyzer for identification of materials using transmission spectroscopy
WO2016137317A1 (fr) * 2015-02-23 2016-09-01 Tree Of Knowledge Patents B.V. Unité de capteur infrarouge, procédé et produit programme d'ordinateur
EP3505911A1 (fr) * 2017-12-29 2019-07-03 Samsung Electronics Co., Ltd. Capteur optique et appareil et procédé de mesure d'absorbance l'utilisant

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1278049A1 (fr) * 2001-07-18 2003-01-22 CSEM Centre Suisse d'Electronique et de Microtechnique SA Module d'éclairage pour un spectromètre à réflexion
EP1314972A1 (fr) * 2001-11-26 2003-05-28 Gretag-Macbeth AG Spectrophotomètre et son utilisation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1278049A1 (fr) * 2001-07-18 2003-01-22 CSEM Centre Suisse d'Electronique et de Microtechnique SA Module d'éclairage pour un spectromètre à réflexion
EP1314972A1 (fr) * 2001-11-26 2003-05-28 Gretag-Macbeth AG Spectrophotomètre et son utilisation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MALINEN J ET AL: "LED-based NIR spectrometer module for hand-held and process analyser applications" SENSORS AND ACTUATORS B, ELSEVIER SEQUOIA S.A., LAUSANNE, CH, Bd. 51, Nr. 1-3, 31. August 1998 (1998-08-31), Seiten 220-226, XP004154013 ISSN: 0925-4005 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8859969B2 (en) 2012-03-27 2014-10-14 Innovative Science Tools, Inc. Optical analyzer for identification of materials using reflectance spectroscopy
US9297749B2 (en) 2012-03-27 2016-03-29 Innovative Science Tools, Inc. Optical analyzer for identification of materials using transmission spectroscopy
WO2014009139A1 (fr) * 2012-07-12 2014-01-16 Siemens Aktiengesellschaft Sonde spectromètre à base de diodes électroluminescentes
CN102788754A (zh) * 2012-08-13 2012-11-21 浙江大学 用于测定梨的多指标参数的装置和方法
CN102829849A (zh) * 2012-08-13 2012-12-19 浙江大学 一种梨的多指标参数测定装置和方法
CN102829865A (zh) * 2012-09-24 2012-12-19 上海汉谱光电科技有限公司 45度环形照明反射光谱分光光度光路装置
WO2016012276A1 (fr) * 2014-07-25 2016-01-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Ensemble de détection avec résolution de position et de longueur d'onde d'un rayonnement lumineux qui est émis par au moins une oled ou une led
US10281321B2 (en) 2014-07-25 2019-05-07 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Arrangement for spatially resolved and wavelength-resolved detection of light radiation emitted from at least one OLED or LED
WO2016137317A1 (fr) * 2015-02-23 2016-09-01 Tree Of Knowledge Patents B.V. Unité de capteur infrarouge, procédé et produit programme d'ordinateur
EP3505911A1 (fr) * 2017-12-29 2019-07-03 Samsung Electronics Co., Ltd. Capteur optique et appareil et procédé de mesure d'absorbance l'utilisant
US10551312B2 (en) 2017-12-29 2020-02-04 Samsung Electronics Co., Ltd. Optical sensor, and apparatus and method for measuring absorbance using the same

Also Published As

Publication number Publication date
WO2010060915A3 (fr) 2010-07-22

Similar Documents

Publication Publication Date Title
WO2010060915A2 (fr) Procédé et dispositif de mesure comprenant un éclairage par del, pour réaliser des mesures spectroscopiques
DE112018003607T5 (de) Systeme und verfahren für einen extinktionsdetektor mit optischer referenz
DE212013000099U1 (de) Lineare Fresneloptik zum Reduzieren der Winkeldispersion von Licht von einer LED-Anordnung
US7456955B2 (en) Spectrophotometer with light emitting diode illuminator
DE102006004003A1 (de) Infrarot-Gasdetektor
DE102014016515B4 (de) Optischer Gassensor
DE102014010418B4 (de) Bewitterungsprüfgerät
WO2014037217A1 (fr) Système d'éclairage
DE102014200937A1 (de) Beleuchtungsvorrichtung mit Primärlichteinheit und Leuchtstoffelement
DE19532877A1 (de) Vorrichtung zur linienförmigen Beleuchtung von Blattgut, wie z. B. Banknoten oder Wertpapiere
CN103629574A (zh) 一种基于多棱反射锥的多led组合宽带光源装置
CN204241187U (zh) 发光二极管分光检测装置
DE212013000056U1 (de) Randgewichteter Abstand von LEDS für Bereich verbesserter Gleichmässigkeit
DE102006004005A1 (de) Infrarot-Gasdetektor und Verfahren zur Erfassung einer Gaskonzentration
CN216350391U (zh) 一种基于led投影模组的检测照明系统
DE112020001966B4 (de) Infrarotquelle für die Befeuerung von Flughafenlandebahnen
DE102016008886B4 (de) ATR-Spektrometer
EP4314775A1 (fr) Appareil, dispositif et procédé d'irradiation d'un échantillon biologique particulier, avec composant optique holographique
EP3074740B1 (fr) Luminaire et procédé de surveillance de température
WO2021004916A1 (fr) Dispositif d'éclairage et procédé de fabrication d'un dispositif d'éclairage
JP6917824B2 (ja) 分光測定装置及び分光測定方法
DE102019121511A1 (de) Lichtkonversions- und Beleuchtungseinrichtung
CN105890755A (zh) 一种用于野外定标的综合光源
DE102011004811A1 (de) Vorrichtung und Verfahren zum Erzeugen von Licht mit hoher Lichtintensität
WO2014009139A1 (fr) Sonde spectromètre à base de diodes électroluminescentes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09771524

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09771524

Country of ref document: EP

Kind code of ref document: A2