WO2010060915A2 - Measuring apparatus and method for spectroscopic measurements using led light - Google Patents

Measuring apparatus and method for spectroscopic measurements using led light Download PDF

Info

Publication number
WO2010060915A2
WO2010060915A2 PCT/EP2009/065795 EP2009065795W WO2010060915A2 WO 2010060915 A2 WO2010060915 A2 WO 2010060915A2 EP 2009065795 W EP2009065795 W EP 2009065795W WO 2010060915 A2 WO2010060915 A2 WO 2010060915A2
Authority
WO
WIPO (PCT)
Prior art keywords
led units
led
spectral width
measuring
units
Prior art date
Application number
PCT/EP2009/065795
Other languages
German (de)
French (fr)
Other versions
WO2010060915A3 (en
Inventor
Maximilian Fleischer
Paul Herrmann
Remigiusz Pastusiak
Rainer Speh
Rainer Strzoda
Kerstin Wiesner
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2010060915A2 publication Critical patent/WO2010060915A2/en
Publication of WO2010060915A3 publication Critical patent/WO2010060915A3/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • G01N21/474Details of optical heads therefor, e.g. using optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • G01J3/108Arrangements of light sources specially adapted for spectrometry or colorimetry for measurement in the infrared range
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • G01J2003/102Plural sources
    • G01J2003/104Monochromatic plural sources
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N2021/3155Measuring in two spectral ranges, e.g. UV and visible
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/062LED's
    • G01N2201/0627Use of several LED's for spectral resolution

Definitions

  • Spectroscopy is a contactless method for material analysis, which works mostly with infrared (IR) light, but generally with light with a wavelength between 1 nm and 500,000 nm.
  • IR infrared
  • the spectroscopy is used primarily for the quantitative determination of known substances whose
  • a spectroscopic measurement setup includes a spectrometer that can operate in different wavelength ranges, such as: UV - ultraviolet light / VIS - visible light; NIR - near infrared light, MIR - middle infrared light and FIR - far infrared light, for the separation and measurement of the different light components, as well as a light for optical coupling to a sample.
  • VIS and NIR spectroscopy typically uses halogen lamps or mercury vapor lamps or deuterium lamps as the light source. These have a spectral distribution of the power density according to the Planck radiation law, which is illustrated in Figure 1.
  • the spectral emissivity and right spectral radiance are left ⁇ give is on the ordinate. That is, the available spectral energy density I varies as a function of wavelength ⁇ and temperature T, which must be taken into account in the evaluation of the spectrum.
  • Lichtmtensitat ⁇ surface light sources for transmission measurements and / or reflection measurements can be used. For reflection measurements, it is advantageous if the light source has a very high light intensity.
  • the power of a halogen light source is particularly important.
  • High power light sources usually need to be cooled by large heatsinks or fans.
  • the cooling ent ⁇ stand during operation very high temperatures, which considerably shorten the life of the light source of today, for example, between 50 and 5000 hours.
  • the effort to replace a halogen lamp, especially in industrial applications such.
  • Onlme production monitoring systems cause difficulties.
  • LEDs light-emitting diodes
  • An LED generally has a width with respect to the emission wavelength of on average 100 nm, which is usually not broadband enough for a spectroscopy measurement.
  • a halogen lamp serving as a light source in the IR region emits light in the wavelength range of 300 nm to 2200 nm.
  • the object underlying the invention is to provide a measuring device and a method for spectroscopy with a long-lasting illumination and increased spectral bandwidth with respect to the emission wavelength of the illumination.
  • the measuring apparatus In the considered here spectroscopy method, or when the measuring apparatus for reflection or Transmissionsmes ⁇ solution, the measuring apparatus consists of illumination that emits light in the desired wavelength range, and a measuring probe for receiving the reflected or Transmit oriented light.
  • a construction of a measuring head for spectroscopy measurements in particular with a Measuring probe and own, active lighting with LEDs presented.
  • LED unit preferably consists of several, up to a few hundred individual diodes (diode array system).
  • a very advantageous combination of the LEDs is obtained if the distances between the center frequencies of the individual LEDs result from the sum of the wavelength deviations of adjacent LEDs from the center frequency, at which the power density has fallen to 50%, as is also indicated in FIG.
  • high current / power LEDs instead of a halogen lamp are used in the illustration of a measuring head, wherein a series of six so-called power LEDs, i. LED units with particularly high light output, with coordinated wavelength ranges, is available. Each individual LED unit emits the light in a different wavelength range, as shown in FIG.
  • the spectrally matched tuning ranges of the LED units are selected in such a way that overlapping the light beam results in an extended tuning width of, for example, 900 nm to 1500 nm.
  • the individual LED units consisting of at least one LED can be used in one measuring head. hen, be installed. If the measurement is to be carried out in a smaller wavelength range, the number of LED units can be reduced. Due to the flexibility in the optical design, probes can be built that are active in several wavelength ranges and whose measuring range simultaneously covers zones in the UV, VIS to NIR. It Kings ⁇ nen So two, three, or four, 2, five, or six, or more as shown in FIG three LED units are used as in.
  • the spectral positions of the different spectral widths of the LED units in each case in accordance with the number and the distribution of spectral lines of a target substance.
  • gaps may be present in the extended tunable spectral width of a plurality of adjacent LED units arranged in a row.
  • the measuring device is used several times, each with intermediate free frequency ranges.
  • LEDs in contrast to ther ⁇ mischen emitters are their very fast on and off times, which are in the range of less than 1 ms.
  • LEDs for illumination allows two operating methods for a spectrometer:
  • the LEDs are off most of the time and are only turned on for a very short time - preferably 2 s - 100 s to take a measurement. In addition to the already efficient lighting, the timing will saved energy. This is particularly advantageous in portable spectrometer arrangements, as well as wireless montier ⁇ ten stations with battery power and wireless connectivity.
  • the dark current measurement can also be performed cyclically to improve the result.
  • FIG. 1 shows a comparison of the spectral radiance of a body of Gluh according to Plank's law of radiation
  • FIGS. 4 to 8 show components of the measuring device, such as a measuring probe with the lens carrier, LED carrier,
  • FIG. 9 shows an exemplary measuring principle with converging lenses
  • Figure 10 shows an exemplary measuring principle with glass conductors, such as glass rod.
  • FIG. 2 shows the extended spectral width of at least two, here four, LED units located in the emission wavelength.
  • Power LEDs are usually powered by constant current sources, which keeps the current flowing through the LED constant and thus independent of line fluctuations. For example, power LEDs can achieve a much longer service life, such as 20,000 - 50,000 hours, unlike conventional LEDs and halogen bulbs that can reach several thousand hours. This is an essential factor in continuous systems.
  • LED lighting has a much smaller form factor than a light bulb.
  • the lighting can be di- rectly mounted in a small measuring head, where previously a Jerusalemwandige and sensitive Lichtzuschreibung over glass fiber reinforced ⁇ ser had experience dictate.
  • LEDs are much more energy efficient than thermal radiators. They have a greater light output and require correspondingly less input power. LEDs can be switched on and off in times of ⁇ Is. As a result, for example, parallel measuring spectrometers with long Ru ⁇ hey and very short operating times are conceivable. On the other hand, a chopper-like modulation of the luminous intensity for improving the signal-to-noise ratio is possible.
  • FIGS. 4 to 8 show a diagram for a further exemplary embodiment of a new measuring head.
  • Figures 9-10 show two illumination p ⁇ nzipien.
  • the exemplary measuring device or the measuring head consists of six components: housing 10, protective glass 15, Lmsen-carrier 11, LED carrier 12, reflection probe / probe 1 and a cover 14th
  • the housing 10 is made of stainless VA steel. Depending on the application, other raw materials can be used.
  • a protective glass 15 for the entire optics a cylindrical window made of quartz glass (sapphire glass), on both sides po ⁇ profiled, with chamfers 0.2-0.5 mm used.
  • the protective glass 15 assumes a protective function against dust, mechanical damage, etc., for the optical components of the probe. It should be noted that the protective glass must be sufficiently permeable to the desired wavelength range.
  • the Lmsen-Trager 11 is also made of stainless steel VA / stainless steel and is used for attachment of collimators.
  • the carrier 11 is fastened by means of three threaded pins with the housing.
  • the function of the lenses 4 is to focus the light emitted by LEDs or LED clusters and to transmit them bundled to the sample 13 or absorption path.
  • the lenses 4 and the protective glass 15 must be transparent in the desired wavelength range.
  • the size, thickness and physical-optical specification of the LM sen 4 is to be determined for each application. The general optical laws apply here.
  • the LED carrier 12 is made of aluminum or copper because of the better heat conduction compared to a VA steel and serves to accommodate and attach the LEDs.
  • the carrier 12 is connected by two long screws, adjusting screws with the lid. With the visible adjustment screws, the distance between the lens carrier 11 and the LED carrier 12 can be adjusted. This feature allows additional adjustment possibilities for the entire optical design, e.g. based on the distance between probe and sample 13.
  • the measuring probe 1 used is a fiber-coupled process measuring head with a variable measuring field or spot diameter.
  • the optical components are advantageously achroma ⁇ table corrected and antireflection-coated.
  • a ring made of stainless steel VA is used with a hole for the power and glass conductor connections.
  • FIGS. 4-8 show, in detail, measuring probe 1 with the lens carrier 11, LED carrier 12, and protective glass 15.
  • FIG. 9 shows a measuring principle with converging lenses and collimators.
  • FIG. 10 shows a measuring principle with glass conductors, such as glass rods.
  • the measuring principle with collimators is based on the overlapping beam path of all LEDs.
  • the emitted light is collimated by the collimators and radiates specifically to the absorption route.
  • the light spot of each LED should be calculated and adjusted so that all the beams overlap, creating a spot where all desired wavelength ranges coincide.
  • the reflected light is received by the reflection probe and sent via fiber to the detector of the spectrometer.
  • a glass rod is set at a specific angle to each individual LED or LED unit 6, the angle resulting from the distance between the sample and the measuring probe, which focuses the focused light in the focus the reflection probe should go.
  • reflected light is received by the reflection probe and transmitted to a spectrometer.
  • the probe with the collimators and the adjustable LED carrier 12 brings another advantage.
  • the possibility of a change in distance between the LED carrier 12 and Lmsen-Trager 11, the focus of the collimated light and the size of the measuring spot can be changed, which makes the probe more versatile, since the distance between the sample and the probe can be changed arbitrarily.

Abstract

Disclosed is a spectroscopic measuring apparatus comprising at least two light emitting diode units (6), each of which includes at least one light emitting diode/LED (5), the emission wavelength of which can be adjusted to illuminate an absorption path. The at least two LED units are designed such that an adjustable spectral width relative to the emission wavelength of an LED unit (6) overlaps with an adjustable spectral width of the other of the at least two LED units (6) in order to represent an extended adjustable spectral width. The spectroscopic measuring apparatus further comprises at least one receiver to absorb reflected or transmitted light. Also disclosed is a spectroscopic measuring head comprising a housing (10) with LED units (5), lenses (4) for directing beams to the absorption path, and a central front sensing probe (1) for receiving reflected light. The LED units (5) are annularly arranged around a sensing probe. At least two light emitting diode units (6) are provided, each of which includes at least one light emitting diode (5), the emission wavelength of which can be adjusted to illuminate an absorption path. The at least two LED units (6) are designed such that an adjustable spectral width relative to the emission wavelength of an LED unit (6) overlaps with an adjustable spectral width of the other of the at least two LED units (6) in order to represent an extended adjustable spectral width.

Description

Beschreibungdescription
Messvorrichtung und Verfahren für spektroskopische Messungen mit LED BeleuchtungMeasuring device and method for spectroscopic measurements with LED illumination
Spektroskopie ist ein beruhrungsloses Verfahren zur Mateπal- analyse, welches meist mit infrarotem (IR) Licht, generell aber mit Licht mit einer Wellenlange zwischen 1 nm und 500000 nm arbeitet. Die Spektroskopie wird vor allem zur quantitativen Bestimmung von bekannten Substanzen, derenSpectroscopy is a contactless method for material analysis, which works mostly with infrared (IR) light, but generally with light with a wavelength between 1 nm and 500,000 nm. The spectroscopy is used primarily for the quantitative determination of known substances whose
Identifikation, zur Prozesssteuerung und Prozessuberwachung und zur Qualitätssicherung angewendet. Ein spektroskopischer Messaufbau umfasst ein Spektrometer, welches in unterschiedlichen Wellenlangenbereichen funktionieren kann, wie bei: UV - ultraviolettem Licht/VIS - sichtbarem Licht; NIR - nahem infraroten Licht, MIR - mittlerem infraroten Licht und FIR - fernem infraroten Licht, zur Auftrennung und Messung der verschiedenen Lichtkomponenten, sowie einer Beleuchtung zur optischen Ankopplung an eine Probe.Identification, used for process control and process monitoring and quality assurance. A spectroscopic measurement setup includes a spectrometer that can operate in different wavelength ranges, such as: UV - ultraviolet light / VIS - visible light; NIR - near infrared light, MIR - middle infrared light and FIR - far infrared light, for the separation and measurement of the different light components, as well as a light for optical coupling to a sample.
Heutzutage werden bei der VIS- und NIR-Spektroskopie typischerweise Halogen-Lampen bzw. Quecksilberdampflampen oder Deuterium Lampen als Lichtquelle angewendet. Diese besitzen eine spektrale Verteilung der Leistungsdichte gemäß dem Planckschen Strahlungsgesetz, welches in Figur 1 verdeutlicht ist. Dabei sind auf der Ordinate links die spektrale spezifische Ausstrahlung und rechts die spektrale Strahldichte ange¬ geben. D.h., die zur Verfugung stehende spektrale Energiedichte I variiert in Abhängigkeit von Wellenlange λ und Tem- peratur T, was bei der Auswertung des Spektrums berücksichtigt werden muss. Je nach Lichtmtensitat sind unterschiedli¬ che Lichtquellen für Transmissionsmessungen und/oder für Reflexionsmessungen einsetzbar. Für Reflexionsmessungen ist es vorteilhaft, wenn die Lichtquelle eine sehr hohe Lichtinten- sitat aufweist. Vor allem bei stark absorbierenden Proben wird die Leistung einer Halogenlichtquelle besonders wichtig. Lichtquellen mit hoher Leistung müssen meist durch große Kühlkörper oder Lufter gekühlt werden. Trotz der Kühlung ent¬ stehen beim Betrieb sehr hohe Temperaturen, die die Lebensdauer der Lichtquelle von heutzutage beispielsweise zwischen 50 und 5000 Stunden erheblich verkurzen. Der Aufwand, eine Halogenlampe auszutauschen, kann vor allem bei industriellen Anwendungen, wie z. B. bei Onlme-Produktions-Uberwachungs- systemen, Schwierigkeiten verursachen.Nowadays, VIS and NIR spectroscopy typically uses halogen lamps or mercury vapor lamps or deuterium lamps as the light source. These have a spectral distribution of the power density according to the Planck radiation law, which is illustrated in Figure 1. The spectral emissivity and right spectral radiance are left ¬ give is on the ordinate. That is, the available spectral energy density I varies as a function of wavelength λ and temperature T, which must be taken into account in the evaluation of the spectrum. Depending on differing Lichtmtensitat ¬ surface light sources for transmission measurements and / or reflection measurements can be used. For reflection measurements, it is advantageous if the light source has a very high light intensity. Especially with highly absorbent samples, the power of a halogen light source is particularly important. High power light sources usually need to be cooled by large heatsinks or fans. Despite the cooling ent ¬ stand during operation very high temperatures, which considerably shorten the life of the light source of today, for example, between 50 and 5000 hours. The effort to replace a halogen lamp, especially in industrial applications such. As in Onlme production monitoring systems, cause difficulties.
In für Spektroskopie empfindlichen Spektralbereichen stehen leistungsfähige und effiziente Leuchtdioden (=LED) zur Verfugung. Eine LED besitzt in der Regel eine Breite bezüglich der Emissionswellenlange von durchschnittlich 100 nm, was für eine Spektroskopiemessung meist nicht breitbandig genug ist. Eine Halogenlampe, die im IR-Bereich als Lichtquelle dient, emittiert beispielsweise Licht im Wellenlangenbereich von 300 nm bis 2200 nm.Spectral ranges sensitive to spectroscopy have powerful and efficient light-emitting diodes (= LEDs) at their disposal. An LED generally has a width with respect to the emission wavelength of on average 100 nm, which is usually not broadband enough for a spectroscopy measurement. For example, a halogen lamp serving as a light source in the IR region emits light in the wavelength range of 300 nm to 2200 nm.
Die der Erfindung zugrundeliegende Aufgabe besteht in der Be- reitstellung einer Messvorrichtung und eines Verfahrens zur Spektroskopie mit einer langlebigen Beleuchtung und erhöhter spektraler Bandbreite bezogen auf die Emissionswellenlange der Beleuchtung.The object underlying the invention is to provide a measuring device and a method for spectroscopy with a long-lasting illumination and increased spectral bandwidth with respect to the emission wavelength of the illumination.
Die Losung dieser Aufgabe geschieht durch die jeweilige Merkmalskombination der unabhängig formulierten Patentansprüche. Vorteilhafte Ausgestaltungen können den Unteranspruchen ent¬ nommen werden.The solution of this task is done by the respective feature combination of independently formulated claims. Advantageous embodiments can be taken from the dependent claims ent ¬.
Bei dem hier betrachteten Spektroskopieverfahren, bzw. bei der Messvorrichtung zur Reflexions- oder Transmissionsmes¬ sung besteht die Messvorrichtung aus einer Beleuchtung, die in dem gewünschten Wellenlangenbereich Licht emittiert, sowie einer Messsonde zur Aufnahme des reflektierten oder transmit- tierten Lichts.In the considered here spectroscopy method, or when the measuring apparatus for reflection or Transmissionsmes ¬ solution, the measuring apparatus consists of illumination that emits light in the desired wavelength range, and a measuring probe for receiving the reflected or Transmit oriented light.
In der vorliegenden Erfindung wird eine Konstruktion eines Messkopfes für Spektroskopiemessungen, insbesondere mit einer Messsonde und eigener, aktiver Beleuchtung mit LEDs vorgestellt.In the present invention, a construction of a measuring head for spectroscopy measurements, in particular with a Measuring probe and own, active lighting with LEDs presented.
Erfindungsgemaß werden mehrere, wenigstens zwei, hinsichtlich Ihrer Leistung, wie spektraler Strahlungsverteilung/Spektral- breite, aufeinander abgestimmte LED-Einheiten mit mindestens je einer LED verwendet, um eine Lichtquelle bzw. Beleuchtung über einen gesamten benotigten Spektralbereich gleichzeitig zu realisieren. Eine LED-Einheit besteht dabei vorzugsweise aus mehreren, bis zu einigen Hundert einzelnen Dioden (Dio- denarray-System) .According to the invention, several, at least two, with regard to their performance, such as spectral radiation distribution / spectral width, coordinated LED units with at least one LED used to realize a light source or lighting over a spectral range ben needed at the same time. An LED unit preferably consists of several, up to a few hundred individual diodes (diode array system).
Wie in Figur 2 dargestellt, kann durch eine geeignete Kombination der LEDs nicht nur ein erweiterter Wellenlangenbe- reich, sondern zusatzlich eine nahezu konstante spektrale Leistungsdichte für die Strahlung erreicht werden.As shown in FIG. 2, by means of a suitable combination of the LEDs not only an extended wavelength range but also an almost constant spectral power density for the radiation can be achieved.
Eine sehr vorteilhafte Kombination der LEDs ergibt sich, wenn die Abstande der Mittenfrequenzen der einzelnen LEDs sich aus der Summe der Wellenlangenabweichung benachbarter LEDs von der Mittenfrequenz ergeben, bei der die Leistungsdichte auf 50% abgefallen ist, wie es auch in Figur 2 angedeutet ist.A very advantageous combination of the LEDs is obtained if the distances between the center frequencies of the individual LEDs result from the sum of the wavelength deviations of adjacent LEDs from the center frequency, at which the power density has fallen to 50%, as is also indicated in FIG.
Um den gesamten Wellenlangenbereich von beispielsweise 900 bis 1500 nm abzudecken, sind bei der Darstellung eines Messkopfs Hochstrom/Power-LEDs statt einer Halogenlampe eingesetzt, wobei eine Reihe von sechs sog. Power-LEDs, d.h. LED- Emheiten mit besonders hoher Lichtleistung, mit aufeinander abgestimmten Wellenlangenbereichen, vorhanden ist. Jede ein- zelne LED-Einheit emittiert das Licht in einem anderen Wellenlangenbereich, wie in Figur 3 dargestellt. Die Auswahl der spektral aneinandergereihten Abstimmbereiche der LED-Einhei- ten geschieht derart, dass sich durch Überlappung des Lichtstrahls eine erweiterte Abstimmbreite von beispielsweise 900 nm bis 1500 nm ergibt.To cover the entire wavelength range of, for example, 900 to 1500 nm, high current / power LEDs instead of a halogen lamp are used in the illustration of a measuring head, wherein a series of six so-called power LEDs, i. LED units with particularly high light output, with coordinated wavelength ranges, is available. Each individual LED unit emits the light in a different wavelength range, as shown in FIG. The spectrally matched tuning ranges of the LED units are selected in such a way that overlapping the light beam results in an extended tuning width of, for example, 900 nm to 1500 nm.
Je nach Bedarf und Anwendung können in einem Messkopf die einzelnen LED-Einheiten, die aus mindestens einer LED beste- hen, eingebaut werden. Wenn die Messung in einem kleineren Wellenlangenbereich durchgeführt werden soll, kann die Anzahl der LED-Einheiten verringert werden. Durch die Flexibilität in dem optischen Aufbau können Sonden gebaut werden, die in mehreren Wellenlangenbereichen aktiv sind und deren Messbereich gleichzeitig Zonen im UV, VIS bis NIR abdecken. Es kön¬ nen also zwei, drei, oder vier, wie gemäß Figur 2, fünf, oder sechs, oder mehr wie gemäß Figur 3 LED-Einheiten zum Einsatz kommen .Depending on requirements and application, the individual LED units consisting of at least one LED can be used in one measuring head. hen, be installed. If the measurement is to be carried out in a smaller wavelength range, the number of LED units can be reduced. Due to the flexibility in the optical design, probes can be built that are active in several wavelength ranges and whose measuring range simultaneously covers zones in the UV, VIS to NIR. It Kings ¬ nen So two, three, or four, 2, five, or six, or more as shown in FIG three LED units are used as in.
Es ist vorteilhaft, entsprechend der Anzahl und der Verteilung von Spektrallinien einer Zielsubstanz die spektralen Lagen der verschiedenen Spektralbreiten der LED-Einheiten jeweils zuzuordnen. Dabei können bezogen auf die Emissionsfre- quenz Lucken in der erweiterten abstimmbaren Spektralbreite mehrer benachbarter in einer Reihe angeordneter LED-Einheiten vorhanden sein. Anders ausgedruckt wird die Messvorrichtung mehrfach mit jeweils zwischenliegenden frei bleibenden Frequenzbereichen eingesetzt.It is advantageous to assign the spectral positions of the different spectral widths of the LED units in each case in accordance with the number and the distribution of spectral lines of a target substance. With regard to the emission frequency, gaps may be present in the extended tunable spectral width of a plurality of adjacent LED units arranged in a row. Expressed differently, the measuring device is used several times, each with intermediate free frequency ranges.
Je kuhler eine LED wahrend des Betriebs ist, desto langer ist ihre Lebensdauer und desto hoher ist die Ausgangsleistung. Daher werden die LEDs auf einem Kühlkörper eingebaut, um die Warme besser abzuführen und hierdurch die Lebensdauer zu er- hohen.The cooler a LED is during operation, the longer its life and the higher the output power. Therefore, the LEDs are mounted on a heat sink to better dissipate the heat and thereby increase the life.
Ein weiteres Charakteristikum von LEDs im Gegensatz zu ther¬ mischen Strahlern sind ihre sehr schnellen Ein- und Ausschaltzeiten, die im Bereich von weniger als 1 ms liegen.Another characteristic of LEDs in contrast to ther ¬ mischen emitters are their very fast on and off times, which are in the range of less than 1 ms.
Die Verwendung von LEDs zur Beleuchtung erlaubt zwei Betriebsverfahren für ein Spektrometer :The use of LEDs for illumination allows two operating methods for a spectrometer:
Energiesparender Betrieb: Die LEDs sind die meiste Zeit nicht in Betrieb und werden nur für eine sehr kurze Zeit - vorzugsweise 2 s - 100 s eingeschaltet, um eine Messung durchzufuhren. Neben der ohnehin effizienten Beleuchtung wird dann durch die Taktung noch zu- satzlich Energie gespart. Dies ist besonders vorteilhaft bei tragbaren Spektrometeranordnungen sowie bei drahtlos montier¬ ten Messstationen mit Batteriebetrieb und Funkanbindung.Energy Saving Operation: The LEDs are off most of the time and are only turned on for a very short time - preferably 2 s - 100 s to take a measurement. In addition to the already efficient lighting, the timing will saved energy. This is particularly advantageous in portable spectrometer arrangements, as well as wireless montier ¬ ten stations with battery power and wireless connectivity.
Einflüsse wie Streulicht, Dunkelstrom und Hintergrundstrahlung:Influences such as scattered light, dark current and background radiation:
Hochempfindliche Detektoren in Spektrometern weisen einen nicht zu vernachlässigenden Dunkelstrom auf. Durch die schnelle Schaltbarkeit von LEDs kann zeitnah zur eigentlichen Messung kurz die Beleuchtung ausgeschaltet werden und derHighly sensitive detectors in spectrometers have a non-negligible dark current. Due to the fast switchability of LEDs, the lighting can be switched off shortly in time for the actual measurement and the
Dunkelstrom gemessen werden. Dadurch ergibt sich ein stabileres Signal mit geringerem Fehler. Die Dunkelstrommessung kann auch zyklisch durchgeführt werden, um das Ergebnis zu verbessern.Dark current are measured. This results in a more stable signal with less error. The dark current measurement can also be performed cyclically to improve the result.
Beide Betriebsarten sind natürlich auch kombiniert einsetzbar .Of course, both operating modes can also be combined.
Im Folgenden werden anhand der schematischen die Erfindung begleitenden jedoch diese nicht einschränkenden Figuren Aus- fuhrungsbeispiele beschrieben:In the following, exemplary embodiments accompanying the invention, but these non-limiting figures will be described:
Figur 1 zeigt einen Vergleich der spektralen Strahlungsdichte eines Gluhkorpers gemäß dem Plankschen Strah- lungsgesetz,FIG. 1 shows a comparison of the spectral radiance of a body of Gluh according to Plank's law of radiation,
Figur 2 zeigt eine Kombination von LED-Einheiten, wobei die gesamte Strahlungsdichte im annähernd gleich¬ bleibenden Bereich liegt, der durch die gestrichelte Linie angedeutet, Figur 3 zeigt einen LED-Trager mit einzelnen Power-LEDs, sogenannten Hochstrom-LEDs ; eine Power-LED ist ein Diodenarray-System, hier dargestellt als eine Losung mit einzelnen LED-Einheiten 6, Figuren 4 bis 8 zeigen Bauteile der Messvorrichtung, wie Messsonde mit dem Linsen-Trager, LED-Trager,2 shows a combination of LED units, wherein the total radiation density is approximately equal ¬ remaining area indicated by the dotted line, Figure 3 shows a LED-transmitter with single power LEDs, so-called high-current LEDs; a power LED is a diode array system, shown here as a solution with individual LED units 6, FIGS. 4 to 8 show components of the measuring device, such as a measuring probe with the lens carrier, LED carrier,
Reflexionssonde und Schutzglas, Figur 9 zeigt ein beispielhaftes Messprinzip mit SammellinsenReflection probe and protective glass, FIG. 9 shows an exemplary measuring principle with converging lenses
Kollimatoren, Figur 10 zeigt ein beispielhaftes Messprinzip mit Glaslei- tern, beispielsweise Glasstabe.Collimators, Figure 10 shows an exemplary measuring principle with glass conductors, such as glass rod.
In Figur 2 wird die erweiterte Spektralbreite von mindestens zwei, hier vier, in der Emissionswellenlange benachbart liegender LED-Einheiten gezeigt.FIG. 2 shows the extended spectral width of at least two, here four, LED units located in the emission wavelength.
Vorteile des erfmdungsgemaßen Aufbaus bzw. Verfahrens sind im Einzelnen:Advantages of the erfmdungsgemaßen structure or method are in detail:
Power-LEDs werden üblicherweise über Konstantstromquellen betrieben, womit der Strom, der durch die LED fließt, konstant gehalten wird und somit unabhängig von Netzschwankungen ist. So können Power-LEDs eine deutlich höhere Lebensdauer, wie beispielsweise 20000 - 50000 h erreichen, im Gegensatz zu herkömmlichen LEDs und Halogenlampen, die auf mehrere 1000 h kommen. Dies ist ein wesentlicher Faktor bei kontinuierlich arbeitenden Anlagen.Power LEDs are usually powered by constant current sources, which keeps the current flowing through the LED constant and thus independent of line fluctuations. For example, power LEDs can achieve a much longer service life, such as 20,000 - 50,000 hours, unlike conventional LEDs and halogen bulbs that can reach several thousand hours. This is an essential factor in continuous systems.
Durch den Einsatz von LEDs kann die Veränderung der spektralen Strahlungsdichte, die bei der Alterung der klassischen Halogenlampen unvermeidbar ist, vermieden bzw. reduziert wer¬ den. Dadurch ist eine Rekalibration der Spektrometer mit ei- nem Reflexionsstandard weniger häufig notig, bzw. kann ganz vermieden werden.Through the use of LEDs, the change in the spectral radiation density, which is unavoidable in the aging of the classic halogen lamps, avoided or reduced ¬ who. As a result, a recalibration of the spectrometers with a standard of reflection is less frequent, or can be completely avoided.
Eine LED-Beleuchtung besitzt einen deutlich kleineren Formfaktor als eine Glühlampe. Dadurch kann die Beleuchtung di- rekt in einem kleinen Messkopf angebracht werden, wo bisher eine aufwandige und empfindliche Lichtzufuhrung über Glasfa¬ ser notig war.LED lighting has a much smaller form factor than a light bulb. Thus, the lighting can be di- rectly mounted in a small measuring head, where previously a aufwandige and sensitive Lichtzufuhrung over glass fiber reinforced ¬ ser had experience dictate.
LEDs sind wesentlich energiesparender als thermische Strah- ler. Sie weisen eine größere Lichtausbeute auf und benotigen entsprechend weniger Eingangsleistung. LEDs sind in Zeiten << Is an- und abschaltbar. Dadurch sind beispielsweise parallel messende Spektrometer mit langen Ru¬ he- und sehr kurzen Betriebszeiten denkbar. Zum anderen ist dadurch eine Chopper-artige Modulation der Lichtmtensitat zur Verbesserung des Signal-Rausch-Verhaltnisses möglich.LEDs are much more energy efficient than thermal radiators. They have a greater light output and require correspondingly less input power. LEDs can be switched on and off in times of << Is. As a result, for example, parallel measuring spectrometers with long Ru ¬ hey and very short operating times are conceivable. On the other hand, a chopper-like modulation of the luminous intensity for improving the signal-to-noise ratio is possible.
In den Figuren 4 - 8 ist ein Schema für ein weiteres Ausfuh- rungsbeispiel eines neuen Messkopfes dargestellt.FIGS. 4 to 8 show a diagram for a further exemplary embodiment of a new measuring head.
Figuren 9 - 10 zeigen zwei Beleuchtungs-Pπnzipien . Die beispielhafte Messvorrichtung bzw. der Messkopf besteht aus sechs Bausteinen: Gehäuse 10, Schutzglas 15, Lmsen-Trager 11, LED-Trager 12, Reflexionssonde/Messsonde 1 und einem Deckel 14.Figures 9-10 show two illumination pπnzipien. The exemplary measuring device or the measuring head consists of six components: housing 10, protective glass 15, Lmsen-carrier 11, LED carrier 12, reflection probe / probe 1 and a cover 14th
Gehäuse 10:Housing 10:
Das Gehäuse 10 wird aus nichtrostendem VA-Stahl gefertigt. Je nach Anwendung können auch andere Rohstoffe verwendet werden.The housing 10 is made of stainless VA steel. Depending on the application, other raw materials can be used.
Schutzglas 15:Protective glass 15:
Als Schutzglas 15 für die gesamte Optik wird ein zylindrisches Fenster aus Quarzglas (Saphirglas) , beiderseits po¬ liert, mit Fasen 0,2-0,5 mm verwendet. Das Schutzglas 15 übernimmt für die optischen Bestandteile der Sonde eine Schutzfunktion vor Staub, mechanischer Beschädigung, usw. Zu Beachten ist, dass das Schutzglas m dem gewünschten Wellen- langenbereich ausreichend durchlassig sein muss.As a protective glass 15 for the entire optics, a cylindrical window made of quartz glass (sapphire glass), on both sides po ¬ profiled, with chamfers 0.2-0.5 mm used. The protective glass 15 assumes a protective function against dust, mechanical damage, etc., for the optical components of the probe. It should be noted that the protective glass must be sufficiently permeable to the desired wavelength range.
Lmsen-Trager 11: Der Lmsen-Trager 11 ist ebenfalls aus nichtrostendem VA- Stahl/Edelstahl gefertigt und dient zur Befestigung von Kollimatoren. Der Trager 11 wird mittels dreier Gewindestifte mit dem Gehäuse befestigt. Die Funktion der Linsen 4 ist, das von LEDs oder LED-Clustern emittierte Licht zu fokussieren und gebündelt auf die Probe 13 oder Absorptionsstrecke zu übertragen. Die Linsen 4 sowie das Schutzglas 15 müssen in dem gewünschten Wellenlangenbereich durchlassig sein. Die Große, Dicke und physikalisch-optische Spezifikation der Lm- sen 4 ist für jede Anwendung zu bestimmen. Es gelten hier die allgemeinen optischen Gesetze.Lmsen-Trager 11: The Lmsen-Trager 11 is also made of stainless steel VA / stainless steel and is used for attachment of collimators. The carrier 11 is fastened by means of three threaded pins with the housing. The function of the lenses 4 is to focus the light emitted by LEDs or LED clusters and to transmit them bundled to the sample 13 or absorption path. The lenses 4 and the protective glass 15 must be transparent in the desired wavelength range. The size, thickness and physical-optical specification of the LM sen 4 is to be determined for each application. The general optical laws apply here.
LED-Trager 12: Der LED-Trager 12 ist aus Aluminium oder Kupfer gefertigt wegen der besseren Warmeleitung gegenüber einem VA-Stahl und dient zur Aufnahme und Befestigung der LEDs. Der Trager 12 wird durch zwei Langschrauben, Justierschrauben, mit dem Deckel verbunden. Mit den sichtbaren Justierschrauben kann der Abstand zwischen dem Linsen-Trager 11 und dem LED-Trager 12 eingestellt werden. Diese Besonderheit ermöglicht zusätzliche Justiermoglichkeiten für den gesamten optischen Aufbau z.B. bezogen auf den Abstand zwischen Messsonde und Probe 13.LED carrier 12: The LED carrier 12 is made of aluminum or copper because of the better heat conduction compared to a VA steel and serves to accommodate and attach the LEDs. The carrier 12 is connected by two long screws, adjusting screws with the lid. With the visible adjustment screws, the distance between the lens carrier 11 and the LED carrier 12 can be adjusted. This feature allows additional adjustment possibilities for the entire optical design, e.g. based on the distance between probe and sample 13.
Reflexionssonde:Reflectance probe:
Als Messsonde 1 wird ein fasergekoppelter Prozess-Messkopf mit variablem Messfeld- bzw. Leuchtfleck-Durchmesser eingesetzt. Die optischen Komponenten sind vorteilhaft achroma¬ tisch korrigiert und antireflex-beschichtet .The measuring probe 1 used is a fiber-coupled process measuring head with a variable measuring field or spot diameter. The optical components are advantageously achroma ¬ table corrected and antireflection-coated.
Deckel 14:Cover 14:
Zur Abdeckung der Messsonde wird ein aus nichtrostendem VA- Stahl gefertigter Ring mit einer Bohrung für die Strom- und Glasleiter-Anschlusse verwendet.To cover the probe, a ring made of stainless steel VA is used with a hole for the power and glass conductor connections.
In den Figuren 4-8 sind im Detail Messsonde 1 mit dem Linsen- Trager 11, LED-Trager 12 , und Schutzglas 15 dargestellt.FIGS. 4-8 show, in detail, measuring probe 1 with the lens carrier 11, LED carrier 12, and protective glass 15.
Figur 9 zeigt ein Messprinzip mit Sammellinsen und Kollimato- ren.FIG. 9 shows a measuring principle with converging lenses and collimators.
Figur 10 zeigt ein Messprinzip mit Glasleitern, wie Glasstaben .FIG. 10 shows a measuring principle with glass conductors, such as glass rods.
Das Messprinzip mit Kollimatoren, entsprechend Figur 9, basiert auf dem überlappenden Strahlenverlauf von allen LEDs. Bei diesem Messprinzip wird das emittierte Licht von den Kollimatoren gebündelt und strahlt gezielt auf die Absorptions- strecke. Der Lichtfleck von jeder LED ist so zu berechnen und zu justieren, dass sich alle Strahlen überlappen, wodurch ein Messfleck entsteht, bei dem alle gewünschten Wellenlangenbe- reiche zusammentreffen. Das zuruckreflektierte Licht wird von der Reflexionssonde empfangen und über Glasfaser zum Detektor des Spektrometers geschickt.The measuring principle with collimators, according to FIG. 9, is based on the overlapping beam path of all LEDs. In this measurement principle, the emitted light is collimated by the collimators and radiates specifically to the absorption route. The light spot of each LED should be calculated and adjusted so that all the beams overlap, creating a spot where all desired wavelength ranges coincide. The reflected light is received by the reflection probe and sent via fiber to the detector of the spectrometer.
Beim zweiten Messprinzip entsprechend Fig. 10 wird an jede einzelne LED oder LED-Einheit 6 ein Glasstab unter einem be- stimmten Winkel eingerichtet, wobei der Winkel sich durch den Abstand zwischen der Probe und der Messsonde ergibt, der das gebündelte Licht gezielt in den Fokus der Reflexionssonde fuhren soll. Wie beim ersten Messprinzip wird zuruckreflek- tiertes Licht von der Reflexionssonde empfangen und zu einem Spektrometer weitergeleitet .In the second measuring principle according to FIG. 10, a glass rod is set at a specific angle to each individual LED or LED unit 6, the angle resulting from the distance between the sample and the measuring probe, which focuses the focused light in the focus the reflection probe should go. As with the first measuring principle, reflected light is received by the reflection probe and transmitted to a spectrometer.
Die Sonde mit den Kollimatoren und dem justierbaren LED- Trager 12 bringt einen weiteren Vorteil. Durch die Möglichkeit einer Abstandsanderung zwischen dem LED-Trager 12 und Lmsen-Trager 11 können der Fokus des gebündelten Lichts und die Große des Messflecks verändert werden, was die Messsonde vielseitiger macht, da der Abstand zwischen der Probe und der Messsonde beliebig verändert werden kann. The probe with the collimators and the adjustable LED carrier 12 brings another advantage. The possibility of a change in distance between the LED carrier 12 and Lmsen-Trager 11, the focus of the collimated light and the size of the measuring spot can be changed, which makes the probe more versatile, since the distance between the sample and the probe can be changed arbitrarily.

Claims

Patentansprüche claims
1. Messvorrichtung zur Spektroskopie, umfassend:A measuring apparatus for spectroscopy, comprising:
- mindestens zwei LED-Einheiten (6) zur Beleuchtung einer Ab- sorptionsstrecke,at least two LED units (6) for illuminating an absorption path,
- wobei die mindestens zwei LED-Einheiten (6) derart ausges¬ taltet sind, dass die ausgesendete Spektralbreite bezogen auf die Emissionswellenlange einer LED-Einheit (6) sich mit der ausgesendeten Spektralbreite einer weiteren der mindes- tens zwei LED-Einheiten (6) zur Darstellung einer erweiterten ausgesendeten Spektralbreite überlappt, und- wherein the at least two LED units (6) are so ausgest ¬ taltet that the emitted spectral width relative to the emission wavelength of an LED unit (6) with the emitted spectral width of another at least two LED units (6) overlaps to represent an extended emitted spectral width, and
- mindestens einen Empfanger an der Absorptionsstrecke zum Empfang von in der Absorptionsstrecke reflektiertem oder transmittiertem Licht.- At least one receiver on the absorption path for receiving light reflected or transmitted in the absorption path.
2. Messvorrichtung nach Anspruch 1, bei der eine Vielzahl von LED-Einheiten (6) bezogen auf die ausgesendete Spektralbreite überlappend positioniert sind, um eine erweiterte ausgesende¬ te Spektralbreite mit im wesentlichen kontinuierlicher spek- traler Leistungsdichte auszubilden.2. Measuring device according to claim 1, wherein a plurality of LED units (6) are positioned overlapping with respect to the emitted spectral width in order to form an extended emitting ¬ te spectral width with substantially continuous spectral power density.
3. Messvorrichtung nach Anspruch 1 oder 2, bei der die WeI- lenlangenbereiche der LED-Einheiten (6), derart einander überlappen, dass die Leistungsdichte (I) der insgesamt emit- tierten Strahlung zwischen zwei Maxima für die mindestens zwei LED-Einheiten (6) um weniger als 25% schwankt.3. Measuring device according to claim 1 or 2, in which the wavelength ranges of the LED units (6) overlap one another such that the power density (I) of the total emitted radiation is between two maxima for the at least two LED units ( 6) fluctuates less than 25%.
4. Messvorrichtung nach einem der vorangehenden Ansprüche, bei der die Abstande von Mittenfrequenzen von Leuchtdioden benachbarter Wellenlangenbereiche so gewählt sind, dass bei einer zwischen den Mittenfrequenzen liegenden Wellenlange die spektrale Leistungsdichte beider LED-Einheiten (6) wenigstens 50% der in der Mittenfrequenz ausgesendeten spektralen Leistungsdichte betragt.4. Measuring device according to one of the preceding claims, wherein the distances of center frequencies of LEDs of adjacent wavelength ranges are selected so that at a lying between the center frequencies wavelength spectral power density of both LED units (6) at least 50% of the emitted in the center frequency spectral Power density amounts.
5. Messvorrichtung nach einem der vorhergehenden Ansprüche, bei der die abstimmbaren Spektralbreiten verschiedener LED- Einheiten (6) in mehreren Spektralbereichen aktiv sind, so dass sie gleichzeitig in mehreren der Bereiche UV, VIS oder NIR angesiedelt sind.5. Measuring device according to one of the preceding claims, in which the tunable spectral widths of different LED units (6) are active in a plurality of spectral ranges, then that they are simultaneously located in several of the areas UV, VIS or NIR.
6. Messvorrichtung nach einem der vorhergehenden Ansprüche, bei der die LED-Einheiten (6) bezogen auf die Spektralbrei- ten, in Abhängigkeit von der Anzahl und der spektralen Lage der Banden einer Zielsubstanz, mehrfach ausgebildet und je einer Bande zugeordnet sind.6. Measuring device according to one of the preceding claims, wherein the LED units (6) based on the Spektralbrei- th, depending on the number and the spectral position of the bands of a target substance, formed multiple times and each associated with a band.
7. Messvorrichtung nach einem der vorhergehenden Ansprüche, bei der die LED-Einheiten (6) zur Kühlung mit einem Kühlkörper verbunden sind.7. Measuring device according to one of the preceding claims, wherein the LED units (6) are connected for cooling with a heat sink.
8. Messkopf zur Spektroskopie, aufweisend - ein Gehäuse (10) mit LED-Einheiten (6), Linsen (4) zur8. Measuring head for spectroscopy, comprising - a housing (10) with LED units (6), lenses (4) for
Strahlfuhrung auf die Absorptionsstrecke und eine stirnsei- tig zentral positionierte Messsonde (1) zum Empfang von reflektiertem Licht, wobeiBeam guide on the absorption path and a frontally centrally positioned measuring probe (1) for receiving reflected light, wherein
- die LED-Einheiten (6) ringförmig um eine Messsonde angeord- net sind,the LED units (6) are arranged annularly around a measuring probe,
- mindestens zwei LED-Einheiten (6), derart ausgestaltet sind, dass sich ihre emittierten Spektralbreiten zur Darstellung einer erweiterten emittierten Spektralbreite über¬ lappen.- At least two LED units (6) are designed such that overlap their emitted spectral widths to represent an extended emitted spectral width over ¬ .
9. Messkopf nach Anspruch 8, bei dem LED-Einheiten (6) und Linsen (4) gegeneinander verstellbar sind zur Einstellung der optimalen Beleuchtung einer Absorptionsstrecke.9. Measuring head according to claim 8, wherein the LED units (6) and lenses (4) are mutually adjustable for adjusting the optimal illumination of an absorption path.
10. Messkopf nach Anspruch 8 oder 9, bei dem als Messsonde (1) ein fasergekoppelter Messkopf mit variablem Messfeldbzw. Leuchtfleck-Durchmesser vorhanden ist.10. Measuring head according to claim 8 or 9, wherein as a measuring probe (1) a fiber-coupled measuring head with variable Messfeldbzw. Luminous spot diameter is present.
11. Verfahren zum Betrieb einer Messvorrichtung oder eines Messkopfes zur Spektroskopie aufweisend folgende Schritte:11. A method of operating a measuring device or a measuring head for spectroscopy, comprising the following steps:
- eine Absorptionsstrecke wird mittels mindestens zweier Leuchtdioden-Emheiten (6) beleuchtet, - wobei die mindestens zwei LED-Einheiten (6), derart ausges¬ taltet sind, dass die emittierte Spektralbreite der Emissi- onswellenlange einer LED-Einheit (6), sich mit der emittierten Spektralbreite einer der weiteren der mindestens zwei LED-Einheiten (6) überlappt,an absorption section is illuminated by means of at least two light-emitting diode units (6), - wherein the at least two LED units (6) are so ausgest ¬ taltet that the emitted spectral width of the emission shaft length of an LED unit (6), with the emitted spectral width of one of the other of the at least two LED units (6 ) overlaps,
- wobei die LEDs oder LED-Einheiten nur für eine kurze Zeit, in einem Bereich von Is bis 100s eingeschaltet werden, um eine Messung durchzufuhren.- The LEDs or LED units are turned on only for a short time, in a range of Is to 100s, to perform a measurement.
12. Verfahren zum Betrieb einer Messvorrichtung oder eines Messkopfes zur Spektroskopie aufweisend folgende Schritte:12. A method for operating a measuring device or a measuring head for spectroscopy, comprising the following steps:
- eine Absorptionsstrecke wird mittels mindestens zweier Leuchtdioden-Emheiten (6) beleuchtet,an absorption section is illuminated by means of at least two light-emitting diode units (6),
- wobei die mindestens zwei LED-Einheiten (6), derart ausges- taltet sind, dass die emittierte Spektralbreite der Emissi- onswellenlange einer LED-Einheit (6), sich mit der emittierten Spektralbreite einer der weiteren der mindestens zwei LED-Einheiten (6) überlappt,- wherein the at least two LED units (6) are designed such that the emitted spectral width of the emission wavelength of an LED unit (6), with the emitted spectral width of one of the further of the at least two LED units (6 ) overlaps,
- wobei die LEDs oder LED-Einheiten zeitnah zur eigentlichen Messung kurz ausgeschaltet werden und Dunkelstrom, Streulicht und Hintergrundstrahlung gemessen und subtrahiert werden .- The LEDs or LED units are switched off shortly after the actual measurement briefly and dark current, scattered light and background radiation are measured and subtracted.
13. Verfahren nach Anspruch 11 oder 12, wobei eine Modulation der Lichtmtensitat zur Verbesserung des Signal-zu-Rausch-13. The method of claim 11 or 12, wherein a modulation of Lichtmtensitat to improve the signal-to-noise ratio
Verhaltnisses verwendet wird.Ratio is used.
14. Verfahren nach einem der Ansprüche 11 bis 13, wobei von allen LED-Einheiten (6) das emittierte Licht über Kollimato- ren gebündelt wird und gezielt als überlappender Strahlenverlauf auf die Absorptionsstrecke strahlt, zur Darstellung ei¬ nes Messflecks, in dem sämtliche der gewünschten Wellenlangen- bzw. Frequenz-Bereiche zusammentreffen.14. The method according to any one of claims 11 to 13, wherein of all the LED units (6) the emitted light is collimated via Kollimato- ren and radiates targeted as an overlapping beam path on the absorption path, for representing ei ¬ nes a measuring spot in which all of desired wavelengths or frequency ranges coincide.
15. Verfahren nach einem der Ansprüche 11 bis 13, wobei jeder LED-Einheit (6) ein Glasstab zugeordnet ist, der in Abhängigkeit vom Abstand zwischen der Probe und der Messsonde in einem bestimmten Winkel angeordnet ist, um so das gebündeltes Licht gezielt in den Fokus der Messsonde zu fuhren und zu ei¬ nem Spektrometer weiterzuleiten . 15. The method according to any one of claims 11 to 13, wherein each LED unit (6) is associated with a glass rod, which is arranged in dependence on the distance between the sample and the probe at a certain angle, so as the bundled Specifically to lead light into the focus of the probe and to forward to ei ¬ nem spectrometer.
PCT/EP2009/065795 2008-11-28 2009-11-25 Measuring apparatus and method for spectroscopic measurements using led light WO2010060915A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008059457.1 2008-11-28
DE102008059457 2008-11-28

Publications (2)

Publication Number Publication Date
WO2010060915A2 true WO2010060915A2 (en) 2010-06-03
WO2010060915A3 WO2010060915A3 (en) 2010-07-22

Family

ID=41718724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/065795 WO2010060915A2 (en) 2008-11-28 2009-11-25 Measuring apparatus and method for spectroscopic measurements using led light

Country Status (1)

Country Link
WO (1) WO2010060915A2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102788754A (en) * 2012-08-13 2012-11-21 浙江大学 Device and method for measuring multi-index parameters of pear
CN102829865A (en) * 2012-09-24 2012-12-19 上海汉谱光电科技有限公司 45-degree annular illumination reflection spectrum spectrophotometric light path device
CN102829849A (en) * 2012-08-13 2012-12-19 浙江大学 Device and method for multi-index parametric measurement of pears
WO2014009139A1 (en) * 2012-07-12 2014-01-16 Siemens Aktiengesellschaft Led-based spectrometer probe
US8859969B2 (en) 2012-03-27 2014-10-14 Innovative Science Tools, Inc. Optical analyzer for identification of materials using reflectance spectroscopy
WO2016012276A1 (en) * 2014-07-25 2016-01-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Arrangement for spatially resolved and wavelength-resolved detection of light radiation emitted from at least one oled or led
US9297749B2 (en) 2012-03-27 2016-03-29 Innovative Science Tools, Inc. Optical analyzer for identification of materials using transmission spectroscopy
WO2016137317A1 (en) * 2015-02-23 2016-09-01 Tree Of Knowledge Patents B.V. An infrared sensor unit, a method and a computer program product
EP3505911A1 (en) * 2017-12-29 2019-07-03 Samsung Electronics Co., Ltd. Optical sensor, and apparatus and method for measuring absorbance using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1278049A1 (en) * 2001-07-18 2003-01-22 CSEM Centre Suisse d'Electronique et de Microtechnique SA Illumination module for a reflection spectrometer
EP1314972A1 (en) * 2001-11-26 2003-05-28 Gretag-Macbeth AG Spectrophotometer and its use

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1278049A1 (en) * 2001-07-18 2003-01-22 CSEM Centre Suisse d'Electronique et de Microtechnique SA Illumination module for a reflection spectrometer
EP1314972A1 (en) * 2001-11-26 2003-05-28 Gretag-Macbeth AG Spectrophotometer and its use

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MALINEN J ET AL: "LED-based NIR spectrometer module for hand-held and process analyser applications" SENSORS AND ACTUATORS B, ELSEVIER SEQUOIA S.A., LAUSANNE, CH, Bd. 51, Nr. 1-3, 31. August 1998 (1998-08-31), Seiten 220-226, XP004154013 ISSN: 0925-4005 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8859969B2 (en) 2012-03-27 2014-10-14 Innovative Science Tools, Inc. Optical analyzer for identification of materials using reflectance spectroscopy
US9297749B2 (en) 2012-03-27 2016-03-29 Innovative Science Tools, Inc. Optical analyzer for identification of materials using transmission spectroscopy
WO2014009139A1 (en) * 2012-07-12 2014-01-16 Siemens Aktiengesellschaft Led-based spectrometer probe
CN102788754A (en) * 2012-08-13 2012-11-21 浙江大学 Device and method for measuring multi-index parameters of pear
CN102829849A (en) * 2012-08-13 2012-12-19 浙江大学 Device and method for multi-index parametric measurement of pears
CN102829865A (en) * 2012-09-24 2012-12-19 上海汉谱光电科技有限公司 45-degree annular illumination reflection spectrum spectrophotometric light path device
WO2016012276A1 (en) * 2014-07-25 2016-01-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Arrangement for spatially resolved and wavelength-resolved detection of light radiation emitted from at least one oled or led
US10281321B2 (en) 2014-07-25 2019-05-07 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Arrangement for spatially resolved and wavelength-resolved detection of light radiation emitted from at least one OLED or LED
WO2016137317A1 (en) * 2015-02-23 2016-09-01 Tree Of Knowledge Patents B.V. An infrared sensor unit, a method and a computer program product
EP3505911A1 (en) * 2017-12-29 2019-07-03 Samsung Electronics Co., Ltd. Optical sensor, and apparatus and method for measuring absorbance using the same
US10551312B2 (en) 2017-12-29 2020-02-04 Samsung Electronics Co., Ltd. Optical sensor, and apparatus and method for measuring absorbance using the same

Also Published As

Publication number Publication date
WO2010060915A3 (en) 2010-07-22

Similar Documents

Publication Publication Date Title
WO2010060915A2 (en) Measuring apparatus and method for spectroscopic measurements using led light
DE212013000099U1 (en) Linear fresnel optics for reducing the angular dispersion of light from an LED array
DE112018003607T5 (en) SYSTEMS AND METHODS FOR AN EXTINCTION DETECTOR WITH OPTICAL REFERENCE
US7456955B2 (en) Spectrophotometer with light emitting diode illuminator
DE102006004003A1 (en) Infrared gas detector for detecting gas concentration based on light absorption properties using infrared light source and infrared sensor
DE102014016515B4 (en) Optical gas sensor
DE102014010418B4 (en) Weathering
WO2014037217A1 (en) Illumination device
DE102014200937A1 (en) Lighting device with primary light unit and phosphor element
DE19532877A1 (en) Device for linear lighting of sheet material, such as. B. banknotes or securities
CN103629574A (en) Multi-LED combination broadband light source device based on multi-edge reflection cone
CN204241187U (en) Light emitting diode divides optical detection device
DE212013000056U1 (en) Edge weighted distance of LEDS for area of improved uniformity
DE102006004005A1 (en) Infrared gas detector and method for detecting a gas concentration
CN216350391U (en) Detection lighting system based on LED projection module
DE112020001966B4 (en) Infrared source for airport runway lighting
DE102016008886B4 (en) ATR spectrometer
WO2022200202A1 (en) Apparatus, device and method for irradiating an in particular biological specimen with a holographic optical component
EP3074740B1 (en) Light fixture and temperature monitoring method
WO2021004916A1 (en) Lighting device and method for producing a lighting device
JP6917824B2 (en) Spectral measuring device and spectroscopic measuring method
DE102019121511A1 (en) Light conversion and lighting device
CN105890755A (en) Integration light source used for field calibration
DE102011004811A1 (en) Device for generating high intensity light, for flashlight for spectrometric measuring arrangement, has controllable cooling elements to cool LED on certain temperature, in order to increase light intensity and lifetime of LED
WO2014009139A1 (en) Led-based spectrometer probe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09771524

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09771524

Country of ref document: EP

Kind code of ref document: A2