WO2010060253A1 - Système et procédé de détection de l'état d'un enroulement de transformateur par utilisation d'une excitation d'une source à fréquence de balayage et à courant constant - Google Patents

Système et procédé de détection de l'état d'un enroulement de transformateur par utilisation d'une excitation d'une source à fréquence de balayage et à courant constant Download PDF

Info

Publication number
WO2010060253A1
WO2010060253A1 PCT/CN2009/000051 CN2009000051W WO2010060253A1 WO 2010060253 A1 WO2010060253 A1 WO 2010060253A1 CN 2009000051 W CN2009000051 W CN 2009000051W WO 2010060253 A1 WO2010060253 A1 WO 2010060253A1
Authority
WO
WIPO (PCT)
Prior art keywords
transformer
vibration
constant current
frequency
excitation
Prior art date
Application number
PCT/CN2009/000051
Other languages
English (en)
Chinese (zh)
Inventor
姜益民
金之俭
朱子述
饶柱石
傅坚
Original Assignee
上海市电力公司
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海市电力公司, 上海交通大学 filed Critical 上海市电力公司
Publication of WO2010060253A1 publication Critical patent/WO2010060253A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/62Testing of transformers

Definitions

  • the present invention relates to a system and method for detecting the state of a transformer winding using a constant current swept power supply.
  • BACKGROUND OF THE INVENTION - Transformers are one of the most important devices in a power system, and the stability of their operation has a major impact on power system security.
  • the capacity of China's power grid increases, the short-circuit capacity also increases.
  • the large electromagnetic force generated by the inrush current formed by the short-circuit of the transformer outlet poses a serious threat to the mechanical strength and dynamic stability of the transformer winding.
  • the operating environment of substation equipment and lines is always not optimistic.
  • the deformation caused by external short-circuit caused by the impact of the transformer winding is a common fault in the operation of the transformer, which poses a great threat to the safe operation of the system.
  • the winding may first be loose or slightly deformed.
  • the transformer winding deformation has a cumulative effect. If it is not found and repaired in time for looseness or deformation, then the looseness or deformation of the transformer is accumulated. To a certain extent, the short-circuit resistance of the transformer is greatly reduced, and a large accident can be caused by a small inrush current.
  • the deformation of the winding will lead to a decrease in the mechanical short-circuit current resistance, and on the other hand, the local insulation distance of the coil will change, causing local weak points of insulation.
  • the winding may have a cake.
  • Inter- or inter-turn short circuit causes transformer insulation breakdown accident, or partial discharge due to local field strength increase, the insulation damage will gradually expand, eventually leading to The transformer has an insulation breakdown accident and the situation of the bow I has further expanded.
  • the short-circuit impedance of the transformer is the equivalent impedance inside the transformer when the load impedance is zero.
  • the short-circuit impedance is the vector sum of the leakage reactance and the resistance of the transformer winding. Since the DC resistance of the transformer is small relative to the leakage reactance, the short-circuit impedance of the transformer is reflected.
  • the measured short-circuit impedance value is compared with the original record to determine whether the winding is deformed, if the short-circuit impedance value The change is large. For example, if the change is set to more than 3% in the national standard, it can be confirmed that the winding has significant deformation.
  • Figure 1 is a schematic diagram of the short-circuit impedance method.
  • the low-voltage side of the transformer is short-circuited, and the high-voltage side is applied with a test voltage by a voltage regulator.
  • the corresponding short-circuit voltage U and short-circuit current I are measured.
  • the transformer is required to measure the short-circuit impedance of each phase in the short-circuit impedance test.
  • the short-circuit impedance measured after the test is compared with the data of the previous test, and the test is judged according to the degree of change.
  • the short-circuit impedance method has established standards in long-term production practice, and the criteria are clear.
  • the criteria for the degree of deformation of the coil are clearly given in the international electrical standards IEC60076-5 and GB1095-85.
  • the sensitivity of this method is very low, and the detection rate of the fault is low. Only when the overall deformation of the coil is serious, can a clearer reflection be obtained.
  • the basic principle of the frequency response method is to regard the transformer winding as a distributed parameter network.
  • the distributed parameters such as longitudinal capacitance and inductance L form a passive linear two-port network, and the characteristics of the network can be described by a transfer function in the frequency domain.
  • the frequency response test first applies a stable sinusoidal sweep frequency signal to one end of the tested transformer winding, and then simultaneously records the voltage on the port and other output ports to obtain a set of frequency response characteristics of the tested winding.
  • the test sensitivity of the frequency response method is higher than that of the short-circuit impedance method.
  • due to the complexity of the frequency response waveform it takes more experience to judge the winding condition, and it is difficult to form a clear quantitative criterion. Therefore, no discriminant criterion has been formed so far.
  • the invention provides a system and method for detecting the state of a transformer winding by using a constant current swept power supply excitation, and the transformer winding is equivalent to a complex elastic system with concentrated parameters.
  • the transformer winding When the transformer winding is loose, its axial preload force When the change occurs, the natural frequency of the first few stages of mechanical vibration will be The step moves toward a lower frequency direction, and the overall amplitude of the low frequency band is increased, so that the vibration characteristics of the entire elastic system are changed, and when the transformer winding is deformed, the structure of the elastic system is changed, thereby making the elastic system The vibration characteristics are changed. Therefore, by effectively detecting the change in the vibration characteristics of the elastic system itself and analyzing the variation of the natural resonant frequency curve of the transformer winding, it is possible to more sensitively detect the looseness and deformation of the transformer winding.
  • the present invention provides a system for detecting the state of a transformer winding using a constant current swept power supply excitation, comprising:
  • An excitation module the excitation module circuit is connected to the measurement and control analysis module;
  • the signal acquisition module circuit is connected to the measurement and control analysis module and the excitation module, and the excitation module includes a controllable constant current frequency sweep power supply and an excitation transformer connected through a circuit; the signal acquisition module includes a sequential circuit connection.
  • the vibration sensor and the vibration signal acquisition and controllable constant current sweep frequency power supply circuit are connected to the measurement and control analysis module, and the sweep power supply applies the output constant current sweep frequency excitation signal to the high voltage side of the detected transformer through the excitation transformer. And simultaneously outputting the constant current sweep excitation signal to the tested transformer winding;
  • the amplitude of the current sweep excitation signal output by the controllable constant current sweep power supply, the sweep frequency range and the sweep frequency of the output frequency are controlled and controlled by the measurement and control analysis module;
  • the excitation transformer is used as impedance matching
  • the vibration sensor is disposed on a casing of the transformer, and measures a vibration response signal of the tested transformer winding at different excitation frequencies, and transmits the measured signal to the vibration signal collector; the vibration signal collector
  • the circuit is connected to the measurement and control analysis module, the vibration signal collector synchronously completes the signal collection, the anti-aliasing digital filtering, and the buffering of the signal, and the vibration signal collector performs the signal measured by the vibration sensor. Collecting and pre-processing, and transmitting the vibration response signal data obtained after the processing to the measurement and control analysis module through the high-speed bus, and the sampling frequency and the sampling length of the vibration signal collector are controlled and adjusted by the measurement and control analysis module;
  • the measurement and control analysis module performs spectrum analysis on the received vibration response signal data, displays and records the resonance frequency curve of the transformer winding in the frequency domain, the resonance frequency curve obtained and recorded previously, and the vibration of the transformer three-phase coil. The frequency curves are compared to determine the state of the transformer windings and the measurement results are obtained.
  • the invention also provides a method for detecting the state of a transformer winding by using a constant current swept power supply excitation, comprising the following steps:
  • Step 1 The measurement and control analysis module sets parameters of the controllable constant current sweep frequency power supply
  • Step 2 The measurement and control analysis module sets the parameters of the vibration sensor and the vibration signal collector; sets the vibration sensor parameters, including the sensitivity and input mode of the sensor. ; set the sampling speed of the vibration signal collector;
  • Step 4 The measurement and control analysis module outputs the sweep current and the starting frequency to the controllable constant current sweep frequency power supply; Step 5. The measurement and control analysis module outputs the excitation frequency to the controllable constant current sweep frequency power supply;
  • Step 6 Short circuit the low voltage winding of the transformer under test
  • Step 7 The controllable constant current swept power supply applies a constant current sweep excitation signal to the high voltage side of the transformer under test through the excitation transformer, and simultaneously outputs the constant current sweep excitation signal to the tested transformer winding;
  • Step 8. Vibration sensor Measuring a vibration response signal of the tested transformer winding for a constant current sweep excitation signal, and transmitting the measured vibration response signal to the vibration signal collector;
  • Step 9 The vibration signal collector performs the collection and processing on the measured vibration response signal, and then transmits the measurement to the measurement and control analysis module;
  • Step 10 The measurement and control analysis module performs spectrum analysis on the received vibration response signal; Step 11. The measurement and control analysis module determines whether the frequency of the constant current sweep frequency excitation signal output by the controllable constant current sweep power supply is greater than a set termination frequency, and if so, Then increase the frequency, skip to step 5, if no, skip to step 12;
  • Step 12 The measurement and control analysis module outputs a resonance frequency curve of the transformer winding to be tested; Step 13.
  • the measurement and control analysis module compares the resonance frequency curve of the tested transformer winding with its previous recording curve, or compares with the frequency curve of the transformer three-phase coil.
  • the vibration amplitude of the frequency curve is significantly enlarged, the peak value of the spectrum is significantly shifted, that is, when the singular peak occurs, it indicates that the transformer winding has an abnormal reaction, and it is judged that the transformer winding is in an abnormal state, loose or deformed, and needs to be replaced in time. Ensure that the line does not malfunction.
  • the system and method for detecting the state of a transformer winding by using a constant current swept power supply excitation, and detecting the looseness of the winding by analyzing the change of the natural resonant frequency curve of the transformer winding In this case, the looseness and deformation of the transformer winding can be detected effectively and with high sensitivity, and repaired or replaced in time to avoid a sudden short-circuit of the transformer due to damage of the winding structure.
  • FIG. 1 is a schematic diagram of measurement of a short-circuit impedance method in the background art
  • FIG. 3 is a schematic diagram showing the structure of a system for detecting the state of a transformer winding by excitation of a frequency sweeping power supply provided by the present invention
  • FIG. 4 is a flow chart of a method for detecting a state of a transformer winding by a constant current swept power supply excitation provided by the present invention
  • Figure 5 is a comparison of vibrational spectra of phase A and phase C of a transformer in a horizontal direction in a specific embodiment of the present invention
  • Figure 6 is a comparison of the symmetrical A-phase and C-phase vibration frequencies of the transformer in the vertical direction of the embodiment of the present invention. 'The best way to achieve the invention
  • the present invention provides a system for detecting the state of a transformer winding by using a constant current swept power supply, which includes - a measurement and control analysis module 301 ;
  • An excitation module the excitation module circuit is connected to the measurement and control analysis module 301;
  • the signal acquisition module circuit is connected to the measurement and control analysis module 301 and the excitation module;
  • the excitation module includes a controllable constant current sweep power supply 201 and an excitation transformer 202 connected by a circuit;
  • the signal acquisition module comprises a vibration sensor 101 and a vibration signal collector 102 connected in sequence;
  • the vibration sensor 101 adopts the DH185 piezoelectric ICP acceleration sensor parameters as follows: Sensitivity: 10mV/ms- 2 ;
  • Lead-out method top fixed lead
  • the vibration signal collector 102 uses the DH5920 dynamic signal test and analysis system, and the parameters are as follows:
  • Input method single-ended input, differential input, ICP-adjustable input,
  • Low-pass filter Cut-off frequency (-3dB ⁇ ldB 10, 30, 100, 300, lk, 3k, 10k, PASS (Hz) eight-speed binning;
  • Stopband attenuation greater than one 24dB/oct
  • CMR Common mode rejection
  • Common mode voltage (DC or AC peak): less than ⁇ 10V, DC ⁇ 60Hz;
  • Time drift less than 3 ⁇ / hour (input short circuit, preheating after 1 hour, constant temperature, maximum gain When converted to the input);
  • Output potential Within ⁇ 5V, arbitrarily set according to the resolution of lmV;
  • Integer sampling rate When 8 channels work simultaneously, each channel 10, 20, 50, 100, 200, 500, lk, 2k, 5k, 10k, 20k, 50k, 100k (Hz) is switched.
  • Integer analysis frequency When 8 channels work simultaneously, 5, 10, 20, 50, 100, 200, 500, lk, 2k, 5k, 10k, 20k, 50k (Hz) binning is switched per channel;
  • Filtering method independent analog filtering per channel + DSP digital filtering
  • Cutoff frequency 1/2.56 times of the sampling rate, set at the same time when setting the sampling rate
  • Stopband attenuation about -150dB/oct
  • Power supply 220VAC, 12VDC (9 ⁇ 18V), power 50W;
  • the controllable constant current sweep power supply 201 is connected to the measurement and control analysis module 301 through an RS232 interface, and the sweep power supply 201 applies an output constant current sweep excitation signal to the high voltage side of the detected transformer 4 through the excitation transformer 202. And simultaneously outputting the constant current sweep excitation signal to the tested transformer winding;
  • the controllable constant current swept power supply 201 adopts an independently developed constant current excitation power supply TVRAS-1, which can control the amplitude of the output sweep excitation current, the sweep frequency range of the output frequency and the sweep frequency.
  • the measurement and control analysis module 301 controls the adjustment;
  • the excitation transformer 202 is used for impedance matching, and its main parameters are as follows:
  • the vibration sensor 101 is disposed on the casing of the transformer 4, and measures the vibration response signal of the transformer under test at different excitation frequencies, and transmits the measured signal to the vibration signal collector 102;
  • the vibration signal collector 102 is connected to the measurement and control analysis module 301 through a 1394 interface, and the vibration signal collector 102 synchronously completes signal acquisition, anti-aliasing digital filtering, and cache of signals, the vibration signal.
  • the collector 102 performs the signal measured by the vibration sensor. Collecting and pre-processing, and transmitting the processed vibration response signal data to the measurement and control analysis module 301 through the high-speed bus, the sampling frequency and the sampling length of the vibration signal collector 102 are controlled and adjusted by the measurement and control analysis module 301;
  • the measurement and control analysis module 301 performs spectrum analysis on the received vibration response signal data, displays and records the resonant frequency curve of the transformer winding in the frequency domain, the resonant frequency curve obtained and recorded previously, and the three-phase coil of the transformer. The vibration frequency curves are compared to determine the state of the transformer windings and the measurement results are obtained.
  • the present invention also provides a method for detecting the state of a transformer winding by using a constant current swept power supply, comprising the following steps:
  • Step 1 The measurement and control analysis module 301 sets the parameters of the controllable constant current frequency sweep power supply 201; sets the output current, the frequency sweep range, the frequency sweep frequency interval, the frequency sweep frequency change period, etc.; input power: 380V/50HZ;
  • Controllable constant output current 2A ⁇ 60A;
  • Sweep frequency change period ls ⁇ 30s ;
  • Step 2 The measurement and control analysis module 301 sets parameters of the vibration sensor 101 and the vibration signal collector 102;
  • Setting the vibration sensor 101 parameters mainly includes the sensitivity and input mode of the sensor; setting the sampling speed of the vibration signal collector 102 to 10 to 100 kHz ;
  • Step 3 The measurement and control analysis module 301 sets an analysis parameter of the vibration response signal
  • Step 4 the measurement and control analysis module 301 outputs the sweep current and the starting frequency to the controllable constant current sweep power source 201;
  • Step 5 The measurement and control analysis module 301 outputs the excitation frequency to the controllable constant current sweep frequency power supply 201; Step 6. Short-circuit the low voltage winding of the transformer 4 to be tested;
  • Step 7 The controllable constant current swept power supply 201 applies a constant current sweep excitation signal to the high voltage side of the transformer under test 4 through the excitation transformer 202, and simultaneously outputs the constant current sweep excitation signal to the transformer winding to be tested;
  • Step 8 the vibration sensor 101 measures the vibration response signal of the measured transformer winding for the constant current sweep excitation signal, and transmits the measured vibration response signal to the vibration signal collector 102;
  • Step 9 The vibration signal collector 102 collects and processes the measured vibration response signal, and then transmits it to the measurement and control analysis module 301;
  • Step 10 The measurement and control analysis module 301 performs spectrum analysis on the received vibration response signal.
  • Step 11 The measurement and control analysis module 301 determines whether the frequency of the constant current frequency sweep excitation signal output by the controllable constant current frequency sweep power supply 201 is greater than a set termination frequency. If yes, increase the frequency, skip to step 5, if no, skip to step 12;
  • Step 12 The measurement and control analysis module 301 outputs a resonance frequency curve of the tested transformer winding.
  • Step 13 The measurement and control analysis module 301 compares the resonant frequency curve of the tested transformer winding with its previous recorded curve, or with the frequency curve of the transformer three-phase coil. In comparison, when the vibration amplitude of the frequency curve is significantly enlarged, the peak of the spectrum is significantly shifted, that is, when the singular peak occurs, it indicates that the transformer winding has an abnormal reaction, and it is judged that the transformer winding is in an abnormal state, loose or deformed, and timely Replace, to ensure that the line does not malfunction.
  • the low-voltage side of the A-phase of the main transformer is subjected to short-circuit shock due to breakdown of the outlet rheology, and the pressure release device protects the action. After the system is deployed, it is decided to restart the operation.
  • a power failure test was performed before the operation.
  • the short-circuit impedance method was used for testing. The test found that the short-circuit impedance did not change substantially (the change value was less than 0.1%).
  • the FRA method was used to test and analyze the transformer A-phase low-voltage winding. There was no abnormal change in the measurement curve control. According to the conclusions of these two kinds of electrical measurement methods, it is considered that there is no deformation failure of the transformer A phase winding coil.
  • the measurement system of the present invention is used for detection, and the symmetrical A-phase and C-phase windings of the transformer are carefully tested by the method of sweeping the excitation vibration spectrum, and the A shown in FIG. 5 and FIG. 6 is obtained. Comparing the phase-to-C phase vibration spectrum curve, it is found that the vibration amplitude of the phase A of the transformer is amplified several times compared with the symmetric C phase, the peak of the spectrum is significantly shifted, and the apparent low frequency singular peak appears, and the unshocked c There is a significant abnormality in the phase spectrum.
  • the present invention has high sensitivity detection performance.
  • the test summary report stated that: On May 24, 2005, the low-pressure side of the A-phase main transformer of the No. 3 main transformer of Shanghai UHV Company suffered a short-circuit impact due to the breakdown of the outlet rheology, and the pressure release device protected the action. Due to system deployment, it was put into operation again. The power failure was detected in the early morning of May 26, and the ultra-high voltage company tested it by the short-circuit impedance method. The short-circuit impedance did not change substantially (the change value was less than 0.1%). The transformer FW phase low-voltage winding was tested and analyzed by the East China Pilot Test Institute using the FRA method. No abnormal changes were found compared with the original measurement curve. In the early morning of the 26th, due to the failure of the bus coupler switch, the power supply will be affected. It is necessary to make an immediate judgment. According to the conclusion of the electric test method, the coil cannot be deformed, so the transformer is put into operation again.
  • the test group of Shanghai Jiaotong University used the method of sweeping the excitation vibration spectrum to test. It was found that the amplitude of the phase A vibration was several times larger than that of the C phase, and the peak of the spectrum was significantly shifted, because the time was not urgent. Sweep measurements are made so that a complete spectrum curve cannot be obtained for analysis. - Since the transformer was shipped earlier, it has been repaired, and this time it suffered an export short-circuit shock, the pressure release device has a protective action, and the vibration amplitude of the A phase is significantly larger than that of the camera C, so June 2 The transformer was taken out of operation on the day.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

L'invention porte sur un système et sur un procédé de détection de l'état d'un enroulement de transformateur par utilisation d'une excitation d'une source à fréquence de balayage et à courant constant. Le procédé comprend les étapes suivantes : mesure et commande et analyse du module de commande de la source à fréquence de balayage afin d'appliquer un courant constant délivré en sortie et un signal d'excitation de fréquence de balayage du côté haute tension du transformateur de mesure à partir d'un transformateur d'excitation; mesure par le transducteur de vibration du signal de réponse à une vibration du transformateur de mesure sous différentes fréquences d'excitation; échantillonnage et traitement par l'échantillonneur de signal de vibration du signal mesuré à partir du transducteur de vibration; analyse spectrale en fréquence par le module de mesure et commande et analyse du signal de vibration reçu qui est post-traité; affichage et enregistrement de la courbe de fréquence de résonance de l'enroulement du transformateur dans le domaine de fréquence, et comparaison avec la courbe de fréquence de résonance mesurée et enregistrée précédemment et avec la courbe de fréquence de vibration des enroulements des trois phases du transformateur pour estimer l'état de l'enroulement d'un transformateur.
PCT/CN2009/000051 2008-11-25 2009-01-15 Système et procédé de détection de l'état d'un enroulement de transformateur par utilisation d'une excitation d'une source à fréquence de balayage et à courant constant WO2010060253A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2008102033409A CN101738567B (zh) 2008-11-25 2008-11-25 利用恒流扫频电源激振检测变压器绕组状态的方法
CN200810203340.9 2008-11-25

Publications (1)

Publication Number Publication Date
WO2010060253A1 true WO2010060253A1 (fr) 2010-06-03

Family

ID=42225197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/000051 WO2010060253A1 (fr) 2008-11-25 2009-01-15 Système et procédé de détection de l'état d'un enroulement de transformateur par utilisation d'une excitation d'une source à fréquence de balayage et à courant constant

Country Status (2)

Country Link
CN (1) CN101738567B (fr)
WO (1) WO2010060253A1 (fr)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102798798A (zh) * 2012-08-07 2012-11-28 浙江大学 一种基于振动分析的电力变压器绕组变形检测方法
CN103149470A (zh) * 2013-01-29 2013-06-12 北京信息科技大学 利用变压器绕组振动识别变压器励磁涌流的方法
CN104764953A (zh) * 2015-03-20 2015-07-08 保定市暄威电力设备科技有限公司 一种变压器绕组测试方法、设备和系统
RU2606701C1 (ru) * 2015-08-19 2017-01-10 Федеральное государственное унитарное предприятие "Российский федеральный ядерный центр - Всероссийский научно-исследовательский институт технической физики имени академика Е.И. Забабахина" Способ диагностики электротехнического устройства с обмотками и магнитопроводом
CN106443316A (zh) * 2016-10-12 2017-02-22 国网辽宁省电力有限公司电力科学研究院 一种电力变压器绕组形变状态多信息检测方法及装置
CN106646096A (zh) * 2016-11-15 2017-05-10 国网四川省电力公司广安供电公司 基于振动分析法的变压器故障分类和识别方法
CN107202634A (zh) * 2017-07-20 2017-09-26 广东电网有限责任公司电力科学研究院 一种油浸式电力变压器动力响应放大方法及装置
CN108181064A (zh) * 2018-02-02 2018-06-19 武汉地震工程研究院有限公司 一种基于压电阻抗法的管螺纹松动监测方法
CN110554278A (zh) * 2019-07-30 2019-12-10 中国电力科学研究院有限公司 一种基于模态分析对变压器绕组进行检测的方法及系统
CN111597957A (zh) * 2020-05-12 2020-08-28 三峡大学 基于形态学图像处理的变压器绕组故障诊断方法
CN111610469A (zh) * 2020-04-21 2020-09-01 中国电力科学研究院有限公司 一种星接变压器绕组变形的三相同步频响检测方法和系统
CN111880123A (zh) * 2020-07-21 2020-11-03 华北电力大学 抗工频磁饱和的变压器绕组频响信号检测方法
CN111881781A (zh) * 2020-07-09 2020-11-03 三峡大学 基于扫描阻抗法及支持向量机的变压器绕组变形分类方法
CN112327220A (zh) * 2020-10-30 2021-02-05 国网福建省电力有限公司莆田供电公司 基于多源数据的配电变压器健康在线诊断方法及设备
CN112834955A (zh) * 2021-02-23 2021-05-25 国网山西省电力公司电力科学研究院 干式空心电抗器匝间短路故障模拟装置和故障模拟方法
CN112986883A (zh) * 2021-02-19 2021-06-18 云南电网有限责任公司昭通供电局 一种变压器绕组变形检测装置有效性测试系统和方法
WO2021144593A1 (fr) 2020-01-17 2021-07-22 University Of Salford Enterprises Limited Surveillance d'un état vibro-électrique
CN113532535A (zh) * 2021-07-21 2021-10-22 国网江苏省电力有限公司宜兴市供电分公司 一种电力变压器绕组状态判断方法
CN113985227A (zh) * 2021-10-27 2022-01-28 云南电网有限责任公司电力科学研究院 一种配网电磁式电压互感器固有频率试验系统及方法
CN114371426A (zh) * 2022-01-11 2022-04-19 云南电网有限责任公司电力科学研究院 一种基于非负张量分解的变压器绕组机械状态检测方法
CN114859713A (zh) * 2022-04-18 2022-08-05 图湃(北京)医疗科技有限公司 一种oct系统振动抑制方法及装置
CN115343661A (zh) * 2022-07-01 2022-11-15 国网宁夏电力有限公司宁东供电公司 基于扫频阻抗法的变压器绕组检测装置及其检测方法
CN116577716A (zh) * 2023-07-06 2023-08-11 西安高压电器研究院股份有限公司 一种电流传感器振动特性测试方法、相关设备及相关系统
CN116593804A (zh) * 2023-05-17 2023-08-15 国网智能电网研究院有限公司 一种含铁心绕组类设备的结构缺陷检测方法及装置
CN117686950A (zh) * 2023-12-11 2024-03-12 西南交通大学 一种基于雷电冲击频响曲线的变压器绕组故障诊断及定位方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102096033A (zh) * 2010-11-27 2011-06-15 国网电力科学研究院 一种电压互感器突发短路试验装置
CN102998544A (zh) * 2011-09-16 2013-03-27 河南电力试验研究院 变压器短路时绕组工作状态诊断方法
CN103135035A (zh) * 2011-11-25 2013-06-05 江西省电力科学研究院 变压器绕组状态诊断方法
CN103021236B (zh) * 2012-10-29 2015-04-15 上海市电力公司 继电保护自动化仿真系统的高精密电阻发生器及测试方法
CN102997838B (zh) * 2012-11-20 2015-04-15 中国电力科学研究院 一种基于扫频短路特征的变压器绕组变形故障诊断方法
CN103116111B (zh) * 2013-01-21 2014-12-24 上海市电力公司 一种电力变压器绕组工作状态的诊断方法
CN104457971B (zh) * 2014-11-21 2018-01-19 西安交通大学 一种用于电力电容器噪声预测的扫频试验方法
CN105807137A (zh) * 2014-12-29 2016-07-27 国家电网公司 一种接地变压器阻抗确定方法
CN105182116B (zh) * 2015-08-26 2018-08-14 云南电网有限责任公司电力科学研究院 一种基于加权梯度结构相似度的变压器绕组工作状态检测方法
CN105137277B (zh) * 2015-09-11 2018-12-07 西安交通大学 一种变压器突发短路时绕组机械状态的诊断方法
CN105699839B (zh) * 2016-01-28 2018-09-11 云南电网有限责任公司电力科学研究院 一种变压器绕组工作状态检测方法及系统
CN105699838B (zh) * 2016-01-28 2018-07-06 云南电网有限责任公司电力科学研究院 一种变压器绕组状态检测方法及装置
RU2643940C1 (ru) * 2016-12-30 2018-02-06 Общество с ограниченной ответственностью Научно-производственное объединение "Логотех" Способ вибрационного безразборного диагностирования трансформатора
WO2019020185A1 (fr) 2017-07-27 2019-01-31 Vacon Oy Adaptation d'entraînement de moteur
CN108007548B (zh) * 2017-12-01 2020-02-07 华能国际电力股份有限公司 一种通过扫频诊断设备故障的方法
US10495683B2 (en) * 2018-01-18 2019-12-03 Viavi Solutions Deutschland Gmbh Power supply stress testing
CN109489795A (zh) * 2018-12-28 2019-03-19 晋江万芯晨电子科技有限公司 一种自激励的振动传感器
CN110006326A (zh) * 2019-03-11 2019-07-12 国网江苏省电力有限公司淮安供电分公司 一种基于频响分析fra的变压器绕组变形智能检测方法
CN111207862B (zh) * 2020-01-09 2021-07-20 四川省建筑科学研究院有限公司 一种应用于桥梁超载与侧翻预警的高精度压力测量方法
CN111426473B (zh) * 2020-05-19 2022-05-13 国网江苏省电力有限公司电力科学研究院 一种利用扫频交流电流的gis设备缺陷检测系统及方法
CN114492636B (zh) * 2022-01-26 2023-11-24 上海交通大学 一种变压器绕组状态信号的采集系统
CN116626417A (zh) * 2023-05-17 2023-08-22 三科调压电源(深圳)有限公司 调压整流变压器的抗短路能力测试系统及方法
CN116736190A (zh) * 2023-08-15 2023-09-12 国网安徽省电力有限公司电力科学研究院 变压器绕组大电流冲击形变过程模拟平台多维诊断系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE888875A (fr) * 1981-05-20 1981-11-20 Acec Methode de detection d'une tenue dielectrique insuffisante de l'isolation de bobinages
CN1532554A (zh) * 2002-12-10 2004-09-29 ��������ķ������ 变压器绕组故障诊断方法
CN1776441A (zh) * 2005-11-30 2006-05-24 上海市电力公司 利用扫频电源激振检测变压器绕组状态的装置
CN2864705Y (zh) * 2005-11-30 2007-01-31 上海市电力公司 利用扫频电源激振检测变压器绕组状态的装置
CN101261297A (zh) * 2008-04-17 2008-09-10 沈阳工业大学 电力变压器绕组参数在线实时辨识装置及方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1042173C (zh) * 1993-08-20 1999-02-17 北京电力科学研究所 变压器绕组伤变测试系统及带电诊断

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE888875A (fr) * 1981-05-20 1981-11-20 Acec Methode de detection d'une tenue dielectrique insuffisante de l'isolation de bobinages
CN1532554A (zh) * 2002-12-10 2004-09-29 ��������ķ������ 变压器绕组故障诊断方法
CN1776441A (zh) * 2005-11-30 2006-05-24 上海市电力公司 利用扫频电源激振检测变压器绕组状态的装置
CN2864705Y (zh) * 2005-11-30 2007-01-31 上海市电力公司 利用扫频电源激振检测变压器绕组状态的装置
CN101261297A (zh) * 2008-04-17 2008-09-10 沈阳工业大学 电力变压器绕组参数在线实时辨识装置及方法

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102798798A (zh) * 2012-08-07 2012-11-28 浙江大学 一种基于振动分析的电力变压器绕组变形检测方法
CN103149470A (zh) * 2013-01-29 2013-06-12 北京信息科技大学 利用变压器绕组振动识别变压器励磁涌流的方法
CN103149470B (zh) * 2013-01-29 2015-04-22 北京信息科技大学 利用变压器绕组振动识别变压器励磁涌流的方法
CN104764953A (zh) * 2015-03-20 2015-07-08 保定市暄威电力设备科技有限公司 一种变压器绕组测试方法、设备和系统
RU2606701C1 (ru) * 2015-08-19 2017-01-10 Федеральное государственное унитарное предприятие "Российский федеральный ядерный центр - Всероссийский научно-исследовательский институт технической физики имени академика Е.И. Забабахина" Способ диагностики электротехнического устройства с обмотками и магнитопроводом
CN106443316A (zh) * 2016-10-12 2017-02-22 国网辽宁省电力有限公司电力科学研究院 一种电力变压器绕组形变状态多信息检测方法及装置
CN106443316B (zh) * 2016-10-12 2023-06-09 国网辽宁省电力有限公司电力科学研究院 一种电力变压器绕组形变状态多信息检测方法及装置
CN106646096A (zh) * 2016-11-15 2017-05-10 国网四川省电力公司广安供电公司 基于振动分析法的变压器故障分类和识别方法
CN106646096B (zh) * 2016-11-15 2019-07-02 国网四川省电力公司广安供电公司 基于振动分析法的变压器故障分类和识别方法
CN107202634B (zh) * 2017-07-20 2023-05-16 南方电网电力科技股份有限公司 一种油浸式电力变压器动力响应放大方法及装置
CN107202634A (zh) * 2017-07-20 2017-09-26 广东电网有限责任公司电力科学研究院 一种油浸式电力变压器动力响应放大方法及装置
CN108181064A (zh) * 2018-02-02 2018-06-19 武汉地震工程研究院有限公司 一种基于压电阻抗法的管螺纹松动监测方法
CN110554278A (zh) * 2019-07-30 2019-12-10 中国电力科学研究院有限公司 一种基于模态分析对变压器绕组进行检测的方法及系统
CN110554278B (zh) * 2019-07-30 2023-05-19 中国电力科学研究院有限公司 一种基于模态分析对变压器绕组进行检测的方法及系统
WO2021144593A1 (fr) 2020-01-17 2021-07-22 University Of Salford Enterprises Limited Surveillance d'un état vibro-électrique
GB2593573A (en) * 2020-01-17 2021-09-29 Univ Of Salford Enterprises Limited Vibro-electric condition monitoring
GB2593573B (en) * 2020-01-17 2024-02-28 Univ Of Salford Enterprises Limited Vibro-electric condition monitoring
CN111610469A (zh) * 2020-04-21 2020-09-01 中国电力科学研究院有限公司 一种星接变压器绕组变形的三相同步频响检测方法和系统
CN111610469B (zh) * 2020-04-21 2023-05-16 中国电力科学研究院有限公司 一种星接变压器绕组变形的三相同步频响检测方法和系统
CN111597957A (zh) * 2020-05-12 2020-08-28 三峡大学 基于形态学图像处理的变压器绕组故障诊断方法
CN111597957B (zh) * 2020-05-12 2023-08-01 三峡大学 基于形态学图像处理的变压器绕组故障诊断方法
CN111881781A (zh) * 2020-07-09 2020-11-03 三峡大学 基于扫描阻抗法及支持向量机的变压器绕组变形分类方法
CN111881781B (zh) * 2020-07-09 2022-05-06 三峡大学 基于扫描阻抗法及支持向量机的变压器绕组变形分类方法
CN111880123B (zh) * 2020-07-21 2022-10-25 华北电力大学 抗工频磁饱和的变压器绕组频响信号检测方法
CN111880123A (zh) * 2020-07-21 2020-11-03 华北电力大学 抗工频磁饱和的变压器绕组频响信号检测方法
CN112327220B (zh) * 2020-10-30 2024-04-16 国网福建省电力有限公司莆田供电公司 基于多源数据的配电变压器健康在线诊断方法及设备
CN112327220A (zh) * 2020-10-30 2021-02-05 国网福建省电力有限公司莆田供电公司 基于多源数据的配电变压器健康在线诊断方法及设备
CN112986883A (zh) * 2021-02-19 2021-06-18 云南电网有限责任公司昭通供电局 一种变压器绕组变形检测装置有效性测试系统和方法
CN112834955A (zh) * 2021-02-23 2021-05-25 国网山西省电力公司电力科学研究院 干式空心电抗器匝间短路故障模拟装置和故障模拟方法
CN113532535A (zh) * 2021-07-21 2021-10-22 国网江苏省电力有限公司宜兴市供电分公司 一种电力变压器绕组状态判断方法
CN113532535B (zh) * 2021-07-21 2024-03-15 国网江苏省电力有限公司宜兴市供电分公司 一种电力变压器绕组状态判断方法
CN113985227A (zh) * 2021-10-27 2022-01-28 云南电网有限责任公司电力科学研究院 一种配网电磁式电压互感器固有频率试验系统及方法
CN114371426A (zh) * 2022-01-11 2022-04-19 云南电网有限责任公司电力科学研究院 一种基于非负张量分解的变压器绕组机械状态检测方法
CN114859713A (zh) * 2022-04-18 2022-08-05 图湃(北京)医疗科技有限公司 一种oct系统振动抑制方法及装置
CN115343661A (zh) * 2022-07-01 2022-11-15 国网宁夏电力有限公司宁东供电公司 基于扫频阻抗法的变压器绕组检测装置及其检测方法
CN115343661B (zh) * 2022-07-01 2023-07-14 国网宁夏电力有限公司宁东供电公司 基于扫频阻抗法的变压器绕组检测装置及其检测方法
CN116593804A (zh) * 2023-05-17 2023-08-15 国网智能电网研究院有限公司 一种含铁心绕组类设备的结构缺陷检测方法及装置
CN116577716A (zh) * 2023-07-06 2023-08-11 西安高压电器研究院股份有限公司 一种电流传感器振动特性测试方法、相关设备及相关系统
CN116577716B (zh) * 2023-07-06 2023-10-20 西安高压电器研究院股份有限公司 一种电流传感器振动特性测试方法、相关设备及相关系统
CN117686950A (zh) * 2023-12-11 2024-03-12 西南交通大学 一种基于雷电冲击频响曲线的变压器绕组故障诊断及定位方法
CN117686950B (zh) * 2023-12-11 2024-08-06 西南交通大学 一种基于雷电冲击频响曲线的变压器绕组故障诊断及定位方法

Also Published As

Publication number Publication date
CN101738567A (zh) 2010-06-16
CN101738567B (zh) 2012-05-30

Similar Documents

Publication Publication Date Title
WO2010060253A1 (fr) Système et procédé de détection de l'état d'un enroulement de transformateur par utilisation d'une excitation d'une source à fréquence de balayage et à courant constant
WO2011000134A1 (fr) Procédé de détection de l’état de l’enroulement d’un transformateur au moyen d’une forme d’onde de vibrations
CN100373166C (zh) 利用扫频电源激振检测变压器绕组状态的装置
CN102735968B (zh) 基于振动信号频谱分析的gis故障诊断系统及方法
Liu et al. A study of the sweep frequency impedance method and its application in the detection of internal winding short circuit faults in power transformers
CN102735969B (zh) 电力变压器绕组故障模拟试验方法
Yao et al. Transformer winding deformation diagnostic system using online high frequency signal injection by capacitive coupling
CN103969562A (zh) 开关柜局部模拟放电检测装置
CN202735426U (zh) 基于振动信号频谱分析的gis故障诊断系统
CN106019107B (zh) 一种空心电抗器局部放电的检测方法及系统
CN201666935U (zh) 频响法分析绕组变形测试仪
CN105092024A (zh) 一种电力变压器绕组轴向压紧状态在线监测方法及系统
CN109521391A (zh) 发电机电压互感器绕组匝间短路故障的检测装置及方法
CN102680862A (zh) 并联电容器局部放电在线监测装置及方法
CN2864705Y (zh) 利用扫频电源激振检测变压器绕组状态的装置
CN203950012U (zh) 开关柜局部模拟放电检测装置
CN203025253U (zh) 容性设备介质损耗带电测试装置
CN205538062U (zh) 一种基于mems加速度传感器修正的磁通量索力检测装置
CN115656719B (zh) 基于护层电流异动的高压电缆护层缺陷在线诊断方法
CN103308156B (zh) 电力变压器有载调压开关及本体振动信号的分离方法
CN214041567U (zh) 无源滤波补偿装置的电感和容值带电运行下的检测装置
CN211955712U (zh) 一种发电机出口电压互感器绝缘故障综合诊断装置
CN210626597U (zh) 利用容性套管末屏进行同侧高压设备局部放电的检测装置
CN106772190A (zh) 一种vfto条件下电子式电压互感器的测试比对方法及装置
CN210639238U (zh) 一种通过同时测量电压和电流进行高压容性监测的设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09828514

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09828514

Country of ref document: EP

Kind code of ref document: A1