WO2010060040A1 - Imageur 3d pour trou de sonde - Google Patents
Imageur 3d pour trou de sonde Download PDFInfo
- Publication number
- WO2010060040A1 WO2010060040A1 PCT/US2009/065537 US2009065537W WO2010060040A1 WO 2010060040 A1 WO2010060040 A1 WO 2010060040A1 US 2009065537 W US2009065537 W US 2009065537W WO 2010060040 A1 WO2010060040 A1 WO 2010060040A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tool
- borehole
- transmitter
- antenna
- image
- Prior art date
Links
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 42
- 238000003384 imaging method Methods 0.000 claims abstract description 23
- 238000000034 method Methods 0.000 claims abstract description 23
- ZQICGTYUOSVFMN-UHFFFAOYSA-N Iselin Natural products CC1=C(COc2c3ccoc3cc3oc(=O)ccc23)CC(C)(C)CC1 ZQICGTYUOSVFMN-UHFFFAOYSA-N 0.000 claims description 12
- 238000012545 processing Methods 0.000 claims description 11
- 230000004044 response Effects 0.000 claims description 5
- 238000003860 storage Methods 0.000 claims description 5
- 238000005259 measurement Methods 0.000 abstract description 48
- 239000012530 fluid Substances 0.000 abstract description 11
- 239000000463 material Substances 0.000 abstract description 4
- 238000005755 formation reaction Methods 0.000 description 37
- 238000005553 drilling Methods 0.000 description 18
- 230000006870 function Effects 0.000 description 6
- 230000009545 invasion Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 239000011358 absorbing material Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/18—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging
- G01V3/30—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging operating with electromagnetic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/08—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
- G01V3/10—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/18—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging
Definitions
- BACKGROUND Oil field operators seek as much information as possible regarding parameters and conditions encountered downhole. Such information typically includes characteristics of the earth formations traversed by the borehole, and data relating to the size and configuration of the borehole itself.
- the collection of information relating to conditions downhole which commonly is referred to as "logging,” can be performed by several methods including wireline logging, “logging while drilling” (LWD), dnllpipe conveyed logging, and coil tubmg conveyed logging.
- a probe or "sonde” In wireline logging, a probe or "sonde” is lowered into the borehole after some or all of the well has been drilled.
- the sonde hangs at the end of a long cable or “wireline” that provides mechanical support to the sonde and also provides an electrical connection between the sonde and electrical equipment located at the surface of the well.
- various parameters of the earth's formations are measured and correlated with the position of the sonde in the borehole as the sonde is pulled uphole.
- the drilling assembly includes sensing instruments that measure various parameters as the formation is being penetrated. While LWD techniques allow more contemporaneous formation measurements, drilling operations create an environment that is generally hostile to electronic instrumentation and sensor operations
- sensing instruments are mounted on a tubing string, which moves the instrument package through an existing borehole.
- the tubmg string enables logging of horizontal well bores without requiring the sensing instruments to tolerate the hostile drilling environment.
- the measurement data is stored in internal memory and recovered along with the instrument package.
- a few existing logging tools offer measurements as a function of depth and rotational angle, enabling a driller to see, e.g., an image of the borehole wall.
- a very few existing logging tools offer measurements as a function of depth and radial distance from the borehole (e g., induction tools having multiple depths of investigation). While each of these tools is useful to some degree, they leave the driller with an incomplete picture of the situation downhole.
- FIG. 1 shows an illustrative logging while drilling (LWD) environment
- Fig. 2 shows an illustrative wireline logging environment
- Fig. 3 shows an illustrative LWD tool having a first antenna arrangement suitable for 3D imaging
- Fig. 4 shows an illustrative LWD tool having a second antenna arrangement suitable for
- Fig. 5A shows an illustrative broadband horn antenna
- Fig. 5B shows a resistively loaded bowtie antenna
- Fig. 6 is a block diagram of illustrative tool electronics
- Fig. 7 shows illustrative 3D image measurement contributions
- Fig. 8 shows an illustrative transmit pulse
- Fig. 9 shows an illustrative receive signal
- Fig. 10 shows an illustrative 3D image.
- a 3D imaging tool rotates, transmitting pulses that are approximately a nanosecond long and measuring the time it takes to receive reflections of these pulses.
- Multiple receivers are employed to provide accurate triangulation of the reflectors.
- multiple transmitters are employed to obtain compensated measurements, i.e., measurements that compensate for variations in the receiver electronics. Because reflections occur at boundaries between materials having different dielectric constants, the 3D imaging tool can map out such boundaries in the neighborhood of the borehole.
- Fig. 1 shows an illustrative logging-while-drilling ("LWD") environment.
- a drilling platform 2 supports a derrick 4 having a traveling block 6 for raising and lowering a drill string 8.
- a top drive 10 supports and rotates the drill string 8 as it is lowered through the wellhead 12.
- a drill bit 14 is driven by a downhole motor and/or rotation of the drill string 8.
- a pump 18 circulates drilling fluid 20 through a feed pipe 22, through the interior of the drill string 8 to drill bit 14.
- the fluid exits through orifices in the drill bit 14 and flows upward through the annulus around the drill string 8 to transport drill cuttings to the surface, where the fluid is filtered and recirculated.
- the drill bit 14 is just one piece of a bottom-hole assembly that includes one or more drill collars (thick- walled steel pipe) to provide rigidity and add weight to aid the drilling process. Some of these drill collars include built-in logging instruments to gather measurements of various drilling parameters such as position, orientation, weight-on-bit, borehole diameter, etc.
- the tool orientation may be specified in terms of a tool face angle (rotational orientation), an inclination angle (the slope), and compass direction, each of which can be derived from measurements by magnetometers, inclinometers, and/or accelerometers, though other sensor raa KRUEGER
- the tool includes a 3 -axis fluxgate magnetometer and a 3 -axis accelerometer.
- the combination of those two sensor systems enables the measurement of the tool face angle, inclination angle, and compass direction.
- Such orientation measurements can be combined with gyroscopic or mertial measurements to accurately track tool position.
- a LWD 3D imaging tool 24 can be included in the bottom-hole assembly near the bit 14. As the bit extends the borehole through the formations, 3D imaging tool 26 rotates and collects azimuthally-dependent reflection measurements that a downhole controller associates with tool position and orientation measurements to form a 3D image map of the borehole neighborhood. The measurements can be stored in internal memory and/or communicated to the surface.
- a telemetry sub 26 may be included in the bottom-hole assembly to maintain a communications link with the surface. Mud pulse telemetry is one common telemetry technique for transferring tool measurements to surface receivers and receiving commands from the surface, but other telemetry techniques can also be used.
- a data acquisition module 36 receives the uplink signal from the telemetry sub 26.
- Module 36 optionally provides some preliminary processing and digitizes the signal.
- a data processing system 50 (shown in Fig. 1 as a computer) receives a digital telemetry signal, demodulates the signal, and displays the tool data or well logs to a user.
- Software (represented in Fig. 1 as information storage media 52) governs the operation of system 50
- a user interacts with system 50 and its software 52 via one or more input devices 54 and one or more output devices 56.
- the drill string 8 may be removed from the borehole as indicated in Fig. 2
- logging operations can be conducted using a wireline logging tool 34, i.e., a sensing instrument sonde suspended by a cable 42 having conductors for transporting power to the tool and telemetry from the tool to the surface.
- a dielectric logging portion of the logging tool 34 may have sensing pads 36 that slide along the borehole wall as the tool is pulled uphole.
- a logging facility 44 collects measurements from the logging tool 34, and includes computing facilities for processing and storing the measurements gathered by the logging tool.
- Fig. 3 shows a side view of an illustrative LWD tool 302 having a first antenna arrangement suitable for 3D imaging.
- the electronics behind faceplate 304 are coupled to a raa KRUEGER
- an alternative LWD tool 402 has a second antenna arrangement suitable for 3D imaging.
- three receivers 408, 410, and 412 are positioned in a row between two transmitters 404 and 406. This antenna arrangement enables compensated measurements to be made and improves measurement reliability because more information is available that can be used to correct for environmental effects.
- the second antenna arrangement provides a degree of redundancy that enables the tool to continue operating even if one of the receivers and one of the transmitters fail.
- each sensing surface will trace a helical path on the borehole wall.
- Orientation sensors withm the tool can be used to associate the measurements with the sensors' positions on the borehole wall.
- Electronics within the tool can aggregate measurements versus position to form a detailed map (or 3D image) of the borehole wall, which can be stored for later retrieval or compressed and transmitted to the surface for timely use by the drilling team If sufficient telemetry bandwidth is available, surface computing facilities can collect formation property measurements, orientation (azimuth) measurements, and tool position measurements, and process the collected measurements to create and display the map (or 3D image) Though the antenna arrangements of Figs.
- the antennas can be mounted on a rotating head to enable scanning in each direction.
- multiple azimuthally-spaced antennas can be employed to enable scanning in different directions without requiring antenna and/or tool rotation.
- the antennas can take the form of ridged microwave horns such as that shown in Fig. 5A, or the form of resistively loaded bowtie antennas as shown in Fig. 5B. In the isometric scale drawing of Fig.
- the overall dimensions of the antenna horn 702 are about 2.5 cm high, 3.8 cm wide, and 4.0 cm deep, including the rectangular feed chamber 704
- the antenna bandwidth is increased by the presence of two ridges 706 extending from the feed point to the aperture.
- a coaxial cable 708 is used to drive the antenna.
- the mterior of the horn 702 is filled with a dielectric material having a relative permittivity between 1 and 100.
- the bowtie antenna shown in Fig. 5B has two conductive elements 722 mounted on a pad of microwave-absorbing material 724.
- the conductive elements have a generally triangular shape with an opening angle ⁇ of about 60°.
- the combined length of the conductive elements, L is greater than or equal to half of the pulse span in space
- a tool operating with a pulse width of IxIO "9 s in an environment where the speed of light c is 2.8x10 8 m/s would have an overall length L greater than or equal to about 14 cm.
- the microwave-absorbing material provides resistive loading to broaden the bandwidth of the antenna, and it further acts to reduce the influence of the conductive tool body on the performance of the antenna.
- the bowtie antenna structure can in many cases be easier to manufacture and install than the horn antenna.
- Fig. 6 shows a block diagram of the electronics for an illustrative 3D imaging tool.
- the tool electronics include a system clock and control unit 902, multiple time delay lines 904, 906, 908, an electromagnetic pulse transmitter 912, two pulse wave receivers, a multichannel data acquisition unit 916, a data processing and storage unit 918, and the transmitting and receiving antennas discussed previously.
- the clock and control unit 902 determines the sampling rate of the system To do each measurement, unit 902 sends a trigger signal via the programmable delay lines 904-908 to the transmitter 912 and the receivers 910, 914.
- the transmitter 912 Upon the receiving of the trigger signal, the transmitter 912 generates a short electromagnetic pulse wave and emits it into space through the transmitting antenna.
- the trigger signal also causes the receivers start sampling the reflected signals with a dynamic gam, i.e., a gain that increases with time to at least partly compensate for signal attenuation. Since the transmitter and the receivers have different response speeds, the time delay lines are carefully adjusted to guarantee synchronization between the transmitter and the receivers.
- the receivers 910, 914 sample and output analog signals to the data acquisition unit 916, which converts the analog signals into digital signals.
- the processing and storage unit 918 processes the received digital signals to extract measurement information.
- 2008-IP-016303 PCT information can be stored and/or transmitted via the telemetry system to the surface for real-time monitoring.
- Fig. 7 illustrates the operation of a time-domain electromagnetic (EM) tool that provides 3-D imaging of the borehole and the formation behind the borehole wall in the presence of non- conducting oil-based mud.
- the tool includes an array of EM short-pulse transmitters, time- synchronized receivers, and antennas.
- the antennas are mounted on the mandrel for LWD applications.
- the borehole and formation reflections are processed to find out the imaging and the eccentricity of the borehole and the formation near the borehole region, which results in a 3- D imaging of the borehole and the formation near the borehole.
- Fig. 7 shows two receiver antennas placed at different spacings with respect to the transmitter antenna to provide enough measurement equations to solve parameters for multilayer formations, and to enlarge the dynamic range of measurements.
- the drill collar is surrounded by oil-based mud having permittivity ⁇ m and conductivity ⁇ m .
- the standoff distance between the antennas and the borehole wall may vary with the tool-face angle in eccentric boreholes.
- formation 1 having permittivity ⁇ i and conductivity ⁇ i
- second formation 2 having permittivity & 2 and conductivity 0 2
- the signals received by receiver antenna 1 include 3 components: EM waves propagating through the oil-based mud (A), EM waves propagating through formation 1 (B), and the waves reflected from the boundary between formation 1 and formation 2 (C).
- receiver antenna 2 also receives a signal having these three components.
- Fig. 8 shows an approximately Gaussian pulse having a pulse width T of in the range between 0.3-2.0 nanoseconds. (Some tool embodiments may support pulse widths up to 100 ns.)
- Fig. 9 shows the simulated signal that is received in response to the transmission of the pulse in Fig. 8. In this simulation, the transmission of a pulse wave such as that shown in Fig. 8 results in the signal received by either receive antenna having the three wavelets shown in Fig. 9 (other formation configurations can produce a greater or lesser number of wavelets).
- a ⁇ a Q + b Q ⁇ n( ⁇ + ⁇ o) (1)
- ⁇ o an initial phase angle
- ⁇ the tool-face angle
- bo is determined by the eccentricity of the drilling collar. The larger the bo, the more serious the eccentricity is.
- the antenna arrangement of Fig. 4 exploits three receivers and two transmitters to increase the number of measurement equations.
- the two transmitters at the ends of the antenna array take turns transmitting EM pulses, and the signals from each of the three receivers are sampled in response to the transmitted pulses.
- the use of two transmitters at two ends enables the system to determine compensated measurements that cancel system heat noise and other system errors
- the three receivers make measurements more reliable by providing more measurement equations and making it possible to image formations with more layers.
- the antenna arrangement of Fig. 4 also provides redundancy, enabling the system to continue operating even if one of the transmitters and one of the receivers break down.
- the disclosed tools offer a power savings in that the high- power transmit signals have extremely short durations and a low duty cycle, creating a low average power consumption.
- the sensors can be mounted on a rotating head to provide full azimuthal scanning at each depth in the well.
- sensors can be mounted at different azimuthal orientations on the tool to provide "azimuthally sampled" coverage.
- the data acquired by the 3D imaging tool can be presented in a number of forms, including a volumetric solid in cylindrical coordinates as shown in Fig. 10.
- the volume around the borehole is divided into a cylindrical grid 1002, with each of the cells in the grid having associated formation properties, which can be shown by color, transparency, texture, and/or raa KRUEGER
- the data acquisition system e.g., computer 50 of Fig 1
- the user can interact with it to gam a better understanding of the structures shown, e.g , by viewing different cross-sections, different orientations, adjusting the colors, etc.
- invasion depth and invasion rate i.e , the distance that drilling fluid has penetrated into the formation.
- Asymmetries in the invasion rates may be indicative of stress orientations and fracture orientations, and the invasion rate can provide a measure of formation fluid mobility.
- Another application example is the measurement of borehole caliper, shape, texture. Travel time inversion, combined with the measurement of drilling fluid properties with a so-called "mud cell”, enables accurate determination of the borehole geometry and the eccentermg of the tool. From the borehole geometry measurements, an accurate 3D model of the borehole can be constructed and displayed.
- the tool can detect formation boundary distances and measure the variation of these distances as a function of tool face angle and tool position within the borehole. These measurements enable straightforward determination of the relative dip.
- the antennas are enlarged and spaced further apart to support the use of low frequency electromagnetic signal pulses. Such low frequency pulses enable deeper signal penetrations into the formation. Deeper investigation depths may be possible, possibly even ahead of the bit.
- Other applications for such tool variations include mapping of natural fractures in the formation and monitoring the growth of hydraulic fractures.
- the processing of reflected signals need not be limited to simple time-of-flight measurements.
- the tool can analyze reflection amplitudes, shapes, and waveform coda (signals raa KRUEGER
- 2008-IP-016303 PCT indicative of multiple reflections or multiple scattering of the transmitted pulse) to determine formation properties, formation structural information, formation fluid properties, borehole fluid properties, borehole geometry, invasion zone geometry, and other petrophysical information that can be displayed in a 3D image either separately or combined.
Landscapes
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- Remote Sensing (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Geophysics And Detection Of Objects (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/061,759 US9411068B2 (en) | 2008-11-24 | 2009-11-23 | 3D borehole imager |
GB1104663.8A GB2475456B (en) | 2008-11-24 | 2009-11-23 | A 3d borehole imager |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11743308P | 2008-11-24 | 2008-11-24 | |
US61/117,433 | 2008-11-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010060040A1 true WO2010060040A1 (fr) | 2010-05-27 |
Family
ID=42198432
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2009/053354 WO2010059275A1 (fr) | 2008-11-24 | 2009-08-11 | Outil de mesure diélectrique à haute fréquence |
PCT/US2009/065537 WO2010060040A1 (fr) | 2008-11-24 | 2009-11-23 | Imageur 3d pour trou de sonde |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2009/053354 WO2010059275A1 (fr) | 2008-11-24 | 2009-08-11 | Outil de mesure diélectrique à haute fréquence |
Country Status (6)
Country | Link |
---|---|
US (2) | US8957683B2 (fr) |
EP (1) | EP2361394B1 (fr) |
AU (1) | AU2009318042B2 (fr) |
GB (1) | GB2475456B (fr) |
MY (1) | MY160258A (fr) |
WO (2) | WO2010059275A1 (fr) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103477247A (zh) * | 2011-04-18 | 2013-12-25 | 哈利伯顿能源服务公司 | 多分量钻井雷达系统和方法 |
US8957683B2 (en) | 2008-11-24 | 2015-02-17 | Halliburton Energy Services, Inc. | High frequency dielectric measurement tool |
US9500762B2 (en) | 2011-09-19 | 2016-11-22 | Precision Energy Services, Inc. | Borehole resistivity imager using discrete energy pulsing |
US9638022B2 (en) | 2007-03-27 | 2017-05-02 | Halliburton Energy Services, Inc. | Systems and methods for displaying logging data |
US9909414B2 (en) | 2009-08-20 | 2018-03-06 | Halliburton Energy Services, Inc. | Fracture characterization using directional electromagnetic resistivity measurements |
Families Citing this family (65)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7659722B2 (en) * | 1999-01-28 | 2010-02-09 | Halliburton Energy Services, Inc. | Method for azimuthal resistivity measurement and bed boundary detection |
CA2655200C (fr) | 2006-07-11 | 2013-12-03 | Halliburton Energy Services, Inc. | Ensemble d'outil modulaire de pilotage geologique de puits |
WO2008021868A2 (fr) | 2006-08-08 | 2008-02-21 | Halliburton Energy Services, Inc. | Diagraphie de résistivité à artéfacts de pendage réduits |
CN101460698B (zh) | 2006-12-15 | 2013-01-02 | 哈里伯顿能源服务公司 | 具有旋转天线结构的天线耦合元件测量工具 |
GB2484432B (en) | 2008-01-18 | 2012-08-29 | Halliburton Energy Serv Inc | EM-guided drilling relative to an existing borehole |
US8347985B2 (en) * | 2008-04-25 | 2013-01-08 | Halliburton Energy Services, Inc. | Mulitmodal geosteering systems and methods |
US9091151B2 (en) | 2009-11-19 | 2015-07-28 | Halliburton Energy Services, Inc. | Downhole optical radiometry tool |
CA2756285C (fr) | 2009-12-23 | 2014-01-07 | Halliburton Energy Services, Inc. | Outil d'analyse de fond par interferometrie |
AU2011232848B2 (en) | 2010-03-31 | 2014-07-31 | Halliburton Energy Services, Inc. | Multi-step borehole correction scheme for multi-component induction tools |
GB2493652B (en) | 2010-06-01 | 2018-07-04 | Halliburton Energy Services Inc | Spectroscopic nanosensor logging systems and methods |
US8749243B2 (en) | 2010-06-22 | 2014-06-10 | Halliburton Energy Services, Inc. | Real time determination of casing location and distance with tilted antenna measurement |
US8917094B2 (en) | 2010-06-22 | 2014-12-23 | Halliburton Energy Services, Inc. | Method and apparatus for detecting deep conductive pipe |
US9115569B2 (en) | 2010-06-22 | 2015-08-25 | Halliburton Energy Services, Inc. | Real-time casing detection using tilted and crossed antenna measurement |
CA2800148C (fr) | 2010-06-29 | 2015-06-23 | Halliburton Energy Services, Inc. | Procede et appareil pour detecter des anomalies souterraines allongees |
AU2010357606B2 (en) | 2010-07-16 | 2014-03-13 | Halliburton Energy Services, Inc. | Efficient inversion systems and methods for directionally-sensitive resistivity logging tools |
US8861307B2 (en) * | 2011-09-14 | 2014-10-14 | Schlumberger Technology Corporation | Acoustic logging while drilling tool with active control of source orientation |
BR112014007287A2 (pt) * | 2011-09-27 | 2017-04-18 | Halliburton Energy Services Inc | método e sistema para realizar uma operação de perfuração, e, dispositivo de armazenamento legível por máquina |
US9243488B2 (en) * | 2011-10-26 | 2016-01-26 | Precision Energy Services, Inc. | Sensor mounting assembly for drill collar stabilizer |
BR112014009638A2 (pt) | 2011-10-31 | 2017-04-18 | Halliburton Energy Services Inc | método de perfilagem e sistema de perfilagem |
US9261620B2 (en) * | 2011-11-09 | 2016-02-16 | Micah Thomas Mangione | Apparatus, method and system for mapping fracture features in hydraulically fractured strata using functional proppant properties |
BR112014030170A2 (pt) | 2012-06-25 | 2017-06-27 | Halliburton Energy Services Inc | método e sistema de perfilagem eletromagnética |
BR112014031807A2 (pt) * | 2012-06-29 | 2017-06-27 | Halliburton Energy Services Inc | ferramenta de formação de imagem de furo abaixo, e, método para formação de imagem |
AU2012383489B2 (en) | 2012-06-29 | 2016-03-03 | Halliburton Energy Services, Inc. | Multi - axial induction borehole imager |
US9091782B2 (en) | 2012-12-13 | 2015-07-28 | Halliburton Energy Services, Inc. | Modular resistivity logging tool systems and methods employing an adapter in an isolation joint configuration |
WO2014098919A1 (fr) | 2012-12-23 | 2014-06-26 | Halliburton Energy Services, Inc. | Systèmes et procédés d'évaluation de formation profonde |
US9720125B2 (en) * | 2013-02-14 | 2017-08-01 | Schlumberger Technology Corporation | Subterranean formation oil mobility quicklook |
US20140266214A1 (en) * | 2013-03-15 | 2014-09-18 | Chevron U.S.A. Inc. | Method and system for monitoring subsurface injection processes using a borehole electromagnetic source |
US9650888B2 (en) * | 2013-10-03 | 2017-05-16 | Halliburton Energy Services, Inc. | Multi-mode measurements with a downhole tool using conformable sensors |
CN103643946A (zh) * | 2013-12-16 | 2014-03-19 | 西南石油大学 | 一种随钻双电参数测井仪器 |
MX2016006441A (es) | 2013-12-27 | 2016-07-19 | Halliburton Energy Services Inc | Generador de imagen de pozos dielectrico de multiples frecuencias. |
WO2015126416A1 (fr) * | 2014-02-21 | 2015-08-27 | Halliburton Energy Services, Inc. | Détermination de la salinité de l'eau et de la porosité remplie d'eau d'une formation |
US9989666B2 (en) * | 2014-04-02 | 2018-06-05 | Baker Hughes, A Ge Company, Llc | Imaging of earth formation with high frequency sensor |
EP3100075A4 (fr) * | 2014-04-08 | 2017-10-18 | Halliburton Energy Services, Inc. | Outil d'imagerie de paroi de trou de forage ayant une face de contact avec la paroi rainurée |
US9556726B2 (en) | 2014-05-16 | 2017-01-31 | Baker Hughes Incorporated | Use of a fractal antenna in array dielectric logging |
US10436931B2 (en) | 2014-11-05 | 2019-10-08 | Halliburton Energy Services, Inc. | Electromagnetic sensor for a downhole dielectric tool |
GB2548745B (en) * | 2015-01-23 | 2019-05-08 | Halliburton Energy Services Inc | Downhole electrode apparatus, systems, and methods |
US11530605B2 (en) * | 2015-03-13 | 2022-12-20 | The Charles Machine Works, Inc. | Horizontal directional drilling crossbore detector |
US10725196B2 (en) * | 2015-04-29 | 2020-07-28 | Halliburton Energy Services, Inc. | Bi-mode high frequency dielectric tool |
US10061051B2 (en) * | 2015-10-12 | 2018-08-28 | Baker Hughes, A Ge Company, Llc | Whole-space inversion using phase correction method for multi-frequency dielectric array logging tool |
US10190411B2 (en) * | 2015-11-12 | 2019-01-29 | Halliburton Energy Services, Inc. | Downhole fluid characterization methods and systems using multi-electrode configurations |
US10948621B2 (en) | 2015-11-13 | 2021-03-16 | Halliburton Energy Services, Inc. | Microstrip antenna-based logging tool and method |
WO2017082931A1 (fr) | 2015-11-13 | 2017-05-18 | Halliburton Energy Services, Inc. | Outil de diagraphie en fond de trou utilisant des antennes à cavité résonante avec adaptation d'impédance en temps réel |
WO2017086951A1 (fr) | 2015-11-18 | 2017-05-26 | Halliburton Energy Services, Inc. | Appareil de diagraphie diélectrique comprenant des métamatériaux à haute impédance |
WO2017132098A1 (fr) * | 2016-01-25 | 2017-08-03 | Schlumberger Technology Corporation | Forage à l'aide d'informations caractérisant des hétérogénéités latérales sur la base de mesures de résistivité directionnelle profonde |
US10935687B2 (en) * | 2016-02-23 | 2021-03-02 | Halliburton Energy Services, Inc. | Formation imaging with electronic beam steering |
US10962672B2 (en) | 2016-04-22 | 2021-03-30 | Halliburton Energy Services, Inc. | Dual mode electromagnetic imaging of a borehole |
US10190412B2 (en) | 2016-05-11 | 2019-01-29 | Halliburton Energy Services, Inc. | Determining subterranean-formation resistivity using an electromagnetic telemetry system |
US10605073B2 (en) * | 2016-09-15 | 2020-03-31 | Shanjun Li | System and methodology of look ahead and look around LWD tool |
WO2018125214A1 (fr) * | 2016-12-30 | 2018-07-05 | Wilson Glenn A | Diagraphie diélectrique à large bande dans le domaine temporel |
US10317558B2 (en) | 2017-03-14 | 2019-06-11 | Saudi Arabian Oil Company | EMU impulse antenna |
US10330815B2 (en) | 2017-03-14 | 2019-06-25 | Saudi Arabian Oil Company | EMU impulse antenna for low frequency radio waves using giant dielectric and ferrite materials |
US10416335B2 (en) | 2017-03-14 | 2019-09-17 | Saudi Arabian Oil Company | EMU impulse antenna with controlled directionality and improved impedance matching |
US11442194B2 (en) | 2017-04-14 | 2022-09-13 | The Charles Machine Works, Inc. | System for locating a utility with a downhole beacon |
EA036852B1 (ru) * | 2017-04-26 | 2020-12-28 | Общество С Ограниченной Ответственностью "Русские Универсальные Системы" | Способ изготовления электромагнитного 3d-сканера и электромагнитный 3d-сканер, выполненный по этому способу |
WO2019078811A1 (fr) * | 2017-10-16 | 2019-04-25 | Halliburton Energy Services, Inc. | Outil diélectrique dipolaine magnétique radial |
US10365393B2 (en) * | 2017-11-07 | 2019-07-30 | Saudi Arabian Oil Company | Giant dielectric nanoparticles as high contrast agents for electromagnetic (EM) fluids imaging in an oil reservoir |
GB2569583B (en) * | 2017-12-20 | 2020-05-06 | Reeves Wireline Tech Ltd | Apparatuses and methods for determining properties of subterranean layers |
US10564310B2 (en) | 2018-02-27 | 2020-02-18 | Baker Hughes, A Ge Company, Llc | Dielectric logging with broadband excitation |
US11332991B2 (en) | 2019-07-17 | 2022-05-17 | Saudi Arabian Oil Company | Targeted downhole delivery with container |
RU2724177C1 (ru) * | 2019-12-30 | 2020-06-22 | Общество С Ограниченной Ответственностью "Радионда" | Способ диэлектрического каротажа околоскважинного пространства |
CA3175094A1 (fr) | 2020-03-13 | 2021-09-16 | Geonomic Technologies Inc. | Procede et appareil de mesure d'un puits de forage |
US11879328B2 (en) | 2021-08-05 | 2024-01-23 | Saudi Arabian Oil Company | Semi-permanent downhole sensor tool |
US11914098B2 (en) | 2022-05-04 | 2024-02-27 | Halliburton Energy Services, Inc. | Multi-frequency borehole imagers utilizing resonator antennas |
US11867049B1 (en) | 2022-07-19 | 2024-01-09 | Saudi Arabian Oil Company | Downhole logging tool |
US11913329B1 (en) | 2022-09-21 | 2024-02-27 | Saudi Arabian Oil Company | Untethered logging devices and related methods of logging a wellbore |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030223620A1 (en) * | 1999-12-22 | 2003-12-04 | Schlumberger Technology Corporation | Methods of producing images of underground formations surrounding a borehole |
US6856132B2 (en) * | 2002-11-08 | 2005-02-15 | Shell Oil Company | Method and apparatus for subterranean formation flow imaging |
Family Cites Families (173)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1397251A (fr) | 1964-02-06 | 1965-04-30 | Schlumberger Prospection | Perfectionnements aux appareils de mesure de conductivité électrique |
GB1111629A (en) | 1966-09-13 | 1968-05-01 | Chevron Res | Method for mapping salt domes at depth |
US3412321A (en) * | 1966-11-14 | 1968-11-19 | Chevron Res | Oil-water contact location with frequency modulated electromagnetic energy |
US3412323A (en) * | 1966-11-14 | 1968-11-19 | Chevron Res | Subsurface electromagnetic irradiation ranging method for locating fractures within formations |
GB1363079A (en) | 1971-10-29 | 1974-08-14 | Marconi Co Ltd | Directional aerial systems and apparatus |
US3845299A (en) * | 1972-11-29 | 1974-10-29 | Mobil Oil Corp | Method for uranium exploration employing radioactive reconnaissance and assay logging |
US3944910A (en) | 1973-08-23 | 1976-03-16 | Schlumberger Technology Corporation | Method and apparatus utilizing microwave electromagnetic energy for investigating earth formations |
US3849721A (en) | 1973-08-23 | 1974-11-19 | Schlumberger Technology Corp | Microwave logging apparatus having dual processing channels |
US3914603A (en) * | 1973-12-17 | 1975-10-21 | Texaco Inc | Neutron lifetime well logging methods and apparatus |
US4104596A (en) | 1976-12-10 | 1978-08-01 | Geosource Inc. | Instantaneous floating point amplifier |
US4258321A (en) * | 1978-03-09 | 1981-03-24 | Neale Jr Dory J | Radio geophysical surveying method and apparatus |
DE2833598C3 (de) | 1978-07-31 | 1981-02-12 | Prakla-Seismos Gmbh, 3000 Hannover | Verfahren zur Kontrolle untertägiger Verbrennungs- und Vergasungsvorgänge |
US4278941A (en) | 1978-10-30 | 1981-07-14 | Shell Oil Company | High frequency induction log for determining resistivity and dielectric constant of the earth |
US4297699A (en) * | 1979-10-24 | 1981-10-27 | Ensco, Inc. | Radar drill guidance system |
US4430653A (en) * | 1979-11-02 | 1984-02-07 | Conoco Inc. | Earth probing radar system |
US4365322A (en) | 1980-04-18 | 1982-12-21 | Bernard Widrow | Apparatus and method for determining the position of a gas-saturated porous rock in the vicinity of a deep borehole in the earth |
FR2498337A1 (fr) * | 1981-01-20 | 1982-07-23 | Aerospatiale | Procede d'illumination du sol et de calcul de la constante dielectrique et de la conductivite de celui-ci au moyen d'une impulsion electromagnetique, et simulateur pour la mise en oeuvre de ce procede |
US4504833A (en) | 1981-12-09 | 1985-03-12 | Xadar Corporation | Synthetic pulse radar system and method |
US4482634A (en) * | 1981-12-31 | 1984-11-13 | Texaco Inc. | Chemical flood testing method |
CH653383A5 (de) * | 1982-03-10 | 1985-12-31 | Heberlein & Co Ag | Vorrichtung zur texturierung wenigstens eines aus einer mehrzahl von filamenten bestehenden endlosgarns. |
DE3308559C2 (de) * | 1983-03-08 | 1985-03-07 | Prakla-Seismos Gmbh, 3000 Hannover | Bohrloch-Meßeinrichtung |
CH665682A5 (de) | 1984-03-19 | 1988-05-31 | Prakla Seismos Gmbh | Bohrloch-messeinrichtung. |
US4626773A (en) * | 1984-10-26 | 1986-12-02 | Exxon Production Research Co. | Method and means for determining rock properties using time-domain dielectric spectroscopy |
US4689569A (en) * | 1984-12-17 | 1987-08-25 | Southwest Research Institute | Directional antenna system for use in a borehole incorporating antenna dipole elements |
US4704581A (en) * | 1985-12-28 | 1987-11-03 | Schlumberger Technology Corp. | Electromagnetic logging apparatus using vertical magnetic dipole slot antennas |
US4721853A (en) * | 1986-01-31 | 1988-01-26 | Schlumberger Technology Corporation | Thermal decay time logging method and apparatus |
US4825421A (en) | 1986-05-19 | 1989-04-25 | Jeter John D | Signal pressure pulse generator |
US4730161A (en) | 1986-09-22 | 1988-03-08 | Texaco Inc. | Dual frequency well logging system for determining the water resistivity and water saturation of an earth formation |
US4814768A (en) * | 1987-09-28 | 1989-03-21 | The United States Of America As Represented By The United States Department Of Energy | Downhole pulse radar |
US4968940A (en) | 1987-10-30 | 1990-11-06 | Schlumberger Technology Corporation | Well logging apparatus and method using two spaced apart transmitters with two receivers located between the transmitters |
US4829488A (en) | 1988-03-22 | 1989-05-09 | Atlantic Richfield Company | Drive mechanism for borehole televiewer |
US4909336A (en) | 1988-09-29 | 1990-03-20 | Applied Navigation Devices | Drill steering in high magnetic interference areas |
US5155198A (en) | 1989-04-24 | 1992-10-13 | Cape Cod Research | Primer composition containing epoxy phosphate esters, silane coupling agent, reactive end group-terminated polydiorganosiloxane, organometallic catalysts and amine hardening agents |
US5115198A (en) | 1989-09-14 | 1992-05-19 | Halliburton Logging Services, Inc. | Pulsed electromagnetic dipmeter method and apparatus employing coils with finite spacing |
US5132623A (en) * | 1990-11-20 | 1992-07-21 | Chevron Research And Technology Company | Method and apparatus for broadband measurement of dielectric properties |
US5133418A (en) * | 1991-01-28 | 1992-07-28 | Lag Steering Systems | Directional drilling system with eccentric mounted motor and biaxial sensor and method |
US5377105A (en) * | 1991-04-12 | 1994-12-27 | Halliburton Logging Services | Enhanced vertical resolution processing of dual-spaced neutron and density tools |
US5113192A (en) | 1991-05-03 | 1992-05-12 | Conoco Inc. | Method for using seismic data acquisition technology for acquisition of ground penetrating radar data |
US5210495A (en) | 1991-05-28 | 1993-05-11 | Schlumberger Technology Corp. | Electromagnetic logging method and apparatus with scanned magnetic dipole direction |
US5248975A (en) | 1991-06-26 | 1993-09-28 | Geophysical Survey Systems, Inc. | Ground probing radar with multiple antenna capability |
CA2073623A1 (fr) | 1991-07-12 | 1993-01-13 | Michael J. Manning | Progres dans le domaine de la diagraphie dielectrique a haute frequence |
US5159978A (en) * | 1991-08-13 | 1992-11-03 | Halliburton Logging Services, Inc. | Connecting apparatus for logging tools including electrical feedthrough and isolation system with bridle assembly |
US5345179A (en) * | 1992-03-09 | 1994-09-06 | Schlumberger Technology Corporation | Logging earth formations with electromagnetic energy to determine conductivity and permittivity |
US5434507A (en) * | 1992-05-27 | 1995-07-18 | Schlumberger Technology Corporation | Method and apparatus for electromagnetic logging with two dimensional antenna array |
US5318123A (en) | 1992-06-11 | 1994-06-07 | Halliburton Company | Method for optimizing hydraulic fracturing through control of perforation orientation |
US5389881A (en) | 1992-07-22 | 1995-02-14 | Baroid Technology, Inc. | Well logging method and apparatus involving electromagnetic wave propagation providing variable depth of investigation by combining phase angle and amplitude attenuation |
JP4001392B2 (ja) | 1992-10-02 | 2007-10-31 | 富士ゼロックス株式会社 | 構造化文書処理装置 |
US5357253A (en) | 1993-04-02 | 1994-10-18 | Earth Sounding International | System and method for earth probing with deep subsurface penetration using low frequency electromagnetic signals |
US5420589A (en) * | 1993-06-07 | 1995-05-30 | Wells; C. T. | System for evaluating the inner medium characteristics of non-metallic materials |
US5720355A (en) * | 1993-07-20 | 1998-02-24 | Baroid Technology, Inc. | Drill bit instrumentation and method for controlling drilling or core-drilling |
US5377104A (en) | 1993-07-23 | 1994-12-27 | Teledyne Industries, Inc. | Passive seismic imaging for real time management and verification of hydraulic fracturing and of geologic containment of hazardous wastes injected into hydraulic fractures |
JP3306682B2 (ja) | 1993-08-18 | 2002-07-24 | 日本テキサス・インスツルメンツ株式会社 | 駆動回路 |
US5400030A (en) | 1994-02-09 | 1995-03-21 | Exxon Production Research Company | Detection and mapping of hydrocarbon reservoirs with radar waves |
US5469062A (en) | 1994-03-11 | 1995-11-21 | Baker Hughes, Inc. | Multiple depths and frequencies for simultaneous inversion of electromagnetic borehole measurements |
US5811973A (en) | 1994-03-14 | 1998-09-22 | Baker Hughes Incorporated | Determination of dielectric properties with propagation resistivity tools using both real and imaginary components of measurements |
US5892361A (en) | 1994-03-14 | 1999-04-06 | Baker Hughes Incorporated | Use of raw amplitude and phase in propagation resistivity measurements to measure borehole environmental parameters |
GB2288027B (en) * | 1994-03-31 | 1998-02-04 | Western Atlas Int Inc | Well logging tool |
US5747750A (en) | 1994-08-31 | 1998-05-05 | Exxon Production Research Company | Single well system for mapping sources of acoustic energy |
US5917160A (en) | 1994-08-31 | 1999-06-29 | Exxon Production Research Company | Single well system for mapping sources of acoustic energy |
US5757191A (en) * | 1994-12-09 | 1998-05-26 | Halliburton Energy Services, Inc. | Virtual induction sonde for steering transmitted and received signals |
US5552786A (en) * | 1994-12-09 | 1996-09-03 | Schlumberger Technology Corporation | Method and apparatus for logging underground formations using radar |
US5530359A (en) * | 1995-02-03 | 1996-06-25 | Schlumberger Technology Corporation | Borehole logging tools and methods using reflected electromagnetic signals |
US5503225A (en) | 1995-04-21 | 1996-04-02 | Atlantic Richfield Company | System and method for monitoring the location of fractures in earth formations |
US6512371B2 (en) * | 1995-10-12 | 2003-01-28 | Halliburton Energy Services, Inc. | System and method for determining oil, water and gas saturations for low-field gradient NMR logging tools |
US6956371B2 (en) * | 1995-10-12 | 2005-10-18 | Halliburton Energy Services, Inc. | Method and apparatus for detecting diffusion sensitive phases with estimation of residual error in NMR logs |
US5720354A (en) * | 1996-01-11 | 1998-02-24 | Vermeer Manufacturing Company | Trenchless underground boring system with boring tool location |
JP2001526771A (ja) * | 1996-04-16 | 2001-12-18 | エム. スンリン,ウィリアム | 材料透過画像形成レーダ |
US6100839A (en) * | 1996-04-16 | 2000-08-08 | Zircon Corporation | Enhanced impulse radar system |
US5765642A (en) | 1996-12-23 | 1998-06-16 | Halliburton Energy Services, Inc. | Subterranean formation fracturing methods |
US6766854B2 (en) * | 1997-06-02 | 2004-07-27 | Schlumberger Technology Corporation | Well-bore sensor apparatus and method |
US6173793B1 (en) * | 1998-12-18 | 2001-01-16 | Baker Hughes Incorporated | Measurement-while-drilling devices with pad mounted sensors |
US6179066B1 (en) * | 1997-12-18 | 2001-01-30 | Baker Hughes Incorporated | Stabilization system for measurement-while-drilling sensors |
JP3328593B2 (ja) * | 1998-02-25 | 2002-09-24 | 株式会社鷹山 | マッチドフィルタおよび信号受信装置 |
US6078867A (en) * | 1998-04-08 | 2000-06-20 | Schlumberger Technology Corporation | Method and apparatus for generation of 3D graphical borehole analysis |
US6191586B1 (en) | 1998-06-10 | 2001-02-20 | Dresser Industries, Inc. | Method and apparatus for azimuthal electromagnetic well logging using shielded antennas |
NO310384B1 (no) | 1998-06-18 | 2001-06-25 | Norges Geotekniske Inst | Fremgangsmåte for detektering av reflektorer i en produksjonsbrönn ved hjelp av en radarlignende sende- ogmottakerinnretning |
NO316786B1 (no) | 1998-06-18 | 2004-05-10 | Statoil Asa | Georadar med permanent, fikserte sender- og mottakerantenner i en produksjonsbronn for fjerndetektering av elektriske egenskaper |
US6191588B1 (en) | 1998-07-15 | 2001-02-20 | Schlumberger Technology Corporation | Methods and apparatus for imaging earth formation with a current source, a current drain, and a matrix of voltage electrodes therebetween |
AUPP620398A0 (en) | 1998-09-28 | 1998-10-22 | Cutting Edge Technology Pty Ltd | A mining machine |
US6216783B1 (en) | 1998-11-17 | 2001-04-17 | Golder Sierra, Llc | Azimuth control of hydraulic vertical fractures in unconsolidated and weakly cemented soils and sediments |
US7659722B2 (en) * | 1999-01-28 | 2010-02-09 | Halliburton Energy Services, Inc. | Method for azimuthal resistivity measurement and bed boundary detection |
US6163155A (en) | 1999-01-28 | 2000-12-19 | Dresser Industries, Inc. | Electromagnetic wave resistivity tool having a tilted antenna for determining the horizontal and vertical resistivities and relative dip angle in anisotropic earth formations |
US6476609B1 (en) | 1999-01-28 | 2002-11-05 | Dresser Industries, Inc. | Electromagnetic wave resistivity tool having a tilted antenna for geosteering within a desired payzone |
US6181138B1 (en) * | 1999-02-22 | 2001-01-30 | Halliburton Energy Services, Inc. | Directional resistivity measurements for azimuthal proximity detection of bed boundaries |
US6460936B1 (en) | 1999-06-19 | 2002-10-08 | Grigori Y. Abramov | Borehole mining tool |
US6508307B1 (en) | 1999-07-22 | 2003-01-21 | Schlumberger Technology Corporation | Techniques for hydraulic fracturing combining oriented perforating and low viscosity fluids |
US6218842B1 (en) * | 1999-08-04 | 2001-04-17 | Halliburton Energy Services, Inc. | Multi-frequency electromagnetic wave resistivity tool with improved calibration measurement |
US6496137B1 (en) | 1999-09-19 | 2002-12-17 | Mala Geoscience Ab | Ground penetrating radar array and timing circuit |
US6315062B1 (en) * | 1999-09-24 | 2001-11-13 | Vermeer Manufacturing Company | Horizontal directional drilling machine employing inertial navigation control system and method |
US6308787B1 (en) | 1999-09-24 | 2001-10-30 | Vermeer Manufacturing Company | Real-time control system and method for controlling an underground boring machine |
FR2802303B1 (fr) * | 1999-12-14 | 2002-03-08 | Centre Nat Rech Scient | Procede d'obtention d'une imagerie du sous-sol utilisant un radar a penetration de sol |
WO2001048353A1 (fr) | 1999-12-27 | 2001-07-05 | Ball Corporation | Foreur omnidirectionnel autonome |
US6353321B1 (en) * | 2000-01-27 | 2002-03-05 | Halliburton Energy Services, Inc. | Uncompensated electromagnetic wave resistivity tool for bed boundary detection and invasion profiling |
US6359438B1 (en) | 2000-01-28 | 2002-03-19 | Halliburton Energy Services, Inc. | Multi-depth focused resistivity imaging tool for logging while drilling applications |
US6491115B2 (en) | 2000-03-15 | 2002-12-10 | Vermeer Manufacturing Company | Directional drilling machine and method of directional drilling |
US7242194B2 (en) * | 2000-04-07 | 2007-07-10 | Schlumberger Technology Corporation | Formation imaging while drilling in non-conductive fluids |
US6724191B1 (en) * | 2000-05-09 | 2004-04-20 | Admiralty Corporation | Systems and methods useful for detecting presence and/or location of various materials |
AU7113801A (en) * | 2000-07-07 | 2002-01-21 | T And A Radar B V | 3d borehole radar antenna and algorithm, method and apparatus for subsurface surveys |
US6672409B1 (en) | 2000-10-24 | 2004-01-06 | The Charles Machine Works, Inc. | Downhole generator for horizontal directional drilling |
US6538447B2 (en) | 2000-12-13 | 2003-03-25 | Halliburton Energy Services, Inc. | Compensated multi-mode elctromagnetic wave resistivity tool |
US6651739B2 (en) | 2001-02-21 | 2003-11-25 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Medium frequency pseudo noise geological radar |
US6901122B2 (en) * | 2001-03-27 | 2005-05-31 | Motorola | Method and apparatus for restoring a soft decision component of a signal |
US6633252B2 (en) | 2001-03-28 | 2003-10-14 | Larry G. Stolarczyk | Radar plow drillstring steering |
US6778127B2 (en) | 2001-03-28 | 2004-08-17 | Larry G. Stolarczyk | Drillstring radar |
US6958610B2 (en) * | 2001-06-03 | 2005-10-25 | Halliburton Energy Services, Inc. | Method and apparatus measuring electrical anisotropy in formations surrounding a wellbore |
US7227363B2 (en) * | 2001-06-03 | 2007-06-05 | Gianzero Stanley C | Determining formation anisotropy based in part on lateral current flow measurements |
US6839000B2 (en) * | 2001-10-29 | 2005-01-04 | Baker Hughes Incorporated | Integrated, single collar measurement while drilling tool |
WO2003042719A1 (fr) | 2001-11-13 | 2003-05-22 | Weatherford/Lamb, Inc. | Systeme et procede de compensation de puits pour appareil de diagraphie de resistivite |
US6925031B2 (en) | 2001-12-13 | 2005-08-02 | Baker Hughes Incorporated | Method of using electrical and acoustic anisotropy measurements for fracture identification |
US6646441B2 (en) * | 2002-01-19 | 2003-11-11 | Precision Drilling Technology Services Group Inc. | Well logging system for determining resistivity using multiple transmitter-receiver groups operating at three frequencies |
US6819110B2 (en) * | 2002-03-26 | 2004-11-16 | Schlumberger Technology Corporation | Electromagnetic resistivity logging instrument with transverse magnetic dipole component antennas providing axially extended response |
AU2003226728A1 (en) | 2002-03-27 | 2003-10-08 | Tracto- Technik Gmbh | Drill head and method for controlled horizontal drilling |
US20040019427A1 (en) | 2002-07-29 | 2004-01-29 | Halliburton Energy Services, Inc. | Method for determining parameters of earth formations surrounding a well bore using neural network inversion |
US6898967B2 (en) * | 2002-09-09 | 2005-05-31 | Baker Hughes Incorporated | Azimuthal resistivity using a non-directional device |
US6885943B2 (en) | 2002-09-20 | 2005-04-26 | Halliburton Energy Services, Inc. | Simultaneous resolution enhancement and dip correction of resistivity logs through nonlinear iterative deconvolution |
US7098858B2 (en) | 2002-09-25 | 2006-08-29 | Halliburton Energy Services, Inc. | Ruggedized multi-layer printed circuit board based downhole antenna |
US7345487B2 (en) * | 2002-09-25 | 2008-03-18 | Halliburton Energy Services, Inc. | Method and system of controlling drilling direction using directionally sensitive resistivity readings |
US6810331B2 (en) | 2002-09-25 | 2004-10-26 | Halliburton Energy Services, Inc. | Fixed-depth of investigation log for multi-spacing multi-frequency LWD resistivity tools |
US6937021B2 (en) * | 2002-12-09 | 2005-08-30 | Schlumberger Technology Corporation | Method and apparatus for determining the presence and orientation of a fraction in an earth formation |
US20040196184A1 (en) * | 2003-04-07 | 2004-10-07 | Kevin Hollander | Method and apparatus for determining the position and orientation of an object using a doppler shift of electromagnetic signals |
US6918293B2 (en) * | 2003-04-09 | 2005-07-19 | Halliburton Energy Services, Inc. | System and method having radiation intensity measurements with standoff correction |
US6799117B1 (en) * | 2003-05-28 | 2004-09-28 | Halliburton Energy Services, Inc. | Predicting sample quality real time |
RU2324813C2 (ru) | 2003-07-25 | 2008-05-20 | Институт проблем механики Российской Академии наук | Способ и устройство для определения формы трещин в горных породах |
US7038455B2 (en) * | 2003-08-05 | 2006-05-02 | Halliburton Energy Services, Inc. | Electromagnetic wave resistivity tool |
US7202670B2 (en) * | 2003-08-08 | 2007-04-10 | Schlumberger Technology Corporation | Method for characterizing a subsurface formation with a logging instrument disposed in a borehole penetrating the formation |
US7013991B2 (en) * | 2003-09-24 | 2006-03-21 | Gas Technology Institute | Obstacle detection system for underground operations |
US6944546B2 (en) | 2003-10-01 | 2005-09-13 | Halliburton Energy Services, Inc. | Method and apparatus for inversion processing of well logging data in a selected pattern space |
US6940446B2 (en) | 2003-10-08 | 2005-09-06 | David B. Cist | System and methods for obtaining ground conductivity information using GPR data |
US7306056B2 (en) | 2003-11-05 | 2007-12-11 | Baker Hughes Incorporated | Directional cased hole side track method applying rotary closed loop system and casing mill |
US7425830B2 (en) * | 2003-11-05 | 2008-09-16 | Shell Oil Company | System and method for locating an anomaly |
US7046010B2 (en) * | 2003-12-22 | 2006-05-16 | Halliburton Energy Services, Inc. | Multi-mode microresistivity tool in boreholes drilled with conductive mud |
US7098664B2 (en) | 2003-12-22 | 2006-08-29 | Halliburton Energy Services, Inc. | Multi-mode oil base mud imager |
US7046009B2 (en) * | 2003-12-24 | 2006-05-16 | Baker Hughes Incorporated | Method for measuring transient electromagnetic components to perform deep geosteering while drilling |
US7503404B2 (en) | 2004-04-14 | 2009-03-17 | Halliburton Energy Services, Inc, | Methods of well stimulation during drilling operations |
US7161550B2 (en) * | 2004-04-20 | 2007-01-09 | Tdk Corporation | Dual- and quad-ridged horn antenna with improved antenna pattern characteristics |
US7825664B2 (en) | 2004-07-14 | 2010-11-02 | Schlumberger Technology Corporation | Resistivity tool with selectable depths of investigation |
WO2006079154A1 (fr) | 2004-10-22 | 2006-08-03 | Geomole Pty Ltd | Procede et dispositif pour le deploiement d'un capteur |
US7313479B2 (en) | 2005-01-31 | 2007-12-25 | Baker Hughes Incorporated | Method for real-time well-site interpretation of array resistivity log data in vertical and deviated wells |
US7350568B2 (en) | 2005-02-09 | 2008-04-01 | Halliburton Energy Services, Inc. | Logging a well |
JP4341573B2 (ja) * | 2005-03-30 | 2009-10-07 | 株式会社デンソー | 電波送受信モジュールおよび、この電波送受信モジュールを用いたイメージングセンサ |
US7296462B2 (en) | 2005-05-03 | 2007-11-20 | Halliburton Energy Services, Inc. | Multi-purpose downhole tool |
US7336222B2 (en) | 2005-06-23 | 2008-02-26 | Enerlab, Inc. | System and method for measuring characteristics of a continuous medium and/or localized targets using multiple sensors |
US8931579B2 (en) | 2005-10-11 | 2015-01-13 | Halliburton Energy Services, Inc. | Borehole generator |
US20100012377A1 (en) * | 2005-11-16 | 2010-01-21 | The Charles Machine Works, Inc. | System And Apparatus For Locating And Avoiding An Underground Obstacle |
CA2611789C (fr) | 2005-12-13 | 2013-06-11 | Halliburton Energy Services, Inc. | Correction du courant de fuite multifrequence pour l'imagerie de boues petroliferes |
BRPI0621225A2 (pt) | 2006-01-13 | 2011-12-06 | Anthony C L Fox | método para determinar se uma estrutura geológica de fundo em alto-mar, da qual são conhecidas a geometria e a localização aproximadas, apresenta um contraste de resistividade com as rochas circundantes, aparelho sensor de componente vertical, e método para estabilizar temporariamente um elemento móvel dentro de uma luva |
US7775276B2 (en) | 2006-03-03 | 2010-08-17 | Halliburton Energy Services, Inc. | Method and apparatus for downhole sampling |
US7839148B2 (en) | 2006-04-03 | 2010-11-23 | Halliburton Energy Services, Inc. | Method and system for calibrating downhole tools for drift |
WO2007149106A1 (fr) | 2006-06-19 | 2007-12-27 | Halliburton Energy Services, Inc. | Ouverture d'antenne dans un tube de fond de puits |
US7958913B2 (en) | 2006-06-19 | 2011-06-14 | Saudi Arabian Oil Company | Sulfur loading apparatus |
US7656342B2 (en) * | 2006-10-23 | 2010-02-02 | Stolar, Inc. | Double-sideband suppressed-carrier radar to null near-field reflections from a first interface between media layers |
CA2655200C (fr) | 2006-07-11 | 2013-12-03 | Halliburton Energy Services, Inc. | Ensemble d'outil modulaire de pilotage geologique de puits |
CN101479628B (zh) * | 2006-07-12 | 2012-10-03 | 哈里伯顿能源服务公司 | 用于制造倾斜天线的方法和装置 |
WO2008021868A2 (fr) | 2006-08-08 | 2008-02-21 | Halliburton Energy Services, Inc. | Diagraphie de résistivité à artéfacts de pendage réduits |
US7579840B2 (en) * | 2006-09-28 | 2009-08-25 | Baker Hughes Incorporated | Broadband resistivity interpretation |
US7665544B2 (en) * | 2006-12-05 | 2010-02-23 | Baker Hughes Incorporated | Method to improve downhole instruments |
CN101460698B (zh) * | 2006-12-15 | 2013-01-02 | 哈里伯顿能源服务公司 | 具有旋转天线结构的天线耦合元件测量工具 |
WO2008094256A1 (fr) * | 2007-01-29 | 2008-08-07 | Halliburton Energy Services, Inc. | Systèmes et procédés ayant des antennes décalées radialement pour diagraphie de résistivité électromagnétique |
US8378908B2 (en) * | 2007-03-12 | 2013-02-19 | Precision Energy Services, Inc. | Array antenna for measurement-while-drilling |
AU2007349251B2 (en) | 2007-03-16 | 2011-02-24 | Halliburton Energy Services, Inc. | Robust inversion systems and methods for azimuthally sensitive resistivity logging tools |
WO2008136789A1 (fr) * | 2007-05-01 | 2008-11-13 | Halliburton Energy Services, Inc. | Détection de limite anticipée et mesure de distance |
WO2008154679A1 (fr) | 2007-06-18 | 2008-12-24 | Commonwealth Scientific And Industrial Research Organisation | Procédé et appareil de détection à l'aide d'un tenseur de gradient magnétique |
US7912648B2 (en) * | 2007-10-02 | 2011-03-22 | Baker Hughes Incorporated | Method and apparatus for imaging bed boundaries using azimuthal propagation resistivity measurements |
US20100284250A1 (en) | 2007-12-06 | 2010-11-11 | Halliburton Energy Services, Inc. | Acoustic steering for borehole placement |
GB2484432B (en) * | 2008-01-18 | 2012-08-29 | Halliburton Energy Serv Inc | EM-guided drilling relative to an existing borehole |
US8214151B2 (en) * | 2008-02-20 | 2012-07-03 | Carbo Ceramics Inc. | Methods of identifying high neutron capture cross section doped proppant in induced subterranean formation fractures |
WO2009137565A1 (fr) * | 2008-05-08 | 2009-11-12 | Hexion Specialty Chemicals, Inc. | Analyse de données de télémétrie radar provenant d'un outil de télémétrie radar de fond de trou pour déterminer la largeur, la hauteur et la longueur d'une fracture souterraine |
US8116167B2 (en) * | 2008-06-12 | 2012-02-14 | Chevron U.S.A. Inc. | Method and system for generating a beam of acoustic energy from a borehole, and applications thereof |
AU2008364323B2 (en) * | 2008-11-19 | 2011-06-02 | Halliburton Energy Services, Inc. | Data transmission systems and methods for azimuthally sensitive tools with multiple depths of investigation |
US8957683B2 (en) | 2008-11-24 | 2015-02-17 | Halliburton Energy Services, Inc. | High frequency dielectric measurement tool |
US8004282B2 (en) * | 2008-12-01 | 2011-08-23 | Baker Hughes Incorporated | Method of measuring and imaging RXO (near wellbore resistivity) using transient EM |
AU2011366229B2 (en) | 2011-04-18 | 2015-05-28 | Halliburton Energy Services, Inc. | Multicomponent borehole radar systems and methods |
US8954280B2 (en) | 2011-05-05 | 2015-02-10 | Halliburton Energy Services, Inc. | Methods and systems for determining formation parameters using a rotating tool equipped with tilted antenna loops |
-
2009
- 2009-08-11 US US13/128,676 patent/US8957683B2/en active Active
- 2009-08-11 EP EP09827917.7A patent/EP2361394B1/fr active Active
- 2009-08-11 AU AU2009318042A patent/AU2009318042B2/en not_active Ceased
- 2009-08-11 WO PCT/US2009/053354 patent/WO2010059275A1/fr active Application Filing
- 2009-08-11 MY MYPI2011002291A patent/MY160258A/en unknown
- 2009-11-23 US US13/061,759 patent/US9411068B2/en active Active
- 2009-11-23 WO PCT/US2009/065537 patent/WO2010060040A1/fr active Application Filing
- 2009-11-23 GB GB1104663.8A patent/GB2475456B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030223620A1 (en) * | 1999-12-22 | 2003-12-04 | Schlumberger Technology Corporation | Methods of producing images of underground formations surrounding a borehole |
US6856132B2 (en) * | 2002-11-08 | 2005-02-15 | Shell Oil Company | Method and apparatus for subterranean formation flow imaging |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9638022B2 (en) | 2007-03-27 | 2017-05-02 | Halliburton Energy Services, Inc. | Systems and methods for displaying logging data |
US8957683B2 (en) | 2008-11-24 | 2015-02-17 | Halliburton Energy Services, Inc. | High frequency dielectric measurement tool |
US9411068B2 (en) | 2008-11-24 | 2016-08-09 | Halliburton Energy Services, Inc. | 3D borehole imager |
US9909414B2 (en) | 2009-08-20 | 2018-03-06 | Halliburton Energy Services, Inc. | Fracture characterization using directional electromagnetic resistivity measurements |
CN103477247A (zh) * | 2011-04-18 | 2013-12-25 | 哈利伯顿能源服务公司 | 多分量钻井雷达系统和方法 |
EP2699943A4 (fr) * | 2011-04-18 | 2015-09-23 | Halliburton Energy Services Inc | Systèmes et procédés utilisant des radars à composants multiples pour puits de forage |
US9562987B2 (en) | 2011-04-18 | 2017-02-07 | Halliburton Energy Services, Inc. | Multicomponent borehole radar systems and methods |
US9500762B2 (en) | 2011-09-19 | 2016-11-22 | Precision Energy Services, Inc. | Borehole resistivity imager using discrete energy pulsing |
Also Published As
Publication number | Publication date |
---|---|
US20110221443A1 (en) | 2011-09-15 |
GB2475456B (en) | 2012-11-07 |
WO2010059275A1 (fr) | 2010-05-27 |
EP2361394A1 (fr) | 2011-08-31 |
US8957683B2 (en) | 2015-02-17 |
US20110251794A1 (en) | 2011-10-13 |
EP2361394A4 (fr) | 2015-09-02 |
US9411068B2 (en) | 2016-08-09 |
GB2475456A (en) | 2011-05-18 |
EP2361394B1 (fr) | 2022-01-12 |
GB201104663D0 (en) | 2011-05-04 |
MY160258A (en) | 2017-02-28 |
AU2009318042B2 (en) | 2013-11-14 |
AU2009318042A1 (en) | 2010-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9411068B2 (en) | 3D borehole imager | |
US9562987B2 (en) | Multicomponent borehole radar systems and methods | |
US7394257B2 (en) | Modular downhole tool system | |
US10768336B2 (en) | Formation logging using multicomponent signal-based measurement of anisotropic permittivity and resistivity | |
US6957708B2 (en) | Electrical imaging in conductive and non-conductive mud | |
CA2648698C (fr) | Procede et dispositif de determination de la resistivite de la formation en aval de l'outil de coupe et azimutalement au niveau de cet outil | |
US6525540B1 (en) | Method and device for detection of em waves in a well | |
US20120192640A1 (en) | Borehole Imaging and Formation Evaluation While Drilling | |
EP3410160A1 (fr) | Procédé de traitement et de détection de fond de puits en temps réel de limite de couche pour application de géoguidage | |
NO20110231A1 (no) | System og fremgangsmate for et motstandsmaleverktoy med kabelboreror og en eller flere bronner | |
US10301935B2 (en) | MCI logging for processing downhole measurements | |
US10473810B2 (en) | Near-bit ultradeep measurement system for geosteering and formation evaluation | |
US10948621B2 (en) | Microstrip antenna-based logging tool and method | |
US10928542B2 (en) | Method of determining full green's tensor with resistivity measurement | |
EP2784550A2 (fr) | Outil acoustique d'imagerie de trou | |
CA2854087C (fr) | Trepan concu pour realiser des mesures electromagnetiques dans une formation souterraine | |
NO20130395A1 (no) | Apparat og fremgangsmåte for kapasitiv måling av sensor-standoff i borehull fylt med oljebasert borevæske | |
US6714153B1 (en) | Device for electromagnetic detection of geological properties in a well | |
US10459110B2 (en) | Flexible conductive shield for downhole electromagnetic noise suppression |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09828348 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13061759 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 1104663 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20091123 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1104663.8 Country of ref document: GB |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09828348 Country of ref document: EP Kind code of ref document: A1 |