WO2010059996A1 - Methods and compositions for diagnosis and prognosis of renal injury and renal failure - Google Patents

Methods and compositions for diagnosis and prognosis of renal injury and renal failure Download PDF

Info

Publication number
WO2010059996A1
WO2010059996A1 PCT/US2009/065419 US2009065419W WO2010059996A1 WO 2010059996 A1 WO2010059996 A1 WO 2010059996A1 US 2009065419 W US2009065419 W US 2009065419W WO 2010059996 A1 WO2010059996 A1 WO 2010059996A1
Authority
WO
WIPO (PCT)
Prior art keywords
renal
measured concentration
future
subject
renal function
Prior art date
Application number
PCT/US2009/065419
Other languages
English (en)
French (fr)
Inventor
Joseph Anderberg
Jeff Gray
Paul Mcpherson
Kevin Nakamura
Original Assignee
Astute Medical, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP09828325.2A priority Critical patent/EP2364370B1/en
Priority to CA2743253A priority patent/CA2743253A1/en
Priority to NZ592552A priority patent/NZ592552A/en
Priority to ES09828325.2T priority patent/ES2528799T3/es
Priority to US13/130,474 priority patent/US20110229915A1/en
Priority to MX2011005379A priority patent/MX2011005379A/es
Application filed by Astute Medical, Inc. filed Critical Astute Medical, Inc.
Priority to BRPI0921921A priority patent/BRPI0921921A2/pt
Priority to JP2011537667A priority patent/JP5735922B2/ja
Priority to CN200980154224.5A priority patent/CN102272328B/zh
Priority to AU2009316387A priority patent/AU2009316387B2/en
Publication of WO2010059996A1 publication Critical patent/WO2010059996A1/en
Priority to HK12102399.9A priority patent/HK1161901A1/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/34Genitourinary disorders
    • G01N2800/347Renal failures; Glomerular diseases; Tubulointerstitial diseases, e.g. nephritic syndrome, glomerulonephritis; Renovascular diseases, e.g. renal artery occlusion, nephropathy

Definitions

  • the kidney is responsible for water and solute excretion from the body. Its functions include maintenance of acid-base balance, regulation of electrolyte concentrations, control of blood volume, and regulation of blood pressure. As such, loss of kidney function through injury and/or disease results in substantial morbidity and mortality. A detailed discussion of renal injuries is provided in Harrison's Principles of Internal Medicine, 17 th Ed., McGraw Hill, New York, pages 1741-1830, which are hereby incorporated by reference in their entirety. Renal disease and/or injury may be acute or chronic.
  • Acute and chronic kidney disease are described as follows (from Current Medical Diagnosis & Treatment 2008, 47 th Ed, McGraw Hill, New York, pages 785-815, which are hereby incorporated by reference in their entirety): "Acute renal failure is worsening of renal function over hours to days, resulting in the retention of nitrogenous wastes (such as urea nitrogen) and creatinine in the blood. Retention of these substances is called azotemia.
  • Chronic renal failure chronic kidney disease results from an abnormal loss of renal function over months to years”.
  • Acute renal failure also known as acute kidney injury, or AKI
  • AKI acute kidney injury
  • ARF nitrogenous (urea and creatinine) and non-nitrogenous waste products that are normally excreted by the kidney, a reduction in urine output, or both. It is reported that ARF complicates about 5% of hospital admissions, 4-15% of cardiopulmonary bypass surgeries, and up to 30% of intensive care admissions. ARF may be categorized as prerenal, intrinsic renal, or postrenal in causation. Intrinsic renal disease can be further divided into glomerular, tubular, interstitial, and vascular abnormalities. Major causes of ARF are described in the following table, which is adapted from the Merck Manual, 17 th ed., Chapter 222, and which is hereby incorporated by reference in their entirety:
  • ischemic ARF the course of the disease may be divided into four phases.
  • an initiation phase which lasts hours to days, reduced perfusion of the kidney is evolving into injury. Glomerular ultrafiltration reduces, the flow of filtrate is reduced due to debris within the tubules, and back leakage of filtrate through injured epithelium occurs.
  • Renal injury can be mediated during this phase by reperfusion of the kidney.
  • Initiation is followed by an extension phase which is characterized by continued ischemic injury and inflammation and may involve endothelial damage and vascular congestion.
  • the maintenance phase lasting from 1 to 2 weeks, renal cell injury occurs, and glomerular filtration and urine output reaches a minimum.
  • a recovery phase can follow in which the renal epithelium is repaired and GFR gradually recovers. Despite this, the survival rate of subjects with ARF may be as low as about 60%.
  • Acute kidney injury caused by radiocontrast agents also called contrast media
  • other nephrotoxins such as cyclosporine, antibiotics including aminoglycosides and anticancer drugs such as cisplatin manifests over a period of days to about a week.
  • Contrast induced nephropathy (CIN, which is AKI caused by radiocontrast agents) is thought to be caused by intrarenal vasoconstriction (leading to ischemic injury) and from the generation of reactive oxygen species that are directly toxic to renal tubular epithelial cells.
  • CIN classically presents as an acute (onset within 24-48h) but reversible (peak 3-5 days, resolution within 1 week) rise in blood urea nitrogen and serum creatinine.
  • a commonly reported criteria for defining and detecting AKI is an abrupt (typically within about 2-7 days or within a period of hospitalization) elevation of serum creatinine.
  • serum creatinine elevation to define and detect AKI is well established, the magnitude of the serum creatinine elevation and the time over which it is measured to define AKI varies considerably among publications.
  • relatively large increases in serum creatinine such as 100%, 200%, an increase of at least 100% to a value over 2 mg/dL and other definitions were used to define AKI.
  • the recent trend has been towards using smaller serum creatinine rises to define AKI.
  • “Failure” serum creatinine increased 3.0 fold from baseline OR creatinine >355 ⁇ mol/1 (with a rise of >44) or urine output below 0.3 ml/kg/hr for 24 h or anuria for at least 12 hours;
  • ESRD end stage renal disease — the need for dialysis for more than 3 months.
  • RIFLE criteria which provide a useful clinical tool to classify renal status.
  • the RIFLE criteria provide a uniform definition of AKI which has been validated in numerous studies.
  • Stage I increase in serum creatinine of more than or equal to 0.3 mg/dL (> 26.4 ⁇ mol/L) or increase to more than or equal to 150% (1.5-fold) from baseline OR urine output less than 0.5 mL/kg per hour for more than 6 hours
  • Stage II increase in serum creatinine to more than 200% (> 2-fold) from baseline OR urine output less than 0.5 mL/kg per hour for more than 12 hours;
  • Stage III increase in serum creatinine to more than 300% (> 3-fold) from baseline OR serum creatinine > 354 ⁇ mol/L accompanied by an acute increase of at least 44 ⁇ mol/L OR urine output less than 0.3 mL/kg per hour for 24 hours or anuria for 12 hours.
  • the CIN Consensus Working Panel uses a serum creatinine rise of 25% to define Contrast induced nephropathy (which is a type of AKI).
  • Contrast induced nephropathy which is a type of AKI.
  • various groups propose slightly different criteria for using serum creatinine to detect AKI, the consensus is that small changes in serum creatinine, such as 0.3 mg/dL or 25%, are sufficient to detect AKI (worsening renal function) and that the magnitude of the serum creatinine change is an indicator of the severity of the AKI and mortality risk.
  • serum creatinine is generally regarded to have several limitations in the diagnosis, assessment and monitoring of AKI patients.
  • the time period for serum creatinine to rise to values (e.g., a 0.3 mg/dL or 25% rise) considered diagnostic for AKI can be 48 hours or longer depending on the definition used. Since cellular injury in AKI can occur over a period of hours, serum creatinine elevations detected at 48 hours or longer can be a late indicator of injury, and relying on serum creatinine can thus delay diagnosis of AKI.
  • serum creatinine is not a good indicator of the exact kidney status and treatment needs during the most acute phases of AKI when kidney function is changing rapidly. Some patients with AKI will recover fully, some will need dialysis (either short term or long term) and some will have other detrimental outcomes including death, major adverse cardiac events and chronic kidney disease. Because serum creatinine is a marker of filtration rate, it does not differentiate between the causes of AKI (pre-renal, intrinsic renal, post-renal obstruction, atheroembolic, etc) or the category or location of injury in intrinsic renal disease (for example, tubular, glomerular or interstitial in origin). Urine output is similarly limited, Knowing these things can be of vital importance in managing and treating patients with AKI.
  • kidney injury markers can be used for diagnosis, prognosis, risk stratification, staging, monitoring, categorizing and determination of further diagnosis and treatment regimens in subjects suffering or at risk of suffering from an injury to renal function, reduced renal function, and/or acute renal failure (also called acute kidney injury).
  • kidney injury markers may be used, individually or in panels comprising a plurality of kidney injury markers, for risk stratification (that is, to identify subjects at risk for a future injury to renal function, for future progression to reduced renal function, for future progression to ARF, for future improvement in renal function, etc.); for diagnosis of existing disease (that is, to identify subjects who have suffered an injury to renal function, who have progressed to reduced renal function, who have progressed to ARF, etc.); for monitoring for deterioration or improvement of renal function; and for predicting a future medical outcome, such as improved or worsening renal function, a decreased or increased mortality risk, a decreased or increased risk that a subject will require renal replacement therapy (i.e., hemodialysis, peritoneal dialysis, hemofiltration, and/or renal transplantation, a decreased or increased risk that a subject will recover from an injury to renal function, a decreased or increased risk that a subject will recover from ARF, a decreased or increased risk that a subject will progress to end stage renal disease,
  • the present invention relates to methods for evaluating renal status in a subject. These methods comprise performing an assay method that is configured to detect one or more kidney injury markers of the present invention in a body fluid sample obtained from the subject.
  • the assay result(s) for example a measured concentration of one or more markers selected from the group consisting of Epidermal growth factor, Complement C3, Interleukin-4, Interleukin-1 alpha, Tubulointerstitial nephritis antigen, Transforming growth factor beta-1, Bone morphogenetic protein 7, Osteopontin, Netrin-1, and Growth-regulated alpha protein is/are then correlated to the renal status of the subject.
  • This correlation to renal status may include correlating the assay result(s) to one or more of risk stratification, diagnosis, prognosis, staging, classifying and monitoring of the subject as described herein.
  • the present invention utilizes one or more kidney injury markers of the present invention for the evaluation of renal injury.
  • the methods for evaluating renal status described herein are methods for risk stratification of the subject; that is, assigning a likelihood of one or more future changes in renal status to the subject.
  • the assay result(s) is/are correlated to one or more such future changes. The following are preferred risk stratification embodiments.
  • these methods comprise determining a subject's risk for a future injury to renal function, and the assay result(s) is/are correlated to a likelihood of such a future injury to renal function.
  • the measured concentration(s) may each be compared to a threshold value.
  • a threshold value For a "positive going" kidney injury marker, an increased likelihood of suffering a future injury to renal function is assigned to the subject when the measured concentration is above the threshold, relative to a likelihood assigned when the measured concentration is below the threshold.
  • a "negative going" kidney injury marker an increased likelihood of suffering a future injury to renal function is assigned to the subject when the measured concentration is below the threshold, relative to a likelihood assigned when the measured concentration is above the threshold.
  • these methods comprise determining a subject's risk for future reduced renal function, and the assay result(s) is/are correlated to a likelihood of such reduced renal function.
  • the measured concentrations may each be compared to a threshold value.
  • a threshold value For a "positive going" kidney injury marker, an increased likelihood of suffering a future reduced renal function is assigned to the subject when the measured concentration is above the threshold, relative to a likelihood assigned when the measured concentration is below the threshold.
  • a "negative going" kidney injury marker an increased likelihood of future reduced renal function is assigned to the subject when the measured concentration is below the threshold, relative to a likelihood assigned when the measured concentration is above the threshold.
  • these methods comprise determining a subject's likelihood for a future improvement in renal function, and the assay result(s) is/are correlated to a likelihood of such a future improvement in renal function.
  • the measured concentration(s) may each be compared to a threshold value.
  • a threshold value For a "positive going" kidney injury marker, an increased likelihood of a future improvement in renal function is assigned to the subject when the measured concentration is below the threshold, relative to a likelihood assigned when the measured concentration is above the threshold.
  • a "negative going" kidney injury marker an increased likelihood of a future improvement in renal function is assigned to the subject when the measured concentration is above the threshold, relative to a likelihood assigned when the measured concentration is below the threshold.
  • these methods comprise determining a subject's risk for progression to ARF, and the result(s) is/are correlated to a likelihood of such progression to ARF.
  • the measured concentration(s) may each be compared to a threshold value.
  • a threshold value For a "positive going" kidney injury marker, an increased likelihood of progression to ARF is assigned to the subject when the measured concentration is above the threshold, relative to a likelihood assigned when the measured concentration is below the threshold.
  • a "negative going" kidney injury marker an increased likelihood of progression to ARF is assigned to the subject when the measured concentration is below the threshold, relative to a likelihood assigned when the measured concentration is above the threshold.
  • these methods comprise determining a subject's outcome risk, and the assay result(s) is/are correlated to a likelihood of the occurrence of a clinical outcome related to a renal injury suffered by the subject. For example, the measured concentration(s) may each be compared to a threshold value.
  • kidney injury marker For a "positive going" kidney injury marker, an increased likelihood of one or more of: acute kidney injury, progression to a worsening stage of AKI, mortality, a requirement for renal replacement therapy, a requirement for withdrawal of renal toxins, end stage renal disease, heart failure, stroke, myocardial infarction, progression to chronic kidney disease, etc., is assigned to the subject when the measured concentration is above the threshold, relative to a likelihood assigned when the measured concentration is below the threshold.
  • kidney injury marker For a "negative going" kidney injury marker, an increased likelihood of one or more of: acute kidney injury, progression to a worsening stage of AKI, mortality, a requirement for renal replacement therapy, a requirement for withdrawal of renal toxins, end stage renal disease, heart failure, stroke, myocardial infarction, progression to chronic kidney disease, etc., is assigned to the subject when the measured concentration is below the threshold, relative to a likelihood assigned when the measured concentration is above the threshold.
  • the likelihood or risk assigned is that an event of interest is more or less likely to occur within 180 days of the time at which the body fluid sample is obtained from the subject.
  • the likelihood or risk assigned relates to an event of interest occurring within a shorter time period such as 18 months, 120 days, 90 days, 60 days, 45 days, 30 days, 21 days, 14 days, 7 days, 5 days, 96 hours, 72 hours, 48 hours, 36 hours, 24 hours, 12 hours, or less.
  • a risk at 0 hours of the time at which the body fluid sample is obtained from the subject is equivalent to diagnosis of a current condition.
  • the subject is selected for risk stratification based on the pre-existence in the subject of one or more known risk factors for prerenal, intrinsic renal, or postrenal ARF.
  • a subject undergoing or having undergone major vascular surgery, coronary artery bypass, or other cardiac surgery a subject having pre-existing congestive heart failure, preeclampsia, eclampsia, diabetes mellitus, hypertension, coronary artery disease, proteinuria, renal insufficiency, glomerular filtration below the normal range, cirrhosis, serum creatinine above the normal range, or sepsis; or a subject exposed to NSAIDs, cyclosporines, tacrolimus, aminoglycosides, foscarnet, ethylene glycol, hemoglobin, myoglobin, ifosfamide, heavy metals, methotrexate, radiopaque contrast agents, or streptozotocin are all preferred subjects for monitoring risks according to
  • pre-existence in this context is meant that the risk factor exists at the time the body fluid sample is obtained from the subject.
  • a subject is chosen for risk stratification based on an existing diagnosis of injury to renal function, reduced renal function, or ARF.
  • the methods for evaluating renal status described herein are methods for diagnosing a renal injury in the subject; that is, assessing whether or not a subject has suffered from an injury to renal function, reduced renal function, or ARF.
  • the assay result(s) for example a measured concentration of one or more markers selected from the group consisting of Epidermal growth factor, Complement C3, Interleukin-4, Interleukin-1 alpha, Tubulointerstitial nephritis antigen, Transforming growth factor beta-1, Bone morphogenetic protein 7, Osteopontin, Netrin- 1, and Growth-regulated alpha protein is/are correlated to the occurrence or nonoccurrence of a change in renal status.
  • markers selected from the group consisting of Epidermal growth factor, Complement C3, Interleukin-4, Interleukin-1 alpha, Tubulointerstitial nephritis antigen, Transforming growth factor beta-1, Bone morphogenetic protein 7, Osteopontin, Netrin- 1, and Growth-regulated al
  • these methods comprise diagnosing the occurrence or nonoccurrence of an injury to renal function, and the assay result(s) is/are correlated to the occurrence or nonoccurrence of such an injury.
  • each of the measured concentration(s) may be compared to a threshold value.
  • an increased likelihood of the occurrence of an injury to renal function is assigned to the subject when the measured concentration is above the threshold (relative to the likelihood assigned when the measured concentration is below the threshold); alternatively, when the measured concentration is below the threshold, an increased likelihood of the nonoccurrence of an injury to renal function may be assigned to the subject (relative to the likelihood assigned when the measured concentration is above the threshold).
  • an increased likelihood of the occurrence of an injury to renal function is assigned to the subject when the measured concentration is below the threshold (relative to the likelihood assigned when the measured concentration is above the threshold); alternatively, when the measured concentration is above the threshold, an increased likelihood of the nonoccurrence of an injury to renal function may be assigned to the subject (relative to the likelihood assigned when the measured concentration is below the threshold).
  • these methods comprise diagnosing the occurrence or nonoccurrence of reduced renal function, and the assay result(s) is/are correlated to the occurrence or nonoccurrence of an injury causing reduced renal function.
  • each of the measured concentration(s) may be compared to a threshold value.
  • an increased likelihood of the occurrence of an injury causing reduced renal function is assigned to the subject when the measured concentration is above the threshold (relative to the likelihood assigned when the measured concentration is below the threshold); alternatively, when the measured concentration is below the threshold, an increased likelihood of the nonoccurrence of an injury causing reduced renal function may be assigned to the subject (relative to the likelihood assigned when the measured concentration is above the threshold).
  • an increased likelihood of the occurrence of an injury causing reduced renal function is assigned to the subject when the measured concentration is below the threshold (relative to the likelihood assigned when the measured concentration is above the threshold); alternatively, when the measured concentration is above the threshold, an increased likelihood of the nonoccurrence of an injury causing reduced renal function may be assigned to the subject (relative to the likelihood assigned when the measured concentration is below the threshold).
  • these methods comprise diagnosing the occurrence or nonoccurrence of ARF, and the assay result(s) is/are correlated to the occurrence or nonoccurrence of an injury causing ARF.
  • each of the measured concentration(s) may be compared to a threshold value.
  • an increased likelihood of the occurrence of ARF is assigned to the subject when the measured concentration is above the threshold (relative to the likelihood assigned when the measured concentration is below the threshold); alternatively, when the measured concentration is below the threshold, an increased likelihood of the nonoccurrence of ARF may be assigned to the subject (relative to the likelihood assigned when the measured concentration is above the threshold).
  • an increased likelihood of the occurrence of ARF is assigned to the subject when the measured concentration is below the threshold (relative to the likelihood assigned when the measured concentration is above the threshold); alternatively, when the measured concentration is above the threshold, an increased likelihood of the nonoccurrence of ARF may be assigned to the subject (relative to the likelihood assigned when the measured concentration is below the threshold).
  • these methods comprise diagnosing a subject as being in need of renal replacement therapy, and the assay result(s) is/are correlated to a need for renal replacement therapy.
  • each of the measured concentration(s) may be compared to a threshold value.
  • an increased likelihood of the occurrence of an injury creating a need for renal replacement therapy is assigned to the subject when the measured concentration is above the threshold (relative to the likelihood assigned when the measured concentration is below the threshold); alternatively, when the measured concentration is below the threshold, an increased likelihood of the nonoccurrence of an injury creating a need for renal replacement therapy may be assigned to the subject (relative to the likelihood assigned when the measured concentration is above the threshold).
  • an increased likelihood of the occurrence of an injury creating a need for renal replacement therapy is assigned to the subject when the measured concentration is below the threshold (relative to the likelihood assigned when the measured concentration is above the threshold); alternatively, when the measured concentration is above the threshold, an increased likelihood of the nonoccurrence of an injury creating a need for renal replacement therapy may be assigned to the subject (relative to the likelihood assigned when the measured concentration is below the threshold).
  • these methods comprise diagnosing a subject as being in need of renal transplantation, and the assay result(s ⁇ is/are correlated to a need for renal transplantation.
  • each of the measured concentration(s) may be compared to a threshold value.
  • an increased likelihood of the occurrence of an injury creating a need for renal transplantation is assigned to the subject when the measured concentration is above the threshold (relative to the likelihood assigned when the measured concentration is below the threshold); alternatively, when the measured concentration is below the threshold, an increased likelihood of the nonoccurrence of an injury creating a need for renal transplantation may be assigned to the subject (relative to the likelihood assigned when the measured concentration is above the threshold).
  • the methods for evaluating renal status described herein are methods for monitoring a renal injury in the subject; that is, assessing whether or not renal function is improving or worsening in a subject who has suffered from an injury to renal function, reduced renal function, or ARF.
  • the assay result(s) for example a measured concentration of one or more markers selected from the group consisting of Epidermal growth factor, Complement C3, Interleukin-4, Interleukin- 1 alpha, Tubulointerstitial nephritis antigen, Transforming growth factor beta-1, Bone morphogenetic protein 7, Osteopontin, Netrin-1, and Growth-regulated alpha protein is/are correlated to the occurrence or nonoccurrence of a change in renal status.
  • markers selected from the group consisting of Epidermal growth factor, Complement C3, Interleukin-4, Interleukin- 1 alpha, Tubulointerstitial nephritis antigen, Transforming growth factor beta-1, Bone morphogenetic protein 7, Osteopontin, Netrin-1, and Growth-regulated alpha protein is/are correlated to the occurrence or nonoccurrence of a change in renal status.
  • markers selected from the group consisting of Epidermal growth factor, Complement C3, Interleukin-4, Interleuk
  • these methods comprise monitoring renal status in a subject suffering from an injury to renal function, and the assay result(s) is/are correlated to the occurrence or nonoccurrence of a change in renal status in the subject.
  • the measured concentration(s) may be compared to a threshold value.
  • a threshold value For a positive going marker, when the measured concentration is above the threshold, a worsening of renal function may be assigned to the subject; alternatively, when the measured concentration is below the threshold, an improvement of renal function may be assigned to the subject.
  • a negative going marker when the measured concentration is below the threshold, a worsening of renal function may be assigned to the subject; alternatively, when the measured concentration is above the threshold, an improvement of renal function may be assigned to the subject.
  • these methods comprise monitoring renal status in a subject suffering from reduced renal function, and the assay result(s) is/are correlated to the occurrence or nonoccurrence of a change in renal status in the subject.
  • the measured concentration(s) may be compared to a threshold value.
  • a threshold value For a positive going marker, when the measured concentration is above the threshold, a worsening of renal function may be assigned to the subject; alternatively, when the measured concentration is below the threshold, an improvement of renal function may be assigned to the subject.
  • a negative going marker when the measured concentration is below the threshold, a worsening of renal function may be assigned to the subject; alternatively, when the measured concentration is above the threshold, an improvement of renal function may be assigned to the subject.
  • these methods comprise monitoring renal status in a subject suffering from acute renal failure, and the assay result(s) is/are correlated to the occurrence or nonoccurrence of a change in renal status in the subject.
  • the measured concentration(s) may be compared to a threshold value.
  • a threshold value For a positive going marker, when the measured concentration is above the threshold, a worsening of renal function may be assigned to the subject; alternatively, when the measured concentration is below the threshold, an improvement of renal function may be assigned to the subject.
  • a negative going marker when the measured concentration is below the threshold, a worsening of renal function may be assigned to the subject; alternatively, when the measured concentration is above the threshold, an improvement of renal function may be assigned to the subject.
  • these methods comprise monitoring renal status in a subject at risk of an injury to renal function due to the pre-existence of one or more known risk factors for prerenal, intrinsic renal, or postrenal ARF, and the assay result(s) is/are correlated to the occurrence or nonoccurrence of a change in renal status in the subject.
  • the measured concentration(s) may be compared to a threshold value.
  • a threshold value For a positive going marker, when the measured concentration is above the threshold, a worsening of renal function may be assigned to the subject; alternatively, when the measured concentration is below the threshold, an improvement of renal function may be assigned to the subject.
  • a negative going marker when the measured concentration is below the threshold, a worsening of renal function may be assigned to the subject; alternatively, when the measured concentration is above the threshold, an improvement of renal function may be assigned to the subject.
  • the methods for evaluating renal status described herein are methods for classifying a renal injury in the subject; that is, determining whether a renal injury in a subject is prerenal, intrinsic renal, or postrenal; and/or further subdividing these classes into subclasses such as acute tubular injury, acute glomerulonephritis acute tubulointerstitial nephritis, acute vascular nephropathy, or infiltrative disease; and/or assigning a likelihood that a subject will progress to a particular RIFLE stage.
  • the assay result(s) for example a measured concentration of one or more markers selected from the group consisting of Epidermal growth factor, Complement C3, Interleukin-4, Interleukin- 1 alpha, Tubulointerstitial nephritis antigen, Transforming growth factor beta-1, Bone morphogenetic protein 7, Osteopontin, Netrin-1, and Growth-regulated alpha protein is/are correlated to a particular class and/or subclass.
  • markers selected from the group consisting of Epidermal growth factor, Complement C3, Interleukin-4, Interleukin- 1 alpha, Tubulointerstitial nephritis antigen, Transforming growth factor beta-1, Bone morphogenetic protein 7, Osteopontin, Netrin-1, and Growth-regulated alpha protein is/are correlated to a particular class and/or subclass.
  • these methods comprise determining whether a renal injury in a subject is prerenal, intrinsic renal, or postrenal; and/or further subdividing these classes into subclasses such as acute tubular injury, acute glomerulonephritis acute tubulointerstitial nephritis, acute vascular nephropathy, or infiltrative disease; and/or assigning a likelihood that a subject will progress to a particular RIFLE stage, and the assay result(s) is/are correlated to the injury classification for the subject. For example, the measured concentration may be compared to a threshold value, and when the measured concentration is above the threshold, a particular classification is assigned; alternatively, when the measured concentration is below the threshold, a different classification may be assigned to the subject.
  • the threshold value may be determined from a population of normal subjects by selecting a concentration representing the 75 th , 85 th , 90 th , 95 th , or 99 th percentile of a kidney injury marker measured in such normal subjects.
  • the threshold value may be determined from a "diseased" population of subjects, e.g., those suffering from an injury or having a predisposition for an injury (e.g., progression to ARF or some other clinical outcome such as death, dialysis, renal transplantation, etc.), by selecting a concentration representing the 75 th , 85 th , 90 th , 95 th , or 99 th percentile of a kidney injury marker measured in such subjects.
  • the threshold value may be determined from a prior measurement of a kidney injury marker in the same subject; that is, a temporal change in the level of a kidney injury marker in the subject may be used to assign risk to the subject.
  • kidney injury markers of the present invention must be compared to corresponding individual thresholds.
  • Methods for combining assay results can comprise the use of multivariate logistical regression, loglinear modeling, neural network analysis, n-of-m analysis, decision tree analysis, calculating ratios of markers, etc. This list is not meant to be limiting.
  • a composite result which is determined by combining individual markers may be treated as if it is itself a marker; that is, a threshold may be determined for the composite result as described herein for individual markers, and the composite result for an individual patient compared to this threshold.
  • ROC curves established from a "first" subpopulation which is predisposed to one or more future changes in renal status, and a "second" subpopulation which is not so predisposed can be used to calculate a ROC curve, and the area under the curve provides a measure of the quality of the test.
  • the tests described herein provide a ROC curve area greater than 0.5, preferably at least 0.6, more preferably 0.7, still more preferably at least 0.8, even more preferably at least 0.9, and most preferably at least 0.95.
  • the measured concentration of one or more kidney injury markers, or a composite of such markers may be treated as continuous variables.
  • any particular concentration can be converted into a corresponding probability of a future reduction in renal function for the subject, the occurrence of an injury, a classification, etc.
  • a threshold that can provide an acceptable level of specificity and sensitivity in separating a population of subjects into "bins” such as a "first" subpopulation (e.g., which is predisposed to one or more future changes in renal status, the occurrence of an injury, a classification, etc.) and a "second" subpopulation which is not so predisposed.
  • a threshold value is selected to separate this first and second population by one or more of the following measures of test accuracy: an odds ratio greater than 1, preferably at least about 2 or more or about 0.5 or less, more preferably at least about 3 or more or about 0.33 or less, still more preferably at least about 4 or more or about 0.25 or less, even more preferably at least about 5 or more or about 0.2 or less, and most preferably at least about 10 or more or about 0.1 or less; a specificity of greater than 0.5, preferably at least about 0.6, more preferably at least about 0.7, still more preferably at least about 0.8, even more preferably at least about 0.9 and most preferably at least about 0.95, with a corresponding sensitivity greater than 0.2, preferably greater than about 0.3, more preferably greater than about 0.4, still more preferably at least about 0.5, even more preferably about 0.6, yet more preferably greater than about 0.7, still more preferably greater than about 0.8, more preferably greater than about 0.9, and most preferably greater than about 0.95;
  • Multiple thresholds may also be used to assess renal status in a subject. For example, a "first" subpopulation which is predisposed to one or more future changes in renal status, the occurrence of an injury, a classification, etc., and a "second" subpopulation which is not so predisposed can be combined into a single group. This group is then subdivided into three or more equal parts (known as tertiles, quartiles, quintiles, etc., depending on the number of subdivisions). An odds ratio is assigned to subjects based on which subdivision they fall into. If one considers a tertile, the lowest or highest tertile can be used as a reference for comparison of the other subdivisions. This reference subdivision is assigned an odds ratio of 1.
  • the second tertile is assigned an odds ratio that is relative to that first tertile. That is, someone in the second tertile might be 3 times more likely to suffer one or more future changes in renal status in comparison to someone in the first tertile.
  • the third tertile is also assigned an odds ratio that is relative to that first tertile.
  • the assay method is an immunoassay.
  • Antibodies for use in such assays will specifically bind a full length kidney injury marker of interest, and may also bind one or more polypeptides that are "related" thereto, as that term is defined hereinafter. Numerous immunoassay formats are known to those of skill in the art.
  • Preferred body fluid samples are selected from the group consisting of urine, blood, serum, saliva, tears, and plasma.
  • kidney injury marker assay result(s) is/are used in isolation in the methods described herein. Rather, additional variables or other clinical indicia may be included in the methods described herein. For example, a risk stratification, diagnostic, classification, monitoring, etc.
  • method may combine the assay result(s) with one or more variables measured for the subject selected from the group consisting of demographic information (e.g., weight, sex, age, race), medical history (e.g., family history, type of surgery, pre-existing disease such as aneurism, congestive heart failure, preeclampsia, eclampsia, diabetes mellitus, hypertension, coronary artery disease, proteinuria, renal insufficiency, or sepsis, type of toxin exposure such as NSAIDs, cyclosporins, tacrolimus, aminoglycosides, foscarnet, ethylene glycol, hemoglobin, myoglobin, ifosfamide, heavy metals, methotrexate, radiopaque contrast agents, or streptozotocin), clinical variables (e.g., blood pressure, temperature, respiration rate), risk scores (APACHE score, PREDICT score, TIMI Risk Score for UA/NSTEMI, Framingham Risk
  • kidney injury marker assay result(s) Other measures of renal function which may be combined with one or more kidney injury marker assay result(s) are described hereinafter and in Harrison's Principles of Internal Medicine, 17 th Ed., McGraw Hill, New York, pages 1741-1830, and Current Medical Diagnosis & Treatment 2008, 47 th Ed, McGraw Hill, New York, pages 785-815, each of which are hereby incorporated by reference in their entirety.
  • the individual markers may be measured in samples obtained at the same time, or may be determined from samples obtained at different (e.g., an earlier or later) times.
  • the individual markers may also be measured on the same or different body fluid samples. For example, one kidney injury marker may be measured in a serum or plasma sample and another kidney injury marker may be measured in a urine sample.
  • assignment of a likelihood may combine an individual kidney injury marker assay result with temporal changes in one or more additional variables.
  • kits for performing the methods described herein comprise reagents sufficient for performing an assay for at least one of the described kidney injury markers, together with instructions for performing the described threshold comparisons.
  • reagents for performing such assays are provided in an assay device, and such assay devices may be included in such a kit.
  • Preferred reagents can comprise one or more solid phase antibodies, the solid phase antibody comprising antibody that detects the intended biomarker target(s) bound to a solid support.
  • such reagents can also include one or more detectably labeled antibodies, the detectably labeled antibody comprising antibody that detects the intended biomarker target(s) bound to a detectable label. Additional optional elements that may be provided as part of an assay device are described hereinafter.
  • Detectable labels may include molecules that are themselves detectable (e.g., fluorescent moieties, electrochemical labels, eel (electrochemical luminescence) labels, metal chelates, colloidal metal particles, etc.) as well as molecules that may be indirectly detected by production of a detectable reaction product (e.g., enzymes such as horseradish peroxidase, alkaline phosphatase, etc.) or through the use of a specific binding molecule which itself may be detectable (e.g., a labeled antibody that binds to the second antibody, biotin, digoxigenin, maltose, oligohistidine, 2,4-dintrobenzene, phenylarsenate, ssDNA, dsDNA, etc.).
  • a detectable reaction product e.g., enzymes such as horseradish peroxidase, alkaline phosphatase, etc.
  • a specific binding molecule which itself may be detectable (e.g.,
  • Generation of a signal from the signal development element can be performed using various optical, acoustical, and electrochemical methods well known in the art.
  • detection modes include fluorescence, radiochemical detection, reflectance, absorbance, amperometry, conductance, impedance, interferometry, ellipsometry, etc.
  • the solid phase antibody is coupled to a transducer (e.g., a diffraction grating, electrochemical sensor, etc) for generation of a signal, while in others, a signal is generated by a transducer that is spatially separate from the solid phase antibody (e.g., a fluorometer that employs an excitation light source and an optical detector).
  • a transducer e.g., a diffraction grating, electrochemical sensor, etc
  • a signal is generated by a transducer that is spatially separate from the solid phase antibody (e.g., a fluorometer that employs an excitation light source and an optical detector).
  • Fig. 1 provides data tables determined in accordance with Example 6 for the comparison of marker levels in urine samples collected for Cohort 1 (patients that did not progress beyond RIFLE stage 0) and in urine samples collected from subjects at 0, 24 hours, and 48 hours prior to reaching stage R, I or F in Cohort 2. Tables provide descriptive statistics, AUC analysis, and sensitivity, specificity and odds ratio calculations at various threshold (cutoff) levels for the various markers.
  • Fig. 2 provides data tables determined in accordance with Example 7 for the comparison of marker levels in urine samples collected for Cohort 1 (patients that did not progress beyond RIFLE stage 0 or R) and in urine samples collected from subjects at 0, 24 hours, and 48 hours prior to reaching stage I or F in Cohort 2.
  • Tables provide descriptive statistics, AUC analysis, and sensitivity, specificity and odds ratio calculations at various threshold (cutoff) levels for the various markers.
  • Fig. 3 provides data tables determined in accordance with Example 8 for the comparison of marker levels in urine samples collected for Cohort 1 (patients that reached, but did not progress beyond, RIFLE stage R) and in urine samples collected from subjects at 0, 24 hours, and 48 hours prior to reaching stage I or F in Cohort 2.
  • Tables provide descriptive statistics, AUC analysis, and sensitivity, specificity and odds ratio calculations at various threshold (cutoff) levels for the various markers.
  • Fig. 4 provides data tables determined in accordance with Example 9 for the comparison of marker levels in urine samples collected for Cohort 1 (patients that did not progress beyond RIFLE stage 0) and in urine samples collected from subjects at 0, 24 hours, and 48 hours prior to reaching stage F in Cohort 2. Tables provide descriptive statistics, AUC analysis, and sensitivity, specificity and odds ratio calculations at various threshold (cutoff) levels for the various markers.
  • Fig. 5 provides data tables determined in accordance with Example 6 for the comparison of marker levels in plasma samples collected for Cohort 1 (patients that did not progress beyond RIFLE stage 0) and in plasma samples collected from subjects at 0, 24 hours, and 48 hours prior to reaching stage R, I or F in Cohort 2. Tables provide descriptive statistics, AUC analysis, and sensitivity, specificity and odds ratio calculations at various threshold (cutoff) levels for the various markers.
  • Fig. 6 provides data tables determined in accordance with Example 7 for the comparison of marker levels in plasma samples collected for Cohort 1 (patients that did not progress beyond RIFLE stage 0 or R) and in plasma samples collected from subjects at 0, 24 hours, and 48 hours prior to reaching stage I or F in Cohort 2.
  • Tables provide descriptive statistics, AUC analysis, and sensitivity, specificity and odds ratio calculations at various threshold (cutoff) levels for the various markers.
  • Fig. 7 provides data tables determined in accordance with Example 8 for the comparison of marker levels in plasma samples collected for Cohort 1 (patients that reached, but did not progress beyond, RIFLE stage R) and in plasma samples collected from subjects at 0, 24 hours, and 48 hours prior to reaching stage I or F in Cohort 2.
  • Tables provide descriptive statistics, AUC analysis, and sensitivity, specificity and odds ratio calculations at various threshold (cutoff) levels for the various markers.
  • Fig. 8 provides data tables determined in accordance with Example 9 for the comparison of marker levels in plasma samples collected for Cohort 1 (patients that did not progress beyond RIFLE stage 0) and in plasma samples collected from subjects at 0, 24 hours, and 48 hours prior to reaching stage F in Cohort 2. Tables provide descriptive statistics, AUC analysis, and sensitivity, specificity and odds ratio calculations at various threshold (cutoff) levels for the various markers.
  • the present invention relates to methods and compositions for diagnosis, differential diagnosis, risk stratification, monitoring, classifying and determination of treatment regimens in subjects suffering or at risk of suffering from injury to renal function, reduced renal function and/or acute renal failure through measurement of one or more kidney injury markers.
  • a measured concentration of one or more markers selected from the group consisting of Epidermal growth factor, Complement C3, Interleukin-4, Interleukin-1 alpha, Tubulointerstitial nephritis antigen, Transforming growth factor beta-1, Bone morphogenetic protein 7, Osteopontin, Netrin- 1, and Growth-regulated alpha protein, or one or more markers related thereto, are correlated to the renal status of the subject.
  • an "injury to renal function” is an abrupt (within 14 days, preferably within 7 days, more preferably within 72 hours, and still more preferably within 48 hours) measurable reduction in a measure of renal function. Such an injury may be identified, for example, by a decrease in glomerular filtration rate or estimated GFR, a reduction in urine output, an increase in serum creatinine, an increase in serum cystatin C, a requirement for renal replacement therapy, etc.
  • "Improvement in Renal Function” is an abrupt (within 14 days, preferably within 7 days, more preferably within 72 hours, and still more preferably within 48 hours) measurable increase in a measure of renal function. Preferred methods for measuring and/or estimating GFR are described hereinafter.
  • reduced renal function is an abrupt (within 14 days, preferably within 7 days, more preferably within 72 hours, and still more preferably within 48 hours) reduction in kidney function identified by an absolute increase in serum creatinine of greater than or equal to 0.1 mg/dL (> 8.8 ⁇ mol/L), a percentage increase in serum creatinine of greater than or equal to 20% (1.2-fold from baseline), or a reduction in urine output (documented oliguria of less than 0. 5 ml/kg per hour).
  • Acute renal failure is an abrupt (within 14 days, preferably within 7 days, more preferably within 72 hours, and still more preferably within 48 hours) reduction in kidney function identified by an absolute increase in serum creatinine of greater than or equal to 0.3 mg/dl (> 26.4 ⁇ mol/1), a percentage increase in serum creatinine of greater than or equal to 50% (1. 5-fold from baseline), or a reduction in urine output (documented oliguria of less than 0.5 ml/kg per hour for at least 6 hours).
  • This term is synonymous with "acute kidney injury" or "AKI.”
  • the signals obtained from an immunoassay are a direct result of complexes formed between one or more antibodies and the target biomolecule (i.e., the analyte) and polypeptides containing the necessary epitope(s) to which the antibodies bind. While such assays may detect the full length biomarker and the assay result be expressed as a concentration of a biomarker of interest, the signal from the assay is actually a result of all such "immunoreactive" polypeptides present in the sample.
  • Biomarkers may also be determined by means other than immunoassays, including protein measurements (such as dot blots, western blots, chromatographic methods, mass spectrometry, etc.) and nucleic acid measurements (mRNA quatitation). This list is not meant to be limiting.
  • Epidermal growth factor refers to one or more polypeptides present in a biological sample that are derived from the Epidermal growth factor precursor (Swiss-Prot POl 133 (SEQ ID NO: I)).
  • the Epidermal growth factor assay detects one or more soluble forms of Epidermal growth factor.
  • Epidermal growth factor is a single-pass type I membrane protein having a large extracellular domain, some or all of which is present in soluble forms of Epidermal growth factor generated either through alternative splicing event which deletes all or a portion of the transmembrane domain, or by proteolysis of the membrane-bound form.
  • an immunoassay one or more antibodies that bind to epitopes within this extracellular domain may be used to detect these soluble form(s). The following domains have been identified in Epidermal growth factor:
  • Complement C3 refers to one or more polypeptides present in a biological sample that are derived from the Complement C3 precursor (Swiss-Prot P01024 (SEQ ID NO: 2)).
  • Interleukin-4" refers to one or more polypeptides present in a biological sample that are derived from the Interleukin-4 precursor (Swiss- Prot P05112 (SEQ ID NO: 3)).
  • Interleukin-1 alpha refers to one or more polypeptides present in a biological sample that are derived from the Interleukin-1 alpha precursor (Swiss-Prot P01583 (SEQ ID NO: 4)).
  • Tubulointerstitial nephritis antigen refers to one or more polypeptides present in a biological sample that are derived from the Tubulointerstitial nephritis antigen precursor (Swiss-Prot Q9UJW2 (SEQ ID NO: 5)).
  • Transforming growth factor beta-1 refers to one or more polypeptides present in a biological sample that are derived from the Transforming growth factor beta-1 precursor (Swiss-Prot POl 137 (SEQ ID NO: 6)).
  • Bone morphogenetic protein 7 refers to one or more polypeptides present in a biological sample that are derived from the Bone morphogenetic protein 7 precursor (Swiss-Prot P18075 (SEQ ID NO: 7)).
  • Osteopontin refers to one or more polypeptides present in a biological sample that are derived from the Osteopontin precursor (Swiss- Prot P10451 (SEQ ID NO: 8)).
  • the term “Growth-regulated alpha protein” refers to one or more polypeptides present in a biological sample that are derived from the Growth- regulated alpha protein precursor (Swiss-Prot P09341 (SEQ ID NO: 9)).
  • Netrin-1 refers to one or more polypeptides present in a biological sample that are derived from the Netrin-1 precursor (Swiss-Prot 095631 (SEQ ID NO: 10)).
  • the term "relating a signal to the presence or amount" of an analyte reflects this understanding. Assay signals are typically related to the presence or amount of an analyte through the use of a standard curve calculated using known concentrations of the analyte of interest. As the term is used herein, an assay is "configured to detect" an analyte if an assay can generate a detectable signal indicative of the presence or amount of a physiologically relevant concentration of the analyte.
  • an immunoassay configured to detect a marker of interest will also detect polypeptides related to the marker sequence, so long as those polypeptides contain the epitope(s) necessary to bind to the antibody or antibodies used in the assay.
  • the term "related marker” as used herein with regard to a biomarker such as one of the kidney injury markers described herein refers to one or more fragments, variants, etc., of a particular marker or its biosynthetic parent that may be detected as a surrogate for the marker itself or as independent biomarkers.
  • the term also refers to one or more polypeptides present in a biological sample that are derived from the biomarker precursor complexed to additional species, such as binding proteins, receptors, heparin, lipids, sugars, etc.
  • positive going marker refers to a marker that is determined to be elevated in subjects suffering from a disease or condition, relative to subjects not suffering from that disease or condition.
  • negative going marker refers to a marker that is determined to be reduced in subjects suffering from a disease or condition, relative to subjects not suffering from that disease or condition.
  • subject refers to a human or non-human organism.
  • methods and compositions described herein are applicable to both human and veterinary disease.
  • a subject is preferably a living organism, the invention described herein may be used in post-mortem analysis as well.
  • Preferred subjects are humans, and most preferably "patients,” which as used herein refers to living humans that are receiving medical care for a disease or condition. This includes persons with no defined illness who are being investigated for signs of pathology.
  • an analyte is measured in a sample.
  • a sample may be obtained from a subject, or may be obtained from biological materials intended to be provided to the subject.
  • a sample may be obtained from a kidney being evaluated for possible transplantation into a subject, and an analyte measurement used to evaluate the kidney for preexisting damage.
  • Preferred samples are body fluid samples.
  • body fluid sample refers to a sample of bodily fluid obtained for the purpose of diagnosis, prognosis, classification or evaluation of a subject of interest, such as a patient or transplant donor. In certain embodiments, such a sample may be obtained for the purpose of determining the outcome of an ongoing condition or the effect of a treatment regimen on a condition.
  • Preferred body fluid samples include blood, serum, plasma, cerebrospinal fluid, urine, saliva, sputum, and pleural effusions.
  • body fluid samples would be more readily analyzed following a fractionation or purification procedure, for example, separation of whole blood into serum or plasma components.
  • diagnosis refers to methods by which the skilled artisan can estimate and/or determine the probability ("a likelihood") of whether or not a patient is suffering from a given disease or condition.
  • diagnosis includes using the results of an assay, most preferably an immunoassay, for a kidney injury marker of the present invention, optionally together with other clinical characteristics, to arrive at a diagnosis (that is, the occurrence or nonoccurrence) of an acute renal injury or ARF for the subject from which a sample was obtained and assayed. That such a diagnosis is "determined” is not meant to imply that the diagnosis is 100% accurate. Many biomarkers are indicative of multiple conditions.
  • a measured biomarker level on one side of a predetermined diagnostic threshold indicates a greater likelihood of the occurrence of disease in the subject relative to a measured level on the other side of the predetermined diagnostic threshold.
  • a prognostic risk signals a probability ("a likelihood") that a given course or outcome will occur.
  • a level or a change in level of a prognostic indicator which in turn is associated with an increased probability of morbidity (e.g., worsening renal function, future ARF, or death) is referred to as being "indicative of an increased likelihood" of an adverse outcome in a patient.
  • immunoassays involve contacting a sample containing or suspected of containing a biomarker of interest with at least one antibody that specifically binds to the biomarker. A signal is then generated indicative of the presence or amount of complexes formed by the binding of polypeptides in the sample to the antibody. The signal is then related to the presence or amount of the biomarker in the sample. Numerous methods and devices are well known to the skilled artisan for the detection and analysis of biomarkers. See, e.g., U.S.
  • the assay devices and methods known in the art can utilize labeled molecules in various sandwich, competitive, or non-competitive assay formats, to generate a signal that is related to the presence or amount of the biomarker of interest.
  • Suitable assay formats also include chromatographic, mass spectrographic, and protein "blotting" methods.
  • certain methods and devices such as biosensors and optical immunoassays, may be employed to determine the presence or amount of analytes without the need for a labeled molecule. See, e.g., U.S. Patents 5,631,171; and 5,955,377, each of which is hereby incorporated by reference in its entirety, including all tables, figures and claims.
  • robotic instrumentation including but not limited to Beckman ACCESS®, Abbott AXSYM®, Roche ELECSYS®, Dade Behring STRATUS® systems are among the immunoassay analyzers that are capable of performing immunoassays.
  • any suitable immunoassay may be utilized, for example, enzyme-linked immunoassays (ELISA), radioimmunoassays (RIAs), competitive binding assays, and the like.
  • Antibodies or other polypeptides may be immobilized onto a variety of solid supports for use in assays.
  • Solid phases that may be used to immobilize specific binding members include include those developed and/or used as solid phases in solid phase binding assays. Examples of suitable solid phases include membrane filters, cellulose- based papers, beads (including polymeric, latex and paramagnetic particles), glass, silicon wafers, microparticles, nanoparticles, TentaGels, AgroGels, PEGA gels, SPOCC gels, and multiple-well plates.
  • An assay strip could be prepared by coating the antibody or a plurality of antibodies in an array on solid support.
  • Antibodies or other polypeptides may be bound to specific zones of assay devices either by conjugating directly to an assay device surface, or by indirect binding. In an example of the later case, antibodies or other polypeptides may be immobilized on particles or other solid supports, and that solid support immobilized to the device surface.
  • Biological assays require methods for detection, and one of the most common methods for quantitation of results is to conjugate a detectable label to a protein or nucleic acid that has affinity for one of the components in the biological system being studied.
  • Detectable labels may include molecules that are themselves detectable (e.g., fluorescent moieties, electrochemical labels, metal chelates, etc.) as well as molecules that may be indirectly detected by production of a detectable reaction product (e.g., enzymes such as horseradish peroxidase, alkaline phosphatase, etc.) or by a specific binding molecule which itself may be detectable (e.g., biotin, digoxigenin, maltose, oligohistidine, 2,4- dintrobenzene, phenylarsenate, ssDNA, dsDNA, etc.).
  • a detectable reaction product e.g., enzymes such as horseradish peroxidase, alkaline phosphatase, etc.
  • Cross-linking reagents contain at least two reactive groups, and are divided generally into homofunctional cross-linkers (containing identical reactive groups) and heterofunctional cross-linkers (containing non-identical reactive groups). Homobifunctional cross-linkers that couple through amines, sulfhydryls or react non- specifically are available from many commercial sources. Maleimides, alkyl and aryl halides, alpha-haloacyls and pyridyl disulfides are thiol reactive groups.
  • kits for the analysis of the described kidney injury markers comprises reagents for the analysis of at least one test sample which comprise at least one antibody that a kidney injury marker.
  • kits can also include devices and instructions for performing one or more of the diagnostic and/or prognostic correlations described herein.
  • Preferred kits will comprise an antibody pair for performing a sandwich assay, or a labeled species for performing a competitive assay, for the analyte.
  • an antibody pair comprises a first antibody conjugated to a solid phase and a second antibody conjugated to a detectable label, wherein each of the first and second antibodies that bind a kidney injury marker.
  • Most preferably each of the antibodies are monoclonal antibodies.
  • the instructions for use of the kit and performing the correlations can be in the form of labeling, which refers to any written or recorded material that is attached to, or otherwise accompanies a kit at any time during its manufacture, transport, sale or use.
  • labeling encompasses advertising leaflets and brochures, packaging materials, instructions, audio or video cassettes, computer discs, as well as writing imprinted directly on kits.
  • antibody refers to a peptide or polypeptide derived from, modeled after or substantially encoded by an immunoglobulin gene or immunoglobulin genes, or fragments thereof, capable of specifically binding an antigen or epitope. See, e.g. Fundamental Immunology, 3rd Edition, W.E. Paul, ed., Raven Press, N.Y. (1993); Wilson (1994; J. Immunol. Methods 175:267-273; Yarmush (1992) J. Biochem. Biophys. Methods 25:85-97.
  • antibody includes antigen-binding portions, i.e., "antigen binding sites,” (e.g., fragments, subsequences, complementarity determining regions (CDRs)) that retain capacity to bind antigen, including (i) a Fab fragment, a monovalent fragment consisting of the VL, VH, CL and CHl domains; (ii) a F(ab')2 fragment, a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; (iii) a Fd fragment consisting of the VH and CHl domains; (iv) a Fv fragment consisting of the VL and VH domains of a single arm of an antibody, (v) a dAb fragment (Ward et al., (1989) Nature 341:544-546), which consists of a VH domain; and (vi) an isolated complementarity determining region (CDR).
  • Antigen binding sites e.g., fragments, subs
  • Antibodies used in the immunoassays described herein preferably specifically bind to a kidney injury marker of the present invention.
  • the term “specifically binds” is not intended to indicate that an antibody binds exclusively to its intended target since, as noted above, an antibody binds to any polypeptide displaying the epitope(s) to which the antibody binds. Rather, an antibody "specifically binds” if its affinity for its intended target is about 5-fold greater when compared to its affinity for a non-target molecule which does not display the appropriate epitope(s).
  • the affinity of the antibody will be at least about 5 fold, preferably 10 fold, more preferably 25-fold, even more preferably 50-fold, and most preferably 100-fold or more, greater for a target molecule than its affinity for a non-target molecule.
  • Preferred antibodies bind with affinities of at least about 10 7 M "1 , and preferably between about 10 8 M "1 to about 10 9 M “1 , about 10 9 M “1 to about 10 10 M "1 , or about 10 10 M "1 to about 10 12 M "1 .
  • r/c is plotted on the Y-axis versus r on the X-axis, thus producing a Scatchard plot.
  • Antibody affinity measurement by Scatchard analysis is well known in the art. See, e.g., van Erp et al., J. Immunoassay 12: 425-43, 1991; Nelson and Griswold, Comput. Methods Programs Biomed. 27: 65-8, 1988.
  • epitope refers to an antigenic determinant capable of specific binding to an antibody.
  • Epitopes usually consist of chemically active surface groupings of molecules such as amino acids or sugar side chains and usually have specific three dimensional structural characteristics, as well as specific charge characteristics. Conformational and nonconformational epitopes are distinguished in that the binding to the former but not the latter is lost in the presence of denaturing solvents.
  • phage display technology to produce and screen libraries of polypeptides for binding to a selected analyte. See, e.g, Cwirla et al, Proc. Natl. Acad. ScL USA 87, 6378-82, 1990; Devlin et al., Science 249, 404-6, 1990, Scott and Smith, Science 249, 386-88, 1990; and Ladner et al., U.S. Pat. No. 5,571,698.
  • a basic concept of phage display methods is the establishment of a physical association between DNA encoding a polypeptide to be screened and the polypeptide.
  • This physical association is provided by the phage particle, which displays a polypeptide as part of a capsid enclosing the phage genome which encodes the polypeptide.
  • the establishment of a physical association between polypeptides and their genetic material allows simultaneous mass screening of very large numbers of phage bearing different polypeptides.
  • Phage displaying a polypeptide with affinity to a target bind to the target and these phage are enriched by affinity screening to the target.
  • the identity of polypeptides displayed from these phage can be determined from their respective genomes.
  • a polypeptide identified as having a binding affinity for a desired target can then be synthesized in bulk by conventional means. See, e.g., U.S. Patent No. 6,057,098, which is hereby incorporated in its entirety, including all tables, figures, and claims.
  • the antibodies that are generated by these methods may then be selected by first screening for affinity and specificity with the purified polypeptide of interest and, if required, comparing the results to the affinity and specificity of the antibodies with polypeptides that are desired to be excluded from binding.
  • the screening procedure can involve immobilization of the purified polypeptides in separate wells of microtiter plates. The solution containing a potential antibody or groups of antibodies is then placed into the respective microtiter wells and incubated for about 30 min to 2 h.
  • microtiter wells are then washed and a labeled secondary antibody (for example, an anti-mouse antibody conjugated to alkaline phosphatase if the raised antibodies are mouse antibodies) is added to the wells and incubated for about 30 min and then washed. Substrate is added to the wells and a color reaction will appear where antibody to the immobilized polypeptide(s) are present.
  • a labeled secondary antibody for example, an anti-mouse antibody conjugated to alkaline phosphatase if the raised antibodies are mouse antibodies
  • the antibodies so identified may then be further analyzed for affinity and specificity in the assay design selected.
  • the purified target protein acts as a standard with which to judge the sensitivity and specificity of the immunoassay using the antibodies that have been selected. Because the binding affinity of various antibodies may differ; certain antibody pairs (e.g., in sandwich assays) may interfere with one another sterically, etc., assay performance of an antibody may be a more important measure than absolute affinity and specificity of an antibody.
  • correlating refers to comparing the presence or amount of the biomarker(s) in a patient to its presence or amount in persons known to suffer from, or known to be at risk of, a given condition; or in persons known to be free of a given condition. Often, this takes the form of comparing an assay result in the form of a biomarker concentration to a predetermined threshold selected to be indicative of the occurrence or nonoccurrence of a disease or the likelihood of some future outcome.
  • Selecting a diagnostic threshold involves, among other things, consideration of the probability of disease, distribution of true and false diagnoses at different test thresholds, and estimates of the consequences of treatment (or a failure to treat) based on the diagnosis. For example, when considering administering a specific therapy which is highly efficacious and has a low level of risk, few tests are needed because clinicians can accept substantial diagnostic uncertainty. On the other hand, in situations where treatment options are less effective and more risky, clinicians often need a higher degree of diagnostic certainty. Thus, cost/benefit analysis is involved in selecting a diagnostic threshold.
  • Suitable thresholds may be determined in a variety of ways. For example, one recommended diagnostic threshold for the diagnosis of acute myocardial infarction using cardiac troponin is the 97.5 th percentile of the concentration seen in a normal population. Another method may be to look at serial samples from the same patient, where a prior "baseline" result is used to monitor for temporal changes in a biomarker level.
  • ROC Reciever Operating Characteristic
  • the ROC graph is sometimes called the sensitivity vs (1 - specificity) plot.
  • a perfect test will have an area under the ROC curve of 1.0; a random test will have an area of 0.5.
  • a threshold is selected to provide an acceptable level of specificity and sensitivity.
  • diseased is meant to refer to a population having one characteristic (the presence of a disease or condition or the occurrence of some outcome) and “nondiseased” is meant to refer to a population lacking the characteristic. While a single decision threshold is the simplest application of such a method, multiple decision thresholds may be used. For example, below a first threshold, the absence of disease may be assigned with relatively high confidence, and above a second threshold the presence of disease may also be assigned with relatively high confidence. Between the two thresholds may be considered indeterminate. This is meant to be exemplary in nature only.
  • Measures of test accuracy may be obtained as described in Fischer et ah, Intensive Care Med. 29: 1043-51, 2003, and used to determine the effectiveness of a given biomarker. These measures include sensitivity and specificity, predictive values, likelihood ratios, diagnostic odds ratios, and ROC curve areas.
  • the area under the curve ("AUC") of a ROC plot is equal to the probability that a classifier will rank a randomly chosen positive instance higher than a randomly chosen negative one.
  • the area under the ROC curve may be thought of as equivalent to the Mann-Whitney U test, which tests for the median difference between scores obtained in the two groups considered if the groups are of continuous data, or to the Wilcoxon test of ranks.
  • suitable tests may exhibit one or more of the following results on these various measures: a specificity of greater than 0.5, preferably at least 0.6, more preferably at least 0.7, still more preferably at least 0.8, even more preferably at least 0.9 and most preferably at least 0.95, with a corresponding sensitivity greater than 0.2, preferably greater than 0.3, more preferably greater than 0.4, still more preferably at least 0.5, even more preferably 0.6, yet more preferably greater than 0.7, still more preferably greater than 0.8, more preferably greater than 0.9, and most preferably greater than 0.95; a sensitivity of greater than 0.5, preferably at least 0.6, more preferably at least 0.7, still more preferably at least 0.8, even more preferably at least 0.9 and most preferably at least 0.95, with a corresponding specificity greater than 0.2, preferably greater than 0.3, more preferably greater than 0.4, still more preferably at least 0.5, even more preferably 0.6, yet more preferably greater than 0.7
  • Additional clinical indicia may be combined with the kidney injury marker assay result(s) of the present invention.
  • biomarkers related to renal status include the following, which recite the common biomarker name, followed by the Swiss-Prot entry number for that biomarker or its parent: Actin (P68133); Adenosine deaminase binding protein (DPP4, P27487); Alpha- 1-acid glycoprotein 1 (P02763); Alpha- 1 -microglobulin (P02760); Albumin (P02768); Angiotensinogenase (Renin, P00797); Annexin A2 (P07355); Beta-glucuronidase (P08236); B-2- microglobulin (P61679); Beta-galactosidase (P16278); BMP-7 (P18075); Brain natriuretic peptide (proBNP, BNP-32, NTproBNP; P16860); Calcium-binding protein Beta (P68133); Aden
  • Adiponectin (Q15848); Alkaline phosphatase (P05186); Aminopeptidase N (P15144); CalbindinD28k (P05937); Cystatin C (P01034); 8 subunit of FIFO ATPase (P03928); Gamma-glutamyltransferase (P19440); GSTa (alpha-glutathione-S-transferase, P08263); GSTpi (Glutathione-S-transferase P; GST class-pi; P09211); IGFBP-I (P08833); IGFBP-2 (P18065); IGFBP-6 (P24592); Integral membrane protein 1 (Itml, P46977); Interleukin-6 (P05231); Interleukin-8 (P10145); Interleukin-18 (Q14116); IP-IO (10 kDa interferon-gamma-induced protein, P
  • Other clinical indicia which may be combined with the kidney injury marker assay result(s) of the present invention includes demographic information (e.g., weight, sex, age, race), medical history (e.g., family history, type of surgery, pre-existing disease such as aneurism, congestive heart failure, preeclampsia, eclampsia, diabetes mellitus, hypertension, coronary artery disease, proteinuria, renal insufficiency, or sepsis, type of toxin exposure such as NSAIDs, cyclosporins, tacrolimus, aminoglycosides, foscarnet, ethylene glycol, hemoglobin, myoglobin, ifosfamide, heavy metals, methotrexate, radiopaque contrast agents, or streptozotocin), clinical variables (e.g., blood pressure, temperature, respiration rate), risk scores (APACHE score, PREDICT score, TIMI Risk Score for UA/NSTEMI, Fra
  • kidney injury marker assay result(s) Other measures of renal function which may be combined with the kidney injury marker assay result(s) are described hereinafter and in Harrison's Principles of Internal Medicine, 17 th Ed., McGraw Hill, New York, pages 1741-1830, and Current Medical Diagnosis & Treatment 2008, 47 th Ed, McGraw Hill, New York, pages 785-815, each of which are hereby incorporated by reference in their entirety.
  • Combining assay results/clinical indicia in this manner can comprise the use of multivariate logistical regression, loglinear modeling, neural network analysis, n-of-m analysis, decision tree analysis, etc. This list is not meant to be limiting.
  • the terms "acute renal (or kidney) injury” and “acute renal (or kidney) failure” as used herein are defined in part in terms of changes in serum creatinine from a baseline value.
  • Most definitions of ARF have common elements, including the use of serum creatinine and, often, urine output. Patients may present with renal dysfunction without an available baseline measure of renal function for use in this comparison. In such an event, one may estimate a baseline serum creatinine value by assuming the patient initially had a normal GFR.
  • Glomerular filtration rate (GFR) is the volume of fluid filtered from the renal (kidney) glomerular capillaries into the Bowman's capsule per unit time. Glomerular filtration rate (GFR) can be calculated by measuring any chemical that has a steady level in the blood, and is freely filtered but neither reabsorbed nor secreted by the kidneys. GFR is typically expressed in units of ml/min:
  • GFR glomerular filtration rate
  • eGFR glomerular filtration rate
  • Creatinine clearance is used to measure GFR. Creatinine is produced naturally by the body (creatinine is a metabolite of creatine, which is found in muscle). It is freely filtered by the glomerulus, but also actively secreted by the renal tubules in very small amounts such that creatinine clearance overestimates actual GFR by 10-20%. This margin of error is acceptable considering the ease with which creatinine clearance is measured.
  • Creatinine clearance can be calculated if values for creatinine's urine concentration (Ucr), urine flow rate (V), and creatinine's plasma concentration (PQ-) are known. Since the product of urine concentration and urine flow rate yields creatinine's excretion rate, creatinine clearance is also said to be its excretion rate (Uc r xV) divided by its plasma concentration. This is commonly represented mathematically as:
  • the CCr is often corrected for the body surface area (BSA) and expressed compared to the average sized man as ml/min/1.73 m2. While most adults have a BSA that approaches 1.7 (1.6- 1.9), extremely obese or slim patients should have their CCr corrected for their actual BSA:
  • the clinician can readily select a treatment regimen that is compatible with the diagnosis, such as initiating renal replacement therapy, withdrawing delivery of compounds that are known to be damaging to the kidney, kidney transplantation, delaying or avoiding procedures that are known to be damaging to the kidney, modifying diuretic administration, initiating goal directed therapy, etc.
  • a treatment regimen that is compatible with the diagnosis, such as initiating renal replacement therapy, withdrawing delivery of compounds that are known to be damaging to the kidney, kidney transplantation, delaying or avoiding procedures that are known to be damaging to the kidney, modifying diuretic administration, initiating goal directed therapy, etc.
  • the skilled artisan is aware of appropriate treatments for numerous diseases discussed in relation to the methods of diagnosis described herein. See, e.g., Merck Manual of Diagnosis and Therapy, 17th Ed. Merck Research Laboratories, Whitehouse Station, NJ, 1999.
  • the markers of the present invention may be used to monitor a course of treatment. For example, improved or worsened prognostic state may indicate that a particular treatment is or is not eff
  • Example 1 Contrast-induced nephropathy sample collection
  • the objective of this sample collection study is to collect samples of plasma and urine and clinical data from patients before and after receiving intravascular contrast media. Approximately 250 adults undergoing radiographic/angiographic procedures involving intravascular administration of iodinated contrast media are enrolled. To be enrolled in the study, each patient must meet all of the following inclusion criteria and none of the following exclusion criteria:
  • Inclusion Criteria males and females 18 years of age or older; undergoing a radiographic / angiographic procedure (such as a CT scan or coronary intervention) involving the intravascular administration of contrast media; expected to be hospitalized for at least 48 hours after contrast administration. able and willing to provide written informed consent for study participation and to comply with all study procedures.
  • Exclusion Criteria renal transplant recipients acutely worsening renal function prior to the contrast procedure; already receiving dialysis (either acute or chronic) or in imminent need of dialysis at enrollment; expected to undergo a major surgical procedure (such as involving cardiopulmonary bypass) or an additional imaging procedure with contrast media with significant risk for further renal insult within the 48 hrs following contrast administration; participation in an interventional clinical study with an experimental therapy within the previous 30 days; known infection with human immunodeficiency virus (HIV) or a hepatitis virus.
  • HAV human immunodeficiency virus
  • an EDTA anti-coagulated blood sample (10 mL) and a urine sample (10 mL) are collected from each patient. Blood and urine samples are then collected at 4 (+0.5), 8 (+1), 24 (+2) 48 (+2), and 72 (+2) hrs following the last administration of contrast media during the index contrast procedure. Blood is collected via direct venipuncture or via other available venous access, such as an existing femoral sheath, central venous line, peripheral intravenous line or hep-lock.
  • These study blood samples are processed to plasma at the clinical site, frozen and shipped to Astute Medical, Inc., San Diego, CA. The study urine samples are frozen and shipped to Astute Medical, Inc.
  • Serum creatinine is assessed at the site immediately prior to the first contrast administration (after any pre-procedure hydration) and at 4 ( ⁇ 0.5), 8 ( ⁇ 1), 24 ( ⁇ 2) and 48 ( ⁇ 2) ), and 72 ( ⁇ 2) hours following the last administration of contrast (ideally at the same time as the study samples are obtained).
  • each patient's status is evaluated through day 30 with regard to additional serum and urine creatinine measurements, a need for dialysis, hospitalization status, and adverse clinical outcomes (including mortality).
  • Example 2 Cardiac surgery sample collection
  • the objective of this sample collection study is to collect samples of plasma and urine and clinical data from patients before and after undergoing cardiovascular surgery, a procedure known to be potentially damaging to kidney function. Approximately 900 adults undergoing such surgery are enrolled. To be enrolled in the study, each patient must meet all of the following inclusion criteria and none of the following exclusion criteria:
  • Blood and urine samples are then collected at 3 ( ⁇ 0.5), 6 ( ⁇ 0.5), 12 ( ⁇ 1), 24 ( ⁇ 2) and 48 ( ⁇ 2) hrs following the procedure and then daily on days 3 through 7 if the subject remains in the hospital.
  • Blood is collected via direct venipuncture or via other available venous access, such as an existing femoral sheath, central venous line, peripheral intravenous line or hep-lock.
  • These study blood samples are frozen and shipped to Astute Medical, Inc., San Diego, CA.
  • the study urine samples are frozen and shipped to Astute Medical, Inc.
  • Example 3 Acutely ill subject sample collection
  • the objective of this study is to collect samples from acutely ill patients. Approximately 900 adults expected to be in the ICU for at least 48 hours will be enrolled. To be enrolled in the study, each patient must meet all of the following inclusion criteria and none of the following exclusion criteria:
  • Study population 1 approximately 300 patients that have at least one of: shock (SBP ⁇ 90 mmHg and/or need for vasopressor support to maintain MAP > 60 mmHg and/or documented drop in SBP of at least 40 mmHg); and sepsis;
  • shock SBP ⁇ 90 mmHg and/or need for vasopressor support to maintain MAP > 60 mmHg and/or documented drop in SBP of at least 40 mmHg
  • sepsis sepsis
  • Study population 2 approximately 300 patients that have at least one of:
  • IV antibiotics ordered in computerized physician order entry within 24 hours of enrollment; contrast media exposure within 24 hours of enrollment; increased Intra- Abdominal Pressure with acute decompensated heart failure; and severe trauma as the primary reason for ICU admission and likely to be hospitalized in the ICU for 48 hours after enrollment;
  • a known risk factor for acute renal injury e.g.
  • HAV human immunodeficiency virus
  • an EDTA anti-coagulated blood sample (10 mL) and a urine sample (25-30 mL) are collected from each patient. Blood and urine samples are then collected at 4 ( ⁇ 0.5) and 8 ( ⁇ 1) hours after contrast administration (if applicable); at 12 ( ⁇ 1), 24 ( ⁇ 2), and 48 ( ⁇ 2) hours after enrollment, and thereafter daily up to day 7 to day 14 while the subject is hospitalized. Blood is collected via direct venipuncture or via other available venous access, such as an existing femoral sheath, central venous line, peripheral intravenous line or hep-lock. These study blood samples are processed to plasma at the clinical site, frozen and shipped to Astute Medical, Inc., San Diego, CA. The study urine samples are frozen and shipped to Astute Medical, Inc.
  • Analytes are is measured using standard sandwich enzyme immunoassay techniques.
  • a first antibody which binds the analyte is immobilized in wells of a 96 well polystyrene microplate.
  • Analyte standards and test samples are pipetted into the appropriate wells and any analyte present is bound by the immobilized antibody.
  • a horseradish peroxidase-conjugated second antibody which binds the analyte is added to the wells, thereby forming sandwich complexes with the analyte (if present) and the first antibody.
  • a substrate solution comprising tetramethylbenzidine and hydrogen peroxide is added to the wells. Color develops in proportion to the amount of analyte present in the sample. The color development is stopped and the intensity of the color is measured at 540 nm or 570 nm. An analyte concentration is assigned to the test sample by comparison to a standard curve determined from the analyte standards.
  • Concentrations are expressed in the following examples as follows: Epidermal growth factor - pg/mL, Complement C3 - mg/mL, Interleukin-4 - pg/mL, Interleukin-1 alpha - ng/mL, Tubulointerstitial nephritis antigen - ⁇ g/mL, Transforming growth factor beta-1 - pg/mL, Bone morphogenetic protein 7 - pg/mL, Osteopontin - pg/mL, Netrin-1 - ng/mL, and Growth-regulated alpha protein - pg/mL.
  • Example 5 Apparently Healthy Donor and Chronic Disease Patient
  • Two cohorts were defined as (Cohort 1) patients that did not progress beyond stage 0, and (Cohort 2) patients that reached stage R, I, or F within 10 days.
  • marker levels were measured in urine samples collected for Cohort 1.
  • Marker concentrations were measured in urine samples collected from a subject at 0, 24 hours, and 48 hours prior to reaching stage R, I or F in Cohort 2.
  • the time "prior max stage” represents the time at which a sample is collected, relative to the time a particular patient reaches the lowest disease stage as defined for that cohort, binned into three groups which are +/- 12 hours. For example, 24 hr prior for this example (0 vs R, I, F) would mean 24 hr (+/- 12 hours) prior to reaching stage R (or I if no sample at R, or F if no sample at R or I).
  • Each marker was measured by standard immunoassay methods using commercially available assay reagents.
  • a receiver operating characteristic (ROC) curve was generated for each marker and the area under each ROC curve (AUC) was determined.
  • Patients in Cohort 2 were also separated according to the reason for adjudication to stage R, I, or F as being based on serum creatinine measurements (sCr), being based on urine output (UO), or being based on either serum creatinine measurements or urine output.
  • the stage 0 cohort may have included patients adjudicated to stage R, I, or F on the basis of urine output; for those patients adjudicated to stage R, I, or F on the basis of urine output alone, the stage 0 cohort may have included patients adjudicated to stage R, I, or F on the basis of serum creatinine measurements; and for those patients adjudicated to stage R, I, or F on the basis of serum creatinine measurements or urine output, the stage 0 cohort contains only patients in stage 0 for both serum creatinine measurements and urine output.
  • Example 7 Kidney injury markers for evaluating renal status in patients at RIFLE Stages 0 and R
  • Example 9 Kidney injury markers for evaluating renal status in patients at RIFLE Stage 0
  • Example 10 Kidney injury markers for evaluating renal status in patients at RIFLE Stage 0
  • Two cohorts were defined as (Cohort 1) patients that did not progress beyond stage 0, and (Cohort 2) patients that reached stage R, I, or F within 10 days.
  • marker levels were measured in the plasma component of blood samples collected for Cohort 1.
  • Marker concentrations were measured in the plasma component of blood samples collected from a subject at 0, 24 hours, and 48 hours prior to reaching stage R, I or F in Cohort 2.
  • the time "prior max stage” represents the time at which a sample is collected, relative to the time a particular patient reaches the lowest disease stage as defined for that cohort, binned into three groups which are +/- 12 hours. For example, 24 hr prior for this example (0 vs R, I, F) would mean 24 hr (+/- 12 hours) prior to reaching stage R (or I if no sample at R, or F if no sample at R or I).
  • Each marker was measured by standard immunoassay methods using commercially available assay reagents.
  • a receiver operating characteristic (ROC) curve was generated for each marker and the area under each ROC curve (AUC) was determined.
  • Patients in Cohort 2 were also separated according to the reason for adjudication to stage R, I, or F as being based on serum creatinine measurements (sCr), being based on urine output (UO), or being based on either serum creatinine measurements or urine output.
  • the stage 0 cohort may have included patients adjudicated to stage R, I, or F on the basis of urine output; for those patients adjudicated to stage R, I, or F on the basis of urine output alone, the stage 0 cohort may have included patients adjudicated to stage R, I, or F on the basis of serum creatinine measurements; and for those patients adjudicated to stage R, I, or F on the basis of serum creatinine measurements or urine output, the stage 0 cohort contains only patients in stage 0 for both serum creatinine measurements and urine output. Also, for those patients adjudicated to stage R, I, or F on the basis of serum creatinine measurements or urine output, the adjudication method which yielded the most severe RIFLE stage was used.
  • Example 11 Kidney injury markers for evaluating renal status in patients at RIFLE Stages 0 and R
  • Example 12 Kidney injury markers for evaluating renal status in patients progressing from Stage R to Stages I and F
  • Example 13 Kidney injury markers for evaluating renal status in patients at RIFLE Stage 0

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Pathology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Peptides Or Proteins (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
PCT/US2009/065419 2008-11-22 2009-11-21 Methods and compositions for diagnosis and prognosis of renal injury and renal failure WO2010059996A1 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
CA2743253A CA2743253A1 (en) 2008-11-22 2009-11-21 Methods and compositions for diagnosis and prognosis of renal injury and renal failure
NZ592552A NZ592552A (en) 2008-11-22 2009-11-21 Methods and compositions for diagnosis and prognosis of renal injury and renal failure
ES09828325.2T ES2528799T3 (es) 2008-11-22 2009-11-21 Métodos para el pronóstico de insuficiencia renal aguda
US13/130,474 US20110229915A1 (en) 2008-11-22 2009-11-21 Methods and compositions for diagnosis and prognosis of renal injury and renal failure
MX2011005379A MX2011005379A (es) 2008-11-22 2009-11-21 Metodos y composiciones para diagnosis y prognosis de lesion renal y falla renal.
EP09828325.2A EP2364370B1 (en) 2008-11-22 2009-11-21 Methods for prognosis of acute renal failure
BRPI0921921A BRPI0921921A2 (pt) 2008-11-22 2009-11-21 método para avaliar a condição renal em um indivíduo, e, uso de um ou mais marcadores de lesão renal.
JP2011537667A JP5735922B2 (ja) 2008-11-22 2009-11-21 腎損傷および腎不全の診断および予後のための方法
CN200980154224.5A CN102272328B (zh) 2008-11-22 2009-11-21 用于诊断和预后肾损伤和肾衰竭的方法和组合物
AU2009316387A AU2009316387B2 (en) 2008-11-22 2009-11-21 Methods and compositions for diagnosis and prognosis of renal injury and renal failure
HK12102399.9A HK1161901A1 (en) 2008-11-22 2012-03-09 Methods and compositions for diagnosis and prognosis of renal injury and renal failure

Applications Claiming Priority (20)

Application Number Priority Date Filing Date Title
US11716408P 2008-11-22 2008-11-22
US11716508P 2008-11-22 2008-11-22
US11717408P 2008-11-22 2008-11-22
US11715908P 2008-11-22 2008-11-22
US11713708P 2008-11-22 2008-11-22
US11714708P 2008-11-22 2008-11-22
US11717008P 2008-11-22 2008-11-22
US11714208P 2008-11-22 2008-11-22
US11716608P 2008-11-22 2008-11-22
US11717108P 2008-11-22 2008-11-22
US61/117,171 2008-11-22
US61/117,159 2008-11-22
US61/117,164 2008-11-22
US61/117,165 2008-11-22
US61/117,166 2008-11-22
US61/117,174 2008-11-22
US61/117,170 2008-11-22
US61/117,137 2008-11-22
US61/117,147 2008-11-22
US61/117,142 2008-11-22

Publications (1)

Publication Number Publication Date
WO2010059996A1 true WO2010059996A1 (en) 2010-05-27

Family

ID=42198524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/065419 WO2010059996A1 (en) 2008-11-22 2009-11-21 Methods and compositions for diagnosis and prognosis of renal injury and renal failure

Country Status (13)

Country Link
US (1) US20110229915A1 (ja)
EP (2) EP2811036A3 (ja)
JP (2) JP5735922B2 (ja)
KR (1) KR20110097850A (ja)
CN (3) CN102272328B (ja)
AU (1) AU2009316387B2 (ja)
BR (1) BRPI0921921A2 (ja)
CA (1) CA2743253A1 (ja)
ES (1) ES2528799T3 (ja)
HK (2) HK1161901A1 (ja)
MX (1) MX2011005379A (ja)
NZ (2) NZ592552A (ja)
WO (1) WO2010059996A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012012725A2 (en) 2010-07-23 2012-01-26 President And Fellows Of Harvard College Methods of detecting diseases or conditions using phagocytic cells
WO2012012704A2 (en) 2010-07-23 2012-01-26 President And Fellows Of Harvard College Methods of detecting kidney-associated diseases or conditions
US20120077690A1 (en) * 2010-09-24 2012-03-29 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Biomarkers of renal injury
WO2012155123A3 (en) * 2011-05-12 2013-01-10 Astute Medical, Inc. Methods and compositions for diagnosis and prognosis of renal injury and renal failure
JP2013531240A (ja) * 2010-06-23 2013-08-01 アスチュート メディカル,インコーポレイテッド 腎損傷および腎不全の診断および予後診断のための方法ならびに組成物
CN103238068A (zh) * 2010-10-07 2013-08-07 阿斯图特医药公司 用于肾损伤和肾衰竭的诊断及预后的方法和组合物
EP2661626A2 (en) * 2011-01-08 2013-11-13 Astute Medical, Inc. Methods and compositions for diagnosis and prognosis of renal injury and renal failure
CN103858008A (zh) * 2011-07-09 2014-06-11 阿斯图特医药公司 用于肾损伤和肾衰竭的诊断及预后的方法和组合物
WO2015153860A1 (en) * 2014-04-04 2015-10-08 Somalogic, Inc. Glomerular filtration rate biomarkers and uses thereof
WO2016083374A1 (en) * 2014-11-25 2016-06-02 F. Hoffmann-La Roche Ag Biomarkers of fast progression of chronic kidney disease
EP3066476A2 (en) * 2013-11-04 2016-09-14 The Regents of the University of Michigan Biomarkers and methods for progression prediction for chronic kidney disease
US10494675B2 (en) 2013-03-09 2019-12-03 Cell Mdx, Llc Methods of detecting cancer
US10626464B2 (en) 2014-09-11 2020-04-21 Cell Mdx, Llc Methods of detecting prostate cancer
US10823742B2 (en) 2010-06-23 2020-11-03 Astute Medical, Inc. Methods and compositions for diagnosis and prognosis of renal injury and renal failure
US10928403B2 (en) 2010-06-23 2021-02-23 Astute Medical, Inc. Methods and compositions for diagnosis and prognosis of renal injury and renal failure
US10934588B2 (en) 2008-01-18 2021-03-02 President And Fellows Of Harvard College Methods of detecting signatures of disease or conditions in bodily fluids
US10961578B2 (en) 2010-07-23 2021-03-30 President And Fellows Of Harvard College Methods of detecting prenatal or pregnancy-related diseases or conditions
US11111537B2 (en) 2010-07-23 2021-09-07 President And Fellows Of Harvard College Methods of detecting autoimmune or immune-related diseases or conditions
US11585814B2 (en) 2013-03-09 2023-02-21 Immunis.Ai, Inc. Methods of detecting prostate cancer
EP4303584A2 (en) 2010-07-23 2024-01-10 President and Fellows of Harvard College Methods for detecting signatures of disease or conditions in bodily fluids

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3546940B1 (en) * 2013-05-14 2021-02-17 Metabolon, Inc. Biomarkers related to kidney function and methods using the same
WO2018117011A1 (ja) 2016-12-19 2018-06-28 国立大学法人大阪大学 インビトロでのIgM型メモリーB細胞分化培養系を用いた臓器移植後抗体関連型拒絶反応の早期診断法
EP3686286B1 (en) * 2017-09-20 2023-11-08 Oncolock Co., Ltd. Ovarian cancer biomarker and use thereof
KR102036219B1 (ko) 2019-05-07 2019-10-24 서울대학교병원 유전자 프로모터의 CpG 메틸화 변화를 이용한 만성신장질환의 악화 예측용 조성물 및 이의 이용
KR102036221B1 (ko) 2019-05-07 2019-10-24 서울대학교병원 만성신장질환의 예후 예측을 위한 후성 유전학적 진단 키트 개발
KR102036220B1 (ko) 2019-05-07 2019-10-24 서울대학교병원 만성신장질환 특이적 후성학적 메틸화 마커 검출용 조성물 및 검출방법
KR102036222B1 (ko) 2019-05-07 2019-10-24 서울대학교병원 당뇨병성 신증에 의한 만성신장질환 환자의 예후 예측용 마커
KR102189142B1 (ko) 2020-10-15 2020-12-09 서울대학교병원 만성신장질환의 악화 예측 마커로서의 snp 및 이의 이용
KR102189144B1 (ko) 2020-10-15 2020-12-09 서울대학교병원 만성신장질환 악화 예측 마커 및 이를 이용한 악화 예측 방법
KR102189143B1 (ko) 2020-10-15 2020-12-09 서울대학교병원 만성신장질환 예후 예측을 위한 조성물 및 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080153092A1 (en) * 2006-09-05 2008-06-26 Stefan Kienle Markers of Renal Transplant Rejection and Renal Damage
US20080254485A1 (en) * 2006-11-14 2008-10-16 Biosite Incorporated Methods And Compositions For Monitoring And Risk Prediction In Cardiorenal Syndrome

Family Cites Families (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5223409A (en) 1988-09-02 1993-06-29 Protein Engineering Corp. Directed evolution of novel binding proteins
US5939272A (en) 1989-01-10 1999-08-17 Biosite Diagnostics Incorporated Non-competitive threshold ligand-receptor assays
US5028535A (en) 1989-01-10 1991-07-02 Biosite Diagnostics, Inc. Threshold ligand-receptor assay
US5922615A (en) 1990-03-12 1999-07-13 Biosite Diagnostics Incorporated Assay devices comprising a porous capture membrane in fluid-withdrawing contact with a nonabsorbent capillary network
CA2072758A1 (en) 1990-09-14 1992-03-15 Kenneth Francis Buechler Antibodies to complexes of ligand receptors and ligands and their utility in ligand-receptor assays
US5955377A (en) 1991-02-11 1999-09-21 Biostar, Inc. Methods and kits for the amplification of thin film based assays
CA2107894C (en) 1991-04-10 2003-10-14 Kenneth F. Buechler Crosstalk inhibitors and their uses
ES2150915T3 (es) 1991-04-12 2000-12-16 Biosite Diagnostics Inc Nuevos conjugados y dosificados destinados para la deteccion simultanea de ligandos multiples.
US5885527A (en) 1992-05-21 1999-03-23 Biosite Diagnostics, Inc. Diagnostic devices and apparatus for the controlled movement of reagents without membrances
US6143576A (en) 1992-05-21 2000-11-07 Biosite Diagnostics, Inc. Non-porous diagnostic devices for the controlled movement of reagents
US5494829A (en) 1992-07-31 1996-02-27 Biostar, Inc. Devices and methods for detection of an analyte based upon light interference
US5824799A (en) 1993-09-24 1998-10-20 Biosite Diagnostics Incorporated Hybrid phthalocyanine derivatives and their uses
US6498142B1 (en) * 1996-05-06 2002-12-24 Curis, Inc. Morphogen treatment for chronic renal failure
CN1147584C (zh) * 1996-05-24 2004-04-28 拜奥根有限公司 组织再生调节物
US6113855A (en) 1996-11-15 2000-09-05 Biosite Diagnostics, Inc. Devices comprising multiple capillarity inducing surfaces
US5947124A (en) 1997-03-11 1999-09-07 Biosite Diagnostics Incorporated Diagnostic for determining the time of a heart attack
US6057098A (en) 1997-04-04 2000-05-02 Biosite Diagnostics, Inc. Polyvalent display libraries
US20060223077A1 (en) * 1997-06-06 2006-10-05 Human Genome Sciences, Inc. 207 human secreted proteins
US6218122B1 (en) * 1998-06-19 2001-04-17 Rosetta Inpharmatics, Inc. Methods of monitoring disease states and therapies using gene expression profiles
US6958147B1 (en) * 1998-10-26 2005-10-25 Licentia Ltd Use of VEGF-C to prevent restenosis
BR9916407A (pt) * 1998-12-21 2001-09-25 Univ Monash Detecção e tratamento de doenças dos rins
EP1405072A2 (en) * 2000-12-29 2004-04-07 Oxford GlycoSciences (UK) Limited Proteins, genes and their use for diagnosis and treatment of kidney response
JP2005300158A (ja) * 2001-03-26 2005-10-27 Nippon Shinyaku Co Ltd 増殖性糸球体腎炎の予防・治療用薬物のスクリーニング方法
CA2442820A1 (en) * 2001-03-29 2002-10-10 Van Andel Institute Microarray gene expression profiling in clear cell renal cell carcinoma: prognosis and drug target identification
US20070015146A1 (en) * 2001-05-22 2007-01-18 Gene Logic, Inc. Molecular nephrotoxicology modeling
US7235358B2 (en) * 2001-06-08 2007-06-26 Expression Diagnostics, Inc. Methods and compositions for diagnosing and monitoring transplant rejection
US20030003588A1 (en) * 2001-06-28 2003-01-02 Comper Wayne D. Method for kidney disease detection by protein profiling
HUP0400659A3 (en) * 2001-07-24 2005-06-28 Zhu Zhou Woodbridge Methods, compositions and kits relating to chitinases and chitinase-like molecules and inflammatory disease
US6784154B2 (en) * 2001-11-01 2004-08-31 University Of Utah Research Foundation Method of use of erythropoietin to treat ischemic acute renal failure
US8404229B2 (en) * 2001-12-07 2013-03-26 Cytori Therapeutics, Inc. Methods of using adipose derived stem cells to treat acute tubular necrosis
US7442546B2 (en) * 2002-03-15 2008-10-28 The Regents Of The University Of Michigan Method of modulating inflammatory response
WO2003081201A2 (en) * 2002-03-21 2003-10-02 Yissum Research Development Company Of The Hebrew University Of Jerusalem Peripheral blood cell markers useful for diagnosing multiple sclerosis and methods and kits utilizing same
US7138229B2 (en) * 2002-12-06 2006-11-21 Renovar, Inc. Systems and methods for characterizing kidney diseases
US7138230B2 (en) * 2002-12-06 2006-11-21 Renovar, Inc. Systems and methods for characterizing kidney diseases
GB0215509D0 (en) * 2002-07-04 2002-08-14 Novartis Ag Marker genes
US6941172B2 (en) * 2002-11-18 2005-09-06 Zvi Nachum Method and device for restoring kidney function using electromagnetic stimulation
AU2003300823A1 (en) * 2002-12-06 2004-06-30 Sandia Corporation Outcome prediction and risk classification in childhood leukemia
CA2521826C (en) * 2003-04-11 2013-08-06 Jennifer L. Reed Recombinant il-9 antibodies and uses thereof
WO2005002416A2 (en) * 2003-06-04 2005-01-13 Joslin Diabetes Center, Inc. Predictors of renal disease
US20050148029A1 (en) * 2003-09-29 2005-07-07 Biosite, Inc. Methods and compositions for determining treatment regimens in systemic inflammatory response syndromes
DE10349124A1 (de) * 2003-10-22 2005-05-19 Roche Diagnostics Gmbh Differenzialdiagnostik mit Hepcidin
GB0329288D0 (en) * 2003-12-18 2004-01-21 Inverness Medical Switzerland Monitoring method and apparatus
EP1743031A4 (en) * 2004-04-26 2008-05-28 Childrens Medical Center BLOOD PLATE BIOMARKERS FOR THE DETECTION OF ILLNESSES
US20050272101A1 (en) * 2004-06-07 2005-12-08 Prasad Devarajan Method for the early detection of renal injury
US7588892B2 (en) * 2004-07-19 2009-09-15 Entelos, Inc. Reagent sets and gene signatures for renal tubule injury
US20080038192A1 (en) * 2004-07-19 2008-02-14 Neurochem Inc. Diagnostic Methods Of Multiple Organ Amyloidosis
US7141382B1 (en) * 2004-10-12 2006-11-28 Parikh Chirag R Methods for detection of IL-18 as an early marker for diagnosis of acute renal failure and predictor of mortality
EP1846576A4 (en) * 2005-02-01 2009-01-07 Us Gov Health & Human Serv BIOMARKER FOR TISSUE STATUS
CA2601623C (en) * 2005-03-14 2018-10-23 The Board Of Trustees Of The Leland Stanford Junior University Methods and compositions for evaluating graft survival in a solid organ transplant recipient
US7608413B1 (en) * 2005-03-25 2009-10-27 Celera Corporation Kidney disease targets and uses thereof
US20070037232A1 (en) * 2005-03-31 2007-02-15 Barasch Jonathan M Detection of NGAL in chronic renal disease
KR101363032B1 (ko) * 2005-04-18 2014-02-13 미토믹스 인크. 일광 노출, 전립선암 및 다른 암의 검출용 진단 도구로서미토콘드리아 돌연변이 및 전위
US20070087387A1 (en) * 2005-04-21 2007-04-19 Prasad Devarajan Method for the Early Detection of Renal Disease Using Proteomics
PL1874818T3 (pl) * 2005-04-22 2011-09-30 Lilly Co Eli Przeciwciała swoiste wobec TGF-beta 1
CA2614935A1 (en) * 2005-07-21 2007-02-01 The Johns Hopkins University Methods of detecting and treating acute kidney injury
US7759077B2 (en) * 2005-08-02 2010-07-20 Shariat Shahrokh F Soluble fas urinary marker for the detection of bladder transitional cell carcinoma
DE102006033004A1 (de) * 2005-08-09 2007-09-13 Löcker, Christian Klopfvorrichtung und -verfahren
EP1757940A1 (en) * 2005-08-26 2007-02-28 Cézanne S.A.S. In vitro method for diagnosing and monitoring renal cell carcinoma (RCC) using MMP-7 as humoral biomarker for RCC
WO2007026895A1 (ja) * 2005-09-02 2007-03-08 Toray Industries, Inc. 尿路上皮ガンの検出用キットおよび方法
US20080090304A1 (en) * 2006-10-13 2008-04-17 Barasch Jonathan Matthew Diagnosis and monitoring of chronic renal disease using ngal
US8329408B2 (en) * 2005-10-31 2012-12-11 Bayer Healthcare Llc Methods for prognosis and monitoring cancer therapy
US10716749B2 (en) * 2005-11-03 2020-07-21 Palo Alto Investors Methods and compositions for treating a renal disease condition in a subject
US7771995B2 (en) * 2005-11-14 2010-08-10 Merial Limited Plasmid encoding human BMP-7
US20080133141A1 (en) * 2005-12-22 2008-06-05 Frost Stephen J Weighted Scoring Methods and Use Thereof in Screening
TW200726845A (en) * 2006-01-02 2007-07-16 Nat Defense Medical Ct Biomarker molecular of renal illness and detecting method for the same
GB0605217D0 (en) * 2006-03-15 2006-04-26 Novartis Ag Method and compositions for assessing acute rejection
GB0606776D0 (en) * 2006-04-03 2006-05-10 Novartis Pharma Ag Predictive biomarkers for chronic allograft nephropathy
US7662578B2 (en) * 2006-04-21 2010-02-16 Children's Hospital Medical Center Method and kit for the early detection of impaired renal status
US20080038269A1 (en) * 2006-05-25 2008-02-14 Mount Sinai Hospital Methods for detecting and treating kidney disease
US20090298073A1 (en) * 2006-06-30 2009-12-03 Gerhold David L Kidney Toxicity Biomarkers
EP2049713A4 (en) * 2006-07-21 2010-06-16 Univ Alberta TISSUE REJECTION
US20080206794A1 (en) * 2006-09-15 2008-08-28 Renovar Incorporated Systems And Methods For Characterizing Contrast Induced-Nephropathy
WO2008073899A2 (en) * 2006-12-08 2008-06-19 The Children's Hospital Of Philadelphia Prrg4-associated compositions and methods of use thereof in methods of tumor diagnosis
GB0701626D0 (en) * 2007-01-22 2007-03-07 Cambridge Entpr Ltd Methods and biomarkers for diagnosing and monitoring psychotic disorders
US8221995B2 (en) * 2007-03-23 2012-07-17 Seok-Won Lee Methods and compositions for diagnosis and/or prognosis in systemic inflammatory response syndromes
EP2479569A3 (en) * 2007-03-26 2012-09-26 Novartis AG Predictive renal safety biomarkers and biomarker signatures to monitor kidney function
US8080394B2 (en) * 2007-04-27 2011-12-20 Brigham And Women's Hospital Method for determining predisposition to pulmonary infection
WO2008150488A1 (en) * 2007-06-01 2008-12-11 Laboratory Corporation Of America Holdings Methods and systems for quantification of peptides and other analytes
US20090047689A1 (en) * 2007-06-20 2009-02-19 John Kolman Autoantigen biomarkers for early diagnosis of lung adenocarcinoma
US20100267041A1 (en) * 2007-09-14 2010-10-21 Predictive Biosciences, Inc. Serial analysis of biomarkers for disease diagnosis
US20110059537A1 (en) * 2007-09-20 2011-03-10 Caritas St. Elizabeth's Medical Center Of Boston, Inc. Method for estimating risk of acute kidney injury
US8039227B2 (en) * 2007-09-20 2011-10-18 University Of Louisville Research Foundation, Inc. Peptide biomarkers predictive of renal function decline and kidney disease
US8003333B2 (en) * 2007-09-28 2011-08-23 Mayo Foundation For Medical Education And Research Serum biomarkers for early detection of acute cellular rejection
JP4423375B2 (ja) * 2008-02-29 2010-03-03 国立大学法人名古屋大学 急性腎障害及び予後推定用バイオマーカー並びにその用途
US20090298106A1 (en) * 2008-05-30 2009-12-03 Therapeutic Monitoring Services, L.L.C. Methods for Monitoring Immunosuppressant Drug Levels, Renal Function, and Hepatic Function Using Small Volume Samples
US8241861B1 (en) * 2008-07-08 2012-08-14 Insilicos, Llc Methods and compositions for diagnosis or prognosis of cardiovascular disease
EP2149613A1 (en) * 2008-07-28 2010-02-03 Greenwood Genetic Center, Inc. Methods for determining dysregulation of methylation of brain expressed genes on the X chromosome to diagnose autism spectrum disorders
US8673574B2 (en) * 2008-08-21 2014-03-18 Pxbiosciences Llc Diagnosis and monitoring of renal failure using peptide biomarkers
CN102187220B (zh) * 2008-08-28 2015-08-19 阿斯图特医药公司 用于诊断和预后肾损伤和肾衰竭的方法和组合物
JP5947544B2 (ja) * 2008-08-29 2016-07-06 アスチュート メディカル,インコーポレイテッド 腎損傷および腎不全の診断および予後のための方法および組成物
US8501489B2 (en) * 2008-09-26 2013-08-06 University of Pittsburgh—of the Commonwealth System of Higher Education Urinary biomarkers to predict long-term dialysis
CA2740788C (en) * 2008-10-21 2023-03-14 Astute Medical, Inc. Methods and compositions for diagnosis and prognosis of renal injury and renal failure
NZ619918A (en) * 2008-10-21 2015-04-24 Astute Medical Inc Methods and compositions for diagnosis and prognosis of renal injury and renal failure
WO2010090834A2 (en) * 2009-01-20 2010-08-12 The Penn State Research Foundation Netrin-1 as a biomarker of injury and disease
US9229010B2 (en) * 2009-02-06 2016-01-05 Astute Medical, Inc. Methods and compositions for diagnosis and prognosis of renal injury and renal failure
CA2770259A1 (en) * 2009-08-07 2011-02-10 Rules-Based Medicine, Inc. Methods and devices for detecting obstructive uropathy and associated disorders
NZ619883A (en) * 2009-09-21 2014-11-28 Astute Medical Inc Methods and compositions for diagnosis and prognosis of renal injury and renal failure
US20130035290A1 (en) * 2011-05-17 2013-02-07 Yale University Chitinase-3-Like Protein 1 as a Biomarker of Recovery from Kidney Injury

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080153092A1 (en) * 2006-09-05 2008-06-26 Stefan Kienle Markers of Renal Transplant Rejection and Renal Damage
US20080254485A1 (en) * 2006-11-14 2008-10-16 Biosite Incorporated Methods And Compositions For Monitoring And Risk Prediction In Cardiorenal Syndrome

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11001894B2 (en) 2008-01-18 2021-05-11 President And Fellows Of Harvard College Methods of detecting signatures of disease or conditions in bodily fluids
US10934588B2 (en) 2008-01-18 2021-03-02 President And Fellows Of Harvard College Methods of detecting signatures of disease or conditions in bodily fluids
US10934589B2 (en) 2008-01-18 2021-03-02 President And Fellows Of Harvard College Methods of detecting signatures of disease or conditions in bodily fluids
US11761967B2 (en) 2010-06-23 2023-09-19 Astute Medical, Inc. Methods and compositions for diagnosis and prognosis of renal injury and renal failure
JP2013531240A (ja) * 2010-06-23 2013-08-01 アスチュート メディカル,インコーポレイテッド 腎損傷および腎不全の診断および予後診断のための方法ならびに組成物
JP2016136154A (ja) * 2010-06-23 2016-07-28 アスチュート メディカル,インコーポレイテッド 腎損傷および腎不全の診断および予後診断のための方法ならびに組成物
US10928403B2 (en) 2010-06-23 2021-02-23 Astute Medical, Inc. Methods and compositions for diagnosis and prognosis of renal injury and renal failure
US10823742B2 (en) 2010-06-23 2020-11-03 Astute Medical, Inc. Methods and compositions for diagnosis and prognosis of renal injury and renal failure
US11111537B2 (en) 2010-07-23 2021-09-07 President And Fellows Of Harvard College Methods of detecting autoimmune or immune-related diseases or conditions
US10961578B2 (en) 2010-07-23 2021-03-30 President And Fellows Of Harvard College Methods of detecting prenatal or pregnancy-related diseases or conditions
EP4303584A2 (en) 2010-07-23 2024-01-10 President and Fellows of Harvard College Methods for detecting signatures of disease or conditions in bodily fluids
WO2012012725A2 (en) 2010-07-23 2012-01-26 President And Fellows Of Harvard College Methods of detecting diseases or conditions using phagocytic cells
WO2012012704A2 (en) 2010-07-23 2012-01-26 President And Fellows Of Harvard College Methods of detecting kidney-associated diseases or conditions
KR20140001863A (ko) * 2010-09-24 2014-01-07 유니버시티 오브 피츠버그 - 오브 더 커먼웰쓰 시스템 오브 하이어 에듀케이션 신장 손상의 생체마커
US20120077690A1 (en) * 2010-09-24 2012-03-29 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Biomarkers of renal injury
US11693014B2 (en) 2010-09-24 2023-07-04 University of Pittsburgh—of the Commonwealth System of Higher Education Biomarkers of renal injury
KR101981745B1 (ko) 2010-09-24 2019-05-27 유니버시티 오브 피츠버그 - 오브 더 커먼웰쓰 시스템 오브 하이어 에듀케이션 신장 손상의 생체마커
JP2013539030A (ja) * 2010-09-24 2013-10-17 ユニバーシティ オブ ピッツバーグ − オブ ザ コモンウェルス システム オブ ハイヤー エデュケイション 腎障害のバイオマーカー
US10557856B2 (en) * 2010-09-24 2020-02-11 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Biomarkers of renal injury
EP2625524A4 (en) * 2010-10-07 2014-05-07 Astute Medical Inc METHOD AND COMPOSITIONS FOR DIAGNOSIS AND FORECASTING kidney injury and kidney insufficiency
JP2016180762A (ja) * 2010-10-07 2016-10-13 アスチュート メディカル,インコーポレイテッド 腎損傷および腎不全の診断および予後診断のための方法ならびに組成物
CN103238068A (zh) * 2010-10-07 2013-08-07 阿斯图特医药公司 用于肾损伤和肾衰竭的诊断及预后的方法和组合物
JP2018141793A (ja) * 2010-10-07 2018-09-13 アスチュート メディカル,インコーポレイテッド 腎損傷および腎不全の診断および予後診断のための方法ならびに組成物
EP2625524A2 (en) * 2010-10-07 2013-08-14 Astute Medical, Inc. Methods and compositions for diagnosis and prognosis of renal injury and renal failure
EP2661626A2 (en) * 2011-01-08 2013-11-13 Astute Medical, Inc. Methods and compositions for diagnosis and prognosis of renal injury and renal failure
EP2661626A4 (en) * 2011-01-08 2014-03-12 Astute Medical Inc METHOD AND COMPOSITIONS FOR DIAGNOSIS AND FORECASTING kidney injury and kidney insufficiency
EP3133398A1 (en) * 2011-01-08 2017-02-22 Astute Medical, Inc. Methods and compositions for diagnosis and prognosis of renal injury and renal failure
WO2012155123A3 (en) * 2011-05-12 2013-01-10 Astute Medical, Inc. Methods and compositions for diagnosis and prognosis of renal injury and renal failure
CN103858008A (zh) * 2011-07-09 2014-06-11 阿斯图特医药公司 用于肾损伤和肾衰竭的诊断及预后的方法和组合物
US10494675B2 (en) 2013-03-09 2019-12-03 Cell Mdx, Llc Methods of detecting cancer
US11585814B2 (en) 2013-03-09 2023-02-21 Immunis.Ai, Inc. Methods of detecting prostate cancer
AU2014343709B2 (en) * 2013-11-04 2020-11-19 The Regents Of The University Of Michigan Biomarkers and methods for progression prediction for chronic kidney disease
US10274502B2 (en) 2013-11-04 2019-04-30 The Regents Of The University Of Michigan Biomarkers and methods for progression prediction for chronic kidney disease
EP3066476A2 (en) * 2013-11-04 2016-09-14 The Regents of the University of Michigan Biomarkers and methods for progression prediction for chronic kidney disease
WO2015153860A1 (en) * 2014-04-04 2015-10-08 Somalogic, Inc. Glomerular filtration rate biomarkers and uses thereof
US10626464B2 (en) 2014-09-11 2020-04-21 Cell Mdx, Llc Methods of detecting prostate cancer
WO2016083374A1 (en) * 2014-11-25 2016-06-02 F. Hoffmann-La Roche Ag Biomarkers of fast progression of chronic kidney disease

Also Published As

Publication number Publication date
CN102272328B (zh) 2014-06-18
ES2528799T3 (es) 2015-02-12
KR20110097850A (ko) 2011-08-31
BRPI0921921A2 (pt) 2019-09-24
EP2364370A1 (en) 2011-09-14
JP2012510058A (ja) 2012-04-26
CN102272328A (zh) 2011-12-07
CN103439510B (zh) 2016-09-14
AU2009316387A1 (en) 2010-05-27
EP2811036A2 (en) 2014-12-10
HK1161901A1 (en) 2012-08-10
NZ592552A (en) 2013-12-20
CN103439510A (zh) 2013-12-11
CN104034901A (zh) 2014-09-10
EP2364370A4 (en) 2012-03-21
HK1199931A1 (en) 2015-07-24
EP2811036A3 (en) 2015-02-18
NZ604873A (en) 2014-05-30
US20110229915A1 (en) 2011-09-22
JP5735922B2 (ja) 2015-06-17
MX2011005379A (es) 2011-06-09
JP2015064381A (ja) 2015-04-09
EP2364370B1 (en) 2014-09-03
AU2009316387B2 (en) 2015-01-29
CA2743253A1 (en) 2010-05-27

Similar Documents

Publication Publication Date Title
AU2009313189B2 (en) Methods and compositions for diagnosis and prognosis of renal injury and renal failure
AU2009316387B2 (en) Methods and compositions for diagnosis and prognosis of renal injury and renal failure
WO2010025434A1 (en) Methods and compositions for diagnosis and prognosis of renal injury and renal failure
WO2010048347A2 (en) Methods and compositions for diagnosis and prognosis of renal injury and renal failure
EP2324355A1 (en) Methods and compositions for diagnosis and prognosis of renal injury and renal failure
WO2010091236A9 (en) Methods and compositions for diagnosis and prognosis of renal injury and failure
EP2364444A1 (en) Methods and compositions for diagnosis and prognosis of renal injury and renal failure
EP2946211A1 (en) Methods and compositions for diagnosis and prognosis of renal injury and renal failure
EP2470905A1 (en) Methods and compositions for diagnosis and prognosis of renal injury and renal failure
WO2010091231A1 (en) Methods and compositions for diagnosis and prognosis of renal injury and renal failure
AU2015336069B2 (en) Methods and compositions for diagnosis and prognosis of renal injury and renal failure
WO2010091233A1 (en) Diagnosis and prognosis of renal injury and renal failure
WO2011017654A1 (en) Methods and compositions for diagnosis and prognosis of renal injury and renal failure
EP3218724A1 (en) Methods and compositions for diagnosis and prognosis of renal injury and renal failure
WO2011097540A9 (en) Methods and compositions for diagnosis and prognosis of renal injury and renal failure
EP2820146A1 (en) Methods and compositions for diagnosis and prognosis of renal injury and renal failure
EP2661620A1 (en) Method and compositions for diagnosis and prognosis of renal injury and renal failure
WO2016176483A1 (en) Methods and compositions for diagnosis and prognosis of renal injury and renal failure
AU2015202151A1 (en) Methods and compositions for diagnosis and prognosis of renal injury and renal failure
AU2015200266A1 (en) Methods and compositions for diagnosis and prognosis of renal injury and renal failure
EP2951581A1 (en) Methods and compositions for diagnosis and prognosis of renal injury and renal failure
EP2707524A2 (en) Methods and compositions for diagnosis and prognosis of renal injury and renal failure

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980154224.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09828325

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 592552

Country of ref document: NZ

Ref document number: 2009316387

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2743253

Country of ref document: CA

Ref document number: 2011537667

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2011/005379

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2009316387

Country of ref document: AU

Date of ref document: 20091121

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009828325

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13130474

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1262/MUMNP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20117014014

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: PI0921921

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110520