WO2010059883A1 - Compositions d'hydrogel dégradable et procédés - Google Patents

Compositions d'hydrogel dégradable et procédés Download PDF

Info

Publication number
WO2010059883A1
WO2010059883A1 PCT/US2009/065225 US2009065225W WO2010059883A1 WO 2010059883 A1 WO2010059883 A1 WO 2010059883A1 US 2009065225 W US2009065225 W US 2009065225W WO 2010059883 A1 WO2010059883 A1 WO 2010059883A1
Authority
WO
WIPO (PCT)
Prior art keywords
gaba
hydrogel
linker
aha
formulation
Prior art date
Application number
PCT/US2009/065225
Other languages
English (en)
Inventor
Patrick John Sinko
Manjeet Deshmukh
Yashveer Singh
Simi Gunaseelan
Original Assignee
Rutgers, The State University Of New Jersey
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rutgers, The State University Of New Jersey filed Critical Rutgers, The State University Of New Jersey
Priority to US13/129,949 priority Critical patent/US9345662B2/en
Publication of WO2010059883A1 publication Critical patent/WO2010059883A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • A61K9/0024Solid, semi-solid or solidifying implants, which are implanted or injected in body tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6903Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being semi-solid, e.g. an ointment, a gel, a hydrogel or a solidifying gel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • A61K49/0021Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent group being a small organic molecule
    • A61K49/0032Methine dyes, e.g. cyanine dyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • A61K49/0021Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent group being a small organic molecule
    • A61K49/0041Xanthene dyes, used in vivo, e.g. administered to a mice, e.g. rhodamines, rose Bengal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • A61K49/0021Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent group being a small organic molecule
    • A61K49/0041Xanthene dyes, used in vivo, e.g. administered to a mice, e.g. rhodamines, rose Bengal
    • A61K49/0043Fluorescein, used in vivo
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0063Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres
    • A61K49/0069Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form
    • A61K49/0073Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form semi-solid, gel, hydrogel, ointment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels

Definitions

  • This invention concerns an in situ biodegradable hydrogel drug delivery system in which the components are assembled in a manner that provides a mechanism for the timed cleavage of a particular amide bond in a covalently linked active agent, leading to release of that agent, or of a particular amide bond in the hydrogel matrix, leading to the degradation of the hydrogel itself.
  • the present invention utilizes timed bond degradation resulting in hydrogel degradation and/or release of an active agent from the hydrogel.
  • Two mechanisms of agent loading for the hydrogel include: (i) passive entrapment; and (ii) covalent attachment.
  • the present invention incorporates novel hydrogel chemistry enabling a time based biodegradation mechanism for the hydrogel.
  • the hydrogel will be degraded via this biodegradation mechanism into smaller, soluble PEG conjugates, which are naturally cleared from the body (renal, hepatic, and so on) without resorting to surgical or other invasive procedures.
  • the hydrogels in the present invention could be preferably used for following: (i) subcutaneous delivery of active agents into the body; and (ii) local intraductal delivery of active agents to the breast ducts for the treatment and image-guided interventions in ductal carcinoma in situ (DCIS).
  • Hydrogels are cross-linked network of hydrophilic polymers with ability to absorb large amount of water and swell, while maintaining their three-dimensional structure. The molecules of different sizes can diffuse into and out of this swollen three-dimensional network, which allows their possible use as drug-depot for controlled release applications. Hydrogels show minimum tendency to adsorb protein from body fluids due to their low interfacial tension and they also resemble closely to the living tissue due to their high-water content, and soft and rubbery characteristics. Due to their above-mentioned properties, hydrogels find use as scaffolds in tissue engineering and drug delivery systems in various biomedical and pharmaceutical applications 1 ' 2 . Most hydrogel-based drug delivery systems are implants designed to release drug locally at a predetermined rate.
  • Hydrogels are prepared by intermolecular crosslinking of polymer chains through multifunctional crosslinkers.
  • the poly(ethylene glycol) or PEG polymers are probably the most versatile polymers for medical applications because they possess chemically inert polyether backbone and show excellent solubility in aqueous media.
  • PEG's are nontoxic, non-immunogenic, and non-biodegradable, which makes them suitable for modification with biologically active compounds 3 .
  • Several PEG hydrogels have been prepared using different crosslinking mechanisms for drug delivery applications 4-10 . Unfortunately, the hydrogels when prepared using non-degradable chemical bonds are not cleared from the body unless removed by surgical or other invasive means, which is inconvenient at best.
  • biodegradation chemical or enzymatic cleavage in physiological environment
  • hydrogel drug delivery systems ensures that the drug depot is naturally removed from the body by utilizing the existing clearing mechanisms (renal, hepatic, and so on), once the drug delivery objectives have been achieved.
  • Henne et al have synthesized novel folate peptide camptothecin conjugate to release free CPT under reduced conditions using releasable disulfide carbonate linker capable of conferring water solubility to the conjugate 13 . Furthermore, polymer-doxorubicin ("Dox"), conjugates with Schiff base linkages, which release Dox when exposed to acidic conditions, have been obtained 11 . HPMA-Gly-Phe-Leu-Gly-Dox conjugate has been developed in which the in-built tetrapeptidyl linker (Gly-Phe-Leu-Gly) is cleaved by cathepsin B enzyme to release the free dox 14 .
  • Dox polymer-doxorubicin
  • the release of the protein from the hydrogel was controlled by hydrolysis of ester bonds between the protein (active agent) and the hyrogel matrix (drug depot). Andac et ⁇ /. 16 prepared biodegradable hydrogels using disulfide-linked components, which could be cleaved with reducing agents.
  • the PEG hydrogels have been degraded naturally by enzymes, 17 .
  • Enzymatically degradable hydrogels containing passively entrapped (no covalent bond between the active agent and the carrier) have also been obtained 18 .
  • Another variant known is the polymer drug conjugate covalently linked to the hydrogel matrix through an enzyme cleavable linker 19 . Saito and Hoffman 11 developed polymer-dox conjugates, which could be covalently linked to biodegradable PEG hydrogels using acid cleavable Schiff base linkages.
  • polymeric carriers or hydrogel drug delivery systems developed using the existing degradation technology do not exhibit timed degradation of the hydrogel matrix or the release of active agents.
  • the present invention aims to fill this existing technology gap by developing PEG hydrogel technology, where the hydrogel biodegradations and the release of active agents from the hydrogel are timed, ("controlled").
  • the present disclosure describes: (i) linear and multiarm PEG and other polymers suitable for the preparation of biodegradable hydrogels; (ii) synthesis and characterization of multifunctional PEG crosslinkers for timed biodegradation of hydrogels; (ii) preparation of biodegrdable hydrogels with passively entrapped active agents; (iii) biodegradation studies in buffer and plasma; and (iv) covalent attachment of active agents to the hydrogel matrix and their timed release.
  • This disclosure also describes the most preferred use of present invention: (i) depot for subcutaneous release of active agents (mouse model); and (ii) local intraductal delivery of active agents to the breast ducts (rat model) for the treatment and image-guided interventions in ductal carcinoma in situ (DCIS).
  • the hydrogel is based on intermolecular crosslinking of soluble PEG polymers, which forms an insoluble, high molecular weight PEG hydrogel matrix. Active agents may be loaded into this hydrogel prior to the cross-linking reaction, so that the hydrogel will serve as a depot for the sustained release of that agent. However, when release of drug is complete, the spent hydrogel will remain as a lump under the skin. Rather than surgically removing the spent hydrogel, we have devised a process that can cause the spent hydrogel to degrade at a preselected time, which would be after drug release has been completed. This biodegradation reaction is designed to be independent of any other chemical groups in the hydrogel or in the active agent.
  • the chemical reaction used for forming the hydrogel by crosslinking should not interfere with the chemical reaction used for biodegradation.
  • the cross-linker may comprise a thiol-reactive group such as vinylsulfone or maleimide that will react with thiol groups on PEG; and (ii) using steric effects to favor the crosslinking reaction.
  • the cross-linker contains both the chemoselective group needed for hydrogel formation and a separate chemical group needed for the biodegradation reaction.
  • the present invention is directed in part, to materials and methods for the preparation and use of hydrogels incorporating chemistries allowing for timed degradation and/or release of active agents, which may be embedded therein by covalent or non-covalent means.
  • This new self-cleaving mechanism of the cross-linker is based on a chemical reaction in which an N-terminal residue of glutamine in a peptide participates in the displacement of its ⁇ -amino group by its ⁇ -amino group ( Figure 2).
  • the glutamine residue becomes the cyclic analog, pyroglutamic acid, and one equivalent of ammonia is released ( Figure 2).
  • An example of this spontaneous reaction is the pituitary hormone, luteinizing hormone releasing hormone (LHRH) 20 We sought to utilize this mechanism for the controlled degradation of a hydrogel.
  • Biodegradable hydrogel with timed degradation of the matrix and/or release of active agents could be used for the subcutaneous delivery of active agents.
  • Hydrogels (polymer/copolymer, crosslinker, and/or active agents) could be subcutaneously administered into the body as solution, where it is converted into the hydrogel in situ due to the intermolecular crosslinking of polymer/copolymer chains. Hydrogel stays into the subcutaneous space and provide controlled-release of active agents (e.g, doxorubicin) into the body. While the hydrogels keep releasing active agents into the body, they simultaneously degrade due to the eliminination mechanism describe above, and get converted into soluble PEG molecules, which are naturally cleared from the body without resorting to surgical or invasive procedures.
  • active agents e.g, doxorubicin
  • DCIS ductal carcinoma in situ
  • DCIS ductal carcinoma in situ
  • local treatments for breast cancer currently include breast conserving surgery or mastectomy, and may be coupled with radiation therapy.
  • adjuvant systemic therapy may be used including several months of polychemotherapy or years of endocrine therapy for treatment of hormone receptor positive disease.
  • Systemic therapy is also recommended in women for either prevention or treatment of a non-invasive disease. Unfortunately, systemic therapy is often associated with significant side effects.
  • Biodegradable hydrogel technology could be used to delivery drugs intraductally.
  • Hydrogel containing drug modified with polymeric carriers and/or targeting moiety
  • the hydrogel depot provides a controlled drug release.
  • the drug will not diffuse into the systemic circulation due to its large molecular size and will be taken up by the cancerous cells lining the ductal epithelium.
  • high local drug concentration is achieved in breast duct accompanied with low systemic toxicities.
  • hydrogel degrades and is cleared from the breast duct and degradation could be timed to match the treatment regimen (e.g., 30 days). Another approach is to completely remove the diseased ducts by surgery, which is difficult to achieve.
  • Biodegradable hydrogels could be used to deliver imaging agents (dye covalently attached to the hydrogel matrix) to breast ducts (Figure 17), where it helps identify right margins for the complete removal of ducts during the surgery (image- guided interventions). The degradation is timed so that hydrogels remain stable during the period patients are monitored ( ⁇ 30-60 days) but degrade after this period.
  • It is an object of the invention to provide a pharmaceutical formulation capable of forming a biodegradable hydrogel in situ to provide timed release of an active agent comprising: a hydrophilic agent that is a polyethylene glycol polymer or copolymer, a multifunctional polyethylene glycol cross-linker which forms a hydrogel in situ by interaction between functional groups on the cross-linker and functional groups on the hydrophilic agent, a therapeutically effective amount of one or more active agents, and a linker containing an amide bond; the formulation comprising either: a) the active agent bonded to the linker, and the linker bonded to the hydrogel wherein the linker containing an amide bond provides timed cleavage of the active agent from the hydrogel, or b) the active agent passively entrapped in the hydrogel, the cross-linker bonded to the linker, and the linker bonded to the polyethylene glycol polymer or copolymer wherein the linker containing an amide bond provides timed cleavage of
  • the invention is directed to a pharmaceutical formulation capable of forming a biodegradable hydrogel in situ to provide timed release of an active agent
  • an active agent comprising: a hydrophilic agent that is a polyethylene glycol polymer or copolymer, a multifunctional polyethylene glycol cross-linker which forms a hydrogel in situ by interaction between functional groups on the cross-linker and functional groups on the hydrophilic agent, a therapeutically effective amount of one or more active agents, and a linker containing an amide bond; the formulation comprising either: a) the active agent bonded to the linker, and the linker bonded to the hydrogel wherein the linker containing an amide bond provides timed cleavage of the active agent from the hydrogel, or b) the active agent passively entrapped in the hydrogel, the cross-linker bonded to the linker, and the linker bonded to the polyethylene glycol polymer or copolymer wherein the linker containing an amide bond provides timed cleavage
  • the invention is directed to a formulation wherein the polyethylene glycol cross-linker is a bifunctional cross-linker.
  • the invention is directed to a formulation wherein the active agent is bonded to the hydrogel, by degradable and non-degradable bonds, and is present in a concentration of about 1 to about 10% (w/v).
  • the amide bond providing the timed cleavage comprises an amino functional group attached to a ⁇ -carboxyl group, and the cleavage reaction provides a primary amine compound as the leaving group.
  • the linker comprises glutamic acid bonded to the hydrogel, a ⁇ -carboxylic group of glutamic acid is attached to an active agent through an amide bond, the ⁇ -amino group of glutamic acid is free and provides timed cleavage by reacting with the ⁇ -carboxylic group, resulting in cleavage of the ⁇ -amide bond and formation of a five member cyclic ring, and releasing the active agent.
  • hydrophilic agent is a multi-arm thiol-containing PEG
  • crosslinker is a multifunctional PEG cross-linker containing thiol-reactive function groups
  • thiol-reactive function groups are selected from the group consisting of a vinylsulfone, a maleimide and combinations thereof.
  • the cross-linker contains thiol groups, and the hydrophilic agent is a multi-arm PEG containing thiol-reactive functional groups.
  • thiol-reactive functional groups are selected from the group consisting of a vinylsulfone, a maleimide and combinations thereof.
  • polyethylene glycol is a linear or multi-arm having from 2 to 8 arms.
  • the cross-linker is selected from the group consisting of EMXL (CONH2- Cys(VS)-Glu(NH 2 )-PEG-Glu(NH 2 )-Cys(VS)-CONH 2 ), GABA-EMXL(CONH 2 -CyS(VS)-Glu(GABA- NH 2 )-PEG-Glu(GABA-NH 2 )-Cys(VS-)-CONH 2 ), and combinations thereof.
  • the cross-linker is selected from the group consisting of BM[PEOk 0 > 8-bis- maleimidotriethyleneglycol), BM[PE0]4 (1,11-bis-maleimidotriethyleneglycol), BMH (bis- maleimidohexane), BMOE (bis-baleimidoethane) and combinations thereof.
  • cross-linker is selected from the group consisting of rEMXL, dithiothreitol, polycysteines, PEG-dithiol, a 4-arm thiol and combinations thereof.
  • the active agent is selected from the group consisting of: anti-inflammatory drugs, NSAID analogs, NSAID-ache (NSAID-acetylcholinesterase complexes, steroidal anti-inflammatory drugs, anticancer drugs, HIV protease inhibitors, monoclonal antibodies, imaging agents, and combinations thereof.
  • the active agent is selected from the group consisting of: indomethacin, sancycline, a sancycline analog, olvanil, an olvanil analog, retro-olvanil, a retro-olvanil analog, olvanil carbamate, budesonide, a budesonide analog, methylprednisolone, a methylprenisolone analog, dexamethasone, a dexamethasone analog, camptothecin, carboplatin, doxorubicin, paclitaxel, saquinavir mesylate, amprenavir, ritonavir, indinavir, nelfinavir mesylate, tipranavir, darunavir, atazanavir sulfate, a coloring dye, an FD and C dye, a visible/
  • a targeting moiety selected from the group consisting of: an RGD peptide, EGF peptide, DV3 (LGASWHRPDKC) peptide, a LYP peptide (CGNKRTRGC), membrane-binding domain of IGFBP3 (QCRPSKGRKRGFCW), fMLF, mannose, transferrin ligand, and monoclonal antibodies.
  • the active agent is doxorubicin which is modified with a targeting moiety selected from the group consisting of: Leu-Gly, Glu(Leu-Gly)2, Arg-Gly-Asp-Cys, Gly-Arg-Gly-Asp- Ser, Gly-Arg-Gly-Asp-Ser-Pro, cyclic Arg-Gly-Asp-Tyr-Lys, any peptide with Arg-Gly-Asp, and combinations thereof.
  • a targeting moiety selected from the group consisting of: Leu-Gly, Glu(Leu-Gly)2, Arg-Gly-Asp-Cys, Gly-Arg-Gly-Asp- Ser, Gly-Arg-Gly-Asp-Ser-Pro, cyclic Arg-Gly-Asp-Tyr-Lys, any peptide with Arg-Gly-Asp, and combinations thereof.
  • It is further object of the invention to provide a method of preparation of the polymer containing terminal thiol for use in the formulation in accordance with any of the above objects comprising: reacting diamino-PEG having from 2 to 8 arms and a molecular weight of from about 1 to about 2OkDa, with Dde-Glu-( ⁇ COOH)-Cys(StBu)-CONH 2 or Dde-AA-Glu-( ⁇ COOH)-Cys(StBu)- CONH 2 wherein AA is GABA, AHA, AOA, GABA-GABA, AHA-AHA, AOA-AOA, AHA-GABA, AOA-GABA, AHA-GABA, from both sides in DMF to obtain (Dde- AA-Ri -SStBu) 2 PEG, removing the -StBu protecting group presets in Ri by treatment with DTT, and removing the Dde-groups by treatment with hydrazine.
  • the active agent is administered subcutaneously. In certain embodiments, the active agent is administered intraductally. In certain embodiments, the timed release of the active agent is from about 1 min to about 1440 h. In certain embodiments, the timed release of the active agent is from about 1 min to about 720 h. In certain embodiments, the timed release of the active agent is from about 1 min to about 490 h. In certain embodiments, the timed release of the active agent is from about 1 min to about 360 h. In certain embodiments, the timed release of the active agent is from about 1 min to about 336 h.
  • the timed release of the active agent is from about 1 min to about 119 h. In certain embodiments, the timed release of the active agent is from about 1 min to about 72 h. In certain embodiments, the timed release of the active agent is from about 1 min to about 47 h. In certain embodiments, the timed release of the active agent is from about 1 min to about 29.5 h. In certain embodiments, the timed release of the active agent is from about 1 min to about 17.5 h. In certain embodiments, the timed release of the active agent is from about 1 min to about 10 h. In certain embodiments, the timed degradation of the hydrogel is from about Ih to about 2160 h.
  • the timed degradation of the hydrogel is from about Ih to about 720 h. In certain embodiments, the timed degradation of the hydrogel is from about Ih to about 490 h. In certain embodiments, the timed degradation of the hydrogel is from about Ih to about 360 h. In certain embodiments, the timed degradation of the hydrogel is from about Ih to about 336 h. In certain embodiments, the timed degradation of the hydrogel is from about Ih to about 119 h. In certain embodiments, the timed degradation of the hydrogel is from about Ih to about 72 h. In certain embodiments, the timed degradation of the hydrogel is from about Ih to about 47 h.
  • the timed degradation of the hydrogel is from about Ih to about 29.5 h. In certain embodiments, the timed degradation of the hydrogel is from about Ih to about 17.5 h. In certain embodiments, the timed degradation of the hydrogel is from about Ih to about 1O h.
  • Figure 1 Schematic presentation of biodegrdable hydrogel formation.
  • Figure 3 New mechanism: glutamine residue is converted to the cyclic analog, pyroglutamic acid, and a free primary amine is released.
  • Figure 4 Basic skeleton of biodegradable PEG crosslinkers.
  • Figure 5 Schematic representation of the invention, wherein X represents the active agents or hydrogel matrix.
  • Figure 6 Schematic representation of the invention, wherein X represents the hydrogel matrix.
  • Figure 7 Schematic representation of the invention, wherein X represents the active agents.
  • FIG. 10 MALDI-TOF mass spectrum of EMXL (compound 5).
  • Figure 10 Synthesis of biodegradable crosslinker: GABAEMXL (compound 10).
  • Figure 13 MALDI-TOF mass spectrum of diamino-PEG after hydrogel degradation.
  • Figure 15 Synthesis of PEG-Glu-( ⁇ )Lys(Z)OMe and PEG-Glu-( ⁇ )Lys(Z)OMe conjugates, a) PEG-NH 2 (2OkDa), PyBOP, DIEA, DCM, 24 °C, 8h; b) 20% TFA in DCM, 24 °C, Ih; c) Z-LysOMe, PyBOP, DIEA, DCM, 24 °C, 8h; d) 10% pipyridine in DCM, 24 °C, 0.5h; e) H-Lys(Z)OMe, PyBOP, DIEA, DCM, 24 °C, 8h; f) 10% pipyridine in DCM, 24 °C, 0.5h.
  • FIG. 17 Non-invasive retention studies of an in situ hydrogel in rats breast duct. Hydrogel (0.1 mL) were formed in situ in the breast duct by crosslinking of PEG 20kDa -[S-fluorescein]o. 5 [SH] 7 . 5 nanocarrier with PEG 3 . 4kDa -[NHS] 2 crosslinker through thioester bonds.
  • Elimination reaction causing timed (controlled) degradation of hydrogel.
  • Incorporation of a compound having a nucleophilic moiety such as Glutamic acid (Glu) or ⁇ -aminobutyric acid in the linker gives rise to the elimination mechanism.
  • the ⁇ -carboxylic group of Glu is attached to a cross- linker unit via an amide bond.
  • the ⁇ -amino group of the Glu is free.
  • the free amino group of Glu attacks its own ⁇ -carboxylic group, resulting in cleavage of the ⁇ amide bond to form a five member cyclic ring. Breakage of the amide bond gives the driving force for the degradation of the hydrogel matrix.
  • Figure 5 and 6 shows the elimination reaction (basic mechanism causing the timed degradation of hydrogel matrix.
  • Glutamic acid is the central component in the elimination mechanism.
  • the ⁇ -carboxylic group of Glu is attached to an active agent through an amide bond.
  • the ⁇ -amino group of Glu is free, which attacks its own ⁇ -carboxylic group, resulting in cleavage of the ⁇ -amide bond and formation of a five member cyclic ring. Breakage of the amide bond gives the driving force for the release of active agent.
  • Figure 7 shows the elimination reaction (basic mechanism) causing the release of active agents from the hydrogel.
  • Hydrogels are formed in situ by reaction between a multivalent copolymer or PEG polymer and cross-linker in aqueous medium.
  • the PEG polymer or copolymer contain thiol groups whereas the crosslinker has thiol-reactive vinylsulfone, maleimide etc. groups; or
  • the crosslinker contain thiol groups whereas PEG polymer or copolymer contains thiol-reactive vinylsulfone, maleimide etc. groups ("reverse chemistry").
  • the hydrogels disclosed herein can be obtained over a broad concentration range of the polymers or copolymers, and crosslinkers.
  • the concentration ranges of the polymer or copolymer is 1%-20%(WN) and that of the crosslinker is 1%-15% (w/v).
  • the ratios of the polymer or copolymer to the crosslinker in the hydrogel vary from 0.05:10 to 10:0.05 and preferably 2:0.05. Either single type of polymer/copolymer and crosslinker is used or a combination of different types of unmodified and modified copolymer or polymer and crosslinkers is used.
  • Polymers for hydrogel formation Linear or multi-arm PEG having 2 or more arms, and preferably PEG having 2 to 8 arms containing multiple thiol groups (more than 1) with in a molecular weight range: 1000-100,000 Da. Polymers could be unmodified or modified with active agents (timed- release mechanism, other degradation mechanism, or non-degradable) prior to hydrogel formation.
  • Copolymer containing thiol groups The invention can be extended to copolymers containing repeating units of thiol groups.
  • copolymer like poly[poly(ethylene glycol)-alt-poly (mercaptosuccinic acid)] 23 in the molecular weight range of 10,000 to 100,000 Da.
  • Copolymers could be unmodified or modified with active agents (timed-release mechanism, other degradation mechanism, or non-degradable) prior to hydrogel formation.
  • Polymer containing peptide thiol groups The invention can be extended to polymers containing repeating units of peptide thiol groups such as polycysteine in the molecular weight range of 1,000 to 100,000 Da. Polymers could be unmodified or modified with active agents (timed-release mechanism, other degradation mechanism, or non-degradable) prior to hydrogel formation.
  • the polymer containing terminal thiol groups based on elimination mechanism were obtained by reacting diamino-PEG (preferably 2-8 arms, MW -1-20 kDa) with Dde-Glu-( ⁇ COOH)-Cys(StBu)-CONH 2 or Dde-AA-Glu-( ⁇ COOH)-Cys(StBu)-CONH 2
  • AA is GABA, AHA, AOA, GABA-GABA, AHA-AHA, AOA-AOA, AHA-GABA, AOA-GABA, AHA-GABA] from both sides in DMF to obtain (Dde-AA- Ri-SStBu)2PEG.
  • the -StBu protecting group presets in Ri were removed by treatment with DTT and the Dde-groups were removed by hydrazine.
  • Cross-linkers for hydrogel formation are used for hydrogel formation through thioether bonds.
  • Crosslinkers could be linear or branched, contain preferably 2-8 functional groups in the molecular weight range of 1-20 kDa.
  • cross-linkers containing vinylsulfone groups The cross-linkers containing terminal vinylsulfone (VS) functional groups like EMXL (CONH 2 -Cys(VS)-Glu(NH 2 )-PEG-Glu(NH 2 )- CyS(VS)-CONH 2 ), GABA-EMXL(CONH 2 -Cys(VS)-Glu(GABA-NH 2 )-PEG-Glu(GABA-NH2)-
  • the crosslinkers based on elimination mechanism were prepared by reacting diamino-PEG (preferably 2-8 arms, MW -1-20 kDa) with Dde-Glu-( ⁇ COOH)-Cys(StBu)-CONH 2 or Dde-AA-Glu- ( ⁇ COOH)-Cys(StBu)-CONH 2
  • AA is GABA( ⁇ -amino butyric acid); AHA (6-aminohexanoic acid); AOA (8-aminooctanoic acid); GABA-GABA; AHA-AHA; AOA-AOA; AHA-GABA; AOA-GABA; AHA-GABA etc.] from both sides in DMF to obtain (Dde-AA-Ri-SStBu) 2 PEG.
  • Cross-linkers containing maleimide groups (MA).
  • Crosslinkers containing terminal maleimide groups like BM[PEO] 3 (1, 8-bis-maleimidotriethyleneglycol) or BM[PEOk (1,11-bis- maleimidotriethyleneglycol) or BMH (bis-maleimidohexane) or BMOE (bis-baleimidoethane) can also be used
  • the maleimide (MA)-containing crosslinker based on elimination mechanism were obtained by reacting diamino-PEG (preferably 2-8 arms, MW -1-20 kDa) with Dde-Glu-( ⁇ COOH)-Cys(StBu)- CONH 2 or Dde-AA-Glu-( ⁇ COOH)-Cys(StBu)-CONH 2
  • AA is GABA, AHA, AOA, GABA-GABA, AHA-AHA, AOA-AOA, AHA-GABA, AOA-GABA, AHA-GABA from both sides in DMF to obtain (Dde-AA-Ri-SStBu) 2 PEG.
  • the -StBu protecting group presets in Ri were removed with DTT and the two unprotected thiol groups were reacted with BM[PEO] 3 (1,8-bis-maleimidotriethyleneglycol) or BM[PEO]4 (1,11-bis-maleimidotriethyleneglycol) or BMH (bis-maleimidohexane) or BMOE (bis- maleimidoethane) to incorporate maleimide groups on the two termini. Finally, the Dde-group was removed by hydrazine.
  • Cross-linkers containing thiol groups (reverse chemistry).
  • thiol- containing crosslinkers such as dithiothreitol, polycysteines, PEG-dithiol or 4-arm thiol can be used.
  • the crosslinkers containing terminal thiol groups (rEMXL) based on elimination mechanism were obtained by reacting diamino-PEG (preferably 2-8 arms, MW -1-20 kDa) with Dde-Glu-( ⁇ COOH)- CyS(StBu)-CONH 2 or Dde-AA-Glu-( ⁇ COOH)-Cys(StBu)-CONH 2 [AA is GABA, AHA, AOA, GABA-GABA, AHA-AHA, A0A-A0A, AHA-GABA, AOA-GABA, AHA-GABA] from both sides in DMF to obtain (Dde-AA-Ri-SStBu) 2 PEG.
  • the -StBu protecting group presets in R 1 were removed by treatment with DTT and the Dde-groups were removed by hydrazine ( Figure 12).
  • the active agent preferably comprises an agent selected from the group consisting of anti-inflammatory drugs, NSAID analogs, NSAID-ache (NSAID-acetylcholinesterase complexes, steroidal anti-inflammatory drugs, anticancer drugs, HIV protease inhibitors, monoclonal antibodies, imaging agents, and combinations thereof.
  • the agent is selected from the group consisting of one or more of the following: indomethacin, sancycline, a sancycline analog, olvanil, an olvanil analog, retro-olvanil, a retro-olvanil analog, olvanil carbamate, budesonide, a budesonide analog, methylprednisolone, a methylprenisolone analog, dexamethasone, a dexamethasone analog, camptothecin, carboplatin, doxorubicin, paclitaxel, saquinavir mesylate, amprenavir, ritonavir, indinavir, nelfinavir mesylate, tipranavir, darunavir, DMl a maytansinoid, atazanavir sulfate, a coloring dye, an FD and C dye, a visible/near infrare
  • the active agent may further comprise a targeting moiety.
  • the targeting moiety may be a peptide, and preferably such a peptide is an RGD peptide.
  • the targeting group is selected from the group consisting of an RGD peptide, EGF peptide, DV3 (LGASWHRPDKC) peptide, a LYP peptide (CGNKRTRGC), membrane-binding domain of IGFBP3 (QCRPSKGRKRGFCW), fMLF, mannose, transferrin Hgand, and monoclonal antibodies.
  • the linker used is any of following: Leu-Gly, Glu(LeU-Gly) 2 , Arg-Gly-Asp-Cys, Gly-Arg-Gly-Asp-Ser, Gly-Arg-Gly-Asp-Ser-Pro, cyclic Arg-Gly-Asp-Tyr-Lys or any peptide with Arg-Gly-Asp.
  • active agents containing amino groups or active agents modified with amino linker are attached to the ⁇ -carboxyl of Glu.
  • the active agents could be unmodified or attached to carriers as described above.
  • the active agent may contain targeting unit selected from the targeting groups listed above.
  • the active agent(s) are physically entrapped into the hydrogel by mixing it in the formulation (polymer/copolymer and crosslinker) prior to hydrogel formation.
  • the active agent content in the hydrogel formulation may vary from 0.1-12% (w/v) and the formulation may contain one active agent or a combination thereof.
  • the release of the active agent from the hydrogel is not directly dependent on the hydrogel degradation mechanism.
  • the active agent can be free from the hydrogel before the hydrogel matrix degrades. Therefore, the release of the active agent from the hydrogel is not dependent on the elimination mechanism.
  • Active agents containing amino groups or modified with a linker containing amino groups are linked to the ⁇ -carboxyl of Glu. They are released following the elimination reaction as shown in Figure 7.
  • the active agents or modified active agents with a linker could be attached to the polymer/crosslinker and the active agent content may vary from 1-10% (w/v).
  • the active agent can be free in the hydrogel matrix from the modified linker. Therefore, the release of the active agent from the hydrogel is indirectly dependent on the elimination mechanism.
  • the cross-linker is the control component in this biodegradable hydrogel.
  • the hydrogel was obtained by irreversibly cross-linking a thiol terminated PEG polymer or copolymer such as 8-arm PEG-SH and crosslinkers [(EMXL), GABAEMXL, 1, 6-Hexane-bis-vinylsulfone (HBVS)] in phosphate buffer (pH, 7.4) at room temperature. Unless otherwise indicated, the hydrogel formation, release, and degradations studies have been done in triplicate. [0094] Example 1. Synthesis of biodegradable EMXL crosslinker
  • DIEA (eq, Catalog # 387649-100, Sigma Aldrich, St. Louis, MO) was added into the flask and the mixture was gently stirred (1000 rpm) at room temperature (24 °C) for 5 min to activate the both amino groups of DAP at room temperature.
  • reaction mixture was purified by Sephadex LH-20 using DMF as the eluent.
  • Sephadex LH-20 medium gel filtration media (Catalog # 17-0090-01, VWR International, Pittsburgh, PA) was soaked in DMF (25 mg/500 mL, Catalog # 354830025, Across Organics, Morris Plains, NJ) at room temperature (25 °C) for 24 hours. The presoaked Sephadex was loaded on to the column. The reaction mixture (10 x 1.0 mL) was loaded onto the column and eluted using DMF; the collected DMF fractions was poured dropwise into precooled diethyl ether (60 ml) to precipitate the product. The product was dried under argon gas. Yield. 88%.
  • reaction mixture was purified by Sephadex LH-20 using DMF as eluent.
  • LH-20 medium gel filtration media (Catalog # 17-0090-01, VWR International, Pittsburgh, PA) was soaked in DMF (25 mg/500 mL, Catalog # 354830025, Across Organics, Morris Plains, NJ) at room temperature (25 °C) for 24 hours.
  • the presoaked Sephadex was loaded on to the glass column.
  • the reaction mixture (10 x 1.0 mL) was loaded onto the column and e luted using DMF; the collected DMF fractions were poured dropwise into precooled diethyl ether (60 ml) to precipitate the product.
  • the product was dried under argon gas. Yield. 81%.
  • reaction mixture was purified by Sephadex LH-20 using DMF as eluent.
  • DIEA (eq; Catalog # 387649-100 ml, Sigma Aldrich, St. Louis, MO) was added into the flask and the mixture was gently stirred (1000 rpm) at room temperature (24 °C) for 5 min to activate the both amino groups of DAP at room temperature.
  • Dde-GABA-R2-SStBu (7 eq) and
  • reaction mixture was purified by Sephadex LH-20 using DMF as eluent.
  • LH-20 medium gel filtration media (Catalog # 17-0090-01, VWR International, Pittsburgh, PA) was soaked in DMF (25 mg/500 mL, Catalog # 354830025, Across Organics, Morris Plains, NJ) at room temperature (25 °C) for 24 hours.
  • the presoaked Sephadex was loaded on to the glass column.
  • the reaction mixture (10 x 1.0 mL) was loaded onto the column and eluted using DMF.
  • the collected DMF fractions were poured dropwise into pre-cooled diethyl ether (60 ml) to precipitate the product.
  • the product was dried under argon gas. Yield. 88%.
  • reaction mixture was purified by Sephadex LH-20 using DMF as eluent.
  • LH-20 medium gel filtration media (Catalog # 17-0090-01, VWR International, Pittsburgh, PA) was soaked in DMF (25 mg/500 mL, Catalog # 354830025, Across Organics, Morris Plains, NJ) at room temperature (25 °C) for 24 hours.
  • the presoaked Sephadex was loaded on to the glass column.
  • the reaction mixture (10 x 1.0 mL) was loaded onto the column and eluted using DMF.
  • the collected DMF fractions were poured dropwise into pre-cooled diethyl ether (60 ml) to precipitate the product.
  • the product was dried under argon gas. Yield. 81%.
  • reaction mixture was purified by Sephadex LH-20 using DMF as eluent.
  • LH-20 medium gel filtration media (Catalog # 17-0090-01, VWR International, Pittsburgh, PA) was soaked in DMF (25 mg/500 mL, Catalog # 354830025, Across Organics, Morris Plains, NJ) at room temperature (25 °C) for 24 hours.
  • the presoaked Sephadex was loaded on to the glass column and the reaction mixture (10 x 1.0 mL) was loaded onto the column and eluted using DMF.
  • the collected DMF fractions were poured dropwise into pre-cooled diethyl ether (60 ml) to precipitate the product.
  • the product was dried under argon gas. Yield. 70%.
  • the product was characterized by MALDI-TOF- MS ( Figure 11).
  • biodegradable crosslinker rEMXL (containing thiol terminal) was prepared using
  • reaction mixture was purified by Sephadex LH-20 using DMF as eluent.
  • LH-20 medium gel filtration media (Catalog # 17-0090-01, VWR International, Pittsburgh, PA) was soaked in DMF (25 mg/500 mL, Catalog # 354830025, Across Organics, Morris Plains, NJ) at room temperature (25 °C) for 24 hours.
  • the presoaked Sephadex was loaded on to the glass column and reaction mixture (10 x 1.0 mL) was loaded onto the column and eluted using DMF.
  • the collected DMF fractions were poured dropwise into pre-cooled diethyl ether (60 ml) to precipitate the product.
  • the product was dried under argon gas. Yield. 70%.
  • Sodium phosphate dibasic (1 M, Catalog # S-9763, Sigma Aldrich, St. Louis, MO) and monobasic (1 M, Catalog # S-0751, Sigma Aldrich, St. Louis, MO) solutions were prepared separately in volumetric flasks. 1.54 mL of sodium phosphate dibasic and 0.46 mL of sodium phosphate monobasic solutions were transferred to a beaker and 80.0 mL of DI water was added to it. The pH of buffer was measured on a pH meter and pH value was adjusted to 7.44 using 0.1 N sodium hydroxide solution (Catalog # SS276-4, Fisher Scientific, Suwanee, GA).
  • Copolymer (4% w/v) was weighed in a centrifuge tube and dissolved in PB (132.8 ⁇ L).
  • EMXL crosslinker solution was prepared by weighing 4.8 mg of EMXL crosslinker in a centrifuge tube. PB (67.2 ⁇ L) was added to the centrifuge tube and the mixture vortexed for 2-3 minutes to dissolve the crosslinker into the buffer solution. [001S2] Preparation ofhvdrozel (0.2 ml)
  • the copolymer solution (132.8 ⁇ L) was transferred to a glass vial (12 x 32 mm, SepCap clear vial, Catalog # C4011-80, National Scientific Company, Rockwood, TN) followed by the crosslinker solution (67.2 ⁇ L). The solution mixture was allowed to stand at room temperature (24 °C). The hydrogel solution started becoming more viscous and formed the hydrogel in 1 min.
  • Example 5 Biodegradable hydrogel preparation using thiol-containing copolymer and GABAEMXL crosslinker
  • Copolymer (4% w/v) was weighed in a centrifuge tube and dissolved in PB (132.8 ⁇ L).
  • the GABA-EMXL crosslinker solution was prepared by weighing 5.4 mg of GABA-EMXL crosslinker in a centrifuge tube. PB (67.2 ⁇ L) was added to the centrifuge tube and the mixture vortexed for 2-3 minutes to dissolve the crosslinker into the buffer solution.
  • the copolymer solution (132.8 ⁇ L) was transferred to a glass vial (12 x 32 mm, SepCap clear vial, Catalog # C4011-80, National Scientific Company, Rockwood, TN) followed by the crosslinker solution (67.2 ⁇ L). The solution mixture was allowed to stand at room temperature (24°C). The hydrogel solution started becoming more viscous and formed hydrogel in 1 min. 20 sec.
  • Example 6 Non-degradable hydrogel preparation using PEG-thiol polymer and vinyl sulfone (VS)-containing INTGABAEMXL crosslinker
  • the phosphate buffer was prepared as set forth above in Example 4. [00166] Preparation of polymer solution containing the nanocarrier
  • 8-Arm PEG thiol polymer i.e., -SH side chain groups, 4% w/v
  • PB PB
  • Dde protected INTGABAEMXL (compound 9) crosslinker (i.e. VS groups) was prepared by weighing 4.8 mg of GABA-EMXL crosslinker in a centrifuge tube. PB (67.2 ⁇ L) was added to the centrifuge tube and the mixture vortexed for 2-3 minutes to dissolve the crosslinker into the buffer solution.
  • the polymer solution (132.8 ⁇ L) was transferred to a glass vial (12 x 32 mm, SepCap clear vial, Catalog # C4011-80, National Scientific Company, Rockwood, TN) followed by the crosslinker solution (67.2 ⁇ L). The solution mixture was allowed to stand at room temperature (24°C). The hydrogel solution started becoming more viscous and formed a hydrogel in 1 min.
  • Example 7 Non-degradable hydrogel preparation using PEG-thiol polymer and vinyl sulfone (VS)-containing INTEMXL crosslinkers
  • the phosphate buffer was prepared as set forth above in Example 4.
  • Dde protected crosslinker INTEMXL compound 4, i.e., VS groups
  • PB 67.2 ⁇ L
  • PB 67.2 ⁇ L
  • the polymer solution (132.8 ⁇ L) was transferred to a glass vial (12 x 32 mm, SepCap clear vial, Catalog # C4011-80, National Scientific Company, Rockwood, TN) followed by the crosslinker solution (67.2 ⁇ L). The solution mixture was allowed to stand at room temperature (24°C). The hydrogel solution started becoming more viscous and formed hydrogel in 1 min.
  • Example 8 Non-degradable hydrogel preparation using thiol-containing copolymer and HBVS crosslinker
  • copolymer (4% w/v) was weighed in a centrifuge tube and dissolved in PB (132.8 ⁇ L).
  • HBVS crosslinker solution was prepared by weighing 0.63 mg of HBVS crosslinker in a centrifuge tube. PB (67.2 ⁇ L) was added to the centrifuge tube and the mixture vortexed for 2-3 minutes to dissolve the crosslinker into the buffer solution.
  • the copolymer solution (132.8 ⁇ L) was transferred to a glass vial (12 x 32 mm, SepCap clear vial, Catalog # C4011-80, National Scientific Company, Rockwood, TN) followed by the crosslinker solution (67.2 ⁇ L). The solution mixture was allowed to stand at room temperature (24°C). The hydrogel solution started becoming more viscous and formed hydrogel in 1 min.
  • Example 9 Non-degradable hydrogel preparation using PEG-thiol polymer and
  • HBVS crosslinker solution was prepared by weighing 0.63 mg of HBVS crosslinker in a centrifuge tube. PB (67.2 ⁇ L) was added to the centrifuge tube and the mixture was vortexed for 2-3 minutes to dissolve the crosslinker into the buffer solution.
  • the polymer solution (132.8 ⁇ L) was transferred to a glass vial (12 x 32 mm, SepCap clear vial, Catalog # C4011-80, National Scientific Company, Rockwood, TN) followed by the crosslinker solution (67.2 ⁇ L). The solution mixture was allowed to stand at room temperature (24°C). The hydrogel solution started becoming more viscous and formed hydrogel in 15 min.
  • Example 10 Non-degradable hydrogel preparation using PEG-thiol polymer and maleimide-containing BM[PEOk crosslinker
  • 8-Arm PEG thiol polymer i.e., SH termini, 4% w/v was weighed in a centrifuge tube and dissolved in PB (132.8 ⁇ L).
  • BM[PEO] 3 crosslinker i.e., maleimide groups
  • PB fetal calf serum
  • the polymer solution (132.8 ⁇ L) was transferred to a glass vial (12 x 32 mm, SepCap clear vial, Catalog # C4011-80, National Scientific Company, Rockwood, TN) followed by the crosslinker solution (67.2 ⁇ L). The solution mixture was allowed to stand at room temperature (24 °C). The hydrogel solution started becoming more viscous and formed the hydrogel in 1 min.
  • Example 11 Non-degradable hydrogel preparation using PEG-thiol polymer and
  • 8-Arm PEG thiol polymer i.e., SH termini, 4% w/v was weighed in a centrifuge tube and dissolved in PB (132.8 ⁇ L).
  • 5K PEG-maleimide crosslinker (i.e. maleimide groups) solution was prepared by weighing 0.5 mg of PEG-maleimide crosslinker in a centrifuge tube. PB (67.2 ⁇ L) was added to the centrifuge tube and the mixture was vortexed for 2-3 minutes to dissolve the crosslinker into the buffer solution.
  • Copolymer (4% w/v) was weighed in a centrifuge tube and dissolved in PB (132.8 ⁇ L).
  • EMXL crosslinker solution was prepared by weighing 4.8 mg of EMXL crosslinker in a centrifuge tube. PB (67.2 ⁇ L) was added to the centrifuge tube and the mixture was vortexed for 2-3 minutes to dissolve the crosslinker into the buffer solution. The FITC-Dextran (20 kDa, 2 mg, Catalog # FD20, Sigma Aldrich, St. Louis, MO) was added to this solution and vortexed ( ⁇ 1 minutes) to make a clear solution.
  • the copolymer solution (132.8 ⁇ L) was transferred to a glass vial (12 x 32 mm, SepCap clear vial, Catalog # C4011-80, National Scientific Company, Rockwood, TN) followed by the crosslinker solution (67.2 ⁇ L). The solution mixture was allowed to stand at room temperature (24 °C). The hydrogel solution started becoming more viscous and formed hydrogel in 1 min.
  • Example 13 Biodegradable hydrogel preparation using thiol-containing copolymer and EMXL crosslinker with passively entrapped PEG(5 kDa)-Leu-Gly-Dox
  • Copolymer (4% w/v) was weighed in a centrifuge tube and dissolved in PB (132.8 ⁇ L).
  • EMXL crosslinker solution was prepared by weighing 4.8 mg of EMXL crosslinker in a centrifuge tube. PB (67.2 ⁇ L) was added to the centrifuge tube and the mixture was vortexed for 2-3 minutes to dissolve the crosslinker into the buffer solution. The PEG(5kDa)-Leu-Gly-Dox (2 mg) was added to this solution and vortexed ( ⁇ 1 minutes) to make a clear solution.
  • the copolymer solution (132.8 ⁇ L) was transferred to a glass vial (12 x 32 mm, SepCap clear vial, Catalog # C4011-80, National Scientific Company, Rockwood, TN) followed by the crosslinker solution (67.2 ⁇ L). The solution mixture was allowed to stand at room temperature (24 °C). The hydrogel solution started becoming more viscous and formed hydrogel in 1 min.
  • the pH of buffer was adjusted to 7.44 using 1 N sodium hydroxide solution (Catalog # SS276-4, Fisher Scientific, Fair Lawn, NJ) or 1 N hydrochloric acid solution (Catalog # 920-1, Sigma Aldrich, St. Louis, MO). The solution was transferred to a volumetric flask and more DI water was added to adjust the final volume to 1000 mL.
  • 1 N sodium hydroxide solution Catalog # SS276-4, Fisher Scientific, Fair Lawn, NJ
  • 1 N hydrochloric acid solution Catalog # 920-1, Sigma Aldrich, St. Louis, MO.
  • FITC-Dextran was loaded into the hydrogels by mixing it with an aqueous solution of copolymer and crosslinker. The release of physically entrapped FITC-Dextran from hydrogel depot was studied and analyzed by florescence.
  • the hydrogels were transferred to flat bottom vials (12 x 32 mm, SepCap clear vial, Catalog # C4011-80, National Scientific Company, Rockwood, TN) and completely submerged in 500 ⁇ L PBS. Aliquots 500 ⁇ L were withdrawn at regular time intervals and replenished with equal amounts of fresh PBS. The concentration of FITC-Dextran in release samples was determined using a plate reader with an excitation wavelength of 490 nm and emission wavelength of 510 nm. The release profile suggested a typical diffusion-controlled release of a FITC-Dextran from the hydrogel, 99% FITC-Dextran was released in 29.5 h.
  • Example 16 In vitro release of passively entrapped FITC-Dextran (model drug) in mouse plasma from biodegradable hydrogels prepared using copolymer and EMXL crosslinker [00246] Release of FITC-Dextran from the hydrogel depots was studied at 37 °C in mouse plasma. FITC-Dextran was loaded into the hydrogels by mixing it with an aqueous solution of copolymer and cross-linker as described above according to the procedure in Example 15 and 16.
  • Example 17 In vitro release of passively entrapped FITC-Dextran (model drug) in mouse plasma from biodegradable hydrogel prepared using copolymer and GABA-EMXL crosslinker
  • FITC-Dextran Release of FITC-Dextran from hydrogel depots was studied at 37 °C as described in example 16. FITC-Dextran was loaded into the hydrogels by mixing it with an aqueous solution of copolymer (4%, w/v) and GABA-EMXL crosslinker.
  • Example 18 In vitro degradation studies in PBS of biodegradable hydrogels prepared using copolymer and EMXL crosslinker
  • Hydrogel 200 ⁇ L were prepared using copolymer (4% w/v) and EMXL crosslinker.
  • hydrogels were transferred to flat bottom vials (12 x 32 mm, SepCap clear vial, Catalog # C4011-80, National Scientific Company, Rockwood, TN). Hydrogels were exposed to PBS (500 ⁇ L) and incubated at 37 °C. Aliquots (500 ⁇ L) were taken at regular time intervals and replaced with fresh PBS. Hydrogel degradation occurs because the free amino group of Glu (EMXL cross-linker) attacks the ⁇ -carboxylic group of the same molecule and as a result the two ⁇ -amide bonds between the Glu and PEG break, releasing the DAP in solution ( Figure 6). Since DAP is a non- fluorescent molecule, a fluorescamine assay 24 was performed to measure the hydrogel degradation by measuring the amine present in solution. Hydrogels were found to biodegrade in 29.5 h at 37°C.
  • Hydrogel 200 ⁇ L were prepared using copolymer (4%, w/v) and GABA-EMXL crosslinker. The degradation studies were carried out according to the procedure described above in Example 18. Hydrogel degradation occurs because the free amino group of GABA (GABA-EMXL cross-linker) attacks the ⁇ -carboxylic group of the same molecule and as a result the two ⁇ -amide bonds between the Glu and PEG break, releasing the DAP in solution ( Figure 6). The fluorescamine assay 24 used to measure DAP in solution showed that these hydrogels biodegrade (100 %) in 10 h at 37°C released
  • Example 20 In vitro degradation studies in mouse plasma of biodegradable hydrogels prepared using copolymer and EMXL crosslinker
  • Hydrogels (200 ⁇ L) were prepared using copolymer (4%, w/v) and EMXL crosslinker.
  • Example 21 In vitro degradation studies in mouse plasma of biodegradable hydrogels prepared using copolymer and GABA-EMXL crosslinker
  • Hydrogels (200 ⁇ L) were prepared using copolymer (4%, w/v) and GABA-EMXL crosslinker. The biodegradation studies were carried out according to the procedure set forth above in Example 20. Fluorescamine assay 23 for free amine (DAP) showed that hydrogels biodegrade at 37 °C in l l9 h.
  • Example 22 Biodegradation studies in PBS using swelling ratios for hydrogels prepared using copolymer and EMXL crosslinker
  • the hydrogels (200 ⁇ L) were prepared using copolymer (4%, w/v) and EMXL crosslinker and transferred to flat bottom vials (12 x 32 mm, SepCap clear vial, Catalog # C4011-80, National Scientific Company, Rockwood, TN). PBS (500 ⁇ L) solution was applied on the hydrogels and hydrogels were incubated at 37 °C. The swollen hydrogels were weighed at regular time intervals after removal of the buffer. After each measurement the buffer was replenished. The hydrogel displayed gradual swelling at initial time, until they rapidly dissolved ( Figure 14). The hydrogels swelled in 8-10 h and biodegraded at 37 °C in 29.5 h.
  • Example 23 Biodegradation studies in PBS using swelling ratios for hydrogels prepared using copolymer and GABA-EMXL crosslinker
  • hydrogels (200 ⁇ L) were prepared using copolymer (4%, w/v) and GABA-EMXL crosslinker. The swelling studies were carried out according to the procedures set forth above in Example 22. Hydrogels swelled in 6-7 h and degraded in 10 h at 37 °C ( Figure 14).
  • Example 24 Biodegradation studies in mouse plasma using swelling ratios for hydrogels prepared using copolymer and EMXL crosslinker
  • Hydrogels 200 ⁇ L prepared using copolymer (4%, w/v) and EMXL crosslinker were transferred to flat bottom vials (12 x 32 mm, SepCap clear vial, Catalog # C4011-80, National Scientific Company, Rockwood, TN).
  • Mouse plasma 500 ⁇ L was applied and the hydrogels were incubated at 37 °C.
  • the swollen hydrogels were weighed at regular time intervals after removal of the mouse plasma. After each weighing the mouse plasma was replenished. The hydrogel displayed gradual swelling at initial time, until they rapidly dissolved ( Figure 14).
  • EMXL hydrogel swelled in 4- 10 h and degraded in 360 h at 37 °C.
  • Example 25 Biodegradation studies in mouse plasma using swelling ratios for hydrogels prepared using copolymer and GABA-EMXL crosslinker
  • Hydrogels (200 ⁇ L) prepared using copolymer (4%, w/v) and GABA-EMXL crosslinker were transferred to flat bottom vials and swelling studies were carried out according to the procedure set forth above in Example 24. Hydrogels swelled in 2-4 h and degraded in 119 h at 37°C in mouse plasma ( Figure 14).
  • Example 26 Synthesis of biodegradable PEG-Glu(NH 2 )( ⁇ )-Lys(Z)OMe conjugates [00280] Fmoc-Glu-( ⁇ COOtBu)-COOH was coupled to amino-PEG (20 kDa) in DMF to obtain
  • reaction mixture was purified by Sephadex G-50 using water as the eluent.
  • Sephadex G-50 medium gel filtration media (Catalog # 17.0043-01, VWR International, Pittsburgh, PA) was soaked in DI water (25 mg/500 mL) at room temperature (25 °C) for 24 hours. The presoaked Sephadex was loaded on to the column. Reaction mixture (1O x 1.0 mL) was loaded onto the column and eluted using DI water. The collected fractions were lyophilized for 3 -days. Yield. 80%.
  • Example 27 Synthesis of biodegradable PEG-Glu(N H 2 )( ⁇ )-(Z) Ly s-O Me conjugate [00303] Fmoc-Glu-( ⁇ COOtBu)-COOH was coupled to amino-PEG (20 kDa) in DMF to obtain
  • Example 28 In vitro release of Lys(Z)-OMe from PEG-Glu(NH 2 )-( ⁇ )Lys(Z)-OMe conjugate in PBS
  • PEG-Glu(NH 2 )-( ⁇ )Lys(Z)OMe conjugate (15 mg) was dissolved in PBS (15 ml) and incubated at 37 °C. Aliquots (50 ⁇ L) were taken at regular time intervals and the sample aliquots were dried using a CentriVap (Labconco Corporation, Kansas City, MO). The cumulative cleavage (%) of Lys(Z)OMe from PEG-Glu(NH2)-( ⁇ )Lys(Z)OMe conjugate was measured using fluorescamine assay 24 . The release studies showed that -99% release occurs in 490 h.
  • Example 29 In vitro release of Z-Lys(COOH)OMe from PEG-Glu(NH 2 )-
  • Sodium phosphate dibasic (1 M, Catalog # S-9763, Sigma Aldrich, St. Louis, MO) and sodium diphosphate monobasic solutions were prepared in DI water.
  • Sodium phosphate dibasic (7.74 mL) and sodium phosphate monobasic (2.26 ml) solutions were mixed into a beaker.
  • DI water (80.0 mL) was added to the beaker and EDTA was dissolved (186.1 mg, Sigma Aldrich, St Louis, MO) in it.
  • the pH was measured on pH meter (Symphony SB70P, VWR International, Pittsburgh, PA) and adjusted to 7.40 using 0.1 N sodium hydroxide solution (Catalog # SS276-4, Fisher Scientific, Suwanee, GA).
  • the buffer was transferred to a volumetric flask and DI water was added to adjust the final buffer volume to 100 mL.
  • the thiol-functionalized eight-arm poly(ethylene glycol) polymer (PEG 2OkDa -[SHJg, 100 mg, 4.65 x 10 -3 mM; Catalog # SUNBRIGHT HGEO-200SH, NOF America Corporation, White Plains, NY) was weighed in a 50 mL centrifuge tube and PB (10.0 mL) was added. The mixture was gently stirred at (1000 rpm) at room temperature (24 °C) to obtain a clear solution.
  • Fluorescein-5-maleimide (0.5 equiv., 5.97 mg; Catalog # 81405, Anaspec, San Jose, CA) was dissolved in DMF (0.5 mL, Catalog # EM-DX 1727-6, VWR International, Pittsburgh, PA) and added to the polymer solution.
  • DMF 0.5 mL, Catalog # EM-DX 1727-6, VWR International, Pittsburgh, PA
  • the centrifuge tube containing the reaction mixture was covered with aluminum foil (to maintain dark conditions) and stirred at (1000-1500 rpm) at room temperature (24 °C) for overnight period (-12 hours). After 12 hours, the stirring was stopped.
  • the nanocarrier was purified by GPC on Sephadex G50 column in dark, using DI water as the eluent.
  • the reaction mixture (10 x 1.0 mL) was loaded onto the column and eluted using DI water; the high molecular weight nanocarrier eluted first, followed by the low molecular weight free fluorescein. High molecular weight fractions were pooled together and lyophilized for 5-days (Labconco, FreeZone 2.5 plus, temperature: -84 °C; pressure: 0.010 millibar). Nanocarrier was obtained as yellow flakes (76.3 mg). [00331] Characterization ofnanocarrier
  • the nanocarrier was characterized on Waters Breeze GPC system (Waters Corporation,
  • the unmodified polymer showed retention time of 8.9 minutes whereas the nanocarrier showed the retention time of 8.0 minutes.
  • the unmodified polymer showed a peak in refractive index panel but not the UV panel because PEG does not absorb at 480 nm, however, nanocarrier showed peak in UV panel too due to the presence of fluorescein, which strongly absorbs at 480 nm wavelengths.
  • Example 31 Preparation of biodegradable hydrogels using PEG 2OkDa -[S- fluorescein] o. 5 [SH] 7. 5 nanocarrier and PEG 3 . 4U ) a -[NHS] 2 crosslinker
  • Sodium phosphate dibasic (1 M, Catalog # S-9763, Sigma Aldrich, St. Louis, MO) and monobasic (1 M, Catalog # S-0751, Sigma Aldrich, St. Louis, MO) solutions were prepared separately in volumetric flasks.
  • Sodium phosphate dibasic (1.54 mL) and monobasic (0.46 mL) solutions were transferred to a beaker and 80.0 mL of DI water was added to it.
  • the pH of buffer was measured according to the procedures set forth above in Example 30 and adjusted to 7.44 using 0.1 N sodium hydroxide solution (Catalog # SS276-4, Fisher Scientific, Suwanee, GA). The solution was transferred to a volumetric flask and more DI water was added to adjust the final volume to 100 mL.
  • Crosslinker solution was prepared by weighing PEGj.4kDa-[NHS]2 crosslinker (4 equiv., 8 xlO- 4 mM, Catalog # SUNBRIGHT DE-034GS, NOF America, White Plains, NY) in a centrifuge tube and dissolving it into PB (0.2 mL).
  • the nanocarrier solution (0.8 mL) was transferred to a glass vial (12 x 32 mm, SepCap clear vial, Catalog # C4011-80, National Scientific Company, Rockwood, TN) followed by the crosslinker solution (0.2 mL).
  • the solution mixture was allowed to stand at room temperature (24 °C). The solution started becoming more and more viscous and ceased to flow from the inverted tube in 16 min indicating the hydrogel formation.
  • rat body was clipped with a clipper under anesthesia with isoflurane (AErrane, Catalog # NDC 10019-773-40, Baxter, Deerfield, IL) and Veet (Reckitt Benckiser North America, Inc., Parsippany, NJ) was applied on the clipped skin. Veet was removed 5 minutes post application and rats were washed with warm water and wiped with dry paper towels.
  • isoflurane AErrane, Catalog # NDC 10019-773-40, Baxter, Deerfield, IL
  • Veet Veet was removed 5 minutes post application and rats were washed with warm water and wiped with dry paper towels.
  • the nanocarrier (PEG2okDa-[S-fluorescein]o.5[SH]7.s) solution was prepared in PB at a concentration of 4 mg/0.8 mL whereas the crosslinker solution (PEG 3 ⁇ kDa -[NHS] 2 ) was prepared at a concentration of 2.7 mg/0.2 mL.
  • the nanocarrier and crosslinker solutions were mixed together in a centrifuge tube.
  • Rat under anesthesia with isoflurane (AErrane, Catalog # NDC 10019-773-40, Baxter, Deerfield, IL) was placed under a surgical microscope (Stereomaster, Fisher Scientific, Suwanee, GA) equipped with a ring lamp, and magnification was adjusted to operator's comfort to aid the injection procedure.
  • the hydrogel solution (0.1 mL) prepared above was injected into the third teat (counting from the head) using a 33G needle (Catalog # 7747-01, Hamilton, Reno, NV) attached to a 0.1 ml Hamilton syringe (Catalog # 81020, Hamilton, Reno, NV).
  • the in situ hydrogels (palpable) are formed in about -16-20 minutes. The process was repeated with two more rats.
  • Non-invasive hvdrogel retention in rats (AErrane, Catalog # NDC 10019-773-40, Baxter, Deerfield, IL) was placed under a surgical microscope (Stereo
  • mice were obtained (BALB/c- Hilltop Lab Animals, Inc., Scottdale, PA) and housed in Rutgers Laboratory Animal Services facility accredited by the Association for the Assessment and Accreditation of Laboratory and Care International (AAALAC). They were maintained on a 12-hour light/dark cycle and received laboratory chow and water ad libitum. Animals were housed three per cage and allowed to acclimatize at least 1-day prior to the studies.
  • mice were anesthesia with isoflurane (AErrane, Catalog # NDC 10019-773-40, Baxter, Deerfield, IL) and Veet (Reckitt Benckiser North America, Inc., Parsippany, NJ) was applied on the clipped skin. Veet was removed 5 minutes post application and rats were washed with warm water and wiped with dry paper towels.
  • isoflurane AErrane, Catalog # NDC 10019-773-40, Baxter, Deerfield, IL
  • Veet Veet (Reckitt Benckiser North America, Inc., Parsippany, NJ) was applied on the clipped skin. Veet was removed 5 minutes post application and rats were washed with warm water and wiped with dry paper towels.
  • hydrogel solution (0.1 mL,polymer solution and crosslinker solution) prepared above was injected into mice subcutaneously using a 28 G needle attached to a 1 ml syringe. The solution started becoming more viscous and formed hydrogel in 1 min.
  • mice were obtained (BALB/c- Hilltop Lab Animals, Inc., Scottdale, PA) and housed in
  • mice Accreditation of Laboratory and Care International (AAALAC). They were maintained on a 12-hour light/dark cycle and received laboratory chow and water ad libitum. Animals were housed three per cage and allowed to acclimatize at least 1-day prior to the studies. A day prior to the study, the mice were anesthesia with isoflurane (AErrane, Catalog # NDC 10019-773-40, Baxter, Deerfield, IL) and
  • Veet (Reckitt Benckiser North America, Inc., Parsippany, NJ) was applied on the clipped skin. Veet was removed S minutes post application and rats were washed with warm water and wiped with dry paper towels.
  • hydrogel solution (0.1 mL,polymer solution and crosslinker solution) prepared above was injected into mice subcutaneously using a 28 G needle attached to a 1 ml syringe.
  • the in situ solution started becoming more viscous and formed hydrogel in 1 min
  • DOX Doxorubicin hydrochloride, an anthracycline drug used in cancer chemotherapy
  • EGF Epidermal growth factor peptide
  • FITC-Dextran Fluorescein isothiocyanate-dextran
  • HOBt N-hydroxybenzotriazole kDa: Kilo Daltons min: Minutes
  • PBS Phosphate buffered saline
  • RGDC Argine-Glycine-Aspartic acid-Cysteine
  • RGD tripeptide motif is recognized by integrin receptors overexpressed on tumor cell surfaces
  • S- Thioether bond
  • SH Thiol functional group
  • S-S- Disulfide bond temp: Temperature

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Dermatology (AREA)
  • Neurosurgery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Immunology (AREA)
  • Medicinal Preparation (AREA)

Abstract

Cette invention porte sur un système d'administration in situ de médicament sous forme d'hydrogel biodégradable dans lequel les composants sont assemblés d'une façon qui apporte un mécanisme de clivage temporisé d'une liaison amide particulière dans un agent actif lié de manière covalente, ou de la structure d'hydrogel.
PCT/US2009/065225 2008-11-19 2009-11-20 Compositions d'hydrogel dégradable et procédés WO2010059883A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/129,949 US9345662B2 (en) 2008-11-19 2009-11-20 Degradable hydrogel compositions and methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11596208P 2008-11-19 2008-11-19
US61/115,962 2008-11-19

Publications (1)

Publication Number Publication Date
WO2010059883A1 true WO2010059883A1 (fr) 2010-05-27

Family

ID=42198507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/065225 WO2010059883A1 (fr) 2008-11-19 2009-11-20 Compositions d'hydrogel dégradable et procédés

Country Status (2)

Country Link
US (1) US9345662B2 (fr)
WO (1) WO2010059883A1 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101934089A (zh) * 2010-09-01 2011-01-05 北京大学人民医院 一种可眼内注射的原位交联水凝胶在制备人工玻璃体中的应用
WO2013036847A1 (fr) 2011-09-07 2013-03-14 Prolynx Llc Hydrogels à réticulation biodégradable
WO2013154753A1 (fr) * 2012-04-12 2013-10-17 The Regents Of The University Of California Dérivés de poly(éthylène glycol) aptes à une dégradation hydrolytique par l'introduction d'unités de répétition d'oxyde de méthylène et d'éthylène insaturé
EP2720722A1 (fr) * 2011-06-16 2014-04-23 The Hong Kong University of Science and Technology Molécule contenant de multiples groupes vinylsulfone
WO2014116717A1 (fr) * 2013-01-22 2014-07-31 Prolynx Llc Produits d'étanchéité ayant une dégradation contrôlée
WO2017086794A1 (fr) * 2015-11-20 2017-05-26 Cristal Delivery B.V. Nanoparticules à ciblage actif
WO2017101883A1 (fr) * 2015-12-18 2017-06-22 韩捷 Hydrogel dégradable dans des conditions physiologiques
JP2018108980A (ja) * 2016-10-21 2018-07-12 財團法人工業技術研究院Industrial Technology Research Institute ヒドロゲル組成物およびこれを含む薬物送達システム
WO2020112962A1 (fr) * 2018-11-30 2020-06-04 Renibus Therapeutics, Inc. Procédés de traitement d'une lésion rénale par régulation thérapeutiquement à la hausse de p21

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8524215B2 (en) * 2010-08-02 2013-09-03 Janssen Biotech, Inc. Absorbable PEG-based hydrogels
US10653802B2 (en) * 2016-09-14 2020-05-19 New Jersey Institute Of Technology Photoluminescent hydrogel
US20200188524A1 (en) * 2016-09-22 2020-06-18 University Of Washington Molecular logic gates for controlled material degradation
TWI660740B (zh) 2016-10-21 2019-06-01 財團法人工業技術研究院 水膠組合物及包含其之藥物傳輸系統
EP3311799B1 (fr) * 2016-10-21 2023-10-11 Industrial Technology Research Institute Compositions d'hydrogel et systèmes d'administration de médicaments
US11739166B2 (en) 2020-07-02 2023-08-29 Davol Inc. Reactive polysaccharide-based hemostatic agent

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050208095A1 (en) * 2003-11-20 2005-09-22 Angiotech International Ag Polymer compositions and methods for their use
US20060002890A1 (en) * 2004-07-05 2006-01-05 Ulrich Hersel Hydrogel formulations
WO2006069344A2 (fr) * 2004-12-22 2006-06-29 Rutgers, The State University Of New Jersey Hydrogels a liberation regulee
US20070128681A1 (en) * 2005-12-05 2007-06-07 Sontra Medical Corporation Biocompatible chemically crosslinked hydrogels for glucose sensing
US20070191366A1 (en) * 2003-05-05 2007-08-16 Torsten Hoffmann Use of effectors of glutaminyl and glutamate cyclases

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5066490A (en) 1988-06-01 1991-11-19 The United States Of America As Represented By The Secretary Of The Department Of Health & Human Services Protein crosslinking reagents cleavable within acidified intracellular vesicles
US20040214783A1 (en) 2002-05-08 2004-10-28 Terman David S. Compositions and methods for treatment of neoplastic disease
US20050282747A1 (en) * 2003-10-01 2005-12-22 The Research Foundation Of State University Of New York At Stony Brook Methods and compositions for wound healing
EP1691854B1 (fr) * 2003-11-03 2011-09-14 Medtronic, Inc. Hydrogel induisant une croissance interne specifique d'une cellule
US8187883B2 (en) * 2005-10-21 2012-05-29 Wisconsin Alumni Research Foundation Method and system for delivering nucleic acid into a target cell
US7842662B2 (en) 2006-11-10 2010-11-30 Cara Therapeutics, Inc. Synthetic peptide amide dimers
WO2008079997A2 (fr) * 2006-12-22 2008-07-03 Medtronic, Inc. Mécanisme et procédé d'angiogenèse et dispositif implantable

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070191366A1 (en) * 2003-05-05 2007-08-16 Torsten Hoffmann Use of effectors of glutaminyl and glutamate cyclases
US20050208095A1 (en) * 2003-11-20 2005-09-22 Angiotech International Ag Polymer compositions and methods for their use
US20060002890A1 (en) * 2004-07-05 2006-01-05 Ulrich Hersel Hydrogel formulations
WO2006069344A2 (fr) * 2004-12-22 2006-06-29 Rutgers, The State University Of New Jersey Hydrogels a liberation regulee
US20070128681A1 (en) * 2005-12-05 2007-06-07 Sontra Medical Corporation Biocompatible chemically crosslinked hydrogels for glucose sensing

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101934089A (zh) * 2010-09-01 2011-01-05 北京大学人民医院 一种可眼内注射的原位交联水凝胶在制备人工玻璃体中的应用
EP2720722A1 (fr) * 2011-06-16 2014-04-23 The Hong Kong University of Science and Technology Molécule contenant de multiples groupes vinylsulfone
EP2720722A4 (fr) * 2011-06-16 2014-12-03 Univ Hong Kong Science & Techn Molécule contenant de multiples groupes vinylsulfone
US20190209692A1 (en) * 2011-09-07 2019-07-11 Prolynx Llc Hydrogels with biodegradable crosslinking
JP2017214385A (ja) * 2011-09-07 2017-12-07 プロリンクス エルエルシー 生分解性架橋を有するヒドロゲル
US11454861B2 (en) 2011-09-07 2022-09-27 Prolynx Llc Hydrogels with biodegradable crosslinking
JP2014531433A (ja) * 2011-09-07 2014-11-27 プロリンクス エルエルシー 生分解性架橋を有するヒドロゲル
US11181803B2 (en) 2011-09-07 2021-11-23 Prolynx Llc Hydrogels with biodegradable crosslinking
AU2012304337A2 (en) * 2011-09-07 2015-04-23 Prolynx Llc Hydrogels with biodegradable crosslinking
AU2012304337B2 (en) * 2011-09-07 2015-05-07 Prolynx Llc Hydrogels with biodegradable crosslinking
EP2755691A4 (fr) * 2011-09-07 2016-05-25 Prolynx Llc Hydrogels à réticulation biodégradable
US9649385B2 (en) 2011-09-07 2017-05-16 Prolynx Llc Hydrogels with biodegradable crosslinking
US11179470B2 (en) 2011-09-07 2021-11-23 Prolynx Llc Hydrogels with biodegradable crosslinking
KR102226702B1 (ko) 2011-09-07 2021-03-11 프로린크스 엘엘시 생분해성 교차결합을 가지는 하이드로젤
CN103945870A (zh) * 2011-09-07 2014-07-23 普罗林科斯有限责任公司 生物可降解交联的水凝胶
KR20200051845A (ko) * 2011-09-07 2020-05-13 프로린크스 엘엘시 생분해성 교차결합을 가지는 하이드로젤
US10398779B2 (en) 2011-09-07 2019-09-03 Prolynx Llc Hydrogels with biodegradable crosslinking
JP2019031498A (ja) * 2011-09-07 2019-02-28 プロリンクス エルエルシー 生分解性架橋を有するヒドロゲル
WO2013036847A1 (fr) 2011-09-07 2013-03-14 Prolynx Llc Hydrogels à réticulation biodégradable
WO2013154753A1 (fr) * 2012-04-12 2013-10-17 The Regents Of The University Of California Dérivés de poly(éthylène glycol) aptes à une dégradation hydrolytique par l'introduction d'unités de répétition d'oxyde de méthylène et d'éthylène insaturé
WO2014116717A1 (fr) * 2013-01-22 2014-07-31 Prolynx Llc Produits d'étanchéité ayant une dégradation contrôlée
WO2017086794A1 (fr) * 2015-11-20 2017-05-26 Cristal Delivery B.V. Nanoparticules à ciblage actif
CN108697640A (zh) * 2015-12-18 2018-10-23 韩捷 一种可在生理条件下降解的水凝胶
WO2017101883A1 (fr) * 2015-12-18 2017-06-22 韩捷 Hydrogel dégradable dans des conditions physiologiques
US11285103B2 (en) 2015-12-18 2022-03-29 Jie Han Degradable hydrogel under physiological conditions
JP2018108980A (ja) * 2016-10-21 2018-07-12 財團法人工業技術研究院Industrial Technology Research Institute ヒドロゲル組成物およびこれを含む薬物送達システム
WO2020112962A1 (fr) * 2018-11-30 2020-06-04 Renibus Therapeutics, Inc. Procédés de traitement d'une lésion rénale par régulation thérapeutiquement à la hausse de p21

Also Published As

Publication number Publication date
US9345662B2 (en) 2016-05-24
US20110286926A1 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
US9345662B2 (en) Degradable hydrogel compositions and methods
Duggan et al. Thiolated polymers as mucoadhesive drug delivery systems
US9517201B2 (en) Nanocarrier and nanogel compositions
Bonengel et al. Thiomers—From bench to market
Etrych et al. New HPMA copolymers containing doxorubicin bound via pH-sensitive linkage: synthesis and preliminary in vitro and in vivo biological properties
Wang et al. Synthesis of starlike N-(2-hydroxypropyl) methacrylamide copolymers: potential drug carriers
US9526705B2 (en) Lipidated glycosaminoglycan particles and their use in drug and gene delivery for diagnosis and therapy
US7186413B2 (en) Hydrogels and water soluble polymeric carriers for drug delivery
Bernkop-Schnürch Thiomers: a new generation of mucoadhesive polymers
CA2769540C (fr) Composition d'insuline a action prolongee
Cortes et al. Xanthan gum in drug release
Chopra et al. Advances and potential applications of chitosan derivatives as mucoadhesive biomaterials in modern drug delivery
Kurtoglu et al. Drug release characteristics of PAMAM dendrimer–drug conjugates with different linkers
Millotti et al. In vivo evaluation of thiolated chitosan tablets for oral insulin delivery
CN114585388A (zh) 用于配体展示和/或药物递送的星形聚合物的组合物和制造方法
ES2222740T3 (es) Polimeros mucoadhesivos, uso y procedimiento de preparacion de los mismos.
Kumar et al. Thiomer: a potential carrier for therapeutic delivery
WO2013060919A1 (fr) Synthèse contrôlée de polyglutamates à faible degré de polydispersion et architectures versatiles
CN109152846B (zh) 缀合物和缀合试剂
ES2458841T3 (es) Portadores de fármacos de polímero de alto peso molecular dendrítico y sus conjugados con fármacos especialmente para el tratamiento de tumores sólidos
Fan et al. Novel pH-responsive and mucoadhesive chitosan-based nanoparticles for oral delivery of low molecular weight heparin with enhanced bioavailability and anticoagulant effect
Salmaso et al. Nanotechnologies in protein delivery
Sandri et al. Mucoadhesive polymers as enabling excipients for oral mucosal drug delivery
Chytil et al. Structural design and synthesis of polymer prodrugs
Dangoor et al. Recent progress in polymer therapeutics as nanomedicines

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09828258

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13129949

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09828258

Country of ref document: EP

Kind code of ref document: A1