WO2010057908A1 - Verfahren zum bestimmen einer sicherheitsstufe und sicherheitsmanager - Google Patents

Verfahren zum bestimmen einer sicherheitsstufe und sicherheitsmanager Download PDF

Info

Publication number
WO2010057908A1
WO2010057908A1 PCT/EP2009/065370 EP2009065370W WO2010057908A1 WO 2010057908 A1 WO2010057908 A1 WO 2010057908A1 EP 2009065370 W EP2009065370 W EP 2009065370W WO 2010057908 A1 WO2010057908 A1 WO 2010057908A1
Authority
WO
WIPO (PCT)
Prior art keywords
security
automation network
participants
subscriber
automation
Prior art date
Application number
PCT/EP2009/065370
Other languages
German (de)
English (en)
French (fr)
Inventor
Jens Sachs
Guido Beckmann
Original Assignee
Beckhoff Automation Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41800680&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2010057908(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Beckhoff Automation Gmbh filed Critical Beckhoff Automation Gmbh
Priority to JP2011536848A priority Critical patent/JP5274667B2/ja
Priority to EP09760810.3A priority patent/EP2359201B1/de
Priority to CN2009801468976A priority patent/CN102224466B/zh
Publication of WO2010057908A1 publication Critical patent/WO2010057908A1/de
Priority to US13/113,397 priority patent/US9665072B2/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B9/00Safety arrangements
    • G05B9/02Safety arrangements electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/24Pc safety
    • G05B2219/24008Safety integrity level, safety integrated systems SIL SIS
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/31From computer integrated manufacturing till monitoring
    • G05B2219/31461Use risk analysis to identify process parts that should be specially monitored

Definitions

  • the invention relates to a method for determining a security level in an automation network with subscribers, a security manager and an automation network.
  • Modern concepts of industrial automation i.
  • the control and monitoring of technical processes using software is based on the idea of a central controller with distributed sensor / actuator level.
  • the participants communicate with each other and with higher-level systems via industrial local networks, also referred to as automation networks.
  • the automation networks are generally designed as so-called master-slave communication networks, in which the master subscriber the control level and the slave participants form the sensor / actuator level.
  • An essential requirement in industrial automation is safety. When performing automation tasks, it must be ensured that the automation network does not endanger people or the environment if a participant fails or another error occurs. In order to be able to classify the hazards through an automation network, it is mandatory to carry out a hazard analysis. According to the European standard EN1050, the risk assessment has to be carried out as a sequence of logical steps that allow the systematic investigation of hazards emanating from the automation network or the individual participants. Based on the hazard analysis, the technical and organizational requirements for the automation network are then defined to ensure sufficient safety.
  • the European standard EN 954-1 "Safety for machines - Safety-related parts of control systems" has established itself as an international standard for the implementation of a risk analysis in the area of machine and plant safety, which includes all safety-related participants regardless of the participant type Based on the determined safety category, the control structure in the automation network is then designed to meet the requirements of the safety functions and the required system behavior in the event of a fault.
  • the standards EN ISO 13849-1 and IEC / EN 62061 specify the safety performance of programmable electronic control systems required for risk reduction. For the subdivision of the safety performance, safety levels are defined in the two standards. For this purpose, all security functions of the automation network with all participants involved in their execution are considered.
  • the security level of the automation network is determined on the basis of safety characteristics of the participants involved in the safety functions. These parameters are the average time for a dangerous failure (MTTF), the diagnostic coverage (DC), the average probability, and the according to the standard EN ISO13849-1. the probability of a dangerous failure per hour (PFH), the useful life (T M ), the number of cycles in which 10% of a sample of the weary participants considered hazardous (Bio d ), and the common cause failure (CCF). In addition to these safety-related parameters, other parameters, including operational aspects such as the request rate or the test rate of the safety function, can influence the safety level.
  • DE 103 18 837 A1 discloses a network in which data and sequence-related links between the subscribers can be determined automatically by a security manager.
  • the object of the present invention is to provide a method for determining the security level in an automation network or a security manager for such an automation network, which enables an automatic calculation of the security level in a simple and reliable manner, in particular also for further changes in the automation network ,
  • the data and operational links between the subscribers in the automation network and the subscriber-specific links are determined a security level in an automation network with subscribers.
  • the security level in the automation network is then calculated by means of a calculation rule that links the ascertained data and operational links of the nodes in the automation network and the determined subscriber-specific security characteristics.
  • the method is based on a security manager who has a configuration acquisition module for determining the data and workflow-specific linkage of the subscribers in the automation network and a characteristic data acquisition module for determining subscriber-specific security characteristics and a subscription. calculation module for executing the calculation rule.
  • the procedure according to the invention for determining a security level in an automation network or the associated security manager makes it possible to automatically calculate the security level. In particular, it is no longer necessary for the operator to analyze the structure of the automation network and then enter it into the calculation module. Furthermore, the procedure according to the invention and the correspondingly designed security manager also make it possible to independently record extensions or changes in the automation network and to take them into account in the calculation of the security level.
  • the subscriber-specific security characteristics are stored in the corresponding subscribers and are automatically requested by the security manager for calculating the security level via an automation network connection by the subscribers.
  • the calculation module in the security manager receives the subscriber-specific security characteristics directly from the participants, so that new or previously unknown participants can be included in a simple manner. This ensures that changes and enhancements to the safety function or an exchange of nodes in the automation network are reliably taken into account when determining the security level.
  • the data and operational links between the subscribers are determined from the predetermined configuration of the automation network for carrying out an automation task.
  • the configuration of the control logic for Management of the automation task contains all the necessary data and runtime links that must be taken into account when calculating the security level. The data and sequence links can thus be easily determined automatically from the control hardware.
  • the logical links of inputs and outputs of the subscribers for carrying out the automation task are preferably detected.
  • This information contains all the necessary data in order to be able to fully take into account the data and process-related links of the participants when calculating the security level.
  • FIG. 1 shows schematically an automation network with a security area
  • FIG. 2 shows a security manager for an automation system.
  • decentralized control systems are also referred to as automation networks, in which decentralized devices in a sensor / actuator level such as I / O modules, transducers, valves communicate with automation computers at a control level via a powerful real-time communication network.
  • the subscribers in the automation network ie the automation computers or the devices of the sensor / actuator level, can communicate via point-to-point connections or via a bus system. be linked to each other.
  • a fieldbus system is preferably used as the bus system.
  • Automation networks are generally structured hierarchically and work according to the master-slave principle.
  • the master members are assigned to the control level and represent the active participants who have access to the communication links in the automation network and determine the data transfer.
  • the slave participants are added to the sensor / actor level and form the passive participants. You have no independent access authorization to the communication connections, ie. H. they may only acknowledge received data and transmit data to them upon request of a master user.
  • FIG. 1 schematically shows the basic structure of an automation network.
  • the automation network has two master subscribers M, SM, which form the control level, and eight slave subscribers Si to S 4 , SSi to SS 4 , which represent the sensor / actuator level. All participants in the automation network are connected to each other via a serial bus 1, via which the data exchange between the participants takes place.
  • the data exchange between the subscribers is usually organized by the master subscribers M, SM in the form of data packets, which are composed of control data and user data, the control data in the data packet containing an address information.
  • the data exchange is then z.
  • Based on the Ethernet protocol which allows data packets up to 1500 bytes in length at transmission speeds of 100 Mbit / sec.
  • An essential requirement of the automation network is to ensure that in the event of a subscriber failure or malfunction, there is no risk to people or the environment.
  • the risk essentially depends on the type and mode of operation of the participants in the automation network and the reliability of the control programs. In order to protect people and the environment from dangers, dangerous participants in the automation network may only be operated and maintained with suitable protective devices.
  • safety functions must still be executed on the control level in the automation network, which ensure that the automation network enters a secure state in the event of failure of safety-relevant subscribers in the automation network. Such a secure state is z. B. an emergency shutdown of the automation network.
  • EN 954-1 Safety of machinery - Safety-related parts of control systems
  • EN 954-1 only carries out a qualitative approach, whereby, for example, the failure probabilities of individual subscribers in the automation network are not taken into account.
  • Such safety characteristics of the participants are the mean time to dangerous failure (MTTF d ), the probability of dangerous failures per hour (PFH d ), the diagnostic coverage (DC d ) t the share of safe failures (SFF d ), the service life (T M ), common cause failure (CCF), and other characteristics specified in the standards.
  • the determination of the security level of the automation network further requires that the data and sequence-specific connection of the subscribers in the automation network be recorded. The security level specified by the standards can then be used to determine the security level.
  • a security area is usually defined in the automation network.
  • the security area is formed by the security-relevant master subscriber SM, hereinafter also referred to as security master SM, and the security-relevant slave subscribers SSi to SS 4 .
  • the non-safety-relevant slave subscribers Si to S 4 which continue to be present in the automation network shown in FIG. 1 are controlled by the second master subscriber M, also referred to below as the standard master M.
  • the security functions of the non-safety-related control functions by providing se- It is also possible to carry out both the safety functions and the non-safety-related control functions on a single master subscriber, but then it must be ensured that the non-safety-related control functions do not impair the safety functions.
  • the security level in an automation network can be determined in conformity with the standard, it is necessary to individually input the data and operational linkage of the subscribers for executing the security functions in the automation network. Furthermore, in the case of the known security tools, the subscriber-specific security characteristics to be taken into account when calculating the security level are taken from a software library. This makes it necessary to continuously update the software library in order to be able to consider new security-relevant subscribers or to record changes to the subscriber-specific security characteristics due to technical or software-specific adaptations in the subscribers. The effort for determining the security level in an automation network is substantially reduced with the security manager 2 provided according to the invention.
  • the security manager 2 is integrated in the automation network shown in FIG. 1 in the security master SM.
  • the security manager 2 can be embodied both in hardware and in software form.
  • the security manager 2 can also be installed in any other participant in the automation network, for example, in the automation network.
  • the security manager 2 can also be trained as an independent participant in the automation network.
  • the structure of the safety manager 2 is shown schematically in FIG.
  • the individual components of the security management gers can again be executed both in hardware and in software.
  • the security manager 2 has three interfaces: a bus interface 21 for connecting the security manager to the automation system, a data interface 22 and a man-machine interface 23. If the security manager 2 is not a standalone participant in the automation network but part of a master user or another user On the network, the security manager can alternatively use the corresponding interfaces of this host user.
  • the security manager 2 Via the data interface 22, the security manager 2, the automation network configuration, the z. B. by a configuration tool 4 for performing an automation task was import import.
  • the read-in system configuration is converted into a system model in a configuration acquisition module 24 connected to the data interface 22, which determines the data and workflow connection of the security-relevant subscribers in the automation network in standardized form.
  • the configuration acquisition module 24 can also capture the plant model, which represents the data and operational links of the security-relevant subscribers in the automation network, but also alternatively in a test mode of the automation network itself. This is determined by the
  • Configuration acquisition module 24 e.g. For example, using test data, the logical connection of inputs and outputs of the safety-relevant participants in the implementation of the automation task. Furthermore, it is also possible for the configuration acquisition module 24 to read out the security controller from the security master SM and to determine therefrom the data and transaction-specific association of the security-relevant subscribers.
  • the security manager 2 also has a characteristic data acquisition module 25 for determining the subscriber-specific security characteristics. These subscriber-specific security
  • the characteristic data acquisition module 25 can read in the characteristic data acquisition module 25 from an external database 5 via the data interface 22 or also query it directly from the security-relevant subscribers in the automation network via the bus interface 21. Furthermore, there is the possibility that the characteristic data acquisition module 25 restores updated subscriber-specific safety characteristics to the safety-relevant subscribers or external database 5.
  • Each safety-relevant subscriber SSi to SS 4 has, as shown in FIG. 1, a characteristic data memory 3 in which the subscriber-specific safety characteristics are stored.
  • This identification data memory 3 is write-protected and provided with an identifier.
  • identifier can z. B. the checksum of the subscriber-specific characteristics are used.
  • the identifier assigned to the individual characteristic data memories is also stored in the characteristic data acquisition module 25. By means of these identifiers, a secure data communication between the characteristic data acquisition module 25 and the individual subscribers in the automation network can be carried out for the exchange of the subscriber-specific safety characteristics.
  • the configuration acquisition module 24 and the characteristic acquisition module 25 are further connected in the security manager 2 to a calculation module 26 in order to calculate a security level in the automation network.
  • the calculation module 26 carries out the determination of the security level by means of predetermined calculation rules, the calculation rules taking into account the given security standards.
  • the respective calculation rule to be used can be selected by the user via a human-machine interface 23 via a connected input / display unit 6 , However, it is also possible to automatically predetermine the calculation rule to be used by the calculation module 26.
  • the determined security level gives the calculation module again via the man-machine Interface 23 in the form of a message to the input / playback unit 6 off.
  • Security Manager 2 can be operated in different modes to calculate the security level in the automation network.
  • the safety manager 2 can be used in a first operating mode as part of the system design for the predetermination of the respective security level of the design.
  • the system configuration and the subscriber-specific security characteristics are queried via the data interface 22 of configuration tools 4 or the external database 5.
  • the characteristic data acquisition module 25 can then read out the subscriber-specific characteristic data from the characteristic data memories 3 of the safety-relevant subscribers. Furthermore, the configuration acquisition module 24 can determine the data and execution-specific configuration directly from the configuration of the connected automation network or from the control program of the security master.
  • the security manager according to the invention or the security level determination method according to the invention it is possible to automatically determine the security level in the automation network in a simple manner, in particular also after changes in the automation network, eg. B. after connecting another security-relevant subscriber.
PCT/EP2009/065370 2008-11-24 2009-11-18 Verfahren zum bestimmen einer sicherheitsstufe und sicherheitsmanager WO2010057908A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011536848A JP5274667B2 (ja) 2008-11-24 2009-11-18 安全ステップの判定方法および安全マネージャ
EP09760810.3A EP2359201B1 (de) 2008-11-24 2009-11-18 Verfahren zum bestimmen einer sicherheitsstufe und sicherheitsmanager
CN2009801468976A CN102224466B (zh) 2008-11-24 2009-11-18 用于确定安全步骤的方法及安全管理器
US13/113,397 US9665072B2 (en) 2008-11-24 2011-05-23 Method for determining a safety step and safety manager

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008044018.3 2008-11-24
DE102008044018A DE102008044018B4 (de) 2008-11-24 2008-11-24 Verfahren zum Bestimmen einer Sicherheitsstufe und Sicherheitsmanager

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/113,397 Continuation US9665072B2 (en) 2008-11-24 2011-05-23 Method for determining a safety step and safety manager

Publications (1)

Publication Number Publication Date
WO2010057908A1 true WO2010057908A1 (de) 2010-05-27

Family

ID=41800680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/065370 WO2010057908A1 (de) 2008-11-24 2009-11-18 Verfahren zum bestimmen einer sicherheitsstufe und sicherheitsmanager

Country Status (6)

Country Link
US (1) US9665072B2 (ja)
EP (1) EP2359201B1 (ja)
JP (1) JP5274667B2 (ja)
CN (1) CN102224466B (ja)
DE (1) DE102008044018B4 (ja)
WO (1) WO2010057908A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012139638A1 (de) * 2011-04-13 2012-10-18 Siemens Aktiengesellschaft Verfahren zur automatischen ermittlung der fehlerwahrscheinlichkeit einer sicherheitsapplikation
US9459619B2 (en) * 2011-06-29 2016-10-04 Mega Fluid Systems, Inc. Continuous equipment operation in an automated control environment
DE102012102187C5 (de) * 2012-03-15 2016-11-03 Phoenix Contact Gmbh & Co. Kg Steuerungsvorrichtung zum Steuern von sicherheitskritischen Prozessen in einer automatisierten Anlage und Verfahren zur Parametrierung der Steuerungsvorrichtung
EP2908195B1 (de) * 2014-02-13 2017-07-05 Siemens Aktiengesellschaft Verfahren zur Überwachung der Sicherheit in einem Automatisierungsnetzwerk sowie Automatisierungsnetzwerk
JP6383112B2 (ja) * 2015-09-25 2018-08-29 株式会社東芝 制御装置
DE102016102282B4 (de) * 2016-02-10 2024-01-04 Phoenix Contact Gmbh & Co. Kg Verfahren und Vorrichtung zum Überwachen einer Datenverarbeitung und -übertragung in einer Sicherheitskette eines Sicherheitssystems
DE102017123911A1 (de) 2017-10-13 2019-04-18 Phoenix Contact Gmbh & Co. Kg Verfahren und Vorrichtung zum Überwachen der Reaktionszeit einer durch ein Sicherheitssystem bereitgestellten Sicherheitsfunktion
DE102017123910A1 (de) 2017-10-13 2019-04-18 Phoenix Contact Gmbh & Co. Kg Verfahren und Vorrichtung zum Überwachen der Sicherheitsintegrität einer durch ein Sicherheitssystem bereitgestellten Sicherheitsfunktion
DE102019205915A1 (de) * 2019-04-25 2020-10-29 Robert Bosch Gmbh Verfahren zur Sicherheitsbeurteilung, Computerprogramm, maschinenlesbares Speichermedium und Sicherheitsbeurteilungseinrichtung
KR102432807B1 (ko) * 2019-11-18 2022-08-16 한국전자통신연구원 마이크로서비스 구조 재구성 방법 및 장치
US11774127B2 (en) 2021-06-15 2023-10-03 Honeywell International Inc. Building system controller with multiple equipment failsafe modes
WO2024070540A1 (ja) * 2022-09-29 2024-04-04 パナソニックIpマネジメント株式会社 制御システム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004020994A1 (de) * 2004-04-19 2005-11-17 Pilz Gmbh & Co. Kg Verfahren und Vorrichtung zum computergestützten Konstruieren einer sicherheitsgerichteten elektrischen Schaltung
WO2006067121A1 (de) 2004-12-20 2006-06-29 Siemens Aktiengesellschaft Verfahren zur sicheren auslegung eines systems, zugehörige systemkomponente und software

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4409543A1 (de) * 1993-04-07 1994-10-13 Volkswagen Ag Steuer- oder Regeleinrichtung, insbesondere für eine Brennkraftmaschine eines Kraftfahrzeugs
AT5042U3 (de) * 2001-10-08 2002-10-25 Avl List Gmbh Messanordnung
CA2496779C (en) * 2002-08-26 2011-02-15 Guardednet, Inc. Determining threat level associated with network activity
WO2004095716A2 (en) 2003-04-17 2004-11-04 Fieldbus Foundation System and method for implementing safety instrumented systems in a fieldbus architecture
DE10318837A1 (de) * 2003-04-25 2004-11-11 Siemens Ag Verfahren und Vorrichtung zur Erkennung einer Ordnung in einem Netzwerk
US7117119B2 (en) * 2003-08-01 2006-10-03 Invensys Systems, Inc System and method for continuous online safety and reliability monitoring
US7133727B2 (en) 2003-08-01 2006-11-07 Invensys Systems, Inc. System and method for continuous online safety and reliability monitoring
CN1312880C (zh) * 2004-01-13 2007-04-25 重庆邮电学院 基于tcp/ip的工业控制网络的安全策略实现方法及系统
US20060129810A1 (en) * 2004-12-14 2006-06-15 Electronics And Telecommunications Research Institute Method and apparatus for evaluating security of subscriber network
DE102005019970B4 (de) * 2005-04-27 2007-04-26 Phoenix Contact Gmbh & Co. Kg Adressvergabe für sichere Busteilnehmer
US7313502B2 (en) * 2006-02-23 2007-12-25 Rockwell Automation Technologies, Inc. System and method to combine and weight multiple sensors with overlapping sensing range to create a measurement system utilized in a high integrity or safety environment
US7539550B2 (en) 2006-02-23 2009-05-26 Rockwell Automation Technologies, Inc. Safety versus availability graphical user interface
ATE479927T1 (de) 2006-11-01 2010-09-15 Abb Research Ltd Simulator-anwendungsmethode für ein kommunikationssystem
CN101242629B (zh) 2007-02-05 2012-02-15 华为技术有限公司 选择用户面算法的方法、系统和设备
ATE504871T1 (de) 2007-02-08 2011-04-15 Siemens Ag Verfahren und system zur ermittlung von zuverlässigkeitsparametern einer technischen anlage
EP1980964B1 (en) 2007-04-13 2016-03-23 Yogitech Spa Method and computer program product for performing failure mode and effects analysis of an integrated circuit
DE102008002266B4 (de) * 2007-06-12 2019-03-28 Omron Corp. Programmentwicklung-Unterstützungsvorrichtung einer Sicherheitssteuerung
US7869889B2 (en) * 2008-07-02 2011-01-11 Saudi Arabian Oil Company Distributed and adaptive smart logic with multi-communication apparatus for reliable safety system shutdown

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004020994A1 (de) * 2004-04-19 2005-11-17 Pilz Gmbh & Co. Kg Verfahren und Vorrichtung zum computergestützten Konstruieren einer sicherheitsgerichteten elektrischen Schaltung
WO2006067121A1 (de) 2004-12-20 2006-06-29 Siemens Aktiengesellschaft Verfahren zur sicheren auslegung eines systems, zugehörige systemkomponente und software

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PILZ GMBH, OSTFILDERN (DE): "Wahrscheinlichkeitserkennung leicht gemacht", vol. Ausgabe AUT 06/2005, 1 June 2005 (2005-06-01), XP002573656, Retrieved from the Internet <URL:http://www.cicweb.de/index.cfm?pid=1473&pk=66042> [retrieved on 20100316] *

Also Published As

Publication number Publication date
US9665072B2 (en) 2017-05-30
JP2012510194A (ja) 2012-04-26
JP5274667B2 (ja) 2013-08-28
EP2359201B1 (de) 2015-06-24
CN102224466A (zh) 2011-10-19
CN102224466B (zh) 2013-08-21
DE102008044018A1 (de) 2010-05-27
US20120022671A1 (en) 2012-01-26
EP2359201A1 (de) 2011-08-24
DE102008044018B4 (de) 2010-08-19

Similar Documents

Publication Publication Date Title
EP2359201B1 (de) Verfahren zum bestimmen einer sicherheitsstufe und sicherheitsmanager
EP2042956B1 (de) Schnittstelle zwischen einem Fertigungsmanagementsystem und einem Automatisierungssystem
EP3170287B1 (de) Steuer- und datenübertragungssystem, gateway-modul, e/a-modul und verfahren zur prozesssteuerung
EP0852759A1 (de) Entwurfsverfahren für die anlagentechnik und rechnergestütztes projektierungssystem zur verwendung bei diesem verfahren
DE10007971A1 (de) Diagnoseexpertensystem zum Einsatz in der Prozesssteuerung
EP3098673B1 (de) Verfahren und vorrichtung zur automatischen validierung von sicherheitsfunktionen an einem modular aufgebauten sicherheitssystem
EP1296207B1 (de) HMI Gerät und Verfahren zur Bedienung einer technischen Einrichtung, Automatisierungssystem mit HMI Gerät und Computerprogrammprodukt mit Programm zur Durchführung des Verfahrens in einem HMI Gerät oder Automatisierungssystem
EP1710647A2 (de) Integration von Feldgeräten in ein Automatisierungssystem
EP2246756B1 (de) Verfahren und Bediengerät zum Bedienen einer sicherheitsgerichteten industriellen Automatisierungskomponente
EP3607405B1 (de) Verfahren zum parametrieren eines feldgeräts sowie parametrierbares feldgerät
EP3414632B1 (de) Verfahren und vorrichtung zum überwachen einer datenverarbeitung und -übertragung in einer sicherheitskette eines sicherheitssystems
DE112008000225T5 (de) Netzwerküberwachung mit Kontrollsystem
DE19842593C2 (de) Verfahren zum Betrieb eines Busmasters an einem Feldbus
EP3470939B1 (de) Verfahren und system zum überwachen der sicherheitsintegrität einer durch ein sicherheitssystem bereitgestellten sicherheitsfunktion
EP3470937B1 (de) Verfahren und vorrichtungen zum überwachen der reaktionszeit einer durch ein sicherheitssystem bereitgestellten sicherheitsfunktion
DE102007063291A1 (de) Sicherheitssteuerung
EP3420426A1 (de) Vorrichtung und verfahren zur anpassung einer numerischen steuerung an eine zu steuernde maschine
DE102006062604A1 (de) Verfahren zum Testen von Gerätebeschreibungen für Feldgeräte der Automatisierungstechnik
DE102010040054A1 (de) Verfahren zur Sicherstellung der korrekten Funktionsweise einer Automatisierungsanlage
EP1454201B1 (de) Engineeringsystem und automatisierungssystem
EP2026147A1 (de) Verfahren zum Übermitteln von Telegrammen zwischen einer Steuereinrichtung und einem Peripherieelement über ein Zwischengerät
EP4031943A1 (de) Selbstüberprüfendes system der automatisierungstechnik
EP4154074A1 (de) Verfahren zum automatisierten erstellen eines skill-interfaces, computerprogrammprodukt und vorrichtung
EP3979011A1 (de) Ermitteln eines sicherheitszustands
WO2007077082A1 (de) Verfahren zum instandhalten einer automatisierungstechnischen anlage

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980146897.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09760810

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011536848

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2163/KOLNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2009760810

Country of ref document: EP