WO2010057770A2 - Formulations contenant un mélange de cubanes de zno, et procédé les utilisant pour la préparation de couches de zno semi-conductrices - Google Patents

Formulations contenant un mélange de cubanes de zno, et procédé les utilisant pour la préparation de couches de zno semi-conductrices Download PDF

Info

Publication number
WO2010057770A2
WO2010057770A2 PCT/EP2009/064584 EP2009064584W WO2010057770A2 WO 2010057770 A2 WO2010057770 A2 WO 2010057770A2 EP 2009064584 W EP2009064584 W EP 2009064584W WO 2010057770 A2 WO2010057770 A2 WO 2010057770A2
Authority
WO
WIPO (PCT)
Prior art keywords
zno
cubane
formulation
formulation according
och
Prior art date
Application number
PCT/EP2009/064584
Other languages
German (de)
English (en)
Other versions
WO2010057770A3 (fr
Inventor
Heiko Thiem
Jürgen STEIGER
Alexey Merkulov
Duy Vu Pham
Yilmaz Aksu
Stefan Schutte
Matthias Driess
Original Assignee
Evonik Degussa Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Degussa Gmbh filed Critical Evonik Degussa Gmbh
Priority to CN200980145968.0A priority Critical patent/CN102216490B/zh
Priority to EP09749096A priority patent/EP2347033B1/fr
Priority to JP2011536814A priority patent/JP5683477B2/ja
Priority to US13/123,072 priority patent/US8889476B2/en
Publication of WO2010057770A2 publication Critical patent/WO2010057770A2/fr
Publication of WO2010057770A3 publication Critical patent/WO2010057770A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/122Inorganic polymers, e.g. silanes, polysilazanes, polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1233Organic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1245Inorganic substrates other than metallic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material

Definitions

  • the present invention relates to formulations containing a mixture of ZnO cubanes, to processes for producing semiconducting ZnO layers which use these formulations, to the ZnO layers obtainable by this process, to the use of the formulations for producing electronic components and to electronic components comprising the ZnO layers produced by the process.
  • An important component in each transistor is the semiconductor material having the switching parameters, such. As the voltage influenced. Important parameters for semiconductor materials are the respective field-effect mobilities, processabilities and processing temperatures during production.
  • zinc oxide is one of the most attractive inorganic oxide materials for transistor fabrication. Furthermore, because of its highly interesting piezoelectric and electromechanical properties, zinc oxide is also commonly used in semiconductor technology in general (Mater., Sei., Eng., B, London State Mater. Adv., Technol., 2001, 80, 383; IEEE Trans. Microw. Theory Tech , MT17, 957) and used in electronics and optoelectronics. Due to its band gap of 3.37 eV at room temperature (Klingshirn, Phys. Status Solidi B, 1975, 71, 547) and its high exciton-binding energy of 60 meV (Landolt-Börnstein New Series, Group III Vol. 41 B), zinc oxide also has other widespread applications, as in laser technology at room temperature.
  • the Hall mobility ⁇ H of the electrons in the ZnO single crystal is 400 cm 2 -V "1 -s " 1 , although these values have hitherto not been achieved in layers produced in practical experiments.
  • Particle-based concepts are based primarily on the use of nanoparticulate systems, such. ZnO nanotubes (Nano Letters, 2005, 5, 12, 2408-2413).
  • the disadvantages of the particle concepts are, on the one hand, the colloidal instability of the particle dispersions used, which necessitates the use of dispersing additives, which in turn can adversely affect the resulting charge carrier mobility.
  • the particle-particle resistance is a problem because it reduces the mobility of charge carriers and generally increases the sheet resistance.
  • Zn 2+ salts can be used for the ZnO synthesis for the precursor approach, eg. ZnCl 2 , ZnBr 2 , Zn (OAc) 2 , other Zn salts of carboxylic acids, Zn (NOs) 2 and Zn (SO 4 ) 2 .
  • precursors are not suitable for printable electronics, because the processing temperature is always well above 350 ° C. (see, for example, J. Am. Chem. Soc., 2007, 129, 2750 - 2751 for the decomposition of Zn (OAc) 2 or IEEE Trans ., 54, 6, 2007, 1301-1307 for the decomposition of ZnCl 2 ).
  • dialkylzinc compounds have been known for more than 100 years, the elucidation of the structure of products was not successful until the 1960s.
  • the cubanes can also be synthesized from the dialkylzinc compounds by the reaction with oxygen and optionally water, it also being possible for dicubanes to be formed in addition to the monocubanes (Inorg. Chem. 2007, 46, 4293 - 4297).
  • the ZnO cubanes find their application in organic synthesis, for example in the alcohol dehydration (J. Org. Chem. 1979, 44 (8), 1221-1232), as polymerization initiators of ß-propiolactones and as precursors for ZnO in the synthesis of methanol ( J. Am. Chem. Soc., 2005, 127, 12028-12034), in the preparation of ZnO via Chemical Vapor Synthesis (MOCVD, J. Mater Chem., 1994, 4 (8), 1249-1253); Synthesis of ZnO nanoparticles via solvothermal pyrolysis or CVD (WO 03/014011 A1; SmII 2005, 1 (5), 540-552).
  • R 1 and R 2 may be independently alkyl, aryl, aralkyl, alkyloxyalkyl, aryloxyalkyl or aralkyloxyalkyl, in particular substituted or unsubstituted C 1 -C 10 -alkyl, substituted or unsubstituted C 6 -C 4 -aryl, substituted or unsubstituted aralkyl having a substituted or unsubstituted C 6 -C 4 -aryl group and one or more substituted or unsubstituted d-Cio-alkyl group, substituted or unsubstituted C 1 -C 10 -alkyl-oxy-C 1 -C 10 -alkyl or substituted or unsubstituted C 6 -C 4 -Aryl-oxy-
  • formulations comprising a SATn liquid and a ZnO cuban solid at SATP conditions are not only processable at low temperatures and then yield homogeneous films with good electron mobilities, but those produced using them even have higher electron mobilities than which have layers produced on the basis of liquid ZnO cubanes which are liquid under SATP conditions.
  • the solid at SATP conditions present ZnO Cuban has a decomposition or melting point of> 25 0 C at a pressure of 10 5 Pa. It is also possible to use solid ZnO cubanes which can not be converted into the liquid phase by a melting process but which decompose directly from the solid state. Preferably usable firmly present ZnO cubanes point at this pressure, a decomposition point in the range 120-300 0 C, more preferably in the range 150-250 0 C. Such ZnO Cubane surprisingly lead to particularly good film formation in a mixture with liquid ZnO cubanes which are liquid under SATP conditions and can nevertheless be processed at low temperature.
  • the ZnO cubane present in SATP conditions is a compound selected from [MeZn (Ot-Bu)] 4 or [MeZn (Oi-Pr)] 4 .
  • the liquid present in SATP conditions ZnO Cuban has a melting point of ⁇ 25 0 C at 10 5 Pa. Particularly preferably, it has at that pressure has a melting point in the range from 25 to -100 0 C, particularly preferably a melting point in the range from 0 to -30 0 C. Surprisingly, it was found that the homogeneity of the resulting layer is, the better lower melting ZnO cubane is used.
  • Particularly preferred is the ZnO cubane [MeZn (OCH 2 CH 2 OCH 3 ) I 4 , which is liquid in the case of SATP conditions.
  • the at least one ZnO cubane which is solid at atmospheric pressure is preferably present in the formulation according to the invention in proportions of from 10 to 90% by weight, preferably from 30 to 70% by weight, very particularly preferably from 40 to 60% by weight, based on the Total mass of solid and liquid ZnO cubane before.
  • the corresponding ZnO films are all the more homogeneous and show the better performance in the component, the more the respective weight percentages of solid and liquid ZnO cubane, based on their total mass approach a value of 50 wt .-%.
  • the formulation also contains at least one solvent.
  • the formulation may contain both at least one solvent and a mixture of different solvents.
  • aprotic solvents ie those selected from the group of aprotic nonpolar solvents, ie the alkanes, substituted alkanes, alkenes, alkynes, aromatics with or without aliphatic or aromatic substituents, halogenated hydrocarbons, tetramethylsilane, or the group of aprotic polar solvents, ie Ethers, aromatic ethers, substituted ethers, esters or acid anhydrides, ketones, tertiary amines, nitromethane, DMF (dimethylformamide), DMSO (dimethyl sulfoxide) or propylene carbonate.
  • aprotic solvents ie those selected from the group of aprotic nonpolar solvents, ie the alkanes, substituted alkanes, alkenes, alkynes, aromatics with or without
  • Particularly preferably usable solvents are toluene, xylene, anisole, mesitylene, n-hexane, n-heptane, ths- (3,6-dioxaheptyl) -amine (TDA), 2-aminomethyltetrahydrofuran, phenetole, 4-methylanisole, 3-methylanisole, Methyl benzoate, N-methyl-2-pyrrolidone (NMP), tetralin, ethyl benzoate and diethyl ether.
  • TDA 2-aminomethyltetrahydrofuran
  • phenetole 4-methylanisole, 3-methylanisole
  • Methyl benzoate N-methyl-2-pyrrolidone (NMP), tetralin, ethyl benzoate and diethyl ether.
  • the concentration of the ZnO cubanes in the formulation is preferably 5-60, particularly preferably 10-50, very particularly preferably 20-40% by weight, based on the formulation.
  • the formulation according to the invention is outstandingly suitable for the production of ZnO layers without having to add further additives for this purpose. Nevertheless, the formulations according to the invention are compatible with various additives, such. B. substances that stabilize the same against reagglomeration and sedimentation. As a rule, this at least one additive, depending on the type, the zinc oxide concentration and the type of liquid phase of the dispersion in a proportion of 0.01 to 20 wt .-% based on the ZnO cubane in the formulation present. As a rule, a low proportion of these substances will be sought, as this can have a positive effect on the performance of the electronic component. Particularly suitable additives are:
  • R 1 a straight-chain or branched or cycloaliphatic radical having 8 to 13
  • R 2 hydrogen, an acyl radical, alkyl radical or carboxylic acid radical having 1 to
  • SO styrene oxide
  • EO ethylene oxide
  • PO propylene oxide
  • x 1 or 2
  • k 2 to 4
  • R " H or a linear or branched alkyl radical which may optionally be substituted by additional functional groups
  • R ' alkyl, alkaryl, alkenyl or sulfopropyl radical.
  • R 1 a straight-chain, branched or cycloaliphatic radical having 1 to 22
  • SO styrene oxide
  • EO ethylene oxide
  • BO butylene oxide
  • a 1 to ⁇ 2
  • b 0 to 100
  • c 0 to 10
  • d 0 to 3
  • T is a hydrogen radical and / or an optionally substituted, linear or branched aryl, arylalkyl, alkyl or alkenyl radical having 1 to 24 carbon atoms
  • A is at least one divalent radical selected from the group of the linear, branched, cyclic and aromatic hydrocarbons,
  • Z is at least one radical selected from the group of sulfonic acids
  • Sulfuric acids phosphonic acids, phosphoric acids, carboxylic acids, isocyanates, epoxides, especially phosphoric acid and (meth) acrylic acid,
  • a, b, c are independently from 0 to 100, with the proviso that the sum of a + b + c> 0, preferably 5 to 35, in particular 10 to 20, with the proviso that the sum of a + b + c + d> 0, d> 0, preferably 1 to 5, l, m, n are independently> 2, preferably 2 to 4, x, y are independently> 2.
  • radicals R 1 are alkyl radicals having 1 to 4 carbon atoms or aryl radicals, but at least
  • R 1 80% of the radicals R 1 are methyl radicals, R 2 in the molecule are identical or different and may have the following meanings: wherein
  • R 3 is a hydrogen or alkyl radical
  • R 4 is a hydrogen, alkyl or carboxyl radical, c is a number from 1 to 20, d is a number from 0 to 50, e is a number from 0 to 50, or b) - (CH 2 -) f OR 5 , where .
  • R 5 is a hydrogen, alkyl, carboxyl or an optionally
  • F is a number from 2 to 20, or c) - (CH 2 -) g (OC 2 H 4 -) h (OC 3 H 6 -) l (OC 4 H 8 ) J (OCH 2 CH (C 6 H 5 )) ether group-containing dimethylolpropane ) k OR 6 wherein
  • R 6 is hydrogen, alkyl or carboxyl, g is 2-6, h is 0-20, i is 1-50, j is 0-10, k is 0-10 or d) corresponds to the radical R 1 , with the proviso that in the average molecule at least one radical R 2 has the meaning (a), where a is a number from 1 to 500, preferably 1 to 200 and in particular 1 to 50 and b is a number from 0 to 10, preferably ⁇ 5 and especially 0.
  • copolymers based on styrene-based oxyalkylene glycol or polyalkylene oxide alkenyl ethers and unsaturated carboxylic acid derivatives, preferably dicarboxylic acid derivatives can be used with
  • R 2 H, an aliphatic, optionally branched hydrocarbon radical having 1 to 20 C atoms, a cycloaliphatic hydrocarbon having 5 to 8 C atoms, an aryl radical having 6 to 14 C atoms, which is optionally substituted or a Phosphor Textreester- ( preferably monoester), sulfate or Sulfonatdehvat can be.
  • R 3 an aliphatic, optionally branched hydrocarbon radical having 1 to 20 C atoms, a cycloaliphatic hydrocarbon having 5 to 8 C atoms, an aryl radical having 6 to 14 C atoms,
  • T -U 1 -R 4 or -U 1 - (C m H, m O) n - (C m H
  • R 4 H, M a , R 3 or -Q 1 -NQ 2 Q 3 , where
  • Q 1 is a divalent alkylene radical having 2 to 24 carbon atoms
  • Q 2 and Q 3 are aliphatic and / or alicyclic alkyl radicals having 1 to 12 carbon atoms, optionally oxidized to
  • the formulation according to the invention can be used not only directly with or without the addition of additives for the production of ZnO layers, but the formulation can also embedded in matrix formers such.
  • matrix formers such as PMMA, polystyrene, PP, PE, PC or PVC for the ZnO layer production can be used.
  • the invention further provides a process for producing a semiconductive ZnO layer, in which a formulation according to the invention is applied to a substrate and subsequently thermally converted, and the ZnO layers which can be produced by this process.
  • the substrate may be an Si or Si / SiO 2 wafer, a glass substrate or a polymer substrate, the latter in particular based on PET, PE, PEN, PEI, PEEK, PI, PC, PEA, PA or PP, act.
  • the application of the formulation according to the invention to the substrate can be effected by spin coating, spraying or various printing processes (flexographic printing, gravure printing, inkjet printing, screen printing, tampon printing or offset printing).
  • the thermal conversion is preferably carried out at temperatures of 120 to 450 0 C, more preferably 150 to 400 0 C.
  • the thermal conversion can be done by the use of hot plates, ovens, laser and UV and / or microwave radiation radiation.
  • the ZnO layer produced from the formulation according to the invention can be aftertreated.
  • the properties of the ZnO film produced can be further improved by post-treatment with reducing or oxidizing atmospheres, by moisture, plasma treatment, laser treatment, UV irradiation.
  • the ZnO cubane formulations according to the invention can thus be used for the production of electronic components.
  • the novel ZnO-Cuban formulations are suitable for the production of transistors, optoelectronic components and piezoelectric sensors.
  • the subject matter of the present invention is therefore likewise an electronic component, in particular a transistor, an optoelectronic component and a piezoelectric sensor, each of which contains at least one semiconducting ZnO layer which has been produced by the methods described above. Examples:
  • a 50/50 wt.% Mixture of a liquid ZnO cubane ([MeZn (OCH 2 CH 2 OCH 3)] 4 , 400 mg, which is liquid under SATP conditions, and a ZnO cuban solid ([MeZn (Ot -Bu)] 4, 400 mg) is dissolved in 2 ml of toluene by spin coating (2000 rpm, 30 s) deposited on a Si / SiO 2 substrate and baked at 400 0 C in a forced air oven.
  • Table 1 shows better performance values of the resulting ZnO layer in the TFT over a ZnO layer prepared under the same conditions from a solution containing only the liquid cubane and equally concentrated with respect to the amount of cuban.
  • Microscopic images of the resulting films are shown in Figure 1 (SEM recording conditions: Hitachi S-4000 microscope equipped with a SAMX EDX detector without pretreatment, microscopic studies at room temperature and atmospheric pressure).
  • a solution processed under the same conditions, equally concentrated with respect to the amount of cubane and containing only the solid cubane forms, as shown in Figure 1 c, no homogeneous layer; Performance values can not be determined there.
  • a 50/50 wt.% Mixture of a liquid ZnO cubane ([MeZn (OCH 2 CH 2 OCH 3)] 4 , 400 mg, which is liquid under SATP conditions, and a ZnO cuban solid ([MeZn (Ot -Bu)] 4, 400 mg) in 2 mL of toluene is by spin coating (2000 rpm, 30 s) deposited on a Si / SiO 2 substrate and baked at 300 0 C in a forced air oven.
  • Table 1 shows better performance values of the resulting ZnO layer in the TFT over a ZnO layer prepared under the same conditions from a solution containing only the liquid cubane and equally concentrated with respect to the amount of cuban.
  • Microscopic images of the resulting layers are shown in Figure 2 (SEM recording conditions: Hitachi S-4000 microscope equipped with a SAMX EDX detector without pretreatment, microscopic studies at room temperature and atmospheric pressure).
  • a solution processed under the same conditions and equally concentrated with respect to the amount of cubane, containing only the solid cubane, does not form a homogeneous layer, as shown in Figure 2c; Performance values can not be determined.
  • Table 1 shows better performance values of the resulting ZnO layer in the TFT over a ZnO layer prepared under the same conditions from a solution containing only the liquid cubane and equally concentrated with respect to the amount of cuban.
  • Microscopic images of the resulting films are shown in Figure 3 (SEM recording conditions: Hitachi S-4000 microscope equipped with a SAMX EDX detector without pretreatment, microscopic studies at room temperature and atmospheric pressure).
  • a solution processed under the same conditions and equally concentrated with respect to the amount of cubane containing only the solid cubane does not form a homogeneous layer, as shown in Figure 3c; Performance values can not be determined.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Chemically Coating (AREA)
  • Thin Film Transistor (AREA)

Abstract

La présente invention porte sur des formulations comprenant a) au moins deux cubanes de ZnO différents, parmi lesquels au moins un cubane de ZnO est solide dans les conditions SATP (conditions de température et de pression ambiantes normales), et au moins un cubane de ZnO se présente sous forme liquide dans les conditions SATP, et b) au moins un solvant. L'invention porte également sur un procédé pour la préparation de couches de ZnO semi-conductrices à partir de ces formulations, sur l'utilisation des formulations pour la fabrication de composants électroniques, ainsi que sur les composants électroniques proprement dits.
PCT/EP2009/064584 2008-11-18 2009-11-04 Formulations contenant un mélange de cubanes de zno, et procédé les utilisant pour la préparation de couches de zno semi-conductrices WO2010057770A2 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200980145968.0A CN102216490B (zh) 2008-11-18 2009-11-04 包含ZnO立方烷的混合物的配制剂和使用它们制备半导体ZnO层的方法
EP09749096A EP2347033B1 (fr) 2008-11-18 2009-11-04 Formulations contenant un mélange de cubanes de zno, et procédé les utilisant pour la préparation de couches de zno semi-conductrices
JP2011536814A JP5683477B2 (ja) 2008-11-18 2009-11-04 ZnOキュバン混合物を含む調製物、及び前記調製物を用いるZnO半導体層製造方法
US13/123,072 US8889476B2 (en) 2008-11-18 2009-11-04 Formulations comprising a mixture of ZnO cubanes and process using them to produce semiconductive ZnO layers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008058040.6 2008-11-18
DE102008058040A DE102008058040A1 (de) 2008-11-18 2008-11-18 Formulierungen enthaltend ein Gemisch von ZnO-Cubanen und sie einsetzendes Verfahren zur Herstellung halbleitender ZnO-Schichten

Publications (2)

Publication Number Publication Date
WO2010057770A2 true WO2010057770A2 (fr) 2010-05-27
WO2010057770A3 WO2010057770A3 (fr) 2010-09-16

Family

ID=42114458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/064584 WO2010057770A2 (fr) 2008-11-18 2009-11-04 Formulations contenant un mélange de cubanes de zno, et procédé les utilisant pour la préparation de couches de zno semi-conductrices

Country Status (8)

Country Link
US (1) US8889476B2 (fr)
EP (1) EP2347033B1 (fr)
JP (1) JP5683477B2 (fr)
KR (1) KR101626634B1 (fr)
CN (1) CN102216490B (fr)
DE (1) DE102008058040A1 (fr)
TW (1) TWI460183B (fr)
WO (1) WO2010057770A2 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011056570A3 (fr) * 2009-10-28 2012-10-26 Corning Incorporated Couches d'oxyde métallique conducteur et dispositifs photovoltaïques
JP2013197539A (ja) * 2012-03-22 2013-09-30 National Institute Of Advanced Industrial & Technology 酸化物半導体膜の製造方法、及び酸化物半導体膜
CN113130784A (zh) * 2019-12-31 2021-07-16 Tcl集团股份有限公司 复合材料及其制备方法和应用、量子点发光二极管

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009009338A1 (de) 2009-02-17 2010-08-26 Evonik Degussa Gmbh Indiumalkoxid-haltige Zusammensetzungen, Verfahren zu ihrer Herstellung und ihre Verwendung
DE102009009337A1 (de) 2009-02-17 2010-08-19 Evonik Degussa Gmbh Verfahren zur Herstellung halbleitender Indiumoxid-Schichten, nach dem Verfahren hergestellte Indiumoxid-Schichten und deren Verwendung
DE102009028801B3 (de) 2009-08-21 2011-04-14 Evonik Degussa Gmbh Verfahren zur Herstellung Indiumoxid-haltiger Schichten, nach dem Verfahren herstellbare Indiumoxid-haltige Schicht und deren Verwendung
DE102009028802B3 (de) 2009-08-21 2011-03-24 Evonik Degussa Gmbh Verfahren zur Herstellung Metalloxid-haltiger Schichten, nach dem Verfahren herstellbare Metalloxid-haltige Schicht und deren Verwendung
DE102009054997B3 (de) 2009-12-18 2011-06-01 Evonik Degussa Gmbh Verfahren zur Herstellung von Indiumoxid-haltigen Schichten, nach dem Verfahren hergestellte Indiumoxid-haltige Schichten und ihre Verwendung
DE102009054998A1 (de) 2009-12-18 2011-06-22 Evonik Degussa GmbH, 45128 Verfahren zur Herstellung von Indiumchlordialkoxiden
DE102010031895A1 (de) 2010-07-21 2012-01-26 Evonik Degussa Gmbh Indiumoxoalkoxide für die Herstellung Indiumoxid-haltiger Schichten
DE102010043668B4 (de) 2010-11-10 2012-06-21 Evonik Degussa Gmbh Verfahren zur Herstellung von Indiumoxid-haltigen Schichten, nach dem Verfahren hergestellte Indiumoxid-haltige Schichten und ihre Verwendung
US20130056784A1 (en) 2011-09-02 2013-03-07 Lg Display Co., Ltd. Organic Light-Emitting Display Device and Method of Fabricating the Same
DE102011084145A1 (de) 2011-10-07 2013-04-11 Evonik Degussa Gmbh Verfahren zur Herstellung von hochperformanten und elektrisch stabilen, halbleitenden Metalloxidschichten, nach dem Verfahren hergestellte Schichten und deren Verwendung
DE102012206234A1 (de) 2012-04-17 2013-10-17 Evonik Industries Ag Formulierungen enthaltend ammoniakalische Hydroxo-Zink-Verbindungen
DE102013212018A1 (de) 2013-06-25 2015-01-08 Evonik Industries Ag Metalloxid-Prekursoren, sie enthaltende Beschichtungszusammensetzungen, und ihre Verwendung
DE102014202718A1 (de) 2014-02-14 2015-08-20 Evonik Degussa Gmbh Beschichtungszusammensetzung, Verfahren zu ihrer Herstellung und ihre Verwendung
CN113437245B (zh) * 2020-03-23 2022-06-14 Tcl科技集团股份有限公司 纳米复合材料及其制备方法、薄膜和发光二极管

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07182939A (ja) * 1993-12-22 1995-07-21 Mitsubishi Materials Corp 透明導電膜形成用組成物及び透明導電膜形成方法
JP2008088511A (ja) * 2006-10-03 2008-04-17 Adeka Corp 薄膜形成用原料、薄膜の製造方法及び亜鉛化合物

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5133973A (en) * 1986-08-07 1992-07-28 Medice Chem.-Pharm. Fabrik Putter Gmbh & Co. Kg Pharmaceutical preparations
US4874850A (en) * 1986-08-07 1989-10-17 Medice Chem.-Pharm. Fabrik Putter Gmbh & Co. Pharmaceutical preparations
ES2187083T3 (es) 1998-02-19 2003-05-16 Goldschmidt Ag Th Esteres de acido fosforico y su utilizacion como agentes dispersantes.
DE19940797A1 (de) 1999-08-27 2001-03-01 Goldschmidt Ag Th Durch Akoxylierung erhaltene blockcopolymere, styrenoxidhaltige Polyalkylenoxide und deren Verwendung
KR100457824B1 (ko) 2001-08-10 2004-11-18 한국화학연구원 용액 열분해법에 의한 나노 크기 2가 금속 산화물 분말의제조
DE10232115A1 (de) 2002-07-16 2004-02-05 Goldschmidt Ag Organopolysiloxane zur Entschäumung wässriger Systeme
DE10348825A1 (de) 2003-10-21 2005-06-02 Goldschmidt Ag Dispergiermittel zur Herstellung wässriger Pigmentpasten
DE202005010697U1 (de) 2005-07-07 2005-09-15 Schoen Hendrik Flexibler, transparenter Feldeffekttransistor
DE102007018431A1 (de) 2007-04-19 2008-10-30 Evonik Degussa Gmbh Pyrogenes Zinkoxid enthaltender Verbund von Schichten und diesen Verbund aufweisender Feldeffekttransistor
FR2920615B1 (fr) 2007-08-31 2011-01-28 Centre Nat Etd Spatiales Instrument d'acquisition et de distribution d'images d'observation terrestre a haute resolution spatiale et temporelle
DE102009009338A1 (de) * 2009-02-17 2010-08-26 Evonik Degussa Gmbh Indiumalkoxid-haltige Zusammensetzungen, Verfahren zu ihrer Herstellung und ihre Verwendung
DE102009009337A1 (de) * 2009-02-17 2010-08-19 Evonik Degussa Gmbh Verfahren zur Herstellung halbleitender Indiumoxid-Schichten, nach dem Verfahren hergestellte Indiumoxid-Schichten und deren Verwendung
DE102009028802B3 (de) * 2009-08-21 2011-03-24 Evonik Degussa Gmbh Verfahren zur Herstellung Metalloxid-haltiger Schichten, nach dem Verfahren herstellbare Metalloxid-haltige Schicht und deren Verwendung
DE102009028801B3 (de) * 2009-08-21 2011-04-14 Evonik Degussa Gmbh Verfahren zur Herstellung Indiumoxid-haltiger Schichten, nach dem Verfahren herstellbare Indiumoxid-haltige Schicht und deren Verwendung
DE102009050703B3 (de) * 2009-10-26 2011-04-21 Evonik Goldschmidt Gmbh Verfahren zur Selbstassemblierung elektrischer, elektronischer oder mikromechanischer Bauelemente auf einem Substrat und damit hergestelltes Erzeugnis
DE102009054997B3 (de) * 2009-12-18 2011-06-01 Evonik Degussa Gmbh Verfahren zur Herstellung von Indiumoxid-haltigen Schichten, nach dem Verfahren hergestellte Indiumoxid-haltige Schichten und ihre Verwendung
DE102009054998A1 (de) * 2009-12-18 2011-06-22 Evonik Degussa GmbH, 45128 Verfahren zur Herstellung von Indiumchlordialkoxiden
DE102010031592A1 (de) * 2010-07-21 2012-01-26 Evonik Degussa Gmbh Indiumoxoalkoxide für die Herstellung Indiumoxid-haltiger Schichten
DE102010031895A1 (de) * 2010-07-21 2012-01-26 Evonik Degussa Gmbh Indiumoxoalkoxide für die Herstellung Indiumoxid-haltiger Schichten

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07182939A (ja) * 1993-12-22 1995-07-21 Mitsubishi Materials Corp 透明導電膜形成用組成物及び透明導電膜形成方法
JP2008088511A (ja) * 2006-10-03 2008-04-17 Adeka Corp 薄膜形成用原料、薄膜の製造方法及び亜鉛化合物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Sebastian Polarz, Andrey V. Orlov , Ferdi Schüth, An-Hui Lu: "Preparation of High-Surface-Area Zinc Oxide with Ordered Porosity, Different Pore Sizes, and Nanocrystalline Walls" CHEMISTRY A EUROPEAN JOURNAL Bd. 13, 27. September 2006 (2006-09-27), Seiten 592-597, XP002588232 [gefunden am 2010-06-22] *
Todor Hikov, Andre Rittermeier, Maik-Borris Luedemann, Christian Herrmann, Martin Muhler, Roland A. Fischer: "Preparation of ZnO colloids by pyrolysis of [MeZnOiPr]4 in the presence of hexadecylamine and probing the surface chemistry of the nanoparticles by CO/CO2 adsorption studies followed by FTIR" Journal of Materials Chemistry Bd. 18, 4. Juni 2008 (2008-06-04), Seiten 3325-3331, XP002588233 [gefunden am 2010-06-22] *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011056570A3 (fr) * 2009-10-28 2012-10-26 Corning Incorporated Couches d'oxyde métallique conducteur et dispositifs photovoltaïques
CN102892923A (zh) * 2009-10-28 2013-01-23 康宁股份有限公司 导电金属氧化物膜和光伏器件
JP2013197539A (ja) * 2012-03-22 2013-09-30 National Institute Of Advanced Industrial & Technology 酸化物半導体膜の製造方法、及び酸化物半導体膜
CN113130784A (zh) * 2019-12-31 2021-07-16 Tcl集团股份有限公司 复合材料及其制备方法和应用、量子点发光二极管
CN113130784B (zh) * 2019-12-31 2022-09-06 Tcl科技集团股份有限公司 复合材料及其制备方法和应用、量子点发光二极管

Also Published As

Publication number Publication date
US8889476B2 (en) 2014-11-18
US20110193084A1 (en) 2011-08-11
JP5683477B2 (ja) 2015-03-11
TW201031673A (en) 2010-09-01
DE102008058040A1 (de) 2010-05-27
TWI460183B (zh) 2014-11-11
WO2010057770A3 (fr) 2010-09-16
KR20110089277A (ko) 2011-08-05
CN102216490A (zh) 2011-10-12
EP2347033B1 (fr) 2012-08-15
JP2012509403A (ja) 2012-04-19
EP2347033A2 (fr) 2011-07-27
KR101626634B1 (ko) 2016-06-01
CN102216490B (zh) 2014-02-12

Similar Documents

Publication Publication Date Title
EP2347033B1 (fr) Formulations contenant un mélange de cubanes de zno, et procédé les utilisant pour la préparation de couches de zno semi-conductrices
EP2612348B1 (fr) Procédé de fabrication des couches de silicium dopées de type p
DE102009054997B3 (de) Verfahren zur Herstellung von Indiumoxid-haltigen Schichten, nach dem Verfahren hergestellte Indiumoxid-haltige Schichten und ihre Verwendung
DE102010043668B4 (de) Verfahren zur Herstellung von Indiumoxid-haltigen Schichten, nach dem Verfahren hergestellte Indiumoxid-haltige Schichten und ihre Verwendung
KR101156280B1 (ko) 발열성 산화 아연 층을 포함하는 층 복합재 및 그 복합재를 포함하는 전계-효과 트랜지스터
JP2012509403A5 (fr)
EP2398935A1 (fr) Compositions contenant un alcoolate d'indium, leur procédé de fabrication et leur utilisation
DE102009028801B3 (de) Verfahren zur Herstellung Indiumoxid-haltiger Schichten, nach dem Verfahren herstellbare Indiumoxid-haltige Schicht und deren Verwendung
EP3010854A1 (fr) Formulations comprenant des hydridosilanes et des oligomères d'hydridosilane, leur procédé de préparation et leur utilisation
EP2501841B1 (fr) Procédé de production de couches de silicium
WO2014202459A1 (fr) Formulations comprenant de l'hydrurosilane et un oligomère d'hydrurosilane, procédé pour leur production, et leur utilisation
EP2839504A1 (fr) Formulation contenant des composés ammoniacaux d'hydroxo-zinc
EP3013837B1 (fr) Formulations pour la production de couches contenant de l'oxyde d'indium, procédé pour la production desdites formulations et l'utilisation desdites formulations
DE102011075232B4 (de) Verfahren zum Herstellen von n-dotierten Silizium-haltigen Schichten und entsprechend hergestellte Schichten

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980145968.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09749096

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13123072

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009749096

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117011232

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011536814

Country of ref document: JP