WO2010055758A1 - Fluorine-containing polymer, curable resin composition composed of the fluorine-containing polymer, and anti-reflection film - Google Patents

Fluorine-containing polymer, curable resin composition composed of the fluorine-containing polymer, and anti-reflection film Download PDF

Info

Publication number
WO2010055758A1
WO2010055758A1 PCT/JP2009/068247 JP2009068247W WO2010055758A1 WO 2010055758 A1 WO2010055758 A1 WO 2010055758A1 JP 2009068247 W JP2009068247 W JP 2009068247W WO 2010055758 A1 WO2010055758 A1 WO 2010055758A1
Authority
WO
WIPO (PCT)
Prior art keywords
structural unit
fluorine
mol
formula
resin composition
Prior art date
Application number
PCT/JP2009/068247
Other languages
French (fr)
Japanese (ja)
Inventor
恒雄 山下
洋介 岸川
知弘 吉田
正道 森田
義人 田中
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to JP2010537744A priority Critical patent/JP5556665B2/en
Publication of WO2010055758A1 publication Critical patent/WO2010055758A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/22Esters containing halogen
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials

Definitions

  • the present invention relates to a fluorine-containing polymer, a curable resin composition comprising the fluorine-containing polymer, and an antireflection film obtained by curing the composition.
  • an antireflection film made of a low refractive material is coated on the substrate of the display device.
  • a method of forming the antireflection film for example, a method of forming a thin film of a fluorine compound by vapor deposition is known.
  • vapor deposition method it is difficult to form a film on a large-screen substrate, and a vacuum apparatus is required, which increases the cost.
  • Patent Document 1 a method of forming an antireflection film by preparing a liquid composition in which a fluorine-containing polymer having a low refractive index is dissolved in an organic solvent and applying it to the surface of a substrate has been studied (for example, Patent Document 1).
  • the coating film hardness is insufficient, the coating film is scratched or peeled off due to abrasion, and the appearance of the display screen is impaired.
  • An object of the present invention is to provide a novel fluoropolymer capable of achieving high hardness while maintaining a low refractive index, a curable resin composition and an antireflection film using the same.
  • the present invention relates to a compound of formula (I): -(M1)-(M2)-(N)-(I) (Wherein M1 is a formula (1-1): A structural unit represented by M2 is a formula (1-2): A structural unit represented by N is a structural unit derived from a monomer copolymerizable with a monomer giving M1 and M2, and the structural unit M1 is 0.1 to 100 mol% and the structural unit M2 is 0 to 99.9 mol % And a structural unit N of 0 to 99.9 mol%, and a novel fluoropolymer (I) having a number average molecular weight of 500 to 1,000,000.
  • the present invention also provides (A) Formula (I): -(M1)-(M2)-(N)-(I) (Wherein M1 is a formula (1-1): A structural unit represented by M2 is a formula (1-2): A structural unit represented by N is a structural unit derived from a monomer copolymerizable with a monomer giving M1 and M2, and the structural unit M1 is 0.1 to 100 mol% and the structural unit M2 is 0 to 99.9 mol % And a structural unit N of 0 to 99.9 mol%, a film-forming material containing a fluorine-containing polymer (I) having a number average molecular weight of 500 to 1,000,000, and (B) curing containing an active energy ray curing initiator
  • the present invention also relates to a functional resin composition.
  • the film-forming material (A) is further represented by the formula (II): -(M3)-(N1)-(II) (Wherein M3 is the formula (2): (Wherein, Rf is ethylenic carbon Y 1 (Y 1 is terminated in the fluorine-containing alkyl group having ether bond of the fluorine-containing alkyl group or a 2 to 100 carbon atoms having 1 to 40 carbon atoms - carbon double bonds A structural unit represented by an organic group in which 1 to 3 monovalent organic groups having 2 to 10 carbon atoms are bonded, and a structure derived from a monomer copolymerizable with a monomer that gives M3 Unit) A fluorine-containing polymer (II) containing 0.1 to 100 mol% of the structural unit M3, 0 to 99.9 mol% of the structural unit N1 and having a number average molecular weight of 500 to 1000000 may be contained.
  • Rf is ethylenic carbon Y 1 (Y 1 is terminated
  • curable resin compositions may further contain a solvent (C).
  • the present invention also relates to an antireflection film obtained by photocuring the curable resin composition of the present invention.
  • the novel fluoropolymer of the present invention has the formula (I): -(M1)-(M2)-(N)-(I) (Wherein M1 is a formula (1-1): A structural unit represented by M2 is a formula (1-2): A structural unit represented by N is a structural unit derived from a monomer copolymerizable with a monomer giving M1 and M2, and the structural unit M1 is 0.1 to 100 mol% and the structural unit M2 is 0 to 99.9 mol % And structural unit N in an amount of 0 to 99.9 mol% and a number average molecular weight of 500 to 1,000,000.
  • the fluorinated polymer (I) In order to obtain the fluorinated polymer (I), generally, (i) a method (ii) once obtained by previously synthesizing and polymerizing a monomer (m1) having —C ( ⁇ O) CF ⁇ CH 2 In addition, there is a method of synthesizing a polymer having another functional group, converting the functional group to the polymer by a polymer reaction, and introducing —C ( ⁇ O) CF ⁇ CH 2 . The method (ii) does not require consideration of the curing reaction of the carbon-carbon double bond of —C ( ⁇ O) CF ⁇ CH 2 , and the carbon-carbon double bond having high curing reactivity. Is also a preferred method in that it can be introduced into the side chain.
  • the formula (1-2a) Fluoropolymer obtained by polymerizing 0.1 to 100 mol of hexafluoroalcohol ester of ⁇ -fluoroacrylic acid represented by formula (m2) and 0 to 99.9 mol of monomer (n) giving structural unit N It can be easily obtained by polymerizing (Ia) with ⁇ -fluoroacrylic acid (CH 2 ⁇ CFCOOH) or its acid halide.
  • the proportion of M1 in the fluoropolymer (I) is determined by the reaction amount of ⁇ -fluoroacrylic acid.
  • the proportion of M1 is 0.1 to 100 mol%, and the curability and solvent solubility are high. From a good point, it is preferably 10 to 90 mol%, more preferably 30 to 70 mol%.
  • the structural unit M2 can be introduced by copolymerizing a hexafluoroalcohol ester (m2) of ⁇ -fluoroacrylic acid.
  • the structural unit M2 can be introduced.
  • the acid (CH 2 ⁇ CFCOOH) or its acid halide can be introduced by controlling the rate of polymer reaction.
  • the structural unit M2 imparts characteristics such as solvent solubility, substrate adhesion, and curable crosslinking reaction point to the fluoropolymer (I).
  • the monomer (n) that gives the structural unit N which is an arbitrary structural unit, includes the monomer (m1) that gives the structural unit M1, or the single unit that gives the structural unit M2 and thus the structural unit that can be converted into the structural unit M1.
  • Monomers for example, monomers that can be copolymerized with ⁇ -fluoroacrylic acid hexafluoroalcohol ester (m2).
  • m2 ⁇ -fluoroacrylic acid hexafluoroalcohol ester
  • the following monomers can be preferably exemplified.
  • Structural units derived from a fluorine-containing ethylenic monomer having a functional group These are adhesive units to the substrate while maintaining the refractive index of the fluorine-containing polymer (I) and its cured product low. It is preferable at the point which can provide the solubility to a solvent, especially a general purpose solvent, and is preferable at the point which can provide functions, such as crosslinkability.
  • the structural unit of a preferred fluorine-containing ethylenic monomer having a functional group is represented by the formula (3): (Wherein X 11 , X 12 , X 13 are H, F or CH 3 ; X 14 is H, F, CF 3 ; CX 14 2 may be C ⁇ O; h is 0-2, i Rf 4 is a fluorine-containing alkylene group having 1 to 40 carbon atoms or a fluorine-containing alkylene group having an ether bond having 2 to 100 carbon atoms; Z 1 is —OH, —CH 2 OH, —COOH, carboxylic acid Derivatives, —SO 3 H, sulfonic acid derivatives, epoxy groups, and cyano groups).
  • (Ii) Structural units derived from a fluorine-containing ethylenic monomer that does not contain a functional group. These are because the refractive index of the fluorine-containing polymer (I) or its cured product can be kept low, and the refractive index is further lowered. It is preferable in that it can be performed. In addition, the mechanical properties and glass transition point of the fluoropolymer (I) can be adjusted by selecting the monomer, and in particular, the glass transition point can be increased by copolymerizing with the structural units M1 and M2. It is preferable.
  • the structural unit of the fluorine-containing ethylenic monomer is represented by the formula (4): (Wherein X 15 and X 16 are H or F; X 17 is H, F, CF 3 , CH 3 ; X 18 is H, F, CF 3 ; CX 14 2 may be C ⁇ O; h1, i1, j are 0 or 1; Z 2 is H, F or Cl; Rf 5 is a fluorine-containing alkylene group having 1 to 20 carbon atoms or a fluorine-containing alkylene group containing an ether bond having 2 to 100 carbon atoms) Can be given.
  • X 19 , X 20 , X 23 , X 24 , X 25 , X 26 are the same or different H or F;
  • X 21 , X 22 are the same or different H, F, Cl or CF 3 ;
  • Rf 6 is a fluorine-containing alkylene group having 1 to 10 carbon atoms or a fluorine-containing alkylene group having an ether bond having 2 to 10 carbon atoms;
  • n2 is an integer of 0 to 3; n1, n3, n4 and n5 are the same or different and 0 or An integer of 1 is preferable.
  • (V) Structural unit derived from alicyclic monomer As further copolymerization component, more preferably structural units M1 and M2 and the above-mentioned fluorine-containing ethylenic monomer or non-fluorine ethylenic monomer (described above)
  • an alicyclic monomer structural unit may be introduced as the third component, which is preferable because a high glass transition point and high hardness can be achieved. .
  • alicyclic monomers include A norbornene derivative represented by (m: 0 to 3, A, B, C, D is H, F, Cl, COOH, CH 2 OH, perfluoroalkyl having 1 to 5 carbon atoms, etc.) And alicyclic monomers such as these, and derivatives obtained by introducing substituents into these.
  • the combination and composition ratio of the structural units M1 and M2 and N are determined from the above examples, the intended use, physical properties (particularly glass transition point, hardness, etc.), function (transparency, refractive index). ) And the like.
  • the fluoropolymer (I) used in the present invention contains the structural unit M1 as an essential component, and the structural unit M1 itself maintains a low refractive index and is hardened to a cured product by a function and curing to impart transparency. In addition, it has the feature of having a function that can impart solvent resistance. Therefore, the fluoropolymer (I) can maintain a low refractive index even if it is a polymer comprising a large amount of the structural unit M1 and extremely composed of only the structural unit M1 (100 mol%). At the same time, a cured product having a high cured (crosslinked) density is obtained, which is preferable in that a high-hardness film can be obtained.
  • the content ratio of the structural unit M1 may be 0.1 mol% or more with respect to all monomers constituting the fluoropolymer (I).
  • the content ratio of the structural unit M1 may be 0.1 mol% or more with respect to all monomers constituting the fluoropolymer (I).
  • it is 2.0 mol% or more, preferably 5 mol% or more. More preferably, the content is 10 mol% or more.
  • an antireflection film that requires the formation of a cured film having excellent scratch resistance and scratch resistance, it is preferably contained in an amount of 10 mol% or more, preferably 20 mol% or more, and more preferably 50 mol% or more.
  • the fluoropolymer (I) is particularly preferable for use in an antireflection film because the antireflection effect does not decrease even if the proportion of the structural unit M1 is increased (even if the curing site is increased).
  • a fluorine-containing polymer having a combination and composition in which the combination of the structural unit M1 and the structural units M2 and N can be amorphous is preferable.
  • the molecular weight of the fluoropolymer (I) can be selected, for example, from the range of 500 to 1000000 in terms of the number average molecular weight, but is preferably selected from the range of 1000 to 500000, particularly 2000 to 200000.
  • the number average molecular weight is most preferably selected from the range of 5000 to 100,000.
  • the refractive index of the fluoropolymer (I) can be variously determined depending on the type of the structural unit M1, the content, and the type of the copolymer structural unit M2 or N used as necessary, but the fluoropolymer (I) (The refractive index before curing is preferably 1.45 or less, more preferably 1.40 or less, and particularly preferably 1.38 or less. Although it changes depending on the type of the base material or the base, it can be preferable as a base polymer for an antireflection film by maintaining these low refractive indexes and allowing curing (crosslinking).
  • the curable resin composition of the present invention using such a novel fluoropolymer (I) is (A) A film-forming material containing a fluoropolymer (Ia), and (B) an active energy ray curing initiator.
  • the film forming material (A) is further represented by the formula (II): -(M3)-(N1)-(II) (Wherein M3 is the formula (2): (Wherein, Rf is ethylenic carbon Y 1 (Y 1 is terminated in the fluorine-containing alkyl group having ether bond of the fluorine-containing alkyl group or a 2 to 100 carbon atoms having 1 to 40 carbon atoms - carbon double bonds A structural unit represented by an organic group in which 1 to 3 monovalent organic groups having 2 to 10 carbon atoms are bonded, and a structure derived from a monomer copolymerizable with a monomer that gives M3 Unit) A fluorine-containing polymer (II) containing 0.1 to 100 mol% of the structural unit M3, 0 to 99.9 mol% of the structural unit N1 and having a number average molecular weight of 500 to 1000000 may be contained.
  • Rf is ethylenic carbon Y 1 (Y 1 is terminated
  • a fluorine-containing polymer (II) having a fluoroether chain having an ethylenic carbon-carbon double bond at its terminal in the side chain for example, a polymer described in WO 02/18457 can be preferably used.
  • the fluorine-containing polymer (II) the following are preferable from the viewpoint of good refractive index, transparency, solvent solubility, and film formability.
  • Examples of the structural unit N1 include those exemplified as the structural unit N of the fluoropolymer (I), including preferred ones.
  • the mixing ratio ((I) / (II) mass ratio) of the fluoropolymer (I) and the fluoropolymer (II) in the film-forming material (A) is 100/0 to 10/90.
  • the refractive index and the hardness are preferable from the viewpoint of goodness, and from the viewpoint of improving the hardness, 100/0 to 30/70, more preferably 100/0 to 40/60 are preferable.
  • the active energy ray curing initiator (B) which is the other component of the curable resin composition of the present invention will be described.
  • the active energy ray curing initiator (B) for example, generates radicals and cations only when irradiated with electromagnetic waves in a wavelength region of 350 nm or less, that is, ultraviolet rays, electron beams, X rays, ⁇ rays, and the like. It functions as a catalyst for initiating the curing (crosslinking reaction) of the carbon-carbon double bond of the polymer. Usually, those that generate radicals and cations with ultraviolet light, particularly those that generate radicals are used.
  • a curing reaction can be easily started by the active energy ray, and there is no need for heating at a high temperature, and a curing reaction is possible at a relatively low temperature.
  • This is preferable in that it can be applied to a base material that is easily deformed, decomposed or colored by heat, such as a transparent resin base material.
  • the active energy ray curing initiator (B) in the composition of the present invention comprises the type of carbon-carbon double bond (radical) in the side chain in the fluoropolymer (I) or (II) of the film-forming material (A).
  • Reactive or cationic reactive the type of active energy ray to be used (wavelength range, etc.) and irradiation intensity, etc., are selected as appropriate, but generally radical reactive carbon-carbon using active energy rays in the ultraviolet region
  • Examples of the initiator for curing the fluorine-containing polymers (I) and (II) having a double bond include the following.
  • Thioxanthones Thioxanthone, Chlorothioxanthone, Methylthioxanthone, Diethylthioxanthone, Dimethylthioxanthone, etc. Others such as benzyl, ⁇ -acyl oxime ester, acyl phosphine oxide, glyoxy ester, 3-ketocoumarin, 2-ethylanthraquinone, camphorquinone, anthraquinone, etc. If necessary, light from amines, sulfones, sulfines, etc. An initiation aid may be added.
  • the initiator for curing the fluoropolymers (I) and (II) having a cation-reactive carbon-carbon double bond the following can be exemplified.
  • Sulfonic acid esters Alkyl sulfonic acid esters, haloalkyl sulfonic acid esters, aryl sulfonic acid esters, imino sulfonates, etc. Other sulfonimide compounds, diazomethane compounds, etc.
  • Another embodiment of the curable resin composition of the present invention is an embodiment in which the solvent (C) is used, and various substrates can be coated by dissolving or dispersing in the solvent (C) to form a coating film. It is preferable in that it can be efficiently cured by irradiation with active energy rays after the coating film is formed, and a cured film can be obtained.
  • the solvent (C) is a material in which the film-forming material (A), the active energy ray curing initiator (B), and additives such as a curing agent, leveling agent, and light stabilizer that are added as necessary are uniformly dissolved or dispersed. If it is, there will be no restriction
  • the mode of using the solvent (C) is particularly preferable in the field where a thin layer coating (around 0.1 ⁇ m) is required such as an antireflection coating, and is highly transparent and can obtain a uniform coating with good productivity.
  • Examples of the solvent (C) include cellosolve solvents such as methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, and ethyl cellosolve acetate; diethyl oxalate, ethyl pyruvate, ethyl-2-hydroxybutyrate, ethyl acetoacetate, butyl acetate , Ester solvents such as amyl acetate, ethyl butyrate, butyl butyrate, methyl lactate, ethyl lactate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, methyl 2-hydroxyisobutyrate, ethyl 2-hydroxyisobutyrate; propylene Glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monobutyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoeth
  • a fluorine-based solvent may be used as necessary.
  • fluorine-based solvent examples include CH 3 CCl 2 F (HCFC-141b), CF 3 CF 2 CHCl 2 / CClF 2 CF 2 CHClF mixture (HCFC-225), perfluorohexane, perfluoro (2-butyltetrahydrofuran). , Methoxy-nonafluorobutane, 1,3-bistrifluoromethylbenzene, etc.
  • Fluorine alcohols such as Examples thereof include benzotrifluoride, perfluorobenzene, perfluoro (tributylamine), ClCF 2 CFClCF 2 CFCl 2 and the like.
  • fluorinated solvents may be used alone or as a mixed solvent of fluorinated solvents with each other, or one or more of non-fluorinated and fluorinated solvents.
  • ketone solvents acetate solvents, alcohol solvents, aromatic solvents and the like are preferable in terms of paintability and coating productivity.
  • a curing agent may be further added to the curable resin composition of the present invention as necessary.
  • those having at least one carbon-carbon unsaturated bond and capable of being polymerized with radicals or acids are preferable.
  • radically polymerizable monomers such as acrylic monomers, vinyl ether monomers and the like are used.
  • cationically polymerizable monomers are used. These monomers may be monofunctional having one carbon-carbon double bond or polyfunctional monomers having two or more carbon-carbon double bonds.
  • the fluoropolymers (I) and (II) in the composition of the present invention can be cross-linked by copolymerization with the carbon-carbon double bond in the side chain.
  • Monofunctional acrylic monomers include acrylic acid, acrylic esters, methacrylic acid, methacrylic esters, ⁇ -fluoroacrylic acid, ⁇ -fluoroacrylic esters, maleic acid, maleic anhydride, maleic acid
  • esters (meth) acrylic acid esters having an epoxy group, a hydroxyl group, a carboxyl group, and the like are exemplified.
  • an acrylate monomer having a fluoroalkyl group is preferable.
  • polyfunctional acrylic monomers compounds in which the hydroxyl groups of polyhydric alcohols such as diols, triols, and tetraols are replaced with acrylate groups, methacrylate groups, or ⁇ -fluoroacrylate groups are generally known. .
  • 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol diethylene glycol, tripropylene glycol, neopetyl glycol, trimethylolpropane, pentaerythritol, dipentaerythritol, etc.
  • examples thereof include compounds in which two or more hydroxyl groups of polyhydric alcohols are replaced with acrylate groups, methacrylate groups or ⁇ -fluoroacrylate groups.
  • a polyfunctional acrylic monomer in which two or more hydroxyl groups of a polyhydric alcohol having a fluorine-containing alkyl group or a fluorine-containing alkylene group are replaced with an acrylate group, a methacrylate group, or an ⁇ -fluoroacrylate group can be used. This is particularly preferable in that the refractive index of the cured product can be kept low.
  • an ⁇ -fluoroacrylate compound is particularly preferable in terms of good curing reactivity.
  • the amount of the active energy ray curing initiator (B) added is the content of the carbon-carbon double bond in the fluoropolymers (I) and (II), and the use of the curing agent.
  • the fluoropolymer is used when no curing agent is used.
  • it is 0.05 to 50 mol%, preferably 0.1 to 20 mol, based on the content (number of moles) of the carbon-carbon double bond contained in the fluoropolymers (I) and (II). %, Most preferably 0.5 to 10 mol%.
  • the content of carbon-carbon double bonds (in moles) contained in the fluoropolymers (I) and (II) and the number of moles of carbon-carbon unsaturated bonds in the curing agent is 0.05 to 50 mol%, preferably 0.1 to 20 mol%, most preferably 0.5 to 10 mol%, based on the total number of moles.
  • the content of the solvent (C) in the curable resin composition of the present invention depends on the type of solid content to be dissolved, the presence or absence of use of a curing agent, the use ratio, the type of substrate to be applied, the target film thickness, etc. It is selected as appropriate, but it is preferably blended so that the total solid content in the composition is 0.5 to 70% by mass, preferably 1 to 50% by mass.
  • composition of the present invention may contain various additives as necessary in addition to the above-mentioned compounds.
  • additives examples include leveling agents, viscosity modifiers, light stabilizers, moisture absorbers, pigments, dyes, and reinforcing agents.
  • composition of the present invention can also contain inorganic compound fine particles for the purpose of increasing the hardness of the cured product.
  • the inorganic compound fine particles are not particularly limited, but compounds having a refractive index of 1.5 or less are preferable. Specifically, magnesium fluoride (refractive index 1.38), silicon oxide (refractive index 1.46), aluminum fluoride (refractive index 1.33-1.39), calcium fluoride (refractive index 1.44) Fine particles such as lithium fluoride (refractive index 1.36 to 1.37), sodium fluoride (refractive index 1.32 to 1.34), thorium fluoride (refractive index 1.45 to 1.50) are desirable. .
  • the particle diameter of the fine particles is desirably sufficiently smaller than the wavelength of visible light in order to ensure the transparency of the low refractive index material. Specifically, it is preferably 100 nm or less, particularly 50 nm or less.
  • the surface of the inorganic fine particle compound may be modified in advance using various coupling agents.
  • various coupling agents include organically substituted silicon compounds; metal alkoxides such as aluminum, titanium, zirconium, antimony or mixtures thereof; salts of organic acids; coordination compounds bonded to coordination compounds, and the like.
  • the film-forming material (A) or the additive may be a dispersion or solution in the solvent (C), but in order to form a uniform thin film, Moreover, it is preferable that it is a uniform solution at the point which can form into a film at comparatively low temperature.
  • the coating method a known coating method can be adopted as long as the film thickness can be controlled.
  • roll coating method gravure coating method, micro gravure coating method, flow coating method, bar coating method, spray coating method, die coating method, spin coating method, dip coating method, etc.
  • the film obtained by applying the curable resin composition of the present invention to a substrate and then drying can be photocured by irradiating active energy rays such as ultraviolet rays, electron beams or radiation.
  • the carbon-carbon double bonds in the fluoropolymers (I) and (II) are polymerized between molecules, and the carbon-carbon double bonds in the polymer are reduced or eliminated.
  • the resin hardness is increased, the mechanical strength is improved, the wear resistance, the scratch resistance is improved, and further, the resin becomes insoluble in the solvent dissolved before curing, It becomes insoluble in many other types of solvents.
  • the present invention also relates to an antireflection film obtained by curing the curable resin composition of the present invention.
  • the antireflection film of the present invention has a carbon-carbon unsaturated bond that can be cured (crosslinked) in the fluoropolymers (I) and (II) itself, and has a low refractive index by itself.
  • an antireflection film having an antireflection effect and high hardness, wear resistance, and scratch resistance can be obtained by applying and curing a transparent substrate with a predetermined film thickness. It has been done.
  • the paintability smoothness, film thickness uniformity
  • the monomer component having a low molecular weight hardly remains in the cured film. It is excellent in coating film performance without any tackiness.
  • Curing can take measures such as heat and light (in a system containing an initiator), but when an antireflection film is applied to a transparent resin substrate, applying a high temperature may cause thermal degradation or thermal deformation of the substrate. It is not preferable because it is easy to cause. Accordingly, curing by photocuring is preferable, and the fluoropolymer used in the present invention is preferably a carbon-carbon unsaturated bond capable of photocuring (for example, photopolymerization).
  • a curable resin composition containing a film forming material (A), an active energy ray curing initiator (B) and a solvent (C) is prepared, applied to a substrate, After forming a coating (uncured) by drying, etc., a method of obtaining a cured coating by irradiating active energy rays such as ultraviolet rays, electron beams, radiation, etc. is adopted. Light irradiation is inactive in air, nitrogen, etc. It may be performed under any conditions under a gas stream.
  • the fluoropolymers (I) and (II) having an acid-polymerizable carbon-carbon double bond can be used in combination with an initiator that generates an acid upon irradiation with active energy rays. In that case, it is less affected by air (oxygen) at the time of light irradiation, which is preferable in that a curing reaction can be achieved.
  • the antireflective film of the present invention has a refractive index of 1.49 or less, preferably 1.45 or less, and more preferably 1.40 or less. Most preferably, it is 1.38 or less, and the lower one is more advantageous as an antireflection effect.
  • the preferred film thickness of the antireflection film applied to various substrates varies depending on the refractive index of the film and the refractive index of the base, but is selected from the range of 0.03 to 0.5 ⁇ m, preferably 0.07 to 0.2 ⁇ m. More preferably, the thickness is 0.08 to 0.12 ⁇ m. If the film thickness is too low, the reduction in reflectance due to light interference in visible light will be insufficient, and if it is too high, the reflectance will depend only on the reflection at the interface between the air and the film. There is a tendency that the reduction of the reflectance due to is insufficient. In particular, it is preferable to set the film thickness so that the wavelength that indicates the minimum reflectance of the article after the antireflection film is applied is usually 420 to 720 nm, preferably 520 to 620 nm.
  • the antireflection film of the present invention can be applied to various substrate surfaces to provide an antireflection treatment article.
  • the article to which the antireflection film of the present invention is applied is not particularly limited.
  • inorganic materials such as glass, stone, concrete, tile; cellulose resins such as vinyl chloride resin, polyethylene terephthalate, triacetyl cellulose, polycarbonate resin, polyolefin resin, acrylic resin, phenol resin, xylene resin, urea resin, melamine Synthetic resins such as resin, diallyl phthalate resin, furan resin, amino resin, alkyd resin, urethane resin, vinyl ester resin, polyimide resin; metal such as iron, aluminum, copper; wood, paper, printed matter, photographic paper, painting, etc. I can give you.
  • the decorativeness of the article can be improved by applying an antireflection film to a part other than the specific part of the article and causing the shape of the specific part to be raised by reflected light.
  • the base materials it is preferably applied to transparent resin base materials such as acrylic resin, polycarbonate, cellulose resin, polyethylene terephthalate, and polyolefin resin, and can effectively exhibit antireflection effect.
  • transparent resin base materials such as acrylic resin, polycarbonate, cellulose resin, polyethylene terephthalate, and polyolefin resin
  • the present invention is effective when applied to an article having the following form.
  • Optical components such as prisms, lens sheets, polarizing plates, optical filters, lenticular lenses, Fresnel lenses, rear projection display screens, optical fibers and optical couplers; Transparent protective plates such as show window glass, showcase glass, advertising covers, photo stand covers, etc .; Protection plates such as CRT, liquid crystal display, plasma display, rear projection display; Optical recording media represented by magneto-optical disks, read-only optical disks such as CD / LD / DVD, phase transition optical disks such as PD, hologram recording, etc .; Photolithography-related members during semiconductor manufacturing, such as photoresists, photomasks, pellicles, and reticles; Protective covers for illuminants such as halogen lamps, fluorescent lamps and incandescent lamps; A sheet or film for attaching to the article.
  • the antireflection film of the present invention may be formed by directly applying the curable resin composition of the present invention to a substrate and irradiating with light to form a cured film having a thickness of about 0.1 ⁇ m.
  • One or a plurality of layers may be formed as an undercoat, and an antireflection film may be formed thereon as a topcoat.
  • the effect of the undercoat is roughly divided into three, and is to enhance the antireflection effect by increasing the scratch resistance of the topcoat, protecting the base material, and adding a layer having a higher refractive index than the base material. .
  • a self-repairing undercoat as exemplified in JP-A-7-168005 may be used.
  • a paint generally called a hard coat may be used for protecting the substrate.
  • the hard coat include curable acrylic resins and epoxy resins, cured products of silicon alkoxide compounds, and cured products of metal alkoxide compounds.
  • the thermosetting method can be applied to all of these.
  • acrylic resins and epoxy resins the light (ultraviolet) curing method is preferred in terms of productivity.
  • an additive for imparting conductivity to the undercoat layer and / or the topcoat layer as described above.
  • the additive include —COO—, —NH 2 , —NH 3 + , —NR 11 R 12 R 13 (where R 11 , R 12 and R 13 are, for example, methyl group, ethyl group, n-propyl group) , N-butyl group, etc.), polymers containing ionic groups such as —SO 3 —, silicone compounds, inorganic electrolytes (eg NaF, CaF 2 etc.) and the like.
  • an antistatic agent for the purpose of preventing the adhesion of dust, it is preferable to add an antistatic agent to the undercoat layer and / or the topcoat layer of the antireflection film.
  • additives include metal oxide fine particles, fluoroalkoxysilanes, surfactants (anionic, cationic, amphoteric, nonionic, etc.) in addition to the above-mentioned additives that impart conductivity.
  • the effect is permanent, the effect is not easily affected by humidity, the antistatic effect is high, the transparency and the refractive index are high, and the refractive index of the substrate is
  • fine particles of metal oxide specifically, antimony-doped tin oxide (ATO) and indium-containing tin oxide (ITO) are preferable.
  • ATO is preferable in terms of transparency, and ITO is preferable in terms of antistatic effect or conductivity.
  • the refractive index can be easily adjusted, so that the antireflection effect can be enhanced by using these additives.
  • the thickness of the undercoat layer is preferably about submicron so as not to prevent light transmission.
  • the film thickness is 0.05 to 0, depending on the refractive index of the cured product of the curable resin composition of the present invention. .3 ⁇ m is preferred.
  • the optimum refractive index also depends on the refractive index of the curable resin composition of the present invention, but is preferably 1.55 to 1.95.
  • an alkoxysilane-based antistatic agent is preferable from the viewpoint that the refractive index is difficult to increase and the antireflection effect is less adversely affected.
  • Fluoroalkoxysilane is more preferable because the action of increasing the refractive index is further reduced and the effect of improving the surface characteristics can be expected.
  • a surfactant having a film thickness that does not adversely affect the antireflection performance as disclosed in JP-A-8-142280 there is a method of forming the layer.
  • there is an effect of improving antifouling properties such as prevention of dust adhesion The same effect can be obtained when a hard coat layer is formed.
  • the hard coat layer can be formed by applying a solution of alkoxysilane or polysilazane, followed by heating and curing. Further, an ultraviolet curable acrylic paint or a cured film of melamine crosslinking can be used.
  • the antireflection film of the present invention has a high fluorine content and a low surface contact angle, and itself has water repellency, non-adhesiveness, and antifouling properties, and can have both antireflection and antifouling layers. .
  • a fluorine-containing polyether compound can be added to impart antifouling properties to the antireflection layer.
  • it is necessary to determine the addition amount in consideration of deterioration of mechanical properties and white turbidity due to phase separation from the film forming material (A).
  • the terminal is a carboxyl group, a blocked carboxyl group, a hydroxyl group, an epoxy group, an alkoxysilane group, a (meth) acryloyl group, or an ⁇ -fluoroacryloyl group, it is easily fixed in the film. The same effect can be obtained by applying the same polyether compound to the surface of the antireflection film formed in advance.
  • a silane compound may be added in order to improve the adhesion of the antireflection film to the substrate.
  • the amount of the silane compound added to the film may be about several mass%.
  • treating the substrate surface with a silane compound is also effective for improving adhesion.
  • the silane compound since the silane compound hardly increases the refractive index of the cured film, the adverse effect on the antireflection effect is very small.
  • Refractive index A refractive index is measured about the light of a wavelength of 550 nm at 25 degreeC using an Abbe refractometer.
  • This polymer was analyzed by 19 F-NMR, 1 H-NMR analysis, and IR analysis. As a result, it was a fluoropolymer having only a structural unit of the ⁇ -fluoroacrylate ester and having a hydroxyl group at the side chain end. .
  • the number average molecular weight measured by GPC analysis using tetrahydrofuran (THF) as a solvent was 5746, and the weight average molecular weight was 7706.
  • Synthesis Example 2 Synthesis of fluoropolymer (I-1)
  • MIBK methyl isobutyl ketone
  • the MIBK solution was put into a separatory funnel, washed with water, washed with 2% hydrochloric acid, washed with 5% NaCl, and further washed with water, and then dried over anhydrous magnesium sulfate, and then the MIBK solution was separated by filtration.
  • the refractive index of this fluoropolymer (I-1) was 1.37.
  • Synthesis Example 3 Synthesis of fluoropolymer (I-2)
  • a fluoropolymer (MIBK solution) was synthesized in the same manner as in Synthesis Example 2 except that 250 mg of ⁇ -fluoroacrylic acid fluoride: CH 2 ⁇ CFCOF was used.
  • the refractive index of this fluoropolymer (I-2) was 1.37.
  • Synthesis Example 4 Synthesis of fluoropolymer (I-3)
  • a fluoropolymer (MIBK solution) was synthesized in the same manner as in Synthesis Example 2 except that 50 mg of ⁇ -fluoroacrylic acid fluoride: CH 2 ⁇ CFCOF was used.
  • the fluorine-containing polymer (I-3) contained 10 mol% of units having —C ( ⁇ O) CF ⁇ CH 2 at the end and 90 mol% of units having a terminal hydroxyl group. confirmed.
  • the number average molecular weight measured by GPC analysis using tetrahydrofuran (THF) as a solvent was 5115, and the weight average molecular weight was 8080.
  • the refractive index of this fluoropolymer (I-3) was 1.36.
  • Synthesis Example 5 (Synthesis of fluoropolymer (I-4)) A fluoropolymer (MIBK solution) was synthesized in the same manner as in Synthesis Example 2 except that 350 mg of ⁇ -fluoroacrylic acid fluoride: CH 2 ⁇ CFCOF was used.
  • the fluorine-containing polymer (I-4) contained 70 mol% of the unit having —C ( ⁇ O) CF ⁇ CH 2 at the end and 30 mol% of the unit having the terminal hydroxyl group. confirmed.
  • the number average molecular weight measured by GPC analysis using tetrahydrofuran (THF) as a solvent was 6430, and the weight average molecular weight was 8,900.
  • the refractive index of this fluoropolymer (I-4) was 1.38.
  • a solution obtained by dissolving the obtained solid in diethyl ether was poured into perfluorohexane, separated and vacuum dried to obtain 17.6 g of a colorless and transparent polymer.
  • This polymer was analyzed by 19 F-NMR, 1 H-NMR analysis, and IR analysis. As a result, it was a fluorine-containing polymer comprising only the structural unit of the fluorine-containing allyl ether and having a hydroxyl group at the side chain end.
  • the number average molecular weight measured by GPC analysis using tetrahydrofuran (THF) as a solvent was 9000, and the weight average molecular weight was 22,000.
  • the MIBK solution was placed in a separatory funnel, washed with water, washed with 2% hydrochloric acid, washed with 5% NaCl, and further washed with water, dried over anhydrous magnesium sulfate, and then separated by filtration.
  • Example 1 Preparation of curable resin composition After measuring the solid content of the MIBK solution of the fluoropolymer (I-1) having an ⁇ -fluoroacryloyl group obtained in Synthesis Example 2 by loss on drying, it is diluted with MIBK. As a result, the polymer concentration was adjusted to 15% by mass.
  • Irgacure 127 manufactured by Ciba Japan Co., Ltd.
  • Ciba Japan Co., Ltd. 0.75 parts by mass of Irgacure 127 (manufactured by Ciba Japan Co., Ltd.) is added as an active energy ray curing initiator to 100 parts by mass of the polymer, and the curable resin of the present invention is added. A composition was obtained.
  • a high-pressure mercury lamp was used for the dried film, and ultraviolet light was irradiated at room temperature with an intensity of 1 J / cm 2 for photocuring to produce an antireflection film.
  • the obtained antireflection film (cured film) was examined for refractive index, total light transmittance, haze value, average visibility reflectance, minimum reflectance, and pencil hardness. The results are shown in Table 1.
  • Example 2 A curable resin composition was obtained in the same manner as in Example 1 except that the fluoropolymer (I-2) having an ⁇ -fluoroacryloyl group obtained in Synthesis Example 3 was used in place of the fluoropolymer (I-1). The preparation of the product, the production of the antireflection film, and the evaluation of the characteristics were performed. The results are shown in Table 1.
  • Example 3 A curable resin composition was obtained in the same manner as in Example 1 except that the fluoropolymer (I-4) having an ⁇ -fluoroacryloyl group obtained in Synthesis Example 5 was used in place of the fluoropolymer (I-1). The preparation of the product, the production of the antireflection film, and the evaluation of the characteristics were performed. The results are shown in Table 1.
  • Comparative Example 1 instead of the fluoropolymer (I-1), the same procedure as in Example 1 was used except that the fluoroether-containing fluoropolymer (II-1) having an ⁇ -fluoroacryloyl group obtained in Synthesis Example 6 was used. Preparation of a curable resin composition, production of an antireflection film, and evaluation of properties were performed. The results are shown in Table 1.
  • Example 4 Preparation of curable resin composition After measuring the solid content of the MIBK solution of the fluoropolymer (I-1) having an ⁇ -fluoroacryloyl group obtained in Synthesis Example 2 by loss on drying, it is diluted with MIBK. As a result, the polymer concentration was adjusted to 15% by mass.
  • a high-pressure mercury lamp was used for the dried film, and ultraviolet light was irradiated at room temperature with an intensity of 1 J / cm 2 for photocuring to produce an antireflection film.
  • the obtained antireflection film (cured film) was examined for refractive index, total light transmittance, haze value, average visibility reflectance, minimum reflectance, and pencil hardness. The results are shown in Table 2.
  • Example 5 A curable resin composition was obtained in the same manner as in Example 4 except that the fluoropolymer (I-2) having an ⁇ -fluoroacryloyl group obtained in Synthesis Example 3 was used in place of the fluoropolymer (I-1). The preparation of the product, the production of the antireflection film, and the evaluation of the characteristics were performed. The results are shown in Table 2.
  • Example 6 The curable resin composition was the same as in Example 4 except that the fluoropolymer (I-4) having an ⁇ -fluoroacryloyl group obtained in Synthesis Example 5 was used in place of the fluoropolymer (I-1). The preparation of the product, the production of the antireflection film and the evaluation of the characteristics were performed. The results are shown in Table 2.
  • Comparative Example 2 Curability was the same as in Example 4 except that the fluoroether-containing fluoropolymer (II-1) having an ⁇ -fluoroacryloyl group obtained in Synthesis Example 6 was used instead of the fluoropolymer (I).
  • the fluoroether-containing fluoropolymer (II-1) having an ⁇ -fluoroacryloyl group obtained in Synthesis Example 6 was used instead of the fluoropolymer (I).
  • Preparation of a resin composition, production of an antireflection film, and evaluation of properties were performed. The results are shown in Table 2.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Disclosed is a novel fluorine-containing polymer which can be increased in hardness, while maintaining low refractive index.  Also disclosed are a curable resin composition using the fluorine-containing polymer, and an anti-reflection film. The fluorine-containing polymer is represented by formula (I): -(M1)-(M2)-(N)- (wherein M1 represents a structural unit represented by formula (1-1), M2 represents a structural unit represented by formula (1-2), and N represents a structural unit derived from a monomer which is copolymerizable with monomers which respectively provide M1 and M2).  The curable resin composition contains a film-forming material containing the fluorine-containing polymer, and an active energy ray-curing initiator.

Description

含フッ素重合体、該含フッ素重合体よりなる硬化性樹脂組成物および反射防止膜Fluoropolymer, curable resin composition and antireflection film comprising the fluoropolymer
 本発明は、含フッ素重合体、該含フッ素重合体よりなる硬化性樹脂組成物および該組成物を硬化してなる反射防止膜に関する。 The present invention relates to a fluorine-containing polymer, a curable resin composition comprising the fluorine-containing polymer, and an antireflection film obtained by curing the composition.
 現在のマルチメディアの発達に伴ない、各種の表示機器において、その視野性(斜めから見たときの映り込みが少ない性質。「視認性」ともいう)の向上がますます重要となってきており、大型表示装置においても、より見易くすることが求められており、この特性が技術課題となっている。 Along with the development of multimedia, it is becoming increasingly important to improve the visibility of various display devices (because of less reflection when viewed from an angle, also called “visibility”). Even in a large display device, it is required to make it easier to see, and this characteristic is a technical problem.
 従来、表示装置の視認性を向上させるためには、低屈折材料から構成される反射防止膜を表示装置の基板に被覆することが行なわれている。反射防止膜を形成する方法としては、たとえばフッ素化合物の薄膜を蒸着法により形成する方法が知られている。しかしながら蒸着法では大画面の基板に対して被膜を形成することが困難で、しかも真空装置を必要とするためにコスト高になってしまう。 Conventionally, in order to improve the visibility of a display device, an antireflection film made of a low refractive material is coated on the substrate of the display device. As a method of forming the antireflection film, for example, a method of forming a thin film of a fluorine compound by vapor deposition is known. However, in the vapor deposition method, it is difficult to form a film on a large-screen substrate, and a vacuum apparatus is required, which increases the cost.
 こうした事情から、低屈折率の含フッ素重合体を有機溶媒に溶解した液状組成物を調製し、これを基材の表面に塗布することによって反射防止膜を形成する方法が検討されている(たとえば、特許文献1)。 Under such circumstances, a method of forming an antireflection film by preparing a liquid composition in which a fluorine-containing polymer having a low refractive index is dissolved in an organic solvent and applying it to the surface of a substrate has been studied (for example, Patent Document 1).
 しかしながら、含フッ素重合体溶液を塗布する方法では塗膜硬度が不充分なため摩耗により塗膜に傷が付いたり、塗膜が剥がれたりし、表示画面の外観を損なってしまう。 However, in the method of applying the fluoropolymer solution, since the coating film hardness is insufficient, the coating film is scratched or peeled off due to abrasion, and the appearance of the display screen is impaired.
 そこで、低屈折率の含フッ素重合体に加えて、光硬化可能なアクリル系単量体、たとえば含フッ素アクリル単量体、含フッ素多官能アクリル化合物を混合した組成物を塗布後、アクリル系単量体を光硬化することが検討されている(特許文献2~4)。 Thus, in addition to the low refractive index fluorine-containing polymer, after applying a composition in which a photocurable acrylic monomer such as a fluorine-containing acrylic monomer and a fluorine-containing polyfunctional acrylic compound is mixed, an acrylic monomer is applied. It has been studied to photocure the polymer (Patent Documents 2 to 4).
 しかしこれらは、主成分である含フッ素重合体自体は未架橋であるため硬度面でまだ不充分である。硬度をさらに向上させるためにはアクリル単量体や多官能アクリル化合物を増量させればよいが、そうすると硬化被膜の屈折率が高くなってしまい目的とする反射防止効果が低下してしまう。また、この方法では未反応のアクリル単量体や多官能アクリル化合物が塗膜中に残りやすく、硬化後の塗膜物性を悪化させる。 However, these are still insufficient in terms of hardness because the fluoropolymer itself, which is the main component, is uncrosslinked. In order to further improve the hardness, the amount of the acrylic monomer or polyfunctional acrylic compound may be increased. However, if this is done, the refractive index of the cured coating will be increased, and the intended antireflection effect will be reduced. Moreover, in this method, unreacted acrylic monomers and polyfunctional acrylic compounds are likely to remain in the coating film, which deteriorates the physical properties of the coated film after curing.
 含フッ素重合体の側鎖に光反応性(重合性)の官能基を導入したものをアクリル単量体や多官能アクリル化合物と混合したものを塗布し光硬化することも検討されている(特許文献5~7)。 It has also been studied to apply a photopolymerizable functional group introduced into the side chain of a fluoropolymer with a mixture of an acrylic monomer or polyfunctional acrylic compound and photo-cured (patent) References 5-7).
特開平6-115023号公報Japanese Patent Laid-Open No. 6-115023 特開平7-126552号公報Japanese Unexamined Patent Publication No. 7-126552 特開平7-188588号公報JP-A-7-188588 特開平8-48935号公報JP-A-8-48935 特許第2527186号明細書Japanese Patent No. 2527186 特許第2543903号明細書Japanese Patent No. 2543903 国際公開第02/18457号パンフレットInternational Publication No. 02/18457 Pamphlet
 本発明は、低屈折率を維持しながら、高硬度化を実現できる新規含フッ素重合体、それを用いた硬化性樹脂組成物および反射防止膜を提供することを目的とする。 An object of the present invention is to provide a novel fluoropolymer capable of achieving high hardness while maintaining a low refractive index, a curable resin composition and an antireflection film using the same.
 本発明は、式(I):
 -(M1)-(M2)-(N)-    (I)
(式中、M1は、式(1-1):
Figure JPOXMLDOC01-appb-C000006
で示される構造単位、
M2は式(1-2):
Figure JPOXMLDOC01-appb-C000007
で示される構造単位、
NはM1およびM2を与える単量体と共重合可能な単量体に由来する構造単位)で示され、構造単位M1を0.1~100モル%、構造単位M2を0~99.9モル%および構造単位Nを0~99.9モル%含み、数平均分子量が500~1000000である新規な含フッ素重合体(I)に関する。
The present invention relates to a compound of formula (I):
-(M1)-(M2)-(N)-(I)
(Wherein M1 is a formula (1-1):
Figure JPOXMLDOC01-appb-C000006
A structural unit represented by
M2 is a formula (1-2):
Figure JPOXMLDOC01-appb-C000007
A structural unit represented by
N is a structural unit derived from a monomer copolymerizable with a monomer giving M1 and M2, and the structural unit M1 is 0.1 to 100 mol% and the structural unit M2 is 0 to 99.9 mol % And a structural unit N of 0 to 99.9 mol%, and a novel fluoropolymer (I) having a number average molecular weight of 500 to 1,000,000.
 また本発明は、(A)式(I):
 -(M1)-(M2)-(N)-    (I)
(式中、M1は、式(1-1):
Figure JPOXMLDOC01-appb-C000008
で示される構造単位、
M2は式(1-2):
Figure JPOXMLDOC01-appb-C000009
で示される構造単位、
NはM1およびM2を与える単量体と共重合可能な単量体に由来する構造単位)で示され、構造単位M1を0.1~100モル%、構造単位M2を0~99.9モル%および構造単位Nを0~99.9モル%含み、数平均分子量が500~1000000である含フッ素重合体(I)を含む膜形成材料、および
(B)活性エネルギー線硬化開始剤
を含む硬化性樹脂組成物にも関する。
The present invention also provides (A) Formula (I):
-(M1)-(M2)-(N)-(I)
(Wherein M1 is a formula (1-1):
Figure JPOXMLDOC01-appb-C000008
A structural unit represented by
M2 is a formula (1-2):
Figure JPOXMLDOC01-appb-C000009
A structural unit represented by
N is a structural unit derived from a monomer copolymerizable with a monomer giving M1 and M2, and the structural unit M1 is 0.1 to 100 mol% and the structural unit M2 is 0 to 99.9 mol % And a structural unit N of 0 to 99.9 mol%, a film-forming material containing a fluorine-containing polymer (I) having a number average molecular weight of 500 to 1,000,000, and (B) curing containing an active energy ray curing initiator The present invention also relates to a functional resin composition.
 本発明の硬化性樹脂組成物においては、上記膜形成材料(A)がさらに、式(II):
 -(M3)-(N1)-    (II)
(式中、M3は、式(2):
Figure JPOXMLDOC01-appb-C000010
(式中、Rfは炭素数1~40の含フッ素アルキル基または炭素数2~100のエーテル結合を有する含フッ素アルキル基にY1(Y1は末端にエチレン性炭素-炭素二重結合を有する炭素数2~10の1価の有機基)が1~3個結合している有機基)で示される構造単位、N1はM3を与える単量体と共重合可能な単量体に由来する構造単位)で示され、
構造単位M3を0.1~100モル%、構造単位N1を0~99.9モル%含み、数平均分子量が500~1000000である含フッ素重合体(II)を含んでいてもよい。
In the curable resin composition of the present invention, the film-forming material (A) is further represented by the formula (II):
-(M3)-(N1)-(II)
(Wherein M3 is the formula (2):
Figure JPOXMLDOC01-appb-C000010
(Wherein, Rf is ethylenic carbon Y 1 (Y 1 is terminated in the fluorine-containing alkyl group having ether bond of the fluorine-containing alkyl group or a 2 to 100 carbon atoms having 1 to 40 carbon atoms - carbon double bonds A structural unit represented by an organic group in which 1 to 3 monovalent organic groups having 2 to 10 carbon atoms are bonded, and a structure derived from a monomer copolymerizable with a monomer that gives M3 Unit)
A fluorine-containing polymer (II) containing 0.1 to 100 mol% of the structural unit M3, 0 to 99.9 mol% of the structural unit N1 and having a number average molecular weight of 500 to 1000000 may be contained.
 これらの硬化性樹脂組成物は、溶剤(C)をさらに含んでいてもよい。 These curable resin compositions may further contain a solvent (C).
 本発明はまた、本発明の硬化性樹脂組成物を光硬化して得られる反射防止膜にも関する。 The present invention also relates to an antireflection film obtained by photocuring the curable resin composition of the present invention.
 本発明によれば、低屈折率を維持しながら、高硬度化を実現できる新規な含フッ素重合体、該含フッ素重合体を用いた硬化性樹脂組成物および反射防止膜を提供することができる。 According to the present invention, it is possible to provide a novel fluoropolymer capable of achieving high hardness while maintaining a low refractive index, a curable resin composition and an antireflection film using the fluoropolymer. .
 本発明の新規な含フッ素重合体は、式(I):
 -(M1)-(M2)-(N)-    (I)
(式中、M1は、式(1-1):
Figure JPOXMLDOC01-appb-C000011
で示される構造単位、
M2は式(1-2):
Figure JPOXMLDOC01-appb-C000012
で示される構造単位、
NはM1およびM2を与える単量体と共重合可能な単量体に由来する構造単位)で示され、構造単位M1を0.1~100モル%、構造単位M2を0~99.9モル%および構造単位Nを0~99.9モル%含み、数平均分子量が500~1000000である含フッ素重合体(I)である。
The novel fluoropolymer of the present invention has the formula (I):
-(M1)-(M2)-(N)-(I)
(Wherein M1 is a formula (1-1):
Figure JPOXMLDOC01-appb-C000011
A structural unit represented by
M2 is a formula (1-2):
Figure JPOXMLDOC01-appb-C000012
A structural unit represented by
N is a structural unit derived from a monomer copolymerizable with a monomer giving M1 and M2, and the structural unit M1 is 0.1 to 100 mol% and the structural unit M2 is 0 to 99.9 mol % And structural unit N in an amount of 0 to 99.9 mol% and a number average molecular weight of 500 to 1,000,000.
 含フッ素重合体(I)を得るためには、一般には
(i)-C(=O)CF=CH2を有する単量体(m1)を予め合成し、重合して得る方法
(ii)一旦、他の官能基を有する重合体を合成し、その重合体に高分子反応により官能基変換し、-C(=O)CF=CH2を導入する方法
がありいずれの方法も採用できるが、(ii)の方法は、-C(=O)CF=CH2が有する炭素-炭素二重結合の硬化反応に配慮しなくてもよい点、また、硬化反応性の高い炭素-炭素二重結合も側鎖に導入できる点で好ましい方法である。
In order to obtain the fluorinated polymer (I), generally, (i) a method (ii) once obtained by previously synthesizing and polymerizing a monomer (m1) having —C (═O) CF═CH 2 In addition, there is a method of synthesizing a polymer having another functional group, converting the functional group to the polymer by a polymer reaction, and introducing —C (═O) CF═CH 2 . The method (ii) does not require consideration of the curing reaction of the carbon-carbon double bond of —C (═O) CF═CH 2 , and the carbon-carbon double bond having high curing reactivity. Is also a preferred method in that it can be introduced into the side chain.
 (ii)の方法のなかでも、たとえば一旦ヒドロキシル基またはヒドロキシル基を有する有機基を有する含フッ素単量体の構造単位を含む含フッ素重合体を合成したのち、不飽和カルボン酸またはその誘導体を反応させて、炭素-炭素二重結合をポリマーの側鎖末端に導入し、本発明の硬化性含フッ素ポリマーを得る方法が好ましく採用できる。 Among the methods of (ii), for example, after synthesizing a fluorine-containing polymer containing a structural unit of a fluorine-containing monomer having a hydroxyl group or an organic group having a hydroxyl group, an unsaturated carboxylic acid or a derivative thereof is reacted. Thus, a method of introducing a carbon-carbon double bond into the end of the side chain of the polymer to obtain the curable fluorine-containing polymer of the present invention can be preferably employed.
 具体的には、たとえば含フッ素重合体(I)において、式(1-2a):
Figure JPOXMLDOC01-appb-C000013
で示されるα-フルオロアクリル酸のヘキサフルオロアルコールエステル(m2)0.1~100モルと構造単位Nを与える単量体(n)0~99.9モルを重合して得られる含フッ素重合体(Ia)に、α-フルオロアクリル酸(CH2=CFCOOH)またはその酸ハライドを高分子反応させることにより容易に得られる。
Specifically, for example, in the fluoropolymer (I), the formula (1-2a):
Figure JPOXMLDOC01-appb-C000013
Fluoropolymer obtained by polymerizing 0.1 to 100 mol of hexafluoroalcohol ester of α-fluoroacrylic acid represented by formula (m2) and 0 to 99.9 mol of monomer (n) giving structural unit N It can be easily obtained by polymerizing (Ia) with α-fluoroacrylic acid (CH 2 ═CFCOOH) or its acid halide.
 α-フルオロアクリル酸の反応量により、含フッ素重合体(I)中のM1の割合が決まり、本発明においてはM1の割合は0.1~100モル%であり、硬化性と溶剤溶解性が良好な点から10~90モル%、さらには30~70モル%が好ましい。 The proportion of M1 in the fluoropolymer (I) is determined by the reaction amount of α-fluoroacrylic acid. In the present invention, the proportion of M1 is 0.1 to 100 mol%, and the curability and solvent solubility are high. From a good point, it is preferably 10 to 90 mol%, more preferably 30 to 70 mol%.
 構造単位M2は上記の製法(i)においては、α-フルオロアクリル酸のヘキサフルオロアルコールエステル(m2)を共重合することにより導入することができるし、製法(ii)においては、α-フルオロアクリル酸(CH2=CFCOOH)またはその酸ハライドを高分子反応する割合を制御することにより導入することができる。 In the above production method (i), the structural unit M2 can be introduced by copolymerizing a hexafluoroalcohol ester (m2) of α-fluoroacrylic acid. In the production method (ii), the structural unit M2 can be introduced. The acid (CH 2 ═CFCOOH) or its acid halide can be introduced by controlling the rate of polymer reaction.
 この構造単位M2は、含フッ素重合体(I)に溶剤溶解性、基材密着性、硬化性架橋反応点などの特性を付与する。 The structural unit M2 imparts characteristics such as solvent solubility, substrate adhesion, and curable crosslinking reaction point to the fluoropolymer (I).
 任意の構造単位である構造単位Nを与える単量体(n)としては、構造単位M1を与える単量体(m1)、または構造単位M2、ひいては構造単位M1に変換できる構造単位を与える単量体、たとえばα-フルオロアクリル酸のヘキサフルオロアルコールエステル(m2)と共重合可能な単量体であればよく、たとえば国際公開第02/18457号パンフレットにおいて、構造単位Aを与える単量体として記載されているものがあげられる。 The monomer (n) that gives the structural unit N, which is an arbitrary structural unit, includes the monomer (m1) that gives the structural unit M1, or the single unit that gives the structural unit M2 and thus the structural unit that can be converted into the structural unit M1. Monomers, for example, monomers that can be copolymerized with α-fluoroacrylic acid hexafluoroalcohol ester (m2). For example, in WO 02/18457, it is described as a monomer that gives structural unit A. What is being done.
 具体的には、以下の単量体が好ましく例示できる。 Specifically, the following monomers can be preferably exemplified.
(i)官能基を有する含フッ素エチレン性単量体から誘導される構造単位
 これらは、含フッ素重合体(I)およびその硬化物の屈折率を低く維持しながら、基材への密着性や溶剤、特に汎用溶剤への溶解性を付与できる点で好ましく、架橋性などの機能を付与できる点で好ましい。
(I) Structural units derived from a fluorine-containing ethylenic monomer having a functional group These are adhesive units to the substrate while maintaining the refractive index of the fluorine-containing polymer (I) and its cured product low. It is preferable at the point which can provide the solubility to a solvent, especially a general purpose solvent, and is preferable at the point which can provide functions, such as crosslinkability.
 官能基を有する好ましい含フッ素エチレン性単量体の構造単位は、式(3):
Figure JPOXMLDOC01-appb-C000014
(式中、X11、X12、X13はH、FまたはCH3;X14はH、F、CF3;CX14 2はC=Oであってもよい;hは0~2、iは0または1;Rf4は炭素数1~40の含フッ素アルキレン基または炭素数2~100のエーテル結合を有する含フッ素アルキレン基;Z1は-OH、-CH2OH、-COOH、カルボン酸誘導体、-SO3H、スルホン酸誘導体、エポキシ基、シアノ基から選ばれるもの)で示される構造単位があげられる。
The structural unit of a preferred fluorine-containing ethylenic monomer having a functional group is represented by the formula (3):
Figure JPOXMLDOC01-appb-C000014
(Wherein X 11 , X 12 , X 13 are H, F or CH 3 ; X 14 is H, F, CF 3 ; CX 14 2 may be C═O; h is 0-2, i Rf 4 is a fluorine-containing alkylene group having 1 to 40 carbon atoms or a fluorine-containing alkylene group having an ether bond having 2 to 100 carbon atoms; Z 1 is —OH, —CH 2 OH, —COOH, carboxylic acid Derivatives, —SO 3 H, sulfonic acid derivatives, epoxy groups, and cyano groups).
 具体的には、つぎの単量体が例示できる。 Specifically, the following monomers can be exemplified.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
(ii)官能基を含まない含フッ素エチレン性単量体から誘導される構造単位
 これらは含フッ素重合体(I)またはその硬化物の屈折率を低く維持できる点で、またさらに低屈折率化することができる点で好ましい。また単量体を選択することで含フッ素重合体(I)の機械的特性やガラス転移点などを調整でき、特に構造単位M1およびM2と共重合してガラス転移点を高くすることができ、好ましいものである。
(Ii) Structural units derived from a fluorine-containing ethylenic monomer that does not contain a functional group. These are because the refractive index of the fluorine-containing polymer (I) or its cured product can be kept low, and the refractive index is further lowered. It is preferable in that it can be performed. In addition, the mechanical properties and glass transition point of the fluoropolymer (I) can be adjusted by selecting the monomer, and in particular, the glass transition point can be increased by copolymerizing with the structural units M1 and M2. It is preferable.
 含フッ素エチレン性単量体の構造単位としては式(4):
Figure JPOXMLDOC01-appb-C000016
(式中、X15、X16はHまたはF;X17はH、F、CF3、CH3;X18はH、F、CF3;CX14 2はC=Oであってもよい;h1、i1、jは0または1;Z2はH、FまたはCl;Rf5は炭素数1~20の含フッ素アルキレン基または炭素数2~100のエーテル結合を含む含フッ素アルキレン基)で示されるものがあげられる。
The structural unit of the fluorine-containing ethylenic monomer is represented by the formula (4):
Figure JPOXMLDOC01-appb-C000016
(Wherein X 15 and X 16 are H or F; X 17 is H, F, CF 3 , CH 3 ; X 18 is H, F, CF 3 ; CX 14 2 may be C═O; h1, i1, j are 0 or 1; Z 2 is H, F or Cl; Rf 5 is a fluorine-containing alkylene group having 1 to 20 carbon atoms or a fluorine-containing alkylene group containing an ether bond having 2 to 100 carbon atoms) Can be given.
 具体的には、つぎの単量体が例示できる。 Specifically, the following monomers can be exemplified.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
(iii)フッ素を有する脂肪族環状の構造単位
 これらの構造単位を導入すると、透明性を高くでき、また、より低屈折率化が可能となり、さらに高ガラス転移点の含フッ素重合体(I)が得られ、硬化物にさらなる高硬度化が期待できる点で好ましい。
(Iii) Aliphatic cyclic structural unit having fluorine When these structural units are introduced, the transparency can be increased, the refractive index can be lowered, and the fluoropolymer (I) having a high glass transition point. Is preferable in that a further increase in hardness can be expected from the cured product.
 含フッ素脂肪族環状の構造単位としては式(5):
Figure JPOXMLDOC01-appb-C000018
(式中、X19、X20、X23、X24、X25、X26は同じかまたは異なりHまたはF;X21、X22は同じかまたは異なりH、F、ClまたはCF3;Rf6は炭素数1~10の含フッ素アルキレン基または炭素数2~10のエーテル結合を有する含フッ素アルキレン基;n2は0~3の整数;n1、n3、n4、n5は同じかまたは異なり0または1の整数)で示されるものが好ましい。
As the fluorine-containing aliphatic cyclic structural unit, the formula (5):
Figure JPOXMLDOC01-appb-C000018
Wherein X 19 , X 20 , X 23 , X 24 , X 25 , X 26 are the same or different H or F; X 21 , X 22 are the same or different H, F, Cl or CF 3 ; Rf 6 is a fluorine-containing alkylene group having 1 to 10 carbon atoms or a fluorine-containing alkylene group having an ether bond having 2 to 10 carbon atoms; n2 is an integer of 0 to 3; n1, n3, n4 and n5 are the same or different and 0 or An integer of 1 is preferable.
 具体的には、つぎの単量体が例示できる。 Specifically, the following monomers can be exemplified.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
(iv)フッ素を含まないエチレン性単量体から誘導される構造単位
 屈折率を悪化(高屈折率化)させない範囲でフッ素を含まないエチレン性単量体から誘導される構造単位を導入してもよい。
(Iv) Structural units derived from ethylenic monomers that do not contain fluorine Introducing structural units derived from ethylenic monomers that do not contain fluorine to the extent that the refractive index is not deteriorated (higher refractive index). Also good.
 それによって、汎用溶剤への溶解性が向上したり、添加剤、たとえば光触媒や必要に応じて添加する硬化剤との相溶性を改善できるので好ましい。 This is preferable because the solubility in general-purpose solvents can be improved and the compatibility with additives such as photocatalysts and curing agents added as necessary can be improved.
 具体的には、つぎの単量体が例示できる。
αオレフィン類:
 エチレン、プロピレン、ブテン、塩化ビニル、塩化ビニリデンなど
ビニルエーテル系またはビニルエステル系単量体:
 CH2=CHOR、CH2=CHOCOR(R:炭素数1~20の炭化水素基)など
アリル系単量体:
 CH2=CHCH2Cl、CH2=CHCH2OH、CH2=CHCH2COOH、CH2=CHCH2Brなど
アリルエーテル系単量体:
Figure JPOXMLDOC01-appb-C000021
など
アクリル系またはメタクリル系単量体:
 アクリル酸、メタクリル酸、アクリル酸エステル類、メタクリル酸エステル類のほか、無水マレイン酸、マレイン酸、マレイン酸エステル類などがあげられる。
Specifically, the following monomers can be exemplified.
α-olefins:
Vinyl ether or vinyl ester monomers such as ethylene, propylene, butene, vinyl chloride, vinylidene chloride:
Allyl monomers such as CH 2 = CHOR, CH 2 = CHOCOR (R: hydrocarbon group having 1 to 20 carbon atoms):
Allyl ether monomers such as CH 2 = CHCH 2 Cl, CH 2 = CHCH 2 OH, CH 2 = CHCH 2 COOH, CH 2 = CHCH 2 Br, etc .:
Figure JPOXMLDOC01-appb-C000021
Acrylic or methacrylic monomers such as:
In addition to acrylic acid, methacrylic acid, acrylic esters and methacrylic esters, maleic anhydride, maleic acid, maleic esters and the like can be mentioned.
(v)脂環式単量体から誘導される構造単位
 さらなる共重合成分として、より好ましくは構造単位M1およびM2と前述の含フッ素エチレン性単量体または非フッ素エチレン性単量体(前述の(iii)、(iv))の構造単位に加えて、第3成分として脂環式単量体構造単位を導入してもよく、それによって高ガラス転移点化、高硬度化が図られるので好ましい。
(V) Structural unit derived from alicyclic monomer As further copolymerization component, more preferably structural units M1 and M2 and the above-mentioned fluorine-containing ethylenic monomer or non-fluorine ethylenic monomer (described above) In addition to the structural units of (iii) and (iv)), an alicyclic monomer structural unit may be introduced as the third component, which is preferable because a high glass transition point and high hardness can be achieved. .
 脂環式単量体の具体例としては、
Figure JPOXMLDOC01-appb-C000022
(m:0~3、A、B、C、Dは、H、F、Cl、COOH、CH2OH、炭素数1~5のパーフルオロアルキルなど)で示されるノルボルネン誘導体、
Figure JPOXMLDOC01-appb-C000023
などの脂環式単量体や、これらに置換基を導入した誘導体などがあげられる。
Specific examples of alicyclic monomers include
Figure JPOXMLDOC01-appb-C000022
A norbornene derivative represented by (m: 0 to 3, A, B, C, D is H, F, Cl, COOH, CH 2 OH, perfluoroalkyl having 1 to 5 carbon atoms, etc.)
Figure JPOXMLDOC01-appb-C000023
And alicyclic monomers such as these, and derivatives obtained by introducing substituents into these.
 含フッ素重合体(I)において、構造単位M1およびM2とNの組み合わせや組成比率は、上記の例示から目的とする用途、物性(特にガラス転移点、硬度など)、機能(透明性、屈折率)などによって種々選択できる。 In the fluoropolymer (I), the combination and composition ratio of the structural units M1 and M2 and N are determined from the above examples, the intended use, physical properties (particularly glass transition point, hardness, etc.), function (transparency, refractive index). ) And the like.
 本発明で用いる含フッ素重合体(I)は構造単位M1を必須成分として含むものであり、構造単位M1自体で屈折率を低く維持し、透明性を付与する機能と硬化により硬化物に硬さ、耐溶剤性を付与できる機能をあわせもつという特徴をもつ。したがって含フッ素重合体(I)は、構造単位M1を多く含む組成、極端には構造単位M1のみ(100モル%)からなる重合体であっても屈折率を低く維持できる。さらに同時に硬化(架橋)密度の高い硬化物が得られ、高硬度の被膜が得られる点で好ましい。 The fluoropolymer (I) used in the present invention contains the structural unit M1 as an essential component, and the structural unit M1 itself maintains a low refractive index and is hardened to a cured product by a function and curing to impart transparency. In addition, it has the feature of having a function that can impart solvent resistance. Therefore, the fluoropolymer (I) can maintain a low refractive index even if it is a polymer comprising a large amount of the structural unit M1 and extremely composed of only the structural unit M1 (100 mol%). At the same time, a cured product having a high cured (crosslinked) density is obtained, which is preferable in that a high-hardness film can be obtained.
 またさらに、本発明の構造単位M1およびM2と共重合可能な単量体の構造単位Nとからなる共重合体の場合、構造単位Nを前述の例示から選択することによって、さらに高硬度(高ガラス転移点)や低屈折率の硬化物を与えるポリマーとすることができる。 Furthermore, in the case of a copolymer comprising the structural unit N of a monomer copolymerizable with the structural units M1 and M2 of the present invention, by selecting the structural unit N from the above-mentioned examples, a higher hardness (higher Glass transition point) and a polymer that gives a cured product having a low refractive index.
 構造単位M1と構造単位M2およびNとの共重合体において、構造単位M1の含有比率は、含フッ素重合体(I)を構成する全単量体に対し0.1モル%以上であればよいが、硬化(架橋)により高硬度で耐摩耗性、耐擦傷性に優れ、耐薬品性、耐溶剤性に優れた硬化物を得るためには2.0モル%以上、好ましくは5モル%以上、より好ましくは10モル%以上とすることが好ましい。特に耐擦傷性、耐傷付性に優れた硬化被膜の形成が必要な反射防止膜の用途においては、10モル%以上、好ましくは20モル%以上、さらには50モル%以上含有することが好ましい。 In the copolymer of the structural unit M1 and the structural units M2 and N, the content ratio of the structural unit M1 may be 0.1 mol% or more with respect to all monomers constituting the fluoropolymer (I). However, in order to obtain a cured product having high hardness, excellent wear resistance and scratch resistance by curing (crosslinking), and excellent chemical resistance and solvent resistance, it is 2.0 mol% or more, preferably 5 mol% or more. More preferably, the content is 10 mol% or more. In particular, in the use of an antireflection film that requires the formation of a cured film having excellent scratch resistance and scratch resistance, it is preferably contained in an amount of 10 mol% or more, preferably 20 mol% or more, and more preferably 50 mol% or more.
 含フッ素重合体(I)は、構成単位M1の比率を増やしても(硬化部位を増やしても)反射防止効果は低下しないため、特に反射防止膜用途において好ましいものである。 The fluoropolymer (I) is particularly preferable for use in an antireflection film because the antireflection effect does not decrease even if the proportion of the structural unit M1 is increased (even if the curing site is increased).
 またさらに反射防止膜用途など透明性を必要とする場合、構造単位M1と構造単位M2およびNの組合せが非晶性となり得る組合せと組成を有する含フッ素重合体であることが好ましい。 Further, when transparency is required, such as for use in an antireflection film, a fluorine-containing polymer having a combination and composition in which the combination of the structural unit M1 and the structural units M2 and N can be amorphous is preferable.
 含フッ素重合体(I)の分子量は、たとえば数平均分子量において500~1000000の範囲から選択できるが、好ましくは1000~500000、特に2000~200000の範囲から選ばれるものが好ましい。 The molecular weight of the fluoropolymer (I) can be selected, for example, from the range of 500 to 1000000 in terms of the number average molecular weight, but is preferably selected from the range of 1000 to 500000, particularly 2000 to 200000.
 分子量が低すぎると、硬化後であっても機械的物性が不充分となりやすく、特に硬化物や硬化膜が脆く強度不足となりやすい。分子量が高すぎると、溶剤溶解性が悪くなったり、特に薄膜形成時に成膜性やレベリング性が悪くなりやすく、また含フッ素重合体(I)の貯蔵安定性も不安定となりやすい。コーティング用途としては、最も好ましくは数平均分子量が5000~100000の範囲から選ばれるものである。 If the molecular weight is too low, mechanical properties are likely to be insufficient even after curing, and in particular, the cured product and the cured film tend to be brittle and insufficient in strength. If the molecular weight is too high, the solvent solubility is deteriorated, the film forming property and leveling property are liable to be deteriorated particularly during the formation of the thin film, and the storage stability of the fluoropolymer (I) is liable to be unstable. As the coating application, the number average molecular weight is most preferably selected from the range of 5000 to 100,000.
 含フッ素重合体(I)の屈折率は、構造単位M1の種類、含有率、必要に応じて用いられる共重合構造単位M2またはNの種類によって種々決定できるが、含フッ素重合体(I)(硬化前)の屈折率が1.45以下であることが好ましく、さらには1.40以下、特には1.38以下であることが好ましい。基材や下地の種類によって変化するが、これら低屈折率を維持し、硬化(架橋)が可能であることで、反射防止膜用のベースポリマーとして好ましいものとなり得る。 The refractive index of the fluoropolymer (I) can be variously determined depending on the type of the structural unit M1, the content, and the type of the copolymer structural unit M2 or N used as necessary, but the fluoropolymer (I) ( The refractive index before curing is preferably 1.45 or less, more preferably 1.40 or less, and particularly preferably 1.38 or less. Although it changes depending on the type of the base material or the base, it can be preferable as a base polymer for an antireflection film by maintaining these low refractive indexes and allowing curing (crosslinking).
 かかる新規な含フッ素重合体(I)を用いた本発明の硬化性樹脂組成物は、
(A)含フッ素重合体(Ia)を含む膜形成材料、および
(B)活性エネルギー線硬化開始剤
を含む。
The curable resin composition of the present invention using such a novel fluoropolymer (I) is
(A) A film-forming material containing a fluoropolymer (Ia), and (B) an active energy ray curing initiator.
 本発明の硬化性樹脂組成物における膜形成材料(A)としての含フッ素重合体(I)の作用効果は、上記したとおりである。 The effect of the fluoropolymer (I) as the film forming material (A) in the curable resin composition of the present invention is as described above.
 本発明において、膜形成材料(A)は、さらに、式(II):
 -(M3)-(N1)-    (II)
(式中、M3は、式(2):
Figure JPOXMLDOC01-appb-C000024
(式中、Rfは炭素数1~40の含フッ素アルキル基または炭素数2~100のエーテル結合を有する含フッ素アルキル基にY1(Y1は末端にエチレン性炭素-炭素二重結合を有する炭素数2~10の1価の有機基)が1~3個結合している有機基)で示される構造単位、N1はM3を与える単量体と共重合可能な単量体に由来する構造単位)で示され、
構造単位M3を0.1~100モル%、構造単位N1を0~99.9モル%含み、数平均分子量が500~1000000である含フッ素重合体(II)を含んでいてもよい。
In the present invention, the film forming material (A) is further represented by the formula (II):
-(M3)-(N1)-(II)
(Wherein M3 is the formula (2):
Figure JPOXMLDOC01-appb-C000024
(Wherein, Rf is ethylenic carbon Y 1 (Y 1 is terminated in the fluorine-containing alkyl group having ether bond of the fluorine-containing alkyl group or a 2 to 100 carbon atoms having 1 to 40 carbon atoms - carbon double bonds A structural unit represented by an organic group in which 1 to 3 monovalent organic groups having 2 to 10 carbon atoms are bonded, and a structure derived from a monomer copolymerizable with a monomer that gives M3 Unit)
A fluorine-containing polymer (II) containing 0.1 to 100 mol% of the structural unit M3, 0 to 99.9 mol% of the structural unit N1 and having a number average molecular weight of 500 to 1000000 may be contained.
 かかる末端にエチレン性炭素-炭素二重結合を有するフルオロエーテル鎖を側鎖に有する含フッ素重合体(II)としては、たとえば国際公開第02/18457号パンフレットに記載された重合体が好ましく使用できる。 As such a fluorine-containing polymer (II) having a fluoroether chain having an ethylenic carbon-carbon double bond at its terminal in the side chain, for example, a polymer described in WO 02/18457 can be preferably used. .
 構造単位M3を与える単量体として好ましい具体例としては、
Figure JPOXMLDOC01-appb-C000025
があげられ、より詳しくは、
Figure JPOXMLDOC01-appb-C000026
などがあげられる。
As a preferable specific example of the monomer that gives the structural unit M3,
Figure JPOXMLDOC01-appb-C000025
For more details,
Figure JPOXMLDOC01-appb-C000026
Etc.
 なかでも含フッ素重合体(II)としては、屈折率、透明性、溶剤溶解性、成膜性が良好な点から、つぎのものが好ましい。 Among these, as the fluorine-containing polymer (II), the following are preferable from the viewpoint of good refractive index, transparency, solvent solubility, and film formability.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 構造単位N1としては、含フッ素重合体(I)の構造単位Nとして例示したものが、好ましいものを含めて適用できる。 Examples of the structural unit N1 include those exemplified as the structural unit N of the fluoropolymer (I), including preferred ones.
 膜形成材料(A)における含フッ素重合体(I)と含フッ素重合体(II)の混合割合((I)/(II)質量比)は100/0~10/90であることが、低屈折率および硬度が良好な点から好ましく、特に硬度が向上する点から100/0~30/70、さらには100/0~40/60が好ましい。 The mixing ratio ((I) / (II) mass ratio) of the fluoropolymer (I) and the fluoropolymer (II) in the film-forming material (A) is 100/0 to 10/90. The refractive index and the hardness are preferable from the viewpoint of goodness, and from the viewpoint of improving the hardness, 100/0 to 30/70, more preferably 100/0 to 40/60 are preferable.
 本発明の硬化性樹脂組成物の他方の成分である活性エネルギー線硬化開始剤(B)について説明する。 The active energy ray curing initiator (B) which is the other component of the curable resin composition of the present invention will be described.
 活性エネルギー線硬化開始剤(B)は、たとえば350nm以下の波長領域の電磁波、つまり紫外光線、電子線、X線、γ線などが照射されることによって初めてラジカルやカチオンなどを発生し、含フッ素重合体の炭素-炭素二重結合の硬化(架橋反応)を開始させる触媒として働くものであり、通常、紫外光線でラジカルやカチオンを発生させるもの、特にラジカルを発生するものを使用する。 The active energy ray curing initiator (B), for example, generates radicals and cations only when irradiated with electromagnetic waves in a wavelength region of 350 nm or less, that is, ultraviolet rays, electron beams, X rays, γ rays, and the like. It functions as a catalyst for initiating the curing (crosslinking reaction) of the carbon-carbon double bond of the polymer. Usually, those that generate radicals and cations with ultraviolet light, particularly those that generate radicals are used.
 この硬化性含フッ素樹脂組成物によると、前記活性エネルギー線により容易に硬化反応が開始でき、高温での加熱の必要がなく、比較的低温で硬化反応が可能であるので、耐熱性が低く、熱で変形や分解、着色が起こりやすい基材、たとえば透明樹脂基材などにも適応できる点で好ましい。 According to this curable fluorine-containing resin composition, a curing reaction can be easily started by the active energy ray, and there is no need for heating at a high temperature, and a curing reaction is possible at a relatively low temperature. This is preferable in that it can be applied to a base material that is easily deformed, decomposed or colored by heat, such as a transparent resin base material.
 本発明の組成物における活性エネルギー線硬化開始剤(B)は、膜形成材料(A)の含フッ素重合体(I)、(II)中の側鎖の炭素-炭素二重結合の種類(ラジカル反応性か、カチオン反応性か)、使用する活性エネルギー線の種類(波長域など)と照射強度などによって適宜選択されるが、一般に紫外線領域の活性エネルギー線を用いてラジカル反応性の炭素-炭素二重結合を有する含フッ素重合体(I)、(II)を硬化させる開始剤としては、たとえばつぎのものが例示できる。 The active energy ray curing initiator (B) in the composition of the present invention comprises the type of carbon-carbon double bond (radical) in the side chain in the fluoropolymer (I) or (II) of the film-forming material (A). Reactive or cationic reactive), the type of active energy ray to be used (wavelength range, etc.) and irradiation intensity, etc., are selected as appropriate, but generally radical reactive carbon-carbon using active energy rays in the ultraviolet region Examples of the initiator for curing the fluorine-containing polymers (I) and (II) having a double bond include the following.
アセトフェノン系
 アセトフェノン、クロロアセトフェノン、ジエトキシアセトフェノン、ヒドロキシアセトフェノン、α-アミノアセトフェノンなど
ベンゾイン系
 ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンジルジメチルケタールなど
ベンゾフェノン系
 ベンゾフェノン、ベンゾイル安息香酸、ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、ヒドロキシベンゾフェノン、ヒドロキシ-プロピルベンゾフェノン、アクリル化ベンゾフェノン、ミヒラーケトンなど
チオキサンソン類
 チオキサンソン、クロロチオキサンソン、メチルチオキサンソン、ジエチルチオキサンソン、ジメチルチオキサンソンなど
その他
 ベンジル、α-アシルオキシムエステル、アシルホスフィンオキサイド、グリオキシエステル、3-ケトクマリン、2-エチルアンスラキノン、カンファーキノン、アンスラキノンなど
 また、必要に応じてアミン類、スルホン類、スルフィン類などの光開始助剤を添加してもよい。
Acetophenone acetophenone, chloroacetophenone, diethoxyacetophenone, hydroxyacetophenone, α-aminoacetophenone, etc.
Benzoin benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzyldimethyl ketal, etc.
Benzophenone benzophenone, benzoylbenzoic acid, methyl benzoylbenzoate, 4-phenylbenzophenone, hydroxybenzophenone, hydroxy-propylbenzophenone, acrylated benzophenone, Michler's ketone, etc.
Thioxanthones Thioxanthone, Chlorothioxanthone, Methylthioxanthone, Diethylthioxanthone, Dimethylthioxanthone, etc.
Others such as benzyl, α-acyl oxime ester, acyl phosphine oxide, glyoxy ester, 3-ketocoumarin, 2-ethylanthraquinone, camphorquinone, anthraquinone, etc. If necessary, light from amines, sulfones, sulfines, etc. An initiation aid may be added.
 また、カチオン反応性の炭素-炭素二重結合を有する含フッ素重合体(I)、(II)を硬化させる開始剤としては、つぎのものが例示できる。 As the initiator for curing the fluoropolymers (I) and (II) having a cation-reactive carbon-carbon double bond, the following can be exemplified.
オニウム塩
 ヨードニウム塩、スルホニウム塩、ホスホニウム塩、ジアゾニウム塩、アンモニウム塩、ピリジニウム塩など
スルホン化合物
 β-ケトエステル、β-スルホニルスルホンとこれらのα-ジアゾ化合物など
スルホン酸エステル類
 アルキルスルホン酸エステル、ハロアルキルスルホン酸エステル、アリールスルホン酸エステル、イミノスルホネートなど
その他
 スルホンイミド化合物類、ジアゾメタン化合物類など
Onium salt iodonium salt, sulfonium salt, phosphonium salt, diazonium salt, ammonium salt, pyridinium salt, etc.
Sulfone compounds β-ketoester, β-sulfonylsulfone and their α-diazo compounds, etc.
Sulfonic acid esters Alkyl sulfonic acid esters, haloalkyl sulfonic acid esters, aryl sulfonic acid esters, imino sulfonates, etc.
Other sulfonimide compounds, diazomethane compounds, etc.
 本発明の硬化性樹脂組成物の別の態様は溶剤(C)を使用する態様であり、溶剤(C)に溶解または分散させることによって種々の基材にコーティングし、塗膜を形成することができ、塗膜形成後、活性エネルギー線などの照射によって効率よく硬化でき、硬化被膜が得られる点で好ましい。 Another embodiment of the curable resin composition of the present invention is an embodiment in which the solvent (C) is used, and various substrates can be coated by dissolving or dispersing in the solvent (C) to form a coating film. It is preferable in that it can be efficiently cured by irradiation with active energy rays after the coating film is formed, and a cured film can be obtained.
 溶剤(C)は、膜形成材料(A)、活性エネルギー線硬化開始剤(B)および必要に応じて添加する硬化剤、レベリング剤、光安定剤などの添加剤が均一に溶解または分散するものであれば特に制限はないが、特に膜形成材料(A)を均一に溶解するものが好ましい。この溶剤(C)を使用する態様は特に反射防止膜用途など薄層被膜(0.1μm前後)が要求される分野で透明性が高く、均質な被膜を生産性よく得られる点で好ましい。 The solvent (C) is a material in which the film-forming material (A), the active energy ray curing initiator (B), and additives such as a curing agent, leveling agent, and light stabilizer that are added as necessary are uniformly dissolved or dispersed. If it is, there will be no restriction | limiting in particular, Especially the thing which melt | dissolves a film forming material (A) uniformly is preferable. The mode of using the solvent (C) is particularly preferable in the field where a thin layer coating (around 0.1 μm) is required such as an antireflection coating, and is highly transparent and can obtain a uniform coating with good productivity.
 かかる溶剤(C)としては、たとえばメチルセロソルブ、エチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテートなどのセロソルブ系溶剤;ジエチルオキサレート、ピルビン酸エチル、エチル-2-ヒドロキシブチレート、エチルアセトアセテート、酢酸ブチル、酢酸アミル、酪酸エチル、酪酸ブチル、乳酸メチル、乳酸エチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、2-ヒドロキシイソ酪酸メチル、2-ヒドロキシイソ酪酸エチルなどのエステル系溶剤;プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート、ジプロピレングリコールジメチルエーテルなどのプロピレングリコール系溶剤;2-ヘキサノン、シクロヘキサノン、メチルアミノケトン、2-ヘプタノンなどのケトン系溶剤;メタノール、エタノール、プロパノール、イソプロパノール、ブタノールなどのアルコール系溶剤;トルエン、キシレンなどの芳香族炭化水素類あるいはこれらの2種以上の混合溶剤などがあげられる。 Examples of the solvent (C) include cellosolve solvents such as methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, and ethyl cellosolve acetate; diethyl oxalate, ethyl pyruvate, ethyl-2-hydroxybutyrate, ethyl acetoacetate, butyl acetate , Ester solvents such as amyl acetate, ethyl butyrate, butyl butyrate, methyl lactate, ethyl lactate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, methyl 2-hydroxyisobutyrate, ethyl 2-hydroxyisobutyrate; propylene Glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monobutyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether Propylene glycol solvents such as teracetate, propylene glycol monobutyl ether acetate, dipropylene glycol dimethyl ether; ketone solvents such as 2-hexanone, cyclohexanone, methylaminoketone, 2-heptanone; methanol, ethanol, propanol, isopropanol, butanol, etc. Examples of the alcohol solvent include aromatic hydrocarbons such as toluene and xylene, or a mixed solvent of two or more of these.
 またさらに、膜形成材料(A)の溶解性を向上させるために、必要に応じてフッ素系の溶剤を用いてもよい。 Furthermore, in order to improve the solubility of the film forming material (A), a fluorine-based solvent may be used as necessary.
 フッ素系の溶剤としては、たとえばCH3CCl2F(HCFC-141b)、CF3CF2CHCl2/CClF2CF2CHClF混合物(HCFC-225)、パーフルオロヘキサン、パーフルオロ(2-ブチルテトラヒドロフラン)、メトキシ-ノナフルオロブタン、1,3-ビストリフルオロメチルベンゼンなどのほか、
Figure JPOXMLDOC01-appb-C000028
などのフッ素系アルコール類、
ベンゾトリフルオライド、パーフルオロベンゼン、パーフルオロ(トリブチルアミン)、ClCF2CFClCF2CFCl2などがあげられる。
Examples of the fluorine-based solvent include CH 3 CCl 2 F (HCFC-141b), CF 3 CF 2 CHCl 2 / CClF 2 CF 2 CHClF mixture (HCFC-225), perfluorohexane, perfluoro (2-butyltetrahydrofuran). , Methoxy-nonafluorobutane, 1,3-bistrifluoromethylbenzene, etc.
Figure JPOXMLDOC01-appb-C000028
Fluorine alcohols such as
Examples thereof include benzotrifluoride, perfluorobenzene, perfluoro (tributylamine), ClCF 2 CFClCF 2 CFCl 2 and the like.
 これらフッ素系溶剤は単独でも、またフッ素系溶剤同士、非フッ素系とフッ素系の1種以上との混合溶剤として用いてもよい。 These fluorinated solvents may be used alone or as a mixed solvent of fluorinated solvents with each other, or one or more of non-fluorinated and fluorinated solvents.
 これらのなかでもケトン系溶剤、酢酸エステル系溶剤、アルコール系溶剤、芳香族系溶剤などが、塗装性、塗布の生産性などの面で好ましいものである。 Of these, ketone solvents, acetate solvents, alcohol solvents, aromatic solvents and the like are preferable in terms of paintability and coating productivity.
 本発明の硬化性樹脂組成物に、さらに必要に応じて硬化剤を添加してもよい。 A curing agent may be further added to the curable resin composition of the present invention as necessary.
 硬化剤としては、炭素-炭素不飽和結合を1つ以上有しかつラジカルまたは酸で重合できるものが好ましく、具体的にはアクリル系モノマーなどのラジカル重合性の単量体、ビニルエーテル系モノマーなどのカチオン重合性の単量体があげられる。これら単量体は、炭素-炭素二重結合を1つ有する単官能であっても炭素-炭素二重結合を2つ以上有する多官能の単量体であってもよい。 As the curing agent, those having at least one carbon-carbon unsaturated bond and capable of being polymerized with radicals or acids are preferable. Specifically, radically polymerizable monomers such as acrylic monomers, vinyl ether monomers and the like are used. And cationically polymerizable monomers. These monomers may be monofunctional having one carbon-carbon double bond or polyfunctional monomers having two or more carbon-carbon double bonds.
 これらの炭素-炭素不飽和結合を有するいわゆる硬化剤は、本発明の組成物中の活性エネルギー線硬化開始剤(B)と光などの活性エネルギー線との反応で生じるラジカルやカチオンで反応し、本発明の組成物中の含フッ素重合体(I)、(II)の側鎖の炭素-炭素二重結合と共重合によって架橋することができるものである。 These so-called curing agents having a carbon-carbon unsaturated bond react with radicals and cations generated by the reaction of the active energy ray curing initiator (B) in the composition of the present invention with active energy rays such as light, The fluoropolymers (I) and (II) in the composition of the present invention can be cross-linked by copolymerization with the carbon-carbon double bond in the side chain.
 単官能のアクリル系単量体としては、アクリル酸、アクリル酸エステル類、メタクリル酸、メタクリル酸エステル類、α-フルオロアクリル酸、α-フルオロアクリル酸エステル類、マレイン酸、無水マレイン酸、マレイン酸エステル類のほか、エポキシ基、ヒドロキシル基、カルボキシル基などを有する(メタ)アクリル酸エステル類などが例示される。 Monofunctional acrylic monomers include acrylic acid, acrylic esters, methacrylic acid, methacrylic esters, α-fluoroacrylic acid, α-fluoroacrylic esters, maleic acid, maleic anhydride, maleic acid In addition to esters, (meth) acrylic acid esters having an epoxy group, a hydroxyl group, a carboxyl group, and the like are exemplified.
 なかでも硬化物の屈折率を低く維持するために、フルオロアルキル基を有するアクリレート系単量体が好ましく、たとえば一般式:
Figure JPOXMLDOC01-appb-C000029
(XはH、CH3またはF、Rfは炭素数2~40の含フッ素アルキル基または炭素数2~100のエーテル結合を有する含フッ素アルキル基)で表わされる化合物が好ましい。
Among them, in order to keep the refractive index of the cured product low, an acrylate monomer having a fluoroalkyl group is preferable.
Figure JPOXMLDOC01-appb-C000029
A compound represented by (X is H, CH 3 or F, and Rf is a fluorine-containing alkyl group having 2 to 40 carbon atoms or a fluorine-containing alkyl group having an ether bond having 2 to 100 carbon atoms) is preferable.
 具体的には、
Figure JPOXMLDOC01-appb-C000030
などがあげられる。
In particular,
Figure JPOXMLDOC01-appb-C000030
Etc.
 多官能アクリル系単量体としては、ジオール、トリオール、テトラオールなどの多価アルコール類のヒドロキシル基をアクリレート基、メタアクリレート基、α-フルオロアクリレート基に置き換えた化合物が一般的に知られている。 As polyfunctional acrylic monomers, compounds in which the hydroxyl groups of polyhydric alcohols such as diols, triols, and tetraols are replaced with acrylate groups, methacrylate groups, or α-fluoroacrylate groups are generally known. .
 具体的には、1,3-ブタンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、トリプロピレングリコール、ネオペチルグリコール、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトールなどのそれぞれの多価アルコール類の2個以上のヒドロキシル基がアクリレート基、メタクリレート基、α-フルオロアクリレート基のいずれかに置き換えられた化合物があげられる。 Specifically, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol, tripropylene glycol, neopetyl glycol, trimethylolpropane, pentaerythritol, dipentaerythritol, etc. Examples thereof include compounds in which two or more hydroxyl groups of polyhydric alcohols are replaced with acrylate groups, methacrylate groups or α-fluoroacrylate groups.
 また、含フッ素アルキル基または含フッ素アルキレン基を有する多価アルコールの2個以上のヒドロキシル基をアクリレート基、メタアクリレート基、α-フルオロアクリレート基に置き換えた多官能アクリル系単量体も利用でき、特に硬化物の屈折率を低く維持できる点で好ましい。 In addition, a polyfunctional acrylic monomer in which two or more hydroxyl groups of a polyhydric alcohol having a fluorine-containing alkyl group or a fluorine-containing alkylene group are replaced with an acrylate group, a methacrylate group, or an α-fluoroacrylate group can be used. This is particularly preferable in that the refractive index of the cured product can be kept low.
 具体例としては
Figure JPOXMLDOC01-appb-C000031
などの一般式で示される含フッ素多価アルコール類の2個以上のヒドロキシル基をアクリレート基、メタアクリレート基またはα-フルオロアクリレート基に置き換えた構造のものが好ましくあげられる。
As a specific example
Figure JPOXMLDOC01-appb-C000031
Preferred are those having a structure in which two or more hydroxyl groups of fluorine-containing polyhydric alcohols represented by general formulas such as are replaced with acrylate groups, methacrylate groups or α-fluoroacrylate groups.
 また、これら例示の単官能、多官能アクリル系単量体を硬化剤として本発明の組成物に用いる場合、なかでも特にα-フルオロアクリレート化合物が硬化反応性が良好な点で好ましい。 In addition, when these exemplified monofunctional and polyfunctional acrylic monomers are used in the composition of the present invention as a curing agent, an α-fluoroacrylate compound is particularly preferable in terms of good curing reactivity.
 本発明の組成物において、活性エネルギー線硬化開始剤(B)の添加量は、含フッ素重合体(I)および(II)中の炭素-炭素二重結合の含有量、上記硬化剤の使用の有無や硬化剤の使用量によって、さらには用いる開始剤、活性エネルギー線の種類や、照射エネルギー量(強さと時間など)によって適宜選択されるが、硬化剤を使用しない場合では、含フッ素重合体(I)+(II)100質量部に対して0.01~30質量部、さらには0.05~20質量部、最も好ましくは、0.1~10質量部である。 In the composition of the present invention, the amount of the active energy ray curing initiator (B) added is the content of the carbon-carbon double bond in the fluoropolymers (I) and (II), and the use of the curing agent. Depending on the presence / absence and amount of curing agent used, as well as the initiator used, the type of active energy rays, and the amount of irradiation energy (strength and time, etc.), the fluoropolymer is used when no curing agent is used. (I) + (II) 0.01 to 30 parts by mass, further 0.05 to 20 parts by mass, and most preferably 0.1 to 10 parts by mass with respect to 100 parts by mass.
 詳しくは、含フッ素重合体(I)および(II)中に含まれる炭素-炭素二重結合の含有量(モル数)に対し、0.05~50モル%、好ましくは0.1~20モル%、最も好ましくは、0.5~10モル%である。 Specifically, it is 0.05 to 50 mol%, preferably 0.1 to 20 mol, based on the content (number of moles) of the carbon-carbon double bond contained in the fluoropolymers (I) and (II). %, Most preferably 0.5 to 10 mol%.
 硬化剤を使用する場合は、含フッ素重合体(I)および(II)中に含まれる炭素-炭素二重結合の含有量(モル数)と硬化剤の炭素-炭素不飽和結合のモル数の合計モル数に対して0.05~50モル%、好ましくは0.1~20モル%、最も好ましくは0.5~10モル%である。 When a curing agent is used, the content of carbon-carbon double bonds (in moles) contained in the fluoropolymers (I) and (II) and the number of moles of carbon-carbon unsaturated bonds in the curing agent. It is 0.05 to 50 mol%, preferably 0.1 to 20 mol%, most preferably 0.5 to 10 mol%, based on the total number of moles.
 本発明の硬化性樹脂組成物における溶剤(C)の含有量としては、溶解させる固形分の種類、硬化剤の使用の有無や使用割合、塗布する基材の種類や目標とする膜厚などによって適宜選択されるが、組成物中の全固形分濃度が0.5~70質量%、好ましくは1~50質量%となるように配合するのが好ましい。 The content of the solvent (C) in the curable resin composition of the present invention depends on the type of solid content to be dissolved, the presence or absence of use of a curing agent, the use ratio, the type of substrate to be applied, the target film thickness, etc. It is selected as appropriate, but it is preferably blended so that the total solid content in the composition is 0.5 to 70% by mass, preferably 1 to 50% by mass.
 本発明の組成物は、前述の化合物のほかに、必要に応じて種々の添加剤を配合してもよい。 The composition of the present invention may contain various additives as necessary in addition to the above-mentioned compounds.
 そうした添加剤としては、たとえばレベリング剤、粘度調整剤、光安定剤、水分吸収剤、顔料、染料、補強剤などがあげられる。 Examples of such additives include leveling agents, viscosity modifiers, light stabilizers, moisture absorbers, pigments, dyes, and reinforcing agents.
 また、本発明の組成物は、硬化物の硬度を高める目的で無機化合物の微粒子を配合することもできる。 The composition of the present invention can also contain inorganic compound fine particles for the purpose of increasing the hardness of the cured product.
 無機化合物微粒子としては特に限定されないが、屈折率が1.5以下の化合物が好ましい。具体的にはフッ化マグネシウム(屈折率1.38)、酸化珪素(屈折率1.46)、フッ化アルミニウム(屈折率1.33~1.39)、フッ化カルシウム(屈折率1.44)、フッ化リチウム(屈折率1.36~1.37)、フッ化ナトリウム(屈折率1.32~1.34)、フッ化トリウム(屈折率1.45~1.50)などの微粒子が望ましい。微粒子の粒径については、低屈折率材料の透明性を確保するために可視光の波長に比べて充分に小さいことが望ましい。具体的には100nm以下、特に50nm以下が好ましい。 The inorganic compound fine particles are not particularly limited, but compounds having a refractive index of 1.5 or less are preferable. Specifically, magnesium fluoride (refractive index 1.38), silicon oxide (refractive index 1.46), aluminum fluoride (refractive index 1.33-1.39), calcium fluoride (refractive index 1.44) Fine particles such as lithium fluoride (refractive index 1.36 to 1.37), sodium fluoride (refractive index 1.32 to 1.34), thorium fluoride (refractive index 1.45 to 1.50) are desirable. . The particle diameter of the fine particles is desirably sufficiently smaller than the wavelength of visible light in order to ensure the transparency of the low refractive index material. Specifically, it is preferably 100 nm or less, particularly 50 nm or less.
 無機化合物微粒子を使用する際は、組成物中での分散安定性、低屈折率材料中での密着性などを低下させないために、予め有機分散媒中に分散した有機ゾルの形態で使用するのが望ましい。さらに、組成物中において、無機化合物微粒子の分散安定性、低屈折率材料中での密着性などを向上させるために、予め無機微粒子化合物の表面を各種カップリング剤などを用いて修飾することができる。各種カップリング剤としては、たとえば有機置換された珪素化合物;アルミニウム、チタニウム、ジルコニウム、アンチモンまたはこれらの混合物などの金属アルコキシド;有機酸の塩;配位性化合物と結合した配位化合物などがあげられる。 When using inorganic compound fine particles, it should be used in the form of an organic sol dispersed in advance in an organic dispersion medium in order not to lower the dispersion stability in the composition and the adhesion in the low refractive index material. Is desirable. Furthermore, in order to improve the dispersion stability of the inorganic compound fine particles and the adhesion in the low refractive index material in the composition, the surface of the inorganic fine particle compound may be modified in advance using various coupling agents. it can. Examples of various coupling agents include organically substituted silicon compounds; metal alkoxides such as aluminum, titanium, zirconium, antimony or mixtures thereof; salts of organic acids; coordination compounds bonded to coordination compounds, and the like. .
 本発明の硬化性樹脂組成物は、溶剤(C)に対して膜形成材料(A)または添加物がディスパージョン状のものでも、溶液状のものでもよいが、均一な薄膜を形成するため、また比較的低温で成膜が可能となる点で、均一な溶液状であることが好ましい。 In the curable resin composition of the present invention, the film-forming material (A) or the additive may be a dispersion or solution in the solvent (C), but in order to form a uniform thin film, Moreover, it is preferable that it is a uniform solution at the point which can form into a film at comparatively low temperature.
 塗装法としては、膜厚をコントロールできるのであれば公知の塗装法を採用することができる。 As the coating method, a known coating method can be adopted as long as the film thickness can be controlled.
 たとえば、ロールコート法、グラビアコート法、マイクログラビアコート法、フローコート法、バーコート法、スプレーコート法、ダイコート法、スピンコート法、ディップコート法などが採用でき、基材の種類、形状、生産性、膜厚のコントロール性などを考慮して選択できる。 For example, roll coating method, gravure coating method, micro gravure coating method, flow coating method, bar coating method, spray coating method, die coating method, spin coating method, dip coating method, etc. can be adopted. Can be selected considering the controllability and controllability of the film thickness.
 本発明の硬化性樹脂組成物を基材に塗布したのち乾燥により得られる被膜は、紫外線、電子線または放射線などの活性エネルギー線を照射することによって光硬化させることができる。 The film obtained by applying the curable resin composition of the present invention to a substrate and then drying can be photocured by irradiating active energy rays such as ultraviolet rays, electron beams or radiation.
 光硬化すると含フッ素重合体(I)、(II)中の炭素-炭素二重結合が分子間で重合し、重合体中の炭素-炭素二重結合が減少または消失する。その結果、樹脂硬度が高くなり、機械的強度が向上したり、耐摩耗性、耐擦傷性が向上したり、さらには硬化前には溶解していた溶剤に対して不溶となるだけでなく、他の数多くの種類の溶剤に対して不溶となる。 When photocured, the carbon-carbon double bonds in the fluoropolymers (I) and (II) are polymerized between molecules, and the carbon-carbon double bonds in the polymer are reduced or eliminated. As a result, the resin hardness is increased, the mechanical strength is improved, the wear resistance, the scratch resistance is improved, and further, the resin becomes insoluble in the solvent dissolved before curing, It becomes insoluble in many other types of solvents.
 本発明はまた、本発明の硬化性樹脂組成物を硬化させて得られる反射防止膜に関する。 The present invention also relates to an antireflection film obtained by curing the curable resin composition of the present invention.
 本発明の反射防止膜は、含フッ素重合体(I)、(II)自体が硬化(架橋)可能な炭素-炭素不飽和結合を有し、それ自体が低屈折率なものを用いることで、透明基材に所定の膜厚で塗布し、硬化させることによって反射防止効果と、高硬度、耐摩耗性、耐擦傷性を兼ね備えた反射防止膜が得られるという本発明者らの知見に基づき完成されたものである。かかる含フッ素重合体(I)を使用するときは、さらに塗装性(平滑性、膜厚均一性)も良好で、かつ硬化後の被膜に低分子量の単量体成分なども残留しにくく、表面のタック感もなく塗膜性能に優れたものとなる。 The antireflection film of the present invention has a carbon-carbon unsaturated bond that can be cured (crosslinked) in the fluoropolymers (I) and (II) itself, and has a low refractive index by itself. Completed based on the knowledge of the present inventors that an antireflection film having an antireflection effect and high hardness, wear resistance, and scratch resistance can be obtained by applying and curing a transparent substrate with a predetermined film thickness. It has been done. When such a fluoropolymer (I) is used, the paintability (smoothness, film thickness uniformity) is also good, and the monomer component having a low molecular weight hardly remains in the cured film. It is excellent in coating film performance without any tackiness.
 硬化は、熱や光(開始剤を含む系において)などの手段を取り得るが、透明な樹脂基材に反射防止膜を施す場合、高い温度をかけることは、基材の熱劣化、熱変形をおこしやすいため好ましくない。したがって光硬化による硬化が好ましく、本発明に用いる含フッ素重合体は、光硬化(たとえば光重合)可能な炭素-炭素不飽和結合であることが好ましい。 Curing can take measures such as heat and light (in a system containing an initiator), but when an antireflection film is applied to a transparent resin substrate, applying a high temperature may cause thermal degradation or thermal deformation of the substrate. It is not preferable because it is easy to cause. Accordingly, curing by photocuring is preferable, and the fluoropolymer used in the present invention is preferably a carbon-carbon unsaturated bond capable of photocuring (for example, photopolymerization).
 本発明の反射防止膜を得る方法としては、膜形成材料(A)、活性エネルギー線硬化開始剤(B)および溶剤(C)を含む硬化性樹脂組成物を調製し、基材に塗布し、乾燥等により被膜(未硬化)を形成したのち、紫外線、電子線、放射線などの活性エネルギー線を照射することによって硬化被膜を得る方法が採用され、光照射は、空気中、窒素などの不活性ガス気流下のいずれの条件下で行なってもよい。 As a method for obtaining the antireflection film of the present invention, a curable resin composition containing a film forming material (A), an active energy ray curing initiator (B) and a solvent (C) is prepared, applied to a substrate, After forming a coating (uncured) by drying, etc., a method of obtaining a cured coating by irradiating active energy rays such as ultraviolet rays, electron beams, radiation, etc. is adopted. Light irradiation is inactive in air, nitrogen, etc. It may be performed under any conditions under a gas stream.
 また、酸重合性の炭素-炭素二重結合を有する含フッ素重合体(I)、(II)を活性エネルギー線の照射により酸を発生する開始剤と組み合わせて用いることもできる。その場合、光照射時において空気(酸素)などの影響を受けにくく、硬化反応が達成できる点で好ましい。 Further, the fluoropolymers (I) and (II) having an acid-polymerizable carbon-carbon double bond can be used in combination with an initiator that generates an acid upon irradiation with active energy rays. In that case, it is less affected by air (oxygen) at the time of light irradiation, which is preferable in that a curing reaction can be achieved.
 本発明の反射防止膜は、屈折率が1.49以下、好ましくは1.45以下であり、さらに1.40以下であることが好ましい。最も好ましくは1.38以下であり、低い方が反射防止効果としてより有利である。 The antireflective film of the present invention has a refractive index of 1.49 or less, preferably 1.45 or less, and more preferably 1.40 or less. Most preferably, it is 1.38 or less, and the lower one is more advantageous as an antireflection effect.
 各種基材に施される反射防止膜の好ましい膜厚は、膜の屈折率や下地の屈折率によって変わるが0.03~0.5μmの範囲から選択され、好ましくは0.07~0.2μm、より好ましくは0.08~0.12μmである。膜厚が低すぎると可視光における光干渉による反射率の低減化が不充分となり、高すぎると反射率はほぼ空気と膜の界面の反射のみに依存するようになるので、可視光における光干渉による反射率の低減化が不充分となる傾向がある。なかでも適切な膜厚は反射防止膜を施したのちの物品の反射率の最小値を示す波長が通常420~720nm、好ましくは520~620nmとなるように膜厚を設定するのが好ましい。 The preferred film thickness of the antireflection film applied to various substrates varies depending on the refractive index of the film and the refractive index of the base, but is selected from the range of 0.03 to 0.5 μm, preferably 0.07 to 0.2 μm. More preferably, the thickness is 0.08 to 0.12 μm. If the film thickness is too low, the reduction in reflectance due to light interference in visible light will be insufficient, and if it is too high, the reflectance will depend only on the reflection at the interface between the air and the film. There is a tendency that the reduction of the reflectance due to is insufficient. In particular, it is preferable to set the film thickness so that the wavelength that indicates the minimum reflectance of the article after the antireflection film is applied is usually 420 to 720 nm, preferably 520 to 620 nm.
 本発明の反射防止膜は各種の基材表面に施され、反射防止処理物品を提供することができる。 The antireflection film of the present invention can be applied to various substrate surfaces to provide an antireflection treatment article.
 本発明の反射防止膜を施す物品、すなわち基材の種類は特に限定されない。たとえば、ガラス、石材、コンクリート、タイルなどの無機材料;塩化ビニル樹脂、ポリエチレンテレフタレート、トリアセチルセルロースなどのセルロース系樹脂、ポリカーボネート樹脂、ポリオレフィン樹脂、アクリル系樹脂、フェノール樹脂、キシレン樹脂、ユリア樹脂、メラミン樹脂、ジアリルフタレート樹脂、フラン樹脂、アミノ樹脂、アルキド樹脂、ウレタン樹脂、ビニルエステル樹脂、ポリイミド樹脂などの合成樹脂;鉄、アルミ、銅などの金属;木、紙、印刷物、印画紙、絵画などをあげることができる。また、物品の特定部分以外の部分に反射防止膜を施し、その特定部分の形状を反射光によって浮かび上がらせることにより、物品の装飾性を向上することもできる。 The article to which the antireflection film of the present invention is applied, that is, the type of the substrate is not particularly limited. For example, inorganic materials such as glass, stone, concrete, tile; cellulose resins such as vinyl chloride resin, polyethylene terephthalate, triacetyl cellulose, polycarbonate resin, polyolefin resin, acrylic resin, phenol resin, xylene resin, urea resin, melamine Synthetic resins such as resin, diallyl phthalate resin, furan resin, amino resin, alkyd resin, urethane resin, vinyl ester resin, polyimide resin; metal such as iron, aluminum, copper; wood, paper, printed matter, photographic paper, painting, etc. I can give you. In addition, the decorativeness of the article can be improved by applying an antireflection film to a part other than the specific part of the article and causing the shape of the specific part to be raised by reflected light.
 基材の中でもアクリル系樹脂、ポリカーボネート、セルロース系樹脂、ポリエチレンテレフタレート、ポリオレフィン樹脂などの透明樹脂基材に好ましく施され、効果的に反射防止効果を発揮できる。 Among the base materials, it is preferably applied to transparent resin base materials such as acrylic resin, polycarbonate, cellulose resin, polyethylene terephthalate, and polyolefin resin, and can effectively exhibit antireflection effect.
 本発明は、以下のような形態の物品に適用した場合に効果的である。
プリズム、レンズシート、偏光板、光学フィルター、レンチキュラーレンズ、フレネルレンズ、背面投写型ディスプレイのスクリーン、光ファイバーや光カプラーなどの光学部品;
ショーウインドーのガラス、ショーケースのガラス、広告用カバー、フォトスタンド用のカバーなどに代表される透明な保護版;
CRT、液晶ディスプレイ、プラズマディスプレイ、背面投写型ディスプレイなどの保護板;
光磁気ディスク、CD・LD・DVDなどのリードオンリー型光ディスク、PDなどの相転移型光ディスク、ホログラム記録などに代表される光記録媒体;
フォトレジスト、フォトマスク、ペリクル、レチクルなどの半導体製造時のフォトリソグラフィー関連部材;
ハロゲンランプ、蛍光灯、白熱電灯などの発光体の保護カバー;
上記物品に貼り付けるためのシートまたはフィルム。
The present invention is effective when applied to an article having the following form.
Optical components such as prisms, lens sheets, polarizing plates, optical filters, lenticular lenses, Fresnel lenses, rear projection display screens, optical fibers and optical couplers;
Transparent protective plates such as show window glass, showcase glass, advertising covers, photo stand covers, etc .;
Protection plates such as CRT, liquid crystal display, plasma display, rear projection display;
Optical recording media represented by magneto-optical disks, read-only optical disks such as CD / LD / DVD, phase transition optical disks such as PD, hologram recording, etc .;
Photolithography-related members during semiconductor manufacturing, such as photoresists, photomasks, pellicles, and reticles;
Protective covers for illuminants such as halogen lamps, fluorescent lamps and incandescent lamps;
A sheet or film for attaching to the article.
 本発明の反射防止膜の形成は、本発明の硬化性樹脂組成物を基材に直接塗布し、光照射し、0.1μm程度の厚みの硬化被膜としてもよいが、基材との間に1つまたは複数の層をアンダーコートとして形成し、その上にトップコートとして反射防止膜を形成してもよい。 The antireflection film of the present invention may be formed by directly applying the curable resin composition of the present invention to a substrate and irradiating with light to form a cured film having a thickness of about 0.1 μm. One or a plurality of layers may be formed as an undercoat, and an antireflection film may be formed thereon as a topcoat.
 アンダーコートの効果は大きく分けて3つあり、トップコートの耐擦傷性を高めたり、基材を保護したり、基材よりも高屈折率の層を加えることにより反射防止効果を高めることにある。トップコートの耐擦傷性を高めるためには特開平7-168005号公報に例示されるような自己修復性のアンダーコートを用いればよい。また、基材の保護のためにはハードコートと一般に呼ばれる塗料を用いればよい。ハードコート用には硬化型のアクリル樹脂やエポキシ樹脂、シリコンアルコキシド系化合物の硬化物、金属アルコキシド系化合物の硬化物などが例示できる。これらすべてに熱硬化法が適用できる。アクリル樹脂およびエポキシ樹脂については、光(紫外線)硬化法が生産性の面で好ましい。 The effect of the undercoat is roughly divided into three, and is to enhance the antireflection effect by increasing the scratch resistance of the topcoat, protecting the base material, and adding a layer having a higher refractive index than the base material. . In order to improve the scratch resistance of the top coat, a self-repairing undercoat as exemplified in JP-A-7-168005 may be used. Further, a paint generally called a hard coat may be used for protecting the substrate. Examples of the hard coat include curable acrylic resins and epoxy resins, cured products of silicon alkoxide compounds, and cured products of metal alkoxide compounds. The thermosetting method can be applied to all of these. For acrylic resins and epoxy resins, the light (ultraviolet) curing method is preferred in terms of productivity.
 CRTやプラズマディスプレイなどでは、装置の特性として表面に静電気がたまりやすい。そこで、上記のようなアンダーコート層および/またはトップコート層に導電性を付与する添加剤を混ぜることが好ましい。添加剤としては、-COO-、-NH2、-NH3 +、-NR111213(ここで、R11、R12およびR13は、たとえばメチル基、エチル基、n-プロピル基、n-ブチル基など)、-SO3-などのイオン性基を含むポリマー、シリコーン化合物、無機電解質(たとえばNaF、CaF2など)などがあげられる。 In a CRT or plasma display, static electricity tends to accumulate on the surface as a characteristic of the device. Therefore, it is preferable to mix an additive for imparting conductivity to the undercoat layer and / or the topcoat layer as described above. Examples of the additive include —COO—, —NH 2 , —NH 3 + , —NR 11 R 12 R 13 (where R 11 , R 12 and R 13 are, for example, methyl group, ethyl group, n-propyl group) , N-butyl group, etc.), polymers containing ionic groups such as —SO 3 —, silicone compounds, inorganic electrolytes (eg NaF, CaF 2 etc.) and the like.
 また、ほこりの付着を防止する目的で、反射防止膜のアンダーコート層および/またはトップコート層に帯電防止剤を添加することが好ましい。添加剤としては上記の導電性を付与する添加剤に加え、金属酸化物の微粒子、フルオロアルコキシシラン、界面活性剤(アニオン系、カチオン系、両性系、ノニオン系など)などがあげられる。 In addition, for the purpose of preventing the adhesion of dust, it is preferable to add an antistatic agent to the undercoat layer and / or the topcoat layer of the antireflection film. Examples of additives include metal oxide fine particles, fluoroalkoxysilanes, surfactants (anionic, cationic, amphoteric, nonionic, etc.) in addition to the above-mentioned additives that impart conductivity.
 アンダーコート層に添加する帯電防止剤としては、効果が永続すること、効果が湿度の影響を受けにくいこと、帯電防止効果が高いこと、透明性、屈折率が高いために基材の屈折率を調整できるので反射防止効果を高めることができることなどの理由から、金属酸化物の微粒子、具体的にはアンチモンをドープした酸化錫(ATO)、インジウムを含む酸化錫(ITO)が好ましい。透明性の面ではATOが好ましく、帯電防止効果もしくは導電性の面ではITOが好ましい。また、帯電防止効果が必要ない場合でも、容易に屈折率を調節できるため、これらの添加剤を用いて反射防止効果を高めることもできる。 As an antistatic agent added to the undercoat layer, the effect is permanent, the effect is not easily affected by humidity, the antistatic effect is high, the transparency and the refractive index are high, and the refractive index of the substrate is For the reason that the antireflection effect can be enhanced because it can be adjusted, fine particles of metal oxide, specifically, antimony-doped tin oxide (ATO) and indium-containing tin oxide (ITO) are preferable. ATO is preferable in terms of transparency, and ITO is preferable in terms of antistatic effect or conductivity. Further, even when the antistatic effect is not required, the refractive index can be easily adjusted, so that the antireflection effect can be enhanced by using these additives.
 また、ATO、ITOが光を散乱・吸収しやすいので、光の透過を妨げないためには、アンダーコート層の厚さはサブミクロン程度であることが好ましい。反射防止効果の波長依存性を小さくし、全波長にわたって反射防止効果を高めるためには、本発明の硬化性樹脂組成物の硬化物の屈折率にもよるが、膜厚は0.05~0.3μmが好ましい。最適な屈折率も、同様に本発明の硬化性樹脂組成物の屈折率に依存するが、1.55~1.95が好ましい。 In addition, since ATO and ITO easily scatter and absorb light, the thickness of the undercoat layer is preferably about submicron so as not to prevent light transmission. In order to reduce the wavelength dependence of the antireflection effect and enhance the antireflection effect over all wavelengths, the film thickness is 0.05 to 0, depending on the refractive index of the cured product of the curable resin composition of the present invention. .3 μm is preferred. The optimum refractive index also depends on the refractive index of the curable resin composition of the present invention, but is preferably 1.55 to 1.95.
 反射防止膜に帯電防止性を与えるのであれば、屈折率が高くなりにくく反射防止効果に悪影響が少ないという面から、アルコキシシラン系の帯電防止剤が好ましい。フルオロアルコキシシランは屈折率が高くなる作用がさらに小さく、加えて表面特性が改良される効果も期待できるので、さらに好ましい。 If the antireflection film is provided with antistatic properties, an alkoxysilane-based antistatic agent is preferable from the viewpoint that the refractive index is difficult to increase and the antireflection effect is less adversely affected. Fluoroalkoxysilane is more preferable because the action of increasing the refractive index is further reduced and the effect of improving the surface characteristics can be expected.
 また、上記したような膜の一部を改質するという方法とは全く異なった方法として、特開平8-142280号公報に示されるように反射防止能に悪影響を及ぼさない膜厚で界面活性剤の層を形成する方法がある。本発明に適用した場合、ほこり付着防止など、防汚性を向上するという効果がある。ハードコート層を形成した場合も同様の効果がある。 Further, as a method completely different from the method of modifying a part of the film as described above, a surfactant having a film thickness that does not adversely affect the antireflection performance as disclosed in JP-A-8-142280. There is a method of forming the layer. When applied to the present invention, there is an effect of improving antifouling properties such as prevention of dust adhesion. The same effect can be obtained when a hard coat layer is formed.
 ハードコート層は、アルコキシシランやポリシラザンの溶液を塗布後、加熱・硬化させる方法により形成することができる。また、紫外線硬化型アクリル塗料やメラミン架橋の硬化膜も使用可能である。 The hard coat layer can be formed by applying a solution of alkoxysilane or polysilazane, followed by heating and curing. Further, an ultraviolet curable acrylic paint or a cured film of melamine crosslinking can be used.
 本発明の反射防止膜は、フッ素含有率も高く、表面接触角も低く、それ自体、撥水性、非粘着性、防汚性を有しており、反射防止と防汚層を兼ね備えることができる。 The antireflection film of the present invention has a high fluorine content and a low surface contact angle, and itself has water repellency, non-adhesiveness, and antifouling properties, and can have both antireflection and antifouling layers. .
 さらに反射防止層に防汚性を付与するために、含フッ素ポリエーテル化合物を添加することができる。その場合、力学特性の劣化や、膜形成材料(A)との相分離による白濁を考慮して添加量を決める必要がある。末端をカルボキシル基、ブロックされたカルボキシル基、ヒドロキシル基、エポキシ基、アルコキシシラン基、(メタ)アクリロイル基、α-フルオロアクリロイル基としておけば、被膜中に固定されやすくなる。また、同様のポリエーテル化合物を予め形成した反射防止膜表面に塗布しても同様の効果がある。 Furthermore, a fluorine-containing polyether compound can be added to impart antifouling properties to the antireflection layer. In that case, it is necessary to determine the addition amount in consideration of deterioration of mechanical properties and white turbidity due to phase separation from the film forming material (A). If the terminal is a carboxyl group, a blocked carboxyl group, a hydroxyl group, an epoxy group, an alkoxysilane group, a (meth) acryloyl group, or an α-fluoroacryloyl group, it is easily fixed in the film. The same effect can be obtained by applying the same polyether compound to the surface of the antireflection film formed in advance.
 本発明においても、反射防止膜の基材への密着性を高めるために、シラン化合物を添加してもよい。被膜中に添加するシラン化合物の量は数質量%程度でよい。また、基材表面をシラン化合物で処理しておくことも、密着性の改善のために効果がある。本発明においてはいずれの場合でも、シラン化合物は硬化膜の屈折率をほとんど増加させないため、反射防止効果への悪影響は非常に少ない。 In the present invention, a silane compound may be added in order to improve the adhesion of the antireflection film to the substrate. The amount of the silane compound added to the film may be about several mass%. In addition, treating the substrate surface with a silane compound is also effective for improving adhesion. In any case in the present invention, since the silane compound hardly increases the refractive index of the cured film, the adverse effect on the antireflection effect is very small.
 つぎに本発明を実施例に基づいて説明するが、本発明はこれらの実施例のみに限定されるものではない。 Next, the present invention will be described based on examples, but the present invention is not limited only to these examples.
 本発明の各種物性の測定は以下の方法で行った。 The various physical properties of the present invention were measured by the following methods.
(1)NMR
NMR測定装置:BRUKER社製
1H-NMR測定条件:400MHz(テトラメチルシラン=0ppm)
19F-NMR測定条件:376MHz(トリクロロフルオロメタン=0ppm)
(1) NMR
NMR measuring device: manufactured by BRUKER
1 H-NMR measurement conditions: 400 MHz (tetramethylsilane = 0 ppm)
19 F-NMR measurement conditions: 376 MHz (trichlorofluoromethane = 0 ppm)
(2)IR
 PERKIN ELMER社製フーリエ変換赤外分光光度計1760Xで室温にて測定。
(2) IR
Measured at room temperature with a Fourier transform infrared spectrophotometer 1760X manufactured by PERKIN ELMER.
(3)数平均(重量平均)分子量:
 ゲルパーミエーションクロマトグラフィ(GPC)により、東ソー(株)製のGPC HLC-8020を用い、Shodex社製のカラム(GPC KF-801を1本、GPC KF-802を1本、GPC KF-806Mを2本直列に接続)を使用し、溶媒としてテトラハイドロフラン(THF)を流速1ml/分で流して測定したデータより算出する。
(3) Number average (weight average) molecular weight:
By gel permeation chromatography (GPC), using GPC HLC-8020 manufactured by Tosoh Corporation, one column by Shodex (one GPC KF-801, one GPC KF-802, and two GPC KF-806M) This is calculated from data measured by flowing tetrahydrofuran (THF) as a solvent at a flow rate of 1 ml / min.
(4)屈折率
 アッベ屈折計を用いて25℃で550nmの波長の光について屈折率を測定する。
(4) Refractive index A refractive index is measured about the light of a wavelength of 550 nm at 25 degreeC using an Abbe refractometer.
(5)全光線透過率、ヘイズ値
 (株)東洋精機製作所製のヘイズカードIIを用い、ASTM D1003に従って測定する。
(5) Total light transmittance, haze value Measured according to ASTM D1003 using a haze card II manufactured by Toyo Seiki Seisakusho.
(6)反射率
 裏面をスチールウールで削り、黒マジックで塗りつぶした反射防止フィルムを、5°正反射ユニットを装着した可視紫外線分光器にセットし、視感度平均反射率(%)および最低反射率(%)を測定する。測定には(株)日立ハイテクノロジー製のU-4000・SPECTROMETERを使用する。
(6) Reflectance The antireflection film with the back side shaved with steel wool and painted with black magic is set in a visible UV spectrometer equipped with a 5 ° specular reflection unit, and the average reflectance (%) and minimum reflectance (%) Is measured. U-4000 / SPECTROMETER manufactured by Hitachi High-Technology Co., Ltd. is used for the measurement.
(7)鉛筆硬度
 JIS K5400に従って測定する。
(7) Pencil hardness Measured according to JIS K5400.
合成例1(α-フルオロアクリル酸の1,1,1-トリフルオロ-2-トリフルオロメチル-2-ヒドロキシプロピルエステルの単独重合体の合成)
 窒素導入管、減圧ライン、温度計、セプタムラバーキャップ、スタラーチップを装着した50ml三つ口フラスコを乾燥し、α-フルオロアクリル酸の1,1,1-トリフルオロ-2-トリフルオロメチル-2-ヒドロキシプロピルエステル:
 CH2=CFCOOCH2C(CF32OH
3.0g(11mmol)、THF15mlを加えドライアイス-アセトン浴で冷却した。アゾイソブチロニトリル(AIBN)60mg(0.4mmol)を加えた後、撹拌しながら減圧して脱酸素を行った。窒素で置換した後水浴にて70℃に加温し3時間撹拌した。室温に戻して20時間撹拌した後、反応混合物をn-ヘキサン300mlに撹拌しながら投入し、再沈殿にて目的とする含フッ素重合体(Ia)を得た。収量2.7g(収率90%)。
Synthesis Example 1 (Synthesis of homopolymer of 1,1,1-trifluoro-2-trifluoromethyl-2-hydroxypropyl ester of α-fluoroacrylic acid)
A 50 ml three-necked flask equipped with a nitrogen inlet tube, vacuum line, thermometer, septum rubber cap and stirrer chip was dried and α-fluoroacrylic acid 1,1,1-trifluoro-2-trifluoromethyl- 2-hydroxypropyl ester:
CH 2 = CFCOOCH 2 C (CF 3 ) 2 OH
3.0 g (11 mmol) and 15 ml of THF were added and cooled in a dry ice-acetone bath. After adding 60 mg (0.4 mmol) of azoisobutyronitrile (AIBN), deoxygenation was performed under reduced pressure while stirring. After replacing with nitrogen, the mixture was heated to 70 ° C. in a water bath and stirred for 3 hours. After returning to room temperature and stirring for 20 hours, the reaction mixture was added to 300 ml of n-hexane with stirring, and the desired fluoropolymer (Ia) was obtained by reprecipitation. Yield 2.7 g (90% yield).
 この重合体を19F-NMR、1H-NMR分析、IR分析により分析したところ、上記α-フルオロアクリル酸エステルの構造単位のみからなり側鎖末端にヒドロキシル基を有する含フッ素重合体であった。また、テトラヒドロフラン(THF)を溶媒に用いるGPC分析により測定した数平均分子量は5746、重量平均分子量は7706であった。 This polymer was analyzed by 19 F-NMR, 1 H-NMR analysis, and IR analysis. As a result, it was a fluoropolymer having only a structural unit of the α-fluoroacrylate ester and having a hydroxyl group at the side chain end. . The number average molecular weight measured by GPC analysis using tetrahydrofuran (THF) as a solvent was 5746, and the weight average molecular weight was 7706.
合成例2(含フッ素重合体(I-1)の合成)
 環流冷却器、温度計、撹拌装置、滴下漏斗を備えた50ml三ツ口フラスコに、メチルイソブチルケトン(MIBK)5.0ml、合成例1で得た含フッ素重合体の単独重合体1.0gと、ピリジン320mgを仕込み5℃以下に氷冷した。
Synthesis Example 2 (Synthesis of fluoropolymer (I-1))
In a 50 ml three-necked flask equipped with a reflux condenser, thermometer, stirrer, and dropping funnel, 5.0 ml of methyl isobutyl ketone (MIBK), 1.0 g of the homopolymer of the fluoropolymer obtained in Synthesis Example 1, and pyridine 320 mg was charged and ice-cooled to 5 ° C. or lower.
 窒素気流下、撹拌を行ないながら、さらにα-フルオロアクリル酸フルオライド:CH2=CFCOFの170mgをメチルイソブチルケトン0.5mlに溶解したものを滴下した。 While stirring under a nitrogen stream, a solution of 170 mg of α-fluoroacrylic acid fluoride: CH 2 ═CFCOF dissolved in 0.5 ml of methyl isobutyl ketone was added dropwise.
 滴下終了後、室温まで温度を上げさらに12時間撹拌を継続した。 After completion of dropping, the temperature was raised to room temperature and stirring was continued for 12 hours.
 反応後のMIBK溶液を分液漏斗に入れ、水洗、2%塩酸水洗浄、5%NaCl水洗浄、さらに水洗をくり返したのち、無水硫酸マグネシウムで乾燥し、ついでMIBK溶液を濾過により分離した。 After the reaction, the MIBK solution was put into a separatory funnel, washed with water, washed with 2% hydrochloric acid, washed with 5% NaCl, and further washed with water, and then dried over anhydrous magnesium sulfate, and then the MIBK solution was separated by filtration.
 このMIBK溶液を19F-NMR分析により調べたところ、末端が-C(=O)CF=CH2である単位を40モル%、末端が水酸基である単位を60モル%含む含フッ素重合体(I-1)であることを確認した。また、テトラヒドロフラン(THF)を溶媒に用いるGPC分析により測定した数平均分子量は6144、重量平均分子量は8397であった。
When this MIBK solution was examined by 19 F-NMR analysis, it was found that a fluorine-containing polymer containing 40 mol% of a unit having a terminal —C (═O) CF═CH 2 and 60 mol% of a unit having a terminal hydroxyl group ( I-1) was confirmed. The number average molecular weight measured by GPC analysis using tetrahydrofuran (THF) as a solvent was 6144, and the weight average molecular weight was 8397.
 この含フッ素重合体(I-1)の屈折率は1.37であった。 The refractive index of this fluoropolymer (I-1) was 1.37.
合成例3(含フッ素重合体(I-2)の合成)
 α-フルオロアクリル酸フルオライド:CH2=CFCOFを250mg用いた以外は合成例2と同様にして、含フッ素重合体(MIBK溶液)を合成した。
Synthesis Example 3 (Synthesis of fluoropolymer (I-2))
A fluoropolymer (MIBK solution) was synthesized in the same manner as in Synthesis Example 2 except that 250 mg of α-fluoroacrylic acid fluoride: CH 2 ═CFCOF was used.
 19F-NMRにより、末端が-C(=O)CF=CH2である単位を50モル%、末端が水酸基である単位を50モル%含む含フッ素重合体(I-2)であることを確認した。また、テトラヒドロフラン(THF)を溶媒に用いるGPC分析により測定した数平均分子量は6213、重量平均分子量は8504であった。 According to 19 F-NMR, it was found to be a fluoropolymer (I-2) containing 50 mol% of units having —C (═O) CF═CH 2 at the end and 50 mol% of units having a terminal hydroxyl group. confirmed. The number average molecular weight measured by GPC analysis using tetrahydrofuran (THF) as a solvent was 6213, and the weight average molecular weight was 8504.
 この含フッ素重合体(I-2)の屈折率は1.37であった。 The refractive index of this fluoropolymer (I-2) was 1.37.
合成例4(含フッ素重合体(I-3)の合成)
 α-フルオロアクリル酸フルオライド:CH2=CFCOFを50mg用いた以外は合成例2と同様にして、含フッ素重合体(MIBK溶液)を合成した。
Synthesis Example 4 (Synthesis of fluoropolymer (I-3))
A fluoropolymer (MIBK solution) was synthesized in the same manner as in Synthesis Example 2 except that 50 mg of α-fluoroacrylic acid fluoride: CH 2 ═CFCOF was used.
 19F-NMRにより、末端が-C(=O)CF=CH2である単位を10モル%、末端が水酸基である単位を90モル%含む含フッ素重合体(I-3)であることを確認した。また、テトラヒドロフラン(THF)を溶媒に用いるGPC分析により測定した数平均分子量は5115、重量平均分子量は8080であった。 By 19 F-NMR, it was confirmed that the fluorine-containing polymer (I-3) contained 10 mol% of units having —C (═O) CF═CH 2 at the end and 90 mol% of units having a terminal hydroxyl group. confirmed. The number average molecular weight measured by GPC analysis using tetrahydrofuran (THF) as a solvent was 5115, and the weight average molecular weight was 8080.
 この含フッ素重合体(I-3)の屈折率は1.36であった。 The refractive index of this fluoropolymer (I-3) was 1.36.
合成例5(含フッ素重合体(I-4)の合成)
 α-フルオロアクリル酸フルオライド:CH2=CFCOFを350mg用いた以外は合成例2と同様にして、含フッ素重合体(MIBK溶液)を合成した。
Synthesis Example 5 (Synthesis of fluoropolymer (I-4))
A fluoropolymer (MIBK solution) was synthesized in the same manner as in Synthesis Example 2 except that 350 mg of α-fluoroacrylic acid fluoride: CH 2 ═CFCOF was used.
 19F-NMRにより、末端が-C(=O)CF=CH2である単位を70モル%、末端が水酸基である単位を30モル%含む含フッ素重合体(I-4)であることを確認した。また、テトラヒドロフラン(THF)を溶媒に用いるGPC分析により測定した数平均分子量は6430、重量平均分子量は8900であった。 By 19 F-NMR, it was confirmed that the fluorine-containing polymer (I-4) contained 70 mol% of the unit having —C (═O) CF═CH 2 at the end and 30 mol% of the unit having the terminal hydroxyl group. confirmed. The number average molecular weight measured by GPC analysis using tetrahydrofuran (THF) as a solvent was 6430, and the weight average molecular weight was 8,900.
 この含フッ素重合体(I-4)の屈折率は1.38であった。 The refractive index of this fluoropolymer (I-4) was 1.38.
合成例6(フルオロエーテル含有含フッ素重合体(II-1)の合成)
 撹拌装置および温度計を備えた100mlのガラス製四ツ口フラスコに、パーフルオロ-(1,1,9,9-テトラハイドロ-2,5-ビストリフルオロメチル-3,6-ジオキサノネノール)
Figure JPOXMLDOC01-appb-C000032
を20.4gと
Figure JPOXMLDOC01-appb-C000033
の8.0重量%パーフルオロヘキサン溶液を21.2g入れ、充分に窒素置換を行なったのち、窒素気流下20℃で24時間撹拌を行なったところ、高粘度の固体が生成した。
Synthesis Example 6 (Synthesis of fluoroether-containing fluoropolymer (II-1))
In a 100 ml glass four-necked flask equipped with a stirrer and a thermometer, perfluoro- (1,1,9,9-tetrahydro-2,5-bistrifluoromethyl-3,6-dioxanonenol) was added.
Figure JPOXMLDOC01-appb-C000032
20.4g
Figure JPOXMLDOC01-appb-C000033
After adding 21.2 g of the 8.0 wt% perfluorohexane solution and sufficiently purging with nitrogen, the mixture was stirred at 20 ° C. for 24 hours under a nitrogen stream to produce a highly viscous solid.
 得られた固体をジエチルエーテルに溶解させたものをパーフルオロヘキサンに注ぎ、分離、真空乾燥させ、無色透明な重合体17.6gを得た。 A solution obtained by dissolving the obtained solid in diethyl ether was poured into perfluorohexane, separated and vacuum dried to obtain 17.6 g of a colorless and transparent polymer.
 この重合体を19F-NMR、1H-NMR分析、IR分析により分析したところ、上記含フッ素アリルエーテルの構造単位のみからなり側鎖末端にヒドロキシル基を有する含フッ素重合体であった。また、テトラヒドロフラン(THF)を溶媒に用いるGPC分析により測定した数平均分子量は9000、重量平均分子量は22000であった。 This polymer was analyzed by 19 F-NMR, 1 H-NMR analysis, and IR analysis. As a result, it was a fluorine-containing polymer comprising only the structural unit of the fluorine-containing allyl ether and having a hydroxyl group at the side chain end. The number average molecular weight measured by GPC analysis using tetrahydrofuran (THF) as a solvent was 9000, and the weight average molecular weight was 22,000.
 環流冷却器、温度計、撹拌装置、滴下漏斗を備えた200ml四ツ口フラスコに、MIBK80ml、上記で得たヒドロキシル基含有含フッ素アリルエーテルの単独重合体5.0gと、ピリジン1.0gを仕込み5℃以下に氷冷した。 Into a 200 ml four-necked flask equipped with a reflux condenser, thermometer, stirrer, and dropping funnel, 80 ml of MIBK, 5.0 g of the hydroxyl group-containing fluorine-containing allyl ether homopolymer obtained above and 1.0 g of pyridine were charged. Ice-cooled to 5 ° C or lower.
 窒素気流下、撹拌を行ないながら、さらにα-フルオロアクリル酸フルオライド:CH2=CFCOFの1.0gをジエチルエーテル20mlに溶解したものを約30分間かけて滴下した。 While stirring under a nitrogen stream, 1.0 g of α-fluoroacrylic acid fluoride: CH 2 ═CFCOF dissolved in 20 ml of diethyl ether was added dropwise over about 30 minutes.
 滴下終了後、室温まで温度を上げさらに4.0時間撹拌を継続した。 After completion of dropping, the temperature was raised to room temperature and stirring was continued for 4.0 hours.
 反応後のMIBK溶液を分液漏斗に入れ、水洗、2%塩酸水洗浄、5%NaCl水洗浄、さらに水洗をくり返したのち、無水硫酸マグネシウムで乾燥しついでMIBK溶液を濾過により分離した。 After the reaction, the MIBK solution was placed in a separatory funnel, washed with water, washed with 2% hydrochloric acid, washed with 5% NaCl, and further washed with water, dried over anhydrous magnesium sulfate, and then separated by filtration.
 このMIBK溶液を19F-NMR分析により調べたところ、末端が-C(=O)CF=CH2であるアリルエーテル単位を40モル%、末端が水酸基であるアリルエーテル単位を60モル%含む含フッ素重合体(II-1)であることを確認した。 When this MIBK solution was examined by 19 F-NMR analysis, it was found to contain 40 mol% of allyl ether units whose terminal is —C (═O) CF═CH 2 and 60 mol% of allyl ether units whose terminal is a hydroxyl group. It was confirmed to be a fluoropolymer (II-1).
実施例1
(1)硬化性樹脂組成物の調製
 合成例2で得たα-フルオロアクリロイル基を有する含フッ素重合体(I-1)のMIBK溶液を乾燥減量により固形分量を測定した後、MIBKで希釈することにより重合体濃度15質量%に調整した。
Example 1
(1) Preparation of curable resin composition After measuring the solid content of the MIBK solution of the fluoropolymer (I-1) having an α-fluoroacryloyl group obtained in Synthesis Example 2 by loss on drying, it is diluted with MIBK. As a result, the polymer concentration was adjusted to 15% by mass.
 得られた重合体溶液に、重合体100質量部に対して、活性エネルギー線硬化開始剤としてイルガキュア127(チバ・ジャパン(株)製)を0.75質量部加えて、本発明の硬化性樹脂組成物を得た。 0.75 parts by mass of Irgacure 127 (manufactured by Ciba Japan Co., Ltd.) is added as an active energy ray curing initiator to 100 parts by mass of the polymer, and the curable resin of the present invention is added. A composition was obtained.
(2)反射防止膜の作製
 得られた硬化性樹脂組成物を未処理のトリアセチルセルロース(TAC)上にバーコーター(#7)により室温でコートし、70℃で1分間乾燥した。この際、乾燥後の膜厚が100nmとなるように調整した。
(2) Preparation of antireflection film The obtained curable resin composition was coated on untreated triacetylcellulose (TAC) with a bar coater (# 7) at room temperature and dried at 70 ° C for 1 minute. At this time, the film thickness after drying was adjusted to 100 nm.
 乾燥後の被膜に高圧水銀灯を用い、室温にて1J/cm2の強度で紫外線を照射し光硬化させ、反射防止膜を作製した。 A high-pressure mercury lamp was used for the dried film, and ultraviolet light was irradiated at room temperature with an intensity of 1 J / cm 2 for photocuring to produce an antireflection film.
 得られた反射防止膜(硬化膜)について、屈折率、全光線透過率、ヘイズ値、視感度平均反射率、最低反射率、鉛筆硬度を調べた。結果を表1に示す。 The obtained antireflection film (cured film) was examined for refractive index, total light transmittance, haze value, average visibility reflectance, minimum reflectance, and pencil hardness. The results are shown in Table 1.
実施例2
 含フッ素重合体(I-1)に代えて合成例3で得たα-フルオロアクリロイル基を有する含フッ素重合体(I-2)を用いた以外は実施例1と同様にして硬化性樹脂組成物の調製、反射防止膜の作製、特性の評価を行なった。結果を表1に示す。
Example 2
A curable resin composition was obtained in the same manner as in Example 1 except that the fluoropolymer (I-2) having an α-fluoroacryloyl group obtained in Synthesis Example 3 was used in place of the fluoropolymer (I-1). The preparation of the product, the production of the antireflection film, and the evaluation of the characteristics were performed. The results are shown in Table 1.
実施例3
 含フッ素重合体(I-1)に代えて合成例5で得たα-フルオロアクリロイル基を有する含フッ素重合体(I-4)を用いた以外は実施例1と同様にして硬化性樹脂組成物の調製、反射防止膜の作製、特性の評価を行なった。結果を表1に示す。
Example 3
A curable resin composition was obtained in the same manner as in Example 1 except that the fluoropolymer (I-4) having an α-fluoroacryloyl group obtained in Synthesis Example 5 was used in place of the fluoropolymer (I-1). The preparation of the product, the production of the antireflection film, and the evaluation of the characteristics were performed. The results are shown in Table 1.
比較例1
 含フッ素重合体(I-1)に代えて、合成例6で得たα-フルオロアクリロイル基を有するフルオロエーテル含有含フッ素重合体(II-1)を用いた以外は実施例1と同様にして硬化性樹脂組成物の調製、反射防止膜の作製、特性の評価を行なった。結果を表1に示す。
Comparative Example 1
Instead of the fluoropolymer (I-1), the same procedure as in Example 1 was used except that the fluoroether-containing fluoropolymer (II-1) having an α-fluoroacryloyl group obtained in Synthesis Example 6 was used. Preparation of a curable resin composition, production of an antireflection film, and evaluation of properties were performed. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
実施例4
(1)硬化性樹脂組成物の調製
 合成例2で得たα-フルオロアクリロイル基を有する含フッ素重合体(I-1)のMIBK溶液を乾燥減量により固形分量を測定した後、MIBKで希釈することにより重合体濃度15質量%に調整した。
Example 4
(1) Preparation of curable resin composition After measuring the solid content of the MIBK solution of the fluoropolymer (I-1) having an α-fluoroacryloyl group obtained in Synthesis Example 2 by loss on drying, it is diluted with MIBK. As a result, the polymer concentration was adjusted to 15% by mass.
 得られた重合体溶液に、重合体100質量部に対して、活性エネルギー線硬化開始剤としてイルガキュア127(チバ・ジャパン(株)製)を0.75質量部、硬化剤としてジペンタエリスリトールヘキサアクリレート(A-DPH)を3質量部加えて、本発明の硬化性樹脂組成物を得た。 0.75 parts by mass of Irgacure 127 (manufactured by Ciba Japan Co., Ltd.) as an active energy ray curing initiator and dipentaerythritol hexaacrylate as a curing agent with respect to 100 parts by mass of the polymer in the obtained polymer solution. 3 parts by mass of (A-DPH) was added to obtain a curable resin composition of the present invention.
(2)反射防止膜の作製
 得られた硬化性樹脂組成物を未処理のTAC上にバーコーター(#7)により室温でコートし、70℃で1分間乾燥した。この際、乾燥後の膜厚が100nmとなるように調整した。
(2) Production of antireflection film The obtained curable resin composition was coated on untreated TAC by a bar coater (# 7) at room temperature and dried at 70 ° C for 1 minute. At this time, the film thickness after drying was adjusted to 100 nm.
 乾燥後の被膜に高圧水銀灯を用い、室温にて1J/cm2の強度で紫外線を照射し光硬化させ、反射防止膜を作製した。 A high-pressure mercury lamp was used for the dried film, and ultraviolet light was irradiated at room temperature with an intensity of 1 J / cm 2 for photocuring to produce an antireflection film.
 得られた反射防止膜(硬化膜)について、屈折率、全光線透過率、ヘイズ値、視感度平均反射率、最低反射率、鉛筆硬度を調べた。結果を表2に示す。 The obtained antireflection film (cured film) was examined for refractive index, total light transmittance, haze value, average visibility reflectance, minimum reflectance, and pencil hardness. The results are shown in Table 2.
実施例5
 含フッ素重合体(I-1)に代えて合成例3で得たα-フルオロアクリロイル基を有する含フッ素重合体(I-2)を用いた以外は実施例4と同様にして硬化性樹脂組成物の調製、反射防止膜の作製、特性の評価を行なった。結果を表2に示す。
Example 5
A curable resin composition was obtained in the same manner as in Example 4 except that the fluoropolymer (I-2) having an α-fluoroacryloyl group obtained in Synthesis Example 3 was used in place of the fluoropolymer (I-1). The preparation of the product, the production of the antireflection film, and the evaluation of the characteristics were performed. The results are shown in Table 2.
実施例6
 含フッ素重合体(I-1)に代えて合成例5で得たα-フルオロアクリロイル基を有する含フッ素重合体(I-4)を用いた以外は実施例4と同様にして硬化性樹脂組成物の調製、反射防止膜の作製、特性の評価を行なった。結果を表2に示す。
Example 6
The curable resin composition was the same as in Example 4 except that the fluoropolymer (I-4) having an α-fluoroacryloyl group obtained in Synthesis Example 5 was used in place of the fluoropolymer (I-1). The preparation of the product, the production of the antireflection film and the evaluation of the characteristics were performed. The results are shown in Table 2.
比較例2
 含フッ素重合体(I)に代えて、合成例6で得たα-フルオロアクリロイル基を有するフルオロエーテル含有含フッ素重合体(II-1)を用いた以外は実施例4と同様にして硬化性樹脂組成物の調製、反射防止膜の作製、特性の評価を行なった。結果を表2に示す。
Comparative Example 2
Curability was the same as in Example 4 except that the fluoroether-containing fluoropolymer (II-1) having an α-fluoroacryloyl group obtained in Synthesis Example 6 was used instead of the fluoropolymer (I). Preparation of a resin composition, production of an antireflection film, and evaluation of properties were performed. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
 表1~2の結果から、低屈折率を維持しながら、高硬度化を実現できる硬化性樹脂組成物および反射防止膜を提供することが可能であることが分かる。 From the results in Tables 1 and 2, it can be seen that it is possible to provide a curable resin composition and an antireflection film that can achieve high hardness while maintaining a low refractive index.

Claims (5)

  1. 式(I):
     -(M1)-(M2)-(N)-    (I)
    (式中、M1は、式(1-1):
    Figure JPOXMLDOC01-appb-C000001
    で示される構造単位、
    M2は式(1-2):
    Figure JPOXMLDOC01-appb-C000002
    で示される構造単位、
    NはM1およびM2を与える単量体と共重合可能な単量体に由来する構造単位)で示され、構造単位M1を0.1~100モル%、構造単位M2を0~99.9モル%および構造単位Nを0~99.9モル%含み、数平均分子量が500~1000000である含フッ素重合体。
    Formula (I):
    -(M1)-(M2)-(N)-(I)
    (Wherein M1 is a formula (1-1):
    Figure JPOXMLDOC01-appb-C000001
    A structural unit represented by
    M2 is a formula (1-2):
    Figure JPOXMLDOC01-appb-C000002
    A structural unit represented by
    N is a structural unit derived from a monomer copolymerizable with a monomer giving M1 and M2, and the structural unit M1 is 0.1 to 100 mol% and the structural unit M2 is 0 to 99.9 mol % And a structural unit N of 0 to 99.9 mol%, and a number average molecular weight of 500 to 1,000,000.
  2. (A)式(I):
     -(M1)-(M2)-(N)-    (I)
    (式中、M1は、式(1-1):
    Figure JPOXMLDOC01-appb-C000003
    で示される構造単位、
    M2は式(1-2):
    Figure JPOXMLDOC01-appb-C000004
    で示される構造単位、
    NはM1およびM2を与える単量体と共重合可能な単量体に由来する構造単位)で示され、構造単位M1を0.1~100モル%、構造単位M2を0~99.9モル%および構造単位Nを0~99.9モル%含み、数平均分子量が500~1000000である含フッ素重合体(I)を含む膜形成材料、および
    (B)活性エネルギー線硬化開始剤
    を含む硬化性樹脂組成物。
    (A) Formula (I):
    -(M1)-(M2)-(N)-(I)
    (Wherein M1 is a formula (1-1):
    Figure JPOXMLDOC01-appb-C000003
    A structural unit represented by
    M2 is a formula (1-2):
    Figure JPOXMLDOC01-appb-C000004
    A structural unit represented by
    N is a structural unit derived from a monomer copolymerizable with a monomer giving M1 and M2, and the structural unit M1 is 0.1 to 100 mol% and the structural unit M2 is 0 to 99.9 mol % And a structural unit N of 0 to 99.9 mol%, a film-forming material containing a fluorine-containing polymer (I) having a number average molecular weight of 500 to 1,000,000, and (B) curing containing an active energy ray curing initiator Resin composition.
  3. 膜形成材料(A)が、さらに式(II):
     -(M3)-(N1)-    (II)
    (式中、M3は、式(2):
    Figure JPOXMLDOC01-appb-C000005
    (式中、Rfは炭素数1~40の含フッ素アルキル基または炭素数2~100のエーテル結合を有する含フッ素アルキル基にY1(Y1は末端にエチレン性炭素-炭素二重結合を有する炭素数2~10の1価の有機基)が1~3個結合している有機基)で示される構造単位、N1はM3を与える単量体と共重合可能な単量体に由来する構造単位)で示され、
    構造単位M3を0.1~100モル%、構造単位N1を0~99.9モル%含み、数平均分子量が500~1000000である含フッ素重合体(II)を含む請求項2記載の硬化性樹脂組成物。
    The film forming material (A) is further represented by the formula (II):
    -(M3)-(N1)-(II)
    (Wherein M3 is the formula (2):
    Figure JPOXMLDOC01-appb-C000005
    (Wherein, Rf is ethylenic carbon Y 1 (Y 1 is terminated in the fluorine-containing alkyl group having ether bond of the fluorine-containing alkyl group or a 2 to 100 carbon atoms having 1 to 40 carbon atoms - carbon double bonds A structural unit represented by an organic group in which 1 to 3 monovalent organic groups having 2 to 10 carbon atoms are bonded, and a structure derived from a monomer copolymerizable with a monomer that gives M3 Unit)
    The curability according to claim 2, comprising a fluoropolymer (II) containing 0.1 to 100 mol% of the structural unit M3, 0 to 99.9 mol% of the structural unit N1 and having a number average molecular weight of 500 to 1000000. Resin composition.
  4. 溶剤(C)を含む請求項2または3記載の硬化性樹脂組成物。 The curable resin composition of Claim 2 or 3 containing a solvent (C).
  5. 請求項2~4のいずれかに記載の硬化性樹脂組成物を光硬化して得られる反射防止膜。 An antireflection film obtained by photocuring the curable resin composition according to any one of claims 2 to 4.
PCT/JP2009/068247 2008-11-13 2009-10-23 Fluorine-containing polymer, curable resin composition composed of the fluorine-containing polymer, and anti-reflection film WO2010055758A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010537744A JP5556665B2 (en) 2008-11-13 2009-10-23 Fluoropolymer, curable resin composition and antireflection film comprising the fluoropolymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-291110 2008-11-13
JP2008291110 2008-11-13

Publications (1)

Publication Number Publication Date
WO2010055758A1 true WO2010055758A1 (en) 2010-05-20

Family

ID=42169894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068247 WO2010055758A1 (en) 2008-11-13 2009-10-23 Fluorine-containing polymer, curable resin composition composed of the fluorine-containing polymer, and anti-reflection film

Country Status (2)

Country Link
JP (1) JP5556665B2 (en)
WO (1) WO2010055758A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012053453A1 (en) * 2010-10-18 2012-04-26 ダイキン工業株式会社 Fluorine-containing composition for forming coating-type insulating film, insulating film, and thin-film transistor
JP2013205656A (en) * 2012-03-28 2013-10-07 Asahi Kasei E-Materials Corp Pellicle frame body
WO2013181059A1 (en) * 2012-06-01 2013-12-05 Qualcomm Mems Technologies, Inc. Light guide with embedded fresnel reflectors
JP2014105271A (en) * 2012-11-27 2014-06-09 Kyoeisha Chem Co Ltd Active energy ray curable resin composition for hard coat, hard coat-coated thermoplastic sheet and optical member
JP2021110951A (en) * 2020-01-08 2021-08-02 ダイキン工業株式会社 Display protective film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002018457A1 (en) * 2000-08-29 2002-03-07 Daikin Industries, Ltd. Curable fluoropolymer, curable resin composition containing the same, and antireflection film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002018457A1 (en) * 2000-08-29 2002-03-07 Daikin Industries, Ltd. Curable fluoropolymer, curable resin composition containing the same, and antireflection film

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
T. YAMASHITA ET AL.: "Synthesis of Novel a-Fluoroacrylates and Related Polymers for Immersion Lithography", JOURNAL OF PHOTOPOLYMER SCIENCE AND TECHNOLOGY, vol. 21, no. 5, 1 July 2008 (2008-07-01), pages 673 - 677 *
T. YAMASHITA ET AL.: "Synthesis of novel a-fluoroacrylates and related polymers for immersion lithography", PROCEEDINGS OF SPIE (2008), 6923(PT. 1, ADVANCES IN RESIST MATERIALS AND PROCESSING TECHNOLOGY XXV), vol. 6923, no. 69231Z, 10 July 2008 (2008-07-10), pages 1 - 7 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012053453A1 (en) * 2010-10-18 2012-04-26 ダイキン工業株式会社 Fluorine-containing composition for forming coating-type insulating film, insulating film, and thin-film transistor
JP2012109542A (en) * 2010-10-18 2012-06-07 Daikin Ind Ltd Fluorine-containing composition for coating type insulating film formation, insulating film, and thin film transistor
JP2013205656A (en) * 2012-03-28 2013-10-07 Asahi Kasei E-Materials Corp Pellicle frame body
WO2013181059A1 (en) * 2012-06-01 2013-12-05 Qualcomm Mems Technologies, Inc. Light guide with embedded fresnel reflectors
CN104364684A (en) * 2012-06-01 2015-02-18 高通Mems科技公司 Light guide with embedded fresnel reflectors
JP2014105271A (en) * 2012-11-27 2014-06-09 Kyoeisha Chem Co Ltd Active energy ray curable resin composition for hard coat, hard coat-coated thermoplastic sheet and optical member
JP2021110951A (en) * 2020-01-08 2021-08-02 ダイキン工業株式会社 Display protective film
JP7326358B2 (en) 2020-01-08 2023-08-15 ダイキン工業株式会社 display protective film

Also Published As

Publication number Publication date
JP5556665B2 (en) 2014-07-23
JPWO2010055758A1 (en) 2012-04-12

Similar Documents

Publication Publication Date Title
JP4760868B2 (en) Method for manufacturing anti-reflective article
JP5293588B2 (en) Optical material containing photocurable fluorine-containing polymer and photocurable fluorine-containing resin composition
JP4375335B2 (en) Curable surface modifier and curable surface modifying composition using the same
JPWO2002077116A1 (en) Surface treatment agent composed of inorganic and organic composite materials
JP2008040262A (en) Curable composition for antireflection coating formation
JP3861562B2 (en) Method for producing hard coat film
JP4285238B2 (en) Fluorine-containing unsaturated compound, fluorine-containing polymer, and curable composition using them
TW201738584A (en) Anti-reflective film
JP5012025B2 (en) Fluorine-containing compound having hydrolyzable metal alkoxide moiety, curable fluorine-containing polymer obtained from the compound, and curable fluorine-containing resin composition containing the polymer
JP5556665B2 (en) Fluoropolymer, curable resin composition and antireflection film comprising the fluoropolymer
JP2006037024A (en) Antireflection film-forming composition
JP2009167354A (en) Curable composition containing multi-functional acrylate
JP2005336484A (en) Curable fluorine-containing polymer, curable resin composition using the same, and antireflection film
JP4179306B2 (en) Curable fluorine-containing polymer, curable resin composition and antireflection film using the same
JP4983605B2 (en) Curable fluorine-containing polymer composition containing fluorine-containing norbornene derivative or fluorine-containing norbornane derivative containing α, β-unsaturated ester group
JP5979423B2 (en) Antireflection coating composition and antireflection film
JP4442533B2 (en) Fluorine-containing unsaturated compounds
JP4266790B2 (en) Antireflection film
JP4003263B2 (en) Fluorine-containing compound, optical thin film and antireflection article
JP2013156333A (en) Antireflection paint composition and antireflection film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09826008

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010537744

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09826008

Country of ref document: EP

Kind code of ref document: A1