WO2010055751A1 - Line head unit and drawing apparatus - Google Patents

Line head unit and drawing apparatus Download PDF

Info

Publication number
WO2010055751A1
WO2010055751A1 PCT/JP2009/068107 JP2009068107W WO2010055751A1 WO 2010055751 A1 WO2010055751 A1 WO 2010055751A1 JP 2009068107 W JP2009068107 W JP 2009068107W WO 2010055751 A1 WO2010055751 A1 WO 2010055751A1
Authority
WO
WIPO (PCT)
Prior art keywords
head
scanning direction
line head
sub
actuator
Prior art date
Application number
PCT/JP2009/068107
Other languages
French (fr)
Japanese (ja)
Inventor
裕一 町田
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2010537742A priority Critical patent/JP5445462B2/en
Publication of WO2010055751A1 publication Critical patent/WO2010055751A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J25/00Actions or mechanisms not otherwise provided for
    • B41J25/34Bodily-changeable print heads or carriages

Definitions

  • the present invention relates to a line head unit and a drawing apparatus, and more particularly to a line head unit capable of easily adjusting the position of each head and a drawing apparatus including the line head unit.
  • a drawing apparatus that performs drawing by landing a droplet on a recording material using a head that ejects the droplet from a nozzle is, for example, a wiring pattern of a semiconductor substrate, a color filter of a liquid crystal display device, an organic EL device, or the like. It is also widely used for industrial applications such as pixel pattern drawing. In such applications, in order to increase productivity, drawing is generally performed using a line head unit configured with a line head having a long nozzle array (recording width) by arranging a large number of heads in a staggered manner. A drawing device is used.
  • Such a line head unit is assembled by attaching a large number of heads to predetermined positions of the base member.
  • positional deviation occurs when each head is attached. If each head is not positioned accurately, the landing position will shift and there will be a problem of degrading the accuracy of the rendered image. Therefore, it is necessary to accurately determine the mounting position of each head, specifically in the sub-scanning direction. It is very important to make the nozzle pitch uniform over the entire line width.
  • the landing position deviation in the main scanning direction orthogonal to the nozzle row direction is corrected by adjusting the injection timing.
  • the landing position deviation in the sub-scanning direction along the nozzle row direction is determined by the mounting position of each head. Therefore, it is necessary to perform accurate positioning in the nozzle row direction when mounting each head, but the nozzle pitch is extremely fine on the order of ⁇ m, and it is realistic to position each head with high accuracy simultaneously with mounting. Is extremely difficult. For this reason, after attaching a head to a predetermined position, the attachment position needs to be adjusted.
  • Patent Document 1 A technique that adjusts the relative position with the other head by pressing one abutting head toward the inclined surface, and a plurality of heads each configured by arranging a plurality of heads.
  • Patent Document 2 A technique in which a line head is configured by a head group, and each head group is independently movable relative to the ⁇ -axis direction and the Y-axis direction, thereby performing position adjustment in units of head groups.
  • the head can be easily attached, and the attachment position of each head in the sub-scanning direction can be easily provided after the head is attached. It is an object to provide an adjustable line head unit.
  • the present invention it is not necessary to assemble parts for position adjustment at the same time when the head is attached, and the head can be easily attached, and the attachment position of each head in the sub-scanning direction can be easily provided after the head is attached. It is an object of the present invention to provide a drawing apparatus including an adjustable line head unit.
  • the first aspect of the present invention by arranging a plurality of heads having a nozzle row in which a plurality of nozzles for ejecting droplets are arranged on the base member, a line that is elongated in the sub-scanning direction by the plurality of heads.
  • a line head unit comprising a head, A plurality of head mounting portions each individually mounting the head corresponding to each of the heads; Each of the head mounting portions is held on the base member by a plurality of elastic hinges arranged parallel to each other at intervals along the nozzle row direction of the head, The elastic hinge is elastically deformed by applying a pressing force to the head mounting portion, and the angle of the nozzle row direction of the head with respect to the sub scanning direction is maintained while maintaining the angle of the head mounting portion in the sub scanning direction.
  • the line head unit is characterized in that an actuator for moving the position with respect to the base member is individually provided between the base member and the head mounting portion.
  • the head mounting portion is disposed inside an opening frame formed in the base member.
  • the elastic hinge is narrower than the hinge main body at the connection site with the base member at both ends of the hinge main body and the connection site with the head mounting portion, and the head mounting 3.
  • the actuator is disposed so that a pressing force in a direction parallel to the sub-scanning direction is applied to the head mounting portion.
  • the line head unit according to 2 or 3.
  • the actuator is arranged so that a pressing force in an oblique direction with respect to the sub-scanning direction is applied to the head mounting portion. Or it is a line head unit of 3 description.
  • the invention according to claim 6 is characterized in that the head mounting portion has a protruding portion protruding toward the side intersecting the nozzle row direction, and the actuator applies a pressing force to the protruding portion.
  • the line head unit according to any one of claims 1 to 5.
  • the invention according to claim 7 is the line head unit according to any one of claims 1 to 6, wherein the actuator applies a pressing force to the head mounting portion by a piezo element.
  • the invention according to claim 8 is the line head unit according to any one of claims 1 to 7, wherein the line head unit is arranged so that the nozzle surface faces downward.
  • a drawing table that is provided so as to be movable relative to the line head unit and that draws on a recording material supported on the upper surface by droplets ejected from each head of the line head; Drive control means for controlling the drive of the actuator;
  • a drawing apparatus characterized by comprising:
  • the invention according to claim 9 is a print control means for controlling the head so as to print a test pattern for inspecting a positional deviation amount of each head of the line head unit on the recording material; Image recognition means for recognizing the test pattern printed on the recording material; Calculating means for calculating the amount of positional deviation in the sub-scanning direction of each head of the line head based on the image of the test pattern recognized by the image recognition means;
  • the drawing apparatus according to claim 8, wherein the drive control unit controls driving of the actuator according to a positional deviation amount of the head in the sub-scanning direction calculated by the calculation unit.
  • the recording material has a reference mark on the surface
  • the calculation means calculates the positional deviation amount of each head in the sub-scanning direction from the positional deviation amount of the test pattern with respect to the reference mark, based on the image of the reference mark and the test pattern recognized by the image recognition means.
  • the drawing apparatus according to claim 9, wherein the drawing apparatus calculates the drawing apparatus.
  • the calculation unit has a function of calculating a positional deviation amount in the main scanning direction of each head of the line head based on the image of the test pattern recognized by the image recognition unit.
  • the print control unit corrects the ejection timing of the head in accordance with the amount of positional deviation in the main scanning direction calculated by the calculation unit.
  • a possible line head unit can be provided.
  • FIG. 11 is a partially enlarged view of the head fixing plate.
  • FIG. 1 is a schematic perspective view showing an example of a drawing apparatus according to the present invention.
  • the drawing apparatus 1 has a line head unit 3 for performing ink-jet drawing on an apparatus base 2 and a work W (recording material) on an upper surface. ),
  • the ⁇ rotation mechanism 5 for rotating the work stage 4 in the ⁇ direction, and the work stage 4 and the ⁇ rotation mechanism 5 are both along the Y direction (main scanning direction).
  • a Y moving mechanism 6 for linearly moving the workpiece stage 4 a X stage moving mechanism 7 for linearly moving the work stage 4 and the ⁇ rotating mechanism 5 along the X direction (sub-scanning direction), a landing shooting camera 8 A that can visually recognize the work stage 4, A head photographing camera 8B that can visually recognize the lower surface of the line head unit 3 is provided.
  • the work stage 4 functions as a drawing table of the present invention
  • the landing camera 8A functions as an image recognition means of the present invention.
  • the X direction and the Y direction are directions orthogonal to each other on a horizontal plane.
  • the line head unit 3 is attached to a gantry 9 laid in parallel along the X direction in the vicinity of the end on the apparatus base 2 via a slider 10 and a ⁇ rotation mechanism 11, and the slider 10 is attached to the gantry 9. And reciprocating along the X direction by sliding along the axis, and rotating by the ⁇ rotation mechanism 11 in the ⁇ direction about the direction along the Z direction, which is a normal direction orthogonal to the X and Y directions. Further, the Z moving mechanism 12 can be moved up and down in the Z direction together with the ⁇ rotating mechanism 11.
  • the position coordinates of the work stage 4 in the X direction, the Y direction, and the ⁇ direction, and the position coordinates of the line head unit 3 in the X direction, the Z direction, and the ⁇ direction are represented by the X moving mechanism 7, the Y moving mechanisms 6, 6,
  • An encoder (not shown) which is a position coordinate detection means provided in each of the ⁇ rotation mechanism 5, the slider 10, the ⁇ rotation mechanism 11, and the Z movement mechanism 12 can be detected with high accuracy on the order of nm.
  • FIG. 2 is a bottom view showing an example of the line head unit 3 according to the present invention
  • FIG. 3 is a perspective view showing an attachment structure of one head H in the line head unit 3.
  • a large number of heads H are individually attached and fixed to the lower surface of a base plate 31 that is a single large base member, and can be opposed to the surface of the work W on the work stage 4 disposed below the head H 3. It is arranged to be.
  • twelve heads H are arranged in a staggered manner in two rows so that each nozzle row is aligned in the X direction and each nozzle has a uniform pitch.
  • a line head having a long recording width is formed along the line, but the number and arrangement of the heads H are not particularly limited in the present invention.
  • the nozzle rows may be disposed obliquely with respect to the sub-scanning direction.
  • eleven heads H are already attached to the base plate 31 and the remaining one head H is not attached.
  • a metal material is used for the base plate 31.
  • SUS can be used as the metal material
  • a low thermal expansion material such as invar material or novinite is preferably used in order to keep the mounting position accuracy of the head H high.
  • the base plate 31 has two rows of opening frames 32 along the arrangement direction of the heads H, and a head fixing plate 33 that is a head mounting portion in the opening frame 32 so that the heads H can be individually attached. The same number as the head H is arranged.
  • Each head fixing plate 33 has two identical lengths arranged at intervals in the nozzle row direction of the head H at one side of both sides in the nozzle row direction (X direction in the drawing) of the head H.
  • the elastic plate 34 is integrally connected to the base plate 31 and is held by the base plate 31.
  • Each head fixing plate 33 is connected to the base plate 31 only by this elastic hinge 34, and other portions are separated from the base plate 31 in the opening frame 32.
  • An actuator 35 is disposed between the head plate 31 and the base plate 31 in the opening frame 32 on the other end side of each head fixing plate 33.
  • the actuator 35 moves along the main scanning direction with respect to each head fixing plate 33. It is installed side by side. Here, at one corner on the other end side of each head fixing plate 33, it projects toward the inner periphery of the opening frame 32 that is the side (Y direction in the figure) intersecting the nozzle row direction of the head H.
  • the base plate 31 is formed with a protrusion 311 that protrudes from the inner periphery of the opening frame 32 along the Y direction in the drawing toward the head fixing plate 33.
  • a pressing force in the horizontal direction parallel to the X direction in the drawing, that is, the nozzle row direction of the head H is applied between the projecting portions 331 and 311.
  • the head fixing plate 33, the elastic hinge 34, the protrusions 311 and 331, and the actuator 35 provided in the opening frame 32 of the base plate 31 constitute a fine adjustment mechanism for finely adjusting the mounting position of the head H.
  • a fine adjustment mechanism when a predetermined pressing force is applied to the protrusion 331 by the operation of the actuator 35, a lateral (horizontal) force along the X direction acts on the head fixing plate 33, and this force
  • the two elastic hinges 34 are slightly deformed and tilted uniformly, so that the parallelism in the X direction of the head fixing plate 33 is maintained, that is, the nozzle row direction of the head H is in the sub-scanning direction.
  • the position of the head H in the sub-scanning direction is finely adjusted while maintaining the angle formed with respect to the head H.
  • FIG. 4 shows details of the elastic hinge 34
  • FIG. 5 shows a fine adjustment of the mounting position of the head H
  • FIG. 4A shows a state in which the pressing force of the actuator 35 is not acting on the head fixing plate 33
  • FIG. 4B shows a state in which the pressing force of the actuator 35 is acting on the head fixing plate 33 in the arrow direction.
  • the actual deformation amount of the elastic hinge 34 is extremely small on the order of ⁇ m, but the deformation amount is exaggerated in the drawing.
  • the elastic hinge 34 is integrally formed over the head fixing plate 33 and the inner periphery of the opening frame 32 of the base plate 31.
  • the number of elastic hinges 34 is sufficient if two heads are provided in parallel at a distance from one head fixing plate 33 at one end of both side edges in the nozzle row direction of the head H.
  • the number of arrangements may be increased as appropriate.
  • Each elastic hinge 34 is formed with a constricted portion 342 having a narrower width than the hinge main body 341 at a connection portion with the base plate 31 at both ends of the hinge main body 341 and a connection portion with the head fixing plate 33.
  • Each constricted portion 342 is formed by scraping both ends of the hinge main body 341 in an arc shape from both sides.
  • the pressing force of the actuator 35 acts on the head fixing plate 33
  • the pressing force concentrates stress on the constricted portion 342, and on the connecting portion side with the head fixing plate 33, the acting direction of the pressing force indicated by an arrow.
  • the near side is compressed, the far side is pulled, and on the connection site side with the base plate 31, the near side is pulled with respect to the direction of action of the pressing force indicated by the arrow, and the far side is compressed and elastically deformed.
  • the position of the head fixing plate 33 in the sub scanning direction is moved.
  • the head fixing plate 33 is integrally connected to the base plate 31 by the two elastic hinges 34, the angle formed by the nozzle row direction of the head H with respect to the sub-scanning direction does not collapse. Accordingly, as shown in FIG. 5, the mounting position of the head H in the sub-scanning direction is finely adjusted while maintaining parallelism with respect to the sub-scanning direction.
  • Each actuator 35 is between each head fixing plate 33 and the inner periphery of the opening frame 32, and is between a protruding portion 311 and a protruding portion 331 that protrude from the base plate 31 and each head fixing plate 33, respectively. They are juxtaposed, and are provided so that the pressing force acts in parallel with the nozzle row direction of each head H. According to this, the distance between the adjacent head fixing plates 33 and 33 can be made as close as possible, and the line head unit 3 can be miniaturized as much as possible.
  • the actuator 35 has an actuator 352 that can be extended and contracted at one end of the actuator main body 351, and the rear end of the actuator main body 351 is fixed to the protruding portion 311 of the base plate 31.
  • the tip of the actuator 352 is not fixed to the projecting portion 331 of the head fixing plate 33 but is simply in contact with it.
  • the operating element 352 extends in the direction of the arrow in the figure
  • the projecting portion 331 is pushed in the lateral direction while sliding with respect to the projecting portion 331, and the opening frame of the head fixing plate 33 is elastically deformed by the elastic hinge 34.
  • the position in the sub-scanning direction with respect to the base plate 31 is changed.
  • the actuator 352 is reduced, the head fixing plate 33 returns to the original position by the elastic return of the elastic hinge 34.
  • a voltage is applied to the actuator 35 so that the actuator 352 can be expanded and contracted, and a piezoelectric element (piezoelectric element) that performs a mechanical expansion and contraction motion according to a voltage value, or is rotated by a motor drive.
  • a piezoelectric element piezoelectric element
  • PZT is preferably used for the piezo element.
  • Each head fixing plate 33 has a screw hole 332 for attaching and fixing the head H detachably.
  • Each head H is arranged with respect to each head fixing plate 33 of the base plate 31 such that the nozzle surface h1 on which a large number of nozzles n are arranged is the lower surface and the nozzle row direction is along the X direction.
  • Each head H has a flange h2 projecting on both sides on the side opposite to the nozzle surface h1, and the screw of the head fixing plate 33 is attached using a mounting screw 36 through a screw hole h3 formed in the flange h2. Screwed into the hole 332.
  • Reference numerals 37A and 37B in FIG. 2 are position confirmation marks respectively formed in the vicinity of both end portions in the X direction on the lower surface of the base plate 31, and are attached to the work stage 4 in order to detect the position and angle of the base plate 31.
  • the image is recognized by the head photographing camera 8B attached integrally.
  • the position confirmation marks 37A and 37B are positioned so that a straight line connecting them passes through the center line of the base plate 31, and each position confirmation mark 37A and 37B is processed by performing image processing on an image photographed by the head photographing camera 8B.
  • the attachment angle of the line head unit 3 in the ⁇ direction is adjusted to an appropriate angle.
  • the landing shooting camera 8A is integrally attached to the base plate 31 of the line head unit 3.
  • the drawing apparatus 1 moves the line head unit 3 and the work stage 4 relative to each other in the Y direction (main scanning direction), and the line head unit based on predetermined ejection pattern data according to each position information at that time.
  • 3 is configured to perform desired drawing by controlling ejection of droplets from each head H and landing on the surface of the workpiece W on the workpiece stage 4.
  • FIG. 6 is a block diagram showing a schematic configuration of a main part inside the drawing apparatus 1.
  • 100 is an injection signal control unit
  • 101 is an injection signal generation unit
  • 102 is a stage encoder
  • 103 is an injection start signal generation unit.
  • Each head H is driven by generating a predetermined injection signal by the injection signal generation unit 101 based on the injection control signal sent from the injection signal control unit 100 and applying the injection signal.
  • the position coordinates of the work stage 4 in the X direction and the Y direction are acquired by the stage encoder 102, and the injection start signal generation unit 103 generates an injection start signal at a predetermined timing according to the position of the work stage 4.
  • the injection signal control unit 100 generates an injection control signal based on the injection start signal sent from the injection start signal generation unit 103 at a predetermined timing.
  • the injection signal control unit 100 functions as the print control means of the present invention.
  • 104 is a positional deviation amount calculation unit
  • 105 is an image processing unit
  • 106 is a head position correction amount calculation unit
  • 107 is an actuator control unit
  • 108 is an actuator driver
  • 109 is an injection timing correction amount calculation unit.
  • the landing position of the droplet ejected from each head H is the landing position provided integrally with the line head unit 3.
  • the coordinates of the landing position for each head H are detected by photographing with the photographing camera 8A and recognizing the image by the image processing unit 105.
  • the positional deviation amount calculation unit 104 obtains deviation amounts from appropriate landing positions in the main scanning direction and the sub-scanning direction based on the coordinates of the landing positions.
  • the deviation amount in the main scanning direction is sent to the ejection timing correction amount calculation unit 109, and the deviation amount in the sub scanning direction is sent to the head position correction amount calculation unit 106.
  • the positional deviation amount calculation unit 104 functions as a calculation unit of the present invention.
  • the head position correction amount calculation unit 106 calculates a correction amount for correcting the shift based on the shift amount in the sub-scanning direction and sends the correction amount to the actuator control unit 107.
  • the actuator control unit 107 responds to the correction amount.
  • a control signal for driving the actuator 35 is output to the actuator driver 108 to drive each actuator 35.
  • the actuator control unit 107 functions as the drive control means of the present invention.
  • the injection timing correction amount calculation unit 109 calculates a correction amount for correcting the shift based on the shift amount in the main scanning direction, and sends the correction amount to the injection signal control unit 100.
  • This correction amount is a correction amount of the timing of ejecting droplets from each head H, and the landing position of the corresponding head H in the main scanning direction is finely adjusted by adjusting the ejection timing of the droplets.
  • the head H is attached to each head fixing plate 33 in advance in the line head unit 3.
  • the mounting position of each head H at this time only needs to be coarsely adjusted so that the nozzle row direction is parallel to the X direction when screwed and fixed to the head fixing plate 33, particularly in the sub-scanning direction. There is no need for fine position adjustment.
  • the head H is preferably mounted with the hinge elastically deformed.
  • the head position can be finely adjusted using the elastic deformation and elastic return of the hinge.
  • the line head unit 3 When all the heads H are arranged on the base plate 31, the line head unit 3 is installed in the drawing apparatus 1, and the position confirmation marks 37A and 37B provided on the base plate 31 are photographed by the head photographing camera 8B. By performing image processing, the ⁇ rotation mechanism 11 is driven so that the Y coordinates of the position confirmation marks 37A and 37B are the same, and the line head unit 3 is set to a predetermined angular position (S1).
  • test base material WT recording material
  • FIG. 8 shows an example of a test pattern printed on the test substrate WT.
  • the test pattern prints a dot pattern on the test substrate by ejecting droplets from all the nozzles n of all the heads H constituting the line head unit 3.
  • one dot pattern group DP is formed by droplets ejected from each nozzle n of one head H, and this dot pattern group DP corresponds to the number of heads H in the line head unit 3.
  • the heads H are printed so as to be arranged in the same manner as the arrangement manner of the heads H.
  • each head H constituting the line head unit 3 is slightly shifted in the main scanning direction (Y direction) and the sub-scanning direction (X direction). Similarly, a positional deviation occurs in the dot pattern group DP to be printed.
  • each dot pattern group DP printed on the test substrate WT is photographed by a landing photographing camera 8A integrally attached to the line head unit 3, and the image is processed by the image processing unit 105. Then, the position coordinates of each dot pattern group DP are measured (S3).
  • a reference mark M is formed in advance at a predetermined location on the surface of the test substrate WT, and the position coordinates can be obtained from the position coordinates with respect to the reference mark M. For this reason, the relative position between the line head unit 3 and the test substrate WT on the work stage 4 is accurately positioned in advance with respect to the reference mark M.
  • the position serving as a measurement reference for the position coordinates of each dot pattern group DP with respect to the reference mark M can be any one dot position of each dot pattern group DP, for example, one dot located at the same corner.
  • each dot pattern group DP When the position coordinates of each dot pattern group DP are measured by the image processing unit 105, first, in the positional deviation amount calculation unit 104, the position coordinates and the appropriateness of each dot pattern group DP stored in advance in storage means (not shown). The position coordinates of the position are compared, and the quality of the mounting position of each head H in the main scanning direction and the sub-scanning direction is determined (S4).
  • each head H of the line head unit 3 is at an appropriate attachment position, and the operation is completed.
  • the displacement amount calculation is performed by the displacement amount calculation unit 104 based on the position coordinates of each dot pattern group DP recognized by the image processing unit 105 in the main scanning direction and the sub-scanning direction from the appropriate position of each dot pattern group DP. Calculated as the amount of positional deviation in the scanning direction.
  • the amount of positional deviation in the sub-scanning direction is sent to the head position correction amount calculation unit 106, and the head position correction amount calculation unit 106 drives the actuator 35 of the head H corresponding to the corresponding dot pattern group DP. And the actuator 35 is driven by a predetermined amount by driving the actuator driver 108.
  • the elastic hinge 34 is elastically deformed, the head fixing plate 33 is moved in the sub-scanning direction, and the attachment position of the head H in the sub-scanning direction is finely adjusted (S6).
  • the positional deviation amount in the main scanning direction calculated by the positional deviation amount calculation unit 104 is sent to the ejection timing correction amount calculation unit 109, which corresponds to the corresponding dot pattern group DP.
  • the ejection timing correction amount calculation unit 109 which corresponds to the corresponding dot pattern group DP.
  • injection timing correction time calculated by the injection timing correction amount calculation unit 109 may be transmitted to the injection start signal generation unit 103.
  • step S2 After finely adjusting the mounting position of the head H in the sub-scanning direction and the ejection timing in the main scanning direction as described above, the operation from step S2 is repeated, and as shown in FIG. The adjustment operation is repeated until the mounting position in the sub-scanning direction and the ejection timing in the main scanning direction are appropriate, and the landing dots become uniform pitch over the entire recording width of the line head unit 3.
  • the landing position deviation in the sub-scanning direction corresponds to the mounting position of each head H of the line head unit 3 in the sub-scanning direction. Since it is only necessary to finely adjust the position of the head fixing plate 33 along the sub-scanning direction by driving the line head unit 3, after the line head unit 3 is installed in the drawing apparatus 1, fine adjustment is performed in the state of being installed in the drawing apparatus 1 Thus, the mounting position of each head H in the sub-scanning direction can be easily adjusted.
  • the head fixing plate 33 maintains parallelism with respect to the sub-scanning direction even during movement by the plurality of elastic hinges 34 connected to the base plate 31. Therefore, the angle of each head H with respect to the sub-scanning direction is adjusted. There is no need to redo.
  • the components for adjusting the mounting position of each head H in the sub-scanning direction can be molded or incorporated in advance with the base plate 31 of the line head unit 3, and can be used for position adjustment when the head H is mounted. There is no need to assemble the parts at the same time. Therefore, when configuring the line head, it is only necessary to attach the head H to each head fixing plate 33, and the attaching operation can be performed very easily.
  • FIG. 10 is a bottom view showing another embodiment of the line head unit. Parts having the same reference numerals as those in FIG. 2 indicate parts having the same configuration.
  • the line head unit 3A shown in this embodiment is different from the line head unit 3 shown in FIG. Opening frames 32 corresponding to the respective head fixing plates 33 are individually formed on the base plate 31, and the actuators 35 are arranged between the head fixing plates 33 in the respective opening frames 32.
  • the head fixing plate 33 is provided in series along the main scanning direction, and a pressing force is directly applied to the head fixing plate 33.
  • the distance between the heads H adjacent in the sub-scanning direction is increased due to the arrangement of the actuators 35, so that the nozzle pitch of each head H is made uniform along the sub-scanning direction.
  • the pressing force of the actuator 35 can be reduced without using the protrusion 331 as shown in FIGS. Since it can directly act on the head fixing plate 33, the position of each head H in the sub-scanning direction can be finely adjusted efficiently.
  • FIG. 11 is a bottom view showing still another embodiment of the line head unit. Parts having the same reference numerals as those in FIG. 2 indicate parts having the same configuration.
  • the line head unit 3B shown in this embodiment is also different from the line head unit 3 shown in FIG.
  • the actuator 35 is arranged so as to be inclined in the sub-scanning direction with respect to the arrangement mode shown in FIG. 2 and applies a pressing force to each head fixing plate 33 from the oblique direction.
  • An angle ⁇ formed by the direction in which the pressing force acts and the sub-scanning direction can be, for example, about 45 °.
  • Each head fixing plate 33 has a protruding portion 331 that is a pressing operation portion for applying a pressing force of the actuator 35. As shown in FIG. 12, an actuator 352 of the actuator 35 in the protruding portion 331 is provided.
  • the abutting side surface 331a is an inclined surface that faces the actuator 352 so as to be orthogonal to the expansion / contraction direction.
  • the distance between the adjacent head fixing plates 33 and 33 can be made as close as possible, and the line head unit 3 can be made as much as possible.
  • the stroke of the actuator 352 of the actuator 35 for moving the head fixing plate 33 in the sub-scanning direction can be made longer, Fine adjustment of the attachment position in the sub-scanning direction can be performed with higher accuracy.

Abstract

Provided is a line head unit wherein a head can be easily attached without requiring assembly of a component for position adjustment at the same time when attaching the head, and the attaching position of each head in the sub-scanning direction can be easily adjusted after the head is attached.  A drawing apparatus is also provided.  The line head unit has, corresponding to respective heads (H), a plurality of head attaching sections (33) having the heads (H) respectively attached thereto, and holds the head attaching sections (33) to a base member (31) by using a plurality of elastic hinges (34) arranged parallel to each other at intervals in the nozzle row direction of the heads (H).  Between the base member (31) and the respective head attaching sections (33), the line head unit is provided with actuators (35), which elastically deform the elastic hinges (34) by having a pressing force operate to the head attaching sections (33), and move the positions of the head attaching sections (33) in the sub-scanning direction with respect to the base member (31), while maintaining an angle formed by the nozzle row direction of the heads (H) with the sub-scanning direction.

Description

ラインヘッドユニット及び描画装置Line head unit and drawing apparatus
 本発明はラインヘッドユニット及び描画装置に関し、詳しくは、各ヘッドの位置調整を容易に行うことのできるラインヘッドユニット及びこれを備えた描画装置に関する。 The present invention relates to a line head unit and a drawing apparatus, and more particularly to a line head unit capable of easily adjusting the position of each head and a drawing apparatus including the line head unit.
 ノズルから液滴を射出するヘッドを用いて、液滴を被記録材上に着弾させることにより描画を行う描画装置は、例えば半導体基板の配線パターンや液晶表示装置や有機EL装置等のカラーフィルターの画素パターンの描画等といった産業用途にも広く利用されている。このような用途においては、生産性を高めるため、一般に多数のヘッドを千鳥状等に配列することによりノズル列(記録幅)を長尺としたラインヘッドを構成したラインヘッドユニットを用いて描画を行う描画装置が用いられている。 A drawing apparatus that performs drawing by landing a droplet on a recording material using a head that ejects the droplet from a nozzle is, for example, a wiring pattern of a semiconductor substrate, a color filter of a liquid crystal display device, an organic EL device, or the like. It is also widely used for industrial applications such as pixel pattern drawing. In such applications, in order to increase productivity, drawing is generally performed using a line head unit configured with a line head having a long nozzle array (recording width) by arranging a large number of heads in a staggered manner. A drawing device is used.
 このようなラインヘッドユニットは、多数のヘッドをベース部材の所定の位置に取り付けることによって組み立てられるが、各ヘッドの取り付け時に位置ずれが発生する問題がある。各ヘッドが正確に位置決めされていないと、着弾位置がずれ、描画される画像の精度を劣化させる問題があるため、各ヘッドの取り付け位置を正確に決定すること、具体的には副走査方向でのノズルピッチをライン幅全長に亘って均等にすることは極めて重要である。 Such a line head unit is assembled by attaching a large number of heads to predetermined positions of the base member. However, there is a problem that positional deviation occurs when each head is attached. If each head is not positioned accurately, the landing position will shift and there will be a problem of degrading the accuracy of the rendered image. Therefore, it is necessary to accurately determine the mounting position of each head, specifically in the sub-scanning direction. It is very important to make the nozzle pitch uniform over the entire line width.
 例えば、ノズル列方向が副走査方向に一致するように多数のヘッドを配置したラインヘッドでは、ノズル列方向と直交する主走査方向の着弾位置ずれについては、射出タイミングを調整することで補正することができるが、ノズル列方向に沿う副走査方向の着弾位置ずれは各ヘッドの取り付け位置で決まってしまう。従って、各ヘッドの取り付け時にはノズル列方向の正確な位置決めを行う必要があるが、ノズルピッチはμmオーダーの極めて微細なものであり、取り付けと同時に各ヘッドを高精度に位置決めすることは現実的には極めて困難である。このため、ヘッドを所定位置に取り付けた後、その取り付け位置を調整する必要が生じる。 For example, in a line head in which a large number of heads are arranged so that the nozzle row direction coincides with the sub-scanning direction, the landing position deviation in the main scanning direction orthogonal to the nozzle row direction is corrected by adjusting the injection timing. However, the landing position deviation in the sub-scanning direction along the nozzle row direction is determined by the mounting position of each head. Therefore, it is necessary to perform accurate positioning in the nozzle row direction when mounting each head, but the nozzle pitch is extremely fine on the order of μm, and it is realistic to position each head with high accuracy simultaneously with mounting. Is extremely difficult. For this reason, after attaching a head to a predetermined position, the attachment position needs to be adjusted.
 従来、ヘッドの取り付け位置を調整するための技術として、2個のヘッド間にスペーサーを挟むことによってX・Z軸方向の位置決めをすると共に、Y軸方向の位置決めを、スペーサーに対して傾斜面によって当接している一方のヘッドを傾斜面に向けて押圧することで、他方のヘッドとの相対的な位置を調整する技術(特許文献1)、各々複数のヘッドを配列して構成された複数のヘッド群によってラインヘッドを構成し、各ヘッド群を独立してθ軸方向及びY軸方向に相対的に移動可能とすることで、ヘッド群単位で位置調整を行うようにした技術(特許文献2)が提案されている。 Conventionally, as a technique for adjusting the mounting position of the head, positioning in the X / Z-axis direction is performed by sandwiching a spacer between two heads, and positioning in the Y-axis direction is performed by an inclined surface with respect to the spacer. A technique (Patent Document 1) that adjusts the relative position with the other head by pressing one abutting head toward the inclined surface, and a plurality of heads each configured by arranging a plurality of heads. A technique in which a line head is configured by a head group, and each head group is independently movable relative to the θ-axis direction and the Y-axis direction, thereby performing position adjustment in units of head groups (Patent Document 2). ) Has been proposed.
特開平2-167749号公報Japanese Patent Laid-Open No. 2-167749 特開2006-44059号公報JP 2006-44059 A
 特許文献1記載の技術では、ヘッドの取り付け位置を調整するための部品点数が多く、それらの各部品をヘッド取り付けの際に同時に組み付ける必要があるため、組み立て工程が多く、作業も煩雑となる。このため、多数のヘッドを配列して長尺なラインヘッドユニットを構成する場合には不向きである。また、2個のヘッド間の相対的な位置しか調整できないため、多数のヘッドを配列したラインヘッドユニットを構成する場合、ヘッド個々の取り付け位置を調整できず、正確な位置決めができない。しかも、位置調整はヘッドの組み付け時に行うものであり、ヘッドを組み付けた後に各々の位置を微調整することはできないといった数々の問題がある。 In the technique described in Patent Document 1, the number of parts for adjusting the mounting position of the head is large, and it is necessary to assemble these parts at the same time when the head is mounted. Therefore, the assembly process is large and the work is complicated. For this reason, it is not suitable when a long line head unit is configured by arranging a large number of heads. Further, since only the relative position between the two heads can be adjusted, when configuring a line head unit in which a large number of heads are arranged, the mounting position of each head cannot be adjusted, and accurate positioning cannot be performed. In addition, the position adjustment is performed when the head is assembled, and there are a number of problems that each position cannot be finely adjusted after the head is assembled.
 また、特許文献2記載の技術では、各々複数のヘッドを配列したヘッド群単位で位置調整するため、そのヘッド群内での各ヘッドの取り付け位置を調整することはできない。従って、この場合もラインヘッドユニット全体でのヘッド個々の位置ずれを正確に調整することは不可能である。 Further, in the technique described in Patent Document 2, since the position adjustment is performed in units of head groups in which a plurality of heads are arranged, the mounting position of each head in the head group cannot be adjusted. Therefore, also in this case, it is impossible to accurately adjust the positional deviation of each head in the entire line head unit.
 そこで、本発明は、ヘッドの取り付け時に位置調整のための部品を同時に組み付ける必要がなく、ヘッドの取り付けが容易であると共に、ヘッドの取り付け後に、各ヘッド個々の副走査方向の取り付け位置を容易に調整可能なラインヘッドユニットを提供することを課題とする。 Therefore, according to the present invention, it is not necessary to assemble parts for position adjustment at the same time when the head is attached, the head can be easily attached, and the attachment position of each head in the sub-scanning direction can be easily provided after the head is attached. It is an object to provide an adjustable line head unit.
 また、本発明は、ヘッドの取り付け時に位置調整のための部品を同時に組み付ける必要がなく、ヘッドの取り付けが容易であると共に、ヘッドの取り付け後に、各ヘッド個々の副走査方向の取り付け位置を容易に調整可能なラインヘッドユニットを備えた描画装置を提供することを課題とする。 Further, according to the present invention, it is not necessary to assemble parts for position adjustment at the same time when the head is attached, and the head can be easily attached, and the attachment position of each head in the sub-scanning direction can be easily provided after the head is attached. It is an object of the present invention to provide a drawing apparatus including an adjustable line head unit.
 本発明の他の課題は、以下の記載により明らかとなる。 Other problems of the present invention will become apparent from the following description.
 上記課題は以下の各発明によって解決される。 The above problems are solved by the following inventions.
 請求項1記載の発明は、液滴を射出する複数のノズルが配列されたノズル列を有するヘッドを、ベース部材に複数配列することにより、該複数のヘッドによって副走査方向に長尺となるラインヘッドを構成したラインヘッドユニットであって、
 前記ヘッドの各々に対応して該ヘッドを個別に取り付けた複数のヘッド取り付け部を有し、
 前記ヘッド取り付け部の各々を、前記ヘッドのノズル列方向に沿って間隔をおいて互いに平行に配置された複数本の弾性ヒンジによって前記ベース部材に保持すると共に、
 前記ヘッド取り付け部に対して押圧力を作用させることによって前記弾性ヒンジを弾性変形させ、前記ヘッドのノズル列方向が副走査方向に対してなす角度を維持したまま前記ヘッド取り付け部の副走査方向の位置を前記ベース部材に対して移動させるアクチュエータを、前記ベース部材と前記ヘッド取り付け部との間にそれぞれ個別に設けたことを特徴とするラインヘッドユニットである。
According to the first aspect of the present invention, by arranging a plurality of heads having a nozzle row in which a plurality of nozzles for ejecting droplets are arranged on the base member, a line that is elongated in the sub-scanning direction by the plurality of heads. A line head unit comprising a head,
A plurality of head mounting portions each individually mounting the head corresponding to each of the heads;
Each of the head mounting portions is held on the base member by a plurality of elastic hinges arranged parallel to each other at intervals along the nozzle row direction of the head,
The elastic hinge is elastically deformed by applying a pressing force to the head mounting portion, and the angle of the nozzle row direction of the head with respect to the sub scanning direction is maintained while maintaining the angle of the head mounting portion in the sub scanning direction. The line head unit is characterized in that an actuator for moving the position with respect to the base member is individually provided between the base member and the head mounting portion.
 請求項2記載の発明は、前記ヘッド取り付け部は、前記ベース部材に形成された開口枠の内部に配置されており、
 前記弾性ヒンジは、前記ヘッド取り付け部と前記開口枠の内周とに亘って一体に成形されていることを特徴とする請求項1記載のラインヘッドユニットである。
According to a second aspect of the present invention, the head mounting portion is disposed inside an opening frame formed in the base member.
The line head unit according to claim 1, wherein the elastic hinge is integrally formed across the head mounting portion and an inner periphery of the opening frame.
 請求項3記載の発明は、前記弾性ヒンジは、ヒンジ本体の両端の前記ベース部材との接続部位及び前記ヘッド取り付け部との接続部位に、それぞれ前記ヒンジ本体よりも幅狭状となり、前記ヘッド取り付け部に前記アクチュエータの押圧力が作用した際にそれぞれ弾性変形する括れ部を形成してなることを特徴とする請求項1又は2記載のラインヘッドユニットである。 According to a third aspect of the present invention, the elastic hinge is narrower than the hinge main body at the connection site with the base member at both ends of the hinge main body and the connection site with the head mounting portion, and the head mounting 3. The line head unit according to claim 1, wherein a constricted portion that is elastically deformed when a pressing force of the actuator acts on the portion is formed.
 請求項4記載の発明は、前記アクチュエータは、前記ヘッド取り付け部に対して、副走査方向に対して平行な方向の押圧力を作用させるように配置されていることを特徴とする請求項1、2又は3記載のラインヘッドユニットである。 According to a fourth aspect of the present invention, the actuator is disposed so that a pressing force in a direction parallel to the sub-scanning direction is applied to the head mounting portion. The line head unit according to 2 or 3.
 請求項5記載の発明は、前記アクチュエータは、前記ヘッド取り付け部に対して、副走査方向に対して斜め方向の押圧力を作用させるように配置されていることを特徴とする請求項1、2又は3記載のラインヘッドユニットである。 According to a fifth aspect of the present invention, the actuator is arranged so that a pressing force in an oblique direction with respect to the sub-scanning direction is applied to the head mounting portion. Or it is a line head unit of 3 description.
 請求項6記載の発明は、前記ヘッド取り付け部はノズル列方向と交差する側方に向けて突出する突出部を有すると共に、前記アクチュエータは前記突出部に対して押圧力を作用させることを特徴とする請求項1~5のいずれかに記載のラインヘッドユニットである。 The invention according to claim 6 is characterized in that the head mounting portion has a protruding portion protruding toward the side intersecting the nozzle row direction, and the actuator applies a pressing force to the protruding portion. The line head unit according to any one of claims 1 to 5.
 請求項7記載の発明は、前記アクチュエータは、ピエゾ素子により前記ヘッド取り付け部に対する押圧力を作用させることを特徴とする請求項1~6のいずれかに記載のラインヘッドユニットである。 The invention according to claim 7 is the line head unit according to any one of claims 1 to 6, wherein the actuator applies a pressing force to the head mounting portion by a piezo element.
 請求項8記載の発明は、ノズル面が下向きとなるように配置された請求項1~7のいずれかに記載のラインヘッドユニットと、
 前記ラインヘッドユニットと相対的に移動可能に設けられ、前記ラインヘッドの各ヘッドから射出される液滴によって、上面に支持した被記録材に対して描画を行う描画台と、
 前記アクチュエータの駆動を制御する駆動制御手段と、
を有することを特徴とする描画装置である。
The invention according to claim 8 is the line head unit according to any one of claims 1 to 7, wherein the line head unit is arranged so that the nozzle surface faces downward.
A drawing table that is provided so as to be movable relative to the line head unit and that draws on a recording material supported on the upper surface by droplets ejected from each head of the line head;
Drive control means for controlling the drive of the actuator;
A drawing apparatus characterized by comprising:
 請求項9記載の発明は、前記ラインヘッドユニットの各ヘッドの位置ずれ量を検査するためのテストパターンを前記被記録材に印字するように前記ヘッドを制御する印字制御手段と、
 前記被記録材に印字された前記テストパターンを画像認識するための画像認識手段と、
 前記画像認識手段によって認識された前記テストパターンの画像に基づいて前記ラインヘッドの各ヘッドの副走査方向の位置ずれ量を算出する算出手段とを有し、
 前記駆動制御手段は、前記算出手段によって算出された前記ヘッドの副走査方向の位置ずれ量に応じて、前記アクチュエータの駆動を制御することを特徴とする請求項8記載の描画装置である。
The invention according to claim 9 is a print control means for controlling the head so as to print a test pattern for inspecting a positional deviation amount of each head of the line head unit on the recording material;
Image recognition means for recognizing the test pattern printed on the recording material;
Calculating means for calculating the amount of positional deviation in the sub-scanning direction of each head of the line head based on the image of the test pattern recognized by the image recognition means;
The drawing apparatus according to claim 8, wherein the drive control unit controls driving of the actuator according to a positional deviation amount of the head in the sub-scanning direction calculated by the calculation unit.
 請求項10記載の発明は、前記被記録材は表面に基準マークを有しており、
 前記算出手段は、前記画像認識手段によって認識された前記基準マークと前記テストパターンとの画像に基づいて、前記基準マークに対する前記テストパターンの位置ずれ量から各ヘッドの副走査方向の位置ずれ量を算出することを特徴とする請求項9記載の描画装置である。
In the invention according to claim 10, the recording material has a reference mark on the surface,
The calculation means calculates the positional deviation amount of each head in the sub-scanning direction from the positional deviation amount of the test pattern with respect to the reference mark, based on the image of the reference mark and the test pattern recognized by the image recognition means. The drawing apparatus according to claim 9, wherein the drawing apparatus calculates the drawing apparatus.
 請求項11記載の発明は、前記算出手段は、前記画像認識手段によって認識された前記テストパターンの画像に基づいて前記ラインヘッドの各ヘッドの主走査方向の位置ずれ量を算出する機能を具備し、
 前記印字制御手段は、前記算出手段によって算出された主走査方向の位置ずれ量に応じて、前記ヘッドの射出タイミングを補正することを特徴とする請求項9又は10記載の描画装置である。
According to an eleventh aspect of the present invention, the calculation unit has a function of calculating a positional deviation amount in the main scanning direction of each head of the line head based on the image of the test pattern recognized by the image recognition unit. ,
11. The drawing apparatus according to claim 9, wherein the print control unit corrects the ejection timing of the head in accordance with the amount of positional deviation in the main scanning direction calculated by the calculation unit.
 本発明によれば、ヘッドの取り付け時に位置調整のための部品を同時に組み付ける必要がなく、ヘッドの取り付けが容易であると共に、その取り付けられた各ヘッド個々の副走査方向の取り付け位置を容易に調整可能なラインヘッドユニットを提供することができる。 According to the present invention, it is not necessary to assemble parts for position adjustment at the same time when the head is attached, and the head can be easily attached, and the attachment position of each attached head in the sub-scanning direction can be easily adjusted. A possible line head unit can be provided.
 また、本発明によれば、ヘッドの取り付け時に位置調整のための部品を同時に組み付ける必要がなく、ヘッドの取り付けが容易であると共に、その取り付けられた各ヘッド個々の副走査方向の取り付け位置を容易に調整可能なラインヘッドユニットを備えた描画装置を提供することができる。 In addition, according to the present invention, it is not necessary to assemble parts for position adjustment at the time of mounting the head, so that the mounting of the head is easy, and the mounting position of each mounted head in the sub-scanning direction is easy. It is possible to provide a drawing apparatus including a line head unit that can be adjusted.
本発明に係る描画装置を示す斜視図The perspective view which shows the drawing apparatus which concerns on this invention 本発明に係るラインヘッドユニットの底面図The bottom view of the line head unit concerning the present invention ラインヘッドユニットにおける1つのヘッドの取り付け構造を示す斜視図The perspective view which shows the attachment structure of one head in a line head unit. (a)(b)は弾性ヒンジの詳細を示す図(A) (b) is a figure which shows the detail of an elastic hinge ヘッドの取り付け位置の微調整の様子を示す図The figure which shows the state of the fine adjustment of the attachment position of the head 本発明に係る描画装置の主要部の概略構成を示すブロック図The block diagram which shows schematic structure of the principal part of the drawing apparatus which concerns on this invention 着弾位置ずれ調整動作を説明するフローチャートFlow chart explaining landing position deviation adjustment operation 調整前の着弾ドット位置を示すテストパターンを示す平面図A plan view showing a test pattern indicating the position of a landing dot before adjustment 調整後の着弾ドット位置を示すテストパターンを示す平面図A plan view showing a test pattern indicating the positions of impact dots after adjustment ラインヘッドユニットの他の実施形態を示す底面図Bottom view showing another embodiment of the line head unit ラインヘッドユニットの更に他の実施形態を示す底面図The bottom view which shows other embodiment of a line head unit. 図11におけるヘッド固定プレートの部分拡大図FIG. 11 is a partially enlarged view of the head fixing plate.
 以下、本発明の実施の形態について図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は本発明に係る描画装置の一例を示す概略斜視図であり、描画装置1は、装置基台2上に、インクジェット描画を行うためのラインヘッドユニット3、上面にワークW(被記録材)を載置して支持するためのワークステージ4、ワークステージ4をθ方向に回転移動させるためのθ回転機構5、ワークステージ4及びθ回転機構5を共にY方向(主走査方向)に沿って直線移動させるY移動機構6、ワークステージ4及びθ回転機構5を共にX方向(副走査方向)に沿って直線移動させるX移動機構7、ワークステージ4上を視認可能な着弾撮影カメラ8A、ラインヘッドユニット3の下面を視認可能なヘッド撮影カメラ8Bをそれぞれ備えている。 FIG. 1 is a schematic perspective view showing an example of a drawing apparatus according to the present invention. The drawing apparatus 1 has a line head unit 3 for performing ink-jet drawing on an apparatus base 2 and a work W (recording material) on an upper surface. ), The θ rotation mechanism 5 for rotating the work stage 4 in the θ direction, and the work stage 4 and the θ rotation mechanism 5 are both along the Y direction (main scanning direction). A Y moving mechanism 6 for linearly moving the workpiece stage 4, a X stage moving mechanism 7 for linearly moving the work stage 4 and the θ rotating mechanism 5 along the X direction (sub-scanning direction), a landing shooting camera 8 A that can visually recognize the work stage 4, A head photographing camera 8B that can visually recognize the lower surface of the line head unit 3 is provided.
 なお、本実施形態では、このワークステージ4が、本発明の描画台として機能し、着弾撮影カメラ8Aが、本発明の画像認識手段として機能する。 In this embodiment, the work stage 4 functions as a drawing table of the present invention, and the landing camera 8A functions as an image recognition means of the present invention.
 なお、X方向とY方向とは水平面上で互いに直交する方向である。 Note that the X direction and the Y direction are directions orthogonal to each other on a horizontal plane.
 ラインヘッドユニット3は、装置基台2上の端部近傍においてX方向に沿って平行に架設されたガントリ9に、スライダ10及びθ回転機構11を介して取り付けられており、スライダ10がガントリ9に沿ってスライド移動することによりX方向に沿って往復移動し、また、θ回転機構11によって、X、Y方向と直交する法線方向であるZ方向に沿う方向を軸としてθ方向に回転移動し、更に、Z移動機構12によってθ回転機構11と共にZ方向に昇降移動することができるようになっている。 The line head unit 3 is attached to a gantry 9 laid in parallel along the X direction in the vicinity of the end on the apparatus base 2 via a slider 10 and a θ rotation mechanism 11, and the slider 10 is attached to the gantry 9. And reciprocating along the X direction by sliding along the axis, and rotating by the θ rotation mechanism 11 in the θ direction about the direction along the Z direction, which is a normal direction orthogonal to the X and Y directions. Further, the Z moving mechanism 12 can be moved up and down in the Z direction together with the θ rotating mechanism 11.
 なお、ワークステージ4のX方向、Y方向及びθ方向の各位置座標並びにラインヘッドユニット3のX方向、Z方向及びθ方向の各位置座標は、X移動機構7、Y移動機構6、6、θ回転機構5、スライダ10、θ回転機構11、Z移動機構12にそれぞれ設けられた位置座標検出手段である不図示のエンコーダによってnmオーダーで高精度に検出可能となるように構成されている。 The position coordinates of the work stage 4 in the X direction, the Y direction, and the θ direction, and the position coordinates of the line head unit 3 in the X direction, the Z direction, and the θ direction are represented by the X moving mechanism 7, the Y moving mechanisms 6, 6, An encoder (not shown) which is a position coordinate detection means provided in each of the θ rotation mechanism 5, the slider 10, the θ rotation mechanism 11, and the Z movement mechanism 12 can be detected with high accuracy on the order of nm.
 図2は本発明に係るラインヘッドユニット3の一例を示す底面図、図3はラインヘッドユニット3における1つのヘッドHの取り付け構造を示す斜視図である。 FIG. 2 is a bottom view showing an example of the line head unit 3 according to the present invention, and FIG. 3 is a perspective view showing an attachment structure of one head H in the line head unit 3.
 ラインヘッドユニット3は、一枚の大判なベース部材であるベースプレート31の下面に多数のヘッドHが個別に取り付け固定され、その下方に配置されるワークステージ4上のワークWの表面と対向可能となるように配置されている。 In the line head unit 3, a large number of heads H are individually attached and fixed to the lower surface of a base plate 31 that is a single large base member, and can be opposed to the surface of the work W on the work stage 4 disposed below the head H 3. It is arranged to be.
 本実施形態では、12個のヘッドHが、各ノズル列をX方向に沿わせ、且つ、各ノズルが均等ピッチとなるように2列に千鳥状に配列されており、これにより副走査方向に沿って長尺な記録幅を有するラインヘッドを構成しているが、ヘッドHの数及び配列態様は本発明において特に問わない。例えば、ノズル列を副走査方向に対して傾いて斜めに配置させても良い。なお、図2において、ベースプレート31には11個のヘッドHが取り付け済みであり、残りの1個のヘッドHが未装着の状態を示している。 In this embodiment, twelve heads H are arranged in a staggered manner in two rows so that each nozzle row is aligned in the X direction and each nozzle has a uniform pitch. A line head having a long recording width is formed along the line, but the number and arrangement of the heads H are not particularly limited in the present invention. For example, the nozzle rows may be disposed obliquely with respect to the sub-scanning direction. In FIG. 2, eleven heads H are already attached to the base plate 31 and the remaining one head H is not attached.
 ベースプレート31には一般に金属材が使用される。金属材としてはSUSを用いることもできるが、ヘッドHの取り付け位置精度を高精度に保つ要請からは、インバー材やノビナイト等の低熱膨張材が好ましく使用される。ベースプレート31は、ヘッドHの配列方向に沿う2列の開口枠32を有しており、その開口枠32内にヘッド取り付け部であるヘッド固定プレート33が、ヘッドHを個別に取り付け可能とするべく該ヘッドHと同数配置されている。 金属 Generally, a metal material is used for the base plate 31. Although SUS can be used as the metal material, a low thermal expansion material such as invar material or novinite is preferably used in order to keep the mounting position accuracy of the head H high. The base plate 31 has two rows of opening frames 32 along the arrangement direction of the heads H, and a head fixing plate 33 that is a head mounting portion in the opening frame 32 so that the heads H can be individually attached. The same number as the head H is arranged.
 各ヘッド固定プレート33は、ヘッドHのノズル列方向(図中X方向)の両側端辺における一方端辺において、該ヘッドHのノズル列方向に間隔をおいて配置された同一長さの2本の弾性ヒンジ34によってベースプレート31と一体に連結され、該ベースプレート31に保持されている。各ヘッド固定プレート33は、この弾性ヒンジ34のみでベースプレート31と繋がっており、それ以外の部位は開口枠32内においてベースプレート31から離間している。 Each head fixing plate 33 has two identical lengths arranged at intervals in the nozzle row direction of the head H at one side of both sides in the nozzle row direction (X direction in the drawing) of the head H. The elastic plate 34 is integrally connected to the base plate 31 and is held by the base plate 31. Each head fixing plate 33 is connected to the base plate 31 only by this elastic hinge 34, and other portions are separated from the base plate 31 in the opening frame 32.
 また、各ヘッド固定プレート33の他方端辺側の開口枠32内には、ベースプレート31との間にそれぞれアクチュエータ35が配置され、各ヘッド固定プレート33に対してアクチュエータ35が主走査方向に沿って並設されている。ここでは、各ヘッド固定プレート33の他方端辺側の1つの隅角部において、ヘッドHのノズル列方向と交差する側方(図中Y方向)である開口枠32の内周に向けて張り出した押圧操作部となる突出部331が形成されており、一方、ベースプレート31には、開口枠32の内周から図中Y方向に沿いヘッド固定プレート33に向けて張り出した突出部311が形成されており、これらの突出部331、311の間で、図中X方向に沿う方向、すなわちヘッドHのノズル列方向に対して平行な横方向の押圧力を作用させるようになっている。 An actuator 35 is disposed between the head plate 31 and the base plate 31 in the opening frame 32 on the other end side of each head fixing plate 33. The actuator 35 moves along the main scanning direction with respect to each head fixing plate 33. It is installed side by side. Here, at one corner on the other end side of each head fixing plate 33, it projects toward the inner periphery of the opening frame 32 that is the side (Y direction in the figure) intersecting the nozzle row direction of the head H. The base plate 31 is formed with a protrusion 311 that protrudes from the inner periphery of the opening frame 32 along the Y direction in the drawing toward the head fixing plate 33. In addition, a pressing force in the horizontal direction parallel to the X direction in the drawing, that is, the nozzle row direction of the head H is applied between the projecting portions 331 and 311.
 これらベースプレート31の開口枠32内に設けられたヘッド固定プレート33、弾性ヒンジ34、突出部311、331、アクチュエータ35によって、ヘッドHの取り付け位置を微調整するための微調整機構を構成している。この微調整機構は、アクチュエータ35の作動によって突出部331に対して所定の押圧力を作用させると、ヘッド固定プレート33にはX方向に沿う横方向(水平方向)の力が作用し、この力によって2本の弾性ヒンジ34が微小に撓み変形して均等に傾倒することで、ヘッド固定プレート33のX方向への平行度を維持したまま、すなわち、ヘッドHのノズル列方向が副走査方向に対してなす角度を維持したまま、ヘッドHの副走査方向の位置が微調整されるようになっている。 The head fixing plate 33, the elastic hinge 34, the protrusions 311 and 331, and the actuator 35 provided in the opening frame 32 of the base plate 31 constitute a fine adjustment mechanism for finely adjusting the mounting position of the head H. . In the fine adjustment mechanism, when a predetermined pressing force is applied to the protrusion 331 by the operation of the actuator 35, a lateral (horizontal) force along the X direction acts on the head fixing plate 33, and this force As a result, the two elastic hinges 34 are slightly deformed and tilted uniformly, so that the parallelism in the X direction of the head fixing plate 33 is maintained, that is, the nozzle row direction of the head H is in the sub-scanning direction. The position of the head H in the sub-scanning direction is finely adjusted while maintaining the angle formed with respect to the head H.
 図4は弾性ヒンジ34の詳細を示し、図5はヘッドHの取り付け位置の微調整の様子を示している。図4(a)はヘッド固定プレート33に対してアクチュエータ35の押圧力が作用していない状態、(b)はヘッド固定プレート33に対して矢印方向にアクチュエータ35の押圧力が作用している状態をそれぞれ示している。なお、実際の弾性ヒンジ34の変形量はμmオーダーの極めて微小なものであるが、図中では変形量を誇張して示している。 FIG. 4 shows details of the elastic hinge 34, and FIG. 5 shows a fine adjustment of the mounting position of the head H. FIG. 4A shows a state in which the pressing force of the actuator 35 is not acting on the head fixing plate 33, and FIG. 4B shows a state in which the pressing force of the actuator 35 is acting on the head fixing plate 33 in the arrow direction. Respectively. The actual deformation amount of the elastic hinge 34 is extremely small on the order of μm, but the deformation amount is exaggerated in the drawing.
 弾性ヒンジ34は、ヘッド固定プレート33とベースプレート31の開口枠32の内周とに亘って一体に成形されている。弾性ヒンジ34の数は、1つのヘッド固定プレート33に対して、ヘッドHのノズル列方向の両側端辺における一方端辺に、間隔をおいて平行に2本設けられれば足りるが、必要に応じて配設数を適宜増加させてもよい。 The elastic hinge 34 is integrally formed over the head fixing plate 33 and the inner periphery of the opening frame 32 of the base plate 31. The number of elastic hinges 34 is sufficient if two heads are provided in parallel at a distance from one head fixing plate 33 at one end of both side edges in the nozzle row direction of the head H. The number of arrangements may be increased as appropriate.
 各弾性ヒンジ34は、ヒンジ本体341の両端のベースプレート31との接続部位及びヘッド固定プレート33との接続部位に、それぞれヒンジ本体341よりも幅狭状となる括れ部342が形成されている。各括れ部342は、ヒンジ本体341の両端が、両側から円弧状に削り取られることによって形成されている。 Each elastic hinge 34 is formed with a constricted portion 342 having a narrower width than the hinge main body 341 at a connection portion with the base plate 31 at both ends of the hinge main body 341 and a connection portion with the head fixing plate 33. Each constricted portion 342 is formed by scraping both ends of the hinge main body 341 in an arc shape from both sides.
 これにより、ヘッド固定プレート33にアクチュエータ35の押圧力が作用した際、その押圧力はこの括れ部342に応力集中し、ヘッド固定プレート33との接続部位側では、矢印で示す押圧力の作用方向に対して手前側が圧縮され、奥側が引張され、ベースプレート31との接続部位側では、矢印で示す押圧力の作用方向に対して手前側が引張され、奥側が圧縮されることでそれぞれ弾性変形し、ヘッド固定プレート33の副走査方向の位置を移動させる。このとき、ヘッド固定プレート33は2本の弾性ヒンジ34によってベースプレート31に一体に連結されているため、ヘッドHのノズル列方向が副走査方向に対してなす角度は崩れることはない。従って、図5に示すように、ヘッドHは副走査方向に対する平行度を維持したまま、副走査方向に対する取り付け位置が微調整される。 As a result, when the pressing force of the actuator 35 acts on the head fixing plate 33, the pressing force concentrates stress on the constricted portion 342, and on the connecting portion side with the head fixing plate 33, the acting direction of the pressing force indicated by an arrow. The near side is compressed, the far side is pulled, and on the connection site side with the base plate 31, the near side is pulled with respect to the direction of action of the pressing force indicated by the arrow, and the far side is compressed and elastically deformed. The position of the head fixing plate 33 in the sub scanning direction is moved. At this time, since the head fixing plate 33 is integrally connected to the base plate 31 by the two elastic hinges 34, the angle formed by the nozzle row direction of the head H with respect to the sub-scanning direction does not collapse. Accordingly, as shown in FIG. 5, the mounting position of the head H in the sub-scanning direction is finely adjusted while maintaining parallelism with respect to the sub-scanning direction.
 各アクチュエータ35は、各ヘッド固定プレート33と開口枠32の内周との間であって、ベースプレート31と各ヘッド固定プレート33とにそれぞれ突設された突出部311と突出部331との間に並置されており、押圧力を各ヘッドHのノズル列方向と平行となるように作用させるように設けられている。これによれば、隣接するヘッド固定プレート33、33との間の距離を可及的近接させることができ、ラインヘッドユニット3を可及的小型化することが可能である。 Each actuator 35 is between each head fixing plate 33 and the inner periphery of the opening frame 32, and is between a protruding portion 311 and a protruding portion 331 that protrude from the base plate 31 and each head fixing plate 33, respectively. They are juxtaposed, and are provided so that the pressing force acts in parallel with the nozzle row direction of each head H. According to this, the distance between the adjacent head fixing plates 33 and 33 can be made as close as possible, and the line head unit 3 can be miniaturized as much as possible.
 アクチュエータ35は、図5に示すように、アクチュエータ本体351の一端に作動子352が伸縮可能に設けられており、アクチュエータ本体351の後端はベースプレート31の突出部311に対して固定されているが、この作動子352の先端はヘッド固定プレート33の突出部331に対して固定されずに単に当接しているだけとなっている。これにより、作動子352が図中矢印方向に伸張すると、突出部331に対して摺動しつつ該突出部331を横方向に押し、弾性ヒンジ34の弾性変形によって、ヘッド固定プレート33の開口枠32内におけるベースプレート31に対する副走査方向の位置を変化させる。作動子352が縮小すると、ヘッド固定プレート33は、弾性ヒンジ34が弾性復帰することによって元の位置に戻る。 As shown in FIG. 5, the actuator 35 has an actuator 352 that can be extended and contracted at one end of the actuator main body 351, and the rear end of the actuator main body 351 is fixed to the protruding portion 311 of the base plate 31. The tip of the actuator 352 is not fixed to the projecting portion 331 of the head fixing plate 33 but is simply in contact with it. As a result, when the operating element 352 extends in the direction of the arrow in the figure, the projecting portion 331 is pushed in the lateral direction while sliding with respect to the projecting portion 331, and the opening frame of the head fixing plate 33 is elastically deformed by the elastic hinge 34. 32, the position in the sub-scanning direction with respect to the base plate 31 is changed. When the actuator 352 is reduced, the head fixing plate 33 returns to the original position by the elastic return of the elastic hinge 34.
 アクチュエータ35には、このような作動子352の伸縮動作を可能とする例えば電圧を印加することによって電圧値に応じた機械的な伸縮運動を行うピエゾ素子(圧電素子)や、モータ駆動によって回転して伸縮動作するネジ機構等によって構成することができるが、微細な押圧力の制御が容易である点でピエゾ素子を用いてヘッド固定プレート33に対して押圧力を作用させるものが好ましい。ピエゾ素子にはPZTが好ましく使用される。 For example, a voltage is applied to the actuator 35 so that the actuator 352 can be expanded and contracted, and a piezoelectric element (piezoelectric element) that performs a mechanical expansion and contraction motion according to a voltage value, or is rotated by a motor drive. However, it is preferable to use a piezo element to apply a pressing force to the head fixing plate 33 in that a fine pressing force can be easily controlled. PZT is preferably used for the piezo element.
 各ヘッド固定プレート33は、ヘッドHを個別に着脱可能に取り付け固定するためのねじ穴332を有している。各ヘッドHは、多数のノズルnが配列されたノズル面h1が下面となり、ノズル列方向がX方向に沿うように、ベースプレート31の各ヘッド固定プレート33に対して配置されている。各ヘッドHには、ノズル面h1と反対側において両側方に突出するフランジh2を有しており、このフランジh2に形成されたねじ穴h3を通して、取り付けビス36を用いてヘッド固定プレート33のねじ穴332にねじ止め固定される。 Each head fixing plate 33 has a screw hole 332 for attaching and fixing the head H detachably. Each head H is arranged with respect to each head fixing plate 33 of the base plate 31 such that the nozzle surface h1 on which a large number of nozzles n are arranged is the lower surface and the nozzle row direction is along the X direction. Each head H has a flange h2 projecting on both sides on the side opposite to the nozzle surface h1, and the screw of the head fixing plate 33 is attached using a mounting screw 36 through a screw hole h3 formed in the flange h2. Screwed into the hole 332.
 なお、図2中の符号37A、37Bは、ベースプレート31の下面におけるX方向の両端部近傍にそれぞれ形成された位置確認マークであり、ベースプレート31の位置及び角度を検出するために、ワークステージ4に一体に取り付けられたヘッド撮影カメラ8Bによって画像認識される。位置確認マーク37A、37Bは、これらを結ぶ直線がベースプレート31の中心線を通るように位置付けられており、ヘッド撮影カメラ8Bによって撮影された画像を画像処理することによって、各位置確認マーク37A、37Bの位置座標におけるY座標の位置が同一となるようにθ回転機構11を駆動することで、ラインヘッドユニット3のθ方向の取り付け角度が適正角度となるように調整される。 Reference numerals 37A and 37B in FIG. 2 are position confirmation marks respectively formed in the vicinity of both end portions in the X direction on the lower surface of the base plate 31, and are attached to the work stage 4 in order to detect the position and angle of the base plate 31. The image is recognized by the head photographing camera 8B attached integrally. The position confirmation marks 37A and 37B are positioned so that a straight line connecting them passes through the center line of the base plate 31, and each position confirmation mark 37A and 37B is processed by performing image processing on an image photographed by the head photographing camera 8B. By driving the θ rotation mechanism 11 so that the Y coordinate positions in the position coordinates become the same, the attachment angle of the line head unit 3 in the θ direction is adjusted to an appropriate angle.
 着弾撮影カメラ8Aは、かかるラインヘッドユニット3のベースプレート31に一体に取り付けられている。 The landing shooting camera 8A is integrally attached to the base plate 31 of the line head unit 3.
 描画装置1は、ラインヘッドユニット3とワークステージ4とをY方向(主走査方向)に相対的に移動させ、そのときの各位置情報に応じて、所定の射出パターンデータに基づいてラインヘッドユニット3の各ヘッドHからの液滴の射出を制御し、ワークステージ4上のワークWの表面に着弾させることで、所望の描画を行うように構成される。 The drawing apparatus 1 moves the line head unit 3 and the work stage 4 relative to each other in the Y direction (main scanning direction), and the line head unit based on predetermined ejection pattern data according to each position information at that time. 3 is configured to perform desired drawing by controlling ejection of droplets from each head H and landing on the surface of the workpiece W on the workpiece stage 4.
 図6は描画装置1の内部の主要部の概略構成を示すブロック図である。 FIG. 6 is a block diagram showing a schematic configuration of a main part inside the drawing apparatus 1.
 100は射出信号制御部、101は射出信号生成部、102はステージエンコーダ、103は射出開始信号生成部である。各ヘッドHは、射出信号制御部100から送られた射出制御信号に基づいて、射出信号生成部101によって所定の射出信号が生成され、この射出信号が印加されることによって駆動される。ワークステージ4のX方向及びY方向の位置座標は、ステージエンコーダ102によって取得され、射出開始信号生成部103において、ワークステージ4の位置に応じた所定のタイミングで射出開始信号が生成される。射出信号制御部100は、この射出開始信号生成部103から所定のタイミングで送られる射出開始信号によって射出制御信号を生成する。 100 is an injection signal control unit, 101 is an injection signal generation unit, 102 is a stage encoder, and 103 is an injection start signal generation unit. Each head H is driven by generating a predetermined injection signal by the injection signal generation unit 101 based on the injection control signal sent from the injection signal control unit 100 and applying the injection signal. The position coordinates of the work stage 4 in the X direction and the Y direction are acquired by the stage encoder 102, and the injection start signal generation unit 103 generates an injection start signal at a predetermined timing according to the position of the work stage 4. The injection signal control unit 100 generates an injection control signal based on the injection start signal sent from the injection start signal generation unit 103 at a predetermined timing.
 なお、本実施形態では、この射出信号制御部100が、本発明の印字制御手段として機能する。 In the present embodiment, the injection signal control unit 100 functions as the print control means of the present invention.
 また、104は位置ずれ量算出部、105は画像処理部、106はヘッド位置補正量算出部、107はアクチュエータ制御部、108はアクチュエータドライバ、109は射出タイミング補正量算出部である。 Also, 104 is a positional deviation amount calculation unit, 105 is an image processing unit, 106 is a head position correction amount calculation unit, 107 is an actuator control unit, 108 is an actuator driver, and 109 is an injection timing correction amount calculation unit.
 詳細には後述するが、ラインヘッドユニット3を構成する各ヘッドHの位置ずれを調整するため、各ヘッドHから射出された液滴の着弾位置は、ラインヘッドユニット3と一体に設けられた着弾撮影カメラ8Aによって撮影され、その画像が画像処理部105によって画像認識されることで、ヘッドH毎の着弾位置の座標が検出される。 As will be described in detail later, in order to adjust the positional deviation of each head H constituting the line head unit 3, the landing position of the droplet ejected from each head H is the landing position provided integrally with the line head unit 3. The coordinates of the landing position for each head H are detected by photographing with the photographing camera 8A and recognizing the image by the image processing unit 105.
 位置ずれ量算出部104は、この着弾位置の座標に基づいて、主走査方向及び副走査方向における適正な着弾位置とのずれ量をそれぞれ求める。主走査方向のずれ量を射出タイミング補正量算出部109に送り、副走査方向のずれ量をヘッド位置補正量算出部106に送る。 The positional deviation amount calculation unit 104 obtains deviation amounts from appropriate landing positions in the main scanning direction and the sub-scanning direction based on the coordinates of the landing positions. The deviation amount in the main scanning direction is sent to the ejection timing correction amount calculation unit 109, and the deviation amount in the sub scanning direction is sent to the head position correction amount calculation unit 106.
 なお、本実施形態では、この位置ずれ量算出部104が、本発明の算出手段として機能する。 In this embodiment, the positional deviation amount calculation unit 104 functions as a calculation unit of the present invention.
 ヘッド位置補正量算出部106では、副走査方向のずれ量に基づいて、そのずれを是正するための補正量を算出してアクチュエータ制御部107に送り、アクチュエータ制御部107では、この補正量に応じてアクチュエータ35を駆動するための制御信号をアクチュエータドライバ108に出力して各アクチュエータ35を駆動させる。これによって、対応するヘッド固定プレート33が位置調整され、ヘッドHの副走査方向の位置が微調整される。 The head position correction amount calculation unit 106 calculates a correction amount for correcting the shift based on the shift amount in the sub-scanning direction and sends the correction amount to the actuator control unit 107. The actuator control unit 107 responds to the correction amount. Then, a control signal for driving the actuator 35 is output to the actuator driver 108 to drive each actuator 35. Thereby, the position of the corresponding head fixing plate 33 is adjusted, and the position of the head H in the sub-scanning direction is finely adjusted.
 なお、本実施形態では、このアクチュエータ制御部107が、本発明の駆動制御手段として機能する。 In this embodiment, the actuator control unit 107 functions as the drive control means of the present invention.
 一方、射出タイミング補正量算出部109では、主走査方向のずれ量に基づいて、そのずれを是正するための補正量を算出して射出信号制御部100に送る。この補正量は、各ヘッドHから液滴を射出するタイミングの補正量であり、液滴の射出タイミングが調整されることによって、対応するヘッドHの主走査方向の着弾位置が微調整される。 On the other hand, the injection timing correction amount calculation unit 109 calculates a correction amount for correcting the shift based on the shift amount in the main scanning direction, and sends the correction amount to the injection signal control unit 100. This correction amount is a correction amount of the timing of ejecting droplets from each head H, and the landing position of the corresponding head H in the main scanning direction is finely adjusted by adjusting the ejection timing of the droplets.
 次に、かかる描画装置1におけるラインヘッドユニット3の着弾位置ずれ調整動作について、図7に示すフローに基づいて説明する。 Next, the landing position deviation adjusting operation of the line head unit 3 in the drawing apparatus 1 will be described based on the flow shown in FIG.
 まず、ラインヘッドユニット3には、予め各ヘッド固定プレート33にヘッドHが取り付けられる。このときの各ヘッドHの取り付け位置は、ヘッド固定プレート33に対してねじ止め固定する際にノズル列方向がX方向に沿って平行となるように粗調整されるだけでよく、特に副走査方向に微細な位置調整を行う必要はない。 First, the head H is attached to each head fixing plate 33 in advance in the line head unit 3. The mounting position of each head H at this time only needs to be coarsely adjusted so that the nozzle row direction is parallel to the X direction when screwed and fixed to the head fixing plate 33, particularly in the sub-scanning direction. There is no need for fine position adjustment.
 また、この取り付け位置において、ヘッドHはヒンジが弾性変形した状態で取り付けられることが好ましい。このことにより、後の微調整時において、作動子352の伸長により位置変化をさせる場合(図5で右方向、-X方向に移動させる場合)だけでなく、作動子352の収縮によりヘッドの位置変化をさせる場合(図5で左方向、+X方向に移動させる場合)においても、ヒンジの弾性変形、弾性復帰を利用してヘッド位置の微調整を行なうことができる。 Also, at this mounting position, the head H is preferably mounted with the hinge elastically deformed. Thus, at the time of subsequent fine adjustment, not only when the position is changed by the extension of the actuator 352 (in the case of moving in the right direction or the −X direction in FIG. 5), but also the position of the head is contracted by the contraction of the actuator 352. Even in the case of a change (when moving in the left direction and + X direction in FIG. 5), the head position can be finely adjusted using the elastic deformation and elastic return of the hinge.
 ベースプレート31にすべてのヘッドHが配列されたら、ラインヘッドユニット3を描画装置1に据え付け、ベースプレート31に設けられた各位置確認マーク37A、37Bをヘッド撮影カメラ8Bによって撮影し、得られた画像を画像処理することで各位置確認マーク37A、37BのY座標が同一となるようにθ回転機構11を駆動させ、ラインヘッドユニット3を所定の角度位置とする(S1)。 When all the heads H are arranged on the base plate 31, the line head unit 3 is installed in the drawing apparatus 1, and the position confirmation marks 37A and 37B provided on the base plate 31 are photographed by the head photographing camera 8B. By performing image processing, the θ rotation mechanism 11 is driven so that the Y coordinates of the position confirmation marks 37A and 37B are the same, and the line head unit 3 is set to a predetermined angular position (S1).
 次いで、ワークステージ4上に着弾位置確認用のテスト基材WT(被記録材)を位置決めして載置し、その表面に、予め記憶された着弾位置確認用の所定のテストパターンを印字する(S2)。 Next, a test base material WT (recording material) for confirming the landing position is positioned and placed on the work stage 4, and a predetermined test pattern for confirming the landing position stored in advance is printed on the surface (see FIG. S2).
 図8はテスト基材WT上に印字されたテストパターンの一例を示している。テストパターンは、ラインヘッドユニット3を構成するすべてのヘッドHのすべてのノズルnからそれぞれ液滴を射出することによって、テスト基材上にドットパターンを印字する。テスト基材WT上には、1つのヘッドHの各ノズルnから射出された液滴によって1つのドットパターン群DPが形成され、このドットパターン群DPが、ラインヘッドユニット3におけるヘッドHの個数分、各ヘッドHの配列態様と同じ態様で配列するように印字される。 FIG. 8 shows an example of a test pattern printed on the test substrate WT. The test pattern prints a dot pattern on the test substrate by ejecting droplets from all the nozzles n of all the heads H constituting the line head unit 3. On the test substrate WT, one dot pattern group DP is formed by droplets ejected from each nozzle n of one head H, and this dot pattern group DP corresponds to the number of heads H in the line head unit 3. The heads H are printed so as to be arranged in the same manner as the arrangement manner of the heads H.
 同図に示されるように、ラインヘッドユニット3を構成する各ヘッドHの取り付け位置が主走査方向(Y方向)及び副走査方向(X方向)に微妙にずれていることによって、各ヘッドHによって印字されるドットパターン群DPにも同様に位置ずれが生じている。 As shown in the figure, the attachment position of each head H constituting the line head unit 3 is slightly shifted in the main scanning direction (Y direction) and the sub-scanning direction (X direction). Similarly, a positional deviation occurs in the dot pattern group DP to be printed.
 このテスト基材WT上に印字された各ドットパターン群DPの位置を、ラインヘッドユニット3に一体に取り付けられた着弾撮影カメラ8Aによって撮影し、その画像を画像処理部105によって画像処理することで、各ドットパターン群DPの位置座標を測定する(S3)。 The position of each dot pattern group DP printed on the test substrate WT is photographed by a landing photographing camera 8A integrally attached to the line head unit 3, and the image is processed by the image processing unit 105. Then, the position coordinates of each dot pattern group DP are measured (S3).
 この位置座標の測定には、図8に示したように、テスト基材WTの表面の所定箇所に予め基準マークMを形成しておき、この基準マークMに対する位置座標から求めることができる。このため、ラインヘッドユニット3とワークステージ4上のテスト基材WTとの相対位置は、予めこの基準マークMに対して正確に位置決めされている。また、基準マークMに対する各ドットパターン群DPの位置座標の測定基準となる位置は、各ドットパターン群DPのいずれか1つのドット位置、例えば同一角部に位置する1ドットとすることができる。 For the measurement of the position coordinates, as shown in FIG. 8, a reference mark M is formed in advance at a predetermined location on the surface of the test substrate WT, and the position coordinates can be obtained from the position coordinates with respect to the reference mark M. For this reason, the relative position between the line head unit 3 and the test substrate WT on the work stage 4 is accurately positioned in advance with respect to the reference mark M. In addition, the position serving as a measurement reference for the position coordinates of each dot pattern group DP with respect to the reference mark M can be any one dot position of each dot pattern group DP, for example, one dot located at the same corner.
 画像処理部105によって各ドットパターン群DPの位置座標が測定されると、まず、位置ずれ量算出部104において、その位置座標と不図示の記憶手段に予め記憶された各ドットパターン群DPの適正位置の位置座標とを比較し、各ヘッドHの主走査方向及び副走査方向の取り付け位置の良否を判定する(S4)。 When the position coordinates of each dot pattern group DP are measured by the image processing unit 105, first, in the positional deviation amount calculation unit 104, the position coordinates and the appropriateness of each dot pattern group DP stored in advance in storage means (not shown). The position coordinates of the position are compared, and the quality of the mounting position of each head H in the main scanning direction and the sub-scanning direction is determined (S4).
 ここで、各ドットパターン群DPの位置座標が適正位置であれば、ラインヘッドユニット3の各ヘッドHは適正な取り付け位置にあると判断され、作業は終了する。 Here, if the position coordinate of each dot pattern group DP is an appropriate position, it is determined that each head H of the line head unit 3 is at an appropriate attachment position, and the operation is completed.
 一方、少なくともいずれかのドットパターン群DPの位置座標が適正位置にない場合は、少なくともいずれかのヘッドHの取り付け位置にずれが生じていると判断され、次いで、その位置ずれ量を算出する(S5)。 On the other hand, if the position coordinates of at least one of the dot pattern groups DP are not in the proper positions, it is determined that there is a shift in at least one of the head H mounting positions, and then the amount of the position shift is calculated ( S5).
 位置ずれ量の算出は、位置ずれ量算出部104において、画像処理部105によって認識された各ドットパターン群DPの位置座標に基づいて、各ドットパターン群DPの適正位置からの主走査方向及び副走査方向の位置ずれ量として算出される。 The displacement amount calculation is performed by the displacement amount calculation unit 104 based on the position coordinates of each dot pattern group DP recognized by the image processing unit 105 in the main scanning direction and the sub-scanning direction from the appropriate position of each dot pattern group DP. Calculated as the amount of positional deviation in the scanning direction.
 ここで、副走査方向の位置ずれ量はヘッド位置補正量算出部106に送られ、このヘッド位置補正量算出部106において、該当するドットパターン群DPに対応するヘッドHのアクチュエータ35を駆動するための駆動量(補正量)を算出し、アクチュエータドライバ108を駆動することによってアクチュエータ35を所定量駆動させる。これにより弾性ヒンジ34が弾性変形してヘッド固定プレート33が副走査方向に移動し、ヘッドHの副走査方向の取り付け位置が微調整される(S6)。 Here, the amount of positional deviation in the sub-scanning direction is sent to the head position correction amount calculation unit 106, and the head position correction amount calculation unit 106 drives the actuator 35 of the head H corresponding to the corresponding dot pattern group DP. And the actuator 35 is driven by a predetermined amount by driving the actuator driver 108. As a result, the elastic hinge 34 is elastically deformed, the head fixing plate 33 is moved in the sub-scanning direction, and the attachment position of the head H in the sub-scanning direction is finely adjusted (S6).
 また、位置ずれ量算出部104において算出された主走査方向の位置ずれ量は射出タイミング補正量算出部109に送られ、この射出タイミング補正量算出部109において、該当するドットパターン群DPに対応するヘッドHの射出タイミングの補正時間を算出し、これを射出信号制御部100に送信することで、当該ヘッドHからの液滴の射出タイミングが調整され、主走査方向の着弾位置が微調整される(S7)。 Further, the positional deviation amount in the main scanning direction calculated by the positional deviation amount calculation unit 104 is sent to the ejection timing correction amount calculation unit 109, which corresponds to the corresponding dot pattern group DP. By calculating the correction time of the ejection timing of the head H and transmitting it to the ejection signal control unit 100, the ejection timing of the droplet from the head H is adjusted, and the landing position in the main scanning direction is finely adjusted. (S7).
 尚、射出タイミング補正量算出部109において算出された射出タイミングの補正時間を、射出開始信号生成部103に送信するようにしてもよい。 Note that the injection timing correction time calculated by the injection timing correction amount calculation unit 109 may be transmitted to the injection start signal generation unit 103.
 以上のようにしてヘッドHの副走査方向の取り付け位置及び主走査方向の射出タイミングが微調整された後は、上記ステップS2からの動作を繰り返し、図9に示すように、すべてのヘッドHの副走査方向の取り付け位置及び主走査方向の射出タイミングが適正となり、ラインヘッドユニット3の記録幅全域に亘って着弾ドットが均等ピッチとなるまで調整作業を繰り返す。 After finely adjusting the mounting position of the head H in the sub-scanning direction and the ejection timing in the main scanning direction as described above, the operation from step S2 is repeated, and as shown in FIG. The adjustment operation is repeated until the mounting position in the sub-scanning direction and the ejection timing in the main scanning direction are appropriate, and the landing dots become uniform pitch over the entire recording width of the line head unit 3.
 このように、本発明にかかるラインヘッドユニット3及び描画装置1によれば、副走査方向の着弾位置ずれは、ラインヘッドユニット3の各ヘッドHの副走査方向の取り付け位置を、該当するアクチュエータ35を駆動させることによってヘッド固定プレート33の位置を副走査方向に沿って微調整するだけでよいため、ラインヘッドユニット3を描画装置1に据え付けた後に、該描画装置1に据え付けた状態で微調整することができ、各ヘッドH個々の副走査方向の取り付け位置を容易に調整可能である。このヘッド固定プレート33は、ベースプレート31との間を繋いでいる複数本の弾性ヒンジ34によって、移動中も副走査方向に対する平行度が維持されるため、各ヘッドHの副走査方向に対する角度を調整し直す必要は生じない。 Thus, according to the line head unit 3 and the drawing apparatus 1 according to the present invention, the landing position deviation in the sub-scanning direction corresponds to the mounting position of each head H of the line head unit 3 in the sub-scanning direction. Since it is only necessary to finely adjust the position of the head fixing plate 33 along the sub-scanning direction by driving the line head unit 3, after the line head unit 3 is installed in the drawing apparatus 1, fine adjustment is performed in the state of being installed in the drawing apparatus 1 Thus, the mounting position of each head H in the sub-scanning direction can be easily adjusted. The head fixing plate 33 maintains parallelism with respect to the sub-scanning direction even during movement by the plurality of elastic hinges 34 connected to the base plate 31. Therefore, the angle of each head H with respect to the sub-scanning direction is adjusted. There is no need to redo.
 しかも、各ヘッドHの副走査方向の取り付け位置調整のための構成部品は、ラインヘッドユニット3のベースプレート31と一体に成形又は予め組み込んでおくことができ、ヘッドHの取り付け時に位置調整のための部品を同時に組み付ける必要はない。このため、ラインヘッドを構成する際は、各ヘッド固定プレート33にヘッドHを取り付けるだけでよく、取り付け作業も極めて容易に行える。 Moreover, the components for adjusting the mounting position of each head H in the sub-scanning direction can be molded or incorporated in advance with the base plate 31 of the line head unit 3, and can be used for position adjustment when the head H is mounted. There is no need to assemble the parts at the same time. Therefore, when configuring the line head, it is only necessary to attach the head H to each head fixing plate 33, and the attaching operation can be performed very easily.
 図10はラインヘッドユニットの他の実施形態を示す底面図である。図2と同一符号の部位は同一構成の部位を示している。 FIG. 10 is a bottom view showing another embodiment of the line head unit. Parts having the same reference numerals as those in FIG. 2 indicate parts having the same configuration.
 この実施形態に示すラインヘッドユニット3Aは、アクチュエータ35の配置態様が図2に示すラインヘッドユニット3と異なっている。ベースプレート31には各ヘッド固定プレート33に対応する開口枠32が個別に形成されており、アクチュエータ35は、各開口枠32内のヘッド固定プレート33との間に配置されているが、ここでは各ヘッド固定プレート33に対して主走査方向に沿って直列状に設けられており、ヘッド固定プレート33に対して直接押圧力を作用させるようになっている。 The line head unit 3A shown in this embodiment is different from the line head unit 3 shown in FIG. Opening frames 32 corresponding to the respective head fixing plates 33 are individually formed on the base plate 31, and the actuators 35 are arranged between the head fixing plates 33 in the respective opening frames 32. The head fixing plate 33 is provided in series along the main scanning direction, and a pressing force is directly applied to the head fixing plate 33.
 この実施形態によれば、アクチュエータ35の配置の関係上、副走査方向に沿って隣接するヘッドH間の距離が長くなるため、副走査方向に沿って各ヘッドHのノズルピッチが均等となるように構成するためには、主走査方向に沿って配列するヘッドHの数を増やす必要があるが、アクチュエータ35の押圧力を、図2、図5に示すような突出部331を介さずに、ヘッド固定プレート33に対して直接作用させることができるため、各ヘッドHの副走査方向の位置を効率的に微調整可能である。 According to this embodiment, the distance between the heads H adjacent in the sub-scanning direction is increased due to the arrangement of the actuators 35, so that the nozzle pitch of each head H is made uniform along the sub-scanning direction. In order to configure, it is necessary to increase the number of heads H arranged in the main scanning direction, but the pressing force of the actuator 35 can be reduced without using the protrusion 331 as shown in FIGS. Since it can directly act on the head fixing plate 33, the position of each head H in the sub-scanning direction can be finely adjusted efficiently.
 図11はラインヘッドユニットの更に他の実施形態を示す底面図である。図2と同一符号の部位は同一構成の部位を示している。 FIG. 11 is a bottom view showing still another embodiment of the line head unit. Parts having the same reference numerals as those in FIG. 2 indicate parts having the same configuration.
 この実施形態に示すラインヘッドユニット3Bも、アクチュエータ35の配置態様が図2に示すラインヘッドユニット3と異なっている。アクチュエータ35は、図2に示す配置態様に対して副走査方向に斜めとなるように配置されており、各ヘッド固定プレート33に対して斜め方向から押圧力を作用させるようになっている。この押圧力の作用する方向と副走査方向とがなす角度θは、例えば45°程度とすることができる。 The line head unit 3B shown in this embodiment is also different from the line head unit 3 shown in FIG. The actuator 35 is arranged so as to be inclined in the sub-scanning direction with respect to the arrangement mode shown in FIG. 2 and applies a pressing force to each head fixing plate 33 from the oblique direction. An angle θ formed by the direction in which the pressing force acts and the sub-scanning direction can be, for example, about 45 °.
 各ヘッド固定プレート33には、アクチュエータ35の押圧力を作用させる押圧操作部である突出部331を有しているが、図12に示すように、この突出部331におけるアクチュエータ35の作動子352が当接する側面331aは、該作動子352に対してその伸縮方向に対して直交するように対面する傾斜面となっている。 Each head fixing plate 33 has a protruding portion 331 that is a pressing operation portion for applying a pressing force of the actuator 35. As shown in FIG. 12, an actuator 352 of the actuator 35 in the protruding portion 331 is provided. The abutting side surface 331a is an inclined surface that faces the actuator 352 so as to be orthogonal to the expansion / contraction direction.
 従って、この実施形態によれば、図2に示した配置態様と同様に、隣接するヘッド固定プレート33、33との間の距離を可及的近接させることができ、ラインヘッドユニット3を可及的小型化することが可能であることに加え、ヘッド固定プレート33を副走査方向に移動させるためのアクチュエータ35の作動子352のストロークを長くとることができるため、アクチュエータ35の駆動によるヘッドHの副走査方向の取り付け位置の微調整をより高精度に行うことができる。 Therefore, according to this embodiment, similarly to the arrangement mode shown in FIG. 2, the distance between the adjacent head fixing plates 33 and 33 can be made as close as possible, and the line head unit 3 can be made as much as possible. In addition to being able to reduce the size of the head H, since the stroke of the actuator 352 of the actuator 35 for moving the head fixing plate 33 in the sub-scanning direction can be made longer, Fine adjustment of the attachment position in the sub-scanning direction can be performed with higher accuracy.
 1 描画装置
 2 装置基台
 3 ラインヘッドユニット
 31 ベースプレート
 311 突出部
 32 開口枠
 33 ヘッド固定プレート
 331 突出部
 34 弾性ヒンジ
 35 アクチュエータ
 36 取り付けビス
 37A、37B 位置確認マーク
 4 ワークステージ
 5 θ回転機構
 6 Y移動機構
 7 X移動機構
 8A 着弾撮影カメラ
 8B ヘッド撮影カメラ
 9 ガントリ
 10 スライダ
 11 θ回転機構
 12 Z移動機構
DESCRIPTION OF SYMBOLS 1 Drawing apparatus 2 Apparatus base 3 Line head unit 31 Base plate 311 Protruding part 32 Opening frame 33 Head fixing plate 331 Protruding part 34 Elastic hinge 35 Actuator 36 Mounting screw 37A, 37B Position confirmation mark 4 Work stage 5 θ rotation mechanism 6 Y movement Mechanism 7 X moving mechanism 8A Landing shooting camera 8B Head shooting camera 9 Gantry 10 Slider 11 θ rotating mechanism 12 Z moving mechanism

Claims (11)

  1.  液滴を射出する複数のノズルが配列されたノズル列を有するヘッドを、ベース部材に複数配列することにより、該複数のヘッドによって副走査方向に長尺となるラインヘッドを構成したラインヘッドユニットであって、
     前記ヘッドの各々に対応して該ヘッドを個別に取り付けた複数のヘッド取り付け部を有し、
     前記ヘッド取り付け部の各々を、前記ヘッドのノズル列方向に沿って間隔をおいて互いに平行に配置された複数本の弾性ヒンジによって前記ベース部材に保持すると共に、
     前記ヘッド取り付け部に対して押圧力を作用させることによって前記弾性ヒンジを弾性変形させ、前記ヘッドのノズル列方向が副走査方向に対してなす角度を維持したまま前記ヘッド取り付け部の副走査方向の位置を前記ベース部材に対して移動させるアクチュエータを、前記ベース部材と前記ヘッド取り付け部との間にそれぞれ個別に設けたことを特徴とするラインヘッドユニット。
    A line head unit in which a plurality of heads having a nozzle row in which a plurality of nozzles for ejecting liquid droplets are arranged on a base member constitute a line head that is elongated in the sub-scanning direction by the plurality of heads. There,
    A plurality of head mounting portions each individually mounting the head corresponding to each of the heads;
    Each of the head mounting portions is held on the base member by a plurality of elastic hinges arranged parallel to each other at intervals along the nozzle row direction of the head,
    The elastic hinge is elastically deformed by applying a pressing force to the head mounting portion, and the angle of the nozzle row direction of the head with respect to the sub scanning direction is maintained while maintaining the angle of the head mounting portion in the sub scanning direction. The line head unit, wherein an actuator for moving the position relative to the base member is individually provided between the base member and the head mounting portion.
  2.  前記ヘッド取り付け部は、前記ベース部材に形成された開口枠の内部に配置されており、
     前記弾性ヒンジは、前記ヘッド取り付け部と前記開口枠の内周とに亘って一体に成形されていることを特徴とする請求項1記載のラインヘッドユニット。
    The head mounting portion is disposed inside an opening frame formed in the base member,
    The line head unit according to claim 1, wherein the elastic hinge is integrally formed across the head mounting portion and an inner periphery of the opening frame.
  3.  前記弾性ヒンジは、ヒンジ本体の両端の前記ベース部材との接続部位及び前記ヘッド取り付け部との接続部位に、それぞれ前記ヒンジ本体よりも幅狭状となり、前記ヘッド取り付け部に前記アクチュエータの押圧力が作用した際にそれぞれ弾性変形する括れ部を形成してなることを特徴とする請求項1又は2記載のラインヘッドユニット。 The elastic hinges are narrower than the hinge body at the connection parts with the base member at both ends of the hinge body and the connection parts with the head attachment part, respectively, and the pressing force of the actuator is applied to the head attachment part. 3. The line head unit according to claim 1, wherein a constricted portion that elastically deforms when acted on is formed.
  4.  前記アクチュエータは、前記ヘッド取り付け部に対して、副走査方向に対して平行な方向の押圧力を作用させるように配置されていることを特徴とする請求項1、2又は3記載のラインヘッドユニット。 4. The line head unit according to claim 1, wherein the actuator is arranged to apply a pressing force in a direction parallel to a sub-scanning direction to the head mounting portion. .
  5.  前記アクチュエータは、前記ヘッド取り付け部に対して、副走査方向に対して斜め方向の押圧力を作用させるように配置されていることを特徴とする請求項1、2又は3記載のラインヘッドユニット。 4. The line head unit according to claim 1, wherein the actuator is arranged so that a pressing force in an oblique direction with respect to a sub-scanning direction is applied to the head mounting portion.
  6.  前記ヘッド取り付け部はノズル列方向と交差する側方に向けて突出する突出部を有すると共に、前記アクチュエータは前記突出部に対して押圧力を作用させることを特徴とする請求項1~5のいずれかに記載のラインヘッドユニット。 6. The head mounting portion has a protruding portion protruding toward a side intersecting the nozzle row direction, and the actuator applies a pressing force to the protruding portion. The line head unit according to crab.
  7.  前記アクチュエータは、ピエゾ素子により前記ヘッド取り付け部に対する押圧力を作用させることを特徴とする請求項1~6のいずれかに記載のラインヘッドユニット。 The line head unit according to any one of claims 1 to 6, wherein the actuator applies a pressing force to the head mounting portion by a piezo element.
  8.  ノズル面が下向きとなるように配置された請求項1~7のいずれかに記載のラインヘッドユニットと、
     前記ラインヘッドユニットと相対的に移動可能に設けられ、前記ラインヘッドの各ヘッドから射出される液滴によって、上面に支持した被記録材に対して描画を行う描画台と、
     前記アクチュエータの駆動を制御する駆動制御手段と、
    を有することを特徴とする描画装置。
    The line head unit according to any one of claims 1 to 7, wherein the line head unit is disposed so that a nozzle surface faces downward,
    A drawing table that is provided so as to be movable relative to the line head unit and that draws on a recording material supported on the upper surface by droplets ejected from each head of the line head;
    Drive control means for controlling the drive of the actuator;
    A drawing apparatus comprising:
  9.  前記ラインヘッドユニットの各ヘッドの位置ずれ量を検査するためのテストパターンを前記被記録材に印字するように前記ヘッドを制御する印字制御手段と、
     前記被記録材に印字された前記テストパターンを画像認識するための画像認識手段と、
     前記画像認識手段によって認識された前記テストパターンの画像に基づいて前記ラインヘッドの各ヘッドの副走査方向の位置ずれ量を算出する算出手段とを有し、
     前記駆動制御手段は、前記算出手段によって算出された前記ヘッドの副走査方向の位置ずれ量に応じて、前記アクチュエータの駆動を制御することを特徴とする請求項8記載の描画装置。
    A print control means for controlling the head so as to print a test pattern for inspecting the positional deviation amount of each head of the line head unit on the recording material;
    Image recognition means for recognizing the test pattern printed on the recording material;
    Calculating means for calculating the amount of positional deviation in the sub-scanning direction of each head of the line head based on the image of the test pattern recognized by the image recognition means;
    The drawing apparatus according to claim 8, wherein the drive control unit controls the drive of the actuator according to a positional deviation amount of the head in the sub-scanning direction calculated by the calculation unit.
  10.  前記被記録材は表面に基準マークを有しており、
     前記算出手段は、前記画像認識手段によって認識された前記基準マークと前記テストパターンとの画像に基づいて、前記基準マークに対する前記テストパターンの位置ずれ量から各ヘッドの副走査方向の位置ずれ量を算出することを特徴とする請求項9記載の描画装置。
    The recording material has a reference mark on the surface,
    The calculation means calculates the positional deviation amount of each head in the sub-scanning direction from the positional deviation amount of the test pattern with respect to the reference mark, based on the image of the reference mark and the test pattern recognized by the image recognition means. The drawing apparatus according to claim 9, wherein the drawing apparatus calculates the drawing apparatus.
  11.  前記算出手段は、前記画像認識手段によって認識された前記テストパターンの画像に基づいて前記ラインヘッドの各ヘッドの主走査方向の位置ずれ量を算出する機能を具備し、
     前記印字制御手段は、前記算出手段によって算出された主走査方向の位置ずれ量に応じて、前記ヘッドの射出タイミングを補正することを特徴とする請求項9又は10記載の描画装置。
    The calculation means has a function of calculating the amount of positional deviation in the main scanning direction of each head of the line head based on the image of the test pattern recognized by the image recognition means,
    The drawing apparatus according to claim 9, wherein the print control unit corrects the ejection timing of the head according to the amount of positional deviation in the main scanning direction calculated by the calculation unit.
PCT/JP2009/068107 2008-11-11 2009-10-21 Line head unit and drawing apparatus WO2010055751A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010537742A JP5445462B2 (en) 2008-11-11 2009-10-21 Line head unit and drawing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-289207 2008-11-11
JP2008289207 2008-11-11

Publications (1)

Publication Number Publication Date
WO2010055751A1 true WO2010055751A1 (en) 2010-05-20

Family

ID=42169887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068107 WO2010055751A1 (en) 2008-11-11 2009-10-21 Line head unit and drawing apparatus

Country Status (2)

Country Link
JP (1) JP5445462B2 (en)
WO (1) WO2010055751A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012069758A (en) * 2010-09-24 2012-04-05 Toshiba Corp Drop control method and drop control device
JP2014073661A (en) * 2012-10-05 2014-04-24 Fujifilm Corp Device and method for adjusting inkjet head, and inkjet recording device
WO2015186592A1 (en) * 2014-06-02 2015-12-10 コニカミノルタ株式会社 Inkjet recording device
WO2017056875A1 (en) * 2015-09-30 2017-04-06 住友化学株式会社 Thin film production method and organic el device production method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005254493A (en) * 2004-03-09 2005-09-22 Seiko Epson Corp Inkjet printer
JP2008132795A (en) * 2008-02-25 2008-06-12 Seiko Epson Corp Printing apparatus capable of adjusting attaching position of print head to carriage
JP2008279695A (en) * 2007-05-11 2008-11-20 Seiko Epson Corp Alignment method of inkjet head, alignment apparatus of inkjet head, alignment jig and assembling apparatus of head unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005254493A (en) * 2004-03-09 2005-09-22 Seiko Epson Corp Inkjet printer
JP2008279695A (en) * 2007-05-11 2008-11-20 Seiko Epson Corp Alignment method of inkjet head, alignment apparatus of inkjet head, alignment jig and assembling apparatus of head unit
JP2008132795A (en) * 2008-02-25 2008-06-12 Seiko Epson Corp Printing apparatus capable of adjusting attaching position of print head to carriage

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012069758A (en) * 2010-09-24 2012-04-05 Toshiba Corp Drop control method and drop control device
JP2014073661A (en) * 2012-10-05 2014-04-24 Fujifilm Corp Device and method for adjusting inkjet head, and inkjet recording device
WO2015186592A1 (en) * 2014-06-02 2015-12-10 コニカミノルタ株式会社 Inkjet recording device
WO2017056875A1 (en) * 2015-09-30 2017-04-06 住友化学株式会社 Thin film production method and organic el device production method
CN108141938A (en) * 2015-09-30 2018-06-08 住友化学株式会社 The manufacturing method of film-forming method and organic EL device
US10532374B2 (en) 2015-09-30 2020-01-14 Sumitomo Chemical Co., Ltd. Thin film production method and organic el device production method
CN108141938B (en) * 2015-09-30 2020-02-14 住友化学株式会社 Thin film manufacturing method and organic EL device manufacturing method

Also Published As

Publication number Publication date
JP5445462B2 (en) 2014-03-19
JPWO2010055751A1 (en) 2012-04-12

Similar Documents

Publication Publication Date Title
KR100848162B1 (en) A ink-jet printing apparatus and head position adjustment method thereof
KR101000422B1 (en) Ink-jet head device
JP4938528B2 (en) Droplet discharge head unit alignment apparatus and alignment adjustment method
JP5445462B2 (en) Line head unit and drawing apparatus
JP4168728B2 (en) Method for correcting dot position of droplet discharge device, droplet discharge method, and electro-optical device manufacturing method
JP5586299B2 (en) Inkjet coating device
JP5293410B2 (en) Assembly method of line head unit
US11872809B2 (en) Head adjustment device, head device, and printing apparatus
US20220097434A1 (en) Three-dimensional object printing apparatus and three-dimensional object printing method
JP5463653B2 (en) Discharge pattern data correction method for liquid drop discharge device and liquid drop discharge device
JP2000190465A (en) Mounting structure and fixing method of ink jet type recording head
JPWO2008152903A1 (en) Ink jet head unit and ink jet recording apparatus
JP5495528B2 (en) Inkjet recording apparatus and inkjet recording method
JP5887843B2 (en) Inkjet head assembly method
KR102012378B1 (en) Printing head assembly, printing apparatus and method for aligning printing head
KR101161710B1 (en) Discharging method of ink droplet
JP2022139559A (en) Three-dimensional object printing method and three-dimensional object printing device
JP5200905B2 (en) Method of drawing a straight line with a droplet discharge head
JP5326520B2 (en) Drawing apparatus and method of attaching head to head unit in drawing apparatus
EP3829885A1 (en) Printing methods and systems
JP2008246799A (en) Liquid jet system
JP5407543B2 (en) Droplet discharge device
JP4999749B2 (en) Discharge characteristic measuring method, discharge characteristic measuring apparatus, and image forming apparatus provided with discharge characteristic measuring apparatus
JP2009274335A (en) Calibration jig
KR20240019833A (en) Head driving device, liquid discharge device, liquid discharge apparatus, and liquid discharge method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09826001

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010537742

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09826001

Country of ref document: EP

Kind code of ref document: A1