WO2010055253A1 - Dispositif de régulation thermique à réseau de caloducs capillaires interconnectés - Google Patents

Dispositif de régulation thermique à réseau de caloducs capillaires interconnectés Download PDF

Info

Publication number
WO2010055253A1
WO2010055253A1 PCT/FR2009/052156 FR2009052156W WO2010055253A1 WO 2010055253 A1 WO2010055253 A1 WO 2010055253A1 FR 2009052156 W FR2009052156 W FR 2009052156W WO 2010055253 A1 WO2010055253 A1 WO 2010055253A1
Authority
WO
WIPO (PCT)
Prior art keywords
network
heat
heat pipe
capillary
node
Prior art date
Application number
PCT/FR2009/052156
Other languages
English (en)
Inventor
Christophe Figus
Laurent Ounougha
Original Assignee
Astrium Sas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Astrium Sas filed Critical Astrium Sas
Priority to US13/128,192 priority Critical patent/US20110209864A1/en
Priority to ES09768164T priority patent/ES2404083T3/es
Priority to CN2009801503217A priority patent/CN102245995B/zh
Priority to EP09768164A priority patent/EP2344827B1/fr
Publication of WO2010055253A1 publication Critical patent/WO2010055253A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/043Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure forming loops, e.g. capillary pumped loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators

Definitions

  • the present invention relates to a thermal control device of the type based on capillary heat transfer fluid flow heat exchangers, used for cooling, respectively heating, hot springs, respectively cold, and interconnected in at least one network.
  • a capillary tube is a simple hollow tube whose internal wall is smooth
  • a heat transfer capillary heat pipe 1 is formed, in a most common and economical variant of the state of the art, and as shown schematically in longitudinal and transverse sections in FIGS. 1a and 1b respectively, of a hollow tube 2 having longitudinal internal grooves 3 extruded in the mass from its inner face and surrounding a central channel 4.
  • the central channel 4 is surrounded by a substantially annular structure of a porous material such as, for example, porous copper, or any other porous structure 5, lining the inner wall of the tube 2
  • a porous material such as, for example, porous copper, or any other porous structure 5
  • These particular structures are hereinafter referred to as "capillary structures”, and are generally arranged at the level of the internal surface of the tube 2 of the capillary heat pipe 1 to retain the liquid phase of a heat transfer fluid at this level, and separate it from the vapor phase, which circulates in the central channel 4.
  • the heat pipe 1 thus has two different capillary dimensions (for example the diameter of the central channel 4 and the thickness or radial dimension of the capillary structure 3, 5), which allow a dissociated flow (co-current or countercurrent) of the liquid phase and the vapor phase of the fluid used to transport the heat.
  • a capillary heat pipe 1 generally comprises a linear tube 2, or having at least one section, closed at its two ends, and filled with a two-phase heat transfer fluid at a suitable pressure, allowing the transport of heat by vaporization, flow of the vapor, then condensation of the fluid.
  • the capillary heat pipe 1 is generally in the form of a bar, possibly bent in some places, whose dimensions are adapted as needed.
  • the cross section of the tube 2 may for example be circular or quadrangular.
  • the tube 2 may be in direct thermal contact with at least one hot source such as 6 in FIG. 1a and at least one cold source such as 7 in FIG. 1a, or in thermal contact with at least one soleplate, itself in thermal contact with at least one hot source or at least one cold source.
  • the capillary heat pipe 1 connects one or more hot springs 6 (for example heat-dissipating electronic equipment or heaters), at an evaporation zone 8, to one or more cold sources 7 (for example radiators, or equipment or structures to be heated), at a condensation zone 9.
  • the liquid phase of the fluid flows from the condensation zone 9, in heat exchange relation with the cold source or sources 7, towards the evaporation zone 8, in heat exchange relation with the hot source (s) 6, through the capillary structure 3, 5 lining the wall of the tube 2.
  • the evaporation zone 8 in contact with the hot source (s) 6, the liquid vaporizes, and the vapor thus formed is evacuated through the central channel 4 of the tube 2 to the condensing zone 9, where the vapor condenses in the liquid phase by releasing heat towards the cold source or sources 7.
  • oscillating heat pipes consisting of simple capillary tubes (hollow tubes of small internal diameter, for example 2 to 5 mm) connected and interconnected end to end to form one or more loops.
  • This closed capillary duct whose opposite ends of the loop or loops are in heat exchange relation with, on one side, an evaporator, and, on the other side, a condenser, is filled with a heat transfer fluid present. in its two phases (liquid and vapor). The flow of The phases are exclusively co-current, with segments or "plugs" of liquid being pushed by steam bubbles formed by heat absorption at the evaporative zone thermally coupled to one or more hot sources.
  • the closed capillary duct partially filled with liquid placed by the evaporation zone in thermal contact with the hot source or sources, promotes the successive expansion of vapor bubbles of a length of up to several millimeters (typically 5 to 10 mm).
  • the expansion of these vapor bubbles pushes "corks" of liquid at their ends and steam bubbles between successive "plugs” of liquid, so that the movement of these plugs and bubbles puts liquid and steam in thermal contact, through the condensing zone, with one or more cold sources, which condenses vapor into liquid.
  • the flow of the liquid fluid in this closed circuit promotes the return of liquid to the evaporation zone, and the generation of a new bubble at the latter.
  • the liquid segments and gas bubbles move globally and alternately to the evaporation zone and to the condensation zone.
  • a capillary heat pipe is therefore different from, and much more efficient than, that of a single capillary tube used in oscillating heat pipes or in co-current heat pipes according to US6,269,865 and such as that described below with reference to Figure 2 (which corresponds to Figure 3 of US 6,269,865).
  • a capillary tube whose internal wall is smooth, is limited in pumping capacity to a value inversely proportional to the diameter of the tube, less than 100 Pa.
  • a capillary heat pipe given the small capillary dimension of the structure porous or grooves in the inner wall, allows to achieve pumping capacities greater than 500 Pa.
  • a capillary heat pipe allows, moreover, to homogenize the temperature along the tube of the heat pipe, the phases liquid and vapor fluid flowing independently of each other in both directions of the tube according to different hot spots and cold spots along the heat pipe.
  • US Pat. No. 6,269,865 describes a network heat pipe 11 of simple capillary tubes 12 interconnected forming closed, substantially square or rectangular loops 13, in communication with each other and with two capillary tubes 12a and 12a respectively.
  • outlet 12b which close at opposite ends of a heat exchanger.
  • This exchanger can operate as an evaporator 18, if it is in thermal contact with at least one hot source 16 and if the network 11 operates in heat dissipation unit, in thermal contact with at least one source cold or heat sink.
  • This exchanger can also operate in condenser 19, if it is in thermal contact with at least one cold source and if the network 11 operates in a heat capture unit, in thermal contact with at least one hot source.
  • This type of network 11 is used to dissipate heat produced in a hot source such as 16.
  • a hot source such as 16.
  • This network 11 operates only if it is connected to a heat absorption unit 18, in heat exchange relation with at least one hot source 16, this unit 18 being dissociated from the network 11 used for dissipation thermal.
  • the absorption unit 18 must vaporize the fluid at the inlet 12a of the network 11 of capillary tubes.
  • the steam 15 thus created is condensed at the level of the network 11 in contact with at least one cold source, forming as the liquid plugs 14 are pushed by vapor bubbles 15.
  • the fluid in the liquid state 14 is evacuated at the outlet 12b of the network 11 and returned to the absorption unit 18.
  • the liquid 14 and the steam 15 necessarily circulate in the same direction (co-current flows).
  • the liquid 14 and the vapor 15 can not be distributed independently of one another within the network 11, thereby preventing the establishment of a diphasic regime anywhere in the network 11.
  • the liquid 14, moreover no longer present as and as the fluid condenses, has a much less heat-absorbing capacity than that created by the vapor condensation 15.
  • the accumulation of liquid 14 at certain locations of the network 11, in particular at the nodes 20 of the network 11 that is to say the interconnections of at least two loops 13 of the network 11, slows the flow of steam 15. Overall, the flow of heat absorbable by the network 11 is limited, and the thermal load can not allocate effectively within the network 11.
  • the heat exchanges between the two heat pipes 21 can only be done by conductive exchanges, either by direct contact between the tubes 22 of the two heat pipes 21, or possibly at using at least one massive intermediate piece, a good heat-conducting material, coating the two heat pipes 21, at their intersection, and sometimes called sole, forming a thermal interface or a thermal bridge between these two heat pipes 21.
  • the object of the invention is to provide a thermal regulation device with a capillary heat pipe network which overcomes all the aforementioned limitations of the state of the art and provides other advantages which are presented in the description which follows.
  • the subject of the invention is a thermal regulation device, comprising at least one capillary heat pipe network, each heat pipe comprising a tube enclosing a substantially annular longitudinal capillary structure, for the circulation of a two-phase heat transfer fluid in phase. liquid, and surrounding a central channel for the circulation of said two-phase fluid in the vapor phase, and characterized in that the tubes of at least two heat pipes of the network intertwine and are interconnected so that at each intersection of heat pipes forming a node of the network, a liquid phase fluid exchange can be carried out by capillarity between the capillary structures of said at least two heat pipes, and that simultaneously a fluid exchange in vapor phase can be effected by free circulation between the central channels of said at least two heat pipes.
  • each end of each heat pipe is connected to a node of the network, except for one or more inputs / outputs of the network, which can in particular ensure the communication of the network with at least one extension of this network of heat pipes and / or with at least one other heat pipe network of said device.
  • one or more heat pipes of the network can extend distances distant from the network, up to a few meters, to seek thermal contact with hot springs or cold sources remote from said network.
  • a fluid reservoir is connected to the network, for example at an input or an outlet of the network, in order to adapt the quantity of fluid present in the network to the variations in temperature of the network, particular to accommodate fluid expansion and condensed fluid level.
  • the device of the invention is advantageously such that at each node of the network, the capillary structures of all the heat pipe branches terminating at said node provide a capillary continuity for the fluid in the liquid phase, so that the fluid in the liquid phase arriving at said node in any heat pipe branch resulting in said node can flow by capillarity in all other heat pipe branches leading to said node. There is therefore capillary continuity for the liquid in all directions between the different branches leading to the nodes and through the nodes.
  • the device is advantageously such that at each node of the network, the central channels of all heat pipe branches leading to said node ensure, simultaneously with the continuity of fluid flow in the liquid phase, a flow continuity of the fluid in the vapor phase, so that the vapor phase fluid arriving at said node by any heat pipe branch leading to said node, can flow into all other heat pipe branches leading to said node.
  • the capillary continuity provided to the various nodes must allow fluid in the liquid phase to flow by capillarity, in an area where the surface tension effects are predominant on the effects of gravity or inertia. It is not necessary to have perfect continuity of said capillary structures, but it must at least be ensured that there is not a discontinuity of the capillary effect at this level.
  • the capillary structures of the heat pipe branches leading to said node do not have between them discontinuity of size greater than the typical dimension of a pore or a groove of the capillary structure of the heat pipes, depending on whether this structure comprises respectively a porous material or grooves internal to the corresponding tube.
  • the continuity of the fluid flow conduit in the vapor phase must allow the steam to flow by inertia.
  • the flow continuity of the fluid in the vapor phase is ensured, between the central channels of the heat pipe branches leading to said node, by a flow conduit of which at least a typical dimension or the passage section is substantially equal to at least one typical dimension or the passage section of the central channels of said heat pipe branches leading to said node.
  • At least one heat pipe of the network may comprise at least one branch which differs from the branches of at least one other heat pipe of the network, at the level of the capillary structure and / or at least one dimension typical of said heat pipe branch.
  • said at least one heat pipe network that it comprises is a two-dimensional network comprising two pluralities of heat pipes such that the heat pipes of each plurality are oriented over at least part of their length. substantially in one of two directions respectively inclined relative to each other, and preferably perpendicular to each other, so that the heat pipes of the two pluralities intercross and are interconnected at their crossing according to the characteristics described above. .
  • the device according to the invention can be generalized in that at least one network that it comprises is a three-dimensional heat pipe network comprising, at at least one node of the network, at least three heat pipe branches oriented in at least one part of their length according to one respectively of three directions, inclined, two by two, with respect to each other, and preferably perpendicular to each other, two by two, said at least three branches of heat pipe crisscrossing and being interconnected according to the characteristics described above.
  • At least one node of the network the at least two heat pipes that intersect and are interconnected to said node have their respective tube and capillary structure cut into complementary shape cuts such as heat pipes. 'nest at the cutouts by reconstructing a wall continuity of the tubes, secured together along the cutouts, a capillary continuity along the capillary structures and a continuity of flow along the channels of said heat pipes.
  • This embodiment is more particularly suitable for heat pipes of quadrangular section (rectangular or square) or circular forming a two-dimensional network.
  • the interconnection of the heat pipes at the level of at least one node, and preferably of all the nodes where at least two branches of heat pipe are connected together is made in a modular manner, via a hollow junction piece, having in particular the appearance of a cross for a two-dimensional network node where four heat pipe branches are interconnected, and that, by generalization, it is called brace thereafter.
  • the device is such that at least one node of the network comprises a hollow junction piece, said cross, ensuring the interconnection between them of all heat pipe branches leading to said node, said piece junction having tubular connecting branches, in number equal to the heat pipe branches interconnecting said node, each with an internal and substantially annular capillary structure surrounding a central channel, each connecting branch connecting to the other connecting branches by a longitudinal end, called the internal end, and a branch of respective heat pipe by its opposite longitudinal end, said outer end, so that the capillary structure of each junction branch is in capillary continuity, at its outer end, with the capillary structure of said corresponding heat pipe, and is in capillary continuity, at its inner end, with the capillary structure of each of the other junction branches, and so that its central channel is in communication, at its outer end, with the central channel of the corresponding heat pipe branch, and at its inner end , with the central channel of each of the other junction branches.
  • capillary structure of the heat pipes consists of grooves
  • this capillary structure of the heat pipes it is advantageous for this capillary structure of the heat pipes to be arranged in capillary continuity with the capillary structure of the junction branches of the braces consisting of a porous structure or a porous material, which has a high permeability, with a pore diameter of the porous structure or material which is not more than twice the opening of said grooves, to facilitate the flow of the liquid.
  • This value can change depending on the fluid wettability characteristics of the different materials used.
  • braces also consisting of a porous structure or a porous material, which has a high permeability with a pore diameter which is not greater than the pore diameter of the porous structure or the porous material of the heat pipes. This value can also change depending on the wettability characteristics of the fluid on the different materials used.
  • the heat pipe network may be constituted by standard heat pipe tubes already marketed, either groove profile or porous capillary structure.
  • the pipes of the heat pipes of the network are simply welded to the tubes of the cross or braces.
  • any spider may be arranged to connect any number of heat pipe branches, generally 2 to 8 heat pipe branches, in a two or three dimensional array.
  • a heat exchange can be between each hot source and one or more elements. network (branches or nodes of the network). The network then makes it possible to efficiently collect all the heat produced by the hot source or sources and to homogenize the temperature of the assembly.
  • the heat pipe network collects the heat generated by at least one hot source in thermal contact with at least a part of the network, and discharges said heat through at least one cold source in thermal contact with at least one other part of the network.
  • the hot springs may be either "point", dissipative element type or heater, or continuous type structure heated by at least one external source.
  • the cold sources may be punctual, cold finger type of refrigerant element, or continuous type radiative structure cooled by at least one external source.
  • the device makes it possible, by heat exchanges due to the changes in states of the two-phase fluid, to efficiently collect heat released by one or more hot sources by evaporation of the fluid, and the transfer through the network to one or more cold sources where the fluid condenses to return by capillarity to the hot source or sources.
  • Such a device can be used indifferently to cool one or more hot springs, and / or to heat one or more cold sources.
  • the fluid used will be adapted to the operating temperatures of the system.
  • ammonia can be used for operating temperatures of between -40 ° C. and + 100 ° C.
  • said at least one heat pipe network of the device can be integrated at least partly in the mass of a structure, whose temperature is to be controlled.
  • a part of said at least one heat pipe network is in thermal contact with at least one hot source, respectively cold, and another part of said network is in thermal contact with at least one cold source, respectively hot .
  • the device in any of the embodiments presented above, further comprises at least one fluid loop, preferably two-phase, with capillary pumping, for transporting heat of said at least one heat pipe network to at least one remote heat sink, the evaporation zone of the fluid loop being in thermal contact with at least a part of the heat pipe network.
  • at least one condensation zone of said fluid loop is in thermal contact with said at least one cold source.
  • the device comprises at least one fluid loop, preferably two-phase with capillary pumping, for transporting heat from at least one hot source remote to said at least one heat pipe network, the condensation zone of the fluid loop being in thermal contact with at least a portion of said heat pipe network.
  • at least one evaporation zone of said loop is in thermal contact with said at least one hot source.
  • the device of the invention may also be such that said at least one heat pipe network is an integral part of a supporting structure to which is attached at least one hot source and / or at least one cold source.
  • said carrier structure may advantageously be constituted by said at least one heat pipe network itself, capable of supporting dissipative equipment, which limits the mass of the assembly.
  • the function of the network of heat pipes is then double: thermal, with the transport, the homogenization of the heat, and mechanical, with the support / maintenance of dissipative equipments.
  • the device of the invention can be applied to a thermal control system making it possible to control the temperature of said at least one network, or at least one element in thermal contact with said network.
  • This is achieved by arranging the device so that it further comprises at least one temperature sensor disposed on said at least one heat pipe network or in the vicinity of at least one element in thermal contact with said at least one network, and at least one heating member, respectively cooling, in thermal contact with said at least one network, so that the temperature of said at least one network or of said at least one element is controlled by applying a thermal power setpoint to be produced by said at least one a heating member, respectively cooling, as a function of differences noted between the temperature measurements provided by said at least one temperature sensor and a temperature setpoint.
  • the element or elements in thermal contact with the network may or may be one or more point sources such as equipment, or a carrier structure of equipment in which the network is integrated, or a mechanical part in which the network is integrated.
  • the advantage of the heat pipe network according to the invention is to effectively homogenize the temperature although the one or more heating or cooling organs act punctually on the network, the diffusion of heat to the whole elements, the supporting structure or the mechanical part being done very efficiently via the network.
  • the device of the invention can be the subject of many advantageous applications, a first relates to the cooling of an active antenna comprising radio-frequency (RF) tiles, whose dimensional characteristics are similar and the power dissipation characteristics possibly different, and which are arranged, preferably regularly, on a carrier structure in the form of grid, characterized in that at least one heat pipe network of said device is integrated in said carrier structure of the active antenna, and the heat collected by said network is discharged to at least one radiator by at least one extension of said network of heat pipes and / or at least one other heat pipe network and / or at least one fluid loop of said device.
  • RF radio-frequency
  • a second advantageous application relates to the cooling of a carrier wall of electronic equipment, and is characterized in that at least one heat pipe network of said device is fixed on at least one thermally conductive skin of the wall, and preferably between two heat-conducting skins of said wall, and the heat collected by said at least one heat pipe network is discharged to at least one cold source, such as a radiator, by at least one extension of said heat pipe network and / or at least one other network of heat pipes and / or at least one fluid loop of said device.
  • a third particularly advantageous application relates to the thermal control of a mechanical part and is characterized in that at least one heat pipe network of said device is in heat exchange relationship with said mechanical part or integrated into said part, which we want to control the temperature, at least one heating element and at least one heat sink connected to at least one cooling element being placed in thermal contact with said heat pipe network for supplying or withdrawing heat from said network, and at least one temperature sensor measuring a variable physical quantity, representative of the temperature of said part, and whose measurement is compared to at least one reference value for controlling a change in the amount of heat to be supplied to or removed from said workpiece so as to reduce the difference resulting from said comparison.
  • the two-dimensional network may be completely planar, or have curvatures in certain places in order to marry the shape of the room.
  • This latter application can advantageously be used to provide thermal control of a large optical instrument focal plane.
  • Figure la is a longitudinal or diametral sectional view of a grooved capillary heat pipe of the state of the art.
  • FIG. 1b is a cross-section of the capillary heat pipe of FIG.
  • FIG. 1c is a cross-section, similar to FIG. 1b, of a capillary heat pipe with porous structure or porous material of the state of the art
  • FIG. 2 is a diagrammatic sectional view through a median plane of a co-current heat pipe in a network of simple interconnected capillary tubes and in closed loops, according to the state of the art known from US 6, 269, 865,
  • FIG. 3 is a partial perspective view of a two-dimensional network of capillary heat pipes with intersecting grooves of the state of the art, these FIGS. 1a to 3 being already described above.
  • FIG. 4a is a diagrammatic view of FIG. a two-dimensional network of intersecting and interconnected capillary heat pipes according to the invention, in section through an axial plane of the heat pipes,
  • FIG. 4b is a view, on a larger scale and also in section through an axial plane of the heat pipes, of a node of the network of FIG. 4a to which four heat pipe branches are connected,
  • FIG. 5 is a fragmentary exploded perspective view of two sections of complementary cut-out capillary heat-pipes sandwiching one into the other to form a first node variant of a two-dimensional network similar to that of FIG. 4a,
  • FIG. 6a is a diagrammatic view, in section through an axial plane of the heat pipes, of a second variant node of a two-dimensional network such as that of FIG. 4a, with a four-branched cross-connect junction piece for connecting four branches of heat pipes between them,
  • FIG. 6b is a perspective view of the four-branched cross of the node of FIG. 6a
  • FIG. 6c is a perspective view of a 6-branch brace constituting the joining piece at a node of a three-dimensional network, for connecting 6 heat pipe branches of this network
  • FIG. 7 is a diagrammatic view of perspective of an application of a device according to the invention, a network of interconnected capillary heat pipes cooperating with a capillary pump two-phase fluid loop for transferring heat from hot sources to a radiator, and
  • FIG. 8 is a partial schematic cross-sectional view of another application of a device according to the invention, a heat pipe network of which is implemented in a structure carrying an active antenna, comprising radiofrequency tiles (RF ) to cool.
  • RF radiofrequency tiles
  • the generally two-dimensional, generally flat network 30 of FIG. 4a comprises two groups of parallel straight-line capillary heat pipes, regularly spaced apart from one another, and oriented, for each group, in one of two directions, respectively, which are perpendicular to each other. one to another.
  • the first group comprises four heat pipes 31a, 31b, 31c and 3 Id, called “horizontal” in Figure 4a, crossed with the five heat pipes 31e, 31f, 31g, 31h and 31i called “vertical" of the second group, so that the heat pipes of each group are interconnected with the heat pipes of the other group at all points of their intersections or connections, inside and on the edges of a rectangle delimited by the heat pipes horizontal upper 31a and lower 3 Id of the first group, and the vertical and lateral heat pipes 31e and 31i of the second group.
  • connection points constitute as many nodes of the network 30.
  • the number of heat pipe branches connecting to a node of the network can vary.
  • the network 30 considered here comprises nodes with four heat pipe branches such as the node 36 shown in enlarged view in FIG. 4b, where two successive branches 31b1 and 31b2 of a horizontal heat pipe such as 31b and the two are connected. successive branches 31fl and 31f2 of a vertical heat pipe such as 31f.
  • the network 30 also comprises nodes with 3 branches such as the node 37, where are connected an end branch (the first or the last) such as 31bl of a horizontal heat pipe such as 31b or vertical, inside the rectangle of the network 30, and two successive branches such as 31el and 31e2 of a vertical or horizontal heat pipe of an edge of the network, such as 31e '.
  • the network 30 further comprises two-branched nodes such as the node 38 located at a "corner" of the rectangular network 30 where an end branch such as 31al of a heat pipe of a horizontal edge such as 31a is connected with an end branch such as 31el of a vertical edge such as 31e of the network.
  • the heat pipes and / or capillary heat pipe branches are of a type known from the state of the art and as described above with reference to FIGS.
  • 1a-1c that is to say comprise a tube 32 enveloping a capillary structure for the circulation of the two-phase heat transfer fluid in the liquid phase, which surrounds a central channel 34 for the circulation of this fluid in the vapor phase, the capillary structure being constituted by longitudinal grooves formed in the inner face of the wall of the tube 32 or a porous annular structure 35, possibly of a porous material, as shown in FIG. 4a, and, on a larger scale, on the four-branched node 36 of FIG. 4b.
  • these central channels 34 For heat transfer to be favorably effected by free circulation of the two-phase vapor-phase heat transfer fluid between the central channels 34 of all the heat pipe branches connected to the same node, these central channels 34, have a passage section, or at least a typical dimension of the channel 34, for example its diameter, which remains substantially constant and equal from one channel 34 to the other, and, where appropriate, in any conduit flow connecting the channels 34 of all heat pipe branches at the same node.
  • a capillary continuity for the fluid in the liquid phase is ensured between the capillary structures such as all the branches of heat pipes connected to the same node 36 or 37 or 38, so that a liquid phase fluid exchange can occur.
  • capillary action between these capillary structures 35 in such a way that fluid in the liquid phase flowing to a node in the capillary structure 35 of any of the heat pipe branches connected to this node can flow by capillarity in the capillary structures 35 of all other heat pipe branches connected to this node.
  • the capillary structure 35 of each heat pipe branch leading to a knot is, as far as possible, abutted by its inner end (facing the center of the knot) against internal ends of the capillary structures 35 adjacent heat pipe branches connected to the same node. If these capillary structures are porous or porous structures such as in FIG. 4b, a satisfactory capillary continuity is ensured if there is no discontinuity between the porous structures 35 which exceeds the typical dimension of a pore of this structure 35 or porous material which constitutes it. In the case where the capillary structure of the heat pipe branches consists of grooves, as presented above, it is appropriate that the discontinuity between the capillary structures of the heat pipe branches resulting in the same node does not exceed the typical dimension of a groove.
  • the fluid in the liquid phase can flow by capillarity in the zone situated at the center of the node, whose geometry is such that that the effects of surface tension are predominant on the effects of gravity or inertia.
  • the capillary continuity for the fluid in the liquid phase is thus ensured in all directions between the different heat pipe branches. leading to the nodes and through the nodes 36, 37 and 38.
  • a reservoir 39 of fluid is connected to the network 30.
  • the reservoir 39 is connected to the network 30 by a branch 31g4 of the heat pipe 31g, which extends the latter towards the outside of the network 30.
  • This reservoir 39 has its internal face lined with a capillary coating 40, which is in capillary continuity with the capillary structure of the connecting branch 31g4 of the reservoir 39 to the network 30.
  • fluid in the liquid phase can circulate, in both directions, between the reservoir 39 and the network 30, by capillary flow in the capillary seal 40 of the reservoir 39 and the capillary structures 35 of the branch 31g4 and the other heat pipe branches of the network 30, and simultaneously fluid in the vapor phase can also flow, in both directions, between the central volume of the reservoir 39 and the central channels 34 of the branch 31g4 and other branches of
  • the diameter or the passage section of the central channel 34 of the connecting branch 31g4 is smaller than the diameter or the passage section of the central channels 34 of the other heat pipe branches of the network 30, and / or the radial thickness of the capillary structure 35 of the connecting branch 31g4 is less than the thickness of the capillary structure 35 of the other heat pipe branches of the network 30.
  • the grooved nature (in the direction of the longitudinal axis of the branch 31g4) or the porous nature of the internal capillary lining 40 of the reservoir 39 is the same as that of the capillary structure of the connecting branch 31g4, itself of the same nature as that of the capillary structures of the other heat pipe branches of the network 30, but this is not an absolute necessity.
  • this capillary seal 40 is made in the form of a porous structure or a porous material.
  • one or more of the heat pipes 31 of the network 30 may each comprise one or more branches which is different from the other branches of the heat pipes 31 from the network 30 to the plane dimensionally at the level of the central channel 34 and / or the capillary structure 35, and / or in terms of the nature of the capillary structure 35, for example a porous structure made of different porous materials in different heat pipe branches of the network.
  • FIG. 5 represents an embodiment of a 4-branch node, made by interconnecting two capillary heat pipes of rectangular cross-section of a network (not represented elsewhere) at their intersection.
  • the two heat pipes 41 are identical to each other and each consists of a tube 42, metal or plastic, whose inner wall is lined with a tubular capillary structure 43, in this example a porous structure or a porous material of substantially constant thickness, surrounding a central channel 44, the tube 42, the capillary structure 43 and the channel 44 having a rectangular cross section.
  • a cutout 45 is made in each of them, so as to form a recessed area 46 of intersection and interconnection.
  • This cutout 45 extends through the tube 42 and the capillary structure 43, over an axial length (along the axis of the heat pipe 41) equal to the width of the large faces of the heat pipes 41, and between two straight sections of the heat pipe 41 ( perpendicular to the axis of the heat pipe 41) in each of which the cutout 45 extends over a half-perimeter of the heat pipe 41, through a large face (for example the large horizontal face and upper) of the heat pipe 41, and on the half height of the two vertical sides of the heat pipe 41.
  • a heat pipe 41a belonging to a first group of heat pipes (not shown) parallel and spaced apart, is returned, so that its intersection zone 46 is turned down, and nested by this zone 46 in the zone d recessed intersection 46 of the other heat pipe 41b, whose longitudinal axis is oriented perpendicular to that of the heat pipe 41a, and which belongs to a second group of heat pipes (also not shown) parallel and spaced apart.
  • the central channels 44 of the two heat pipes 41a and 41b are reconstituted by being interconnected, as well as the capillary structures 43, brought into contact along the cuts 45 so as to reconstitute a capillary continuity.
  • the two tubes 42 nested one inside the other at the cutouts 45 of complementary shapes are then welded to one another along the cutouts 45, in order to restore the tightness of the tubes.
  • FIG. 6a A second embodiment of a four-branch heat pipe node is now described with reference to Figure 6a, for application to the realization of a two-dimensional array similar to that of Figure 4a.
  • This second embodiment is much more advantageous than that described above with reference to FIG. 5, because it makes it possible to overcome the aforementioned limitations of the latter, and therefore, in particular, to easily make networks not only two dimensions but also to three dimensions, and / or to use heat pipes of the state of the art, whose capillary structure can be both grooved and porous.
  • the heat pipes used may have cross sections whose shapes are not necessarily limited to circular, rectangular or square shapes.
  • the interconnection of all the different branches of heat pipes 51 leading to the same node of the network is made in a modular manner, via a connecting piece 55 or connection, also called cross in the FIG. 6a illustrates a node in which four branches of heat pipes 51 are connected, two of which, horizontal in FIG. 6a, belong to a first group of heat pipes, and the other two of which, vertical in FIG. 6a, and perpendicular to two first, belong to a second group of heat pipes crisscrossed and interconnected with the heat pipes of the first group in a network similar to that of Figure 4a, and no longer described or represented.
  • the joining piece 55 is hollow and comprises as many tubular junction branches 56 as the number of heat pipe branches 51 interconnected by this piece 55 at the corresponding node of the network.
  • Each junction branch 56 has the same general structure as the heat pipe branches 51, each of which comprises, as known, a rigid outer tube 52 enveloping an annular capillary structure 53 (for the circulation by capillarity of the fluid in the liquid phase) constituted preferably longitudinal grooves formed in the inner face of the tube 52 in the example of Figure 6a, but may also be a porous structure or a porous material covering the inner wall of the tube 52, the capillary structure 53 itself surrounding a central channel 54 (for inertial circulation of the vapor phase fluid essentially).
  • each connecting branch 56 comprises a rigid outer tube 57, by which this branch 56 is secured to the other branches 56 and in one piece with them forming the joining piece 55, this tube 57 having its inner wall covered an annular capillary structure 58 (for the capillary circulation of the fluid in the liquid phase) advantageously produced by a porous structure or a porous material, and itself surrounding a central channel 59 (essentially for circulation of the vapor phase fluid) .
  • each of the heat pipe branches 51 interconnected with each other at the corresponding node is held, by its end facing the junction piece or spider 55, against the so-called outer end, because turned on the opposite side to the center of the brace 55, a connecting leg 56 corresponding, so that the two branches 51 and 56 are maintained aligned and end to end, while the central channel 59 of each junction branch 56 is in communication, at the so-called internal end of the junction branch 56, c ' that is, its end facing the center of the spider 55, with the central channels 59 of all the other connecting branches 56 of the spider 55.
  • each connecting branch 56 of the spider 55 the central channel 59 of this junction branch 56 is in communication with the central channel 54 of the corresponding heat pipe branch 51, the flow continuity of the fluid in substantially vapor phase is ensured in all directions of the branches of heat pipes 51 and through the node by the permanent communication of the central channels 59 junction branches 56 between them and with the central channels 54 of the heat pipe branches 51.
  • the cross 55 provides a capillary continuity between the capillary structure 58 of each junction branch 56, at the outer end of the latter, with the capillary structure 53 of the corresponding heat pipe branch 51, while at the inner end of said junction branch 56, its capillary structure 58 is in capillary continuity with the similar capillary structure 58 of each of the other junction branches 56 of the spider 55.
  • the branches 56 of the spider 55 are dimensionally and geometrically adapted to the heat pipe branches 51 to which they are connected, in particular the branches 51 and 56 have substantially the same shape and cross-sectional area, and in particular substantially the same external diameter, thickness of the capillary structures 53 and 58, and diameter of the central channels 54 and 59.
  • the tubes 57 of the spider 55 may consist of the same material as the tubes 52 of the heat pipe branches 51, the latter being welded to the branches 56 of the spider 55, after possibly interlocking the ends of the heat pipe branches 51 in sleeves formed by extensions to the outside of the tube 57 of the branches 56 of the spider 55.
  • the capillary structure 53 of the heat pipe branches 51 is constituted by grooves
  • the capillary structure 58 of the connecting branches 56 of the spider 55 is a porous structure or a porous material, so that this capillary structure 58 has a high permeability
  • the porous structure or the porous material which constitutes it preferably has a pore diameter less than or equal to about twice the opening of the grooves of the capillary structure 53, in order to facilitate the flow fluid in the liquid phase.
  • this value can change depending on the wettability characteristics of the coolant used on the different materials used.
  • the capillary structure 58 of the branches 56 of the spider 55 it is then advantageous for the capillary structure 58 of the branches 56 of the spider 55 to have a high permeability having a pore diameter substantially less than or equal to the pore diameter of the porous structure or of the porous material constituting the capillary structure of the heat pipe branches 51, this value also being able to vary as a function of the wettability characteristics of the fluid on the various materials used.
  • the embodiment of the capillary structure 58 of the branches 56 of the spider 55 with the aid of a porous structure or of a porous material is advantageous in view of the complex shape of the spider 55, whereas, for simplicity of embodiment, the capillary structure 53 of the heat pipe branches 51 is often made by internal grooves extruded into the mass of the tubes 52.
  • this type of braces 55 several methods can be implemented, among which are the processes based on the simple sintering, laser sintering or stereo-lithography.
  • the two or three connecting branches respectively have the same structure and cooperate in the same way with each other and with branches of heat pipes 51 that the branches 56 of the spider 55, when respectively three or two branches of heat pipes 51 are connected to the same node, does not pose any particular problem since the heat pipe 51 of the network may consist of standard heat pipes already marketed, the capillary structure is either grooved profile or porous.
  • Figure 6b shows in perspective the spider 55 of Figure 6a in an embodiment in which the connecting legs 56 and their tube 57, capillary structure 58 and central channel 59 are cylindrical circular cross section.
  • FIG. 6c represents, in exploded perspective, a six-branched node of a three-dimensional network, made on the same principle of intersecting and interconnecting the heat pipes of three groups of rectilinear heat pipes, parallel and spaced apart, oriented for each group in one of three directions respectively perpendicular two by two, the interconnection being ensured, at each node, by a hollow joining piece with tubular connecting legs which, in Figure 6c, is a spider 65 to six junction branches 66.
  • junction branches 66 has the particularity of having two additional junction branches 66, symmetrical to each other with respect to the center of the crosspiece 65, and coaxial about an axis perpendicular to the plane of the two perpendicular axes between them and around each of which two of the other four junction branches 66 are coaxial.
  • each junction branch 66 is cylindrical tubular of circular section and consists of an outer tube 67 whose inner wall is covered with a porous capillary structure 58 surrounding itself a central channel 69, and the opposite ends of the six branches of heat pipes 61 which are connected to the crosspieces 65 are, also, as in the example of Figures 6a and 6b, consisting of a rigid outer tube 62, the inner wall is axially grooved for forming its capillary structure 63 around a central channel 64.
  • a spider can be adapted to connect any number of heat pipe branches, typically from two to eight, in two- or three-dimensional networks.
  • a network two or three-dimensional, as described above, for example, the two-dimensional network 70 of interconnected heat pipes 71. of FIG. 7, similar to the network 30 of FIG.
  • each hot source 72a, 72b, 72c can be placed directly in heat exchange relation with one or more hot sources such as 72a, 72b and 72c, so that a heat exchange is established between each hot source 72a, 72b, 72c, and one or more elements of the network 70, such as branches of heat pipes 71, nodes or even meshes of the network 70, each mesh consisting of four branches of heat pipes 71 connected in pairs by four nodes so as to form a closed loop in the network 70 (in Figure 7, each hot source 72a to 72c is shown schematically as covering a mesh respectively of the network 70, and is therefore in thermal contact with the four branches of heat pipes 71 and the four knots of this mesh).
  • the network 70 can thus efficiently collect the heat produced by one, several, or all the hot sources 72a to 72c and homogenize the temperature of the assembly.
  • One or more of the hot springs 72a to 72c may or may be of a so-called "point" nature, in particular heat dissipating elements such as equipment, components or electronic circuits fixed directly on the heat pipe network or possibly on a load-bearing wall, the sources each being in thermal contact with a portion of the network 70, at different points of this network, either directly or via an intermediate piece providing thermal conduction between the network and the hot springs.
  • point heat dissipating elements such as equipment, components or electronic circuits fixed directly on the heat pipe network or possibly on a load-bearing wall, the sources each being in thermal contact with a portion of the network 70, at different points of this network, either directly or via an intermediate piece providing thermal conduction between the network and the hot springs.
  • one or more of the hot springs 72a to 72c may or may be of a "continuous” nature, and consist for example of structure (s) it (s) itself (s) heated by external sources and in thermal contact with part of the network 70.
  • another part of the network 70 is in direct heat exchange relation with a cold source, such as 72c, which can -being of a "one-off” nature, such as a cold finger of a refrigerating element for example, or of a "continuous” nature, such as a radiator cooled by an external source, to which the radiator transmits heat that he receives from the network 70.
  • a cold source such as 72c
  • this other variant consists in putting the whole network 70 of heat pipes 71 in thermal contact with one or hot springs, respectively cold, except at least one branch of heat pipes 71 and / or at least one node of the network, which is or is in thermal contact with at least one cold source, respectively hot.
  • the device makes it possible, by the liquid / vapor phase and vapor / liquid phase changes of the two-phase heat transfer fluid circulating in the network 70, to efficiently collect heat diffused by one or more hot sources (s) such ( s) that 72a and 72b, by evaporation of the fluid, and transfer it through the network 70 to a source (s) cold (s), such (s) 72c, where the fluid condenses to return by capillarity to the hot source (s).
  • hot sources such ( s) that 72a and 72b
  • Such a thermal regulation device can therefore be used, passively and indifferently, to cool one or more hot source (s) (such as 72a e 72b) and / or to heat one or more source (s) cold (s)
  • the heat transfer fluid used being adapted to the operating temperatures of the device, for example ammonia for operating temperatures of between -40 ° C. and + 100 ° C.
  • the device further comprises at least one fluid loop, for example, a capillary pumping loop of a two-phase heat transfer fluid, which is advantageously the same as that of the network 70 of heat pipes 71, for transporting the heat of the network 71 to at least one cold source, or conversely of at least one hot source to the network 70, because such fluid loops are known to be much more efficient than the heat pipes (with equal mass), to transport a significant heat flow from one point to another.
  • at least one fluid loop for example, a capillary pumping loop of a two-phase heat transfer fluid, which is advantageously the same as that of the network 70 of heat pipes 71, for transporting the heat of the network 71 to at least one cold source, or conversely of at least one hot source to the network 70, because such fluid loops are known to be much more efficient than the heat pipes (with equal mass), to transport a significant heat flow from one point to another.
  • the evaporation zone 74 of a fluid loop 73 is placed in thermal contact with the network 70, in this example at a node where three heat pipe branches 71 are interconnected on an edge of the network 70, and the condensation zone 74 of the fluid loop 73 is placed in thermal contact with at least one cold source 76 in this example, an external radiator, the hot sources may be heat dissipating equipment, possibly attached to a load-bearing wall, the cold source 76 (the radiator) being optionally remote and remote network 70 and hot springs 72a to 72c .
  • the heat transmitted by the hot springs 72a to 72c to the network 70 is transferred to the evaporation zone 74 to the fluid of the fluid loop 73, which is vaporized at this point and flows in the vapor phase to the zone of condensation 75, where this heat is transferred by condensation of the fluid of the loop 73 to the radiator 76 which dissipates it in the heat sink constituted by the surrounding space.
  • Such a device can be used in an inverted mode for heating at least one cold source 72a to 72c in thermal contact with the network 70.
  • the evaporation zone 75 of the fluid loop 73 is brought into contact thermal with a hot source 76, external to the network 70, and the condensation zone 74 of the fluid loop 73 is placed in thermal contact with the network 70.
  • the network 70 of heat pipes 71 of the device can be fixed on a thermally conductive skin (not shown), for example metal or composite material, and preferably between two skins of this type.
  • the heat collected by the network 70 is evacuated either by an extension of the network 70, or via at least one fluid loop such as 73, to one or more cold source (s) such (s) one or radiator (s) 76.
  • At least a part of a two or three-dimensional network of heat pipes can be advantageously integrated into the mass of a structure, whose temperature must eventually to be actively controlled.
  • This structure may be a carrier structure on which at least one hot source and / or at least one cold source is or are fixed (s).
  • FIG. 8 Such an application for cooling an active radiofrequency tile antenna is described with reference to FIG. 8.
  • the network 80 of heat pipes 81 is represented only by two parallel heat pipes 81 oriented in the one of the two directions of this two-dimensional network 80.
  • Each heat pipe 81 comprises a flat sole, made of a good heat-conducting material, in one piece with a hemicylindrical central portion through which the tube 82 of the heat pipe 81 passes, the internal wall of which presents the grooves of its capillary structure 83 around the central channel 84 corresponding.
  • each heat pipe 81 is suspended in a channel 86 formed in a rib 87, oriented in the same direction as the heat pipes 81, a carrier structure 88 in the form of grid, which has ribs similar to the ribs 87 but perpendicular to the latter, and also provided with gutters such as 86, for housing the heat pipe network 80 which are perpendicular to the heat pipes 81.
  • the carrying structure 88 supports radiofrequency tiles (RF) 85 thinned edges to rest on the ribs such as 87, being arranged next to each other to define a surface of the active antenna.
  • RF tiles 85 have similar dimensional characteristics and are arranged in a matrix, but the thermal powers they dissipate are possibly different from each other.
  • the tiles 85 thus arranged regularly on the carrying structure 88 transmit heat to the soles of the heat pipes 81 on which the tiles 85 rest, and this heat is then transmitted from the heat pipes 81 of the network 80 to an evaporator 89, integrated into the base.
  • the heat collected by the network 80 of heat pipes 81 integrated in the carrying structure 88 is effectively evacuated to one or more radiators by an extension of this network 80.
  • the structure carrying at least one hot source and / or at least one cold source may advantageously be constituted by a network of heat pipes itself of the device.
  • the mass of the entire device is thus limited, in which the function of said heat pipe network is twofold and comprises a thermal transport / homogenization function of the heat, and a mechanical function for supporting / maintaining the dissipative equipment constituting the one or more hot or cold source (s).
  • the thermal regulation device of the invention can also be applied to the production of a device for controlling the temperature of at least one heat pipe network of the device and / or at least one hot source and / or at least one cold source and / or at least one part and / or at least one set with respectively which and / or which at least one heat pipe network of the device is in heat exchange relation, or even in which and / or which said at least one heat pipe network of the device is integrated at least partially.
  • At least one temperature sensor and / or at least one cooling element and / or at least one heating element are placed in heat exchange relation with said network, at different locations of the latter, and at least one setpoint of thermal power to be transferred by said at least one cooling element and / or said at least one heating element is applied to this or these cooler (s) or heating element (s) as a function of at least one temperature difference observed between at least one temperature setpoint and at least one temperature measurement provided by at least said one temperature sensor.
  • the thermal properties of the heat pipe network enable the latter to quickly uniformize the temperature within the mechanical part.
  • at least one heating element and / or at least one heat sink connected to at least one cooling element, and placed in thermal contact with said network can or can respectively bring or remove heat to said network, by increasing or thus lowering the temperature of the mechanical part respectively.
  • At least one temperature sensor is implanted in the device so as to measure a variable representative of the temperature of the room, and can therefore be used to actively control the temperature of this mechanical part, by comparing the measurement of said at least one a temperature sensor to at least one reference value, and varying the amount of heat supplied to or removed from the part, as a function of the difference resulting from the comparison between said measurement and said reference value in order to reduce said difference.
  • this type of temperature control device and temperature control of a mechanical part can be advantageously used to provide thermal control of a large focal plane optical instrument.
  • the damaging consequences of a failure of an interconnected heat pipe network may be limited, or even completely compensated, if the device is arranged to be redundant, for example by having at least two non-interconnected networks, preferably identical but not necessarily, or by subdividing the network into several non-interconnected subnetworks, but advantageously maintaining said at least two networks or subnets in heat exchange relationship with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)

Abstract

Le dispositif de régulation thermique comprend au moins un réseau (30) de caloducs capillaires (31), dont chaque caloduc (31) comporte un tube renfermant une structure capillaire longitudinale sensiblement annulaire, pour la circulation d'un fluide caloporteur diphasique en phase liquide, et entourant un canal central pour la circulation dudit fluide diphasique en phase vapeur. Les tubes d'au moins deux caloducs (31) du réseau (30) s'entrecroisent et sont interconnectés de telle sorte qu'au niveau de chaque intersection de caloducs (31) formant un noeud (36, 37, 38) du réseau (30), un échange de fluide en phase liquide peut s'effectuer par capillarité entre les structures capillaires desdits au moins deux caloducs (31), et que, simultanément, un échange de fluide en phase vapeur peut s'effectuer par libre circulation entre les canaux centraux desdits au moins deux caloducs (31).

Description

Dispositif de régulation thermique à réseau de caloducs capillaires interconnectés
La présente invention concerne un dispositif de régulation thermique du type basé sur des caloducs capillaires de transfert thermique à circulation de fluide, utilisés pour le refroidissement, respectivement le réchauffement, de sources chaudes, respectivement froides, et interconnectés en au moins un réseau.
Alors qu'un tube capillaire est un simple tube creux dont la paroi interne est lisse, un caloduc capillaire de transfert thermique 1 est formé, dans une variante la plus commune et la plus économique de l'état de la technique, et comme représenté schématiquement en coupes longitudinale et transversale sur les figures la et Ib respectivement, d'un tube creux 2 présentant des rainures internes 3 longitudinales extrudées dans la masse à partir de sa face interne et entourant un canal central 4. Dans d'autres variantes, comme représenté schématiquement sur la coupe transversale de la figure Ic, le canal central 4 est entouré d'une structure sensiblement annulaire en un matériau poreux tel que, par exemple, du cuivre poreux, ou toute autre structure poreuse 5, tapissant la paroi interne du tube 2. Ces structures particulières (rainures 3, structure ou matériau poreux 5) sont appelées par la suite « structures capillaires », et sont généralement disposées au niveau de la surface interne du tube 2 du caloduc capillaire 1 pour retenir la phase liquide d'un fluide caloporteur à ce niveau, et la séparer de la phase vapeur, qui circule dans le canal central 4. Le caloduc 1 possède ainsi deux dimensions capillaires différentes (par exemple le diamètre du canal central 4 et l'épaisseur ou dimension radiale de la structure capillaire 3, 5), qui permettent un écoulement dissocié (co-courant ou à contre-courant) de la phase liquide et de la phase vapeur du fluide utilisé pour transporter la chaleur.
Un caloduc capillaire 1 suivant l'état la technique comprend en général un tube 2 linéaire, ou comportant au moins un tronçon, fermé à ses deux extrémités, et rempli d'un fluide caloporteur diphasique à une pression adaptée, permettant le transport de la chaleur par vaporisation, écoulement de la vapeur, puis condensation du fluide.
Le caloduc capillaire 1 se présente généralement sous la forme d'une barre, éventuellement coudée à certains endroits, dont les dimensions sont adaptées au besoin. La section transversale du tube 2 peut être par exemple de forme circulaire ou quadrangulaire . Le tube 2 peut être soit en contact thermique direct avec au moins une source chaude telle que 6 sur la figure la et au moins une source froide telle que 7 sur la figure la, soit en contact thermique avec au moins une semelle, elle-même en contact thermique avec au moins une source chaude ou au moins une source froide. Le caloduc capillaire 1 relie une ou plusieurs sources chaudes 6 (par exemple des équipements électroniques dissipatifs de chaleur ou des réchauffeurs), au niveau d'une zone évaporation 8, à une ou plusieurs sources froides 7 (par exemple des radiateurs, ou des équipements ou structures à réchauffer), au niveau d'une zone de condensation 9. La phase liquide du fluide circule depuis la zone condensation 9, en relation d'échange thermique avec la ou les sources froides 7, vers la zone d 'évaporation 8, en relation d'échange thermique avec la ou les sources chaudes 6, à travers la structure capillaire 3, 5 tapissant la paroi du tube 2. Dans la zone d'évaporation 8, au contact de la ou des sources chaudes 6, le liquide se vaporise, et la vapeur ainsi formée s'évacue à travers le canal central 4 du tube 2 vers la zone de condensation 9, où la vapeur se condense en phase liquide en libérant de la chaleur vers la ou les sources froides 7.
A l'opposé d'un caloduc capillaire 1 tel que décrit précédemment en référence aux figures la à Ic, il existe des caloducs dits oscillants, constitués par de simples tubes capillaires (tubes creux de faible diamètre interne, par exemple 2 à 5 mm) reliés et interconnectés bout à bout afin de constituer une ou plusieurs boucles. Ce conduit capillaire fermé, dont les extrémités opposées de la ou des boucles sont en relation d'échange thermique avec, d'un côté, un évaporateur, et, de l'autre côté, un condenseur, est rempli d'un fluide caloporteur présent sous ses deux phases (liquide et vapeur) . L'écoulement des phases est exclusivement co-courant, des segments ou « bouchons » de liquide étant poussés par des bulles de vapeur formées par absorption de chaleur au niveau de la zone d 'évaporation couplée thermiquement à une ou plusieurs sources chaudes. Ainsi, le conduit capillaire fermé, partiellement rempli de liquide mis par la zone d'évaporation au contact thermique de la ou des sources chaudes, favorise l'expansion successivement de bulles de vapeur d'une longueur pouvant aller jusqu'à plusieurs millimètres (typiquement 5 à 10 mm) . L'expansion de ces bulles de vapeur pousse des « bouchons » de liquide situés à leur extrémité ainsi que des bulles de vapeur entre des « bouchons » de liquide successifs, de sorte que le déplacement de ces bouchons et de ces bulles met du liquide et de la vapeur en contact thermique, par la zone de condensation, avec une ou plusieurs sources froides, ce qui condense de la vapeur en liquide. Ainsi l'écoulement du fluide liquide dans ce circuit fermé favorise le retour de liquide vers la zone d'évaporation, et la génération d'une nouvelle bulle au niveau de ce dernier. Il en résulte que les segments liquides et bulles de gaz se déplacent globalement et alternativement vers la zone d'évaporation et vers la zone de condensation.
Des caloducs oscillants de ce type sont décrits par exemple dans US 4,921,041 et US 5,219,020 auxquels on se reportera pour davantage de précisions à leur sujet.
Le fonctionnement d'un caloduc capillaire est donc différent de, et beaucoup plus efficace que, celui d'un simple tube capillaire utilisé dans les caloducs oscillants ou encore dans des caloducs à co-courant selon US6,269,865 et tel que celui décrit ci-après en référence à la figure 2 (qui correspond à la figure 3 de US 6,269,865). En effet, un tube capillaire, dont la paroi interne est lisse, est limité en capacité de pompage à une valeur inversement proportionnelle au diamètre du tube, soit moins de 100 Pa. Un caloduc capillaire, compte tenu de la faible dimension capillaire de la structure poreuse ou des rainures dans la paroi interne, permet d'atteindre des capacités de pompage supérieures à 500 Pa. Contrairement à un tube capillaire, un caloduc capillaire permet, par ailleurs, d'homogénéiser la température le long du tube du caloduc, les phases liquide et vapeur du fluide pouvant s'écouler indépendamment l'une de l'autre dans les deux directions du tube en fonction des différents points chauds et points froids le long du caloduc .
Comme représenté sur la figure 2, US6,269,865 décrit un caloduc en réseau 11 de simples tubes capillaires 12 interconnectés en formant des boucles 13 fermées, sensiblement carrées ou rectangulaires, en communication entre elles et avec deux tubes capillaires respectivement d'entrée 12a et de sortie 12b, qui se referment aux extrémités opposées d'un échangeur de chaleur. Cet échangeur peut fonctionner en évaporateur 18, s'il est mis en contact thermique avec au moins une source chaude 16 et si le réseau 11 fonctionne en unité de dissipation de chaleur, en contact thermique avec au moins une source froide ou puits de chaleur. Cet échangeur peut également fonctionner en condenseur 19, s'il est mis en contact thermique avec au moins une source froide et si le réseau 11 fonctionne en unité de captation de chaleur, en contact thermique avec au moins une source chaude.
Dans le réseau 11, on voit clairement apparaître la succession de bouchons de liquide 14 et de bulles de vapeur 15. Ce type de réseau 11 est utilisé pour dissiper de la chaleur produite dans une source chaude telle que 16. Les limitations en performances d'un tel système par rapport aux caloducs capillaires ont été expliquées ci- dessus. De plus, ce réseau 11 ne fonctionne que s'il est relié à une unité d'absorption de chaleur 18, en relation d'échange thermique avec au moins une source chaude 16, cette unité 18 étant dissociée du réseau 11 utilisé pour la dissipation thermique. L'unité d'absorption 18 doit vaporiser le fluide à l'entrée 12a du réseau 11 de tubes capillaires. La vapeur 15 ainsi créée est condensée au niveau du réseau 11 au contact d'au moins une source froide, formant au fur et à mesure des bouchons de liquide 14 poussés par des bulles de vapeur 15. Le fluide à l'état liquide 14 est évacué à la sortie 12b du réseau 11 et renvoyé à l'unité d'absorption 18. Dans ce type de réseau 11, le liquide 14 et la vapeur 15 circulent nécessairement dans le même sens (écoulements co-courants) . Le liquide 14 et la vapeur 15 ne peuvent pas se répartir indépendamment l'un de l'autre au sein du réseau 11, en empêchant ainsi l'établissement d'un régime diphasique partout dans le réseau 11. Le liquide 14, de plus en plus présent au fur et à mesure de la condensation du fluide, offre une capacité de résorption de chaleur beaucoup moins importante que celle créée par la condensation de vapeur 15. L'accumulation de liquide 14 à certains endroits du réseau 11, en particulier aux nœuds 20 du réseau 11, c'est-à-dire aux interconnexions d'au moins deux boucles 13 du réseau 11, ralentit la circulation de la vapeur 15. Globalement, le flux de chaleur absorbable par le réseau 11 est limité, et la charge thermique ne peut pas se répartir efficacement au sein du réseau 11.
US 5,506,032, US 5,806,803 et US 6,776,220 décrivent des réseaux de caloducs capillaires entrecroisés et non interconnectés (en particulier à leurs intersections), utilisés pour la régulation thermique de murs (parois) porteurs d'équipements. Ce type de réseaux à deux dimensions, tel que représenté schématiquement sur la figure 3 annexée, est formé de caloducs capillaires 21 (représentés ici comme formés chacun d'un tube 22 à structure capillaire à rainures internes 23 autour d'un canal central) entrecroisés, s 'étendant dans au moins deux directions différentes et coplanaires, et en général sensiblement perpendiculaires, mais sans aucune interconnexion entre caloducs 21, au sens où le fluide contenu dans les caloducs 21 ne peut pas circuler d'un caloduc quelconque à au moins un autre. A l'endroit où deux caloducs 21 se croisent, les échanges thermiques entre les deux caloducs 21 ne peuvent donc se faire que par échanges conductifs, soit par contact direct entre les tubes 22 des deux caloducs 21, soit éventuellement à l'aide d'au moins une pièce intermédiaire massive, en un matériau bon conducteur de la chaleur, enrobant les deux caloducs 21, au niveau de leur intersection, et parfois dénommée semelle, formant une interface thermique ou un pont thermique entre ces deux caloducs 21.
Ainsi, une limitation importante de ce type de dispositif de régulation thermique passif à réseau de caloducs capillaires entrecroisés vient des pertes de transfert thermique inévitables au niveau des croisements, et constitue donc une limitation en termes de puissance transportée, ainsi qu'une limitation liée à la densité de flux thermique maximale qu'un caloduc 21 peut supporter au niveau d'un croisement. Une quantité de chaleur collectée par un des caloducs 21 du réseau s'écoule efficacement le long de ce caloduc 21, mais ne peut pas s'écouler efficacement dans l'autre direction du réseau, le long des caloducs 21 qu'il croise et qui s'étendent dans cette autre direction, par exemple avantageusement vers une source froide localisée dans cette autre direction.
Dans le cas où une source chaude est disposée à un croisement entre deux caloducs 21, seuls ces deux caloducs 21 peuvent transporter efficacement la chaleur dans leur direction respective, et des sources froides doivent être disposées dans au moins une de ces directions. Ainsi, pour collecter et évacuer efficacement la chaleur grâce à un tel réseau, il faut soit disposer d'un nombre suffisant de sources froides localisées dans toutes les directions du réseau, ce qui impose des contraintes d'aménagement, soit augmenter la conductivité thermique aux croisements des caloducs 21, ce qui augmente sensiblement la masse du dispositif. De plus, l'enchevêtrement des caloducs 21 augmente l'encombrement du dispositif et ne permet pas de réaliser des réseaux de faible épaisseur. Enfin, la faible modularité de ce type de réseau ne permet pas de réaliser simplement et efficacement l'évacuation de chaleur dans des formes structurales complexes, surfaciques ou volumiques. En particulier, aucune généralisation à trois dimensions de ce type de réseaux n'est connue. Une telle généralisation se heurterait à une complexité encore plus grande, une faible efficacité d'échanges thermiques au sein du réseau, et un besoin de nombreuses sources froides en contact thermique avec les caloducs du réseau.
L'invention a pour but de proposer un dispositif de régulation thermique à réseau de caloducs capillaires qui remédie à toutes les limitations précitées de l'état de la technique et apporte d'autres avantages qui sont présentés dans la description qui suit.
A cet effet, l'invention a pour objet un dispositif de régulation thermique, comprenant au moins un réseau de caloducs capillaires, dont chaque caloduc comporte un tube renfermant une structure capillaire longitudinale sensiblement annulaire, pour la circulation d'un fluide caloporteur diphasique en phase liquide, et entourant un canal central pour la circulation dudit fluide diphasique en phase vapeur, et qui se caractérise en ce que les tubes d'au moins deux caloducs du réseau s'entrecroisent et sont interconnectés de telle sorte qu'au niveau de chaque intersection de caloducs formant un nœud du réseau, un échange de fluide en phase liquide peut s'effectuer par capillarité entre les structures capillaires desdits au moins deux caloducs, et que simultanément un échange de fluide en phase vapeur peut s'effectuer par libre circulation entre les canaux centraux desdits au moins deux caloducs.
Dans une première variante de réalisation, il peut exister des extrémités de caloducs non raccordées à des nœuds du réseau. Ces extrémités sont alors fermées, par exemple, par soudure, afin de retenir le fluide dans le réseau. Dans une autre variante, chaque extrémité de chaque caloduc est connectée à un nœud du réseau, sauf à une ou plusieurs entrées / sorties du réseau, pouvant notamment assurer la communication du réseau avec au moins un prolongement de ce réseau de caloducs et/ou avec au moins un autre réseau de caloducs dudit dispositif.
Dans ces variantes, un ou plusieurs caloducs du réseau peuvent se prolonger sur des distances éloignées du réseau, jusqu'à de l'ordre de quelques mètres, pour rechercher le contact thermique avec des sources chaudes ou des sources froides éloignées dudit réseau.
Avantageusement, un réservoir de fluide est connecté au réseau, par exemple au niveau d'une entrée ou d'une sortie du réseau, afin d'adapter la quantité de fluide présente dans le réseau aux variations de température du réseau, en particulier pour s'accommoder de la dilatation du fluide et du niveau de fluide condensé.
Si, dans ce qui suit, une partie de caloduc arrivant à un nœud du réseau est dénommée branche, alors, afin de permettre un transfert efficace de chaleur à travers l'ensemble du réseau, le dispositif de l'invention est avantageusement tel qu'à chaque nœud du réseau, les structures capillaires de toutes les branches de caloduc aboutissant audit nœud assurent une continuité capillaire pour le fluide en phase liquide, de sorte que le fluide en phase liquide arrivant audit nœud dans n'importe quelle branche de caloduc aboutissant audit nœud peut s'écouler par capillarité dans toutes les autres branches de caloduc aboutissant audit nœud. Il y a donc continuité capillaire pour le liquide dans toutes les directions entre les différentes branches aboutissant aux nœuds et au travers des nœuds.
Dans le même but de permettre le transfert de chaleur le plus efficace possible au travers de l'ensemble du réseau, le dispositif est avantageusement tel qu'à chaque nœud du réseau, les canaux centraux de toutes les branches de caloduc aboutissant audit nœud assurent, simultanément à la continuité d'écoulement du fluide en phase liquide, une continuité d'écoulement du fluide en phase vapeur, de sorte que le fluide en phase vapeur arrivant audit nœud par n'importe quelle branche de caloduc aboutissant audit nœud, peut s'écouler dans toutes les autres branches de caloduc aboutissant audit nœud. Il y a donc continuité d'un conduit d'écoulement de la vapeur dans toutes les directions entre les différentes branches aboutissants aux nœuds et au travers des nœuds.
La continuité capillaire assurée aux différents nœuds doit permettre au fluide en phase liquide de s'écouler par capillarité, dans une zone où les effets de tension de surface sont prédominants sur les effets de gravité ou d'inertie. Il n'est pas nécessaire d'avoir une continuité parfaite desdites structures capillaires, mais il faut au moins assurer qu'il n'y a pas une discontinuité de l'effet de capillarité à ce niveau. Avantageusement, à cet effet, à chaque nœud du réseau, les structures capillaires des branches de caloduc aboutissant audit nœud ne présentent pas entre elles de discontinuité de taille supérieure à la dimension typique d'un pore ou d'une rainure de la structure capillaire des caloducs, selon que cette structure comporte respectivement un matériau poreux ou des rainures internes au tube correspondant.
De même, la continuité du conduit d'écoulement du fluide en phase vapeur, assurée aux différents nœuds du réseau, doit permettre à la vapeur de s'écouler par inertie. Ainsi, il n'est pas nécessaire d'avoir une continuité parfaite de la géométrie dudit conduit, mais il faut au moins assurer qu'il n'y a pas de perte de charge significative à ce niveau. Avantageusement, à cet effet, et à chaque nœud du réseau, la continuité d'écoulement du fluide en phase vapeur est assurée, entre les canaux centraux des branches de caloduc aboutissant audit nœud, par un conduit d'écoulement dont au moins une dimension typique ou la section de passage est sensiblement égale à au moins une dimension typique ou la section de passage des canaux centraux desdites branches de caloduc aboutissant audit nœud.
Toutefois, afin de supporter des densités de flux plus élevées, ou par exemple de s'intégrer dans des volumes ou géométries spécifiques, pour des raisons d'encombrement du réseau, de présence de coudes sur certains caloducs, ou du fonctionnement contre la gravité, au moins un caloduc du réseau peut comporter au moins une branche qui diffère des branches d'au moins un autre caloduc du réseau, au niveau de la structure capillaire et/ou d'au moins une dimension typique de ladite branche de caloduc.
Le dispositif selon l'invention est avantageusement tel que ledit au moins un réseau de caloducs qu'il comporte est un réseau à deux dimensions comprenant deux pluralités de caloducs telles que les caloducs de chaque pluralité sont orientés, sur au moins une partie de leur longueur, sensiblement selon l'une respectivement de deux directions inclinées l'une par rapport à l'autre, et de préférence perpendiculaires entre elles, de sorte que les caloducs des deux pluralités s'entrecroisent et sont interconnectés à leur croisement selon les caractéristiques précédemment décrites . Le dispositif selon l'invention peut se généraliser en ce qu'au moins un réseau qu'il comporte est un réseau de caloducs à trois dimensions comprenant, à au moins un nœud du réseau, au moins trois branches de caloduc orientées dans au moins une partie de leur longueur selon l'une respectivement de trois directions, inclinées, deux à deux, l'une par rapport à l'autre, et de préférence perpendiculaires entre elles, deux à deux, lesdites au moins trois branches de caloduc s 'entrecroisant et étant interconnectées selon les caractéristiques précédemment décrites .
Dans un premier mode de réalisation du dispositif, à au moins un nœud du réseau, les au moins deux caloducs qui s'entrecroisent et sont interconnectés audit nœud ont leur tube et structure capillaire respectifs découpés suivant des découpes de formes complémentaires telles que les caloducs s'emboitent au niveau des découpes en reconstituant une continuité de paroi des tubes, solidarisés entre eux le long des découpes, une continuité capillaire le long des structures capillaires et une continuité d'écoulement le long des canaux desdits caloducs. Ce mode de réalisation est plus particulièrement approprié pour des caloducs de section quadrangulaire (rectangulaire ou carrée) ou circulaire formant un réseau à deux dimensions. On comprend que, pour éviter des fuites de fluide au niveau d'un nœud ainsi formé, la continuité des parois des tubes des deux caloducs, au niveau de leur croisement, doit être assurée, par exemple par une soudure externe de ces tubes le long des découpes, de même la continuité entre les structures capillaires disposées à l'intérieur des deux tubes est assurée plus aisément si cette structure capillaire est constituée d'une structure poreuse (d'un matériau poreux) plutôt que de rainures.
On comprend qu'il est plus difficile de généraliser ce mode de réalisation à des caloducs à rainures et/ou à des réseaux à trois dimensions, et que ce mode de réalisation est plus approprié à des réseaux à deux dimensions et/ou à des caloducs à matériaux poreux.
Du fait de ces limitations, dans un deuxième mode de réalisation, particulièrement avantageux, du dispositif de l'invention, l'interconnexion des caloducs au niveau d'au moins un nœud, et de préférence de tous les nœuds où au moins deux branches de caloduc se raccordent entre elles, se fait de façon modulaire, par l'intermédiaire d'une pièce de jonction creuse, ayant en particulier l'aspect d'un croisillon pour un nœud de réseau bidimensionnel où quatre branches de caloducs sont en interconnexion, et que, par généralisation, l'on nomme croisillon par la suite .
Plus précisément, dans ce deuxième mode de réalisation, le dispositif est tel qu'au moins un nœud du réseau comprend une pièce de jonction creuse, dite croisillon, assurant l'interconnexion entre elles de toutes les branches de caloduc aboutissant audit nœud, ladite pièce de jonction comportant des branches de jonction tubulaires, en nombre égal aux branches de caloduc s ' interconnectant audit nœud, chacune avec une structure capillaire interne et sensiblement annulaire entourant un canal central, chaque branche de jonction se raccordant aux autres branches de jonction par une extrémité longitudinale, dite extrémité interne, et à une branche de caloduc respective par son extrémité longitudinale opposée, dite extrémité externe, de sorte que la structure capillaire de chaque branche de jonction soit en continuité capillaire, en son extrémité externe, avec la structure capillaire de ladite branche de caloduc correspondante, et soit en continuité capillaire, en son extrémité interne, avec la structure capillaire de chacune des autres branches de jonction, et de sorte que son canal central soit en communication, en son extrémité externe, avec le canal central de la branche de caloduc correspondante, et, en son extrémité interne, avec le canal central de chacune des autres branches de jonction.
En outre, dans ce cas et lorsque la structure capillaire des caloducs est constituée de rainures, il est avantageux que cette structure capillaire des caloducs soit disposée en continuité capillaire avec la structure capillaire des branches de jonction des croisillons constituée d'une structure poreuse ou d'un matériau poreux, qui présente une perméabilité élevée, avec un diamètre de pore de la structure ou du matériau poreux qui n'est pas supérieur à deux fois l'ouverture des dites rainures, afin de faciliter l'écoulement du liquide. Cette valeur peut évoluer en fonction des caractéristiques de mouillabilité du fluide sur les différents matériaux utilisés. De la même façon, dans le cas de caloducs dont la structure capillaire est constituée d'une structure poreuse ou d'un matériau poreux, il est avantageux que cette structure capillaire des caloducs soit disposée en continuité capillaire avec la structure capillaire des branches de jonction des croisillons, également constituée d'une structure poreuse ou d'un matériau poreux, qui présente une perméabilité élevée avec un diamètre de pore qui n'est pas supérieur au diamètre de pore de la structure poreuse ou du matériau poreux des caloducs. Cette valeur peut également évoluer en fonction des caractéristiques de mouillabilité du fluide sur les différents matériaux utilisés.
Un avantage appréciable de ce mode de réalisation particulier du dispositif à croisillons est que les caloducs du réseau peuvent être constitués de tubes caloducs standards déjà commercialisés, soit à profil rainure, soit à structure capillaire poreuse.
Dans un mode de réalisation standard, les tubes des caloducs du réseau sont simplement soudés aux tubes du ou des croisillons.
Un autre avantage est que tout croisillon peut être agencé pour raccorder un nombre quelconque de branches de caloduc, en général de 2 à 8 branches de caloduc, dans un réseau à deux ou trois dimensions. Un des avantages procurés par toute réalisation du dispositif suivant l'invention, lorsqu'une ou plusieurs sources chaudes est ou sont en contact thermique avec le réseau, est qu'un échange de chaleur peut se faire entre chaque source chaude et un ou plusieurs éléments du réseau (branches ou nœuds du réseau) . Le réseau permet alors de collecter efficacement l'ensemble de la chaleur produite par la ou les sources chaudes et d'homogénéiser la température de l'ensemble.
Dans des exemples de dispositif selon l'invention, le réseau de caloducs collecte la chaleur générée par au moins une source chaude en contact thermique avec au moins une partie du réseau, et évacue ladite chaleur à travers au moins une source froide en contact thermique avec au moins une autre partie du réseau.
Les sources chaudes peuvent être soit « ponctuelles», du type élément dissipatif ou chaufferette, ou continue, du type structure réchauffée par au moins une source externe. De même, les sources froides peuvent être ponctuelles, du type doigt froid d'élément réfrigérant, ou continue, du type structure radiative refroidie par au moins une source externe .
Ainsi, le dispositif permet, par échanges thermiques dus aux changements d'états du fluide diphasique de collecter efficacement de la chaleur dégagée par une ou plusieurs sources chaudes par évaporation du fluide, et de la transférer à travers le réseau vers une ou plusieurs sources froides où le fluide se condense pour retourner par capillarité vers la ou les sources chaudes.
Un tel dispositif peut être utilisé indifféremment pour refroidir une ou plusieurs sources chaudes, et/ou pour réchauffer une ou plusieurs sources froides. Le fluide utilisé sera adapté aux températures de fonctionnement du système. Par exemple de l'ammoniac peut être utilisé pour des températures de fonctionnement comprises entre -4O0C et +1000C.
Avantageusement, ledit au moins un réseau de caloducs du dispositif peut être intégré au moins en partie dans la masse d'une structure, dont la température est à contrôler .
Selon une autre réalisation avantageuse du dispositif, une partie dudit au moins un réseau de caloducs est en contact thermique avec au moins une source chaude, respectivement froide, et une autre partie dudit réseau est en contact thermique avec au moins une source froide, respectivement chaude.
Dans une réalisation préférée, le dispositif, dans n'importe quelle forme de réalisation présentée ci-dessus, comprend de plus au moins une boucle fluide, de préférence diphasique à pompage capillaire, pour transporter de la chaleur dudit au moins un réseau de caloducs vers au moins une source froide déportée, la zone d'évaporation de la boucle fluide étant en contact thermique avec au moins une partie du réseau de caloducs. Dans ce cas, au moins une zone de condensation de la dite boucle fluide est en contact thermique avec ladite au moins une source froide.
Dans une forme inversée de réalisation, le dispositif comprend au moins une boucle fluide, de préférence diphasique à pompage capillaire, pour transporter de la chaleur d'au moins une source chaude déportée vers ledit au moins un réseau de caloducs, la zone de condensation de la boucle fluide étant en contact thermique avec au moins une partie dudit réseau de caloducs. Dans ce cas, au moins une zone d'évaporation de ladite boucle est en contact thermique avec ladite au moins une source chaude.
Ces deux réalisations bénéficient de la performance des boucles fluides réputées beaucoup plus efficaces que les caloducs, à masse égale, pour transporter un flux de chaleur important d'un point à un autre.
Le dispositif de l'invention peut également être tel que ledit au moins un réseau de caloducs est une partie intégrante d'une structure porteuse sur laquelle est fixée au moins une source chaude et/ou au moins une source froide . Dans ce cas, ladite structure porteuse peut être avantageusement constituée par ledit au moins un réseau de caloducs lui-même, apte à supporter des équipements dissipatifs, ce qui limite la masse de l'ensemble. La fonction du réseau de caloducs est alors double : thermique, avec le transport, l'homogénéisation de la chaleur, et mécanique, avec le support/maintien des équipements dissipatifs.
On peut appliquer le dispositif de l'invention à un système de contrôle thermique permettant de contrôler la température dudit au moins un réseau, ou d'au moins un élément en contact thermique avec ledit réseau. Ceci est réalisé en agençant le dispositif de sorte qu'il comprend de plus au moins un capteur de température disposé sur ledit au moins un réseau de caloducs ou au voisinage d'au moins un élément en contact thermique avec ledit au moins un réseau, et au moins un organe chauffant, respectivement refroidissant, en contact thermique avec ledit au moins un réseau, de sorte que la température dudit au moins un réseau ou dudit au moins un élément est contrôlée en appliquant une consigne de puissance thermique à produire par ledit au moins un organe chauffant, respectivement refroidissant, en fonction d'écarts constatés entre les mesures de température procurées par ledit au moins un capteur de température et une consigne de température.
Le ou les éléments en contact thermique avec le réseau peut ou peuvent être une ou plusieurs sources ponctuelles telles que des équipements, ou bien une structure porteuse d'équipements dans laquelle est intégré le réseau, ou bien une pièce mécanique dans laquelle est intégré le réseau. Dans tous ces cas d'application, l'intérêt du réseau de caloducs selon l'invention est d'homogénéiser efficacement la température bien que le ou les organes chauffants ou refroidissants agissent ponctuellement sur le réseau, la diffusion de la chaleur à l'ensemble des éléments, de la structure porteuse ou de la pièce mécanique se faisant très efficacement par l'intermédiaire du réseau.
Pour prévenir les conséquences d'une panne dudit au moins un réseau de caloducs interconnectés, par exemple une fuite dans ce réseau, on peut assurer une redondance de ce réseau en superposant au moins deux réseaux, éventuellement identiques, ou bien en subdivisant ledit réseau en plusieurs sous-réseaux non interconnectés, mais avantageusement en gardant un contact thermique entre les dits sous-réseaux.
Le dispositif de l'invention peut faire l'objet de nombreuses applications avantageuses, dont une première concerne le refroidissement d'une antenne active comprenant des tuiles radio-fréquence (RF) , dont les caractéristiques dimensionnelles sont semblables et les caractéristiques de puissance dissipée éventuellement différentes, et qui sont disposées, de préférence régulièrement, sur une structure porteuse en forme de quadrillage, caractérisée en ce qu'au moins un réseau de caloducs dudit dispositif est intégré dans ladite structure porteuse de l'antenne active, et la chaleur collectée par ledit réseau est évacuée vers au moins un radiateur par au moins un prolongement dudit réseau de caloducs et/ou au moins un autre réseau de caloducs et/ou au moins une boucle fluide dudit dispositif.
Une seconde application avantageuse concerne le refroidissement d'un mur porteur d'équipements électroniques, et se caractérise en ce qu'au moins un réseau de caloducs dudit dispositif est fixé sur au moins une peau thermiquement conductrice du mur, et, de préférence, entre deux peaux thermiquement conductrices dudit mur, et la chaleur collectée par ledit au moins un réseau de caloducs est évacuée vers au moins une source froide, tel qu'un radiateur, par au moins un prolongement dudit réseau de caloducs et/ou au moins un autre réseau de caloducs et/ou au moins une boucle fluide dudit dispositif .
Une troisième application particulièrement avantageuse concerne le contrôle thermique d'une pièce mécanique et se caractérise en ce qu'au moins un réseau de caloducs dudit dispositif est en relation d'échange thermique avec ladite pièce mécanique ou intégré à ladite pièce, dont on veut contrôler la température, au moins un élément chauffant et au moins un drain thermique relié à au moins un élément refroidissant étant placés en contact thermique avec ledit réseau de caloducs pour apporter ou retirer de la chaleur audit réseau, et au moins un capteur de température mesure une grandeur physique variable, représentative de la température de ladite pièce, et dont la mesure est comparée à au moins une valeur de référence pour commander une variation de la quantité de chaleur à apporter à, ou retirer de, ladite pièce, de sorte à réduire la différence résultant de ladite comparaison.
Suivant la forme et les dimensions de la pièce mécanique, il sera avantageux d'utiliser un réseau de caloducs à deux dimensions ou à trois dimensions. Le réseau à deux dimension peut être entièrement plan, ou bien présenter des courbures à certains endroits afin d'épouser au mieux la forme de la pièce.
Cette dernière application peut être utilisée avantageusement pour assurer le contrôle thermique d'un grand plan focal d'instrument optique.
D'autres caractéristiques et avantages de l'invention ressortiront de la description donnée ci-après, à titre non limitatif, d'exemples de réalisation décrits en références aux dessins annexés, sur lesquels :
La figure la est une vue en coupe longitudinale ou diamétrale d'un caloduc capillaire à rainures de l'état de la technique.
La figure Ib est une coupe transversale du caloduc capillaire de la figure la,
La figure Ic est une coupe transversale, analogue à la figure Ib, d'un caloduc capillaire à structure poreuse ou matériau poreux de l'état de la technique, La figure 2 est une vue schématique en coupe par un plan médian, d'un caloduc à co-courant en réseau de simples tubes capillaires interconnectés et en boucles fermées, selon l'état de la technique connu par US 6, 269, 865,
La figure 3 est une vue partielle en perspective d'un réseau à deux dimensions de caloducs capillaires à rainures entrecroisées de l'état de la technique, ces figures la à 3 étant déjà décrites ci-dessus, La figure 4a est une vue schématique d'un réseau bidimensionnel de caloducs capillaires entrecroisés et interconnectés selon l'invention, en coupe par un plan axial des caloducs,
La figure 4b est une vue, à plus grande échelle et également en coupe par un plan axial des caloducs, d'un nœud du réseau de la figure 4a auquel se raccordent quatre branches de caloducs,
La figure 5 est une vue partielle en perspective éclatée de deux tronçons de caloducs capillaires à découpes complémentaires s 'imbriquant l'un dans l'autre pour constituer une première variante de nœud d'un réseau bidimensionnel analogue à celui de la figure 4a,
La figure 6a est une vue schématique, en coupe par un plan axial des caloducs, d'une deuxième variante de nœud d'un réseau bidimensionnel tel que celui de la figure 4a, avec une pièce de jonction en croisillon à quatre branches pour raccorder quatre branches de caloducs entre elles,
La figure 6b est une vue en perspective du croisillon à quatre branches du nœud de la figure 6a, La figure 6c est une vue en perspective d'un croisillon à 6 branches constituant la pièce de jonction au niveau d'un nœud d'un réseau tridimensionnel, pour raccorder 6 branches de caloducs de ce réseau, La figure 7 est une vue schématique en perspective d'une application d'un dispositif selon l'invention, dont un réseau de caloducs capillaires interconnectés coopère avec une boucle fluide diphasique à pompage capillaire pour transférer de la chaleur de sources chaudes à un radiateur, et
La figure 8 est une vue schématique partielle en coupe transversale d'une autre application d'un dispositif selon l'invention, dont un réseau de caloducs est mis en œuvre dans une structure porteuse d'une antenne active, comportant des tuiles radiofréquence (RF) à refroidir.
Le réseau 30, bidimensionnel et globalement plat, de la figure 4a comprend deux groupes de caloducs capillaires rectilignes, parallèles, régulièrement espacés les uns des autres, et orientés, pour chaque groupe, selon l'une respectivement de deux directions qui sont perpendiculaires l'une à l'autre. Plus précisément dans cet exemple, le premier groupe comprend quatre caloducs 31a, 31b, 31c et 3 Id, dits « horizontaux » sur la figure 4a, croisés avec les cinq caloducs 31e, 31f, 31g, 31h et 31i dits « verticaux » du second groupe, de sorte que les caloducs de chaque groupe sont interconnectés avec les caloducs de l'autre groupe à tous les points de leurs intersections ou de raccordements, à l'intérieur et sur les bords d'un rectangle délimité par les caloducs horizontaux supérieur 31a et inférieur 3 Id du premier groupe, et les caloducs verticaux et latéraux 31e et 31i du deuxième groupe.
Ces points de raccordements constituent autant de nœuds du réseau 30. Le nombre de branches de caloducs se raccordant à un nœud du réseau peut varier. Par exemple, le réseau 30 considéré ici comporte des nœuds à quatre branches de caloduc tel que le nœud 36 représenté en vue agrandie sur la figure 4b, où se raccordent deux branches successive 31bl et 31b2 d'un caloduc horizontal tel que 31b et les deux branches successives 31fl et 31f2 d'un caloduc vertical tel que 31f.
Le réseau 30 comporte également des nœuds à 3 branches tel que le nœud 37, où se raccordent une branche d'extrémité (la première ou la dernière) tel que 31bl d'un caloduc horizontal tel que 31b ou vertical, à l'intérieur du rectangle du réseau 30, et deux branches successives telles que 31el et 31e2 d'un caloduc vertical ou horizontal d'un bord du réseau, tel que 31e'.
Le réseau 30 comporte encore des nœuds à deux branches tel que le nœud 38 situé à un « coin » du réseau 30 rectangulaire où se raccordent une branche d'extrémité telle que 31al d'un caloduc d'un bord horizontal tel que 31a, avec une branche d'extrémité telle que 31el d'un bord vertical tel que 31e du réseau. Les caloducs et/ou branches de caloducs capillaires sont d'un type connu de l'état de la technique et tel que décrit ci-dessus en référence aux figures la à Ic, c'est- à-dire comprennent un tube 32 enveloppant une structure capillaire pour la circulation du fluide caloporteur diphasique en phase liquide, qui entoure un canal central 34 pour la circulation de ce fluide en phase vapeur, la structure capillaire étant constituée de rainures longitudinales ménagées dans la face interne de la paroi du tube 32 ou d'une structure annulaire poreuse 35, éventuellement en un matériau poreux, comme représenté sur la figure 4a, et, à plus grande échelle, sur le nœud à quatre branches 36 de la figure 4b.
A chacun des nœuds 36, 37 et 38 du réseau 30, toutes les branches qui sont interconnectées à ce nœud se raccordent les unes aux autres de manière à assurer une continuité d'écoulement du canal central 34 de l'une quelconque de ces branches au canal 34 de chacune des autres branches de ce nœud, d'une manière telle que du fluide en phase vapeur s 'écoulant vers le nœud par le canal 34 de n'importe quelle branche de caloduc aboutissant à ce nœud peut s'écouler dans les canaux centraux 34 de toutes les autres branches de caloducs raccordées à ce nœud, comme schématisé par les six doubles flèches F sur la figure 4b.
Pour qu'un transfert de chaleur s'effectue favorablement par libre circulation du fluide caloporteur diphasique en phase vapeur entre les canaux centraux 34 de toutes les branches de caloducs se raccordant à un même nœud, ces canaux centraux 34, ont une section de passage, ou au moins une dimension typique du canal 34 par exemple son diamètre, qui reste sensiblement constante et égale d'un canal 34 à l'autre, et, le cas échéant, dans tout conduit d'écoulement raccordant les canaux 34 de toutes les branches de caloducs au niveau d'un même nœud. Ainsi, la continuité d'écoulement de la vapeur dans toutes les directions entre les différentes branches de caloducs aboutissant à un même nœud et au travers de ce nœud permet à cette vapeur de s'écouler par inertie, sans qu'il soit nécessaire d'avoir une continuité parfaite entre les canaux centraux 34, mais en s 'assurant seulement de l'absence de perte de charge significative au niveau de chaque nœud.
Simultanément, une continuité capillaire pour le fluide en phase liquide est assurée entre les structures capillaires telles que 35 de toutes les branches de caloducs raccordées à un même nœud 36 ou 37 ou 38, pour qu'un échange de fluide en phase liquide puisse s'effectuer par capillarité entre ces structures capillaires 35, d'une manière telle que du fluide en phase liquide s 'écoulant vers un nœud dans la structure capillaire 35 de l'une quelconque des branches de caloducs raccordées à ce nœud peut s'écouler par capillarité dans les structures capillaires 35 de toutes les autres branches de caloducs raccordées à ce nœud. A cet effet, la structure capillaire 35 de chaque branche de caloduc aboutissant à un nœud est, autant que possible, mise en butée, par son extrémité interne (tournée vers le centre du nœud) contre les extrémités internes des structures capillaires 35 des branches de caloducs adjacentes raccordées au même nœud. Si ces structures capillaires sont des structures poreuses ou en matériau poreux telles que 35 sur la figure 4b, une continuité capillaire satisfaisante est assurée s'il n'y a pas, entre les structures poreuses 35, de discontinuité qui dépasse la dimension typique d'un pore de cette structure 35 ou du matériau poreux qui la constitue. Dans le cas où la structure capillaire des branches de caloducs est constituée de rainures, comme présenté ci-dessus, il convient que la discontinuité entre les structures capillaires des branches de caloducs aboutissant à un même nœud ne dépasse pas la dimension typique d'une rainure de ces structures, au niveau du centre du nœud, où les extrémités internes de ces structures sont autant que possible en contact les unes avec les autres, et de sorte que des rainures d'une structure capillaire soient en communication au moins partielle avec des rainures des structures capillaires des branches de caloducs adjacentes au niveau de ce nœud.
Ainsi, quelle que soit la nature (rainures ou structure poreuse ou matériau poreux) de la structure capillaire des branches de caloducs, le fluide en phase liquide peut s'écouler par capillarité dans la zone située au centre du nœud, dont la géométrie est telle que les effets de tension de surface sont prédominants sur les effets de gravité ou d'inertie. La continuité capillaire pour le fluide en phase liquide est ainsi assurée dans toutes les directions entre les différentes branches de caloducs aboutissant aux nœuds et au travers des nœuds 36, 37 et 38.
Afin de s'accommoder des dilations-contractions du fluide, en adaptant la quantité de fluide en phase liquide présente dans le réseau 30 aux variations de température de ce réseau 30, un réservoir 39 de fluide est connecté au réseau 30. Sur la figure 4a, le réservoir 39 est connecté au réseau 30 par une branche 31g4 du caloduc 31g, qui prolonge ce dernier vers l'extérieur du réseau 30. Ce réservoir 39 a sa face interne garnie d'un revêtement capillaire 40, qui est en continuité capillaire avec la structure capillaire de la branche 31g4 de liaison du réservoir 39 au réseau 30. Cette continuité capillaire entre la garniture capillaire interne 40 du réservoir 39 et la structure capillaire de la branche 31g4 est assurée de la même manière que décrite ci-dessus au niveau des nœuds du réseau, et donc également entre la structure capillaire de la branche de liaison 31g4 et les branches des caloducs 3 Id et 31g auxquelles la branche de liaison 31g4 se raccorde à un nœud du réseau 30, comme montré sur la figure 4a. Ainsi, du fluide en phase liquide peut circuler, dans les deux sens, entre le réservoir 39 et le réseau 30, en s 'écoulant par capillarité dans la garniture capillaire 40 du réservoir 39 et les structures capillaires 35 de la branche 31g4 et des autres branches de caloducs du réseau 30, et, simultanément, de fluide en phase vapeur peut également circuler, dans les deux sens, entre le volume central du réservoir 39 et les canaux centraux 34 de la branche 31g4 et des autres branches de caloducs du réseau 30. Dans cet exemple, le diamètre ou la section de passage du canal central 34 de la branche de liaison 31g4 est inférieur au diamètre ou à la section de passage des canaux centraux 34 des autres branches de caloducs du réseau 30, et/ou l'épaisseur radiale de la structure capillaire 35 de la branche de liaison 31g4 est inférieure à l'épaisseur de la structure capillaire 35 des autres branches de caloducs du réseau 30.
De préférence, la nature rainurée (dans la direction de l'axe longitudinal de la branche 31g4) ou poreuse de la garniture interne capillaire 40 du réservoir 39 est la même que celle de la structure capillaire de la branche de liaison 31g4, elle-même de même nature que celle des structures capillaires des autres branches de caloducs du réseau 30, mais ce n'est pas une nécessité absolue. Avantageusement, cette garniture capillaire 40 est réalisée sous la forme d'une structure poreuse ou d'un matériau poreux.
En cas de besoin, pour supporter des densités de flux plus ou moins élevées, ou pour intégrer le réseau 30, ou des parties ou prolongements de ce dernier dans des volumes spécifiques et/ou ayant des géométries spécifiques, notamment d'encombrement, ou dans le cas où au moins une partie du réseau doit fonctionner dans des conditions spécifiques, par exemple contre la gravité, un ou plusieurs des caloducs 31 du réseau 30 peuvent comporter chacun une ou plusieurs branches qui se différencie (nt ) des autres branches des caloducs 31 du réseau 30 au plan dimensionnel au niveau du canal central 34 et/ou de la structure capillaire 35, et/ou au plan de la nature de la structure capillaire 35, par exemple une structure poreuse constituée de matériaux poreux différents dans différentes branches de caloducs du réseau.
La figure 5 représente un mode de réalisation d'un nœud à 4 branches, réalisé en interconnectant deux caloducs capillaires de section transversale rectangulaire d'un réseau (non représenté par ailleurs) à leur entrecroisement. Les deux caloducs 41 sont identiques l'un à l'autre et chacun constitué d'un tube 42, métallique ou en matière plastique, dont la paroi interne est garnie d'une structure capillaire tubulaire 43, dans cet exemple une structure poreuse ou un matériau poreux d'épaisseur sensiblement constante, entourant un canal central 44, le tube 42, la structure capillaire 43 et le canal 44 ayant une section transversale rectangulaire.
Pour former un nœud d'interconnexion des deux caloducs 41, une découpe 45 est pratiquée dans chacun d'eux, de sorte à former une zone évidée 46 d'intersection et d'interconnexion. Cette découpe 45 s'étend à travers le tube 42 et la structure capillaire 43, sur une longueur axiale (selon l'axe du caloduc 41) égale à la largeur des grandes faces des caloducs 41, et entre deux sections droites du caloduc 41 (perpendiculaire à l'axe du caloduc 41) dans chacune desquelles la découpe 45 s'étend sur un demi-périmètre du caloduc 41, au travers d'une grande face (par exemple la grande face horizontale et supérieure) du caloduc 41, et sur la demi-hauteur des deux côtés verticaux du caloduc 41.
Puis un caloduc 41a, appartenant à un premier groupe de caloducs (non représentés) parallèles et espacés entre eux, est retourné, de sorte que sa zone d'intersection 46 est tournée vers le bas, et emboîté par cette zone 46 dans la zone d'intersection évidée 46 de l'autre caloduc 41b, dont l'axe longitudinal est orienté perpendiculairement à celui du caloduc 41a, et qui appartient à un deuxième groupe de caloducs (également non représenté) parallèles et espacés entre eux.
Ainsi, les canaux centraux 44 des deux caloducs 41a et 41b sont reconstitués en étant mis en interconnexion, ainsi que les structures capillaires 43, mises en contact le long des découpes 45 de sorte à reconstituer une continuité capillaire. Les deux tubes 42 emboîtés l'un dans l'autre au niveau des découpes 45 de formes complémentaires sont ensuite soudés l'un à l'autre le long des découpes 45, afin de rétablir l'étanchéité des tubes
42 et de les solidariser le long des découpes 45. Ainsi sont simultanément assurées une continuité d'écoulement du fluide en phase vapeur le long des canaux centraux 44 et une continuité d'écoulement capillaire du fluide en phase liquide le long des structures capillaires 43 des caloducs
41. Le même type d'intersection et d'interconnexion peut être réalisé avec des caloducs à tube, structure capillaire et canal central cylindriques de section circulaire, ou encore de section carrée, pour réaliser un réseau à deux dimensions. La liaison externe des tubes de deux caloducs au niveau de leur intersection et interconnexion doit être assurée de sorte que le fluide ne puisse pas s'échapper à cet endroit, raison pour laquelle les deux tubes doivent être solidarisés l'un à l'autre de manière étanche de long des découpes, ce qui peut être obtenu non seulement par soudure, comme déjà décrit ci-dessus, mais également par collage par exemple. On comprend également que la continuité capillaire qui doit être assurée entre les structures capillaires de deux caloducs interconnectés peut être plus aisément obtenue si cette structure capillaire est une structure poreuse, par exemple formée d'un matériau poreux, plutôt que constituée de rainures.
Il est clair que le mode de réalisation d'un nœud de réseau selon la figure 5 se prête plus difficilement à l'utilisation de caloduc à structure capillaire à rainures et/ou agencé en réseau à trois dimensions.
Un second mode de réalisation d'un nœud à quatre branches de caloducs est à présent décrit en référence à la figure 6a, pour une application à la réalisation d'un réseau à deux dimensions analogue à celui de la figure 4a. Ce second mode de réalisation est bien plus avantageux que celui décrit ci-dessus en référence à la figure 5, car il permet de s'affranchir des limitations précitées de ce dernier, et donc, notamment, de réaliser aisément des réseaux non seulement à deux dimensions mais également à trois dimensions, et/ou d'utiliser des caloducs de l'état de la technique, dont la structure capillaire peut aussi bien être à rainures que poreuse. En outre, les caloducs utilisés peuvent présenter des sections transversales dont les formes ne sont pas nécessairement limitées aux formes circulaires, rectangulaires ou carrées.
Selon ce second mode de réalisation, l'interconnexion de toutes les différentes branches de caloducs 51 aboutissant à un même nœud du réseau est réalisée de façon modulaire, par l'intermédiaire d'une pièce de jonction 55 ou raccord, dénommé également croisillon dans l'exemple de la figure 6a d'un nœud où se raccordent quatre branches de caloducs 51 dont deux, horizontales sur la figure 6a, appartiennent à un premier groupe de caloducs, et dont les deux autres, verticales sur la figure 6a, et perpendiculaires aux deux premières, appartiennent à un second groupe de caloducs entrecroisés et interconnectés avec les caloducs du premier groupe dans un réseau analogue à celui de la figure 4a, et non davantage décrit ni représenté.
La pièce de jonction 55 est creuse et comporte autant de branches de jonction 56 tubulaires que le nombre de branches de caloducs 51 interconnectées entre elles par cette pièce 55 au niveau du nœud correspondant du réseau. Chaque branche de jonction 56 a la même structure générale que les branches de caloducs 51, dont chacune comporte, comme connu, un tube externe rigide 52 enveloppant une structure capillaire annulaire 53 (pour la circulation par capillarité du fluide en phase liquide) constituée de préférence de rainures longitudinales ménagées dans la face interne du tube 52 dans l'exemple de la figure 6a, mais pouvant aussi être une structure poreuse ou un matériau poreux recouvrant la paroi interne du tube 52, cette structure capillaire 53 entourant elle-même un canal central 54 (pour la circulation par inertie du fluide en phase vapeur essentiellement).
Plus précisément, chaque branche de jonction 56 comprend un tube externe rigide 57, par lequel cette branche 56 est solidarisée aux autres branches 56 et d'une seule pièce avec elles en formant la pièce de jonction 55, ce tube 57 ayant sa paroi interne recouverte d'une structure capillaire annulaire 58 (pour la circulation par capillarité du fluide en phase liquide) avantageusement réalisée par une structure poreuse ou un matériau poreux, et entourant elle-même un canal central 59 (pour la circulation du fluide en phase vapeur essentiellement) .
Comme représenté sur la figure 6a, chacune des branches de caloducs 51 interconnectées entre elles au nœud correspondant est maintenue, par son extrémité tournée vers la pièce de jonction ou croisillon 55, contre l'extrémité dite externe, car tournée du côté opposé au centre du croisillon 55, d'une branche de jonction 56 correspondante, de sorte que les deux branches 51 et 56 soient maintenues alignées et bout à bout, alors que le canal central 59 de chaque branche de jonction 56 est en communication, à l'extrémité dite interne de cette branche de jonction 56, c'est-à-dire son extrémité tournée vers le centre du croisillon 55, avec les canaux centraux 59 de toutes les autres branches de jonction 56 du croisillon 55. De plus, comme à l'extrémité externe de chaque branche de jonction 56 du croisillon 55, le canal central 59 de cette branche de jonction 56 est en communication avec le canal central 54 de la branche de caloduc 51 correspondante, la continuité d'écoulement du fluide en phase essentiellement vapeur est assurée dans toute les directions des branches de caloducs 51 et au travers du nœud par la mise en communication permanente des canaux centraux 59 des branches de jonction 56 entre eux et avec les canaux centraux 54 des branches de caloducs 51. Simultanément, le croisillon 55 procure une continuité capillaire entre la structure capillaire 58 de chaque branche de jonction 56, au niveau de l'extrémité externe de cette dernière, avec la structure capillaire 53 de la branche de caloducs 51 correspondante, alors qu'à l'extrémité interne de ladite branche de jonction 56, sa structure capillaire 58 est en continuité capillaire avec la structure capillaire 58 analogue de chacune des autres branches de jonction 56 du croisillon 55.
Les branches 56 du croisillon 55 sont dimensionnellement et géométriquement adaptées aux branches de caloducs 51 auxquelles elles sont connectées, en particulier les branches 51 et 56 présentent sensiblement les mêmes forme et aire de section transversale, et notamment sensiblement les mêmes diamètre externe, épaisseur des structures capillaires 53 et 58, et diamètre des canaux centraux 54 et 59.
En pratique, les tubes 57 du croisillon 55 peuvent être constitués du même matériau que les tubes 52 des branches de caloducs 51, ces dernières pouvant être soudées aux branches 56 du croisillon 55, après, éventuellement, emboitement des extrémités des branches de caloducs 51 dans des manchons formés par des prolongements vers l'extérieur des tube 57 des branches 56 du croisillon 55.
Dans l'exemple de la figure 6a, comme la structure capillaire 53 des branches de caloducs 51 est constituée par des rainures, alors que la structure capillaire 58 des branches de jonction 56 du croisillon 55 est une structure poreuse ou en matériau poreux, pour que cette structure capillaire 58 présente une perméabilité élevée, la structure poreuse ou le matériau poreux qui la constitue présente de préférence un diamètre de pore inférieur ou égal à environ deux fois l'ouverture des rainures de la structure capillaire 53, afin de faciliter l'écoulement du fluide en phase liquide. Toutefois, cette valeur peut évoluer en fonction des caractéristiques de mouillabilité du fluide caloporteur utilisé sur les différents matériaux utilisés . Par contre, dans le cas de branches de caloducs 51 dont la structure capillaire est constituée d'une structure poreuse ou d'un matériau poreux, il est alors avantageux que la structure capillaire 58 des branches 56 du croisillon 55 présente une perméabilité élevée en ayant un diamètre de pore inférieur ou égal sensiblement au diamètre de pore de la structure poreuse ou du matériau poreux constituant la structure capillaire des branches de caloducs 51, cette valeur pouvant également évoluer en fonction des caractéristiques de mouillabilité du fluide sur les différents matériaux utilisés.
La réalisation de la structure capillaire 58 des branches 56 du croisillon 55 à l'aide d'une structure poreuse ou d'un matériau poreux, est avantageuse compte-tenu de la forme complexe du croisillon 55, alors que, par simplicité de réalisation, la structure capillaire 53 des branches de caloducs 51 est souvent réalisée par des rainures internes extrudées dans la masse des tubes 52. Pour réaliser ce type de croisillons 55, plusieurs procédés peuvent être mis en œuvre, parmi lesquels on peut citer les procédés basés sur le frittage simple, le frittage laser ou la stéréo-lithographie .
La réalisation de caloducs 51 compatibles avec des pièces de jonction telles que des croisillons 55, ou des raccords en forme de T ou de L, dont les deux ou trois branches de liaison respectivement ont la même structure et coopèrent de la même façon entre elles et avec des branches de caloducs 51 que les branches 56 du croisillon 55, lorsque respectivement trois ou deux branches de caloducs 51 se raccordent à un même nœud, ne pose pas de problème particulier puisque les caloducs 51 du réseau peuvent être constitués de caloducs standards déjà commercialisés, dont la structure capillaire est soit à profil rainure soit poreuse .
La figure 6b représente en perspective le croisillon 55 de la figure 6a dans une réalisation dans laquelle les branches de jonction 56 et leur tube 57, structure capillaire 58 et canal central 59 sont cylindriques à section transversale circulaire.
La figure 6c représente, en perspective éclatée, un nœud à six branches d'un réseau tridimensionnel, réalisé sur le même principe d'entrecroisement et d'interconnexion des caloducs de trois groupes de caloducs rectilignes, parallèles et espacés entre eux, orientés pour chaque groupe selon l'une respectivement de trois directions perpendiculaires deux à deux, l'interconnexion étant assurée, au niveau de chaque nœud, par une pièce de jonction creuse à branches de jonction tubulaires qui, sur la figure 6c, est un croisillon 65 à six branches de jonction 66. Par rapport aux croisillons 55 de la figure 6a, le croisillon 65 de la figure 6c présente la particularité de comporter deux branches de jonction 66 supplémentaires, symétriques l'une de l'autre par rapport au centre du croisillon 65, et coaxiales autour d'un axe perpendiculaire au plan des deux axes perpendiculaires entre eux et autour de chacun desquels deux des quatre autres branches de jonction 66 sont coaxiales.
Comme dans l'exemple des figures 6a et 6b, chaque branche de jonction 66 est tubulaire cylindrique de section circulaire et constituée d'un tube externe 67 dont la paroi interne est recouverte d'une structure capillaire 58 poreuse entourant elle-même un canal central 69, et les extrémités en regard des six branches de caloducs 61 qui se raccordent aux croisillons 65 sont, également, comme dans l'exemple des figures 6a et 6b, constituées d'un tube externe rigide 62, dont la paroi interne est axialement rainurée pour constituée sa structure capillaire 63 autour d'un canal central 64.
Un autre avantage de ce type de dispositif est qu'un croisillon peut être adapté pour raccorder un nombre quelconque de branches de caloducs, typiquement de deux à huit, dans des réseaux à deux ou trois dimensions.
Comme représenté sur la seule partie de gauche de la figure 7, dans un dispositif de régulation de thermique selon l'invention, un réseau, bi ou tridimensionnel, tel que décrit ci-dessus, par exemple, le réseau bidimensionnel 70 de caloducs 71 interconnectés de la figure 7, analogue au réseau 30 de la figure 4a, peut être mis directement en relation d'échange thermique avec une ou plusieurs sources chaudes tel que 72a, 72b et 72c, de sorte qu'un échange de chaleur s'établit entre chaque source chaude 72a, 72b, 72c, et un ou plusieurs éléments du réseau 70, telles que des branches de caloducs 71, des nœuds voire même des mailles du réseau 70, chaque maille étant constituée de quatre branche de caloducs 71 reliées deux à deux par quatre nœuds de façon à former une boucle fermée dans le réseau 70 (sur la figure 7, chaque source chaude 72a à 72c est schématiquement représentée comme recouvrant une maille respectivement du réseau 70, et se trouve donc en contact thermique avec les quatre branches de caloducs 71 et les quatre nœuds de cette maille) . Le réseau 70 peut ainsi collecter efficacement la chaleur produite par une, plusieurs, ou toutes les sources chaudes 72a à 72c et homogénéiser la température de l'ensemble.
Une ou plusieurs des sources chaudes 72a à 72c peut ou peuvent être de nature dite « ponctuelle », notamment des éléments dissipatifs de chaleur comme des équipements, composants ou circuits électroniques fixés directement sur le réseau de caloducs ou éventuellement sur un mur porteur, les sources chaudes étant chacune en contact thermique avec une partie du réseau 70, en différents points de ce réseau, soit directement soit par l'intermédiaire d'une pièce intermédiaire assurant la conduction thermique entre le réseau et les sources chaudes.
En variante, une ou plusieurs des sources chaudes 72a à 72c peut ou peuvent être de nature dite « continue », et constituée (s) par exemple de structure (s) elle (s) -même (s) réchauffée (s) par des sources externes, et en contact thermique avec une partie du réseau 70.
Selon une autre variante, dans les deux cas précédents et en supposant que seules les sources 72a et 72b sont des sources chaudes, une autre partie du réseau 70 est en relation d'échange thermique direct avec une source froide, telle que 72c, pouvant elle-même être de nature « ponctuelle », tel qu'un doigt froid d'un élément réfrigérant par exemple, ou de nature « continue », tel qu'un radiateur refroidi par une source externe, à laquelle le radiateur transmet de la chaleur qu'il reçoit du réseau 70.
D'une manière générale, cette autre variante consiste à mettre l'ensemble du réseau 70 de caloducs 71 en contact thermique avec une ou des sources chaudes, respectivement froides, sauf au moins une branche de caloducs 71 et/ou au moins un nœud du réseau, qui est ou sont en contact thermique avec au moins une source froide, respectivement chaude .
Ainsi, le dispositif permet, par les changements de phases liquide/vapeur et vapeur/liquide du fluide caloporteur diphasique, circulant dans le réseau 70, de collecter efficacement de la chaleur diffusée par une ou des source (s) chaude (s) telle (s) que 72a et 72b, par évaporation du fluide, et de la transférer à travers le réseau 70 vers une ou des source (s) froide (s), telle (s) que 72c, où le fluide se condense pour retourner par capillarité vers la ou les source (s) chaude (s).
Un tel dispositif de régulation thermique peut donc être utilisé, passivement et indifféremment, pour refroidir une ou plusieurs source (s) chaude (s) (telle (s) que 72a e 72b) et/ou pour réchauffer une ou plusieurs source (s) froide (s)
(telle (s) que 72c), le fluide caloporteur utilisé étant adapté aux températures de fonctionnement du dispositif, par exemple de l'ammoniac pour des températures de fonctionnement comprises entre - 40°c et + 100°c.
Cependant, dans une réalisation préférée, le dispositif comprend de plus au moins une boucle fluide, par exemple, une boucle à pompage capillaire d'un fluide caloporteur diphasique, qui est avantageusement le même que celui du réseau 70 de caloducs 71, pour transporter de la chaleur du réseau 71 vers au moins une source froide, ou, inversement d'au moins une source chaude vers le réseau 70, car de telles boucles fluides sont connues comme étant beaucoup plus efficaces que les caloducs (à masse égale) , pour transporter un flux de chaleur important d'un point à une autre.
Comme représenté par l'ensemble de la figure 7, dans le cas du refroidissement de l'une au moins de sources chaudes 72a, 72b et 72c, placées en contact avec le réseau 72 de caloducs 71, la zone d'évaporation 74 d'une boucle fluide 73 est placée en contact thermique avec le réseau 70, dans cet exemple au niveau d'un nœud où s'interconnectent trois branches de caloducs 71 sur un bord du réseau 70, et la zone de condensation 74 de la boucle fluide 73 est placée en contact thermique avec au moins une source froide 76, dans cet exemple, un radiateur externe, les sources chaudes pouvant être des équipements dissipatifs de chaleur, éventuellement fixés sur un mur porteur, la source froide 76 (le radiateur) étant éventuellement déportée et éloignée du réseau 70 et des sources chaudes 72a à 72c. Ainsi, la chaleur transmise par les sources chaudes 72a à 72c au réseau 70 est transférée à la zone d'évaporation 74 au fluide de la boucle fluide 73, qui est vaporisé à cet endroit et s'écoule en phase vapeur jusqu'à la zone de condensation 75, où cette chaleur est transférée par condensation du fluide de la boucle 73 au radiateur 76 qui la dissipe dans le puits de chaleur constitué par l'espace environnant.
On peut utiliser un tel dispositif dans un mode inversé pour le chauffage d'au moins une source froide 72a à 72c en contact thermique avec le réseau 70. Dans ce cas, la zone d'évaporation 75 de la boucle fluide 73 est mise en contact thermique avec une source chaude 76, externe au réseau 70, et la zone de condensation 74 de la boucle fluide 73 est mise en contact thermique avec le réseau 70.
Dans l'application du dispositif de régulation thermique de la figure 7, sans ou avec au moins une boucle fluide
73, au refroidissement des équipements électroniques d'un mur porteur d'équipement, comme déjà évoqué ci-dessus, le réseau 70 de caloducs 71 du dispositif peut être fixé sur une peau thermiquement conductrice (non représentée) , par exemple métallique ou en matériau composite, et de préférence entre deux peaux de ce type. La chaleur collectée par le réseau 70 est évacuée soit par un prolongement du réseau 70, soit via au moins une boucle fluide telle que 73, vers une ou plusieurs source (s) froide(s) tel(s) qu'un ou des radiateur(s) 76.
Dans d'autres applications du dispositif de régulation thermique selon l'invention, au moins une partie d'un réseau bi ou tridimensionnel de caloducs, selon l'application peut être avantageusement intégré dans la masse d'une structure, dont la température doit éventuellement être contrôlée activement. Cette structure peut être une structure porteuse sur laquelle au moins une source chaude et/ou au moins une source froide est ou sont fixée (s) .
Une telle application, pour le refroidissement d'une antenne active à tuiles radiofréquence est décrite en référence à la figure 8. Sur cette figure 8, le réseau 80 de caloducs 81 n'est représenté que par deux caloducs 81 parallèles et orientés dans l'une des deux directions de ce réseau 80 bidimensionnel . Chaque caloduc 81 comporte une semelle plane, en un matériau bon conducteur de la chaleur, d'une seule pièce avec une partie centrale hémicylindrique traversée par le tube 82 du caloduc 81, dont la paroi interne présente les rainures de sa structure capillaire 83 autour du canal central 84 correspondant. Par les côtés de cette semelle, chaque caloduc 81 est suspendu dans une gouttière 86 ménagée dans une nervure 87, orientée dans la même direction que les caloducs 81, d'une structure porteuse 88 en forme de quadrillage, qui présente des nervures analogues aux nervures 87 mais perpendiculaires à ces dernières, et également munies de gouttières telles que 86, pour le logement des caloducs du réseau 80 qui sont perpendiculaires aux caloducs 81. La structure porteuse 88 supporte des tuiles radiofréquence (RF) 85 à bords amincis pour reposer sur les nervures telles que 87, en étant disposées les unes à côté des autres pour définir une surface de l'antenne active. Ces tuiles RF 85 ont des caractéristiques dimensionnelles semblables et sont disposées selon une matrice, mais les puissances thermiques qu'elles dissipent sont éventuellement différentes les unes des autres. Les tuiles 85 ainsi disposées régulièrement sur la structure porteuse 88 transmettent de la chaleur aux semelles des caloducs 81 sur lesquelles les tuiles 85 reposent, et cette chaleur est ensuite transmise des caloducs 81 du réseau 80 à un évaporateur 89, intégré dans la base d'au moins une nervure 87, et donc dans la structure porteuse 88, et appartenant à une boucle fluide dont le condenseur est en contact thermique avec au moins une source froide tel qu'un radiateur externe déporté de l'antenne active.
En variante, la chaleur collectée par le réseau 80 de caloducs 81 intégré dans la structure porteuse 88 est évacuée efficacement vers un ou plusieurs radiateur (s) par un prolongement de ce réseau 80.
Dans certaines applications, la structure porteuse d'au moins une source chaude et/ou d'au moins une source froide peut être avantageusement constituée par un réseau de caloducs lui-même du dispositif. On limite ainsi la masse de l'ensemble du dispositif, dans lequel la fonction dudit réseau de caloducs est double et comporte une fonction thermique de transport/homogénéisation de la chaleur, et une fonction mécanique de support/maintien des équipements dissipatifs constituant la ou les source (s) chaude (s) ou froide (s) .
Le dispositif de régulation thermique de l'invention peut encore être appliqué à la réalisation d'un dispositif de contrôle de la température d'au moins un réseau de caloducs du dispositif et/ou d'au moins une source chaude et/ou d'au moins une source froide et/ou d'au moins une pièce et/ou d'au moins un ensemble avec respectivement laquelle et/ou lequel au moins un réseau de caloducs du dispositif est en relation d'échange thermique, voire même dans laquelle et/ou lequel ledit au moins un réseau de caloducs du dispositif est intégré au moins partiellement. Dans ce cas, au moins un capteur de température et/ou au moins un élément refroidisseur et/ou au moins un élément chauffant sont mis en relation d'échange thermique avec ledit réseau, en différents endroits de ce dernier, et au moins une consigne de puissance thermique à transférer par ledit au moins un élément refroidisseur et/ou ledit au moins un élément chauffant est appliquée à ce ou ces élément (s) refroidisseurs (s) ou chauffant (s) en fonction d'au moins un écart de température constaté entre au moins une consigne de température et au moins une mesure de température procurée par au ledit moins un capteur de température. Dans ce cadre d'application, on mentionne, à titre d'exemple, le contrôle thermique d'une pièce mécanique, dont on veut contrôler la température, et avec laquelle un réseau de caloducs bi ou tridimensionnel d'un dispositif selon l'invention est en contact thermique intime, ou dont ledit réseau de caloducs fait partie. De ce fait, les propriétés thermiques du réseau de caloducs permettent à ce dernier d'uniformiser rapidement la température au sein de la pièce mécanique. De plus, au moins un élément chauffant et/ou au moins un drain thermique relié à au moins un élément refroidisseur, et placé (s) au contact thermique dudit réseau peut ou peuvent respectivement apporter ou retirer de la chaleur audit réseau, en augmentant ou abaissant respectivement ainsi la température de la pièce mécanique. En outre, au moins un capteur de température est implanté dans le dispositif de sorte à mesurer une variable représentative de la température de la pièce, et peut donc être utilisée pour contrôler activement la température de cette pièce mécanique, en comparant la mesure dudit au moins un capteur de température à au moins une valeur de référence, et en faisant varier la quantité de chaleur apportée à la pièce ou retirée de cette dernière, en fonction de la différence résultant de la comparaison entre ladite mesure et ladite valeur de référence afin de réduire ladite différence . A titre d'exemple d'application, ce type de dispositif de régulation thermique et contrôle de température d'une pièce mécanique peut être utilisé avantageusement pour assurer le contrôle thermique d'un grand plan focal d'instrument optique.
Dans les différentes réalisations et applications du dispositif de l'invention, les conséquences dommageables d'une panne d'un réseau de caloducs interconnectés, par exemple une fuite de fluide caloporteur hors du dit réseau, peuvent être limitées, voire totalement compensées, si le dispositif est aménagé pour être redondant, par exemple en comportant au moins deux réseaux non interconnectés, de préférence identiques mais pas forcément, ou bien en subdivisant le réseau en plusieurs sous-réseaux non interconnectés, mais en maintenant avantageusement lesdits au moins deux réseaux ou lesdits sous-réseaux en relation d'échange thermique les uns avec les autres.

Claims

REVENDICATIONS
1. Dispositif de régulation thermique, comprenant au moins un réseau (30) de caloducs capillaires (31), dont chaque caloduc (31) comporte un tube (32) renfermant une structure capillaire (35) longitudinale sensiblement annulaire, pour la circulation d'un fluide caloporteur diphasique en phase liquide, et entourant un canal central (34) pour la circulation dudit fluide diphasique en phase vapeur, caractérisé en ce que les tubes (32) d'au moins deux caloducs (31) du réseau (30) s'entrecroisent et sont interconnectés de telle sorte qu'au niveau de chaque intersection de caloducs (31) formant un nœud (36, 37, 38) du réseau (30), un échange de fluide en phase liquide peut s'effectuer par capillarité entre les structures capillaires (35) desdits au moins deux caloducs (31), et que, simultanément, un échange de fluide en phase vapeur peut s'effectuer par libre circulation entre les canaux centraux (34) desdits au moins deux caloducs (31 ).
2. Dispositif selon la revendication 1, caractérisé en ce qu'au niveau de chaque nœud (36, 37, 38) du réseau (30), les structures capillaires (35) de toutes les branches de caloduc (31) aboutissant audit nœud (36, 37, 38) assurent une continuité capillaire pour le fluide en phase liquide, de sorte que le fluide en phase liquide arrivant audit nœud (36, 37, 38) dans n'importe quelle branche de caloduc (31) aboutissant audit nœud peut s'écouler par capillarité dans toutes les autres branches de caloduc (31) aboutissant au dit nœud (36, 37, 38) .
3. Dispositif selon la revendication 2, caractérisé en ce qu'à chaque nœud (36, 37, 38) du réseau (30), les structures capillaires (35) des branches de caloduc (31) aboutissant au dit nœud (36, 37, 38) ne présentent pas entre elles de discontinuité de taille supérieure à la dimension typique d'un pore ou d'une rainure de la structure capillaire (35) des caloducs (31), selon que cette structure (35) comporte un matériau poreux ou des rainures internes au tube (32) correspondant respectivement.
4. Dispositif selon l'une des revendications 1 à 3, caractérisé en ce qu'au niveau de chaque nœud (36, 37, 38) du réseau (30), les canaux centraux (34) de toutes les branches de caloduc (31) aboutissant audit nœud (36, 37, 38) assurent, simultanément à la continuité d'écoulement du fluide en phase liquide, une continuité d'écoulement du fluide en phase vapeur, de sorte que le fluide en phase vapeur arrivant audit nœud (36, 37, 38) par n'importe quelle branche de caloduc (31) aboutissant audit nœud (36, 37, 38), peut s'écouler dans toutes les autres branches de caloduc (31) aboutissant audit nœud (36, 37, 38) .
5. Dispositif selon la revendication 4, caractérisé en ce qu'à chaque nœud (36, 37, 38) du réseau (30), la continuité d'écoulement du fluide en phase vapeur est assurée, entre les canaux centraux (34) des branches de caloduc (31) aboutissant audit nœud (36, 37, 38), par un conduit d'écoulement dont au moins une dimension typique ou la section de passage est sensiblement égale à au moins une dimension typique ou la section de passage des canaux centraux (34) desdites branches de caloduc (31) aboutissant audit nœud (36, 37, 38) .
6. Dispositif selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'au moins un caloduc (31g) du réseau (30) comporte au moins une branche (31g4) qui diffère des branches d'au moins un autre caloduc (31) du réseau (30), au niveau de la structure capillaire (35) et/ou d'au moins une dimension typique de ladite branche (31g4) de caloduc (31g).
7. Dispositif selon l'une quelconque des revendications 1 à 6, caractérisé en ce que ledit au moins un réseau (30) de caloducs (31) est un réseau à deux dimensions, comprenant deux pluralités de caloducs (31a - 3 Id ; 31e - 3Ii) telles que les caloducs de chaque pluralité sont orientés, sur au moins une partie de leur longueur, sensiblement selon l'une respectivement de deux directions, inclinées l'une par rapport à l'autre, et de préférence perpendiculaires entre elles, de sorte que les caloducs (31a - 3 Id ; 31e - 3Ii) des deux pluralités s'entrecroisent et sont interconnectés à leur croisement .
8. Dispositif selon l'une quelconque des revendications 1 à 6, caractérisé en ce que ledit au moins un réseau de caloducs (61) est un réseau à trois dimensions, comprenant, à au moins un nœud (65) du réseau, au moins trois branches de caloduc (61) orientées dans au moins une partie de leur longueur selon l'une respectivement de trois directions, inclinées, deux à deux, l'une par rapport à l'autre, et de préférence perpendiculaires entre elles, deux à deux, lesdites au moins trois branches de caloduc (61) s 'entrecroisant et étant interconnectées.
9. Dispositif selon l'une quelconque des revendications 1 à 7, caractérisé en ce qu'à au moins un nœud du réseau, les au moins deux caloducs (41) qui s'entrecroisent et sont interconnectés audit nœud ont leur tube (42) et structure capillaire (43) respectifs découpés suivant des découpes (45) de formes complémentaires telles que les caloducs (41) s'emboitent au niveau des découpes (45) en reconstituant une continuité de paroi des tubes (42), solidarisés entre eux le long des découpes (45), une continuité capillaire le long des structures capillaires (43) et une continuité d'écoulement le long des canaux (44) desdits caloducs (41).
10. Dispositif selon l'une quelconque des revendications 1 à 9, caractérisé en ce qu'au moins un nœud du réseau comprend une pièce de jonction (55, 65) creuse, dite croisillon, assurant l'interconnexion entre elles de toutes les branches de caloduc (51, 61) aboutissant audit nœud, ladite pièce de jonction (55, 65) comportant des branches de jonction (56, 66) tubulaires, en nombre égal aux branches de caloduc (51, 61) s ' interconnectant audit nœud, chacune avec une structure capillaire (58, 68) interne et sensiblement annulaire entourant un canal central (59, 69), chaque branche de jonction (56, 66) se raccordant aux autres branches de jonction (56, 66) par une extrémité longitudinale, dite extrémité interne, et à une branche de caloduc (51, 61) respective par son extrémité longitudinale opposée, dite extrémité externe, de sorte que la structure capillaire (58, 68) de chaque branche de jonction (56, 66) soit en continuité capillaire, en son extrémité externe, avec la structure capillaire (53, 63) de ladite branche de caloduc (51, 61) correspondante, et soit en continuité capillaire (58, 68) en son extrémité interne, avec la structure capillaire de chacune des autres branches de jonction(56, 66) , et de sorte que son canal central (59, 69) soit en communication, en son extrémité externe, avec le canal central (54, 64) de ladite branche de caloduc (51, 61) correspondante, et en son extrémité interne avec le canal central (59, 69) de chacune des autres branches de jonction (56, 66).
11. Dispositif selon la revendication 10, caractérisé en ce que la structure capillaire (53, 63) des caloducs
(51, 61) constituée de rainures est en continuité capillaire avec la structure capillaire (58, 68) des branches de jonction (56, 66) des croisillons (55,
65), constituée d'une structure poreuse ou d'un matériau poreux, qui présente une perméabilité élevée, avec un diamètre de pore de la structure ou du matériau poreux qui n'est pas supérieur à deux fois l'ouverture desdites rainures.
12. Dispositif selon la revendication 10, caractérisé en ce que la structure capillaire des caloducs constituée d'une structure poreuse ou d'un matériau poreux est en continuité capillaire avec la structure capillaire (58, 68) des branches de jonction (56, 66) des croisillons (55, 65), également constituée d'une structure poreuse ou d'un matériau poreux, qui présente une perméabilité élevée avec un diamètre de pore qui n'est pas supérieur au diamètre de pore de la structure poreuse ou du matériau poreux des caloducs.
13. Dispositif selon l'une quelconque des revendications 10 à 12, caractérisé en ce qu'un croisillon (55, 65) est agencé pour raccorder de deux à huit branches de caloduc (51, 61), dans un réseau à deux ou trois dimensions .
14. Dispositif selon l'une quelconque des revendications 1 à 13, caractérisé en ce que ledit au moins un réseau
(80) de caloducs (81) est intégré au moins en partie dans la masse d'une structure (88), dont la température est à contrôler.
15. Dispositif selon l'une quelconque des revendications 1 à 13, caractérisé en ce qu ' une partie dudit au moins un réseau (70) de caloducs (71) est en contact thermique avec au moins une source chaude (72a, 72b), respectivement froide (72c), et une autre partie dudit réseau (70), est en contact thermique avec au moins une source froide (72c), respectivement chaude (72a, 72b) .
16. Dispositif selon l'une quelconque des revendications 1 à 15, caractérisé en ce qu'il comprend de plus au moins une boucle fluide (73) , de préférence diphasique à pompage capillaire, pour transporter de la chaleur dudit au moins un réseau (70) de caloducs
(71) vers au moins une source froide déportée (76), la zone d'évaporation (74) de la boucle fluide (73) étant en contact thermique avec au moins une partie du réseau (70) de caloducs (71).
17. Dispositif selon l'une quelconque des revendications 1 à 15, caractérisé en ce qu'il comprend de plus au moins une boucle fluide (73), de préférence diphasique à pompage capillaire, pour transporter de la chaleur d'au moins une source chaude déportée vers ledit au moins un réseau (70) de caloducs (71), la zone de condensation (75) de la boucle fluide (73) étant en contact thermique avec au moins une partie dudit réseau (70) de caloducs (71).
18. Dispositif selon l'une quelconque des revendications 1 à 17, caractérisé en ce que ledit au moins un réseau (80) de caloducs (81) est une partie intégrante d'une structure porteuse (88) sur laquelle est fixée au moins une source chaude (85) et/ou au moins une source froide .
19. Dispositif selon la revendication 18, caractérisé en ce que ladite structure porteuse est constituée par ledit au moins un réseau de caloducs lui-même, apte à supporter des équipements dissipatifs.
20. Dispositif selon l'une des revendications 1 à 19, caractérisé en ce qu'il comprend de plus au moins un capteur de température disposé sur ledit au moins un réseau de caloducs ou au voisinage d'au moins un élément en contact thermique avec ledit au moins un réseau, et au moins un organe chauffant, respectivement refroidissant, en contact thermique avec ledit au moins un réseau, de sorte que la température dudit au moins un réseau ou dudit au moins un élément est contrôlée en appliquant une consigne de puissance thermique à produire par ledit au moins un organe chauffant, respectivement refroidissant, en fonction d'écarts constatés entre les mesures de température procurées par ledit au moins un capteur de température et une consigne de température .
21. Application d'un dispositif de régulation thermique selon l'une quelconque des revendications 1 à 20 au refroidissement d'une antenne active comprenant des tuiles (85) radio-fréquence (RF), dont les caractéristiques dimensionnelles sont semblables et les caractéristiques de puissance dissipée éventuellement différentes, et qui sont disposées, de préférence régulièrement, sur une structure porteuse (88) en forme de quadrillage, caractérisée en ce qu'au moins un réseau (80) de caloducs (81) dudit dispositif est intégré dans ladite structure porteuse (88) de l'antenne active, et la chaleur collectée par ledit réseau (80) est évacuée vers au moins un radiateur par au moins un prolongement dudit réseau (80) de caloducs (81) et/ou au moins un autre réseau de caloducs et/ou au moins une boucle fluide (89) dudit dispositif.
22. Application d'un dispositif de régulation thermique selon l'une quelconque des revendications 1 à 20 au refroidissement d'un mur porteur d'équipements électroniques (72a, 72b, 72c) , caractérisée en ce qu'au moins un réseau (70) de caloducs (71) dudit dispositif est fixé sur au moins une peau thermiquement conductrice du mur, et, de préférence, entre deux peaux thermiquement conductrices dudit mur, et la chaleur collectée par ledit au moins un réseau (70) de caloducs (71) est évacuée vers au moins une source froide (76), tel qu'un radiateur, par au moins un prolongement dudit réseau de caloducs et/ou au moins un autre réseau (70) de caloducs (71) et/ou au moins une boucle fluide (73) dudit dispositif .
PCT/FR2009/052156 2008-11-12 2009-11-09 Dispositif de régulation thermique à réseau de caloducs capillaires interconnectés WO2010055253A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/128,192 US20110209864A1 (en) 2008-11-12 2009-11-09 Thermal control device with network of interconnected capillary heat pipes
ES09768164T ES2404083T3 (es) 2008-11-12 2009-11-09 Dispositivo de regulación térmica de red de tubos de calor capilares interconectados
CN2009801503217A CN102245995B (zh) 2008-11-12 2009-11-09 具有相互连通的毛细热管网络的热控器件
EP09768164A EP2344827B1 (fr) 2008-11-12 2009-11-09 Dispositif de régulation thermique à réseau de caloducs capillaires interconnectés

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0857643A FR2938323B1 (fr) 2008-11-12 2008-11-12 Dispositif de regulation thermique a reseau de caloducs capillaires interconnectes
FR0857643 2008-11-12

Publications (1)

Publication Number Publication Date
WO2010055253A1 true WO2010055253A1 (fr) 2010-05-20

Family

ID=41227265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/052156 WO2010055253A1 (fr) 2008-11-12 2009-11-09 Dispositif de régulation thermique à réseau de caloducs capillaires interconnectés

Country Status (6)

Country Link
US (1) US20110209864A1 (fr)
EP (1) EP2344827B1 (fr)
CN (1) CN102245995B (fr)
ES (1) ES2404083T3 (fr)
FR (1) FR2938323B1 (fr)
WO (1) WO2010055253A1 (fr)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202012012960U1 (de) * 2012-01-05 2014-11-17 BSH Bosch und Siemens Hausgeräte GmbH Heizeinrichtung in einem wasserführenden Haushaltsgerät
US9921003B2 (en) * 2012-01-19 2018-03-20 Lockheed Martin Corporation Wickless heat pipe and thermal ground plane
US20130206369A1 (en) * 2012-02-13 2013-08-15 Wei-I Lin Heat dissipating device
CN102683307B (zh) * 2012-05-31 2014-11-05 东南大学 复合式角管型平板自激励毛细热管cpu散热器
CN102954527B (zh) * 2012-11-22 2016-04-20 无锡鸿声铝业有限公司 艺术散热器
CN103241696A (zh) * 2013-04-23 2013-08-14 华南理工大学 一种多腔体式热管工质的气态灌注法及其设备
US10660236B2 (en) 2014-04-08 2020-05-19 General Electric Company Systems and methods for using additive manufacturing for thermal management
US10106242B1 (en) 2014-08-12 2018-10-23 The Boeing Company Mechanically attached thermal protection system
US20160047604A1 (en) * 2014-08-15 2016-02-18 Ge Aviation Systems Llc Heat dissipating assembly
US10356945B2 (en) 2015-01-08 2019-07-16 General Electric Company System and method for thermal management using vapor chamber
US9909448B2 (en) 2015-04-15 2018-03-06 General Electric Company Gas turbine engine component with integrated heat pipe
CN208016185U (zh) * 2015-10-08 2018-10-26 古河电气工业株式会社 散热器
FR3043764B1 (fr) * 2015-11-16 2018-01-05 Airbus Defence And Space Sas Dispositif d'echange thermique pour satellite artificiel, mur et assemblage de murs comprenant un tel dispositif d'echange thermique
US10455735B2 (en) 2016-03-03 2019-10-22 Coolanyp, LLC Self-organizing thermodynamic system
US10694641B2 (en) * 2016-04-29 2020-06-23 Intel Corporation Wickless capillary driven constrained vapor bubble heat pipes for application in electronic devices with various system platforms
CN106017171A (zh) * 2016-06-05 2016-10-12 山东商业职业技术学院 一种基于3d热管网络导热的蓄冷系统
US10209009B2 (en) 2016-06-21 2019-02-19 General Electric Company Heat exchanger including passageways
CN106482562B (zh) * 2016-11-01 2019-05-14 华南理工大学 一种拼接式空间多支路分布热管及其制备方法
CN106482561B (zh) * 2016-11-01 2018-05-15 华南理工大学 一种基于二次烧结成型的多支路热管及其制备方法
US20180156545A1 (en) * 2016-12-05 2018-06-07 Microsoft Technology Licensing, Llc Vapor chamber with three-dimensional printed spanning structure
DE102017200524A1 (de) * 2017-01-13 2018-07-19 Siemens Aktiengesellschaft Kühlvorrichtung mit einem Wärmerohr und einem Latentwärmespeicher, Verfahren zum Herstellen derselben und elektronische Schaltung
EP3421917B1 (fr) * 2017-06-30 2021-06-02 Nokia Solutions and Networks Oy Structures de mèche et réseaux de caloducs
CN108225069A (zh) * 2018-02-13 2018-06-29 山东大学 一种连通管间距变化的重力热管
CN108225071A (zh) * 2018-02-13 2018-06-29 山东大学 一种连通管管径变化的重力热管
CN110492216A (zh) * 2018-05-15 2019-11-22 康普技术有限责任公司 具有完全内嵌无线电和带集成散热结构的壳体的基站天线
CN108901174A (zh) * 2018-05-31 2018-11-27 孙莅宁 用于电子设备的三维网架结构形式的散热器
GB2575661B (en) * 2018-07-18 2020-08-19 Flint Eng Ltd Thermal management system
US11467637B2 (en) 2018-07-31 2022-10-11 Wuxi Kalannipu Thermal Management Technology Co., Ltd. Modular computer cooling system
US11076510B2 (en) * 2018-08-13 2021-07-27 Facebook Technologies, Llc Heat management device and method of manufacture
JP7153515B2 (ja) * 2018-09-25 2022-10-14 新光電気工業株式会社 ループ型ヒートパイプ
US20200166293A1 (en) * 2018-11-27 2020-05-28 Hamilton Sundstrand Corporation Weaved cross-flow heat exchanger and method of forming a heat exchanger
EP3816559A1 (fr) * 2019-10-29 2021-05-05 ABB Schweiz AG Dispositif de transfert de chaleur à deux phases pour la dissipation thermique
US11051428B2 (en) * 2019-10-31 2021-06-29 Hamilton Sunstrand Corporation Oscillating heat pipe integrated thermal management system for power electronics
US11260953B2 (en) 2019-11-15 2022-03-01 General Electric Company System and method for cooling a leading edge of a high speed vehicle
US11260976B2 (en) 2019-11-15 2022-03-01 General Electric Company System for reducing thermal stresses in a leading edge of a high speed vehicle
US11267551B2 (en) 2019-11-15 2022-03-08 General Electric Company System and method for cooling a leading edge of a high speed vehicle
US11427330B2 (en) 2019-11-15 2022-08-30 General Electric Company System and method for cooling a leading edge of a high speed vehicle
US11352120B2 (en) 2019-11-15 2022-06-07 General Electric Company System and method for cooling a leading edge of a high speed vehicle
CN112178798B (zh) * 2020-09-28 2022-07-19 青岛海尔空调器有限总公司 空调室外机、用于调节空调室外机的方法及装置
WO2022120461A1 (fr) * 2020-11-30 2022-06-16 Macdonald, Dettwiler And Associates Corporation Antenne réseau à rayonnement direct ("dra"), procédé d'assemblage d'une antenne dra et système de gestion de la chaleur générée par une antenne dra
US11745847B2 (en) 2020-12-08 2023-09-05 General Electric Company System and method for cooling a leading edge of a high speed vehicle
US11407488B2 (en) 2020-12-14 2022-08-09 General Electric Company System and method for cooling a leading edge of a high speed vehicle
US11577817B2 (en) 2021-02-11 2023-02-14 General Electric Company System and method for cooling a leading edge of a high speed vehicle
FR3122252B1 (fr) * 2021-04-26 2023-04-28 Airbus Defence & Space Sas Structure thermomécanique pour plan focal d’instrument d’observation spatiale
CN113782874B (zh) * 2021-08-13 2023-11-10 哈尔滨工业大学(深圳) 动力电池热管理系统
CN115342668A (zh) * 2022-07-18 2022-11-15 上海格熵航天科技有限公司 一种多规格并联型环路热管蒸发器的模块化组件及蒸发器
CN115548523B (zh) * 2022-09-30 2024-01-23 厦门海辰储能科技股份有限公司 电芯、电池模组、电池包及储能设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4921041A (en) 1987-06-23 1990-05-01 Actronics Kabushiki Kaisha Structure of a heat pipe
US5216580A (en) * 1992-01-14 1993-06-01 Sun Microsystems, Inc. Optimized integral heat pipe and electronic circuit module arrangement
US5219020A (en) 1990-11-22 1993-06-15 Actronics Kabushiki Kaisha Structure of micro-heat pipe
US5506032A (en) 1994-04-08 1996-04-09 Martin Marietta Corporation Structural panel having integral heat pipe network
US5806803A (en) 1995-11-30 1998-09-15 Hughes Electronics Corporation Spacecraft radiator cooling system
US6269865B1 (en) 1997-08-22 2001-08-07 Bin-Juine Huang Network-type heat pipe device
US20040105235A1 (en) * 2002-12-02 2004-06-03 Tai-Sol Electronics Co., Ltd. Heat sink
US6776220B1 (en) 1999-08-19 2004-08-17 Space Systems/Loral, Inc Spacecraft radiator system using crossing heat pipes
US20080035310A1 (en) * 2006-08-09 2008-02-14 Hul-Chun Hsu Isothermal Plate Module

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6189492A (ja) * 1984-10-08 1986-05-07 Nec Corp ヒ−トパイプ埋込型サンドウイツチパネル
US5253702A (en) * 1992-01-14 1993-10-19 Sun Microsystems, Inc. Integral heat pipe, heat exchanger, and clamping plate
US6860615B2 (en) * 1999-01-06 2005-03-01 Armament Systems And Procedures, Inc. LED flashlight with integral keyring clip
US6237223B1 (en) * 1999-05-06 2001-05-29 Chip Coolers, Inc. Method of forming a phase change heat sink
JP2003083688A (ja) * 2001-09-07 2003-03-19 Furukawa Electric Co Ltd:The フィン一体型平面型ヒートパイプおよびその製造方法
US20050173098A1 (en) * 2003-06-10 2005-08-11 Connors Matthew J. Three dimensional vapor chamber
CN1318818C (zh) * 2003-12-13 2007-05-30 鸿富锦精密工业(深圳)有限公司 热管及其制备方法
JP4714638B2 (ja) * 2006-05-25 2011-06-29 富士通株式会社 ヒートシンク

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4921041A (en) 1987-06-23 1990-05-01 Actronics Kabushiki Kaisha Structure of a heat pipe
US5219020A (en) 1990-11-22 1993-06-15 Actronics Kabushiki Kaisha Structure of micro-heat pipe
US5216580A (en) * 1992-01-14 1993-06-01 Sun Microsystems, Inc. Optimized integral heat pipe and electronic circuit module arrangement
US5506032A (en) 1994-04-08 1996-04-09 Martin Marietta Corporation Structural panel having integral heat pipe network
US5806803A (en) 1995-11-30 1998-09-15 Hughes Electronics Corporation Spacecraft radiator cooling system
US6269865B1 (en) 1997-08-22 2001-08-07 Bin-Juine Huang Network-type heat pipe device
US6776220B1 (en) 1999-08-19 2004-08-17 Space Systems/Loral, Inc Spacecraft radiator system using crossing heat pipes
US20040105235A1 (en) * 2002-12-02 2004-06-03 Tai-Sol Electronics Co., Ltd. Heat sink
US20080035310A1 (en) * 2006-08-09 2008-02-14 Hul-Chun Hsu Isothermal Plate Module

Also Published As

Publication number Publication date
CN102245995A (zh) 2011-11-16
CN102245995B (zh) 2013-08-28
EP2344827A1 (fr) 2011-07-20
EP2344827B1 (fr) 2013-02-27
US20110209864A1 (en) 2011-09-01
FR2938323B1 (fr) 2010-12-24
ES2404083T3 (es) 2013-05-23
FR2938323A1 (fr) 2010-05-14

Similar Documents

Publication Publication Date Title
EP2344827B1 (fr) Dispositif de régulation thermique à réseau de caloducs capillaires interconnectés
EP3207324B1 (fr) Caloduc plat avec fonction reservoir
EP1293428B1 (fr) Dispositif de transfert de chaleur
EP1366990B1 (fr) Dispositif de transfert de chaleur pour satellite comprenant un évaporateur
EP2795226B1 (fr) Dispositif de refroidissement
EP2181301B1 (fr) Dispositif passif de regulation thermique a micro boucle fluide a pompage capillaire
EP3011249B1 (fr) Refroidissement de composants électroniques et/ou électriques par caloduc pulsé et élément de conduction thermique
EP2520889A1 (fr) Dispositif et systeme de transfert de la chaleur
WO2017085399A1 (fr) Dispositif d'échange thermique pour satellite artificiel, mur et assemblage de murs comprenant un tel dispositif d'échange thermique
EP2861928B1 (fr) Dispositif de contrôle thermique
EP1068481B1 (fr) Dispositif d'echanges thermiques a fluide biphasique actif et procede de fabrication d'un tel dispositif
FR3032027A1 (fr) Boucle diphasique de refroidissement a evaporateurs satellites
FR2998098A1 (fr) Module de stockage d'energie electrique comportant un caloduc disposant de branches inserees entre les cellules
WO2016042239A1 (fr) Caloduc et procédé de réalisation d'un caloduc.
FR2783312A1 (fr) Boucle fluide a pompage capillaire
FR2741427A1 (fr) Circuit de transfert de chaleur a deux phases
FR3091340A1 (fr) Système de stockage/libération thermochimique d’énergie à air humide à circulation gazeuse améliorée
FR2804750A1 (fr) Reacteur a adsorption reversible solide/gaz et ensemble thermiquement conducteur pour un tel reacteur

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980150321.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09768164

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009768164

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13128192

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 3746/CHENP/2011

Country of ref document: IN