WO2010055227A1 - Elément de structure comprenant du bois et du béton - Google Patents

Elément de structure comprenant du bois et du béton Download PDF

Info

Publication number
WO2010055227A1
WO2010055227A1 PCT/FR2009/001303 FR2009001303W WO2010055227A1 WO 2010055227 A1 WO2010055227 A1 WO 2010055227A1 FR 2009001303 W FR2009001303 W FR 2009001303W WO 2010055227 A1 WO2010055227 A1 WO 2010055227A1
Authority
WO
WIPO (PCT)
Prior art keywords
high performance
module
modules
performance concrete
wood
Prior art date
Application number
PCT/FR2009/001303
Other languages
English (en)
Other versions
WO2010055227A8 (fr
Inventor
Gilles Chauvillard
Emmanuel Ferrier
Bruno Zuber
Original Assignee
Lafarge
Universite Claude Bernard Lyon I
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lafarge, Universite Claude Bernard Lyon I filed Critical Lafarge
Publication of WO2010055227A1 publication Critical patent/WO2010055227A1/fr
Publication of WO2010055227A8 publication Critical patent/WO2010055227A8/fr

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/29Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/26Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/12Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of wood, e.g. with reinforcements, with tensioning members
    • E04C3/122Laminated

Definitions

  • Structural element comprising wood and concrete
  • the present invention relates to a new structural element for the field of construction combining two materials: wood and ultra high performance concrete.
  • wood has the major disadvantage of being less resistant than other materials such as steel or reinforced concrete. This disadvantage necessitates an increase in the size of the wooden structure elements, which goes against the current architectural needs for lightening the structures.
  • the problem to be solved by the invention is to provide a new means adapted to improve the mechanical performance of the structural elements while limiting the amount of materials used.
  • the inventors have demonstrated that it is possible to use both wood and ultra high performance concrete, to obtain structural elements meeting the expectations of users.
  • the present invention provides a method of manufacturing a structural element comprising the following steps: i. glue using at least two ultra-high performance concrete modules with a structural adhesive; ii. assembling and bonding the ultra high performance concrete modules obtained in step i with at least one wooden module; iii. pressing the element obtained in step ii; at least two ultra high performance concrete modules are not glued to each other; and at least two ultra high performance concrete modules located in the outer portion of the structural member obtained in step iii.
  • the invention offers decisive advantages, in particular the structural element according to the invention may have improved mechanical performance compared to existing solutions, and particularly with respect to a glued laminated wood structure element.
  • the structural element according to the invention may have improved bending stiffness and / or ultimate load.
  • the invention offers another advantage that the scope of the structural elements according to the invention can be improved with respect to glued laminated wood structure elements.
  • the structural elements according to the invention may not show slippage between the different modules of a structural element.
  • the structural elements according to the invention may be less sensitive to instability (spill) with respect to the existing structural elements, and in particular with respect to glued laminated wood beams.
  • the structural elements according to the invention have the advantage of reducing the size of the structural elements, particularly with respect to glued laminated wood. This reduction in size reduces the consumption of building materials
  • Another advantage of the invention is a lightening of the structural elements according to the invention, in particular in comparison with steel or concrete structural members.
  • the invention offers another advantage of making it possible to enhance the use of wood in the structural elements, by improving the characteristics of the structural elements.
  • the invention can make it possible to efficiently conserve qualities of wood not or little used in the known elements of structure. This recovery of the wood makes it possible to reduce the CO 2 emissions during the production of the structural elements according to the invention.
  • the invention has the advantage of being able to be implemented in all industries, including the building industry (individual houses, collective or industrial buildings, self-supporting floors, etc.), and all markets construction (building, civil engineering or prefabrication plant).
  • the invention relates to a method of manufacturing a structural element comprising the following steps: i. glue using at least two ultra-high performance concrete modules with a structural adhesive; ii. assembling and bonding the ultra high performance concrete modules obtained in step i with at least one wooden module; iii. pressing the element obtained in step ii; at least two ultra high performance concrete modules are not glued to each other; and at least two ultra high performance concrete modules located in the outer portion of the structural element obtained in step v.
  • structural element is meant according to the present invention a carrier element which ensures the integrity of a construction (building, structure, etc.) and the maintenance of non-structural elements (equipment, lining, etc.). ).
  • a structural element allows the transfer of different forces applied to the construction to the ground. It ensures the construction strength and stability. It is usually subject to very important constraints.
  • a structural element may for example be a beam, a panel or a self-supporting floor.
  • module is meant according to the present invention a piece of wood or ultra high performance concrete.
  • the ultra high performance concrete modules according to the invention are made of hardened concrete.
  • hardened concrete is meant according to the present invention a concrete whose setting and hardening are completed.
  • wood By the term “wood” is meant according to the present invention structural solid wood (pieces of wood sawn from logs or larger pieces of wood to withstand the forces applied to a structure comprising them), laminated wood, glued laminated wood, reconstituted wood (a piece of wood obtained by jointing and gluing solid wood).
  • log is meant according to the present invention a tree felled, lopped and still covered with bark.
  • ultra high performance concrete a concrete having a compressive strength greater than or equal to 100 MPa.
  • the ultra high performance concrete according to the invention also has a tensile strength greater than 8 MPa.
  • the ultra-high performance concrete according to the invention also has a modulus of elasticity greater than 40,000 MPa.
  • structural adhesive is meant according to the present invention an adhesive having sufficient strength to be used in a structural member. An assembly bonded with structural glue is able to withstand significant efforts.
  • a structural adhesive may in particular be characterized by a tensile strength ranging from 20 to 35 MPa.
  • a structural adhesive according to the invention may in particular be polyurethane, epoxide, or mixtures thereof.
  • structure By the term “structure” is meant according to the present invention a construction. This includes a bridge, a viaduct, a tunnel or any construction intended for the crossing of a natural or non-natural obstacle by a road and / or a railway or a free space in the case of a building.
  • the concept of a structure also includes the frames of a building.
  • scope is meant according to the present invention the maximum free length, that is to say between two supports, a structural element placed horizontally in a construction, and supported by one or more points of 'support.
  • extremeate load is meant according to the present invention the maximum load that can support a structural member before breaking.
  • spike is meant according to the present invention the material instability related to the buckling of the compressed part of a structural element.
  • buckling or buckling is meant according to the present invention the phenomenon of instability of a material, which, subjected to a compressive force, tends to bend and deform in a direction perpendicular to the force compression.
  • the method further comprises the steps of: iv. glue with structural adhesive at least one additional wooden module; v. assembling and bonding the additional wood module obtained in step iv with one of the ultra high performance concrete modules obtained in step i or with the wooden module of step ii.
  • the additional wooden module obtained in step iv is assembled and bonded with the wooden module of step ii before assembly and bonding with the ultra high performance concrete modules obtained in step i.
  • the additional wood module obtained in step iv is assembled and bonded with the wooden module of step ii after bonding and assembly with a first ultra concrete module tall performance obtained in step i and before gluing and assembly with a last ultra high performance concrete module obtained in step i.
  • last ultra high performance concrete module one of the two outer modules of the structural element according to the invention.
  • At least one additional ultra-high performance concrete module is glued, assembled and glued either with the wooden module of step ii, or with the additional wooden module of step iv .
  • at least one module can undergo a surface treatment before its sizing.
  • a surface treatment according to the invention may for example be a chemical preparation, stripping, sanding or sanding.
  • sanding can be used for wooden modules.
  • sandblasting can be used for ultra-high performance concrete modules.
  • At least two wooden modules may be in the form of a glued laminated wood element pre-fabricated, that is prepared prior to assembly and bonding with at least two ultra-high concrete modules. performance in the outer part of the structural element.
  • At least one ultra high performance concrete module comprises at least one armature.
  • the reinforcements according to the present invention may in particular be made of steel, polymer reinforced with glass or carbon fibers, or mixtures thereof.
  • only the lower ultra high performance concrete module comprises at least one armature.
  • the term "lower module” according to the present invention an ultra high performance concrete module which is located in the outer part of a structural element according to the invention on the underside of said structural element.
  • the term “upper module” according to the present invention an ultra high performance concrete module which is located in the outer part of a structural element according to the invention on the upper face of said structural element.
  • At least one ultra high performance concrete module comprises at least one fiber.
  • the fibers according to the invention may in particular be of metallic material, mineral material, organic material, composite material or mixtures thereof.
  • the fibers according to the invention can be made of steel, carbon, glass, synthetic, or mixtures thereof.
  • the fibers according to the invention are made of steel.
  • composite material means an assembly of at least two immiscible materials but having a high adhesion capacity. The new material thus produced has properties that the elements alone do not possess.
  • a composite material there may be mentioned, for example, glass fibers, carbon fibers, plywood or aramid fiber also called Kevlar.
  • the bonding according to the invention can be carried out with the structural adhesives commonly used in the field of the building and as defined according to the invention.
  • a structural adhesive according to the invention may in particular be polyurethane, epoxide, or mixtures thereof.
  • a variant of the method according to the invention can use an adhesive comprising a reduced resorcinol content. Examples of glues that can be used for assembling wooden modules are given below:
  • Carbamide resins urea / formalin (Caurite or Melocol H types)
  • the assembly of the wooden modules can be achieved by welding wood / wood.
  • the amount of structural adhesive used according to the process of the invention varies from 2 to 5, preferably from 3 to 4 kg of glue per unit of bonding area (m 2 ).
  • the structural adhesive of the method according to the invention can be applied to the wood modules or the ultra high performance concrete modules.
  • the structural adhesive is applied to the ultra high performance concrete modules.
  • the structural adhesive can be applied in a layer whose thickness varies from 0.5 to 7 mm, preferably from 1 to 5 mm.
  • the thickness of the glue layer depends in particular on the viscosity of the glue.
  • the structural adhesive can be applied in any known manner, and in particular using a spatula.
  • the pressurization of the structural element can make it possible to obtain a final adhesive thickness varying from 0.3 to 3 mm, preferably from 0.5 to 2 mm.
  • the pressurization of the process according to the invention is carried out before the end of the DPU (practical duration of use) of the glue, that is to say before the hardening of the glue.
  • the pressurization of the process according to the invention is carried out for a period varying from 12 to 48 hours, advantageously for 24 hours.
  • the pressurization is carried out until all the excess glue has been rejected.
  • the surplus of glue rejected at the time of pressurization can be wiped off before the glue hardens.
  • Another object according to the invention is a structural element comprising at least one wooden module and at least two ultra-high performance concrete modules glued together with a structural adhesive, in which at least two ultra-high concrete modules performance is not adhered to one another and at least two ultra-high performance concrete modules are located in the outer part of the structural element.
  • said structural element comprises a stack of at least three glued and adjacent wooden modules.
  • said structural element comprises a central wooden portion comprising the wooden module and comprising: a first wooden end portion to which is bonded one of the two ultra high performance concrete modules;
  • said structural element comprises at least two wooden modules and at least two ultra high performance concrete modules.
  • the structural element according to the present invention comprises at least one ultra high performance concrete module which comprises at least one reinforcement.
  • the reinforcements according to the present invention may in particular be made of steel, polymer reinforced with glass or carbon fibers, or mixtures thereof.
  • only the lower ultra high performance concrete module comprises at least one armature.
  • the structural element according to the present invention comprises at least one ultra high performance concrete module which comprises at least one fiber.
  • the fibers according to the invention may in particular be of metallic material, of mineral material, of organic material, or mixtures thereof.
  • the fibers according to the invention may be steel, carbon, glass, synthetic, or mixtures thereof.
  • the fibers according to the invention are made of steel.
  • the structural element according to the present invention may comprise structural adhesives commonly used in the building industry and as defined according to the invention.
  • a structural adhesive according to the invention may in particular be polyurethane, epoxide, or mixtures thereof.
  • a variant of the structural element according to the invention may comprise an adhesive comprising a reduced resorcinol ratio between two wooden modules. Examples of adhesives which may be included in the structural element according to the invention between two wooden modules are given below:
  • Carbamide resins urea / formalin (Caurite or Melocol H types) • Sulfo carbamide resins: thiourea formalin
  • Another object according to the invention is a structural element that can be obtained by the method according to the invention as described above.
  • the characteristics of the structural element thus obtained are as described above.
  • Another object according to the invention is the use of at least one structural element according to the invention as described above for the realization of a building or a work.
  • Another object according to the invention is a building or structure comprising at least one structural element according to the invention as described above.
  • FIG. 1 represents an example of a beam according to the invention
  • FIG. 2 represents a step of manufacturing an example of a beam according to the invention
  • FIG. 3 represents a first embodiment of a self-supporting panel according to the invention
  • Figures 4 and 5 show a second embodiment of a self-supporting panel according to the invention
  • FIG. 6 represents a third embodiment of a self-supporting panel according to the invention
  • FIG. 7 represents the loading conditions for the bending tests of an exemplary embodiment of a beam according to the invention
  • FIG. 6 depicts the loading conditions for the bending tests of another embodiment of a beam according to the invention
  • FIG. 9 represents an example of a system for blocking horizontal displacements of an exemplary embodiment of a beam according to the invention
  • FIG. 10 represents an exemplary instrumentation of an exemplary embodiment of a beam according to the invention.
  • FIGS 11 and 12 show curves of evolution of the load applied to different examples of panels according to the arrow.
  • the same elements have been designated with the same references in the various figures.
  • FIG. 1 represents an exemplary embodiment of a beam 10 according to the invention comprising a lower module 12 of ultra-high performance fiber reinforced concrete (UHPCF) reinforced with two reinforcements (not visible in FIG. 1), a central portion 13, also called wooden beam, comprising wooden modules 14 and an upper module 16 ultra high performance fiber concrete.
  • UHPCF ultra-high performance fiber reinforced concrete
  • the central wooden portion 13 comprises five wooden modules 14.
  • FIG. 2 shows a step of manufacturing a beam 10 according to the invention in cross section comprising six wooden modules 14.
  • the six wooden modules 14 have been assembled, and two concrete modules 12, 16 have been prepared to be glued to the six wooden modules 14 already assembled.
  • the lower module 12 of the beam 10 shown in Figure 2 comprises three frames 18 of diameter 0 r .
  • b w represents the width of the wooden modules 14, b c i represents the width of the lower module 12 and b c2 represents the width of the upper module 16.
  • the width of the modules 12, 16 lower b c1 and higher b c2 in UHPC can be identical to the width of the wooden beam b w as it is the case in Figures 1 and 2.
  • h w represents the thickness of a wooden module 14.
  • h w represents the height of the beam wooden, that is to say, all the wooden modules 14 assembled.
  • h c1 and h c2 represent respectively the height of the lower modules 12 and upper 16 ultra high performance concrete.
  • L span represents the span of the beam 10.
  • H represents the height of the beam 10.
  • FIG. 3 is a sectional view of a first exemplary embodiment of a self-supporting panel 20 according to the invention, comprising a V-shaped glue-laminated center piece 13, a lower-level ultra-high performance concrete module 12 comprising two frames 18 and an upper module ultra high performance concrete 16.
  • Figures 4 and 5 are respectively a cross section and a perspective view of a second embodiment of a self-supporting panel 30 according to the invention.
  • the central portion 22 of wood comprises four types of elements: a decking 32, a frieze 34, four ribs 36 and two ribs 38.
  • the central portion 22 may correspond to a wooden panel marketed by the company Colladello.
  • the decking 32 is composed of planks 40 juxtaposed, for example solid wood, arranged transversely.
  • the decking 32 comprises a flat top face 42 covered by the upper module 16 and a flat lower face 44.
  • Ribs 36 and ribs 38 form two sets 39 that extend longitudinally side by side and each have a V-shaped section.
  • Each frame 38 comprises a flat bottom face 46, covered by the upper module 16, and an upper surface 48.
  • Each pair of ribs 36 connects the upper surface 48 of the rib 38 associated with the lower face 44 of the decking 32.
  • the frieze 34 comprises boards 50 arranged longitudinally on the lower face 44 of the decking 32 on either side of the pairs of ribs 36.
  • the ribs 36 may be made of glued laminated wood or BLC.
  • the upper modules 16 and lower 12 may comprise reinforcements.
  • the panel 40 has a symmetrical structure along a longitudinal plane of symmetry.
  • FIG. 6 is a partial view, in section, of a third embodiment of a self-supporting panel 40 according to the invention.
  • the panel 40 corresponds to a "half panel 30", that is to say that, with respect to the panel 30, the panel 40 comprises only one set 39 having a section in the form of "V".
  • the lower module 12 comprises two different types of reinforcement: two metal frames 52 and a frame 54 fiberglass.
  • the width (b w ) of the wooden beams 10 is 80 mm.
  • the height H of the control beams and beams 10 according to the invention are defined so as to have a constant beam height.
  • a height of 304 mm is retained for the glued laminated timber (BLC) control beams, consisting of 6 thick wood modules (h ⁇ ) 36 mm, and a height (h w ) of 228 mm for the beams 10 according to the invention.
  • the respective heights of concrete modules (h c1 and h c2 ) ultra high performance fiber (UHPC) are then 36 mm for the upper module 16 and 40 mm for the lower module 12.
  • Two litters (L span ) are defined, a first of 2 meters and a second one of 5.1 m.
  • the height / span ratio of 17 is in accordance with ASTM D 3737 for the 5.1 m range.
  • Figures 2 (Geometry of the beam sections) and 1 (Geometry of the beam) and Table 1 describe the geometries selected for the tests.
  • All the beams are assembled by gluing using a structural adhesive.
  • a structural adhesive In order to compare the effectiveness of the different reinforcement solutions selected, and given the difference in modulus of elasticity between steel reinforcement and glass-epoxy and carbon-epoxy composite, it is proposed to take a axial stiffness of reinforcements constant.
  • the parametric variation then relates to the section of reinforcement diameter 0 r , to obtain a constant axial stiffness.
  • GFRP Glass Fiber Reinforced Polymer (PRFV) Definition of panel section geometry 30 for examples
  • the height h w is 251 mm. More specifically, the decking 32 has a thickness of 27 mm, the frieze a thickness of 13 mm and each set 39 has a height of 224 mm.
  • the height h c1 of the upper module 16 is 25 mm and the height h C2 of the lower module 12 is 35 mm.
  • the width b c1 of each lower module 12 is 106 mm and the width b C2 of the upper module 16 is 1200 mm.
  • the gap between the two lower modules 12 is 520 mm and the gap between the two sets 39 at the decking 32 is 302 mm.
  • a control panel is used which has the same dimensions as the panel 30 but does not include lower and upper modules 12, 16 made of ultra high performance fiber concrete.
  • the height h w is 251 mm. More specifically, the decking 32 has a thickness of 27 mm, the frieze a thickness of 13 mm and each set 39 has a height of 224 mm.
  • the height h c1 of the upper module 16 is 25 mm and the height h c2 of the lower module 12 is 35 mm.
  • the width b c1 of each lower module 12 is 106 mm and the width b c2 of the upper module 16 is 600 mm.
  • the length Lspan is 6000 mm.
  • a control panel which has the same dimensions as the panel 40 but does not include lower and upper modules 12, 16 made of ultra high performance fiber concrete. Manufacture of beams and panels 30. 40. Properties of ultra high performance concrete
  • the ultra high performance concrete modules 12, 16 were prepared from two distinct mixes: the first for the 2.3 m long modules and the second for the 5.5 m long modules.
  • the quantities of each material needed for each of the different mixes are defined by Table 3.
  • the plasticizer is Optima 100 (Supplier: Chryso).
  • Table 3 ' composition of the premix
  • the cement is a cement HTS (High Silicates Content) (Supplier: Lafarge).
  • Silica smoke is NS980 (Supplier: SEPR).
  • the filler is a limestone filler (Durcal 5, Supplier: Omya).
  • Sand is siliceous sand (BE01, Supplier: Sifraco).
  • the mixing is carried out according to the following ultra-high performance concrete mixing protocol with introduction of part of the water and half of the plasticizer in a first step and then the rest of the plasticizer after 7 min.
  • the metal fibers (FM) are then added at the end of mixing, when the mixture is fluid and homogeneous.
  • the modules are poured from one end to the other in successive passes so as to completely fill the molds.
  • the mechanical properties in flexural and compressive tensile strength of the ultra high performance concrete of each batch are controlled by 4-point bending tests on prisms of dimensions 75 x 75 x 250 mm to define the resistances. in flexural tensile and on cylindrical specimens of diameter 100 mm and height 180 mm for compressive strengths.
  • the test methods are in accordance with the recommendations of the AFGC (Ultra High Performance Fiber Reinforced Concrete, Interim Recommendation, January 2002, Scientific and Technical Documents, ⁇ 1.3 and ⁇ 1.4.2).
  • the tests are driven in force with a load ramp rate of 1960 N / s for compression tests and 31 N / s for flexural tests.
  • test pieces are made and then tested after 98 days and 84 days of ambient air cure respectively for the two wastes.
  • the tests are carried out 24 hours after all the tests on beams.
  • the results of the tests are summarized in Tables 4 and 5.
  • two test pieces are removed from the calculation of the averages because they show a difference greater than 10% of the average value.
  • the average compressive strength is 174 MPa.
  • the bending tensile strength of 21 MPa and the flexural tensile cracking stress is 8.8 MPa.
  • the adhesives used are composed of an epoxy primer (Sikafloor® 156, Sika) and a filled epoxy adhesive (Sikadur® 30, Sika). Properties of wooden elements
  • the modules 14 in glued laminated wood are made of douglas-Fir pine grade 20F-E.
  • the mechanical properties of this grade of glued laminated wood are given by the supplier (Goodfellow) of wood and summarized in Table 6.
  • the beams are delivered treated for the outside. Sanding is done to obtain a rough and flat surface.
  • the central portion 13 corresponds to the model "Profile No. 2" marketed by the company Colladelo.
  • the central portion 13 corresponds to half of a central portion 13 of the panel 30 cut lengthwise along a plane of symmetry.
  • Fiber reinforced polymer composite reinforcement is Pultrall brand.
  • each lower module 12 comprises two straight rods of steel type HA 10 (high adhesion, diameter 10 mm) arranged longitudinally.
  • each lower module 12 comprises three carbon fiber rods arranged longitudinally, each rod having a diameter of 9.6 mm.
  • Each frame 18 is coated with at least 10 mm of concrete.
  • the frames 18 of the lower module 12 comprise two steel frames 52 and a glass fiber frame 54.
  • the steel frames 52 correspond, for example, to straight rods made of steel of the type HA 10 (high adhesion 10 mm diameter) whose axes are arranged longitudinally 15 mm from the lower face 46 of the frame 38 and the fiberglass reinforcement 54 corresponds to a fiberglass rod 12 mm in diameter, the diameter of which is 15 mm.
  • axis is disposed longitudinally 25 mm from the lower face 46 of the frame 38. Mise enuy of the beams 10 and panels 30. 40
  • the modules 12, 16 are manufactured by horizontal casting in a wooden mold. The casting is carried out from one end to the other of the formwork in one or two passages. No vibration of the mold is made. The free surface of ultra-high performance concrete is then sprinkled with a water sprayer and smoothed with a trowel to facilitate the flow of air bubbles. The free surface will then be the surface bonded to the central portion 13 in BLC.
  • the surface of the wood is prepared by sanding with a belt sander to obtain a clean and smooth surface finish
  • ultra-high performance concrete slabs are sandblasted and then bonded to bonded wood slab beams after a minimum of 28 days.
  • the bonding is carried out after 24 hours and after the application of a primer on the wood and the UHPC to be glued. A vertical pressure is maintained for 24 hours, the beams are then stored in a non-humid atmosphere before being tested. A 14-day period was observed between gluing and testing.
  • the tests are conducted in 4-point flexion with two spans, the first of 2 meters and the second of 5.1 meters.
  • the tests are conducted according to ASTM D3737-04 and ASTM D 4761-05.
  • the ratio carried on beam height is equal to 17.
  • the same ratio is equal to 6.5 and favors the shear stress at the expense of flexion, this will make it possible to evaluate the performance collage.
  • the center distances between the loads are respectively 600 mm (Fig. 7) for the first series of beams and 1400 mm for the second (Fig. 8). These distances meet the standard with a distance between the point of application of the load and the support greater than or equal to twice the height.
  • the beam 10 rests on two supports 62 spaced 2000 mm apart.
  • the loads are applied by a 500 kN capacity cylinder and a hydraulic unit.
  • the loading is ensured, according to the norm, by a piloting in displacement.
  • the duration of the test is between 10 s and 10 min and the speed of movement of the jack retained is 1 mm / min for the beams of 2 meters and 9 mm / min for the beams of 5.1 meters.
  • a horizontal displacement blocking system 64 shown schematically in FIG. 9, is disposed respectively at 30 cm on each side of the center of the beam. Loading device for panels 30, 40
  • the tests are conducted in a manner analogous to that described above for the beams 10 taking into account the dimensions of the panels 30, 40.
  • the tests are conducted in 4-point flexion.
  • the spacings between the loads are respectively 1000 mm for the panels 30 and 1500 mm for the panels 40.
  • the evolution of the deflection is measured by an LVDT sensor (Linear Variable Differential Transformer) of ⁇ 100 mm stroke located at the center of the beam (designated by the reference 66 in Figure 10).
  • the load is measured by a 250 kN capacity force sensor.
  • strain gauges 68 (10 mm grid length) bonded to the steels, then by at least four gauges 70 of 40 mm grid length bonded to the wood (Table 8)
  • the central section is instrumented on its height by at least six measuring points to trace the Navier diagrams.
  • Table 8 Distance between the gauge and the upper fiber of the beam [mm]
  • the evolution of the boom is measured by a displacement sensor type LVDT stroke 200 mm ⁇ 1 mm arranged in the center of the panel.
  • the load is measured by a 200 kN capacity force sensor.
  • Extensity gauges are placed on the panels 30, 40.
  • the strain gage gauges have a resistance of 120 ohms and the gate length used is 70 mm.
  • five gauges are arranged on the rib 36 of the panels 30, 40.
  • an additional gauge is glued on the free face of the upper module 16. UHPC. The gauges are placed at the mid-span of the panels.
  • the rib 36 is thus instrumented on its height by five measurement points for plotting the Navier diagrams.
  • Table 9 Distance, in millimeter, between the gauges and the lower face 44 of the decking 32
  • the analysis of the load-deflection curves has two to three distinct phases of behavior corresponding to the progressive damage of the constituent materials (concrete, reinforcements, wood).
  • the first corresponds to a non-cracked section behavior with a high rigidity of the beam.
  • the second phase of behavior is reached for a load value of the order of 12 kN for the beams of 2 meters of reach and order of 5 kN for 5.1 m span beams. This load value corresponds to the beginning of cracking of the module in armed UHPC.
  • the mode of rupture varies according to the geometrical configurations.
  • the spill predominates, despite the anti-spill feature in the center (Table 9).
  • the fracture for hybrid beams occurs for ultimate load values varying between 103 kN and 200 kN depending on the span and configuration of the beams, this occurs either by shearing in the glued laminated timber for the reinforced 2-meter beams, or by compression failure for beams of 5.1 m span (Table 9). It is important to note that there is no separation between the UHPC modules and the BLC beams.
  • the structural element according to the invention makes it possible to obtain particularly important deformation or stress values justifying the combination of the materials selected in this study.
  • FIG. 11 represents a curve 70 of evolution of the load applied to a control panel according to the arrow, a curve 72 of evolution of the load applied to a panel 30 according to the second embodiment of the invention comprising reinforcements 18 in steel depending on the arrow and a curve 74 of the evolution of the load applied to a panel 30 according to the second embodiment of the invention.
  • invention comprising composite armatures 18.
  • the curve 70 reflects an elastic behavior of the structure until reaching a value of 6000 daN and a break of the frame 38 of wood at the join between components of the frame. The behavior of the control panel is therefore linear elastic. The break is in the stretched part gradually, the slope remains the same between each break until the total ruin of the panel.
  • the breaking force FMax is 7200 daN.
  • the initial stiffness K1 calculated from the tangent at the origin of the curve 70 is 2 MN / m.
  • the second stiffness K2 corresponds to the sliding of the ribs 36 in the ribs 38.
  • the value of this stiffness is 1, 1 MN / m.
  • the sudden fall in effort followed by a gradual increase in effort corresponds to the appearance of cracks and the reorganization of the transfer of effort in the structure.
  • the ruin of the element then appeared for a FRupt load of 7105 daN and an arrow ⁇ Rupt of 60 mm.
  • the panel 30 according to the second embodiment of the invention reinforced by metal reinforcements, has a bi-linear elastic behavior with two distinct phases of behavior.
  • the rupture occurs at the level of the lower module 12 in the UHPC, at the chord 38 stretched then by detachment between the webs of the ribs 36 and the decking 32.
  • the stiffness K1 is equal to 9.3 MN / m.
  • the stiffness K2 is equal to 5.8 MN / m.
  • the crack opening force Fw is 3550 daN.
  • the breaking force FM is 15840 daN for an arrow ⁇ M of 26 mm.
  • the behavior after the first peak (or post-peak) shows that the efforts are redistributed in the structure after the rupture of the lower module 12 in UHPC.
  • the force value does not exceed 12000 daN and the rupture appears for an arrow ⁇ Rupt of 48 mm.
  • the panel 30 according to the second embodiment of the invention follows the same trends as those of the panels 30 reinforced by metal reinforcements.
  • the behavior before failure is bilinear and behavior after the first peak is present.
  • the stiffness K1 is equal to 10.4 MN / m.
  • the stiffness K2 is equal to 7.6 MN / m.
  • the force required for the crack opening Fw is 3296 daN.
  • the maximum FM force is 16166 daN for an arrow ⁇ M of 24.1 mm. At the ruin, the force value is close to the optimum since FRupt is 15536 daN and the rupture appears for an arrow ⁇ Rupt of 51.4 mm.
  • the reinforcement by the lower and upper modules 12, 16 in the UHPC multiplies the maximum force that the panel 30 can take up again. by 2.3.
  • the rigidity of the panel 30 is greatly increased, it is multiplied by 4.2 in the first phase and by 2.6 in the second.
  • FIG. 12 represents a curve 76 of evolution of the load applied to a control panel according to the arrow and a curve 78 of evolution of the load applied to a panel 40.
  • Curve 76 reflects an elastic behavior of the control panel until reaching a value of 2415 daN and a rupture of the lower frame 38 of wood in the central zone followed by a rupture of the lower lamellae of the ribs 36.
  • the behavior of the control panel is therefore linear elastic.
  • the rupture is done in the stretched part in a progressive way.
  • the breaking force FMax is 2415 daN and arrow ⁇ Rupt 94 mm for the control panel.
  • the panel 40 according to the third embodiment of the invention follows the same trends as those of the control panel.
  • the behavior before failure is bilinear and a post-peak behavior is present.
  • the force required for the crack opening of the frame 38 in BFUP Fw is 1320 daN.
  • the maximum force FM is 7712 daN for an arrow ⁇ M of 60 mm.
  • the breakage of the panel appeared by pulling the lower module 12 in BFUHP followed by the breaking of the wooden strips of the ribs 36.
  • the inventors have shown that the panels 40 according to the third embodiment of FIG.
  • the invention makes it possible to multiply the maximum force that the panel 40 can take up by 3.2.
  • the rigidity of the panel is greatly increased, it is multiplied by 6 in the first phase and by 4.2 in the second.

Abstract

La présente invention a pour objet un procédé de fabrication d'un élément de structure comprenant les étapes suivantes : i. encoller à l'aide d'une colle structurale au moins deux modules en béton ultra hautes performances; ii. assembler et coller les modules obtenus à l'étape i avec un module en bois; iii. éventuellement encoller à l'aide d'une colle structurale au moins un module en bois; iv. éventuellement assembler et coller le(s) module(s) obtenu(s) à l'étape iii soit avec les modules obtenus à l'étape i, soit avec le module en bois de l'étape ii; v. presser l'élément obtenu à l'étape ii ou à l'étape iv; et au moins deux modules en béton ultra hautes performances ne sont pas collés l'un sur l'autre; et au moins deux modules en béton ultra hautes performances se trouvent en partie extérieure de l'élément de structure obtenu à l'étape v.

Description

Elément de structure comprenant du bois et du béton
La présente invention a pour objet un nouvel élément de structure destiné au domaine de la construction associant deux matériaux : le bois et le béton ultra hautes performances.
Plusieurs critères sont à satisfaire pour répondre aux besoins du domaine de la construction : garantir de bonnes performances mécaniques, limiter l'impact sur l'environnement, et valider la fiabilité et la durabilité des matériaux.
Les solutions connues pour répondre à ces exigences sont les suivantes : sélection d'essences de bois de grande qualité, augmentation des sections des éléments de structure, ou utilisation d'autres matériaux que le bois (acier, béton). On connaît à titre d'exemples d'éléments de structure des poutres en bois lamelle collé, des poutres en acier ou encore des poutres en béton armé.
Cependant, ces solutions arrivent à leurs limites et ne sont pas complètement satisfaisantes. En effet, le bois présente l'inconvénient majeur d'être moins résistant que d'autres matériaux comme l'acier ou le béton armé. Cet inconvénient nécessite une augmentation de la taille des éléments de structure en bois, ce qui va à rencontre des besoins architecturaux actuels d'allégement des structures.
L'acier ou le béton sont quant à eux plus résistants, mais ils posent d'autres problématiques, notamment en termes d'impact sur l'environnement. Leur large utilisation est donc peu souhaitable en termes de développement durable.
Aussi le problème que se propose de résoudre l'invention est de fournir un nouveau moyen adapté pour améliorer les performances mécaniques des éléments de structure tout en limitant la quantité de matériaux utilisés. De manière inattendue, les inventeurs ont mis en évidence qu'il est possible d'utiliser à la fois du bois et du béton ultra hautes performances, pour obtenir des éléments de structure répondant aux attentes des utilisateurs.
Dans ce but la présente invention propose un procédé de fabrication d'un élément de structure comprenant les étapes suivantes : i. encoller à l'aide d'une colle structurale au moins deux modules en béton ultra hautes performances ; ii. assembler et coller les modules en béton ultra hautes performances obtenus à l'étape i avec au moins un module en bois ; iii. presser l'élément obtenu à l'étape ii ; au moins deux modules en béton ultra hautes performances n'étant pas collés l'un sur l'autre ; et au moins deux modules en béton ultra hautes performances se trouvant en partie extérieure de l'élément de structure obtenu à l'étape iii. L'invention offre des avantages déterminants, en particulier l'élément de structure selon l'invention peut présenter des performances mécaniques améliorées par rapport aux solutions existantes, et notamment par rapport à un élément de structure en bois lamelle collé.
Avantageusement, l'élément de structure selon l'invention peut présenter une rigidité en flexion et/ou une charge ultime améliorées.
L'invention offre comme autre avantage que la portée des éléments de structure selon l'invention peut être améliorée par rapport aux éléments de structure en bois lamelle collé.
Un autre avantage de la présente invention est que les éléments de structure selon l'invention peuvent ne pas présenter de glissement entre les différents modules d'un élément de structure. De même, les éléments de structure selon l'invention peuvent être moins sensibles à l'instabilité (déversement) par rapport aux éléments de structures existants, et notamment par rapport aux poutres en bois lamelle collé.
De plus, les éléments de structure selon l'invention présentent comme avantage une diminution de la taille des éléments de structure, notamment par rapport au bois lamelle collé. Cette diminution de taille permet de réduire la consommation en matériaux de construction
Un autre avantage de l'invention est un allégement des éléments de structure selon l'invention, notamment en comparaison avec des éléments de structure en acier ou en béton.
Enfin, l'invention offre comme autre avantage de permettre de valoriser l'utilisation du bois dans les éléments de structure, grâce à l'amélioration des caractéristiques des éléments de structure. De même, l'invention peut permettre de valoriser des qualités de bois pas ou peu utilisées dans les éléments de structure connus. Cette valorisation du bois permet de réduire les rejets de CO2 lors de la réalisation des éléments de structure selon l'invention. Finalement, l'invention a pour avantage de pouvoir être mise en œuvre dans toutes industries, et notamment l'industrie du bâtiment (maisons individuelles, bâtiments collectifs ou industriels, planchers auto-porteurs, etc.), et à l'ensemble des marchés de la construction (bâtiment, génie civil ou usine de préfabrication).
D'autres avantages et caractéristiques de l'invention apparaîtront clairement à la lecture de la description et des exemples donnés à titre purement illustratifs et non limitatifs qui vont suivre. L'invention concerne un procédé de fabrication d'un élément de structure comprenant les étapes suivantes : i. encoller à l'aide d'une colle structurale au moins deux modules en béton ultra hautes performances ; ii. assembler et coller les modules en béton ultra hautes performances obtenus à l'étape i avec au moins un module en bois ; iii. presser l'élément obtenu à l'étape ii ; au moins deux modules en béton ultra hautes performances n'étant pas collés l'un sur l'autre ; et au moins deux modules en béton ultra hautes performances se trouvant en partie extérieure de l'élément de structure obtenu à l'étape v. Par l'expression « élément de structure », on entend selon la présente invention un élément porteur qui assure l'intégrité d'une construction (bâtiment, ouvrage, etc.) et le maintien des éléments non structuraux (équipements, garnissage, etc.). Un élément de structure permet le transfert des différentes forces appliquées à la construction jusqu'au sol. Il permet d'assurer à la construction sa solidité et sa stabilité. Il est généralement soumis à des contraintes très importantes. Un élément de structure peut par exemple être une poutre, un panneau ou un plancher auto-porteur.
Par l'expression « module », on entend selon la présente invention une pièce en bois ou en béton ultra hautes performances. Les modules en béton ultra hautes performances selon l'invention sont en béton durci.
Par l'expression « béton durci » on entend selon la présente invention un béton dont la prise et le durcissement sont terminés.
Par l'expression « bois », on entend selon la présente invention des bois massifs structuraux (pièces de bois sciées à partir de grumes ou de pièces de bois de plus grandes dimensions permettant de supporter les forces appliquées à une structure les comprenant), des bois contrecollés, du bois lamelle collé, du bois reconstitué (pièce en bois obtenu par aboutage et collage de bois massifs).
Par l'expression « grume », on entend selon la présente invention un arbre abattu, ébranché et encore couvert d'écorce.
Par l'expression « béton ultra hautes performances », on entend selon la présente invention un béton présentant une résistance à la compression supérieure ou égale à 100 MPa. De préférence, le béton ultra hautes performances selon l'invention présente en outre une résistance à la traction supérieure à 8 MPa. Avantageusement, le béton ultra hautes performances selon l'invention présente en outre un module d'élasticité supérieur à 40 000 MPa. Par l'expression « colle structurale », on entend selon la présente invention une colle présentant une résistance suffisante pour être utilisée dans un élément de structure. Un assemblage collé avec de la colle structurale est capable de supporter des efforts importants. Une colle structurale peut notamment être caractérisée par une résistance en traction allant de 20 à 35 MPa. Une colle structurale selon l'invention peut notamment être du polyuréthane, de l'époxyde, ou leurs mélanges.
Par l'expression « ouvrage », on entend selon la présente invention une construction. On parle notamment d'ouvrage d'art pour un pont, un viaduc, un tunnel ou toute construction destinée au franchissement d'un obstacle naturel ou non par une route et/ou une voie ferrée ou un espace libre dans le cas d'un bâtiment. La notion d'ouvrage comprend également les ossatures d'un bâtiment.
Par l'expression « portée », on entend selon la présente invention la longueur maximale libre, c'est-à-dire entre deux appuis, d'un élément de structure placé horizontalement dans une construction, et soutenu par un ou plusieurs points d'appui. Par l'expression « charge ultime », on entend selon la présente invention la charge maximale que peut supporter un élément de structure avant de se casser.
Par l'expression « déversement », on entend selon la présente invention l'instabilité matérielle liée au flambage de la partie comprimée d'un élément de structure.
Par l'expression « flambage ou flambement », on entend selon la présente invention le phénomène d'instabilité d'un matériau, qui, soumis à une force de compression, a tendance à fléchir et à se déformer dans une direction perpendiculaire à la force de compression.
Selon une variante du procédé selon l'invention, le procédé comprend, en outre, les étapes consistant à : iv. encoller à l'aide d'une colle structurale au moins un module en bois supplémentaire ; v. assembler et coller le module en bois supplémentaire obtenu à l'étape iv avec l'un des modules en béton ultra hautes performances obtenus à l'étape i ou avec le module en bois de l'étape ii. Selon une variante du procédé selon l'invention, le module en bois supplémentaire obtenu à l'étape iv est assemblé et collé avec le module en bois de l'étape ii avant l'assemblage et le collage avec les modules en béton ultra hautes performances obtenus à l'étape i.
Selon une autre variante du procédé selon l'invention, le module en bois supplémentaire obtenu à l'étape iv est assemblé et collé avec le module en bois de l'étape ii après le collage et l'assemblage avec un premier module en béton ultra hautes performances obtenu à l'étape i et avant le collage et l'assemblage avec un dernier module en béton ultra hautes performances obtenu à l'étape i.
On entend par « dernier module en béton ultra hautes performances » selon la présente invention un des deux modules extérieurs de l'élément de structure selon l'invention.
Selon une variante du procédé selon l'invention, au moins un module supplémentaire en béton ultra hautes performances est encollé, assemblé et collé soit avec le module en bois de l'étape ii, soit avec le module en bois supplémentaire de l'étape iv. Selon une variante du procédé selon l'invention, au moins un module peut subir un traitement de surface avant son encollage. De préférence, tous les modules subissent un traitement de surface avant leur encollage. Un traitement de surface selon l'invention peut par exemple être une préparation chimique, un décapage, un sablage ou un ponçage. De préférence, on peut utiliser le ponçage pour les modules en bois. Avantageusement, on peut utiliser le sablage pour les modules en béton ultra hautes performances.
De préférence, au moins deux modules en bois peuvent se présenter sous forme d'un élément en bois lamelle collé pré-fabriqué, c'est-à-dire préparé avant l'assemblage et le collage avec au moins deux modules en béton ultra hautes performances en partie extérieure de l'élément de structure.
De préférence, au moins un module en béton ultra hautes performances comprend au moins une armature. Les armatures selon la présente invention peuvent notamment être en acier, polymère renforcé de fibres de verre ou de carbone, ou leurs mélanges. Selon une variante du procédé selon l'invention, seul le module inférieur en béton ultra hautes performances comprend au moins une armature. On entend par « module inférieur » selon la présente invention un module en béton ultra hautes performances qui se trouve en partie extérieure d'un élément de structure selon l'invention sur la face inférieure dudit élément de structure. De même, on entend par « module supérieur » selon la présente invention un module en béton ultra hautes performances qui se trouve en partie extérieure d'un élément de structure selon l'invention sur la face supérieure dudit élément de structure.
Avantageusement, au moins un module en béton ultra hautes performances comprend au moins une fibre. Les fibres selon l'invention peuvent notamment être en matériau métallique, en matériau minéral, en matériau organique, en matériau composite ou leurs mélanges. Par exemple, les fibres selon l'invention peuvent être en acier, en carbone, en verre, synthétique, ou leurs mélanges. Avantageusement, les fibres selon l'invention sont en acier. Par l'expression « matériau composite », on entend selon la présente invention un assemblage d'au moins deux matériaux non miscibles mais ayant une forte capacité d'adhésion. Le nouveau matériau ainsi réalisé possède des propriétés que les éléments seuls ne possèdent pas. A titre de matériau composite, on peut citer par exemple, les fibres de verre, les fibres de carbone, le contreplaqué ou la fibre d'aramide aussi appelé Kevlar.
Le collage selon l'invention peut être réalisé avec les colles structurales couramment utilisées dans le domaine du bâtiment et telles que définies selon l'invention. Une colle structurale selon l'invention peut notamment être du polyuréthane, de l'époxyde, ou leurs mélanges. En ce qui concerne le collage d'un module en bois sur un autre module en bois, une variante du procédé selon l'invention peut utiliser une colle comprenant un taux de résorcine réduit. Des exemples de colles qui peuvent être utilisées pour l'assemblage des modules en bois sont donnés ci-après :
• Colles de résines synthétiques thermodurcissables
• Combinaisons phénol / formol (type bakélite) ou crésol / formol • Combinaisons résorcine / formol, phénol / acétylène, furfurol / formol
• Résines de carbamide : urée / formol (types Caurite ou Mélocol H)
• Résines de sulfo carbamide : thio-urée formol
• Résines de mélamine : mélamine formol (type Mélocol M)
• Polyuréthane • Résines époxydes.
Selon une autre variante du procédé selon l'invention, l'assemblage des modules en bois peut être réalisé par soudage bois/bois.
La quantité de colle structurale utilisée selon le procédé de l'invention varie de 2 à 5, de préférence de 3 à 4 kg de colle par unité de surface de collage (m2). La colle structurale du procédé selon l'invention peut être appliquée sur les modules en bois ou sur les modules en béton ultra hautes performances. De préférence, la colle structurale est appliquée sur les modules en béton ultra hautes performances.
Avantageusement selon le procédé de l'invention, la colle structurale peut être appliquée en une couche dont l'épaisseur varie de 0,5 à 7 mm, de préférence de 1 à 5 mm. L'épaisseur de la couche de colle dépend notamment de la viscosité de la colle.
Selon le procédé de l'invention, la colle structurale peut être appliquée de toute manière connue, et en particulier à l'aide d'une spatule.
Selon le procédé de l'invention, la mise sous pression de l'élément de structure peut permettre d'obtenir une épaisseur de colle finale variant de 0,3 à 3 mm, de préférence de 0,5 à 2 mm. De préférence, la mise sous pression du procédé selon l'invention est réalisée avant la fin de la DPU (durée pratique d'utilisation) de la colle, c'est-à-dire avant le durcissement de la colle. Avantageusement, la mise sous pression du procédé selon l'invention est réalisée pendant une durée variant de 12 à 48 heures, avantageusement pendant 24 heures. Préférentiellement, la mise sous pression est réalisée jusqu'à ce que tout l'excédent de colle ait été rejeté.
Selon une variante du procédé selon l'invention, l'excédent de colle rejeté au moment de la mise sous pression peut être essuyé avant le durcissement de la colle.
Un autre objet selon l'invention est un élément de structure comprenant au moins un module en bois et au moins deux modules en béton ultra hautes performances collés à l'aide d'une colle structurale, dans lequel au moins deux modules en béton ultra hautes performances ne sont pas collés l'un sur l'autre et au moins deux modules en béton ultra hautes performances se trouvent en partie extérieure de l'élément de structure. Selon une variante de l'élément de structure selon l'invention, ledit élément de structure comprend un empilement d'au moins trois modules en bois collés et adjacents.
Selon une variante de l'élément de structure selon l'invention, ledit élément de structure comprend une portion centrale en bois comprenant le module en bois et comprenant : - une première portion d'extrémité en bois à laquelle est collé l'un des deux modules en béton ultra hautes performances ;
- une seconde portion d'extrémité en bois à laquelle est collée l'autre des deux modules en béton ultra hautes performances ; et
- au moins deux portions en bois reliant chacune les deux portions d'extrémité. Selon une variante de l'élément de structure selon l'invention, ledit élément de structure comprend au moins deux modules en bois et au moins deux modules en béton ultra hautes performances.
De préférence, l'élément de structure selon la présente invention comprend au moins un module en béton ultra hautes performances qui comprend au moins une armature. Les armatures selon la présente invention peuvent notamment être en acier, polymère renforcé de fibres de verre ou de carbone, ou leurs mélanges. Selon une variante de l'élément de structure selon l'invention, seul le module inférieur en béton ultra hautes performances comprend au moins une armature.
Avantageusement, l'élément de structure selon la présente invention comprend au moins un module en béton ultra hautes performances qui comprend au moins une fibre.
Les fibres selon l'invention peuvent notamment être en matériau métallique, en matériau minéral, en matériau organique, ou leurs mélanges. Par exemple, les fibres selon l'invention peuvent être en acier, en carbone, en verre, synthétique, ou leurs mélanges. Avantageusement, les fibres selon l'invention sont en acier.
L'élément de structure selon la présente invention peut comprendre des colles structurales couramment utilisées dans le domaine du bâtiment et telles que définies selon l'invention. Une colle structurale selon l'invention peut notamment être du polyuréthane, de l'époxyde, ou leurs mélanges. Une variante de l'élément de structure selon l'invention peut comprendre une colle comprenant un taux de résorcine réduit entre deux modules en bois. Des exemples de colles qui peuvent être comprises dans l'élément de structure selon l'invention entre deux modules en bois sont donnés ci-après :
• Colles de résines synthétiques thermodurcissables
• Combinaisons phénol / formol (type bakélite) ou crésol / formol
• Combinaisons résorcine / formol, phénol / acétylène, furfurol / formol
• Résines de carbamide : urée / formol (types Caurite ou Mélocol H) • Résines de sulfo carbamide : thio-urée formol
• Résines de mélamine : mélamine formol (type Mélocol M)
• Polyuréthane
• Résines époxydes.
Un autre objet selon l'invention est un élément de structure susceptible d'être obtenu par le procédé selon l'invention tel que décrit plus haut. De préférence, les caractéristiques de l'élément de structure ainsi obtenu sont telles que décrites ci- dessus.
Un autre objet selon l'invention est l'utilisation d'au moins un élément de structure selon l'invention tel que décrit plus haut pour la réalisation d'un bâtiment ou d'un ouvrage.
Enfin, un autre objet selon l'invention est un bâtiment ou un ouvrage comprenant au moins un élément de structure selon l'invention tel que décrit plus haut.
Ces objets, caractéristiques et avantages, ainsi que d'autres seront exposés en détail dans la description suivante d'exemples de réalisation particuliers faite à titre non- limitatif en relation avec les figures jointes parmi lesquelles : la figure 1 représente un exemple de poutre selon l'invention ; la figure 2 représente une étape de fabrication d'un exemple de poutre selon l'invention ; la figure 3 représente un premier exemple de réalisation d'un panneau auto- porteur selon l'invention ; les figures 4 et 5 représentent un deuxième exemple de réalisation d'un panneau auto-porteur selon l'invention ; la figure 6 représente un troisième exemple de réalisation d'un panneau autoporteur selon l'invention ; la figure 7 représente les conditions de chargement pour les essais en flexion d'un exemple de réalisation de poutre selon l'invention ; la figure δ représente les conditions de chargement pour les essais en flexion d'un autre exemple de réalisation de poutre selon l'invention ; la figure 9 représente un exemple de système de blocage de déplacements horizontaux d'un exemple de réalisation d'une poutre selon l'invention ; la figure 10 représente un exemple d'instrumentation d'un exemple de réalisation d'une poutre selon l'invention ; et
Les figures 11 et 12 représentent des courbes d'évolution de la charge appliquée à différents exemples de panneaux en fonction de la flèche. Par souci de clarté, de mêmes éléments ont été désignés par de mêmes références aux différentes figures.
La figure 1 représente un exemple de réalisation d'une poutre 10 selon l'invention comprenant un module inférieur 12 de béton fibre ultra hautes performances (BFUP) renforcé avec deux armatures (non visibles en figure 1 ), une portion centrale 13, également appelée poutre en bois, comprenant des modules en bois 14 et un module supérieur 16 en béton fibre ultra hautes performances. Dans l'exemple représenté en figure 1 , la portion centrale 13 en bois comprend cinq modules en bois 14.
La figure 2 représente une étape de fabrication d'une poutre 10 selon l'invention en coupe transversale comprenant six modules en bois 14. Les six modules en bois 14 ont été assemblés, et deux modules en béton 12, 16 ont été préparés pour être collés aux six modules en bois 14 déjà assemblés. Le module inférieure 12 de la poutre 10 représentée en figure 2 comprend trois armatures 18 de diamètre 0r.
Dans les différentes figures, bw représente la largeur des modules en bois 14, bci représente la largeur du module inférieur 12 et bc2 représente la largeur du module supérieur 16. La largeur des modules 12, 16 inférieur bc1 et supérieur bc2 en BFUP peut être identique à la largeur de la poutre en bois bw comme c'est le cas aux figures 1 et 2. hw représente l'épaisseur d'un module en bois 14. hw représente la hauteur de la poutre en bois, c'est-à-dire de l'ensemble des modules en bois 14 assemblés. hc1 et hc2 représentent respectivement la hauteur des modules inférieur 12 et supérieur 16 en béton ultra hautes performances. Lspan représente la portée de la poutre 10. H représente la hauteur de la poutre 10. La figure 3 est une coupe d'un premier exemple de réalisation d'un panneau autoporteur 20 selon l'invention, comprenant une pièce centrale 13 en bois lamelle collé en forme de V, un module inférieur 12 en béton ultra hautes performances comprenant deux armatures 18 et un module supérieur en béton ultra hautes performances 16. Les figures 4 et 5 sont respectivement une coupe transversale et une vue en perspective d'un deuxième exemple de réalisation d'un panneau auto-porteur 30 selon l'invention. Par rapport au premier exemple de réalisation, la portion centrale 22 en bois comprend quatre type d'éléments : un platelage 32, une frise 34, quatre nervures 36 et deux membrures 38. La portion centrale 22 peut correspondre à un panneau en bois commercialisé par la société Colladello. Le platelage 32 est composé de planches 40 juxtaposées, par exemple en bois massif, disposées transversalement. Le platelage 32 comprend une face supérieure 42 plane recouverte par le module supérieure 16 et une face inférieure 44 plane. Les nervures 36 et les membrures 38 forment deux ensembles 39 qui s'étendent longitudinalement côte à côte et qui ont chacun une section en forme de « V ». Chaque membrure 38 comprend une face inférieure 46 plane, recouverte par le module supérieure 16, et une surface supérieure 48. Chaque paire de nervures 36 relie la surface supérieure 48 de la membrure 38 associée à la face inférieure 44 du platelage 32. La frise 34 comprend des planches 50 disposées longitudinalement sur la face inférieure 44 du platelage 32 de part et d'autre des paires de nervures 36. Les nervures 36 peuvent être réalisées en bois lamelle collé ou BLC. Les modules supérieur 16 et inférieur 12 peuvent comprendre des armatures. Le panneau 40 a une structure symétrique selon un plan de symétrie longitudinal.
La figure 6 est une vue partielle, en coupe, d'un troisième exemple de réalisation d'un panneau auto-porteur 40 selon l'invention. Le panneau 40 correspond à un « demi- panneau 30 », c'est-à-dire que, par rapport au panneau 30, le panneau 40 ne comprend qu'un seul ensemble 39 ayant une section en forme de « V ». En outre, le module inférieur 12 comprend deux types d'armatures différents : deux armatures métalliques 52 et une armature 54 en fibre de verre.
Les dispositifs représentés dans les figures 4 à 7 seront décrits plus en détails dans les exemples qui vont suivre.
Les exemples suivants illustrent l'invention sans en limiter la portée. EXEMPLES Définition de la géométrie de la section des poutres 10 pour les exemples
La largeur (bw) des poutres 10 en bois est de 80 mm. La hauteur H des poutres témoins et des poutres 10 selon l'invention sont définies de façon à avoir une hauteur de poutre constante. Ainsi une hauteur de 304 mm est retenue pour les poutres témoins en bois lamelle collé (BLC), constitué de 6 modules en bois d'épaisseur (h^) 36 mm, et une hauteur (hw) de 228 mm pour les poutres 10 selon l'invention. Les hauteurs respectives des modules en béton (hc1 et hc2) fibre ultra hautes performances (BFUP) sont alors de 36 mm pour le module supérieur 16 et de 40 mm pour le module inférieur 12. La largeur des modules inférieur (bd) et supérieur (bc2) en BFUP est identique à la largeur de la poutre en bois (bw=80 mm). Deux portées (Lspan) sont définies, une première de 2 mètres et une deuxième de 5,1 m. Le rapport hauteur/portée égal à 17 est conforme à la norme ASTM D 3737 pour la portée de 5,1 m. Les figures 2 (Géométrie des sections de poutre) et 1 (Géométrie de la poutre) et le tableau 1 décrivent les géométries retenues pour les tests.
L'ensemble des poutres est assemblé par collage à l'aide d'une colle structurale. De façon à comparer l'efficacité des différentes solutions d'armatures retenues, et compte tenu de l'écart de module d'élasticité entre les armatures en acier et celles en composite verre-époxy et carbone-époxy, il est proposé de prendre une rigidité axiale des renforts constante. La variation paramétrique porte alors sur la section des armatures de diamètre 0r, permettant d'obtenir une rigidité axiale constante.
Tableau 1 : Définition des paramètres géométriques et matériels
Figure imgf000013_0001
La désignation des poutres est effectuée en fonction du type de poutre (bois lamelle collé (BLC) témoin ou poutres selon l'invention (BLCHP)), du type d'armature(s) de renforcement (acier : S, CFRP : C, GFRP : G), de la largeur de la poutre (bw= 80 ou 130) et de la portée de la poutre (Lspan = 2 ou 5 m).
Le tableau 2 récapitule finalement les solutions retenues pour cette étude.
Figure imgf000014_0001
* CFRP : carbone fiber reinforced polymer (PRFC : polymère renforcé de fibres de carbone)
* GFRP : Glass fiber reinforced polymer (PRFV : polymère renforcé de fibres de verre) Définition de la géométrie de la section des panneaux 30 pour les exemplesPour le panneau 30, la hauteur hw est de 251 mm. Plus précisément, le platelage 32 a une épaisseur de 27 mm, la frise une épaisseur de 13 mm et chaque ensemble 39 a une hauteur de 224 mm. La hauteur hc1 du module supérieur 16 est de 25 mm et la hauteur hC2 du module inférieur 12 est de 35 mm. La largeur bc1 de chaque module inférieur 12 est de 106 mm et la largeur bC2 du module supérieur 16 est de 1200 mm. L'écart entre les deux modules inférieurs 12 est de 520 mm et l'écart entre les deux ensembles 39 au niveau du platelage 32 est de 302 mm. Pour les panneaux 30, on utilise comme panneau témoin un panneau qui a les mêmes dimensions que le panneau 30 mais qui ne comprend pas de modules inférieur et supérieur 12, 16 en béton fibre ultra hautes performances.
Définition de la géométrie de la section des panneaux 40 pour les exemples Pour le panneau 40, la hauteur hw est de 251 mm. Plus précisément, le platelage 32 a une épaisseur de 27 mm, la frise une épaisseur de 13 mm et chaque ensemble 39 a une hauteur de 224 mm. La hauteur hc1 du module supérieur 16 est de 25 mm et la hauteur hc2 du module inférieur 12 est de 35 mm. La largeur bc1 de chaque module inférieur 12 est de 106 mm et la largeur bc2 du module supérieur 16 est de 600 mm. La longueur Lspan est de 6000 mm.
Pour les panneaux 40, on utilise comme panneau témoin un panneau qui a les mêmes dimensions que le panneau 40 mais qui ne comprend pas de modules inférieur et supérieur 12, 16 en béton fibre ultra hautes performances. Fabrication des poutresiO et des panneaux 30. 40. Propriétés du béton ultra hautes performances
Pour les poutres 10, les modules en béton ultra hautes performances 12, 16 ont été préparés à partir de deux gâchées distinctes : la première pour les modules de longueur 2,3 m et la deuxième pour les modules de longueur 5,5 m. Les quantités de chaque matériau nécessaire pour chacune des différentes gâchées sont définies par le tableau 3.
Tableau 3 : Quantité de matériaux pour la confection des gâchées
Figure imgf000015_0001
Le plastifiant est de l'Optima 100 (Fournisseur : Chryso). Tableau 3' : composition du premix
Figure imgf000015_0002
Le ciment est un ciment HTS (Haute Teneur en Silicates) (Fournisseur : Lafarge).
La fumée de silice est de la NS980 (Fournisseur : SEPR). Le filler est un filler calcaire (Durcal 5, Fournisseur : Omya). Le sable est un sable siliceux (BE01 , Fournisseur : Sifraco).
Pour la béton utilisé pour réaliser les panneaux 30, 40, on utilise les quantités indiquées dans le tableau 3.
Le mélange est effectué conformément au protocole suivant de malaxage du béton ultra hautes performances avec introduction d'une partie de l'eau et la moitié du plastifiant dans un premier temps puis du reste du plastifiant au bout du 7 min. Les fibres métalliques (FM) sont ensuite ajoutées en fin de malaxage, lorsque le mélange est fluide et homogène.
Les modules sont coulés d'une extrémité à l'autre par passes successives de façon à remplir intégralement les moules.
Les propriétés mécaniques en traction par flexion et en compression du béton ultra hautes performances de chaque gâchée sont contrôlées par des essais de flexion 4 points sur des prismes de dimensions 75 x 75 x 250 mm pour définir les résistances en traction par flexion et sur des éprouvettes cylindriques de diamètre 100 mm et de hauteur 180 mm pour les résistances en compression. Les méthodes d'essais sont conformes aux recommandations de l'AFGC (Ultra High Performance Fibre-Reinforced Concrète, Intérim Recommandation, Janvier 2002, Documents Scientifiques et Techniques, § 1.3 et § 1.4.2). Les essais sont pilotés en force avec une vitesse de montée en charge de 1960 N/s pour les essais de compression et de 31 N/s pour les essais de flexion. Pour chaque type d'essai, 3 éprouvettes sont réalisées puis testées après respectivement 98 jours et 84 jours de cure à l'air ambiant pour les deux gâchés. Les tests sont effectués 24 heures après l'ensemble des essais sur poutres. Les résultats des essais sont récapitulés dans les tableaux 4 et 5. Pour les essais de flexion, deux éprouvettes (une dans la série 2 et une dans la série 3) sont retirées du calcul des moyennes car elles présentent un écart supérieur à 10 % de la valeur moyenne.
Tableau 4 : Caractéristiques du béton ultra hautes performances en traction par flexion
Figure imgf000016_0001
Pour deux éprouvettes par gâchée, les essais de flexion sont conduits en mesurant l'évolution de la flèche en fonction de la charge (Figures 4 à 7).
La résistance moyenne en compression est de 174 MPa. La résistance en traction par flexion de 21 MPa et la contrainte de fissuration en traction par flexion est de 8.8 MPa.
Tableau 5 : Caractéristiques du béton ultra hautes performances en compression
Figure imgf000017_0001
Les colles
Les colles employées sont composées d'un primaire d'accrochage époxydique (Sikafloor® 156, Sika) et d'une colle époxy chargée (Sikadur® 30, Sika). Propriétés des éléments en bois
Pour les poutres 10, les modules 14 en bois lamelle collé sont réalisées en pin douglas-Fir de grade 20F-E. Les propriétés mécaniques de cette catégorie de bois lamelle collé sont données par le fournisseur (Goodfellow) de bois et récapitulées dans le tableau 6. Les poutres sont livrées traitées pour l'extérieur. Un ponçage est effectué pour obtenir une surface brute et plane.
Tableau 6 : Caractéristiques du bois lamelle collé (selon fournisseur Goodfellows inc)
Figure imgf000018_0001
Pour le panneau 30, la portion centrale 13 correspond au modèle « profil n°2 » commercialisé par la société Colladelo.
Pour le panneau 40, la portion centrale 13 correspond à la moitié d'une portion centrale 13 du panneau 30 coupée dans le sens de la longueur selon un plan de symétrie.
Propriétés des armatures
Pour les poutres 10, trois types d'armatures 18 sont utilisés : des armatures en acier, des armatures composites verre-époxy et carbone-époxy. Les armatures composites en polymère renforcées de fibres sont de marque Pultrall.
Tableau 7 : Caractéristiques des armatures en acier et des armatures composites (selon fournisseur Pultrall)
Figure imgf000018_0002
* CFRP : carbone fiber reinforced polymer (PRFC : polymère renforcé de fibres de carbone)
* GFRP : Glass fiber reinforced polymer (PRFV : polymère renforcé de fibres de verre)
Pour le panneau 30. deux types d'armatures 18 sont utilisés : des armatures en acier ou des armatures composites de fibres de carbone. Les caractéristiques des armatures en acier sont les mêmes que celles indiquées précédemment. Pour un renfort par armatures en acier, chaque module inférieur 12 comprend deux tiges droites en acier de type HA 10 (haute adhérence, diamètre de 10 mm) disposées longitudinalement. Pour un renfort par armatures en fibres de carbone, chaque module inférieur 12 comprend trois tiges en fibre de carbone disposées longitudinalement, chaque tige ayant un diamètres de 9,6 mm. Chaque armature 18 est enrobée d'au moins 10 mm de béton.
Pour le panneau 40. les armatures 18 du module inférieur 12 comprennent deux armatures en acier 52 et une armature en fibres de verre 54. Les armatures en acier 52 correspondent, par exemple, à des tiges droites en acier de type HA 10 (haute adhérence, diamètre de 10 mm), dont les axes sont disposés longitudinalement à 15 mm de la face inférieure 46 de la membrure 38 et l'armature en fibres de verre 54 correspond à un jonc en fibres de verre de 12 mm de diamètre dont l'axe est disposé longitudinalement à 25 mm de la face inférieure 46 de la membrure 38. Mise en œuyre des poutres 10 et des panneaux 30. 40
La fabrication des modules 12, 16 est effectuée par coulage horizontal dans un moule en bois. Le coulage est effectué d'une extrémité à l'autre du coffrage en un ou deux passages. Il n'est effectué aucune vibration du moule. La surface libre du béton ultra hautes performances est ensuite aspergée par un pulvérisateur d'eau puis lissée à la truelle pour faciliter le départ des bulles d'air. La surface libre sera ensuite la surface collée à la portion centrale 13 en BLC.
La surface du bois est préparée par un ponçage à l'aide d'une ponceuse à bande, de façon à obtenir un état de surface propre et lisse
Après 14 jours de cure, les plaques en béton ultra hautes performances sont sablées puis l'assemblage par collage aux poutres en bois lamelle collé est effectué après une période minimale de 28 jours.
Le collage est effectué après 24 heures et après l'application d'un primaire d'accrochage sur le bois et le BFUP à encoller. Une pression verticale est maintenue pendant 24 heures, les poutres sont ensuite stockées en atmosphère non-humide avant d'être testées. Une période de 14 jours a été respectée entre le collage et les essais. Dispositif de chargement des poutres 10
Les essais sont conduits en flexion 4 points avec deux portées, la première de 2 mètres et la deuxième de 5,1 mètres. Les essais sont conduits suivant la norme ASTM D3737-04 et la norme ASTM D 4761-05. Pour la deuxième série, le rapport portée sur hauteur de la poutre est égale à 17. Pour la première série ce même rapport est égal à 6,5 et favorise la sollicitation de cisaillement au détriment de la flexion, cela permettra d'évaluer la performance du collage.
Les entraxes entre les charges (représentées de façon schématique par des flèches 60) sont respectivement de 600 mm (Fig. 7) pour la première série de poutres et 1400 mm pour la deuxième (Fig. 8). Ces distances respectent la norme avec une distance entre le point d'application de la charge et l'appui supérieure ou égale à deux fois la hauteur. La poutre 10 repose sur deux supports 62 espacés de 2000 mm. Les charges sont appliquées par un vérin de capacité 500 kN et un groupe hydraulique. Le chargement est assuré, conformément à la norme, par un pilotage en déplacement. La durée de l'essai est comprise entre 10 s et 10 min et la vitesse de déplacement du vérin retenue est de 1 mm/min pour les poutres de 2 mètres et de 9 mm/min pour les poutres de 5.1 mètres.
Afin de limiter le risque de déversement des poutres lors des essais en flexion, un système de blocage des déplacements horizontaux 64, représentés schématiquement en figure 9, est disposé respectivement à 30 cm de part et d'autre du centre de la poutre. Dispositif de chargement des panneaux 30, 40
Les essais sont conduits de façon analogue à ce qui a été décrit précédemment pour les poutres 10 en tenant compte des dimensions des panneaux 30, 40.
Plus précisément, les essais sont conduits en flexion 4 points. Les entraxes entre les charges sont respectivement de 1000 mm pour les panneaux 30 et de 1500 mm pour les panneaux 40. Chaque panneau 30, 40 sur deux supports espacés de 4000 mm pour les panneaux 30 et de 6000 mm pour les panneaux 40.
Instrumentation des poutres 10
L'évolution de la flèche est mesurée par un capteur LVDT (Transformateur Différentiel à variation Linéaire) de course ± 100 mm disposés au centre de la poutre (désigné par la référence 66 en Figure 10). La charge est mesurée par un capteur de force de capacité 250 kN.
L'instrumentation de la section centrale est complétée :
- par des jauges 68 de déformation (longueur de grille de 10 mm) collées sur les aciers, - puis par au moins quatre jauges 70 de longueur de grille 40 mm collées sur le bois (Tableau 8)
La section centrale est donc instrumentée sur sa hauteur par au moins six points de mesure permettant de tracer les diagrammes de Navier. Tableau 8 : Distance entre la jauge et la fibre supérieure de la poutre [mm]
Figure imgf000021_0001
Instrumentation des panneaux 30. 40
L'évolution de la flèche est mesurée par un capteur de déplacement de type LVDT de course 200 mm ± 1 mm disposés au centre du panneau. La charge est mesurée par un capteur de force de capacité 200 kN.
Des jauges d'extensométrie sont placées sur les panneaux 30, 40. Les jauges d'extensométrie ont une résistance de 120 ohms et la longueur de grille utilisée est de 70 mm. Pour les panneaux 30, 40 et les panneaux témoin, cinq jauges sont disposées sur la nervure 36 des panneaux 30, 40. Pour les panneaux 30, 40 selon l'invention, une jauge supplémentaire est collée sur la face libre du module supérieur 16 en BFUP. Les jauges sont placées à mi-travée des panneaux.
La nervure 36 est donc instrumentée sur sa hauteur par cinq points de mesure permettant de tracer les diagrammes de Navier.
Tableau 9 : Distance, en millimètre, entre les jauges et la face inférieure 44 du platelage 32
Figure imgf000021_0002
Relations charge-flèche pour les poutres 10
L'analyse des courbes charge-flèche présente deux à trois phases de comportement distinctes correspondant à l'endommagement progressif des matériaux constitutifs (béton, armatures, bois).
Le premier correspond à un comportement de section non-fissurée avec une rigidité importante de la poutre. La deuxième phase de comportement est atteinte pour une valeur de charge de l'ordre de 12 kN pour les poutres de 2 mètres de portée et de l'ordre de 5 kN pour les poutres de 5.1 m de portée. Cette valeur de charge correspond au début de fissuration du module en BFUP armé.
A ce stade, il est constaté une diminution de la rigidité de la poutre et un comportement linéaire conduisant à la troisième phase de comportement liée à la plastification des armatures (en acier) tendues atteinte pour une valeur de l'ordre de 100 kN pour les poutres de 2 mètres de portée et de l'ordre de 75 kN pour la poutre de 5.5 mètres renforcée. Les poutres 10 renforcées par des armatures composites n'ont que deux phases de comportement. Les poutres en bois lamelle collé d'une portée de 2 mètres et d'une portée de 5.1 m déversent. La rupture en traction est tout de même atteinte pour la poutre de 5.1 m.
Mode de rupture pour les poutres 10
Le mode de rupture varie suivant les configurations géométriques. Pour les poutres en bois lamelle collé, le déversement prédomine, malgré le dispositif antidéversement au centre (Tableau 9). La rupture pour les poutres hybrides survient pour des valeurs de charge ultime variant entre 103 kN et 200 kN suivant les portées et les configurations des poutres, celle-ci se produit soit par cisaillement dans le bois lamelle collé pour les poutres de 2 mètres renforcées, soit par rupture en compression pour les poutres de 5.1 m de portée (Tableau 9). Il est important de noter qu'il n'y a aucun décollement entre les modules en BFUP et les poutres en BLC.
Tableau 9 : Mode de rupture des poutres testées
Figure imgf000022_0001
En comparaison avec les poutres de référence en BLC, l'augmentation de la charge ultime varie de 10 % à 65 % suivant les configurations de renforcement et les modes de ruptures observés. L'utilisation des armatures composites semble toutefois plus pertinente vis-à-vis de l'augmentation des charges ultimes. Ceci peut s'expliquer par le fait que les armatures composites ont des résistances supérieures en traction par rapport à l'acier et ne plastifient pas. Ceci évite la variation de la courbure lorsque l'armature plastifie.
Tableau 10 Valeurs des charges et des flèches pour chaque phase de comportement
Figure imgf000023_0001
Comportement en rigidité pour les poutres 10
Dans les deux cas, il s'agit d'une augmentation de la rigidité de flexion de 60 % pour les poutres de 5 mètres et de 40 % pour les poutres de 2 mètres. La rigidité de flexion de la poutre HPBLC-S-130-5m se stabilise à une valeur de 1.2.1013 MPa. mm4 compte tenu de largueur plus importante de cette poutre.
Il est important de noter que dans tous les cas de figure la combinaison de planches en BFUP et de bois lamelle collé permet d'augmenter la rigidité de flexion d'environ 80 %.
Comportement des sections, diagramme de Navier, pour les poutres 10
Pour l'ensemble des essais, l'évolution des déformations des matériaux en section centrale est linéaire.
En effet, pour le BFUP en compression, le taux de déformation est supérieur à 1500 μm/m dans tous les cas. Pour les armatures en acier, la plastification est atteinte dans chacun des essais, alors que pour les armatures en composite en carbone époxy de la poutre de 5 m, 80 % de la résistance est atteinte (Tableau 11 ).
En considérant les modules d'élasticité des différents matériaux, il est possible d'estimer la contrainte maximale de compression ou de traction s'exerçant dans le matériau. Les tableaux 14 et 15 précisent ces valeurs pour chacun des essais. Tableau 11 : Valeurs des déformations maximales du bois et des armatures en compression
Figure imgf000024_0001
*BUHP : béton ultra hautes performances
Tableau 12 : Valeurs des déformations maximales du bois ou des armatures en traction
Figure imgf000024_0002
En conclusion, l'élément de structure selon l'invention permet d'obtenir des valeurs de déformations ou de contraintes particulièrement importantes justifiant la combinaison des matériaux retenus dans cette étude.
Relations charge-flèche pour les panneaux 30
La figure 11 représente une courbe 70 d'évolution de la charge appliquée à un panneau témoin en fonction de la flèche, une courbe 72 d'évolution de la charge appliquée à un panneau 30 selon le deuxième exemple de réalisation de l'invention comprenant des armatures 18 en acier en fonction de la flèche et une courbe 74 d'évolution de la charge appliquée à un panneau 30 selon le deuxième exemple de réalisation de l'invention comprenant des armatures 18 composites. Pour le panneau témoin, la courbe 70 traduit un comportement élastique de la structure jusqu'à atteindre une valeur de 6000 daN et une rupture de la membrure 38 en bois au niveau de la jointure entre composants de la membrure. Le comportement du panneau témoin est donc élastique linéaire. La rupture se fait dans la partie tendue progressivement, la pente reste identique entre chaque rupture jusqu'à la ruine totale du panneau. La force de rupture FMax est de 7200 daN. La raideur initiale K1 calculée à partir de la tangente à l'origine de la courbe 70 est de 2 MN/m. La seconde raideur K2 correspond au glissement des nervures 36 dans les membrures 38. La valeur de cette raideur est de 1 ,1 MN/m. La chute brutale d'effort suivie d'une augmentation progressive de l'effort correspond à l'apparition de fissures et à la réorganisation du transfert d'effort dans la structure. La ruine de l'élément est alors apparue pour une charge FRupt de 7105 daN et une flèche δRupt de 60 mm.
Le panneau 30 selon le deuxième exemple de réalisation de l'invention, renforcé par des armatures métalliques, a un comportement élastique bi-linéaire avec deux phases de comportement distinctes. La rupture intervient au niveau du module inférieur 12 en BFUP, au niveau de la membrure 38 tendue puis par décollement entre les âmes des nervures 36 et le platelage 32. La raideur K1 est égale à 9,3 MN/m. La raideur K2 est égale à 5,8 MN/m. La force d'ouverture de fissure Fw est de 3550 daN. La force de rupture FM est de 15840 daN pour une flèche δM de 26 mm. Le comportement après le premier pic (ou post-pic) montre que les efforts sont redistribués dans la structure après la rupture du module inférieure 12 en BFUP. La valeur d'effort ne dépasse pas 12000 daN et la rupture apparaît pour une flèche δRupt de 48 mm.
Le panneau 30 selon le deuxième exemple de réalisation de l'invention, renforcé par armatures composites, suit les mêmes tendances que celles des panneaux 30 renforcé par des armatures métalliques. Le comportement avant rupture est bilinéaire et un comportement après le premier pic est présent. La raideur K1 est égale à 10,4 MN/m. La raideur K2 est égale à 7,6 MN/m. La force nécessaire à l'ouverture de fissure Fw est de 3296 daN. La force de maximale FM est de 16166 daN pour une flèche δM de 24,1 mm. A la ruine, la valeur d'effort est proche de l'optimum puisque FRupt vaut 15536 daN et la rupture apparaît pour une flèche δRupt de 51 ,4 mm. Par rapport à un panneau témoin, le renforcement par les modules inférieur et supérieur 12, 16 en BFUP multiplie la force maximale que le panneau 30 peut reprendre par 2,3. La rigidité du panneau 30 est fortement augmentée, elle est multipliée par 4,2 dans la première phase et par 2,6 dans la seconde.
Relations charge-flèche pour les panneaux 40
La figure 12 représente une courbe 76 d'évolution de la charge appliquée à un panneau témoin en fonction de la flèche et une courbe 78 d'évolution de la charge appliquée à un panneau 40.
La courbe 76 traduit un comportement élastique du panneau témoin jusqu'à atteindre une valeur de 2415 daN et une rupture de la membrure 38 inférieure en bois dans la zone centrale suivie d'une rupture des lamelles inférieures des nervures 36. Le comportement du panneau témoin est donc élastique linéaire. La rupture se fait dans la partie tendue de façon progressive. La force de rupture FMax est de 2415 daN et une flèche δRupt de 94 mm pour le panneau témoin.
Le panneau 40 selon le troisième exemple de réalisation de l'invention suit les mêmes tendances que celles du panneau témoin. Le comportement avant rupture est bilinéaire et un comportement post-pic est présent. La force nécessaire à l'ouverture de fissure de la membrure 38 en BFUP Fw est de 1320 daN. La force de maximale FM est de 7712 daN pour une flèche δM de 60 mm. Dans ce cas de figure, la rupture du panneau est apparue par traction du module inférieure 12 en BFUHP suivie de la rupture des lamelles en bois des nervures 36. Les inventeurs ont mis en évidence que les panneaux 40 selon le troisième exemple de réalisation de l'invention permettent de multiplier la force maximale que le panneau 40 peut reprendre par 3,2. La rigidité du panneau est fortement augmentée, elle est multipliée par 6 dans la première phase et par 4,2 dans la seconde.

Claims

REVENDICATIONS
1- Procédé de fabrication d'un élément de structure (10 ; 20 ; 30 ; 40) comprenant les étapes suivantes : i. encoller à l'aide d'une colle structurale au moins deux modules (12, 16) en béton ultra hautes performances ; ii. assembler et coller les modules en béton ultra hautes performances obtenus à l'étape i avec au moins un module en bois (14 ; 13 ; 32, 38) ; iii. presser l'élément obtenu à l'étape ii ; au moins deux modules en béton ultra hautes performances n'étant pas collés l'un sur l'autre ; et au moins deux modules en béton ultra hautes performances se trouvant en partie extérieure de l'élément de structure obtenu à l'étape iii.
2- Procédé selon la revendication 1 , comprenant, en outre, les étapes consistant à : iv. encoller à l'aide d'une colle structurale au moins un module en bois supplémentaire (14) ; v. assembler et coller le module en bois supplémentaire obtenu à l'étape iv avec l'un des modules (12, 16) en béton ultra hautes performances obtenus à l'étape i ou avec le module en bois de l'étape ii.
3- Procédé selon la revendication 2, dans lequel le module (14) en bois supplémentaire obtenu à l'étape iv est assemblé et collé avec le module en bois de l'étape ii avant l'assemblage et le collage avec les modules (12, 16) en béton ultra hautes performances obtenus à l'étape i.
4- Procédé selon la revendication 2, dans lequel le module (14) en bois supplémentaire obtenu à l'étape iv est assemblé et collé avec le module en bois de l'étape ii après le collage et l'assemblage avec un premier module (12) en béton ultra hautes performances obtenu à l'étape i et avant le collage et l'assemblage avec un dernier module (16) en béton ultra hautes performances obtenu à l'étape i.
5- Procédé selon l'une des revendications 2 à 4, caractérisé en ce qu'au moins un module supplémentaire en béton ultra hautes performances est encollé, assemblé et collé soit avec le module en bois de l'étape ii, soit avec le module en bois supplémentaire de l'étape iv. - Procédé selon l'une des revendications 2 à 5, caractérisé en ce qu'au moins un module (12) en béton ultra hautes performances comprend au moins une armature (18 ; 52, 54). - Procédé selon l'une des revendications 1 à 6, caractérisé en ce qu'au moins un module (12) en béton ultra hautes performances comprend au moins une fibre. - Elément de structure (10 ; 20 ; 30 ; 40) comprenant au moins un module en bois (14 ; 13 ; 32, 38) et au moins deux modules (12, 16) en béton ultra hautes performances collés à l'aide d'une colle structurale, dans lequel au moins deux modules en béton ultra hautes performances ne sont pas collés l'un sur l'autre et au moins deux modules en béton ultra hautes performances se trouvent en partie extérieure de l'élément de structure. - Elément de structure selon la revendication 8, comprenant un empilement (13) d'au moins trois modules (14) en bois collés et adjacents 0- Elément de structure selon la revendication 8 ou 9, comprenant une portion centrale (13) en bois comprenant le module en bois (14) et comprenant :
- une première portion d'extrémité (38) en bois à laquelle est collée l'un des deux modules (12, 16) en béton ultra hautes performances ;
- une seconde portion d'extrémité (32) en bois à laquelle est collée l'autre des deux modules (12, 16) en béton ultra hautes performances ; et - au moins deux portions (36) en bois reliant chacune les deux portions d'extrémité. 1- Utilisation d'au moins un élément de structure selon l'une quelconque des revendications 8 à 10 pour la réalisation d'un bâtiment ou d'un ouvrage. 2- Bâtiment ou ouvrage comprenant au moins un élément de structure selon l'une quelconque des revendications 8 à 10.
PCT/FR2009/001303 2008-11-14 2009-11-13 Elément de structure comprenant du bois et du béton WO2010055227A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0806349A FR2938565B1 (fr) 2008-11-14 2008-11-14 Element de structure comprenant du bois et du beton
FR0806349 2008-11-14

Publications (2)

Publication Number Publication Date
WO2010055227A1 true WO2010055227A1 (fr) 2010-05-20
WO2010055227A8 WO2010055227A8 (fr) 2010-11-04

Family

ID=40652508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/001303 WO2010055227A1 (fr) 2008-11-14 2009-11-13 Elément de structure comprenant du bois et du béton

Country Status (2)

Country Link
FR (1) FR2938565B1 (fr)
WO (1) WO2010055227A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1019343A3 (fr) * 2010-05-21 2012-06-05 Haute Ecole Leonard De Vinci Produit de construction a base de bambou ou de bois de haute performance et procede de fabrication.
WO2019012222A1 (fr) 2017-07-11 2019-01-17 Cruard Charpente Et Construction Bois Elements de structure en bois et beton et procede de fabrication

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991002861A1 (fr) * 1989-08-17 1991-03-07 Markus Stracke Procede d'utilisation de beton leger
WO2007091899A1 (fr) * 2006-02-10 2007-08-16 Combino As Elements / dalles bases sur des elements en bois massif renforces par du beton

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991002861A1 (fr) * 1989-08-17 1991-03-07 Markus Stracke Procede d'utilisation de beton leger
WO2007091899A1 (fr) * 2006-02-10 2007-08-16 Combino As Elements / dalles bases sur des elements en bois massif renforces par du beton

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1019343A3 (fr) * 2010-05-21 2012-06-05 Haute Ecole Leonard De Vinci Produit de construction a base de bambou ou de bois de haute performance et procede de fabrication.
WO2019012222A1 (fr) 2017-07-11 2019-01-17 Cruard Charpente Et Construction Bois Elements de structure en bois et beton et procede de fabrication

Also Published As

Publication number Publication date
FR2938565A1 (fr) 2010-05-21
FR2938565B1 (fr) 2010-12-17
WO2010055227A8 (fr) 2010-11-04

Similar Documents

Publication Publication Date Title
CA2176369A1 (fr) Elements de renforcement synthetiques, a traitement de surface, pour elements porteurs en bois
CA2672637C (fr) Procede de fabrication et element de structure
US5713166A (en) Monocoque staircase and method for joining wooden pieces
FR2675468A1 (fr) Palette de support de charges.
Uddin et al. Structural characterization of hybrid fiber reinforced polymer (FRP)-autoclave aerated concrete (AAC) panels
EP1694611B1 (fr) Beton de fibres metalliques
WO2010055227A1 (fr) Elément de structure comprenant du bois et du béton
EP1149213B1 (fr) Dalle de construction, assemblage de telles dalles et utilisation pour realiser des structures pouvant supporter des charges importantes
EP2231946B1 (fr) Structure porteuse beton-bois.
EP1278925A2 (fr) Composition de beton roule compacte renforce de fibres et procede de realisation d'une chaussee a partir de ladite composition
FR3068997B1 (fr) Elements de structure en bois et beton et procede de fabrication
Alkhrdaji et al. Surface bonded FRP reinforcement for strengthening/repair of structural reinforced concrete
EP2396482A2 (fr) Poutre en beton precontraint realisee par emboitement de deux longerons et procede d'aboutage de deux poutres.
WO2011045505A1 (fr) Element de renforcement en composite fibres-ciment et procede de renforcement de structures en beton arme par un tel element
AU724723B2 (en) Structural wood systems and synthetic reinforcement for structural wood members
BE1019343A3 (fr) Produit de construction a base de bambou ou de bois de haute performance et procede de fabrication.
US11319718B2 (en) Method for reinforcing a civil engineering structure
EP4105385A1 (fr) Dalle pour la construction et procédé de fabrication d'une telle dalle
FR2919638A1 (fr) Elements de structure en beton precontraint comportant des profiles assembles
FR2718765A1 (fr) Construction de dalle de plancher de béton en appui sur le sol.
WO2022074146A1 (fr) Système de pont modulaire et son procédé de fabrication
Rashwan et al. ITEMS FOR IMPROVING BOND-SLIP BEHAVIOR BETWEEN CFRP SHEETS/CEMENT BASE BONDING AGENT AND BONDING AGENT/CONCRETE INTERFACE
WO2019025699A1 (fr) Procédé de fabrication d'un élément de structure
BE895192A (fr) Procede d'assemblage d'un element porteur
ECT Team Carbon Fiber Reinforced Polymer (CFRP) Laminates for Structural Strengthening

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09760932

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09760932

Country of ref document: EP

Kind code of ref document: A1