AU724723B2 - Structural wood systems and synthetic reinforcement for structural wood members - Google Patents

Structural wood systems and synthetic reinforcement for structural wood members Download PDF

Info

Publication number
AU724723B2
AU724723B2 AU94188/98A AU9418898A AU724723B2 AU 724723 B2 AU724723 B2 AU 724723B2 AU 94188/98 A AU94188/98 A AU 94188/98A AU 9418898 A AU9418898 A AU 9418898A AU 724723 B2 AU724723 B2 AU 724723B2
Authority
AU
Australia
Prior art keywords
reinforcement
wood
synthetic
resin
structural
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU94188/98A
Other versions
AU9418898A (en
AU724723C (en
Inventor
Daniel A. Tingley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU35884/95A external-priority patent/AU702255B2/en
Application filed by Individual filed Critical Individual
Priority to AU94188/98A priority Critical patent/AU724723C/en
Priority claimed from AU94188/98A external-priority patent/AU724723C/en
Publication of AU9418898A publication Critical patent/AU9418898A/en
Publication of AU724723B2 publication Critical patent/AU724723B2/en
Application granted granted Critical
Publication of AU724723C publication Critical patent/AU724723C/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Description

AUSTRALIA
PATENTS ACT 1990 DIVISIONAL APPLICATION NAME OF APPLICANT(S): see* Daniel A. Tingley ADDRESS FOR SERVICE: C DAVIES COLLISON CAVE Patent Attorneys 1 Little Collins Street C:.'.:Melbourne, 3000.
V.
INVENTION TITLE: Structural Wood Systems and Synthetic Reinforcement for Structural Wood Members The following statement is a full description of this invention, including the best method of performing it known to me: Q:\OPER'\AXD)\35884-95.328 27/11/98 P:\OPER\AXD\35884-95.SPE 27/11/98 -2- STRUCTURAL WOOD SYSTEMS AND SYNTHETIC REINFORCEMENT FOR STRUCTURAL WOOD MEMBERS Technical Field This invention pertains to the reinforcement of structural wood members, including beams, columns, panels, and trusses. More particularly, the present invention pertains to synthetic reinforcements, each having a surface adapted for improved adhesion into a structural wood member. The purpose of the reinforcements being to brace the member against tensile stress or compression stress or both caused by a heavy loading of the member.
The processes for fabricating such a synthetic reinforcement are also a part of the present invention.
0 Description of the Related Art Beams, trusses, joists, and columns are the typical structural members that support the 15 weight or loads of structures, including buildings and bridges. Structural members may be manufactured from a variety of materials, including steel, concrete, and wood, according to the structure design, environment, and cost.
Wood structural members are now typically manufactured from multiple wood segments that are bonded.
0* 0i 0 Oe 0e 0 00 0 0 0 r 0 0 000 together, such as in glue-laminated members, laminated veneer lumber, parallel strand lumber, and I-beams. These manufactured wood structural members have replaced sawn lumber or timbers because the former have higher design limits resulting from better inspection and manufacturing controls. Wood is a highly desirable material for use in structural members because of its advantageous characteristics, including strength to weight, appearance, cyclic load response, and fire resistance.
Laminated beams can be used structurally to span open areas to support loads of many tons. Typically, when loading a laminated beam or beams with a uniform load between support points, the bottom laminae are primarily subjected to tensile stress, while the top laminae are 15 primarily subjected to compressive stress.
Synthetic reinforcements for wood beams can be designed specifically to resist high tensile stress or to resist high compressive stress. The load-bearing capacity of laminated beams may be increased substantially by 20 adding synthetic reinforcements to the areas of greatest stress, namely, close to the bottom laminae and close to the top laminae. The synthetic reinforcements used in the areas of high tensile and compressive stress would typically differ to provide superior reinforcing.
There is a need for synthetic reinforcements that can be effectively and economically adhered to a wood lamina. Until the present invention, plastic panels could be adhered to wood beams and to each other and other structural wood members only with expensive epoxy adhesives. In contrast, the wood laminae of wood structural members are typically bonded together with a low-cost adhesive such as resorcinol, phenol-resorcinol, cross-linked melamine, and polyvinyl acetate (PVA). Thus, a separate gluing step and a separate gluing application apparatus are typically necessary for gluing synthetic P:\OPERAxd\2128896.RS I.d-2I5/07OO -4reinforcements to the wood laminae to make reinforced glue-laminated wood beams.
Summary of the Invention According to one aspect of the invention there is provided a structural wood system, wherein a single wood lamina is adhesively connected to a set of adhesively joined synthetic reinforcements, each comprising: a plurality of substantially continuous fibers along the length of the synthetic reinforcement; and a resin encasement for encasing substantially all e. of the fibers.
According to another aspect of the invention there is provided a synthetic reinforcement to be adhered to a wood structural member for increasing a load-carrying 15 capacity of the wood structural member, said reinforcement comprising: fee*• a plurality of continuous fibers; and a resin encasement for including substantially all e ee of said continuous fibers therein; and wherein said synthetic reinforcement is less than 2 millimeters thick.
go Embodiments of the present invention advantageously provide improved adhesion of synthetic reinforcements to one another and into structural wood members, including laminated wood members.
An advantage of embodiments of the present invention is that they may provide synthetic reinforcements having a surface treatment that facilitates the use of commercial grade adhesives such as resorcinol to adhere the improved synthetic reinforcement to wood members.
160Another advantage of embodiments of the present P:\OPER\Ax l12S896.RS I.d.-267/00 -4Ainvention is that they may provide an improved synthetic reinforcement including a resin encasement having a major surface with micro-recesses that increase the surface area of the resin encasement and increase adhesion into the substrate thereby increasing the sheer performance of the adhesive.
The problems associated with known reinforcement panels may be addressed in certain embodiments of the present invention by providing reinforcements having a surface adapted for improved adhesion to wood laminae and to one another. The present invention provides a synthetic reinforcement that may include a plurality of continuous fibers in a resin encasement. The surface of the resin encasement advantageously includes a multitude 15 of micro-recesses, generally located in a random pattern, that increase the surface area of the resin encasement. These micro-recesses may have a depth and width as small as one or two microns. At the largest they may be one or two millimeters wide and deep.
The micro-recesses may also provide tiny spaces where glue can accumulate and polymerize to increase S. glue line shear resistance. The increased surface area of the synthetic reinforcement may be bonded to wood laminae or themselves with inexpensive commercial grade adhesives including resorcinol resins such as are commonly used for adhering wood laminae to each other.
The present invention may also provide a fabrication process for making reinforced wood structural members having increased load-carrying capacity. First, a synthetic reinforcement having its surfaces covered with micro-recesses is prepared. To do this a nonreactive agent such as a volatile liquid or a solid particulate is dispersed into a curable resin. Alternatively, a multiplicity of many gas filled spheroids, each with a diameter of up to 2 millimeters may be dispersed into the resin. These spheroids may be comprised of plastic, glass or any other material that may be satisfactorily fashioned 15 into the required shape.
oo Next, a plurality of continuous fibers are wetted with this mixture and the resin is cured. If the agent is a liquid, it should generally turn to gas during the curing process, leaving a set of bubbles at the 20 surfaces of the panel. The surfaces of the reinforcing member which are to be adhered to a lamina are then .abraded to either remove the top surfaces of the bubbles if the agent used was either a liquid or a multiplicity of gas-filled spheroids or to remove surface embedded 25 particles if a solid particulate was used. A random pattern of micro-recesses results from this final step.
The surfaced reinforcement panel may be bonded to one or more wood members or other reinforcement panels or laminae such that the adhesive contacts at least a portion of a plurality of the micro-recesses.
Additionally, the present invention may provide optimization of the length of time between application of a layer of adhesive to a first surface and the contacting of a second surface over this adhesive layer. The duration of this period is referred to as "open time." P:\OPERAxd\212R896.RS I.doc-26/07/00 -6- Optimization of open time according to embodiments of the present invention increases the strength and integrity of the wood to reinforcement bond.
The foregoing and other features, and advantages of the invention will be more readily understood upon consideration of the following detailed descriptions, taken in conjunction with the accompanying drawings.
Brief Description of the Drawings Fig. 1 is a side elevational view of a wood laminated beam showing the improved synthetic .reinforcements located between laminae; Fig. 2 is a side elevational view of a wood laminated beam showing the improved synthetic reinforcements located on its exterior surfaces; 15 Fig. 3 is a perspective view of an improved reinforcement panel; Figs. 4A and 4B are greatly expanded fragmentary sectional views of an improved reinforcement panel showing in Fig. 4A solid particulates on the resin encasement and in Fig. 4B the resulting micro-recesses after the solid particulates are removed; Figs. 5A-5C are greatly expanded fragmentary sectional views of an alternative improved reinforcement panel showing in Fig. 5A solid particulates or liquid droplets on the reinforcing fibers, in Fig. 5B an overlying resin encasement, and in Fig. 5C the resulting micro-recesses formed after the droplets or the particulates are removed; and Figs. 6A-6B are greatly expanded fragmentary sectional views of another improved reinforcement panel 1i showing in Fig. 6A a multiplicity of gas-filled Spheroids in a partially finished reinforcement. Fig. 6B shows the reinforcement after the resin has cured and the surface has been sanded leaving micro-recesses.
Detailed DescriDtion of Preferred Embodiments Figs. 1 and 2 show glue laminated wood structural members 10 and 14 having multiple wood laminae 18 that are bonded together and are preferably elongate boards. In this configuration, wood beams 10 and 14 are configured as glue-laminated timbers according to 10 manufacturing standards 117-93 of the American Institute of Timber Construction (AITC) of Englewood, Colorado.
*wo .Although this is a preferred configuration of wood beams 10 and 14, the following description is similarly applicable to other wood structural members, including laminated veneer lumber, parallel strand lumber, wood I-beams, and reinforced wood composites.
Referring to Fig. 1, a first set of synthetic reinforcements 22a is located between the bottom lamina 26 and adjacent lamina 30. A second set of synthetic 20 reinforcements 22b is located between the top lamina 34 and its adjacent lamina 38. Each of reinforcement sets 22a and 22b, referred to collectively as reinforcements 22, extends approximately three-fifths the length of beam Reinforcements could extend for a greater portion of beam 10 or could extend the full length of beam As exemplary simple beams, wood structural members 10 and 14 would be supported by a pair of supports 39 and bear a load 40. In such a configuration, synthetic reinforcement sets 22a and 22b are positioned in regions of, respectively, high tensile stress and high compressive stress. It will be appreciated, however, that reinforcement sets 22a and 22b could alternatively be in regions of high compressive and tensile stress, respectively, if structural members 10 and 14 were cantilevered.
Spacers 42 extend from each end of each of reinforcement sets 22a and 22b to the end of wood beam and are preferably made of wood. A reinforcement set which covers two-fifths to three-fifths of the central portion of the beam provides substantially all the essential benefit of a full-length reinforcement set but at a lower cost per beam. Fig. 2 illustrates just one alternative embodiment of the present invention wherein 9reinforcement sets 22a and 22b are located on the exterior 10 of wood beam 14 and no spacers are provided.
Fig. 3 is an enlarged illustration of a single reinforcement 22 showing that it includes multiple synthetic fibers 46 that are arranged generally parallel to one another and are generally aligned with a longitudinal dimension of reinforcement 22, as described below in greater detail. Synthetic fibers 46 are maintained in their arrangement and alignment by a resin encasement 50 that surrounds the fibers and fills the interstices between the fibers. In one preferred 20 embodiment, the resins are curable, inexpensive, commercial grade adhesives including, for example, resorcinol resins, phenol-resorcinol, cross-linked melamine, and polyvinyl acetate (PVA), which are suitable for adhering wood laminae 18 (and reinforced wood composites) to each other.
Reinforcing fibers 46 are preferably aramid fibers, fiberglass, or carbon fibers. Aramid fibers are available from E. I. duPont de Nemours Co., Delaware, under the trademark Kevlar m and from Akzo N.V.'s fiber subsidiary, Enka BV (Arnhem, the Netherlands) under the trademark Twaron'. A preferred grade of aramid fibers is Kevlar 49'. Fibers 46 may also comprise or include a high modulus polyethylene fiber such as high molecular weight Spectra" sold by Allied Fibers of Allied Signal, Petersburg, Va. Another possible fiber is S-2 glass from Owens-Coming Fiberglass, Coming, New York. Aramid fibers and carbon fibers are the preferred materials in regions of high tensile and high compressive stress, respectively. Fiberglass fibers are a lower cost alternative to both.
Experimentation with nonepoxy resin encasements has resulted in interlaminar shear failure in reinforcement 22. Preferably, the curable resin used in fabrication of the reinforcement 22 is an epoxy resin.
However, alternative embodiments could use other resins such as polyester, vinyl ester, and phenolic resins.
Alternative embodiments of the present invention could use thermoplastic resins including poly(ethyleneterephthalate) (PET), PSP, or nylon-66.
:I 15 Although there are likely to be many instances when a single reinforcement 22 will provide sufficient strength and modulus of elasticity to enable a laminate to meet a predetermined set of requirements, it is also possible to adhere a set of synthetic reinforcements 22a 20 or 22b into a laminate as is clearly shown in Figs 1 and 2. The synthetic reinforcements 22 described here can be adhered to one another without the use of epoxy resins.
In accordance with embodiments of the present invention, multiple micro-recesses 58 in resin encasement 25 50 are distributed over the opposed major surfaces 54 and 56 of reinforcement 22. Micro-recesses 58 increase the surface area of reinforcement 22, facilitate adhesion of reinforcement 22 to adjacent wood laminae 18 and to itself in multiple laminations, and increase the strength of the adhesive bonding.
In the prior art, reinforcements 22 have been made by wetting fibers in a resin bath and subsequently s curing the encasement of resin 50. In the preferred 0 5 method of producing a reinforcing member with micro- Q I recesses 58 in its surface, a non-reactive agent is mixed in with the resin bath, the fibers are then wetted by the mixture of the agent and the curable resin, forming encasement Referring to Figs. 4A and 4B, the agent may be a solid particulate 60, such as chalk dust or clay. The agent is removed, and micro-recesses 58 are formed, by light abrasion of major surfaces 54 and 56 after the curing of resin encasement 50. Typically, the micro-recesses will be on the order of a few microns in 10 depth and width. At their largest they may be on the order of one or two millimeters in depth and width.
One drawback of this method is that some particulate 60 will remain mixed in with the resin corrupting it to the detriment of the mechanical properties of the cured resin 50. In general, however, the improved adhesion qualities of reinforcement 22 more than compensate for whatever mechanical properties are lost.
In an alternative method, described with 20 reference to Figs. 5A-5C, the agent may be or may include spritzed liquid material 62 that is added to the resin bath (not shown) prior to the wetting of the reinforcing fibers 46. For example, a liquid agent 62 may be selected to have a boiling point lower than the temperature selected for curing resin encasement 50. After the fibers 46 are wetted in the bath, during the step of curing the resin, this material generates, forms, or becomes bubbles of nonreactive gas. These bubbles tend to move to the nearest surface of the synthetic reinforcement where they either pop, forming micro-recesses 58 or remain as bubbles during curing. After the resin is cured, some light abrasion is applied to remove the exposed surface of the remaining bubbles, leaving additional micro-recesses 58.
In one embodiment, the liquid agent 62 may be methylethylketone or toluene and is preferably added to -11the curable resin at 2 to 15 weight percent agent/resin In one particular preferred embodiment, the agent is toluene added to the curable resin at a concentration of approximately 5 wt%.
An additional method of creating micro-recesses 58, shown in Fig. 6, is to add a multiplicity of gas-filled spheroids 64 with diameters on the order of about 10 to 2,000 microns in diameter, to the resin bath (not shown). Gas-filled spheroids 64 are widely available and are sometimes used for packing purposes. They may be made out of many different materials, including, it is believed, thermoset resins and thermoplastics. After the fibers 46 are dipped in the resin bath and the resin 50 is e.6 cured, a limited amount of abrasion is then sufficient to remove the exposed portion of bubbles 64, leaving micro-recesses 58 in the cured resin 50. Gas-filled spheroids 64 have the advantage of moving more certainly toward the surfaces of the synthetic reinforcement 22 during the curing process, thereby leaving few bubbles 64 in the interior of reinforcement 22.
6The synthetic reinforcements 22 created by this method may be less than 2 mm thick. As noted elsewhere, if one of these reinforcements is not sufficiently strong, a number of reinforcements 22 may be glued together to form a set 22a or 22b which together have the requisite strength.
Another preferred method of creating micro-recesses 58 in surface 54 of resin encasement 50 is by abrading surface 54. This may be done by rubbing a grit abrasive in a direction transverse or longitudinal to the longitudinal direction of reinforcement 22. Abrading the surface 54 of resin encasement 50 removes a small portion of the cured resin. Abrading surface 54 of encasement resin 50 may remove particulate agent 60 or expose voids formed by liquid or solid agent 62, which upon exposure become micro-recesses 58.' Adhesive 66 may then enter micro-recesses 58 and facilitate a strong and resilient bond of reinforcement 22 to lamina 18 of beam 14, or to some other structural member.
Reinforcement 22 of the present invention may be fabricated by the pultrusion process as described in U.S.
Patent No. 5,362,545 of Tingley.
Experimentation has led to the important S. discovery that open times may be optimized. Open time is the time during which the adhesive used for the reinforcement/wood lamina interface is allowed to air dry and penetrate the surface prior to being brought into 0:e: 00. contact with other bond-forming surfaces. After application of adhesive to a surface of a synthetic reinforcement panel to be used as a surface of the reinforcement/wood lamina interface, the adhesive bearing surface is typically given a short amount of open time.
Five to 10 minutes has been typical in testing; for use in production, longer open times are typical.
After the open time, the adhesive-bearing 0 surface is brought into contact with the desired surface of wood lamina, which may also bear adhesive and have also been given an open time. According to a preferred embodiment of the present invention, open time for reinforcement is preferably greater than 10 minutes but less than 80 minutes and is most preferably 30 minutes.
An open time of greater than 80 minutes may be preferable for some applications, such as the manufacture of larger beams. After open time, and after the adhesive-bearing surface is brought into contact with the desired surface, the reinforcement and wood lamina are typically clamped together to ensure optimal bonding under pressure of over 125 psi to form a glue line thickness of less than 0.004 inches.
P \OPERAXdU 2128896.RSI.do-26/07AM -13 Typical clamp time has been eight to 10 hours if no post-clamp time is permitted prior to the application of stress to the reinforced structural member. It has been found that post-clamp cure time increases the strength of the bond and allows for more complete curing.
Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", and variations such as "comprises" and "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.
*0 The reference to any prior art in this 0. specification is not, and should not be taken as, an 15 acknowledgment or any form of suggestion that that prior art forms part of the common general knowledge in Australia.
0000 The terms and expressions that have been employed in the foregoing specification are used therein as terms of description and not of limitation, and there is no intention, in the use of such terms and expressions, 0* 0 of excluding equivalents of the features shown and 0 described or portions thereof, it being recognized that the scope of the invention is defined and limited only by the claims that follow.
.d t o

Claims (14)

1. A structural wood system, wherein a single wood lamina is adhesively connected to a set of adhesively joined synthetic reinforcements, each comprising: a plurality of substantially continuous fibers along the length of the synthetic reinforcement; and a resin encasement for encasing substantially all of the fibers.
2. The structural wood system of claim 1 wherein said system further comprises parallel strand lumber.
3. The structural wood system of claim 1 wherein said system further comprises laminated veneer lumber. *foe*:
4. The structural wood system of claim 1 wherein said system further comprises an I-beam.
5. The structural wood system of claim 1 wherein each synthetic reinforcement has a major surface covered with e:o: micro-recesses.
6. A synthetic reinforcement to be adhered to a wood structural member for increasing a load-carrying capacity of the wood structural member, said reinforcement comprising: a plurality of continuous fibers; and a resin encasement for including substantially all of said continuous fibers therein; and wherein said synthetic reinforcement is less than 2 millimeters thick.
7. The synthetic reinforcement of claim 6 wherein the synthetic reinforcement has a major surface covered with micro-recesses. P:OPER\Axd 2128896.RS l.dc-27/071
8. The system or reinforcement of claim 1 or 6 respectively, wherein said fibers are aramids, fiberglass, polyethylene, or carbon.
9. The system or reinforcement of claim 1 or 6 respectively, wherein the resin encasement defines a plurality of gas filled voids located in a random distribution therein.
The system or reinforcement of claim 1 or 6 respectively, further including a plurality of fibers that each has an end that protrudes from said surface of said resin encasement for the purpose of facilitating adhesion of said panel to the structural member.
11. The system or reinforcement of claim 1 or 6 respectively, wherein said resin encasement is formed of epoxy resin, polyester, vinyl ester, or phenolic resin.
12. The system or reinforcement of claim 1 or 6 respectively, wherein said resin encasement is formed of polyimides, PSP, PET, or nylon-66.
13. A synthetic reinforcement according to claim 1 and 20 substantially as hereinbefore described with reference to the drawings.
14. A structural wood system according to claim 6 and substantially as hereinbefore described with reference to the drawings. DATED this 27 th day of July 2000. Daniel A. Tingley by DAVIES COLLISON CAVE Patent Attorneys for the Applicant
AU94188/98A 1994-09-16 1998-11-27 Structural wood systems and synthetic reinforcement for structural wood members Ceased AU724723C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU94188/98A AU724723C (en) 1994-09-16 1998-11-27 Structural wood systems and synthetic reinforcement for structural wood members

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/307315 1994-09-16
AU35884/95A AU702255B2 (en) 1994-09-16 1995-09-15 Surface treated synthetic reinforcement for structural wood members
AU94188/98A AU724723C (en) 1994-09-16 1998-11-27 Structural wood systems and synthetic reinforcement for structural wood members

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU35884/95A Division AU702255B2 (en) 1994-09-16 1995-09-15 Surface treated synthetic reinforcement for structural wood members

Publications (3)

Publication Number Publication Date
AU9418898A AU9418898A (en) 1999-02-04
AU724723B2 true AU724723B2 (en) 2000-09-28
AU724723C AU724723C (en) 2001-05-17

Family

ID=

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU747234B2 (en) * 1998-03-05 2002-05-09 Medical College Of Ohio, The IL-12 enhancement of immune responses to T-independent antigens

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU6368694A (en) * 1993-03-24 1994-10-11 Daniel A. Tingley Aligned fiber reinforcement panel for wood members
AU4523997A (en) * 1993-03-24 1998-02-12 Daniel A. Tingley Aligned fiber reinforcement panel for wood members

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU6368694A (en) * 1993-03-24 1994-10-11 Daniel A. Tingley Aligned fiber reinforcement panel for wood members
AU4523997A (en) * 1993-03-24 1998-02-12 Daniel A. Tingley Aligned fiber reinforcement panel for wood members

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU747234B2 (en) * 1998-03-05 2002-05-09 Medical College Of Ohio, The IL-12 enhancement of immune responses to T-independent antigens

Also Published As

Publication number Publication date
AU9418898A (en) 1999-02-04

Similar Documents

Publication Publication Date Title
AU702255B2 (en) Surface treated synthetic reinforcement for structural wood members
US6173550B1 (en) Wood I-beam conditioned reinforcement panel
AU706023B2 (en) Reinforced wood structural member
AU684150B2 (en) Cellulose surface material adhered to a panel
US5456781A (en) Method of manufacturing glue-laminated wood structural member with synthetic fiber reinforcement
US5736220A (en) Surface treated synthetic reinforcement for structural wood members
AU702344B2 (en) Glue-laminated wood structural member with synthetic fiber reinforcement
US5747151A (en) Glue-laminated wood structural member with sacrificial edges
US5744228A (en) Use of synthetic fibers in a glueline to increase resistance to sag in wood and wood composite structures
AU724723B2 (en) Structural wood systems and synthetic reinforcement for structural wood members
AU715968B2 (en) Method of manufacturing glue-laminated wood structural member with synthetic fiber reinforcement

Legal Events

Date Code Title Description
DA2 Applications for amendment section 104

Free format text: THE NATURE OF THE PROPOSED AMENDMENT IS AS SHOWN IN THE STATEMENT(S) FILED 20001018

FGA Letters patent sealed or granted (standard patent)
DA3 Amendments made section 104

Free format text: THE NATURE OF THE AMENDMENT IS AS WAS NOTIFIED IN THE OFFICIAL JOURNAL DATED 20001116

MK14 Patent ceased section 143(a) (annual fees not paid) or expired