WO2010054569A1 - 多频点多址接入方法和装置 - Google Patents

多频点多址接入方法和装置 Download PDF

Info

Publication number
WO2010054569A1
WO2010054569A1 PCT/CN2009/074215 CN2009074215W WO2010054569A1 WO 2010054569 A1 WO2010054569 A1 WO 2010054569A1 CN 2009074215 W CN2009074215 W CN 2009074215W WO 2010054569 A1 WO2010054569 A1 WO 2010054569A1
Authority
WO
WIPO (PCT)
Prior art keywords
working frequency
multiple access
fdma
terminal
frequency points
Prior art date
Application number
PCT/CN2009/074215
Other languages
English (en)
French (fr)
Inventor
毕峰
苟伟
袁明
米德忠
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US13/393,139 priority Critical patent/US8780854B2/en
Publication of WO2010054569A1 publication Critical patent/WO2010054569A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • H04L27/2636Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/26Network addressing or numbering for mobility support
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • orthogonal frequency division multiplexing decomposes a data stream into a plurality of sub-data streams, each of which has a relatively low bit rate. Orthogonal Frequency Division Multiplexing modulates each sub-data stream onto a corresponding sub-carrier for parallel transmission.
  • the OFDM sub-carriers are not only mutually orthogonal but also have 1/2 overlap.
  • the multiple access method for transmitting uplink information adopts SC-FDMA, because the information symbols of the single carrier system are directly modulated into the time domain (or some variants of the cartridge) Therefore, the PAPR is relatively low.
  • the PAPR ratio of the multi-carrier system is simple.
  • the PAPR of the carrier system is 2 - 3dB larger, and the high PAPR increases the linearity requirement of the power amplifier. However, this is very disadvantageous for the UT.
  • the best choice for uplink multiple access is a single carrier system with a cyclic prefix, ie, SC- FDMA.
  • SC- FDMA single carrier system with a cyclic prefix
  • the present invention has been made in view of the problem of a technical solution of a multiple access method in which a plurality of operating frequency points exist in a system, and the main object of the present invention is to provide a multi-frequency point.
  • the address access method and apparatus solve the above problems in the related art. According to an aspect of the present invention, a multi-frequency point multiple access method is provided.
  • the multi-frequency point multiple access method includes: transmitting and downlink information of uplink information for each of a plurality of working frequency points in a case where the system includes a plurality of operating frequency points
  • the transmissions are respectively configured with a multiple access method; each of the working frequency points transmits uplink information and/or downlink information according to the multiple access mode configured for it.
  • the multiple access mode configured for the uplink information transmission is at least one of the following: single carrier frequency division multiple access, that is, SC-FDMA, orthogonal frequency division multiple access (OFDM), and striping Orthogonal Frequency Division Multiple Access (clustered SC-FDMA, NxSC-FDMA).
  • the foregoing method further includes: allocating a plurality of working frequency points to the terminal.
  • the method further includes: configuring a predetermined working frequency point of the plurality of working frequency points as an initial access working frequency point of the terminal, where the initial access working frequency point uplink is performed.
  • the multiple access mode of the road information transmission is SC-FDMA, and the multiple access mode of the downlink information transmission is OFDMA; after accessing the initial access working frequency point, the terminal acquires multiple working frequency points according to the system message received by the terminal.
  • the process of adjusting the current working frequency point of the terminal in the old system in the terminal is specifically: adjusting the current working frequency point to transmit the uplink information by using the SC-FDMA multiple access mode, and transmitting the downlink by using the OFDMA multiple access mode.
  • the working frequency of road information is provided.
  • the multi-frequency multiple access device includes: a configuration module, configured to include more in the system In the case of the working frequency point, the transmission of the uplink information and the transmission of the downlink information of each of the plurality of working frequency points are respectively configured with a multiple access mode; the sending module is configured according to the configuration module
  • the multiple access method performs uplink information transmission and/or downlink information transmission at a plurality of operating frequency points.
  • the multiple access mode is at least one of the following: single carrier frequency division multiple access (SC-FDMA), orthogonal frequency division multiple access (OFDMA), and stripe orthogonal frequency division multiple access (clustered SC-FDMA, Nx) SC-FDMA.
  • the foregoing apparatus further includes: an allocating module, configured to allocate a plurality of working frequency points to the terminal.
  • the configuration module further includes: an initial access configuration sub-module, configured to configure a predetermined working frequency point of the multiple working frequency points as an initial access working frequency point of the terminal, where the initial access working frequency point uplink information
  • the multiple access mode is SC-FDMA
  • the multiple access mode of the downlink information transmission is OFDMA.
  • the notification sub-module is configured to send a system message to the terminal after the terminal accesses the initial access working frequency, where the system message
  • the multiple access mode used when transmitting the uplink information and the downlink information is carried in multiple working frequency points, so that the terminal can adjust the current working frequency of the terminal according to the multiple access mode supported by the terminal itself.
  • the allocating module is further configured to: adjust the current working frequency point to transmit the uplink information by using the SC-FDMA multiple access mode, and transmit the downlink information by using the OFDMA multiple access mode for the terminal located in the old system in the terminal.
  • the working frequency of information is further configured to: adjust the current working frequency point to transmit the uplink information by using the SC-FDMA multiple access mode, and transmit the downlink information by using the OFDMA multiple access mode for the terminal located in the old system in the terminal.
  • the existing single multiple access method is not fully applicable and multiple working frequencies are solved.
  • the problem of the point situation, and the problem that the link performance is degraded by considering only the PAPR in the existing system provides a multiple access mode of the single-chip, which ensures the link performance of the working frequency point and improves the entire network.
  • the throughput while taking into account the system PAPR problem.
  • FIG. 1 is a flowchart of a multi-frequency multiple access method according to an embodiment of the present invention
  • FIG. 2 is an uplink of an example 1 of a multi-frequency multiple access method according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of downlink multi-frequency point multiple access of Example 1 of a multi-frequency point multiple access method according to an embodiment of the present invention
  • FIG. 1 is a flowchart of a multi-frequency multiple access method according to an embodiment of the present invention
  • FIG. 2 is an uplink of an example 1 of a multi-frequency multiple access method according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of downlink multi-frequency point multiple access of Example 1 of a multi-frequency point multiple access method according to an embodiment of the present invention
  • FIG. 1 is a flowchart of a multi-frequency multiple access method according to an embodiment of the present invention
  • FIG. 2 is an uplink of an example 1 of a multi-frequency multiple access method according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a downlink multi-frequency point multiple access method according to an embodiment of the present invention.
  • An uplink multi-frequency point multiple access scheme of Example 2 of the multi-frequency point multiple access method is an uplink multi-frequency point of Example 3 of the multi-frequency point multiple access method according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of downlink multi-frequency point multiple access of Example 3 of a multi-frequency point multiple access method according to an embodiment of the present invention
  • FIG. 7 is a multi-frequency point according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of an OFDMA transmitter according to a multi-frequency point multiple access method according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of an OFDMA transmitter according to an embodiment of the present invention. Schematic diagram of the clustered SC-FDMA transmitter of the multi-frequency point multiple access method of the example; According to a schematic structural multi-frequency multiple access method NX SC-FDMA embodiment of the transmitter of the present invention; FIG. 11 is a multi-frequency data only Gen multiple access embodiments of the present invention, a block diagram of an embodiment of an access device. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT The existing single multiple access method cannot be applied well when the system includes multiple working frequency points. Therefore, the present invention addresses different needs of different systems and different capabilities of different terminals. A technical solution is provided.
  • the information transmission at some working frequency points can be single carrier-frequency division multiple access (Single Carrier-Frequency Division Multiple Access, which is called SC-FDMA).
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • the information transmission at some working frequency points may be in the form of Orthogonal Frequency Division Multiple Access (OFDMA), and information transmission at some working frequency points may be clustered.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • information transmission at some working frequency points can be in the form of NX SC-FDMA (N SC-FDMA).
  • the information transmission of some working frequency points can adopt the form of SC-FDMA, OFDMA, clustered SC-FDMA and N x SC-FDMA at the same time, and the information transmission of each working frequency point can also adopt the same multiple access mode;
  • the information transmission of each working frequency point is preferably in the form of OFDMA, and of course, the other multiple access manners described above may also be used. It is not defined.
  • FIG. 1 is a flowchart of a multi-frequency point multiple access method according to an embodiment of the present invention, as shown in FIG.
  • the method includes the following processing (step S102 - step S104): Step S102, in the case that the system includes multiple working frequency points, sending and transmitting uplink information of each of the plurality of working frequency points
  • the transmission of the downlink information is respectively configured in a multiple access manner; that is, the information transmission on the uplink and downlink of each working frequency point may adopt different or the same multiple access manner.
  • the multiple access mode configured for its uplink information transmission may be at least one of the following: SC-FDMA, OFDMA, clustered SC-FDMA, N x SC-FDMA.
  • SC-FDMA SC-FDMA
  • OFDMA OFDMA
  • clustered SC-FDMA N x SC-FDMA
  • multiple access methods combining SC-FDMA, OFDMA, clustered SC-FDMA, and N x SC-FDMA may be employed.
  • the information transmission of some working frequency points may adopt SC-FDMA, and the information transmission of some working frequency points may adopt OFDMA, and the information transmission of some working frequency points may adopt clustered SC-FDMA, and some working frequency points may be used.
  • Information transmission can use NX SC-FDMA.
  • the information transmission at some working frequency points can use SC-FDMA, OFDMA, clustered SC-FDMA and N x SC-FDMA at the same time.
  • the information transmission at each working frequency point can also be the same. Address method.
  • the multiple access mode used for information transmission of each working frequency point can be configured, that is, the multiple access mode used for information transmission of each working frequency point can be changed, and the next time can be configured as other multiple access. the way.
  • the working frequency points specifically allocated to the original system terminal and the new system terminal can be adaptively adjusted, that is, 4 multiple working frequency points are allocated to Different types of terminals.
  • the specific steps of the above process include:
  • the predetermined working frequency point among the multiple working frequency points is configured as the initial access working frequency point of the terminal (for example, the central frequency point or a certain frequency point may be used as the initial access frequency of the UT by default), wherein
  • the multiple access mode of the initial access working frequency uplink information transmission may be SC-FDMA, and the multiple access mode of the downlink information transmission may be OFDMA, and of course, other multiple access modes may also be used.
  • the UT After accessing the initial access working frequency point, the UT obtains multiple access modes used when transmitting uplink information and downlink information at multiple working frequency points according to the system message received by the UT; specifically, after the UT is accessed According to the system information, some information about the working frequency can be sent using SC-FDMA. Some of the working frequency information is transmitted using OFDMA. Some working frequency information is transmitted using clustered SC-FDMA, some working frequencies. The information transmission of the point adopts N x SC-FDMA. The information transmission of some working frequency points adopts SC-FDMA, OFDMA, clustered SC-FDMA and N x SC-FDMA, and some information of the working frequency is transmitted. The same multiple access method. 3.
  • the current working frequency of the UT can be adjusted to adopt the SC-FDMA multiple access method and transmit the uplink information, and the multiple access using OFDMA.
  • the mode transmits the working frequency of the downlink information, and other types of terminals can work at any working frequency in different multiple access modes.
  • the information transmission of each working frequency downlink may be different.
  • the information transmission of each working frequency downlink is preferably in the form of OFDMA, and of course, other multiple access methods described above.
  • Step S104 Each working frequency point performs transmission of uplink information and/or transmission of downlink information according to a multiple access manner configured thereto.
  • Example 1 Take the bandwidth of 100MHz as an example.
  • the bandwidth of 100MHz is composed of five 20MHz bandwidths, which correspond to five working frequency points.
  • uplink multiple access can be used as follows. Solution: The first working frequency can be sent by SC-FDMA, the second working frequency can be transmitted by OFDMA, and the third working frequency can be sent by clustered SC-FDMA, the fourth work.
  • the information transmission of the frequency point can adopt N x SC-FDMA
  • the information transmission of the fifth working frequency point can simultaneously adopt SC-FDMA, OFDMA, clustered SC-FDMA and N x SC-FDMA; and in order to be compatible with the old system, as shown in the figure
  • the following scheme can be adopted for downlink multiple access:
  • the information transmission of the first, second, third, fourth, and fifth working frequency points can all adopt OFDMA.
  • Example 2 Take the bandwidth of 100MHz as an example.
  • the bandwidth of 100MHz is composed of five 20MHz bandwidths, which correspond to five working frequency points.
  • uplink multiple access can be used as follows. Solution:
  • the information transmission of the first, second, third, fourth, and fifth working frequency points can all adopt SC-FDMA.
  • the downlink multiple access can adopt the following scheme:
  • the information transmission of the first, second, third, fourth, and fifth working frequency points can all adopt OFDMA.
  • Example 3 Taking a bandwidth of 100 MHz as an example, a bandwidth of 100 MHz is set up by other bandwidths, for example, a combination of 20 MHz, 40 MHz, and 40 MHz, and three 'J corresponds to three.
  • the working frequency point as shown in Figure 5, the uplink multi-access access can adopt the following scheme:
  • the information transmission of the first working frequency point can adopt SC-FDMA, and the information transmission of the second working frequency point can adopt OFDMA.
  • the third working frequency information can be sent using clustered SC-FDMA.
  • the downlink multiple access can adopt the following scheme:
  • the information transmission of the first, second, and third working frequency points can all adopt OFDMA.
  • which 20MHz resource is allocated to LTE can be adaptively adjusted, and the center frequency point or a certain frequency point can be used as the initial access frequency point of the UT by default.
  • some working frequency points can be learned according to the system information.
  • the information is transmitted using SC-FDMA.
  • Some of the working frequency information is transmitted using OFDMA.
  • Some of the working frequency information is transmitted using clustered SC-FDMA, and some working frequency information is transmitted using NX SC-FDMA.
  • Some working frequency information transmission uses SC-FDMA, OFDMA, clustered SC-FDMA and N x SC-FDMA.
  • the information transmission of some working frequency points adopts the same multiple access method.
  • the LTE terminal can work at the working frequency of the SC-FDMA in the uplink, and other types of terminals can work at any working frequency in different multiple access modes.
  • Node-B can adjust the number of working frequency points used for SC-FDMA, OFDMA, clustered SC-FDMA or N x SC-FDMA at this time, according to the UT that is communicating and ⁇ 1 to communicate.
  • FIG. 7 is a schematic structural diagram of an SC-FDMA transmitter.
  • code segmentation, channel coding, constellation modulation, DFT transform, subcarrier mapping, and IFFT are required for the transmitted information.
  • 8 is a schematic structural diagram of an OFDMA transmitter.
  • code segmentation, channel coding, constellation modulation, serial-to-parallel conversion, subcarrier mapping, IFFT transformation, and addition are required for the transmitted information.
  • the operation of the CP is finally transmitted.
  • FIG. 9 is a schematic structural diagram of a clustered SC-FDMA transmitter.
  • FIG. 10 is a schematic diagram of the structure of an N x SC-FDMA transmitter using N x SC-FDMA
  • the transmitter transmits information, it needs to perform code block segmentation, channel coding, constellation modulation, DFT transform, subcarrier mapping, IFFT transform on the transmitted information, and then add the operation to the CP after the operation, and finally transmit the information. Go out.
  • the receiving end processes according to the specific multiple access method adopted at the working frequency point at this time.
  • the receiving end performs corresponding processing according to the SC-FDMA processing procedure. If the information transmission of a working frequency point is OFDMA, the receiving end performs corresponding work according to the processing of OFDMA; if the information transmission of a working frequency point is using clustered SC-FDMA, the receiving end follows The processing of clustered SC-FDMA performs corresponding work; if the information transmission of a working frequency point is NX SC-FDMA, the receiving end performs corresponding work according to the processing procedure of NX SC-FDMA; The information transmission uses SC-FDMA, OFDMA, clustered SC-FDMA and N x SC-FDMA, and the receiving end performs corresponding work according to the processing of each multiple access mode.
  • the information transmission of Node-B at each working frequency point is preferably in the form of OFDMA, and the receiving end performs corresponding work according to the processing procedure of OFDMA.
  • the above-mentioned processing solves the problem that the existing single multiple access method is not fully applicable to the case where there are multiple working frequency points.
  • the solution provided by the embodiment of the present invention can be compatible with the old system terminal, and has good compatibility. It is a multi-access method with multiple effective working frequency points.
  • a computer readable medium having stored thereon computer executable instructions for causing a computer or processor to perform, for example, when executed by a computer or processor The processing of step S102 and step S104 shown in Fig.
  • FIG. 11 is a *1 diagram of a multi-frequency point multiple access apparatus according to an embodiment of the present invention, as shown in the figure
  • the above apparatus includes a configuration module 110 and a transmitting module 112.
  • the modules in the device are described in detail below.
  • the configuration module 110 is configured to configure a multiple access mode for transmitting uplink information and transmitting downlink information of each of the multiple working frequency points when the system includes multiple working frequency points; That is to say, the configuration module 110 configures the information transmission on the uplink and downlink of each working frequency point to be different or the same multiple access manner.
  • the multiple access mode is at least one of the following: SC-FDMA, OFDMA, clustered SC-FDMA, N x SC-FDMA.
  • the configuration module 110 may send uplink/downlink information to a multiple access mode in which SC-FDMA, OFDMA, clustered SC-FDMA, and Nx SC-FDMA are combined for each working frequency point.
  • the configuration module 110 may configure information transmission of certain working frequency points to be SC-FDMA, configure information transmission of certain working frequency points to OFDMA, and configure information transmission of certain working frequency points to clustered SC-FDMA.
  • the information transmission of some working frequency points is configured as N x SC-FDMA
  • the information transmission of some working frequency points is configured as SC-FDMA, OFDMA, clustered SC-FDMA and N x SC-FDMA
  • the information transmission at the working frequency is configured in the same multiple access mode.
  • the configuration module 110 can also adjust the current working frequency point to transmit uplink information by using SC-FDMA multiple access mode, and transmit the downlink by using OFDMA multiple access mode.
  • the working frequency of the link information is configured as N x SC-FDMA
  • the configuration module 110 can also adjust the current working frequency point to transmit uplink information by using SC-FDMA multiple access mode, and transmit the downlink by using OFDMA multiple access mode.
  • the configuration module 110 further includes: an initial access configuration sub-module, configured to configure a predetermined working frequency point of the multiple working frequency points as an initial access working frequency point of the terminal (eg, a default central frequency point or A certain frequency point is used as the initial access frequency of the UT); wherein the multiple access mode for transmitting the uplink information of the initial access working frequency point is
  • the multiple access mode of the downlink information transmission is OFDMA, and of course, the other multiple access modes may be used.
  • the notification sub-module is configured to send a system message to the terminal after the terminal accesses the initial access working frequency point, where the system message carries multiple working frequency points to transmit uplink information and downlink information.
  • the address mode enables the terminal to adjust the current working frequency of the terminal according to the multiple access mode supported by the terminal itself. Specifically, after the UT is accessed, the information of some working frequency points can be obtained according to the system information, and SC-FDMA is used for transmission.
  • the information transmission of some working frequency points adopts OFDMA, and the information transmission of some working frequency points adopts clustered SC.
  • the frequency information is transmitted using the same multiple access method.
  • the sending module 112 is connected to the configuration module 110 for configuring according to the configuration module 110.
  • the address mode transmits uplink information and/or downlink information at a plurality of operating frequencies.
  • the configuration module 110 performs multiple access mode configuration on multiple working frequency points, the working frequency points specifically allocated to the original system terminal and the new system terminal can be adaptively adjusted, because the device can also be used.
  • the method further includes: an allocation module, configured to allocate multiple working frequency points to the terminal.
  • the existing single multiple access mode is not well solved by configuring different or the same multiple access modes for information transmission on the uplink and downlink of each working frequency point.
  • the problem of applying multiple working frequency points, and the problem that the link performance is degraded by considering only PAPR in the existing system provides a single-access multiple access mode, which ensures the link performance of the working frequency point. , improve the throughput of the entire network, while taking into account the problem of system PAPR.
  • the implementation of the present invention does not modify the system architecture and the current processing flow, is easy to implement, facilitates promotion in the technical field, and has strong industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Computer Security & Cryptography (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

多频点多址接入方法和装置
技术领域 本发明涉及通信领域, 并且特别地, 涉及一种多频点多址接入方法和装 置。 背景技术 在正交频分多址 ( Orthogonal Frequency Division Multiplexing, 筒称为 OFDM ) 系统中, 正交频分复用将数据流分解为若干个子数据流, 每个子数 据流具有比较低的比特速率 , 正交频分复用将各子数据流分别调制到相应的 子载波上进行并行发送, 其中 , OFDM各个子载波之间不仅是相互正交的 , 而且具有 1/2的重叠。 在长期演进 ( Long Term Evolution, 筒称为 LTE ) 系统中 , 需要充分考 虑用户终端 ( User Terminal, 筒称为 UT )的峰均功率比( Peak Average Power Ratio, 筒称为 PAPR ) 问题, 即, 发射机的输出信号的瞬时值会有较大的波 动, 这将要求系统内的一些部件, 例如, 功率放大器、 分插 (Add/Drop, 筒 称为 A/D )转换器、 数 /模 ( Digital-to-Analog, 筒称为 D/A )转换器等具有艮 大的线性动态范围, 并且, 这些部件的非线性也会导致动态范围较大的信号 产生非线性失真, 所产生的谐波会造成子信道的相互干 4尤, 从而影响 OFDM 系统的性能。 在 LTE 系统中, 由于 PAPR的问题 , 发送上行信息的多址方式采用了 SC-FDMA, 这是由于单载波系统的信息符号是直接调制到时域上的(或者是 某些筒单的变形), 所以其 PAPR比较氐, 但是, 在多载波系统中, 由于在同 一时间有多个载波同时传输信息符号 , 而各个载波承载的信息符号又是相互 独立的, 因此, 多载波系统的 PAPR比单载波系统的 PAPR大 2 - 3dB , 而高 PAPR增加了对功放线性的要求, 但是, 这对 UT 非常不利, 因此, 上行多 址的最好选择是带循环前缀的单载波系统, 即, SC-FDMA。 目前, 对于以 OFDM系统为基础的多址接入的研究是一个热点, 但是, 对于存在多个工作频点时的多址接入方式却艮少研究, 以 LTE系统为例, 其 下行采用 OFDMA, 其上行采用 SC-FDMA, 且系统中只有一个工作频点, 但是, 该方案并不能 艮好地适用具有多个工作频点的系统 (例如, LTE-Advanced 系统与 IMT-Advanced 系统), 因此目前急需一种在系统存在 多个工作频点时的多址接入方式的技术方案。 发明内容 考虑到相关技术中还没有提出系统存在多个工作频点时的多址接入方 式的技术方案的问题而提出本发明 , 为此, 本发明的主要目的在于提供一种 多频点多址接入方法和装置, 以解决相关技术中存在的上述问题。 根据本发明的一个方面 , 提供了一种多频点多址接入方法。 根据本发明的多频点多址接入方法包括:在系统包括多个工作频点的情 况下, 对多个工作频点中每个工作频点的上行链路信息的发送和下行链路信 息的发送分别配置多址方式; 每个工作频点才艮据对其配置的多址方式进行上 行链路信息的发送和 /或下行链路信息的发送。 其中 , 对于每个工作频点 , 对其上行链路信息发送配置的多址方式为以 下至少之一: 单载波频分多址即 SC-FDMA、 正交频分多址接入 OFDMA、 分条正交频分多址接入即 clustered SC-FDMA、 NxSC-FDMA。 此外,在对多个工作频点进行多址方式配置之后,上述方法进一步包括: 将多个工作频点分配给终端。 此夕卜, 在对多个工作频点进行分配后, 进一步包括: 将多个工作频点中 的预定工作频点配置为终端的初始接入工作频点 , 其中初始接入工作频点上 行链路信息发送的多址方式为 SC-FDMA, 下行链路信息发送的多址方式为 OFDMA; 在接入初始接入工作频点后, 终端才艮据其接收的系统消息获取多 个工作频点发送上行链路信息和下行链路信息时采用的多址方式, 并根据终 端本身支持的多址方式调整终端的当前工作频点。 其中, 终端中位于旧系统的终端进行当前工作频点调整的处理具体为: 将当前工作频点调整为采用 SC-FDMA的多址方式发送上行链路信息、 采用 OFDMA的多址方式发送下行链路信息的工作频点。 才艮据本发明的另一方面, 提供了一种多频点多址接入装置。 才艮据本发明的多频点多址接入装置包括: 配置模块, 用于在系统包括多 个工作频点的情况下 , 对多个工作频点中每个工作频点的上行链路信息的发 送和下行链路信息的发送分别配置多址方式; 发送模块, 用于根据配置模块 配置的多址方式在多个工作频点上进行上行链路信息的发送和 /或下行链路 信息的发送。 其中, 多址方式为以下至少之一: 单载波频分多址即 SC-FDMA、 正交 频分多址接入 OFDMA、 分条正交频分多址接入即 clustered SC-FDMA, N x SC-FDMA。 此外, 上述装置进一步包括: 分配模块, 用于将多个工作频点分配给终 端。 此外, 配置模块进一步包括: 初始接入配置子模块, 用于将多个工作频 点中的预定工作频点配置为终端的初始接入工作频点 , 其中初始接入工作频 点上行链路信息发送的多址方式为 SC-FDMA, 下行链路信息发送的多址方 式为 OFDMA; 通知子模块, 用于在终端接入初始接入工作频点后, 向终端 发送系统消息, 其中, 系统消息中携带有多个工作频点发送上行链路信息和 下行链路信息时采用的多址方式, 使得终端能够才艮据终端本身支持的多址方 式调整终端的当前工作频点。 此夕卜, 分配模块进一步用于: 对于终端中位于旧系统的终端, 将当前工 作频点调整为采用 SC-FDMA的多址方式发送上行链路信息、 采用 OFDMA 的多址方式发送下行链路信息的工作频点。 借助于本发明的技术方案 ,通过对各工作频点上下行链路的信息发送配 置不同或相同的多址方式, 解决了现有的单一多址接入方式不完全适用存在 多个工作频点的情况的问题、 以及现有系统中仅考虑 PAPR而使得链路性能 下降的问题,提供了一种筒单的多址接入方式,保证了工作频点的链路性能, 提高了整个网络的吞吐量, 同时兼顾了系统 PAPR的问题。 本发明的其它特征和优点将在随后的说明书中阐述, 并且, 部分地从说 明书中变得显而易见, 或者通过实施本发明而了解。 本发明的目的和其他优 点可通过在所写的说明书、 权利要求书、 以及附图中所特别指出的结构来实 现和获得。 附图说明 附图用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本 发明的实施例一起用于解释本发明 , 并不构成对本发明的限制。 在附图中: 图 1是根据本发明实施例的多频点多址接入方法的流程图; 图 2是根据本法明实施例的多频点多址接入方法的实例 1的上行链路多 频点多址示意图; 图 3是根据本法明实施例的多频点多址接入方法的实例 1的下行链路多 频点多址示意图; 图 4是根据本法明实施例的多频点多址接入方法的实例 2的上行链路多 频点多址示意图; 图 5是根据本法明实施例的多频点多址接入方法的实例 3的上行链路多 频点多址示意图; 图 6是根据本发明实施例的多频点多址接入方法的实例 3的下行链路多 频点多址示意图; 图 7是才艮据本发明实施例的多频点多址接入方法的 SC-FDMA发射机的 结构示意图; 图 8是才艮据本发明实施例的多频点多址接入方法的 OFDMA发射机的 结构示意图; 图 9是才艮据本发明实施例的多频点多址接入方法的 clustered SC-FDMA 发射机的结构示意图; 图 10是才艮据本发明实施例的多频点多址接入方法的 N X SC-FDMA发 射机的结构示意图; 图 11是才艮据本发明实施例的多频点多址接入装置的框图。 具体实施方式 功能相克述 在系统包含多个工作频点时,现有的单一多址接入方式不能够艮好的适 用, 因此, 本发明针对不同系统的不同需求、 以及不同终端的不同能力, 提 供了一种技术方案, 在多个工作频点的系统中, 由于高端 UT内的部件具有 很大的动态范围, 所以该类终端一般不会考虑 PAPR问题。 为了更好的获得 链路性能及整网吞吐量, 在上行时, 某些工作频点上的信息发送可以采用单 载波频分多址 ( Single Carrier-Frequency Division Multiple Access , 筒称为 SC-FDMA )的形式, 某些工作频点上的信息发送可以采用正交频分多址接入 ( Orthogonal Frequency Division Multiple Access , 筒称为 OFDMA ) 的形式, 某些工作频点的信息发送可以采用分簇单载波频分多址 ( clustered Single Carrier-Frequency Division Multiple Access , 筒称为 clustered SC-FDMA )的形 式, 某些工作频点的信息发送可以采用 N X SC-FDMA ( N个 SC-FDMA ) 的 形式,某些工作频点的信息发送可以同时采用 SC-FDMA、 OFDMA, clustered SC-FDMA和 N x SC-FDMA这 4中形式,各工作频点的信息发送也可以采用 相同的多址方式; 在下行链路信息发送时, 每个工作频点的信息发送优选地 均采用 OFDMA的形式, 当然也可以采用上述其他多址方式, 本发明实施例 对此不作限定。 以下结合附图对本发明的优选实施例进行说明 , 应当理解 , 此处所描述 的优选实施例仅用于说明和解释本发明, 并不用于限定本发明。 方法实施例 才艮据本发明的实施例, 提供了一种多频点多址接入方法, 图 1是根据本 发明实施例的多频点多址接入方法的流程图, 如图 1所示, 上述方法包括以 下处理 (步骤 S102 -步骤 S104 ): 步骤 S102, 在系统包括多个工作频点的情况下, 对多个工作频点中每 个工作频点的上行链路信息的发送和下行链路信息的发送分别配置多址方 式; 也就是说, 各工作频点上下行链路的信息发送可以采用不同或相同的多 址方式。 其中 , 对于每个工作频点 , 对其上行链路信息发送配置的多址方式可以 为以下至少之一: SC-FDMA, OFDMA, clustered SC-FDMA, N x SC-FDMA。 在实际的应用中, 可以采用 SC-FDMA、 OFDMA、 clustered SC-FDMA 和 N x SC-FDMA相结合的多址方式。 具体地, 某些工作频点的信息发送可 以采用 SC-FDMA, 某些工作频点的信息发送可以采用 OFDMA, 某些工作 频点的信息发送可以采用 clustered SC-FDMA, 某些工作频点的信息发送可 以采用 N X SC-FDMA , 某些工作频点的信息发送可以同时采用 SC-FDMA、 OFDMA, clustered SC-FDMA和 N x SC-FDMA, 各工作频点的信息发送也 可以采用相同的多址方式。 此外, 在步骤 S102中, 各工作频点的信息发送采用的多址方式可以配 置, 即, 各工作频点的信息发送采用的多址方式是可以变化的, 下一时刻可 配置成其他多址方式。 在步骤 S102中, 在对多个工作频点进行多址方式配置之后 , 具体分配 给原系统终端和新系统终端使用的工作频点可以自适应调整, 即 , 4夺多个工 作频点分配给不同类型终端。 以上过程的具体步骤包括:
1、 ^)夺多个工作频点中的预定工作频点配置为终端的初始接入工作频点 (例如, 可以默认把中心频点或是某频点作为 UT初始接入频点), 其中初始 接入工作频点上行链路信息发送的多址方式可以为 SC-FDMA, 下行链路信 息发送的多址方式可以为 OFDMA, 当然也可以上述其他多址方式。
2、在接入初始接入工作频点后, UT根据其接收的系统消息获取多个工 作频点发送上行链路信息和下行链路信息时采用的多址方式; 具体地, UT 接入后可以根据系统信息获知某些工作频点的信息发送采用了 SC-FDMA, 某些工作频点的信息发送采用了 OFDMA, 某些工作频点的信息发送采用了 clustered SC-FDMA, 某些工作频点的信息发送采用了 N x SC-FDMA, 某些 工作频点的信息发送同时采用了 SC-FDMA、 OFDMA、 clustered SC-FDMA 和 N x SC-FDMA, 某些工作频点的信息发送采用了相同的多址方式。 3、 才艮据 UT本身支持的多址方式调整 UT的当前工作频点。 此外, 为了兼容旧系统, 属于旧系统的终端进行当前工作频点调整时, 可以将当前工作频点调整为采用 SC-FDMA的多址方式并进行上行链路信息 的发送、 采用 OFDMA的多址方式发送下行链路信息的工作频点, 其他类型 的终端可以以不同的多址方式工作在任何工作频点。 此外, 在实际的应用中, 各工作频点下行链路的信息发送可以采用不同 或相同的多址方式, 但是, 为了兼容旧系统, 每个工作频点下行链路的信息 发送均优选为 OFDMA的形式, 当然也可以为上述其他多址方式。 步骤 S104, 每个工作频点根据对其配置的多址方式进行上行链路信息 的发送和 /或下行链路信息的发送。 下面将结合实例, 对本发明的上述技术方案进行详细的说明。 实例 1 以 100MHz的带宽为例进行说明, 叚设 100MHz的带宽由 5个 20MHz 的带宽集合而成, 分别对应 5个工作频点, 如图 2所示, 此时上行多址接入 可以采用如下方案: 第 1个工作频点的信息发送可以采用 SC-FDMA, 第 2个工作频点的信 息发送可以采用 OFDMA, 第 3 个工作频点的信息发送可以采用 clustered SC-FDMA, 第 4个工作频点的信息发送可以采用 N x SC-FDMA, 第 5个工 作频点的信息发送可以同时采用 SC-FDMA、 OFDMA, clustered SC-FDMA 和 N x SC-FDMA; 并且为了兼容旧系统, 如图 3所示, 下行多址接入可以采用如下方案: 第 1、 2、 3、 4、 5个工作频点的信息发送可以均采用 OFDMA。 实例 2 以 100MHz的带宽为例进行说明, 叚设 100MHz的带宽由 5个 20MHz 的带宽集合而成, 分别对应 5个工作频点, 如图 4所示, 此时上行多址接入 可以采用如下方案: 第 1、 2、 3、 4、 5个工作频点的信息发送可以均采用 SC-FDMA。 为了兼容旧系统, 如图 3所示, 下行多址接入可以采用如下方案: 第 1、 2、 3、 4、 5个工作频点的信息发送可以均采用 OFDMA。 实例 3 以 100MHz的带宽为例进行说明, 個设 100MHz的带宽由其他带宽集 合而成, 例如, 由 20MHz、 40MHz、 40MHz集合而成, 并且分另' J对应 3个 工作频点, 如图 5所示, 此时上行多址接入可以采用如下方案: 第 1个工作频点的信息发送可以采用 SC-FDMA, 第 2个工作频点的信 息发送可以采用 OFDMA, 第 3 个工作频点的信息发送可以采用 clustered SC-FDMA。 为了兼容旧系统, 如图 6所示, 下行多址接入可以采用如下方案: 第 1、 2、 3个工作频点的信息发送可以均采用 OFDMA。 此外 , 将哪个 20MHz资源分配给 LTE可以自适应调整 , 并且 , 可以默 认把中心频点或是某频点作为 UT初始接入频点, UT接入后可以根据系统信 息获知某些工作频点的信息发送采用了 SC-FDMA, 某些工作频点的信息发 送采用了 OFDMA, 某些工作频点的信息发送采用了 clustered SC-FDMA, 某 些工作频点的信息发送采用了 N X SC-FDMA,某些工作频点的信息发送同时 采用了 SC-FDMA、 OFDMA, clustered SC-FDMA和 N x SC-FDMA, 某些工 作频点的信息发送采用了相同的多址方式。 为了兼容旧系统(例如, LTE-A系统兼容 LTE系统), 可以让 LTE的终 端工作在上行使用 SC-FDMA的工作频点, 其他类型的终端可以以不同的多 址方式工作在任何工作频点。 在上行时, Node-B 可以调整此时用于采用 SC-FDMA、 OFDMA、 clustered SC-FDMA或 N x SC-FDMA的工作频点的个数,才艮据正在通信和^ 1 要通信的 UT的类型、 覆盖范围等因素, 可以把不同的 UT分别调度在不同 的工作频点上。 图 7是 SC-FDMA发射机的结构示意图,在使用 SC-FDMA发射机进行 信息的发射时, 需要对发射的信息进行码块分段、信道编码、 星座调制、 DFT 变换、 子载波映射、 IFFT变换、 添加 CP的操作, 最后将信息发送出去。 图 8是 OFDMA发射机的结构示意图, 在使用 OFDMA发射机进行信息的发射 时, 需要对发射的信息进行码块分段、 信道编码、 星座调制、 串并转换、 子 载波映射、 IFFT 变换、 添加 CP 的操作, 最后发射出去。 图 9是 clustered SC-FDMA发射机的结构示意图, 在使用 clustered SC-FDMA发射机进行信 息的发射时, 需要对需要发射的信息进行码块分段、 信道编码、 星座调制、 DFT变换、 子载波映射、 分簇、 IFFT变换、 添加 CP的操作, 最后将信息发 射出去。 图 10是 N x SC-FDMA发射机的结构示意图 ,在使用 N x SC-FDMA 发射机进行信息的发射时, 需要对发射的信息进行码块分段、 信道编码、 星 座调制、 DFT变换、 子载波映射、 IFFT变换, 再经过运算后, 添加到 CP的 操作, 最后将信息发射出去。 接收端才艮据此时工作频点所采用的具体的多址方式进行处理,如果某工 作频点的信息发送采用的是 SC-FDMA, 则接收端就按照 SC-FDMA的处理 过程进行相应的工作; 如果某工作频点的信息发送采用的是 OFDMA, 则接 收端就按照 OFDMA的处理过程进行相应的工作; 如果某工作频点的信息发 送采用的是 clustered SC-FDMA,则接收端就按照 clustered SC-FDMA的处理 过程进行相应的工作; 如果某工作频点的信息发送采用的是 N X SC-FDMA, 则接收端就按照 N X SC-FDMA的处理过程进行相应的工作; 如果某工作频 点的信息发送同时采用了 SC-FDMA、 OFDMA, clustered SC-FDMA和 N x SC-FDMA, 则接收端就才艮据每种多址方式的处理过程进行相应的工作。 在下行时, Node-B在每个工作频点的信息发送均优选为 OFDMA的形 式, 接收端按照 OFDMA的处理过程进行相应的工作。 通过上述处理,解决了现有的单一多址接入方式不完全适用存在多个工 作频点的情况的问题, 本发明实施例提供的方案能够兼容旧系统终端, 具有 艮好的兼容性, 是一种筒单有效的多工作频点的多址接入方式。 才艮据本发明实施例, 还提供了一种计算机可读介质, 该计算机可读介质 上存储有计算机可执行的指令, 当该指令被计算机或处理器执行时, 使得计 算机或处理器执行如图 1所示的步骤 S 102和步骤 S 104的处理, 优选地, 可 以执行上述实例中的一个或多个。 装置实施例 才艮据本发明的实施例, 提供了一种多频点多址接入装置, 图 11是根据 本发明的实施例的多频点多址接入装置的 *1图, 如图 11所示, 上述装置包括 配置模块 110、 发送模块 112。 下面对该装置中的各模块进行详细的描述。 配置模块 110 , 用于在系统包括多个工作频点的情况下 , 对多个工作频 点中每个工作频点的上行链路信息的发送和下行链路信息的发送分别配置多 址方式; 也就是说, 配置模块 110将各工作频点上下行链路的信息发送配置 为不同或相同的多址方式。 其中, 多址方式为以下至少之一: SC-FDMA、 OFDMA、 clustered SC-FDMA, N x SC-FDMA。 在实际的应用中 , 配置模块 110可以对各个工作频点配置 SC-FDMA、 OFDMA, clustered SC-FDMA和 N x SC-FDMA相结合的多址方式发送上 / 下行链路信息。 具体地, 配置模块 110可以将某些工作频点的信息发送配置 为 SC-FDMA, 将某些工作频点的信息发送配置为 OFDMA, 将某些工作频 点的信息发送配置为 clustered SC-FDMA, 将某些工作频点的信息发送配置 为 N x SC-FDMA, 将某些工作频点的信息发送配置为 SC-FDMA、 OFDMA, clustered SC-FDMA和 N x SC-FDMA, 或者 , 将各工作频点的信息发送配置 为相同的多址方式。 此外, 为了兼容旧系统, 对于终端中位于旧系统的终端, 配置模块 110 还可将当前工作频点调整为采用 SC-FDMA的多址方式发送上行链路信息、 采用 OFDMA的多址方式发送下行链路信息的工作频点。 此外 , 配置模块 110进一步包括: 初始接入配置子模块,用于将多个工作频点中的预定工作频点配置为终 端的初始接入工作频点 (例如, 可以,默认 中心频点或是某频点作为 UT初 始接入频点); 其中初始接入工作频点上行链路信息发送的多址方式为
SC-FDMA , 下行链路信息发送的多址方式为 OFDMA , 当然也可以上述其他 多址方式, 本发明实施例对此不作限定。 通知子模块, 用于在终端接入初始接入工作频点后, 向终端发送系统消 息, 其中, 系统消息中携带有多个工作频点发送上行链路信息和下行链路信 息时采用的多址方式, 使得终端能够才艮据终端本身支持的多址方式调整终端 的当前工作频点。 具体地, UT接入后可以根据系统信息获知某些工作频点的信息发送采 用了 SC-FDMA, 某些工作频点的信息发送采用了 OFDMA, 某些工作频点 的信息发送采用了 clustered SC-FDMA,某些工作频点的信息发送采用了 N x SC-FDMA , 某些工作频点的信息发送同时采用了 SC-FDMA、 OFDMA、 clustered SC-FDMA和 N x SC-FDMA , 某些工作频点的信息发送采用了相同 的多址方式。 发送模块 112, 连接至配置模块 110, 用于根据配置模块 110配置的多 址方式在多个工作频点上进行上行链路信息的发送和 /或下行链路信息的发 送。 jt匕外 , 在配置模块 110对多个工作频点进行多址方式的配置之后 , 具体 分配给原系统终端和新系统终端使用的工作频点可以自适应调整, 因 it匕, 上 述装置还可以进一步包括: 分配模块, 用于将多个工作频点分配给终端。 综上所述, 借助于本发明的技术方案, 通过对各工作频点上下行链路的 信息发送配置不同或相同的多址方式, 解决了现有的单一多址接入方式不能 很好适用多个工作频点的情况的问题、 以及现有系统中仅考虑 PAPR而使得 链路性能下降的问题, 提供了一种筒单的多址接入方式, 保证了工作频点的 链路性能, 提高了整个网络的吞吐量, 同时兼顾了系统 PAPR的问题。 另外 ,本发明的实现没有对系统架构和目前的处理流程修改,易于实现, 便于在技术领域中进行推广, 具有较强的工业适用性。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的^^申和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书
1. 一种多频点多址接入方法, 其特征在于, 包括:
在系统包括多个工作频点的情况下 ,对所述多个工作频点中每个工 作频点的上行链路信息的发送和下行链路信息的发送分别配置多址方 式;
所述每个工作频点根据对其配置的所述多址方式进行所述上行链 路信息的发送和 /或下行链路信息的发送。
2. 4艮据权利要求 1所述的方法, 其特征在于, 对于所述每个工作频点, 对 其上行链路信息发送配置的多址方式为以下至少之一:
单载波频分多址即 SC-FDMA、 正交频分多址接入 OFDMA、 分条 正交频分多址接入即 clustered SC-FDMA、 N x SC-FDMA。
3. 根据权利要求 1所述的方法, 其特征在于, 在对所述多个工作频点进行 多址方式配置之后, 所述方法进一步包括:
4夺所述多个工作频点分配给终端。
4. 根据权利要求 3所述的方法, 其特征在于, 在对所述多个工作频点进行 分配后, 进一步包括:
4夺所述多个工作频点中的预定工作频点配置为所述终端的初始接 入工作频点, 其中所述初始接入工作频点上行链路信息发送的多址方式 为 SC-FDMA, 下行链路信息发送的多址方式为 OFDMA;
在接入所述初始接入工作频点后 ,所述终端才艮据其接收的系统消息 获取所述多个工作频点发送上行链路信息和下行链路信息时采用的多址 方式, 并才艮据所述终端本身支持的多址方式调整所述终端的当前工作频
5. 根据权利要求 4所述的方法, 其特征在于, 所述终端中位于旧系统的终 端进行当前工作频点调整的处理具体为:
^)夺当前工作频点调整为采用 SC-FDMA 的多址方式发送上行链路 信息、 采用 OFDMA的多址方式发送下行链路信息的工作频点。
6. 一种多频点多址接入装置, 其特征在于, 所述装置包括: 配置模块 , 用于在系统包括多个工作频点的情况下 , 对所述多个工 作频点中每个工作频点的上行链路信息的发送和下行链路信息的发送分 别配置多址方式;
发送模块,用于才艮据所述配置模块配置的所述多址方式在所述多个 工作频点上进行所述上行链路信息的发送和 /或下行链路信息的发送。
7. 根据权利要求 6所述的装置, 其特征在于, 所述多址方式为以下至少之 单载波频分多址即 SC-FDMA、 正交频分多址接入 OFDMA、 分条 正交频分多址接入即 clustered SC-FDMA、 N x SC-FDMA。
8. 根据权利要求 6所述的装置, 其特征在于, 所述装置进一步包括:
分配模块, 用于将所述多个工作频点分配给终端。
9. 根据权利要求 6所述的装置, 其特征在于, 所述配置模块进一步包括: 初始接入配置子模块,用于将所述多个工作频点中的预定工作频点 配置为所述终端的初始接入工作频点 , 其中所述初始接入工作频点上行 链路信息发送的多址方式为 SC-FDMA , 下行链路信息发送的多址方式 为 OFDMA;
通知子模块, 用于在终端接入所述初始接入工作频点后, 向所述终 端发送系统消息, 其中, 所述系统消息中携带有所述多个工作频点发送 上行链路信息和下行链路信息时采用的多址方式, 使得所述终端能够才艮 据所述终端本身支持的多址方式调整所述终端的当前工作频点。
10. 根据权利要求 6所述的装置, 其特征在于, 所述分配模块进一步用于: 对于所述终端中位于旧系统的终端 , 将当前工作频点调整为采用 SC-FDMA的多址方式发送上行链路信息、 采用 OFDMA的多址方式发 送下行链路信息的工作频点。
PCT/CN2009/074215 2008-11-17 2009-09-25 多频点多址接入方法和装置 WO2010054569A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/393,139 US8780854B2 (en) 2008-11-17 2009-09-25 Method and apparatus for multiple frequency point multiple access

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810177630.0A CN101741795B (zh) 2008-11-17 2008-11-17 多频点多址接入方法和装置
CN200810177630.0 2008-11-17

Publications (1)

Publication Number Publication Date
WO2010054569A1 true WO2010054569A1 (zh) 2010-05-20

Family

ID=42169629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/074215 WO2010054569A1 (zh) 2008-11-17 2009-09-25 多频点多址接入方法和装置

Country Status (3)

Country Link
US (1) US8780854B2 (zh)
CN (1) CN101741795B (zh)
WO (1) WO2010054569A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9559829B2 (en) * 2009-11-04 2017-01-31 Telefonaktiebolaget Lm Ericsson (Publ) Signaling for flexible carrier aggregation
WO2012176495A1 (ja) 2011-06-22 2012-12-27 三菱電機株式会社 送信装置、受信装置、通信システムおよび通信方法
US9179501B2 (en) * 2013-02-20 2015-11-03 Advanced Rf Technologies, Inc. Multi-carrier integration apparatus for distributed antenna system
CN106254160A (zh) * 2016-09-28 2016-12-21 西安思丹德信息技术有限公司 一种数据链系统组网方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1889759A (zh) * 2005-06-27 2007-01-03 上海原动力通信科技有限公司 高速下行分组中支持多频点数据接收的方法
CN101123600A (zh) * 2006-08-11 2008-02-13 华为技术有限公司 正交频分多址接入系统及其设备、传输方法和终端
CN101247165A (zh) * 2007-02-16 2008-08-20 中兴通讯股份有限公司 一种td-scdma系统多频点小区的组网方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8064425B2 (en) * 2004-10-09 2011-11-22 Zte Corporation Method for assigning frequency spectrum bandwidth of an OFDM and OFDMA coexistence system
US7426199B2 (en) * 2005-06-29 2008-09-16 Intel Corporation Wireless communication device and method for reducing carrier frequency offsets over a simultaneous multi-user uplink in a multicarrier communication network
US20080144612A1 (en) * 2006-12-13 2008-06-19 Nokia Corporation Flexible radio resource sharing in time and frequency domains among TDD communication systems
CN101282567B (zh) * 2007-04-03 2011-09-21 中兴通讯股份有限公司 一种支持多种多址接入的系统
US9288021B2 (en) * 2008-05-02 2016-03-15 Qualcomm Incorporated Method and apparatus for uplink ACK/NACK resource allocation
US8509161B2 (en) * 2008-08-11 2013-08-13 Sharp Kabushiki Kaisha Systems and methods for OFDMA and SC-FDMA switching

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1889759A (zh) * 2005-06-27 2007-01-03 上海原动力通信科技有限公司 高速下行分组中支持多频点数据接收的方法
CN101123600A (zh) * 2006-08-11 2008-02-13 华为技术有限公司 正交频分多址接入系统及其设备、传输方法和终端
CN101247165A (zh) * 2007-02-16 2008-08-20 中兴通讯股份有限公司 一种td-scdma系统多频点小区的组网方法

Also Published As

Publication number Publication date
US8780854B2 (en) 2014-07-15
CN101741795A (zh) 2010-06-16
CN101741795B (zh) 2015-05-20
US20120183087A1 (en) 2012-07-19

Similar Documents

Publication Publication Date Title
JP6985422B2 (ja) 信号送信の方法、デバイス、およびシステム
US10454740B2 (en) System and method for generalized multi-carrier frequency division multiplexing
CN101444013B (zh) 发栈信号通知应用程序缺少所请求的带宽
US7974258B2 (en) Adaptive mode transmitter for PAPR reduction and link optimization
JP5406916B2 (ja) 装置
KR20100017049A (ko) Papr을 줄이기 위한 무선 접속 방식
TWI499344B (zh) A method and apparatus for device-to-device communication
CN110557833B (zh) 资源配置方法、网络设备和终端
US20140133494A1 (en) Method, apparatus, and system for multiple access
JP2016531527A (ja) 送信端、受信端、並びに、シングルキャリアシステム及びマルチキャリアシステムの共存方法
US7646703B2 (en) Backward-compatible long training sequences for wireless communication networks
KR101208560B1 (ko) 무선 접속 시스템에서 할당 세컨더리 캐리어의 스캐닝 수행 방법 및 장치
WO2017219788A1 (zh) 一种信号处理方法及装置
JP2023530024A (ja) リソースインジケーション方法、アクセスポイント、及びステーション
WO2010054569A1 (zh) 多频点多址接入方法和装置
EP2456153B1 (en) Transmitter and data transmission method
WO2012163041A1 (zh) 基于正交频分复用的多址系统、方法和装置
Filin et al. IEEE 1900.7 standard for white space dynamic spectrum access radio systems
WO2010054571A1 (zh) 物理信道多址接入方法和装置
CN108965185B (zh) 一种混合调制和解调多载波的方法及装置
WO2010040253A1 (zh) 一种正交频分复用多址接入方法及正交频分复用系统
WO2012097662A1 (zh) 正交频分复用系统中离散频谱的使用、使用离散频谱的接收方法及装置
WO2010054568A1 (zh) 空时频码域多址接入方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09825744

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09825744

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13393139

Country of ref document: US