WO2010053144A1 - 無線基地局 - Google Patents

無線基地局 Download PDF

Info

Publication number
WO2010053144A1
WO2010053144A1 PCT/JP2009/068956 JP2009068956W WO2010053144A1 WO 2010053144 A1 WO2010053144 A1 WO 2010053144A1 JP 2009068956 W JP2009068956 W JP 2009068956W WO 2010053144 A1 WO2010053144 A1 WO 2010053144A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
ofdm symbols
radio base
communication status
subframe
Prior art date
Application number
PCT/JP2009/068956
Other languages
English (en)
French (fr)
Inventor
尚人 大久保
石井 啓之
Original Assignee
株式会社エヌ・ティ・ティ・ドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エヌ・ティ・ティ・ドコモ filed Critical 株式会社エヌ・ティ・ティ・ドコモ
Priority to CN200980144427.6A priority Critical patent/CN102210182B/zh
Priority to EP09824843.8A priority patent/EP2355603A4/en
Priority to US13/128,135 priority patent/US9031012B2/en
Publication of WO2010053144A1 publication Critical patent/WO2010053144A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0027Scheduling of signalling, e.g. occurrence thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to a radio base station.
  • CFI is information indicating the number of OFDM symbols that can be allocated to the control channel in the downlink among 14 OFDM symbols in one subframe.
  • DCI is control information (resource allocation information, modulation scheme, etc.) necessary for transmission of uplink data and downlink data.
  • control information resource allocation information, modulation scheme, etc.
  • HI is delivery confirmation information (ACK / NACK) for uplink data.
  • the CFI is transmitted through the physical control format instruction channel PCFICH (Physical Control Format Indicator Channel), and the DCI is transmitted through the physical downlink control channel PDCCH (Physical Downlink Control).
  • HI is transmitted through a physical HARQ indication channel (Physical hybrid-ARQ Indicator Channel).
  • the LTE mobile communication system has a problem in that it is not specified how to allocate radio resources to the above-described downlink control channels (PCFICH, PDCCH, PHICH, etc.).
  • PCFICH downlink control channels
  • An object of the present invention is to provide a wireless base station that can be used.
  • a first feature of the present invention is a radio base station, in which for each subframe configured by a predetermined number of OFDM symbols, the number of OFDM symbols in each subcarrier that can be allocated to a control channel in a downlink is determined.
  • a determination unit configured to determine the number of assignable OFDM symbols to be calculated, wherein the determination unit calculates the number of OFDM symbols corresponding to the communication status in each subframe in the measurement interval, The gist is that the maximum number of OFDM symbols is configured to be the number of assignable OFDM symbols in each subframe in the next control period starting after the completion of the measurement period.
  • a radio base station capable of performing appropriate radio resource allocation to a control channel in a downlink is provided. can do.
  • FIG. 1 is an overall configuration diagram of a mobile communication system according to a first embodiment of the present invention.
  • FIG. 2 is a functional block diagram of the radio base station according to the first embodiment of the present invention.
  • FIG. 3 is a diagram for explaining a downlink frame structure used in the mobile communication system according to the first embodiment of the present invention.
  • FIG. 4 is a diagram showing a control interval of the number of OFDM symbols in the mobile communication system according to the first embodiment of the present invention.
  • FIG. 5 is a diagram for explaining a method of controlling the number of OFDM symbols in the mobile communication system according to the first embodiment of the present invention.
  • FIG. 6 is a flowchart for explaining a method of controlling the number of OFDM symbols in the mobile communication system according to the first embodiment of the present invention.
  • FIG. 7 is a flowchart for explaining a method of controlling the number of OFDM symbols in the mobile communication system according to the first embodiment of the present invention.
  • the mobile communication system according to the present embodiment is an LTE mobile communication system, and includes a radio base station eNB and a mobile station UE. As shown in FIG. 1, in the mobile communication system according to the present embodiment, DCI, CFI, and HI as downlink control information are transmitted via PDCCH, PCFICH, and PHICH as downlink control channels. It is configured.
  • the radio base station eNB includes an aggregation level determination unit 11, a transmission unit 12, a scheduling unit 13, and a resource allocation unit 14.
  • the aggregation level determination unit 11 controls the control channel element (CCE: Control Channel) for the PDCCH based on the reception quality of the pilot signal in the downlink notified from the mobile station UE, specifically, the CQI (Channel Quality Indicator). “Aggregation Level (aggregation level)” indicating how many (Element) are continuously allocated is determined.
  • CCE Control Channel
  • control channel element is composed of nine consecutive resource element groups (REG: Resource Element Group).
  • the resource element group is composed of four consecutive resource elements (RE: Resource Element).
  • the resource element is composed of one OFDM symbol (time direction) and one subcarrier (frequency direction).
  • the transmission unit 12 is configured to transmit downlink control information via the downlink control channel allocated by the resource allocation unit 14 according to the scheduling result performed by the scheduling unit 13.
  • the transmission unit 12 transmits downlink data via a downlink data channel PDSCH (Physical Downlink Shared Channel) allocated by the resource allocation unit 14 according to the scheduling result performed by the scheduling unit 13. It is configured.
  • PDSCH Physical Downlink Shared Channel
  • the scheduling unit 13 is configured to perform a scheduling process for a mobile station in which downlink data to be transmitted exists.
  • the resource allocation unit 14 is configured to allocate radio resources to the control channel and PDSCH in the downlink according to the scheduling result performed by the scheduling unit 13.
  • the resource allocation unit 14 is configured to allocate resource elements to the PDSCH in units of resource blocks (RBs).
  • the resource block is composed of 7 OFDM symbols (time direction) and 12 subcarriers (frequency direction).
  • the resource allocation unit 14 is configured to allocate resource elements in units of resource element groups to downlink control channels other than PDCCH.
  • resource allocation unit 14 is configured to allocate resource elements to the PDCCH in units of control channel elements.
  • the resource allocation unit 14 can allocate to a downlink control channel (for example, PDCCH, PCFICH, or PHICH) for each subframe configured by a predetermined number (specifically, 14) of OFDM symbols.
  • a downlink control channel for example, PDCCH, PCFICH, or PHICH
  • the number of assignable OFDM symbols indicating the number of OFDM symbols in each subcarrier is determined.
  • the number of assignable OFDM symbols is configured to be transmitted as CFI by the transmission unit 12 via PCFICH.
  • the number of OFDM symbols in each subcarrier that can be allocated to the control channel in the downlink is variable, and may be any one of 1 to 4.
  • the resource allocation unit 14 calculates the number of OFDM symbols corresponding to the communication status (optimum number of OFDM symbols) in each subframe within the measurement interval, and calculates the calculated OFDM symbol.
  • the maximum number among the numbers is configured to be the number of assignable OFDM symbols in each subframe in the next control period starting after completion of the measurement period.
  • the resource allocator 14 calculates the number of OFDM symbols corresponding to the communication status (optimum number of OFDM symbols) in each subframe within the measurement interval i-1, and among the calculated number of OFDM symbols. Is set to the number of assignable OFDM symbols in each subframe in the next control period i starting after completion of the measurement period i-1.
  • a plurality of subframes may be included in the measurement section, or only one subframe may be included.
  • the communication status described above may be the number of PDCCHs scheduled to be transmitted, the total number of “Aggregation Levels” determined based on the CQI notified from the mobile station UE, or a scheduling target Or the number of mobile stations UE in which downlink data to be transmitted exists.
  • the resource allocation unit 14 manages a table as shown in FIG. 5, and calculates the number of OFDM symbols (the optimum number of OFDM symbols) corresponding to the number N pdcch (communication status) of PDCCH scheduled to be transmitted. It is configured.
  • the resource allocating unit 14 refers to a table as shown in FIG. 5, and when the number of PDCCHs to be transmitted N pdcch is smaller than the threshold Th cfi, 1-to-2 , the optimal OFDM The number of symbols may be “1”.
  • the resource allocating unit 14 refers to a table as shown in FIG. 5, and the number N pdcch of the PDCCH scheduled to be transmitted is equal to or greater than the threshold Th cfi, 1-to-2 and the threshold Th cfi, 2-to-3. If the number is less, the optimum number of OFDM symbols may be “2”.
  • the resource allocation unit 14 refers to a table as shown in FIG. 5 and determines the optimum number of OFDM symbols when the number N pdcch of PDCCHs scheduled to be transmitted is equal to or greater than the threshold Th cfi, 2-to-3. It may be configured to be “3”.
  • the resource allocation unit 14 may be configured to change the correspondence relationship between the above-described communication status and the number of OFDM symbols (for example, the contents of a table as shown in FIG. 5) based on a predetermined factor. .
  • the resource allocation unit 14 may be configured to adaptively change the threshold value or the optimal number of OFDM symbols in the table as shown in FIG. Good.
  • the resource allocation unit 14 may be configured to lower the above-described threshold when radio resource allocation to the control channel in the downlink fails.
  • the total number of “Aggregation Levels”, the number of mobile stations UE to be scheduled, the number of mobile stations UE with downlink data to be transmitted, etc. May be used.
  • step S102 the radio base station eNB determines whether N pdcch, i is smaller than the threshold Th cfi, 1-to-2 .
  • N pdcch, i is the number of PDCCHs scheduled to be transmitted in the i-th subframe within the measurement period (the number of PDCCH transmission candidates).
  • step S103 If it is determined that N pdcch, i is less than the threshold Th cfi, 1-to-2 , the operation proceeds to step S103, and otherwise, the operation proceeds to step S104.
  • step S104 the radio base station eNB determines whether or not N pdcch, i is smaller than the threshold value Th cfi, 2-to-3 .
  • step S105 If it is determined that N pdcch, i is less than the threshold Th cfi, 2-to-3 , the operation proceeds to step S105, otherwise the operation proceeds to step S106.
  • step S107 the radio base station eNB determines whether “N max ⁇ n” is satisfied.
  • step S109 the radio base station eNB increases “i” by “1”.
  • step S110 the radio base station eNB determines whether “i ⁇ N period ” is established.
  • N period is the number of subframes in the measurement period.
  • step S111 When it is determined that “i ⁇ N period ” is established, the operation returns to step S102, and when it is determined that “i ⁇ N period ” is not established, the operation proceeds to step S111.
  • step S111 the radio base station eNB sets “N max ” as the assignable OFDM number in the next control section.
  • step S202 the radio base station eNB determines whether or not N pdcch, i is less than the threshold Th cfi, 1-to-2 .
  • N pdcch, i is the number of PDCCHs scheduled to be transmitted in the i-th subframe within the measurement period (the number of PDCCH transmission candidates).
  • step S203 When it is determined that N pdcch, i is smaller than the threshold Th cfi, 1-to-2 , the operation proceeds to step S203, and otherwise, the operation proceeds to step S204.
  • step S204 the radio base station eNB determines whether or not N pdcch, i is smaller than the threshold value Th cfi, 2-to-3 .
  • step S205 If it is determined that N pdcch, i is less than the threshold Th cfi, 2-to-3 , the operation proceeds to step S205, otherwise the operation proceeds to step S206.
  • step S207 the radio base station eNB determines whether “N max ⁇ n” is satisfied.
  • step S209 the radio base station eNB allocates radio resources to the PDCCH and calculates an allocation failure rate P.
  • N current is the number of assignable OFDMs in the current control section.
  • step S211 the radio base station eNB determines whether “P> P th ” is satisfied.
  • P th is a threshold for the allocation failure rate P.
  • is a predetermined parameter
  • target is a target value of the allocation failure rate P.
  • step S215. If it is determined that “N current 2” is not established, the operation proceeds to step S218.
  • step S215 the radio base station eNB determines whether or not “P> P th ” is established.
  • step S219 the radio base station eNB determines whether “P> P th ” is satisfied.
  • step S222 the radio base station eNB increases “i” by “1”.
  • step S223 the radio base station eNB determines whether “i ⁇ N period ” is established.
  • step S224 If it is determined that “i ⁇ N period ” is established, the operation returns to step S202. If it is determined that “i ⁇ N period ” is not established, the operation proceeds to step S224.
  • step S224 the radio base station eNB sets “N max ” as the number of assignable OFDMs in the next control section.
  • the next control that starts the maximum number of OFDM symbols corresponding to the communication status after completion of the measurement interval.
  • the number of OFDM symbols that can be assigned to the control channel in the downlink in each subframe can be determined in consideration of the processing load and the processing delay. it can.
  • each sub-channel can be controlled by adaptively controlling the correspondence between the communication status and the number of OFDM symbols according to a change in the propagation path status or the like. It is possible to optimize the number of OFDM symbols that can be allocated to the control channel in the downlink in the frame.
  • the first feature of the present embodiment is that the number of assignable OFDM symbols indicating the number of OFDM symbols in each subcarrier that can be assigned to the control channel in the downlink for each subframe constituted by 14 OFDM symbols.
  • the resource allocation unit 14 is configured to calculate the number of OFDM symbols corresponding to the communication status in each subframe in the measurement interval, and the resource allocation unit 14 is configured to determine the number of OFDM symbols calculated.
  • the gist of the present invention is that the maximum number is the number of assignable OFDM symbols in each subframe in the next control period starting after completion of the measurement period.
  • the communication status may be the number of physical downlink control channels scheduled to be transmitted.
  • the communication status is the total number of “Aggregation Level” determined based on the CQI notified from the mobile station UE, and “Aggregation Level” includes nine consecutive resource elements. It shows how many control channel elements constituted by groups are allocated in succession.
  • a resource element group is composed of four consecutive resource elements, and a resource element is composed of one OFDM symbol in one subcarrier. It may be configured.
  • the communication status may be the number of mobile stations to be scheduled.
  • the communication status may be the number of mobile stations in which downlink data to be transmitted exists.
  • the resource allocation unit 14 may be configured to change the correspondence between the communication status and the number of OFDM symbols based on a predetermined factor.
  • the operations of the mobile station UE and the radio base station eNB described above may be implemented by hardware, may be implemented by a software module executed by a processor, or may be implemented by a combination of both. .
  • Software modules include RAM (RandomMSCess Memory), flash memory, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electronically Erasable and Programmable, Disk, and Hard Disk), Or in any type of storage medium such as a CD-ROM.
  • the storage medium is connected to the processor so that the processor can read and write information from and to the storage medium. Further, such a storage medium may be integrated in the processor. Further, such a storage medium and a processor may be provided in the ASIC. Such an ASIC may be provided in the mobile station UE or the radio base station eNB. Further, the storage medium and the processor may be provided as a discrete component in the mobile station UE or the radio base station eNB.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本発明に係る無線基地局eNBは、所定数のOFDMシンボルによって構成されるサブフレームごとに、下りリンクにおける制御チャネルに対して割当可能な各サブキャリアにおけるOFDMシンボルの数を示す割当可能OFDMシンボル数を決定するように構成されている決定部14を具備し、決定部14は、測定区間内の各サブフレームにおいて、通信状況に対応するOFDMシンボル数を算出し、算出したOFDMシンボル数の中の最大数を、測定区間の完了後に開始する次の制御区間内の各サブフレームにおける割当可能OFDMシンボル数とするように構成されている。

Description

無線基地局
 本発明は、無線基地局に関する。
 3GPPで標準化が進められているLTE(Long Term Evolution)方式の移動通信システムでは、下りリンクにおける制御情報として、「CFI(Control Format Indicator)」や、「DCI(Downlink Control Information)や、「「HI(HARQ Indicator)」が送信されるように構成されている。
 ここで、CFIは、1サブフレーム内の14OFDMシンボルのうち、下りリンクにおける制御チャネルに対して割当可能なOFDMシンボル数を示す情報である。
 また、DCIは、上りリンクデータ及び下りリンクデータの送信に必要な制御情報(リソース割り当て情報や変調方式等)である。なお、DCIには、全移動局UEを対象とする共通DCI及び特定の移動局UE(特定の移動局UE又は特定のグループ内の移動局UE)を対象とする個別DCIの2種類が存在する。
 さらに、HIは、上りリンクデータに対する送達確認情報(ACK/NACK)である。
 また、かかるLTE方式の移動通信システムでは、CFIが、物理制御フォーマット指示チャネルPCFICH(Physical Control Format Indicator Channel)を介して送信され、DCIが、物理下りリンク制御チャネルPDCCH(Physical Downlink Control Channel)を介して送信され、HIが、物理HARQ指示チャネル(Physical hybrid‐ARQ Indicator Channel)を介して送信されるように構成されている。
 しかしながら、かかるLTE方式の移動通信システムでは、上述の下りリンクにおける制御チャネル(PCFICHやPDCCHやPHICH等)に対して、どのように無線リソースを割り当てるかについて規定されていないという問題点があった。
 そこで、本発明は、上述の課題に鑑みてなされたものであり、LTE方式の移動通信システムのような高速な移動通信システムにおいて、下りリンクにおける制御チャネルに対する適切な無線リソースの割り当てを行うことができる無線基地局を提供することを目的とする。
 本発明の第1の特徴は、無線基地局であって、所定数のOFDMシンボルによって構成されるサブフレームごとに、下りリンクにおける制御チャネルに対して割当可能な各サブキャリアにおけるOFDMシンボルの数を示す割当可能OFDMシンボル数を決定するように構成されている決定部を具備し、前記決定部は、測定区間内の各サブフレームにおいて、通信状況に対応するOFDMシンボル数を算出し、算出した該OFDMシンボル数の中の最大数を、該測定区間の完了後に開始する次の制御区間内の各サブフレームにおける前記割当可能OFDMシンボル数とするように構成されていることを要旨とする。
 以上説明したように、本発明によれば、LTE方式の移動通信システムのような高速な移動通信システムにおいて、下りリンクにおける制御チャネルに対する適切な無線リソースの割り当てを行うことができる無線基地局を提供することができる。
図1は、本発明の第1の実施形態に係る移動通信システムの全体構成図である。 図2は、本発明の第1の実施形態に係る無線基地局の機能ブロック図である。 図3は、本発明の第1の実施形態に係る移動通信システムで用いられる下りリンク用のフレーム構造を説明するための図である。 図4は、本発明の第1の実施形態に係る移動通信システムにおいてOFDMシンボル数の制御区間を示す図である。 図5は、本発明の第1の実施形態に係る移動通信システムにおいてOFDMシンボル数の制御方法について説明するための図である。 図6は、本発明の第1の実施形態に係る移動通信システムにおいてOFDMシンボル数の制御方法について説明するためのフローチャートである。 図7は、本発明の第1の実施形態に係る移動通信システムにおいてOFDMシンボル数の制御方法について説明するためのフローチャートである。
(本発明の第1の実施形態に係る移動通信システムの構成)
 図1乃至図5を参照して、本発明の第1の実施形態に係る移動通信システムの構成について説明する。
 本実施形態に係る移動通信システムは、LTE方式の移動通信システムであり、無線基地局eNBと、移動局UEとを具備している。図1に示すように、本実施形態に係る移動通信システムでは、下りリンクにおける制御チャネルとしてのPDCCHやPCFICHやPHICHを介して、下りリンクにおける制御情報としてのDCIやCFIやHIが送信されるように構成されている。
 図2に示すように、本実施形態に係る無線基地局eNBは、Aggregation Level決定部11と、送信部12と、スケジューリング部13と、リソース割当部14とを具備している。
 Aggregation Level決定部11は、移動局UEから通知された下りリンクにおけるパイロット信号の受信品質、具体的には、CQI(Channel Quality Indicator)に基づいて、PDCCHに対して制御チャネル要素(CCE:Control Channel Element)を何個連続で割り当てるかを示す「Aggregation Level(集約レベル)」を決定するように構成されている。
 ここで、制御チャネル要素は、9個の連続するリソース要素グループ(REG:Resource Element Group)によって構成されている。また、リソース要素グループは、4個の連続するリソース要素(RE:Resource Element)によって構成されている。また、リソース要素は、1個のOFDMシンボル(時間方向)と、1個のサブキャリア(周波数方向)とによって構成されている。
 送信部12は、スケジューリング部13によって行われたスケジューリング結果に応じて、リソース割当部14によって割り当てられた下りリンクにおける制御チャネルを介して、下りリンクにおける制御情報を送信するように構成されている。
 また、送信部12は、スケジューリング部13によって行われたスケジューリング結果に応じて、リソース割当部14によって割り当てられた下りリンクデータチャネルPDSCH(Physical Downlink Shared Channel)を介して、下りリンクデータを送信するように構成されている。
 スケジューリング部13は、送信すべき下りリンクデータが存在する移動局に対するスケジューリング処理を行うように構成されている。
 リソース割当部14は、スケジューリング部13によって行われたスケジューリング結果に応じて、下りリンクにおける制御チャネルやPDSCHに対して、無線リソースを割り当てるように構成されている。
 具体的には、リソース割当部14は、PDSCHに対して、リソースブロック(RB:Resource Block)単位で、リソース要素を割り当てるように構成されている。
 ここで、リソースブロックは、7個のOFDMシンボル(時間方向)と、12個のサブキャリア(周波数方向)とによって構成されている。
 また、リソース割当部14は、PDCCH以外の下りリンクにおける制御チャネルに対して、リソース要素グループ単位で、リソース要素を割り当てるように構成されている。
 なお、リソース割当部14は、PDCCHに対して、制御チャネル要素単位で、リソース要素を割り当てるように構成されている。
 また、リソース割当部14は、所定数(具体的には、14個)のOFDMシンボルによって構成されるサブフレームごとに、下りリンクにおける制御チャネル(例えば、PDCCHやPCFICHやPHICH)に対して割当可能な各サブキャリアにおけるOFDMシンボルの数を示す割当可能OFDMシンボル数を決定するように構成されている。
 かかる割当可能OFDMシンボル数は、CFIとして、送信部12によって、PCFICHを介して送信されるように構成されている。
 例えば、図3に示すように、下りリンクにおける制御チャネルに対して割当可能な各サブキャリアにおけるOFDMシンボルの数は、可変であり、1乃至4のいずれかであってもよい。
 具体的には、図4に示すように、リソース割当部14は、測定区間内の各サブフレームにおいて、通信状況に対応するOFDMシンボル数(最適なOFDMシンボル数)を算出し、算出したOFDMシンボル数の中の最大数を、かかる測定区間の完了後に開始する次の制御区間内の各サブフレームにおける割当可能OFDMシンボル数とするように構成されている。
 例えば、図4において、リソース割当部14は、測定区間i‐1内の各サブフレームにおいて、通信状況に対応するOFDMシンボル数(最適なOFDMシンボル数)を算出し、算出したOFDMシンボル数の中の最大数を、かかる測定区間i‐1の完了後に開始する次の制御区間i内の各サブフレームにおける割当可能OFDMシンボル数とするように構成されている。
 ここで、測定区間には、複数のサブフレームが含まれていてもよいし、1つのサブフレームのみが含まれていてもよい。
 また、上述の通信状況は、送信予定のPDCCHの数であってもよいし、移動局UEから通知されたCQIに基づいて決定された「Aggregation Level」の総数であってもよいし、スケジューリング対象の移動局UEの数であってもよいし、送信すべき下りリンクデータが存在する移動局UEの数であってもよい。
 例えば、リソース割当部14は、図5に示すようなテーブルを管理しており、送信予定のPDCCHの数Npdcch(通信状況)に対応するOFDMシンボル数(最適なOFDMシンボル数)を算出するように構成されている。
 具体的には、リソース割当部14は、図5に示すようなテーブルを参照して、送信予定のPDCCHの数Npdcchが、閾値Thcfi,1‐to‐2よりも少ない場合、最適なOFDMシンボル数を「1」とするように構成されていてもよい。
 また、リソース割当部14は、図5に示すようなテーブルを参照して、送信予定のPDCCHの数Npdcchが、閾値Thcfi,1‐to‐2以上で閾値Thcfi,2‐to‐3よりも少ない場合、最適なOFDMシンボル数を「2」とするように構成されていてもよい。
 さらに、リソース割当部14は、図5に示すようなテーブルを参照して、送信予定のPDCCHの数Npdcchが、閾値Thcfi,2‐to‐3以上である場合、最適なOFDMシンボル数を「3」とするように構成されていてもよい。
 また、リソース割当部14は、所定要因に基づいて、上述の通信状況とOFDMシンボル数との対応関係(例えば、図5に示すようなテーブルの内容)を変更するように構成されていてもよい。
 具体的には、リソース割当部14は、伝搬路状況の変化等に応じて、図5に示すようなテーブルにおいて、閾値或いは最適なOFDMシンボル数を適応的に変更するように構成されていてもよい。
 例えば、リソース割当部14は、下りリンクにおける制御チャネルに対する無線リソースの割り当てに失敗した場合に、上述の閾値を下げるように構成されていてもよい。
 なお、図5に示すテーブルにおいて、送信予定のPDCCHの数の代わりに、「Aggregation Level」の総数やスケジューリング対象の移動局UEの数や送信すべき下りリンクデータが存在する移動局UEの数等が用いられていてもよい。
(本発明の第1の実施形態に係る移動通信システムの動作)
 図6及び図7を参照して、本発明の第1の実施形態に係る移動通信システムの動作について説明する。図6及び図7の例では、通信状況として、送信予定のPDCCHの数Npdcchが用いられるケースについて説明するが、本発明は、通信状況として、「Aggregation Level」の総数やスケジューリング対象の移動局UEの数や送信すべき下りリンクデータが存在する移動局UEの数等が用いられるケースについても適用可能である。
 第1に、図6を参照して、本発明の第1の実施形態に係る移動通信システムにおける無線基地局eNBの動作例1について説明する。
 図6に示すように、ステップS101において、無線基地局eNBは、「i=0」とし、「Nmax=1」とする。
 ステップS102において、無線基地局eNBは、Npdcch,iが閾値Thcfi,1‐to‐2よりも少ないか否かについて判定する。ここで、Npdcch,iは、測定周期内のi番目のサブフレームにおける送信予定のPDCCHの数(PDCCH送信候補数)である。
 Npdcch,iが閾値Thcfi,1‐to‐2よりも少ないと判定された場合、本動作は、ステップS103に進み、それ以外の場合、本動作は、ステップS104に進む。
 ステップS103において、無線基地局eNBは、「n=1」とする。
 ステップS104において、無線基地局eNBは、Npdcch,iが閾値Thcfi,2‐to‐3よりも少ないか否かについて判定する。
 Npdcch,iが閾値Thcfi,2‐to‐3よりも少ないと判定された場合、本動作は、ステップS105に進み、それ以外の場合、本動作は、ステップS106に進む。
 ステップS105において、無線基地局eNBは、「n=2」とし、ステップS106において、無線基地局eNBは、「n=3」とする。
 ステップS107において、無線基地局eNBは、「Nmax<n」が成立するか否かについて判定する。
 「Nmax<n」が成立すると判定された場合、ステップS108において、無線基地局eNBは、「Nmax=n」とする。
 ステップS109において、無線基地局eNBは、「i」を「1」だけ増加させる。
 ステップS110において、無線基地局eNBは、「i<Nperiod」が成立するか否かについて判定する。ここで、「Nperiod」は、測定周期内のサブフレーム数である。
 「i<Nperiod」が成立すると判定された場合、本動作は、ステップS102に戻り、「i<Nperiod」が成立しないと判定された場合、本動作は、ステップS111に進む。
 ステップS111において、無線基地局eNBは、次の制御区間における割当可能OFDM数を「Nmax」とする。
 第2に、図7を参照して、本発明の第1の実施形態に係る移動通信システムにおける無線基地局eNBの動作例2について説明する。
 図7に示すように、ステップS201において、無線基地局eNBは、「i=0」とし、「Nmax=1」とする。
 ステップS202において、無線基地局eNBは、Npdcch,iが閾値Thcfi,1‐to‐2よりも少ないか否かについて判定する。ここで、Npdcch,iは、測定周期内のi番目のサブフレームにおける送信予定のPDCCHの数(PDCCH送信候補数)である。
 Npdcch,iが閾値Thcfi,1‐to‐2よりも少ないと判定された場合、本動作は、ステップS203に進み、それ以外の場合、本動作は、ステップS204に進む。
 ステップS203において、無線基地局eNBは、「n=1」とする。
 ステップS204において、無線基地局eNBは、Npdcch,iが閾値Thcfi,2‐to‐3よりも少ないか否かについて判定する。
 Npdcch,iが閾値Thcfi,2‐to‐3よりも少ないと判定された場合、本動作は、ステップS205に進み、それ以外の場合、本動作は、ステップS206に進む。
 ステップS205において、無線基地局eNBは、「n=2」とし、ステップS206において、無線基地局eNBは、「n=3」とする。
 ステップS207において、無線基地局eNBは、「Nmax<n」が成立するか否かについて判定する。
 「Nmax<n」が成立すると判定された場合、ステップS208において、無線基地局eNBは、「Nmax=n」とする。
 ステップS209において、無線基地局eNBは、PDCCHに対する無線リソースの割り当てを行い、割り当て失敗率Pを算出する。
 ステップS210において、無線基地局eNBは、「Ncurrent=3」が成立するか否かについて判定する。ここで、「Ncurrent」は、現在の制御区間における割当可能OFDM数である。
 「Ncurrent=3」が成立すると判定された場合、本動作は、ステップS211に進み、「Ncurrent=3」が成立しないと判定された場合、本動作は、ステップS214に進む。
 ステップS211において、無線基地局eNBは、「P>Pth」が成立するか否かについて判定する。ここで、「Pth」は、割り当て失敗率Pに対する閾値である。
 「P>Pth」が成立すると判定された場合、ステップS212において、無線基地局eNBは、「Thcfi,2‐to‐3=Thcfi,2‐to‐3-Δ×(1‐target)」とする。ここで、「Δ」は、所定パラメータであり、「target」は、割り当て失敗率Pの目標値である。
 一方、「P>Pth」が成立しないと判定された場合、ステップS213において、無線基地局eNBは、「Thcfi,2‐to‐3=Thcfi,2‐to‐3+Δ×target」とする。
 ステップS214において、無線基地局eNBは、「Ncurrent=2」が成立するか否かについて判定する。
 「Ncurrent=2」が成立すると判定された場合、本動作は、ステップS215に進み、「Ncurrent=2」が成立しないと判定された場合、本動作は、ステップS218に進む。
 ステップS215において、無線基地局eNBは、「P>Pth」が成立するか否かについて判定する。
 「P>Pth」が成立すると判定された場合、ステップS216において、無線基地局eNBは、「Thcfi,2‐to‐3=Thcfi,2‐to‐3‐Δ×(1‐target)」及び「Thcfi,1‐to‐2=Thcfi,1‐to‐2-Δ×(1‐target)」とする。
 一方、「P>Pth」が成立しないと判定された場合、ステップS217において、無線基地局eNBは、「Thcfi,2‐to‐3=Thcfi,2‐to‐3+Δ×target」及び「Thcfi,1‐to‐2=Thcfi,1‐to‐2+Δ×target」とする。
 ステップS218において、無線基地局eNBは、「Ncurrent=1」が成立するか否かについて判定する。
 「Ncurrent=1」が成立すると判定された場合、本動作は、ステップS219に進み、「Ncurrent=1」が成立しないと判定された場合、本動作は、ステップS222に進む。
 ステップS219において、無線基地局eNBは、「P>Pth」が成立するか否かについて判定する。
 「P>Pth」が成立すると判定された場合、ステップS220において、無線基地局eNBは、「Thcfi,1‐to‐2=Thcfi,1‐to‐2-Δ×(1‐target)」とする。
 一方、「P>Pth」が成立しないと判定された場合、ステップS221において、無線基地局eNBは、「Thcfi,1‐to‐2=Thcfi,1‐to‐2+Δ×target」とする。
 ステップS222において、無線基地局eNBは、「i」を「1」だけ増加させる。ステップS223において、無線基地局eNBは、「i<Nperiod」が成立するか否かについて判定する。
 「i<Nperiod」が成立すると判定された場合、本動作は、ステップS202に戻り、「i<Nperiod」が成立しないと判定された場合、本動作は、ステップS224に進む。
 ステップS224において、無線基地局eNBは、次の制御区間における割当可能OFDM数を「Nmax」とする。
(本発明の第1の実施形態に係る移動通信システムの作用・効果)
 本発明の第1の実施形態に係る移動通信システムによれば、測定区間内の各サブフレームにおいて、通信状況に対応するOFDMシンボル数の最大数を、かかる測定区間の完了後に開始する次の制御区間内の各サブフレームにおける割当可能OFDMシンボル数とすることによって、処理負荷及び処理遅延を考慮して、各サブフレームにおける下りリンクにおける制御チャネルに対して割当可能なOFDMシンボル数を決定することができる。
 また、本発明の第1の実施形態に係る移動通信システムによれば、伝搬路状況の変化等に応じて、通信状況とOFDMシンボル数との対応関係を適応的に制御することによって、各サブフレームにおける下りリンクにおける制御チャネルに対して割当可能なOFDMシンボル数の最適化を図ることができる。
 以上に述べた本実施形態の特徴は、以下のように表現されていてもよい。
 本実施形態の第1の特徴は、14個のOFDMシンボルによって構成されるサブフレームごとに、下りリンクにおける制御チャネルに対して割当可能な各サブキャリアにおけるOFDMシンボルの数を示す割当可能OFDMシンボル数を決定するように構成されているリソース割当部14を具備し、リソース割当部14は、測定区間内の各サブフレームにおいて、通信状況に対応するOFDMシンボル数を算出し、算出したOFDMシンボル数の中の最大数を、かかる測定区間の完了後に開始する次の制御区間内の各サブフレームにおける割当可能OFDMシンボル数とするように構成されていることを要旨とする。
 本実施形態の第1の特徴において、通信状況は、送信予定の物理下りリンク制御チャネルの数であってもよい。
 本実施形態の第1の特徴において、通信状況は、移動局UEから通知されたCQIに基づいて決定された「Aggregation Level」の総数であり、「Aggregation Level」は、連続する9個のリソース要素グループによって構成される制御チャネル要素を何個連続で割り当てるかについて示し、リソース要素グループは、連続する4個のリソース要素によって構成されており、リソース要素は、1つのサブキャリアにおける1つのOFDMシンボルによって構成されていてもよい。
 本実施形態の第1の特徴において、通信状況は、スケジューリング対象の移動局の数であってもよい。
 本実施形態の第1の特徴において、通信状況は、送信すべき下りリンクデータが存在する移動局の数であってもよい。
 本実施形態の第1の特徴において、リソース割当部14は、所定要因に基づいて、通信状況とOFDMシンボル数との対応関係を変更するように構成されていてもよい。
 なお、上述の移動局UEや無線基地局eNBの動作は、ハードウェアによって実施されてもよいし、プロセッサによって実行されるソフトウェアモジュールによって実施されてもよいし、両者の組み合わせによって実施されてもよい。
 ソフトウェアモジュールは、RAM(RandoMSCcess Memory)や、フラッシュメモリや、ROM(Read Only Memory)や、EPROM(Erasable Programmable ROM)や、EEPROM(Electronically Erasable and Programmable ROM)や、レジスタや、ハードディスクや、リムーバブルディスクや、CD‐ROMといった任意形式の記憶媒体内に設けられていてもよい。
 かかる記憶媒体は、プロセッサが当該記憶媒体に情報を読み書きできるように、当該プロセッサに接続されている。また、かかる記憶媒体は、プロセッサに集積されていてもよい。また、かかる記憶媒体及びプロセッサは、ASIC内に設けられていてもよい。かかるASICは、移動局UEや無線基地局eNB内に設けられていてもよい。また、かかる記憶媒体及びプロセッサは、ディスクリートコンポーネントとして移動局UEや無線基地局eNB内に設けられていてもよい。
 以上、上述の実施形態を用いて本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。従って、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。

Claims (6)

  1.  所定数のOFDMシンボルによって構成されるサブフレームごとに、下りリンクにおける制御チャネルに対して割当可能な各サブキャリアにおけるOFDMシンボルの数を示す割当可能OFDMシンボル数を決定するように構成されている決定部を具備し、
     前記決定部は、測定区間内の各サブフレームにおいて、通信状況に対応するOFDMシンボル数を算出し、算出した該OFDMシンボル数の中の最大数を、該測定区間の完了後に開始する次の制御区間内の各サブフレームにおける前記割当可能OFDMシンボル数とするように構成されていることを特徴とする無線基地局。
  2.  前記通信状況は、送信予定の物理下りリンク制御チャネルの数であることを特徴とする請求項1に記載の無線基地局。
  3.  前記通信状況は、移動局から通知された受信品質に基づいて決定された集約レベルの総数であり、
     前記集約レベルは、連続する複数のリソース要素グループによって構成される制御チャネル要素を何個連続で割り当てるかについて示し、
     前記リソース要素グループは、連続する複数のリソース要素によって構成されており、
     前記リソース要素は、1つのサブキャリアにおける1つのOFDMシンボルによって構成されていることを特徴とする請求項1に記載の無線基地局。
  4.  前記通信状況は、スケジューリング対象の移動局の数であることを特徴とする請求項1に記載の無線基地局。
  5.  前記通信状況は、送信すべき下りリンクデータが存在する移動局の数であることを特徴とする請求項1に記載の無線基地局。
  6.  前記決定部は、所定要因に基づいて、前記通信状況と前記OFDMシンボル数との対応関係を変更するように構成されていることを特徴とする請求項1に記載の無線基地局。
PCT/JP2009/068956 2008-11-07 2009-11-06 無線基地局 WO2010053144A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200980144427.6A CN102210182B (zh) 2008-11-07 2009-11-06 无线基站
EP09824843.8A EP2355603A4 (en) 2008-11-07 2009-11-06 WIRELESS BASE STATION
US13/128,135 US9031012B2 (en) 2008-11-07 2009-11-06 Radio base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008287102A JP5227747B2 (ja) 2008-11-07 2008-11-07 無線基地局
JP2008-287102 2008-11-07

Publications (1)

Publication Number Publication Date
WO2010053144A1 true WO2010053144A1 (ja) 2010-05-14

Family

ID=42152951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068956 WO2010053144A1 (ja) 2008-11-07 2009-11-06 無線基地局

Country Status (5)

Country Link
US (1) US9031012B2 (ja)
EP (1) EP2355603A4 (ja)
JP (1) JP5227747B2 (ja)
CN (1) CN102210182B (ja)
WO (1) WO2010053144A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012063368A1 (ja) * 2010-11-12 2012-05-18 富士通株式会社 基地局、移動局、制御方法、設定方法および通信システム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6273973B2 (ja) 2014-03-31 2018-02-07 富士通株式会社 無線通信システム、無線基地局装置及び無線通信システムの制御方法
CN105991274B (zh) * 2015-03-03 2019-05-21 电信科学技术研究院 数据传输的方法、反馈信息传输方法及相关设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008105316A1 (ja) * 2007-02-28 2008-09-04 Ntt Docomo, Inc. 基地局装置及び通信制御方法
WO2008114541A1 (ja) * 2007-03-20 2008-09-25 Mitsubishi Electric Corporation 無線通信システム、基地局、端末装置、及び無線通信方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4671982B2 (ja) * 2007-01-09 2011-04-20 株式会社エヌ・ティ・ティ・ドコモ 基地局、送信方法及び移動通信システム
US8228783B2 (en) * 2007-05-04 2012-07-24 Texas Instruments Incorporated Base station transmitter for use with an OFDM communications system, a method of dynamically allocating OFDM symbols for PDCCH in the system and a user equipment receiver for use with the system
KR100900289B1 (ko) * 2007-06-21 2009-05-29 엘지전자 주식회사 직교 주파수 분할 다중화 시스템에서 제어 채널을 송수신하는 방법
CN101810040B (zh) * 2007-09-26 2013-04-24 诺基亚公司 降低e-ultra pfcch的解码复杂度

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008105316A1 (ja) * 2007-02-28 2008-09-04 Ntt Docomo, Inc. 基地局装置及び通信制御方法
WO2008114541A1 (ja) * 2007-03-20 2008-09-25 Mitsubishi Electric Corporation 無線通信システム、基地局、端末装置、及び無線通信方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012063368A1 (ja) * 2010-11-12 2012-05-18 富士通株式会社 基地局、移動局、制御方法、設定方法および通信システム
JPWO2012063368A1 (ja) * 2010-11-12 2014-05-12 富士通株式会社 基地局、移動局、制御方法および通信システム
JP5590141B2 (ja) * 2010-11-12 2014-09-17 富士通株式会社 基地局、移動局、制御方法および通信システム
US9265054B2 (en) 2010-11-12 2016-02-16 Fujitsu Limited Base station, mobile station, control method, setting method, and communication system

Also Published As

Publication number Publication date
US20110255494A1 (en) 2011-10-20
EP2355603A1 (en) 2011-08-10
EP2355603A4 (en) 2016-06-08
US9031012B2 (en) 2015-05-12
JP2010114781A (ja) 2010-05-20
JP5227747B2 (ja) 2013-07-03
CN102210182A (zh) 2011-10-05
CN102210182B (zh) 2015-04-08

Similar Documents

Publication Publication Date Title
US20210328753A1 (en) Base Station, User Equipment and Methods Therein for Control Timing Configuration Assignment in a Multiple Cell Communications Network
US8897240B2 (en) Methods and apparatus for physical uplink control channel (PUCCH) load control by physical downlink control channel (PDCCH) restrictions
US10959189B2 (en) Uplink power sharing in dual connectivity
EP2606703B1 (en) Method and apparatus for determining when to use contention-based access for transmitting data in a wireless network
JP6106275B2 (ja) 拡張物理下りリンク制御チャネル(epdcch)に対してtddpucchharqリソースを割り当てる方法及びシステム
CN107517096B (zh) 用于混合自动重发请求-确认传输的物理上行链路控制信道资源分配
US8711789B2 (en) Method and apparatus for providing contention-based resource zones in a wireless network
US8767596B2 (en) Method and apparatus for using contention-based resource zones for transmitting data in a wireless network
CN102271032B (zh) 一种实现上行反馈的方法、系统及装置
US8594037B2 (en) Method and apparatus for assigning response channel resources
EP2547164B1 (en) Mobile communication method, mobile station, and radio base station
US20130142098A1 (en) Apparatus and method for transmitting information regarding power coordination in multi-component carrier system
EP4358461A2 (en) Method and arrangement for reconfiguring mapping of carrier indicator field to component carrier
EP2982068A1 (en) Method, ue and basestation for reporting/receiving harq ack/nack for pdsch in dynamic tdd configurations
EP2276309A1 (en) Mobile communication method, mobile station, and radio base station
US20110223927A1 (en) Method of relaying data
WO2010053144A1 (ja) 無線基地局
WO2019105389A1 (en) Method for allocating a resource in a user equipment and user equipment
CN118301768A (zh) 一种参数配置方法、设备及存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980144427.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09824843

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006/KOLNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2009824843

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13128135

Country of ref document: US