WO2010052917A1 - Polishing head, polishing apparatus and substrate polishing body - Google Patents

Polishing head, polishing apparatus and substrate polishing body Download PDF

Info

Publication number
WO2010052917A1
WO2010052917A1 PCT/JP2009/005911 JP2009005911W WO2010052917A1 WO 2010052917 A1 WO2010052917 A1 WO 2010052917A1 JP 2009005911 W JP2009005911 W JP 2009005911W WO 2010052917 A1 WO2010052917 A1 WO 2010052917A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
electrolyte
substrate
metal film
head
Prior art date
Application number
PCT/JP2009/005911
Other languages
French (fr)
Japanese (ja)
Inventor
富永茂
近藤誠一
阿部太輔
榎本太郎
Original Assignee
株式会社ロキテクノ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ロキテクノ filed Critical 株式会社ロキテクノ
Publication of WO2010052917A1 publication Critical patent/WO2010052917A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/16Polishing
    • C25F3/30Polishing of semiconducting materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H5/00Combined machining
    • B23H5/06Electrochemical machining combined with mechanical working, e.g. grinding or honing
    • B23H5/08Electrolytic grinding

Definitions

  • the present invention relates to a polishing head, a polishing apparatus, and a substrate polishing body suitable for electrochemically polishing a metal film on a substrate.
  • wirings are stacked with high integration and miniaturization.
  • a process is adopted in which wiring is patterned on the surface of a semiconductor wafer, this is covered with an insulator such as silicon oxide, the next wiring is patterned, and this is repeated in order. .
  • the hole for the plug and the wiring groove are formed in an insulator such as silicon oxide (hereinafter referred to as an interlayer insulating film) by reactive ion etching or the like, and the hole for the plug and the wiring are formed thereon by copper plating.
  • a conductor layer metal film is formed by simultaneously filling the groove with a copper wiring material.
  • a platen rotary type polishing apparatus is used for CMP of the extra conductor layer.
  • a polishing pad of approximately the same size is attached to a rotating surface plate (platen) having a diameter more than twice the diameter of the semiconductor wafer, and the semiconductor wafer with the surface to be polished facing down is attracted to the head Then, the polishing pad is pressed against the surface to be polished, and the semiconductor wafer is polished while dripping the polishing liquid (slurry) onto the surface of the polishing pad.
  • the platen rotary type polishing apparatus requires a platen diameter of more than twice the wafer diameter, there is a problem that the apparatus becomes large as the wafer diameter increases, and a problem that a large amount of polishing liquid (slurry) is consumed. Etc.
  • the thickness of the conductor layer of each wiring layer from the intermediate wiring layer (medium line) to the surface wiring layer (global line) tends to increase, and a higher polishing rate is desired. It is rare.
  • the through via wiring formation process used in 3D LSI three dimension large scale integration
  • semiconductor devices are stacked at wafer level or chip level and a plurality of semiconductor devices such as CPU and memory are mounted in one package, surplus Since the conductor layer reaches several tens of microns, there is a demand for further high-speed polishing.
  • electrochemical mechanical polishing has been proposed as polishing capable of improving the planarization of the conductor layer as compared with CMP and capable of low pressure and high speed polishing.
  • eCMP electrochemical mechanical polishing
  • a conductor layer and a plus electrode are connected, and the conductor layer and a minus electrode are connected via an electrolytic solution.
  • a positive electrode is connected by bringing a conductive surface layer of a polishing pad into contact with a conductive layer.
  • eCMP in Patent Document 2 is polished while the conductive surface layer and the conductor layer are in contact with each other, there is a possibility that the conductor layer is damaged.
  • JP 2008-91875 A Japanese Patent No. 4142554
  • An object of the present invention is to provide a polishing head, a polishing apparatus, and a substrate polishing body that are capable of polishing a metal film on a substrate and that are suitable for polishing without scratches.
  • the present invention solves the problems by the following means.
  • symbol corresponding to embodiment of this invention is attached
  • the configuration described with reference numerals may be improved as appropriate, or at least a part thereof may be replaced with another configuration.
  • the substrate polishing body (30, 230) provided with a plurality of electrolyte solution storage portions (F1, F2) opened in the polishing surface (31a) can be mounted, and by being driven to rotate,
  • a power transmission unit (15a, 15b) for supplying to the polishing head.
  • the plurality of electrolyte solution storage portions (F1, F2) include anode electrodes (33, 233A), and the stored electrolyte solution (E) and the substrate (D)
  • the electrolysis solution container (F1) for contacting the metal film (D1) and the cathode electrode (34, 234A) are brought into contact with each other.
  • the polishing head is characterized in that the negative electrode (2b) of the power source is connected to the negative electrode of the polishing electrolyte container.
  • the substrate polishing body (30, 230) is supplied from the electrolytic solution supply unit (13) and the electrolytic solution storage unit (F1, F2).
  • the polishing head is characterized by comprising discharge portions (Ch1, Ch2, Ch201, Ch202) for discharging the electrolytic solution (E) accommodated in.
  • the polishing head according to any one of the first to third aspects and the substrate polishing body (30, 230) are mounted with the polishing surface (31a) facing downward, A head driving unit that rotationally drives the polishing head, a table on which the metal film (D1) is provided on the surface layer and on which the substrate (D) having a diameter larger than the substrate polishing body is mounted, and a table that rotationally drives the table And a driving unit.
  • a plurality of electrolytic solution storage portions (F1, F2) attached to any one of the first to third polishing heads and opened in the polishing surface (31a);
  • a substrate polishing body comprising: a discharge portion (Ch1, Ch2, Ch201, Ch202) that discharges the electrolyte solution (E) supplied from the electrolyte solution supply portion (13) and stored in the electrolyte solution storage portion. It is.
  • the plurality of electrolyte solution storage portions (F1, F2) include anode electrodes (33, 233A), and the stored electrolyte solution (E) and the above An energizing electrolyte container (F1) for contacting the metal film (D1) of the substrate (D) and a cathode electrode (34, 234A), and the accommodated electrolyte and the metal film of the substrate A polishing substrate having a polishing electrolyte solution containing portion (F2) to be contacted.
  • the discharge portion (Ch1, Ch2, Ch201, Ch202) connects the plurality of energizing electrolyte storage portions (F1), and the substrate polishing body
  • the through-electrolyte accommodating portion through-holes (Ch1, Ch201), which are through-holes that pass through the outside, are connected to the plurality of polishing electrolyte accommodating portions (F2), and the through-holes that go out of the substrate polishing body
  • a polishing substrate comprising: a polishing electrolyte solution storage part through hole (Ch2, Ch202).
  • the substrate polishing body is mounted and rotated with the polishing surface directed downward in the vertical direction, and the polishing power of the power supply is supplied to the electrolyte container, the metal film of the substrate It can grind in the state where the surface (surface to be polished) faces upward.
  • electrochemical polishing eCMP
  • polishing at a speed corresponding to the magnitude of the energized direct current can be performed, and high-speed polishing of the metal film can be performed.
  • the electrolytic solution in the energizing electrolyte container and the metal film are brought into contact, the electrolytic solution in the polishing electrolyte container and the metal film in the substrate are brought into contact, and the positive electrode of the power source and the electrolyzing electrode Since the anode electrode of the liquid storage part is connected and the negative electrode of the power supply is connected to the anode electrode of the polishing electrolyte storage part, the positive electrode and the negative electrode of the power supply are connected to the metal film via the electrolyte. Can do.
  • the metal film can be brought into contact only with the polishing surface layer of the substrate polishing body to perform electrochemical mechanical polishing. That is, since it is not necessary to mechanically contact the metal film with the electrode or the like in order to supply power to the metal film, the metal film can be prevented from being damaged.
  • the substrate polishing body since the substrate polishing body includes a discharge unit that discharges the electrolytic solution stored in the electrolytic solution storage unit, the electrolytic solution is supplied and discharged by mounting the substrate polishing body on the polishing head. be able to.
  • the gas generated in the electrolytic solution in the electrolytic solution storage part due to the electrochemical reaction accompanying the electrochemical mechanical polishing can be discharged together with the electrolytic solution.
  • the present invention includes a table on which a substrate having a diameter larger than that of the substrate polishing body is provided, the substrate can be polished with a substrate polishing body having a diameter smaller than that of the substrate. Thereby, a grinding
  • the present invention includes the energizing electrolyte accommodating portion through hole and the polishing electrolyte accommodating portion through hole, the electrolyte in the energizing electrolyte accommodating portion through hole and the polishing electrolyte accommodating portion penetrate The electrolyte solution in the hole can be electrochemically separated.
  • An object of the present invention is to provide a polishing head, a polishing apparatus, and a substrate polishing body that can polish a metal film on a substrate at a high speed and that are suitable for polishing without scratches.
  • a polishing head to be mounted in a state of being directed downward in the vertical direction, a wafer adsorbing unit to which a semiconductor device wafer substrate is mounted in a state of being directed upward in the vertical direction, and an inside of the head that supplies the electrolytic solution to the electrolytic solution storage unit
  • This is realized by including an electrolytic solution supply path and an in-head electric cable for supplying power for polishing of the power source to the electrolytic solution storage unit.
  • FIG. 1 is a perspective view of a polishing apparatus 1 according to the first embodiment.
  • FIG. 2 is a longitudinal sectional view of the polishing apparatus 1 according to the first embodiment.
  • the polishing apparatus 1 places a metal film D1 of a semiconductor device wafer D (wiring material substrate) on a table 21 with the metal film D1 facing upward in the vertical direction Z.
  • An apparatus for electrochemical mechanical polishing (eCMP) That is, the polishing apparatus 1 has a structure capable of simultaneously performing electrochemical reaction and mechanical polishing of the metal film D1, as will be described below.
  • the polishing apparatus 1 includes a power source 2, an electrolyte supply device 3, a polishing head 10, a wafer carrier unit 20, a waste liquid tray 25, and a polishing tool 30 (substrate polishing body).
  • the power source 2 is a DC voltage supply device that supplies polishing power, which is power used for an electrochemical reaction in eCMP.
  • the power source 2 includes a positive electrode 2a and a negative electrode 2b.
  • the electrolytic solution supply device 3 includes a tank (not shown) for storing the electrolytic solution E, a pump for sending the electrolytic solution E from the tank to the polishing head 10, a pipe 3a connected to the polishing head 10, and the like. .
  • the polishing head 10 includes a base 11, a tool folder 12 (substrate polishing body mounting portion), an electrolyte supply path 13 (electrolyte supply portion), a rotary joint 14, and an in-head electric cable. 15 a and 15 b (power transmission unit), a head driving unit 16, and a hood 17.
  • the base 11 is a disk-shaped member that is the basis of the polishing head 10.
  • the tool folder 12 is a recess in which the lower surface of the base 11 is recessed according to the diameter of the polishing tool 30.
  • the polishing tool 30 is mounted and held in the tool folder 12 by screwing or the like with the polishing surface 31a (see FIG. 4) directed downward in the vertical direction Z.
  • the electrolytic solution supply path 13 is a supply path for further sending the electrolytic solution E sent from the pipe 3 a to the base 11 to the polishing tool 30.
  • the electrolytic solution supply path 13 is connected to the piping 3a of the electrolytic solution supply path 13 via the rotary joint 14, and is connected to the polishing head 10 to supply the electrolytic solution E to the rotating polishing head 10. Can do.
  • the electrolyte supply path 13 includes a tubular portion that extends downward in the vertical direction from the rotary joint 14 and a portion that opens downward and that is recessed in the tool folder 12.
  • the recessed portion in the tool folder 12 is provided with a plurality of ribs (not shown) provided radially from the center of the polishing head 10 in a radial row so that the mounted polishing tool 30 does not bend. It has become.
  • the in-head electric cables 15 a and 15 b are electric cables for transmitting the power of the power source 2 in the polishing head 10.
  • the in-head electric cables 15a and 15b are connected to the external electric cables 2c and 2d connected to the positive pole 2a and the negative pole 2b of the power source 2 by means of electrical connection parts (not shown) such as slip rings. It is connected. Further, in the in-head electric cables 15a and 15b, the other terminal portions are connected to the in-head electric cables 15a and 15b. Thereby, the plus pole 2a and the in-head electric cable 15a are electrically connected, and the minus pole 2b and the in-head electric cable 15b are electrically connected.
  • the in-head electric cables 15a and 15b are covered with an insulating material and do not short-circuit even if they are wired inside the electrolyte supply path 13.
  • the in-head electric cables 15a and 15b are connected to the polishing tool electric cables 36a and 36b (described later) via the connection terminals 15c and 15d (see FIG. 6) at the respective terminal portions on the polishing tool 30 side.
  • the positive electrode 2a of the power supply 2 and the anode electrode 33 in the energizing electrolyte container F1 (see FIG. 6) are electrically connected, and the negative electrode 2b of the power supply 2 and the polishing electrolyte container F2 (see FIG. 6).
  • the cathode electrode 34 is electrically connected.
  • the in-head electric cables 15a and 15b transmit the power for polishing of the power source 2 to the electrolytic solution E in the respective electrolytic solution storage portions F1 and F2 (described later).
  • the head drive unit 16 is a device that rotationally drives the polishing head 10 equipped with the polishing tool 30 around the rotation axis Z1 in the vertical direction Z.
  • the head driving unit 16 includes a motor M1 and a driving force transmission unit 16a such as a belt and a gear that transmits the driving force of the motor M1 to the base 11.
  • the head drive unit 16 may include a swinging device that moves the polishing head 10 in the XY plane direction, that is, the horizontal plane direction (the directions of arrows A and B shown in FIG. 1) by a cam mechanism or the like.
  • the hood 17 is for preventing waste liquid (electrolytic solution E after use of polishing) from being scattered around as the polishing head 10 rotates.
  • the wafer carrier unit 20 includes a table 21, a wafer suction unit 22, a wafer support ring 23 (retainer ring), and a table driving unit 24.
  • the table 21 is a disk-shaped member on which the device wafer D is placed.
  • the table 21 mounts the device wafer D in a state where the surface (surface to be polished) of the metal film D1 faces the upper side in the vertical direction Z.
  • the wafer suction unit 22 is a part for fixing the device wafer D to the table 21 by sucking the lower surface of the device wafer D.
  • the wafer suction unit 22 includes a suction port 22a formed on the surface of the table 21, and a suction tube 22c that connects the suction port 22a and the suction device 22b.
  • the wafer suction unit 22 fixes the device wafer D by vacuum suction.
  • the wafer suction unit 22 releases the vacuum suction and releases the fixation. Note that, when the device wafer D is lowered from the table 21, the wafer suction unit 22 may be in a pressurized state as necessary.
  • the wafer support ring 23 is an annular member for preventing the device wafer D placed on the table 21 from moving in the radial direction.
  • the wafer support ring 23 is made of, for example, a thermoplastic resin.
  • the wafer support ring 23 has a thickness equal to or less than the thickness of the device wafer D, and is fixed to the upper surface of the table 21 with the edge of the device wafer D being fitted inside thereof. It contacts 30 polishing surface layers 31 (described later).
  • the wafer support ring 23 can alleviate the polishing pressure of the polishing tool 30 from being concentrated on the edge of the surface of the device wafer D.
  • the table driving unit 24 is a device that rotationally drives the table 21 on which the device wafer D is placed about the rotation axis Z2 in the vertical direction Z.
  • the table driving unit 24 includes a motor M2 and a driving force transmission unit 24a such as a belt or a gear that transmits the driving force of the motor M2 to the table 21.
  • the waste liquid tray 25 is a container for accommodating the electrolytic solution E discharged from the polishing tool 30 during polishing.
  • the polishing apparatus 1 can polish the device wafer D with good in-plane uniformity even if the diameter of the polishing tool 30 attached to the polishing head 10 is slightly larger than the diameter of the device wafer D.
  • the polishing apparatus 1 swings the polishing head 10 with respect to the device wafer D, so that it can be made smaller than the diameter of the device wafer D. In this case, the entire apparatus can be reduced in size.
  • FIG. 3 is a back view of the polishing tool 30 of the first embodiment (viewed from below the vertical direction Z shown in FIG. 2).
  • FIG. 4 is a perspective view of the polishing tool 30 according to the first embodiment as viewed obliquely from below.
  • FIG. 5 is a perspective view for explaining a discharge mechanism of the polishing liquid E of the polishing tool 30 of the first embodiment.
  • the polishing tool 30 is laminated from the lower layer side to the upper layer side and is formed in a disc shape, and includes a polishing surface layer 31, an insulating layer 32, an anode electrode 33 and a cathode electrode 34, and an insulating layer 35. And polishing tool electrical cables 36a and 36b. Each layer is bonded with an adhesive, an adhesive sheet, or the like.
  • the polishing tool 30 includes an energizing electrolyte container F1, a polishing electrolyte container F2, electrolyte supply pores 37 and 38, a waste liquid channel Ch1 (an energizing electrolyte). A housing portion through-hole) and a waste liquid channel Ch2 (polishing electrolyte housing portion through-hole).
  • the polishing surface layer 31 is a member for removing a protective film G (described later) formed on the surface of the metal film D1 of the device wafer D during polishing.
  • the polishing surface layer 31 is configured such that the lower polishing surface 31a contacts the surface of the metal film D1 of the device wafer D during polishing.
  • the polishing surface layer 31 is formed of a synthetic resin such as a urethane foam material having a high mechanical polishing ability.
  • the polishing surface layer 31 does not have to be a single layer structure made of a single material, and may be a laminated structure with a cushioning material made of a synthetic resin support or foamed resin.
  • the insulating layer 32 is provided for forming the waste liquid channels ch1 and ch2.
  • the anode electrode 33 is an electrode formed of a conductive member in order to supply a positive voltage to the energizing electrolyte container F1. As shown in FIG. 3, the anode electrode 33 has a shape in which fan-shaped portions 33a, 33b, and 33c are arranged at intervals of 120 ° and are connected by a central portion 33d.
  • the anode electrode 33 is made of a low-resistance material such as metal (gold, copper, platinum, tungsten, titanium alloy, stainless steel, carbon, etc.) or a carbon material (amorphous carbon containing carbon as a main component, carbon fiber, graphite fiber, graphite) , Composite carbon materials with synthetic resins, etc.) can be used.
  • a composite material in which tungsten or titanium is coated with artificial diamond doped with boron is preferable.
  • the cathode electrode 34 is an electrode formed of the same material as the cathode electrode 34 in order to supply a negative voltage to the polishing electrolyte container F2.
  • the cathode electrode 34 has a shape in which fan-shaped portions 34a, 34b, and 34c are arranged at intervals of 120 °, and these are connected by an outer peripheral portion 34d.
  • the anode electrode 33 and the cathode electrode 34 are stacked in the same layer so as to have a gap 33 e in the plane (XY plane) direction.
  • the insulating layer 35 is a member that insulates each electrode of the anode electrode 33 and the cathode electrode 34 from the base 11 of the polishing head 10. Further, the insulating layer 35 is provided with a step portion 35 a that enters the gap 33 e between the anode electrode 33 and the cathode electrode 34, and insulates between the anode electrode 33 and the cathode electrode 34.
  • the polishing tool electrical cable 36 a is connected to the inside of the anode electrode 33.
  • the polishing tool electric cable 36a is inserted through the through hole of the insulating layer 35, guided to the upper side of the polishing tool 30, and connected to the in-head electric cable 15a via the connection terminal 15c (see FIG. 6).
  • the polishing tool electrical cable 36b is connected to the inside of the cathode electrode 34, is wired in the same manner as the polishing tool electrical cable 36a, and is connected to the in-head electrical cable 15b via the connection terminal 15d (see FIG. 6). .
  • the energizing electrolyte container F ⁇ b> 1 is configured by a plurality of through-holes communicating with the polishing surface layer 31 and the insulating layer 32 and the surface of the anode electrode 33 forming the bottom.
  • the energizing electrolyte container F1 is formed in a range overlapping with the fan-shaped portions 33a, 33b, and 33c of the anode electrode 33 in the XY plane.
  • the electrolytic solution accommodating portion F1 is filled with the electrolytic solution E and DC power is supplied, the electrolytic solution E and the metal film D1 of the device wafer D come into contact with each other, so that the conductive electrolyte accommodating portion F1 is brought into contact.
  • the abutting portion of the metal film D1 and the anode electrode 33 form an electrochemical cell (an electrolysis cell C1 to be described later).
  • the polishing electrolyte container F2 is configured by the through hole and the surface of the cathode electrode 34, and overlaps the fan-shaped portions 34a, 34b, and 34c of the cathode electrode 34 in the XY plane. Formed in the range.
  • the electrolytic solution E is filled in the polishing electrolyte storage portion F2 and DC power is supplied, the electrolytic solution E and the metal film D1 of the device wafer D come into contact with each other, so that the polishing electrolytic solution storage portion F2 is contacted.
  • An electrochemical cell (a polishing electrolytic cell C2 to be described later) is formed by the metal film D1 and the cathode electrode 34 at the abutting portion.
  • the two cells are connected in series by the metal film D1
  • the metal film D1 in contact with the polishing electrolyte container F2 is electrochemically polished.
  • the electrolyte solution supply pore 37 is a through hole provided in communication with the anode electrode 33 and the insulating layer 35 in order to supply the electrolyte solution E to the electrolyte solution storage portion F1 for energization.
  • the electrolyte supply pore 37 communicates with the electrolyte supply path 13 of the polishing tool 30 in a state where the polishing tool 30 is mounted on the polishing head 10 (see FIG. 2).
  • the electrolytic solution supply pore 38 is a through hole provided in communication with the cathode electrode 34 and the insulating layer 35 in order to supply the electrolytic solution E to the polishing electrolytic solution storage portion F2.
  • the electrolyte supply pores 38 communicate with the electrolyte supply path 13 of the polishing tool 30 in a state where the polishing tool 30 is mounted on the polishing head 10 (see FIG. 2).
  • the waste liquid channel Ch ⁇ b> 1 is a through hole for discharging the electrolytic solution E supplied and filled in the energizing electrolytic solution storage unit F ⁇ b> 1 to the outside of the polishing tool 30.
  • the waste liquid channel Ch ⁇ b> 1 is formed by a slit that connects the through holes of the insulating layer 32 that form the energizing electrolyte housing part F ⁇ b> 1 in the radial direction and further passes outside.
  • FIG. 5 when the insulating layer 32 is laminated to form the polishing tool 30, this soot connects the energizing electrolyte container F ⁇ b> 1 in the radial direction R, opens to the outer peripheral portion, and comes out.
  • Such a through-hole is configured to configure the waste liquid channel Ch1 (see FIG. 3).
  • the waste liquid channel Ch ⁇ b> 2 is a through hole for discharging the electrolytic solution E supplied and filled in the polishing electrolytic solution storage part F ⁇ b> 2 to the outside of the polishing tool 30.
  • the waste liquid channel Ch2 is formed by a slit that connects the through-holes of the insulating layer 32 that form the polishing electrolyte container F2 in the radial direction and further passes out. As shown in FIG. 5, when the insulating layer 32 is laminated and the state of the polishing 30 is established, this slit connects the polishing electrolyte container F2 in the radial direction R, and further opens to the outer peripheral portion and comes out.
  • Such a through hole is configured to configure a waste liquid channel Ch2 (see FIG. 3).
  • FIG. 6 is a vertical cross-sectional view (corresponding to the cross section taken along the line VI-VI in FIG. 3) schematically showing the polishing apparatus 1 during polishing according to the first embodiment.
  • the electrolytic solution E is sent to the polishing head 10 by the electrolytic solution supply device 3, the electrolytic solution E is supplied to the polishing tool 30 through the electrolytic solution supply path 13 of the polishing head 10. Is done.
  • the electrolyte E is further supplied to the energizing electrolyte container F ⁇ b> 1 through the electrolyte supply pores 37 of the polishing tool 30, and also passes through the electrolyte supply pores 38 of the polishing tool 30. Then, it is supplied to the polishing electrolyte container F2. Thereby, each electrolyte solution accommodating part F1, F2 will be in the state with which the electrolyte solution E was satisfy
  • the anode electrode 33 is connected to the positive electrode 2 a of the power source 2, while the cathode electrode 34 is connected to the negative electrode 2 b of the power source 2. Therefore, when a voltage is applied, the interface between the surface of the anode electrode 33 and the electrolytic solution E, the interface between the surface of the cathode electrode 34 and the electrolytic solution E, the surface of the metal film D1 and the energizing electrolytic solution container F1 are filled.
  • Electrons are exchanged and current flows at the interface with the electrolyte solution E and at the interface between the surface of the metal film D1 and the electrolyte solution E filled in the polishing electrolyte container F2.
  • An energization cell C1 that is an electrochemical cell is formed by the metal film D1, the electrolyte E filled in the energization electrolyte container F1 and the anode electrode 33.
  • a polishing cell C2, which is an electrochemical cell is formed by the metal film D1, the electrolyte E filled in the polishing electrolyte container F2, and the cathode electrode 34. That is, the energization cell C1 and the polishing cell C2 are electrochemical cells connected in series via the metal film D1 as an electrical conductor.
  • oxygen gas O 2 is generated from the surface of the anode electrode 33 in the energization cell C1.
  • hydrogen gas H 2 is generated from the surface of the cathode electrode 34.
  • the electrolyte solution E can be an organic electrolyte solution such as citric acid, an aqueous electrolyte solution containing an inorganic acid such as phosphoric acid, or a salt such as copper sulfate as a main component. Agents and the like can be included. However, depending on the type of the main component and additive of the electrolytic solution E, cations in the electrolytic solution may be deposited on the metal film D1 exposed to the energization cell C1, so that the main component and additive of the electrolytic solution E It is necessary to select the type, concentration, etc.
  • each electrolyte container F1, F2 has a form covered with a metal film D1, and therefore, by the supply pressure (discharge pressure) of the new electrolyte solution E of the electrolyte solution supply device 3,
  • the electrolyte E in each electrolyte container F1, F2 is sent out to the waste liquid channels Ch1, Ch2 and discharged toward the outer peripheral side R1 in the radial direction R. Since the waste liquid channels Ch1 and Ch2 are provided in all the electrolytic solution storage portions F1 and F2, the electrolytic solution E supplied to all the electrolytic solution storage portions F1 and F2 can be discharged.
  • the electrolyte solution E and the waste liquid channel in the waste liquid channel Ch1 are set to such an extent that the electrochemical reaction in each of the cells C1 and C2 is not disturbed.
  • the electrolyte solution E in Ch2 can be insulated.
  • oxygen gas O 2 and hydrogen gas H 2 are generated in the electrolytic solution E of the energization cell C1 by the above-described electrochemical reaction.
  • the electrolyte E of the polishing cell C2 to hydrogen gas H 2 is generated, and if copper ions by the dissolution reaction of the copper is increased, sometimes deposited (plated) on the cathode electrode 34 surface. For this reason, when the electrolytic solution E is not discharged, the electrochemical reaction in each of the cells C1 and C2 is stagnant.
  • the polishing apparatus 1 of the present embodiment supplies and discharges the electrolyte solution E in the electrolyte solution storage portions F1 and F2, thereby generating oxygen gas generated in the electrolyte solution storage portions F1 and F2.
  • O 2 and hydrogen gas H 2 can also be discharged together with the electrolyte E.
  • the polishing apparatus 1 always keeps the electrolyte solution E in the electrolyte solution storage portions F1 and F2 in a fresh state and does not stagnate the electrochemical reaction.
  • a protective film forming agent is added to the electrolytic solution E.
  • the protective film G is formed on the surface of the metal film D1 exposed to the polishing cell C1, and the protective film G is removed and the surface of the metal film D1 is subjected to the electrolytic solution. If not exposed to E, the electrochemical reaction will stagnate.
  • the polishing apparatus 1 has the polishing head 10 in a state where the polishing surface 31 a of the polishing surface layer (see FIG.
  • the polishing apparatus 1 can remove the protective film G formed on the metal film D1 with the polishing surface 31a.
  • the polishing apparatus 1 only needs to perform this relative movement under a polishing pressure that is sufficient to remove the protective film G. Therefore, the polishing pressure can be significantly reduced as compared with CMP. Further, the polishing apparatus 1 can reduce the diameter of the polishing tool 30 as compared to the rotary type polishing apparatus. For this reason, since the amount of the electrolyte E in an unactuated state is small and the working efficiency of the electrolyte E on the substrate can be increased, the consumption of the electrolyte E can be reduced. Furthermore, since the polishing apparatus 1 polishes the metal film D1 by eCMP, it can polish at a speed corresponding to the magnitude of the energized direct current, and can polish the metal film D1 at a high speed.
  • FIG. 7 is a longitudinal sectional view for explaining a polishing process of the device wafer D of the first embodiment.
  • FIG. 7A shows a state before polishing
  • FIGS. 7B to 7E show a state during polishing
  • FIG. 7F shows a state after polishing.
  • the surface to be polished (upper surface in the figure) will be referred to as the upper surface
  • the opposite surface will be described as the lower surface (lower surface in the figure).
  • the configuration of the device wafer D will be described.
  • the device wafer D is laminated with a metal film D1, a barrier metal D2, and an interlayer insulating film D3 from the upper layer side (the transistor portion is omitted in the figure). To show.)
  • the metal film D1 is a layer for configuring the wiring of the device wafer D, and is formed, for example, by laminating copper using a technique such as plating.
  • the metal film D1 is polished within the device wafer D by polishing so that the portion laminated in the wiring groove D3a provided by recessing the upper surface of the interlayer insulating film D3 remains (see FIG. 7F).
  • Wiring In the metal film D1, a depression (concave part D1a) may be formed in a portion of the interlayer insulating film D3 stacked in the range of the wiring groove D3a.
  • the polishing tool 30 of the present embodiment can uniformly polish the metal film D1 as described later.
  • the barrier metal D2 is provided to prevent the metal atoms of the metal film D1 from migrating to the interlayer insulating film D3.
  • a material having a high melting point and conductivity for example, a metal such as tantalum, tantalum nitride, or nickel nitride, and a metal nitride can be used.
  • the interlayer insulating film D3 is an insulating layer (film) for insulating between the wiring layers of the device wafer D.
  • the protective film G formed in the concave portion D1a does not contact the polishing tool 30 (or the mechanical frictional force due to the contact is less than that of the convex portion), so that the convex portions D1c and D1d of the metal film D1 are not formed. Only the formed protective film G is removed.
  • the polishing tool 30 can electrochemically and mechanically polish the metal film D1 to make the removal rate of the convex portions D1c and D1d faster than the concave portion D1a. And the grinding
  • polishing tool 30 can make the surface of the metal film D1 into a plane as shown in FIG.7 (d).
  • the device wafer D is in a state where the metal film D1 and the barrier metal D2 are exposed on the upper surface.
  • the interlayer insulating film D3 is exposed (the state shown in FIG. 7F), and an interlayer insulating film is further deposited thereon. Therefore, it is necessary to simultaneously remove the metal film D1 and the surface layer on the upper surface of the barrier metal D2 made of a material different from that of the metal film D1 (the portion in the range H2 shown in FIG. 7E) to the surface of the interlayer insulating film D3.
  • CMP chemical mechanical polishing
  • the interlayer insulating film D3 is chemically and mechanically polished as a third step.
  • the electrochemical mechanical polishing is performed by polishing the metal film D1 of the device wafer D from the state shown in FIG. 7A to the state shown in FIG.
  • the mechanical removal of the protective film and the dissolution removal of the metal can be performed in a well-balanced manner, and the surface can be flattened while maintaining the in-plane uniformity with a high polishing rate.
  • FIG. 8 is a diagram schematically illustrating the wiring formation of the device wafer D of the first embodiment.
  • FIG. 8A shows a state before polishing, in which wiring grooves or via holes are formed in the device wafer D (Si substrate), and after the barrier metal is formed, the metal film D1 is deposited to a thickness H. It is a figure which shows the state made.
  • FIG. 8B shows a state after polishing by eCMP and shows a state in which the metal film D1 is processed into a desired state.
  • a torque measurement method or an electric resistance measurement method is used as the measuring method during processing.
  • the torque measurement method a torque value generated on the rotation axis of the wafer carrier unit 20 or the polishing head 10 is monitored, and a change in the torque value due to a change in film quality of the metal film D1 and the barrier metal D2 is detected.
  • the electrical resistance measurement method is a method of measuring the thickness of the metal film D1 being processed by utilizing the fact that the metal sheet resistance is inversely proportional to the film thickness.
  • the measuring method during processing of this embodiment is to monitor the output voltage of the power source 2 (DC power supply device) and use the point where the output voltage reaches a certain value as a detection point (hereinafter referred to as DP). Therefore, it is not necessary to use a measuring device, and can be easily implemented.
  • FIG. 9 is a diagram illustrating an example of temporal changes in voltage and current when eCMP is performed under the power supply conditions set to the current value I and the voltage V2 in the measuring method during processing according to the first embodiment.
  • the in-process measurement method of the first embodiment is a polishing method in which the voltage value in the range 9b is a detection point and a certain time (T) from the detection point is a polishing end point.
  • the power supply 2 outputs a power supply voltage necessary for the electrolytic solution resistance and the electrochemical dissolution reaction voltage of the metal as shown in the range 9a with respect to the set current value I, but as shown in the range 9b, the metal When the film thickness decreases, the sheet resistance of the metal film D1 increases and the power supply output voltage gradually increases.
  • the limit voltage V2 of the power source 2 When the limit voltage V2 of the power source 2 is set to a value V1 that is higher than the voltage value in the range 9a and lower than the limit voltage V2, the output current of the power source 2 decreases in the range 9b.
  • the metal film D1 remains on the surface of the convex portion of the barrier metal D2.
  • the remaining metal film D1 can be polished up to a predetermined time T with the reduced current I1, and the remaining metal film D1 can be removed.
  • the metal film D1 can be automatically processed into the state shown in FIG. 8B.
  • the set values of the current I and the voltage V1 differ depending on the process conditions such as the diameter and polishing speed of the device wafer D and the type (particularly composition) of the electrolyte E.
  • it can be applied to a device wafer D having a different thickness H of the metal film D1.
  • polishing apparatus of the second embodiment is a modification of the configuration of the polishing tool 30 of the first embodiment. Note that, in the following description and drawings, the same reference numerals or the same reference numerals are given to the portions that perform the same functions as those in the first embodiment described above, and overlapping descriptions will be omitted as appropriate.
  • FIG. 10 is a perspective view (a view corresponding to FIG. 4 of the first embodiment) when the polishing tool 230 of the second embodiment is viewed obliquely from below.
  • the polishing tool 230 is different from the polishing tool 30 of the first embodiment in that the waste liquid channels Ch201 and Ch202 are formed by recessing the polishing surface 231a of the polishing surface layer 231.
  • the polishing tool 230 can easily form the waste liquid channels Ch201 and Ch202, and can be manufactured at low cost.
  • the polishing surface layer 231 can be manufactured at a lower cost if the polishing surface layer 231 and the insulating layer 232 are integrally formed of the same insulating material.
  • the polishing apparatus may electroplate the device wafer by applying polar (positive and negative) voltages opposite to those in the embodiment.
  • the polishing apparatus can be used for generation of a metal film (embedding of a wiring material).
  • an electrolytic solution having a basic electrolytic solution containing the same metal ion as that of the metal film as a main component may be used.
  • an electrolytic solution containing additives such as carriers, brighteners, and levelers used in a copper wiring process of a semiconductor device can be used.
  • the polishing apparatus can alternately perform the embedding of the wiring material and the eCMP by alternately switching the polarity of the power source to form the wiring of the semiconductor device.
  • the present invention is not limited to this.
  • the diameter of the polishing tool may be equal to or larger than the diameter of the device wafer.
  • the surface of the metal film (non-polishing surface) and the polishing surface of the polishing tool can be brought into uniform contact without variation without having to swing the polishing head, so that in-plane uniformity is good. Polishing is possible.
  • the configuration of the polishing apparatus can be simplified.
  • the electrolytic solution in the energizing electrolyte container and the electrolytic solution in the polishing electrolyte container have been described as being electrically insulated, the present invention is not limited to this.
  • a groove (connecting portion) for connecting the energizing electrolyte accommodating portion and the polishing electrolyte accommodating portion to the polishing surface of the polishing tool is provided, and the electrolytic solution and the energizing electrolyte accommodating portion of the polishing electrolyte accommodating portion are provided.
  • the electrolytic solution may be electrically connected to some extent. In this case, the polishing power is bypassed by the electrolytic solution in the connection path, so that the electrolytic polishing efficiency is reduced to some extent.
  • Electrolyte supply device 10 210A, 210B Polishing head 12, 212A Tool folder 13 Electrolyte supply path 15a, 15b Electric cable in the head 16 Head drive unit 20 Wafer carrier unit 21 Table 22 Wafer Adsorption part 23 Wafer support ring 24 Table drive part 30,230A, 230B Polishing tool 31,231A, 231B Polishing surface layer 33,233A Anode electrode 34,234A Cathode electrode 37,38 Electrolyte supply pore C1 Current supply cell C2 Polishing cell Ch1, Ch2, Ch201B, Ch202B Waste liquid channel E Electrolyte F1 Electrolyte container for energization F2 Electrolyte container for polishing F2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

Disclosed is a polishing head which is capable of polishing a metal film of a substrate at a high speed and of preventing generation of scratches during polishing.  Also disclosed are a polishing apparatus and a substrate polishing body. A polishing head (10), to which a polishing tool (30) having a plurality of electrolyte solution-containing units (F1, F2) opened toward a polishing surface (31a) can be fitted, electrochemically and mechanically polishes a metal film (D1) formed on the surface layer of a device wafer (D) by being rotatively driven.  The polishing head comprises a tool holder (12) to which the polishing tool (30) is fitted with the polishing surface (31a) facing down in the vertical direction Z, an electrolyte solution supply passage (13) for supplying an electrolyte solution (E) to the electrolyte solution-containing units (F1, F2), and internal electric cables (15a, 15b) for feeding the electrical power for polishing from a power supply (2) to the electrolyte solution-containing units (F1, F2).

Description

研磨ヘッド、研磨装置及び基板研磨体Polishing head, polishing apparatus, and substrate polishing body
 本発明は、基板の金属膜を電気化学的機械的に研磨するのに適した研磨ヘッド、研磨装置及び基板研磨体に関するものである。 The present invention relates to a polishing head, a polishing apparatus, and a substrate polishing body suitable for electrochemically polishing a metal film on a substrate.
 半導体装置(半導体デバイス)は、高集積化、微細化に伴って、配線の積層化が行われている。配線の積層化の方法としては、半導体ウエハの表面に配線をパターン形成し、この上を酸化シリコン等の絶縁物で覆い、次の配線をパターン形成し、これを順次繰り返すプロセスが採用されている。
 配線をパターン形成するプロセスは、反応性イオンエッチング等によってプラグ用ホールと配線溝とを酸化シリコン等の絶縁物(以下、層間絶縁膜)に形成し、この上に銅めっきによってプラグ用ホールと配線溝とを銅配線材で同時に埋め込んで導電体層(金属膜)を形成する。その後、導電体層表面の余分な金属を化学的機械的研磨(CMP)によって除去し平坦化して配線を形成するいわゆるダマシン方法が採用されている(例えば特許文献1)。この余分な導電体層のCMPには、プラテンロータリー型研磨装置が使用されている。
 プラテンロータリー型研磨装置では、半導体ウエハの径の2倍以上の径を有する回転定盤(プラテン)にほぼ同じ大きさの研磨パッドを貼付し、被研磨面を下向きにした半導体ウエハをヘッドに吸着し、そして研磨パッドを被研磨面に押圧し、研磨液(スラリー)を研磨パッド面上に滴下しながら半導体ウエハを研磨する。
In semiconductor devices (semiconductor devices), wirings are stacked with high integration and miniaturization. As a method of layering the wiring, a process is adopted in which wiring is patterned on the surface of a semiconductor wafer, this is covered with an insulator such as silicon oxide, the next wiring is patterned, and this is repeated in order. .
In the process of patterning the wiring, the hole for the plug and the wiring groove are formed in an insulator such as silicon oxide (hereinafter referred to as an interlayer insulating film) by reactive ion etching or the like, and the hole for the plug and the wiring are formed thereon by copper plating. A conductor layer (metal film) is formed by simultaneously filling the groove with a copper wiring material. Thereafter, a so-called damascene method is employed in which excess metal on the surface of the conductor layer is removed by chemical mechanical polishing (CMP) and planarized to form wiring (for example, Patent Document 1). A platen rotary type polishing apparatus is used for CMP of the extra conductor layer.
In a platen rotary type polishing machine, a polishing pad of approximately the same size is attached to a rotating surface plate (platen) having a diameter more than twice the diameter of the semiconductor wafer, and the semiconductor wafer with the surface to be polished facing down is attracted to the head Then, the polishing pad is pressed against the surface to be polished, and the semiconductor wafer is polished while dripping the polishing liquid (slurry) onto the surface of the polishing pad.
 しかし、プラテンロータリー型研磨装置は、プラテンの径がウエハ径の2倍以上必要なため、ウエハ径の増加に従って装置が大型になる問題や、また、研磨液(スラリー)を大量に消費するという問題等があった。 However, since the platen rotary type polishing apparatus requires a platen diameter of more than twice the wafer diameter, there is a problem that the apparatus becomes large as the wafer diameter increases, and a problem that a large amount of polishing liquid (slurry) is consumed. Etc.
 一方、近年、半導体デバイスの低消費電力化及び動作速度の高速化の目的で、層間絶縁膜に低誘電率材料(いわゆるLow-k材料)の導入が検討されている。この低誘電率材料は、機械的強度や化学的安定性に乏しいので、CMP等による研磨では、基板と研磨パッドとの相対速度や研磨圧力に依存する摩擦力によって、導電体層が層間絶縁膜から剥離することがある。このため、研磨圧力を低下させて高い研磨速度を維持しながら平坦化できるプロセスが望まれている。
 また、半導体デバイスの積層配線形成プロセスでは、中間配線層(ミディアムライン)から表層配線層(グローバルライン)に至る各配線層の導電体層の厚みが増加する傾向にあり、より高い研磨速度が望まれている。
 さらに、半導体デバイスをウエハレベルやチップレベルで積層してCPUやメモリー等の複数の半導体デバイスを1つのパッケージに搭載した3DLSI(three dimension large scale integration)に使用される貫通ビア配線形成プロセスでは、余剰導電体層が数十ミクロンに達するため、さらなる高速研磨の要求がある。
On the other hand, in recent years, introduction of a low dielectric constant material (so-called low-k material) for an interlayer insulating film has been studied for the purpose of reducing power consumption and operating speed of a semiconductor device. Since this low dielectric constant material has poor mechanical strength and chemical stability, the polishing by CMP or the like causes the conductor layer to be an interlayer insulating film due to the frictional force depending on the relative speed between the substrate and the polishing pad and the polishing pressure. May peel off. For this reason, a process capable of flattening while reducing the polishing pressure and maintaining a high polishing rate is desired.
Also, in the laminated wiring formation process of semiconductor devices, the thickness of the conductor layer of each wiring layer from the intermediate wiring layer (medium line) to the surface wiring layer (global line) tends to increase, and a higher polishing rate is desired. It is rare.
Furthermore, in the through via wiring formation process used in 3D LSI (three dimension large scale integration) in which semiconductor devices are stacked at wafer level or chip level and a plurality of semiconductor devices such as CPU and memory are mounted in one package, surplus Since the conductor layer reaches several tens of microns, there is a demand for further high-speed polishing.
 そこで、CMPよりも導電体層の平坦化を改善でき、低圧力かつ高速研磨をできる研磨として、電気化学的機械的研磨(eCMP)が提案されている。eCMPでは、一般的に、導電体層とプラス電極とを接続し、導電体層とマイナス電極とを電解液を介して接続している。 Therefore, electrochemical mechanical polishing (eCMP) has been proposed as polishing capable of improving the planarization of the conductor layer as compared with CMP and capable of low pressure and high speed polishing. In eCMP, generally, a conductor layer and a plus electrode are connected, and the conductor layer and a minus electrode are connected via an electrolytic solution.
 例えば、特許文献2のeCMPは、研磨パッドの導電性表層と導電体層とを接触させてプラス電極を接続している。
 しかし、特許文献2のeCMPは、導電性表層と導電体層とを接触させながら研磨するため、導電体層に傷をつける可能性がある。
For example, in eCMP in Patent Document 2, a positive electrode is connected by bringing a conductive surface layer of a polishing pad into contact with a conductive layer.
However, since eCMP in Patent Document 2 is polished while the conductive surface layer and the conductor layer are in contact with each other, there is a possibility that the conductor layer is damaged.
特開2008-91875号公報JP 2008-91875 A 特許第4142554号公報Japanese Patent No. 4142554
 本発明の課題は、基板の金属膜を研磨速度でき、また傷を防止した研磨をするのに適した研磨ヘッド、研磨装置及び基板研磨体を提供することである。 An object of the present invention is to provide a polishing head, a polishing apparatus, and a substrate polishing body that are capable of polishing a metal film on a substrate and that are suitable for polishing without scratches.
 本発明は、以下のような解決手段により、課題を解決する。なお、理解を容易にするために、本発明の実施形態に対応する符号を付して説明するが、これに限定されるものではない。また、符号を付して説明した構成は、適宜改良してもよく、また、少なくとも一部を他の構成物に代替してもよい。 The present invention solves the problems by the following means. In addition, in order to make an understanding easy, although the code | symbol corresponding to embodiment of this invention is attached | subjected and demonstrated, it is not limited to this. In addition, the configuration described with reference numerals may be improved as appropriate, or at least a part thereof may be replaced with another configuration.
 第1の発明は、研磨面(31a)に開口した複数の電解液収容部(F1,F2)が設けられた基板研磨体(30,230)を装着可能であり、回転駆動されることによって、基板(D)の表層に設けられた金属膜(D1)を電気化学的機械的に研磨する研磨ヘッドであって、前記基板研磨体を前記研磨面が鉛直方向下側に向けられた状態で装着する基板研磨体装着部(12,212A)と、前記電解液収容部に電解液(E)を供給する電解液供給部(13)と、電源(2)の研磨用電力を前記電解液収容部に供給する電力伝達部(15a,15b)と、を備える研磨ヘッドである。
 第2の発明は、第1の発明の研磨ヘッドにおいて、複数の前記電解液収容部(F1,F2)は、アノード電極(33,233A)を有し、収容した電解液(E)と前記基板(D)の前記金属膜(D1)とを接触させる通電用電解液収容部(F1)と、カソード電極(34,234A)を有し、収容した電解液と前記基板の前記金属膜とを接触させる研磨電解液収容部(F2)とを備え、前記電力伝達部(15a,15b)は、電源(2)のプラス極(2a)と前記通電用電解液収容部の前記アノード電極とを接続し、前記電源のマイナス極(2b)と前記研磨電解液収容部の前記マイナス極とを接続すること、を特徴とする研磨ヘッドである。
 第3の発明は、第1又は第2の発明の研磨ヘッドにおいて、前記基板研磨体(30,230)は、前記電解液供給部(13)から供給され前記電解液収容部(F1,F2)に収容された電解液(E)を排出する排出部(Ch1,Ch2,Ch201,Ch202)を備えること、を特徴とする研磨ヘッドである。
In the first invention, the substrate polishing body (30, 230) provided with a plurality of electrolyte solution storage portions (F1, F2) opened in the polishing surface (31a) can be mounted, and by being driven to rotate, A polishing head that electrochemically and mechanically polishes a metal film (D1) provided on a surface layer of a substrate (D), the substrate polishing body being mounted with the polishing surface facing downward in the vertical direction Substrate polishing body mounting portion (12, 212A) to perform, electrolytic solution supply portion (13) for supplying the electrolytic solution (E) to the electrolytic solution storage portion, and polishing power from the power source (2) to the electrolytic solution storage portion And a power transmission unit (15a, 15b) for supplying to the polishing head.
According to a second aspect of the present invention, in the polishing head of the first aspect, the plurality of electrolyte solution storage portions (F1, F2) include anode electrodes (33, 233A), and the stored electrolyte solution (E) and the substrate (D) The electrolysis solution container (F1) for contacting the metal film (D1) and the cathode electrode (34, 234A) are brought into contact with each other. A polishing electrolyte container (F2) to be connected, and the power transmission unit (15a, 15b) connects the positive electrode (2a) of the power source (2) and the anode electrode of the energizing electrolyte container. The polishing head is characterized in that the negative electrode (2b) of the power source is connected to the negative electrode of the polishing electrolyte container.
According to a third aspect of the present invention, in the polishing head of the first or second aspect, the substrate polishing body (30, 230) is supplied from the electrolytic solution supply unit (13) and the electrolytic solution storage unit (F1, F2). The polishing head is characterized by comprising discharge portions (Ch1, Ch2, Ch201, Ch202) for discharging the electrolytic solution (E) accommodated in.
 第4の発明は、第1から第3までの発明のいずれか1つの研磨ヘッドと、基板研磨体(30,230)を研磨面(31a)が下側に向けられた状態で装着し、前記研磨ヘッドを回転駆動するヘッド駆動部と、表層に金属膜(D1)が設けられ、前記基板研磨体よりも径が大きい前記基板(D)を載置するテーブルと、前記テーブルを回転駆動するテーブル駆動部と、を備える研磨装置である。 According to a fourth aspect of the present invention, the polishing head according to any one of the first to third aspects and the substrate polishing body (30, 230) are mounted with the polishing surface (31a) facing downward, A head driving unit that rotationally drives the polishing head, a table on which the metal film (D1) is provided on the surface layer and on which the substrate (D) having a diameter larger than the substrate polishing body is mounted, and a table that rotationally drives the table And a driving unit.
 第5の発明は、第1から第3までの発明のいずれか1つの研磨ヘッドに装着され、研磨面(31a)に開口した複数の電解液収容部(F1,F2)と、前記研磨ヘッドの電解液供給部(13)から供給され前記電解液収容部に収容された電解液(E)を排出する排出部(Ch1,Ch2,Ch201,Ch202)とを備えること、を特徴とする基板研磨体である。
 第6の発明は、第5の発明の基板研磨体において、複数の前記電解液収容部(F1,F2)は、アノード電極(33,233A)を有し、収容した電解液(E)と前記基板(D)の前記金属膜(D1)とを接触させる通電用電解液収容部(F1)と、カソード電極(34,234A)を有し、収容した電解液と前記基板の前記金属膜とを接触させる研磨電解液収容部(F2)とを備えること、を特徴とする基板研磨体である。
 第7の発明は、第6の発明の基板研磨体において、前記排出部(Ch1,Ch2,Ch201,Ch202)は、複数の前記通電用電解液収容部(F1)を接続し、この基板研磨体の外部に抜ける貫通孔である通電用電解液収容部貫通孔(Ch1,Ch201)と、複数の前記研磨用電解液収容部(F2)を接続し、この基板研磨体の外部に抜ける貫通孔である研磨用電解液収容部貫通孔(Ch2,Ch202)とを備えること、を特徴とする基板研磨体である。
According to a fifth aspect of the present invention, there are provided a plurality of electrolytic solution storage portions (F1, F2) attached to any one of the first to third polishing heads and opened in the polishing surface (31a); A substrate polishing body comprising: a discharge portion (Ch1, Ch2, Ch201, Ch202) that discharges the electrolyte solution (E) supplied from the electrolyte solution supply portion (13) and stored in the electrolyte solution storage portion. It is.
According to a sixth invention, in the substrate polishing body of the fifth invention, the plurality of electrolyte solution storage portions (F1, F2) include anode electrodes (33, 233A), and the stored electrolyte solution (E) and the above An energizing electrolyte container (F1) for contacting the metal film (D1) of the substrate (D) and a cathode electrode (34, 234A), and the accommodated electrolyte and the metal film of the substrate A polishing substrate having a polishing electrolyte solution containing portion (F2) to be contacted.
According to a seventh invention, in the substrate polishing body of the sixth invention, the discharge portion (Ch1, Ch2, Ch201, Ch202) connects the plurality of energizing electrolyte storage portions (F1), and the substrate polishing body The through-electrolyte accommodating portion through-holes (Ch1, Ch201), which are through-holes that pass through the outside, are connected to the plurality of polishing electrolyte accommodating portions (F2), and the through-holes that go out of the substrate polishing body A polishing substrate, comprising: a polishing electrolyte solution storage part through hole (Ch2, Ch202).
 本発明によれば、以下の効果を奏することができる。
(1)本発明は、基板研磨体を研磨面が鉛直方向下側に向けられた状態で装着して回転駆動し、電源の研磨用電力を電解液収容部に供給するので、基板の金属膜の表面(被研磨面)が上側を向いた状態で研磨することができる。また、電気化学的研磨(eCMP)をすることができるので、通電直流電流の大きさに応じた速度の研磨ができ、金属膜の高速研磨をすることできる。
According to the present invention, the following effects can be obtained.
(1) In the present invention, since the substrate polishing body is mounted and rotated with the polishing surface directed downward in the vertical direction, and the polishing power of the power supply is supplied to the electrolyte container, the metal film of the substrate It can grind in the state where the surface (surface to be polished) faces upward. In addition, since electrochemical polishing (eCMP) can be performed, polishing at a speed corresponding to the magnitude of the energized direct current can be performed, and high-speed polishing of the metal film can be performed.
(2)本発明は、通電用電解液収容部の電解液と金属膜とを接触させ、研磨電解液収容部の電解液と基板の金属膜とを接触させ、電源のプラス極と通電用電解液収容部のアノード電極とを接続し、電源のマイナス極と研磨電解液収容部のアノード電極とを接続するので、電源のプラス極及びマイナス極を、電解液を介して金属膜に接続することができる。これによって、金属膜を、基板研磨体の研磨表層にのみ接触させて電気化学的機械的研磨をすることができる。つまり、金属膜に電力を供給するために、金属膜と電極等とを機械的に接触させる必要がないので、金属膜の傷を防止することができる。 (2) In the present invention, the electrolytic solution in the energizing electrolyte container and the metal film are brought into contact, the electrolytic solution in the polishing electrolyte container and the metal film in the substrate are brought into contact, and the positive electrode of the power source and the electrolyzing electrode Since the anode electrode of the liquid storage part is connected and the negative electrode of the power supply is connected to the anode electrode of the polishing electrolyte storage part, the positive electrode and the negative electrode of the power supply are connected to the metal film via the electrolyte. Can do. As a result, the metal film can be brought into contact only with the polishing surface layer of the substrate polishing body to perform electrochemical mechanical polishing. That is, since it is not necessary to mechanically contact the metal film with the electrode or the like in order to supply power to the metal film, the metal film can be prevented from being damaged.
(3)本発明は、基板研磨体が電解液収容部に収容された電解液を排出する排出部を備えるので、基板研磨体を研磨ヘッドに装着することによって、電解液の供給及び排出をすることができる。また、電気化学的機械的研磨にともなう電気化学的反応によって電解液収容部内の電解液に発生したガスを、電解液と一緒に排出することができる。 (3) In the present invention, since the substrate polishing body includes a discharge unit that discharges the electrolytic solution stored in the electrolytic solution storage unit, the electrolytic solution is supplied and discharged by mounting the substrate polishing body on the polishing head. be able to. In addition, the gas generated in the electrolytic solution in the electrolytic solution storage part due to the electrochemical reaction accompanying the electrochemical mechanical polishing can be discharged together with the electrolytic solution.
(4)本発明は、基板研磨体よりも径が大きい基板を載置するテーブルを備えるので、基板よりも小さい径の基板研磨体で基板を研磨することができる。これにより、研磨装置を小型にすることができる。
 また、基板研磨体の研磨面全体を基板に押圧することができるので、基板研磨体の各電解液収容部の開口を基板で蓋をすることができる。これにより、電解液が各電解液収容部の開口から漏れない状態にして、研磨液の供給及び排出をすることができるので、研磨液の消費量を削減することができる。
(4) Since the present invention includes a table on which a substrate having a diameter larger than that of the substrate polishing body is provided, the substrate can be polished with a substrate polishing body having a diameter smaller than that of the substrate. Thereby, a grinding | polishing apparatus can be reduced in size.
Further, since the entire polishing surface of the substrate polishing body can be pressed against the substrate, the opening of each electrolyte solution storage portion of the substrate polishing body can be covered with the substrate. As a result, the electrolytic solution can be supplied and discharged in a state in which the electrolytic solution does not leak from the opening of each electrolytic solution storage part, so that the consumption of the polishing solution can be reduced.
(5)本発明は、通電用電解液収容部貫通孔と、研磨用電解液収容部貫通孔とを備えるので、通電用電解液収容部貫通孔内の電解液と研磨用電解液収容部貫通孔内の電解液とを電気化学的に分離することができる。 (5) Since the present invention includes the energizing electrolyte accommodating portion through hole and the polishing electrolyte accommodating portion through hole, the electrolyte in the energizing electrolyte accommodating portion through hole and the polishing electrolyte accommodating portion penetrate The electrolyte solution in the hole can be electrochemically separated.
第1実施形態の研磨装置の斜視図である。It is a perspective view of the polish device of a 1st embodiment. 第1実施形態の研磨装置の縦断面図である。It is a longitudinal section of the polish device of a 1st embodiment. 第1実施形態の研磨工具の裏面図である。It is a reverse view of the grinding | polishing tool of 1st Embodiment. 第1実施形態の研磨工具を斜め下側から見たときの斜視図である。It is a perspective view when the polishing tool of 1st Embodiment is seen from diagonally lower side. 第1実施形態の研磨工具の排出機構を説明する斜視図である。It is a perspective view explaining the discharge mechanism of the polishing tool of a 1st embodiment. 第1実施形態の研磨時の研磨装置を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the grinding | polishing apparatus at the time of grinding | polishing of 1st Embodiment. 第1実施形態のデバイスウエハの研磨工程を説明する縦断面図である。It is a longitudinal cross-sectional view explaining the grinding | polishing process of the device wafer of 1st Embodiment. 第1実施形態のデバイスウエハの配線形成を模式的に説明する図である。It is a figure which illustrates typically wiring formation of a device wafer of a 1st embodiment. 第1実施形態の加工中計測法における電圧、電流の時間変化の例を示す表である。It is a table | surface which shows the example of the time change of the voltage in the measuring method in process of 1st Embodiment, and an electric current. 第2実施形態の研磨工具を斜め下側から見たときの斜視図である。It is a perspective view when the polishing tool of 2nd Embodiment is seen from diagonally lower side.
 本発明は、基板の金属膜を高速度で研磨でき、また傷を防止した研磨をするのに適した研磨ヘッド、研磨装置及び基板研磨体を提供するという目的を、基板研磨体を研磨面が鉛直方向下側に向けられた状態で装着する研磨ヘッドと、半導体のデバイスウエハ基板を鉛直方向上側に向けられた状態で装着するウエハ吸着部と、電解液収容部に電解液を供給するヘッド内電解液供給路と、電源の研磨用電力を電解液収容部に供給するヘッド内電気ケーブルと、を備えるにより実現した。 An object of the present invention is to provide a polishing head, a polishing apparatus, and a substrate polishing body that can polish a metal film on a substrate at a high speed and that are suitable for polishing without scratches. A polishing head to be mounted in a state of being directed downward in the vertical direction, a wafer adsorbing unit to which a semiconductor device wafer substrate is mounted in a state of being directed upward in the vertical direction, and an inside of the head that supplies the electrolytic solution to the electrolytic solution storage unit This is realized by including an electrolytic solution supply path and an in-head electric cable for supplying power for polishing of the power source to the electrolytic solution storage unit.
(第1実施形態)
 次に、図面等を参照しながら、本発明の実施形態を説明する。
 図1は、第1実施形態の研磨装置1の斜視図である。
 図2は、第1実施形態の研磨装置1の縦断面図である。
 図1に示すように、研磨装置1は、テーブル21に半導体のデバイスウエハD(配線材基板)の金属膜D1を鉛直方向Zの上側に向けられた状態で載置して、金属膜D1を電気化学的機械的研磨(eCMP)する装置である。つまり、研磨装置1は、以下説明するように、金属膜D1の電気化学的反応及び機械的研磨を同時に実施できる構造を有している。
 研磨装置1は、電源2と、電解液供給装置3と、研磨ヘッド10と、ウエハキャリア部20と、廃液受け皿25と、研磨工具30(基板研磨体)とを備えている。
(First embodiment)
Next, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view of a polishing apparatus 1 according to the first embodiment.
FIG. 2 is a longitudinal sectional view of the polishing apparatus 1 according to the first embodiment.
As shown in FIG. 1, the polishing apparatus 1 places a metal film D1 of a semiconductor device wafer D (wiring material substrate) on a table 21 with the metal film D1 facing upward in the vertical direction Z. An apparatus for electrochemical mechanical polishing (eCMP). That is, the polishing apparatus 1 has a structure capable of simultaneously performing electrochemical reaction and mechanical polishing of the metal film D1, as will be described below.
The polishing apparatus 1 includes a power source 2, an electrolyte supply device 3, a polishing head 10, a wafer carrier unit 20, a waste liquid tray 25, and a polishing tool 30 (substrate polishing body).
 電源2は、eCMPにおける電気化学的反応に利用する電力である研磨用電力を供給する直流電圧供給装置である。電源2は、プラス極2aと、マイナス極2bと備えている。
 電解液供給装置3は、電解液Eを貯留するタンク(図示せず)と、タンクの電解液Eを研磨ヘッド10に送り出すポンプと、研磨ヘッド10に接続された配管3aと等を備えている。
The power source 2 is a DC voltage supply device that supplies polishing power, which is power used for an electrochemical reaction in eCMP. The power source 2 includes a positive electrode 2a and a negative electrode 2b.
The electrolytic solution supply device 3 includes a tank (not shown) for storing the electrolytic solution E, a pump for sending the electrolytic solution E from the tank to the polishing head 10, a pipe 3a connected to the polishing head 10, and the like. .
(研磨ヘッド10の構成)
 図2に示すように、研磨ヘッド10は、基部11と、工具フォルダ12(基板研磨体装着部)と、電解液供給路13(電解液供給部)と、ロータリジョイント14と、ヘッド内電気ケーブル15a,15b(電力伝達部)と、ヘッド駆動部16と、フード17とを備えている。
 基部11は、研磨ヘッド10の基礎となる円盤状の部材である。
工具フォルダ12は、基部11の下面を、研磨工具30の直径に合わせて窪ませた凹部である。研磨工具30は、研磨面31a(図4参照)が鉛直方向Zの下側に向けられた状態で、工具フォルダ12にねじ止め等によって装着され保持される。
(Configuration of polishing head 10)
As shown in FIG. 2, the polishing head 10 includes a base 11, a tool folder 12 (substrate polishing body mounting portion), an electrolyte supply path 13 (electrolyte supply portion), a rotary joint 14, and an in-head electric cable. 15 a and 15 b (power transmission unit), a head driving unit 16, and a hood 17.
The base 11 is a disk-shaped member that is the basis of the polishing head 10.
The tool folder 12 is a recess in which the lower surface of the base 11 is recessed according to the diameter of the polishing tool 30. The polishing tool 30 is mounted and held in the tool folder 12 by screwing or the like with the polishing surface 31a (see FIG. 4) directed downward in the vertical direction Z.
 電解液供給路13は、配管3aから基部11に送り出された電解液Eを、さらに研磨工具30に送り出すための供給路である。電解液供給路13は、ロータリジョイント14を介して電解液供給路13の配管3aに接続されており、研磨ヘッド10に接続され、回転する研磨ヘッド10に対して、電解液Eを供給することができる。電解液供給路13は、ロータリジョイント14から鉛直方向下側に延在する管状の部分と、下側に開口し、工具フォルダ12内部を窪ませた部分とから構成される。工具フォルダ12内部を窪ませた部分は、研磨ヘッド10の中心から径方向行に放射状に設けられた複数のリブが設けられおり(図示せず)、装着された研磨工具30が撓まないようになっている。 The electrolytic solution supply path 13 is a supply path for further sending the electrolytic solution E sent from the pipe 3 a to the base 11 to the polishing tool 30. The electrolytic solution supply path 13 is connected to the piping 3a of the electrolytic solution supply path 13 via the rotary joint 14, and is connected to the polishing head 10 to supply the electrolytic solution E to the rotating polishing head 10. Can do. The electrolyte supply path 13 includes a tubular portion that extends downward in the vertical direction from the rotary joint 14 and a portion that opens downward and that is recessed in the tool folder 12. The recessed portion in the tool folder 12 is provided with a plurality of ribs (not shown) provided radially from the center of the polishing head 10 in a radial row so that the mounted polishing tool 30 does not bend. It has become.
 ヘッド内電気ケーブル15a,15bは、研磨ヘッド10内において、電源2の電力を伝達するための電気ケーブルである。ヘッド内電気ケーブル15a,15bは、片方の各端子部がスリップリング等の電気接続部(図示せず)によって、電源2のプラス極2a、マイナス極2bに接続された外部電気ケーブル2c,2dに接続されている。また、ヘッド内電気ケーブル15a,15bは、一方、もう片方の各端子部が、ヘッド内電気ケーブル15a,15bに接続される。これにより、プラス極2aとヘッド内電気ケーブル15aとが電気的に接続され、マイナス極2bとヘッド内電気ケーブル15bとが電気的に接続される。
 なお、ヘッド内電気ケーブル15a,15bは、絶縁材により被覆されており、電解液供給路13内部に配線されても、短絡することはない。
 ヘッド内電気ケーブル15a,15bは、研磨工具30側の各端子部が、接続端子15c,15d(図6参照)を介して研磨工具電気ケーブル36a,36b(後述する)に接続されることによって、電源2のプラス極2aと通電用電解液収容部F1(図6参照)内のアノード電極33とを電気的に接続し、電源2のマイナス極2bと研磨用電解液収容部F2(図6参照)内のカソード電極34とを電気的に接続する。これによって、ヘッド内電気ケーブル15a,15bは、電源2の研磨用電力を各電解液収容部F1,F2(後述する)内の電解液Eに伝達する。
The in- head electric cables 15 a and 15 b are electric cables for transmitting the power of the power source 2 in the polishing head 10. The in- head electric cables 15a and 15b are connected to the external electric cables 2c and 2d connected to the positive pole 2a and the negative pole 2b of the power source 2 by means of electrical connection parts (not shown) such as slip rings. It is connected. Further, in the in- head electric cables 15a and 15b, the other terminal portions are connected to the in- head electric cables 15a and 15b. Thereby, the plus pole 2a and the in-head electric cable 15a are electrically connected, and the minus pole 2b and the in-head electric cable 15b are electrically connected.
Note that the in- head electric cables 15a and 15b are covered with an insulating material and do not short-circuit even if they are wired inside the electrolyte supply path 13.
The in- head electric cables 15a and 15b are connected to the polishing tool electric cables 36a and 36b (described later) via the connection terminals 15c and 15d (see FIG. 6) at the respective terminal portions on the polishing tool 30 side. The positive electrode 2a of the power supply 2 and the anode electrode 33 in the energizing electrolyte container F1 (see FIG. 6) are electrically connected, and the negative electrode 2b of the power supply 2 and the polishing electrolyte container F2 (see FIG. 6). The cathode electrode 34 is electrically connected. As a result, the in- head electric cables 15a and 15b transmit the power for polishing of the power source 2 to the electrolytic solution E in the respective electrolytic solution storage portions F1 and F2 (described later).
 ヘッド駆動部16は、研磨工具30を装着した研磨ヘッド10を、鉛直方向Zの回転軸Z1回りに回転駆動する装置である。ヘッド駆動部16は、モータM1と、モータM1の駆動力を基部11に伝達するベルト、ギア等の駆動力伝達部16aとを備えている。
 なお、ヘッド駆動部16は、カム機構等によって、研磨ヘッド10を、XY平面方向すなわち水平面方向(図1に示す矢印A,B方向)に移動する揺動装置を備えていてもよい。
 フード17は、研磨ヘッド10の回転にともなって、廃液(研磨利用後の電解液E)が周囲に飛び散らないようにするためのものである。
The head drive unit 16 is a device that rotationally drives the polishing head 10 equipped with the polishing tool 30 around the rotation axis Z1 in the vertical direction Z. The head driving unit 16 includes a motor M1 and a driving force transmission unit 16a such as a belt and a gear that transmits the driving force of the motor M1 to the base 11.
The head drive unit 16 may include a swinging device that moves the polishing head 10 in the XY plane direction, that is, the horizontal plane direction (the directions of arrows A and B shown in FIG. 1) by a cam mechanism or the like.
The hood 17 is for preventing waste liquid (electrolytic solution E after use of polishing) from being scattered around as the polishing head 10 rotates.
(ウエハキャリア部20の構成)
 図2に示すように、ウエハキャリア部20は、テーブル21と、ウエハ吸着部22と、ウエハ支持リング23(リテーナリング)と、テーブル駆動部24とを備えている。
 テーブル21は、デバイスウエハDを載置する円盤状の部材である。テーブル21は、金属膜D1の表面(被研磨面)が鉛直方向Zの上側を向いた状態でデバイスウエハDを載置する。
(Configuration of Wafer Carrier 20)
As shown in FIG. 2, the wafer carrier unit 20 includes a table 21, a wafer suction unit 22, a wafer support ring 23 (retainer ring), and a table driving unit 24.
The table 21 is a disk-shaped member on which the device wafer D is placed. The table 21 mounts the device wafer D in a state where the surface (surface to be polished) of the metal film D1 faces the upper side in the vertical direction Z.
 ウエハ吸着部22は、デバイスウエハDの下面を吸着することによって、デバイスウエハDをテーブル21に固定する部分である。ウエハ吸着部22は、デバイスウエハDの下面を吸着するために、テーブル21の表面に形成された吸着口22aと、吸着口22aと吸引装置22bとを接続する吸引管22cとを備えている。ウエハ吸着部22は、デバイスウエハDがテーブル21に載置される(オンロード)と、真空吸着してデバイスウエハDを固定する。また、ウエハ吸着部22は、eCMPによる研磨後に、デバイスウエハDをテーブル21から降ろす(オフロード)場合には、真空吸着を解除して固定を解除する。なお、ウエハ吸着部22は、デバイスウエハDをテーブル21から降ろす場合には、必要に応じて、加圧状態にしてもよい。 The wafer suction unit 22 is a part for fixing the device wafer D to the table 21 by sucking the lower surface of the device wafer D. In order to suck the lower surface of the device wafer D, the wafer suction unit 22 includes a suction port 22a formed on the surface of the table 21, and a suction tube 22c that connects the suction port 22a and the suction device 22b. When the device wafer D is placed on the table 21 (on-load), the wafer suction unit 22 fixes the device wafer D by vacuum suction. Further, when the device wafer D is lowered from the table 21 after being polished by eCMP (off-loading), the wafer suction unit 22 releases the vacuum suction and releases the fixation. Note that, when the device wafer D is lowered from the table 21, the wafer suction unit 22 may be in a pressurized state as necessary.
 ウエハ支持リング23は、テーブル21に載置したデバイスウエハDが、径方向に動かないようにするための円環状の部材である。ウエハ支持リング23は、例えば、熱可塑性樹脂により形成される。ウエハ支持リング23は、デバイスウエハDの厚みと同等がそれ以下の厚みを有し、内側にデバイスウエハDの縁部が嵌合した状態で、テーブル21の上面に固定され、研磨時に、研磨工具30の研磨表層31(後述する)に当接する。これによって、ウエハ支持リング23は、研磨工具30の研摩圧力が、デバイスウエハDの表面の縁部に集中することを緩和することができる。
 テーブル駆動部24は、デバイスウエハDを載置したテーブル21を、鉛直方向Zの回転軸Z2回りに回転駆動する装置である。テーブル駆動部24は、モータM2と、モータM2の駆動力をテーブル21に伝達するベルト、ギア等の駆動力伝達部24aとを備えている。
The wafer support ring 23 is an annular member for preventing the device wafer D placed on the table 21 from moving in the radial direction. The wafer support ring 23 is made of, for example, a thermoplastic resin. The wafer support ring 23 has a thickness equal to or less than the thickness of the device wafer D, and is fixed to the upper surface of the table 21 with the edge of the device wafer D being fitted inside thereof. It contacts 30 polishing surface layers 31 (described later). Thus, the wafer support ring 23 can alleviate the polishing pressure of the polishing tool 30 from being concentrated on the edge of the surface of the device wafer D.
The table driving unit 24 is a device that rotationally drives the table 21 on which the device wafer D is placed about the rotation axis Z2 in the vertical direction Z. The table driving unit 24 includes a motor M2 and a driving force transmission unit 24a such as a belt or a gear that transmits the driving force of the motor M2 to the table 21.
 廃液受け皿25は、研磨時に、研磨工具30から排出される電解液Eを収容するための容器である。
 研磨装置1は、研磨ヘッド10に装着する研磨工具30の直径がデバイスウエハDの直径より若干大きくてしても、デバイスウエハDを面内均一性の良好な研磨が行える。本実施家形態では、研磨装置1は、研磨ヘッド10をデバイスウエハDに対して揺動運動させているので、デバイスウエハDの直径より小さくすることができる。この場合は、装置全体を小型にすることができる。
The waste liquid tray 25 is a container for accommodating the electrolytic solution E discharged from the polishing tool 30 during polishing.
The polishing apparatus 1 can polish the device wafer D with good in-plane uniformity even if the diameter of the polishing tool 30 attached to the polishing head 10 is slightly larger than the diameter of the device wafer D. In the present embodiment, the polishing apparatus 1 swings the polishing head 10 with respect to the device wafer D, so that it can be made smaller than the diameter of the device wafer D. In this case, the entire apparatus can be reduced in size.
(研磨工具の構成)
 次に、研磨工具30の構成について詳細に説明する。
 図3は、第1実施形態の研磨工具30の裏面図(図2に示す鉛直方向Zの下側から見た図)である。
 図4は、第1実施形態の研磨工具30を斜め下側から見たときの斜視図である。
 図5は、第1実施形態の研磨工具30の研磨液Eの排出機構を説明する斜視図である。
(Configuration of polishing tool)
Next, the configuration of the polishing tool 30 will be described in detail.
FIG. 3 is a back view of the polishing tool 30 of the first embodiment (viewed from below the vertical direction Z shown in FIG. 2).
FIG. 4 is a perspective view of the polishing tool 30 according to the first embodiment as viewed obliquely from below.
FIG. 5 is a perspective view for explaining a discharge mechanism of the polishing liquid E of the polishing tool 30 of the first embodiment.
 図4に示すように、研磨工具30は、下層側から上層側に向けて積層され円盤状に形成され、研磨表層31と、絶縁層32と、アノード電極33及びカソード電極34と、絶縁層35とを備え、また、研磨工具電気ケーブル36a,36bを備えている。各層間は、接着材、粘着シート等で接着されている。
 また、図3に示すように、研磨工具30は、通電用電解液収容部F1と、研磨用電解液収容部F2と、電解液供給細孔37,38と、廃液チャネルCh1(通電用電解液収容部貫通孔)と、廃液チャネルCh2(研磨用電解液収容部貫通孔)とを有している。
As shown in FIG. 4, the polishing tool 30 is laminated from the lower layer side to the upper layer side and is formed in a disc shape, and includes a polishing surface layer 31, an insulating layer 32, an anode electrode 33 and a cathode electrode 34, and an insulating layer 35. And polishing tool electrical cables 36a and 36b. Each layer is bonded with an adhesive, an adhesive sheet, or the like.
As shown in FIG. 3, the polishing tool 30 includes an energizing electrolyte container F1, a polishing electrolyte container F2, electrolyte supply pores 37 and 38, a waste liquid channel Ch1 (an energizing electrolyte). A housing portion through-hole) and a waste liquid channel Ch2 (polishing electrolyte housing portion through-hole).
 図4に示すように、研磨表層31は、研磨時に、デバイスウエハDの金属膜D1の表面に形成された保護膜G(後述する)を、除去するための部材である。研磨表層31は、下側表面の研磨面31aが研磨時にデバイスウエハDの金属膜D1の表面に当接するようになっている。
 研磨表層31は、機械的研磨能力の高い発泡ウレタン材等の合成樹脂により形成される。研磨表層31は、単一材料からなる単層構造である必要はなく、合成樹脂性の支持体や発泡樹脂等によるクッション材との積層構造体であってもよい。
 絶縁層32は、廃液チャネルch1,ch2を形成するために設けられている。
As shown in FIG. 4, the polishing surface layer 31 is a member for removing a protective film G (described later) formed on the surface of the metal film D1 of the device wafer D during polishing. The polishing surface layer 31 is configured such that the lower polishing surface 31a contacts the surface of the metal film D1 of the device wafer D during polishing.
The polishing surface layer 31 is formed of a synthetic resin such as a urethane foam material having a high mechanical polishing ability. The polishing surface layer 31 does not have to be a single layer structure made of a single material, and may be a laminated structure with a cushioning material made of a synthetic resin support or foamed resin.
The insulating layer 32 is provided for forming the waste liquid channels ch1 and ch2.
 アノード電極33は、通電用電解液収容部F1にプラス電圧を供給するために導電部材により形成された電極である。
 図3に示すように、アノード電極33は、扇形部分33a,33b,33cが120°間隔で配置され、これらが中心部33dにより接続されたような形状をしている。アノード電極33は、金属等の低抵抗材料(金、銅、白金、タングステン、チタン合金、ステンレス鋼、カーボン等)、又は炭素素材(カーボンを主成分としたアモルファスカーボン、炭素繊維、黒鉛繊維、黒鉛、合成樹脂との複合炭素材等)等が利用することができる。特に、アノード電極の溶解を防止するためには、タングステンやチタンの表面に、ホウ素をドープした人工ダイヤモンドをコートした複合材料が好適である。
The anode electrode 33 is an electrode formed of a conductive member in order to supply a positive voltage to the energizing electrolyte container F1.
As shown in FIG. 3, the anode electrode 33 has a shape in which fan-shaped portions 33a, 33b, and 33c are arranged at intervals of 120 ° and are connected by a central portion 33d. The anode electrode 33 is made of a low-resistance material such as metal (gold, copper, platinum, tungsten, titanium alloy, stainless steel, carbon, etc.) or a carbon material (amorphous carbon containing carbon as a main component, carbon fiber, graphite fiber, graphite) , Composite carbon materials with synthetic resins, etc.) can be used. In particular, in order to prevent dissolution of the anode electrode, a composite material in which tungsten or titanium is coated with artificial diamond doped with boron is preferable.
 カソード電極34は、研磨用電解液収容部F2にマイナス電圧を供給するために、カソード電極34と同様な材料により形成された電極である。カソード電極34は、扇形部分34a,34b,34cが120°間隔で配置され、これらが外周部34dにより接続されたような形状をしている。
 図4に示すように、アノード電極33及びカソード電極34は、平面(XY平面)方向に隙間33eを有するように、同じ層に積層されている。
The cathode electrode 34 is an electrode formed of the same material as the cathode electrode 34 in order to supply a negative voltage to the polishing electrolyte container F2. The cathode electrode 34 has a shape in which fan-shaped portions 34a, 34b, and 34c are arranged at intervals of 120 °, and these are connected by an outer peripheral portion 34d.
As shown in FIG. 4, the anode electrode 33 and the cathode electrode 34 are stacked in the same layer so as to have a gap 33 e in the plane (XY plane) direction.
 絶縁層35は、アノード電極33及びカソード電極34の各電極と、研磨ヘッド10の基部11とを絶縁する部材である。また、絶縁層35は、アノード電極33及びカソード電極34の隙間33eに入り込むような段部35aが設けられており、アノード電極33及びカソード電極34間を絶縁している。 The insulating layer 35 is a member that insulates each electrode of the anode electrode 33 and the cathode electrode 34 from the base 11 of the polishing head 10. Further, the insulating layer 35 is provided with a step portion 35 a that enters the gap 33 e between the anode electrode 33 and the cathode electrode 34, and insulates between the anode electrode 33 and the cathode electrode 34.
 研磨工具電気ケーブル36aは、アノード電極33の内側に接続されている。研磨工具電気ケーブル36aは、絶縁層35の貫通孔に挿通され、研磨工具30の上側に導かれ、接続端子15c(図6参照)を介してヘッド内電気ケーブル15aに接続されている。
 研磨工具電気ケーブル36bは、カソード電極34の内側に接続されており、研磨工具電気ケーブル36aと同様に配線され、接続端子15d(図6参照)を介してヘッド内電気ケーブル15bに接続されている。
The polishing tool electrical cable 36 a is connected to the inside of the anode electrode 33. The polishing tool electric cable 36a is inserted through the through hole of the insulating layer 35, guided to the upper side of the polishing tool 30, and connected to the in-head electric cable 15a via the connection terminal 15c (see FIG. 6).
The polishing tool electrical cable 36b is connected to the inside of the cathode electrode 34, is wired in the same manner as the polishing tool electrical cable 36a, and is connected to the in-head electrical cable 15b via the connection terminal 15d (see FIG. 6). .
 通電用電解液収容部F1は、研磨表層31及び絶縁層32を連通する複数の貫通孔とアノード電極33の表面が底部を形成することで構成される。通電用電解液収容部F1は、XY平面において、アノード電極33の扇形部分33a,33b,33cに重複する範囲に形成される。
 研磨時には、通電用電解液収容部F1に電解液Eが満たされ、直流電力が供給されると、電解液EとデバイスウエハDの金属膜D1が接することによって、通電用電解液収容部F1に当接する部分の金属膜D1とアノード電極33とで電気化学的セル(後述する通電用電解セルC1)が形成される。
The energizing electrolyte container F <b> 1 is configured by a plurality of through-holes communicating with the polishing surface layer 31 and the insulating layer 32 and the surface of the anode electrode 33 forming the bottom. The energizing electrolyte container F1 is formed in a range overlapping with the fan-shaped portions 33a, 33b, and 33c of the anode electrode 33 in the XY plane.
At the time of polishing, when the electrolytic solution accommodating portion F1 is filled with the electrolytic solution E and DC power is supplied, the electrolytic solution E and the metal film D1 of the device wafer D come into contact with each other, so that the conductive electrolyte accommodating portion F1 is brought into contact. The abutting portion of the metal film D1 and the anode electrode 33 form an electrochemical cell (an electrolysis cell C1 to be described later).
 研磨用電解液収容部F2は、通電用電解液収容部F1と同様に、貫通孔とカソード電極34の表面によって構成され、XY平面において、カソード電極34の扇形部分34a,34b,34cに重複する範囲に形成さる。
 研磨時には、研磨用電解液収容部F2に電解液Eが満たされ、直流電力が供給されると、電解液EとデバイスウエハDの金属膜D1が接することによって、研磨用電解液収容部F2に当接する部分の金属膜D1とカソード電極34とで電気化学的セル(後述する研磨用電解セルC2)が形成される。
As with the energizing electrolyte container F1, the polishing electrolyte container F2 is configured by the through hole and the surface of the cathode electrode 34, and overlaps the fan-shaped portions 34a, 34b, and 34c of the cathode electrode 34 in the XY plane. Formed in the range.
At the time of polishing, when the electrolytic solution E is filled in the polishing electrolyte storage portion F2 and DC power is supplied, the electrolytic solution E and the metal film D1 of the device wafer D come into contact with each other, so that the polishing electrolytic solution storage portion F2 is contacted. An electrochemical cell (a polishing electrolytic cell C2 to be described later) is formed by the metal film D1 and the cathode electrode 34 at the abutting portion.
 このように、通電用電解セルと研磨用電解セルの2つのセルは、金属膜D1によって直列に接続され、研磨用電解液収容部F2に当接する部分の金属膜D1が電気化学的に研磨される。すなわち、金属膜D1は、電極部材に接触させることがないので、電極部材との擦れに起因する金属膜D1への傷の発生を防止することができる。 Thus, the two cells, the electrolysis cell for polishing and the electrolysis cell for polishing, are connected in series by the metal film D1, and the metal film D1 in contact with the polishing electrolyte container F2 is electrochemically polished. The That is, since the metal film D1 is not brought into contact with the electrode member, it is possible to prevent the metal film D1 from being damaged due to rubbing with the electrode member.
 電解液供給細孔37は、通電用電解液収容部F1に電解液Eを供給するために、アノード電極33及び絶縁層35を連通して設けられた貫通孔である。電解液供給細孔37は、研磨工具30が研磨ヘッド10に装着された状態で、研磨工具30の電解液供給路13に連通するようになっている(図2参照)。
 電解液供給細孔38は、研磨用電解液収容部F2に電解液Eを供給するために、カソード電極34及び絶縁層35を連通して設けられた貫通孔である。電解液供給細孔38は、研磨工具30が研磨ヘッド10に装着された状態で、研磨工具30の電解液供給路13に連通するようになっている(図2参照)。
The electrolyte solution supply pore 37 is a through hole provided in communication with the anode electrode 33 and the insulating layer 35 in order to supply the electrolyte solution E to the electrolyte solution storage portion F1 for energization. The electrolyte supply pore 37 communicates with the electrolyte supply path 13 of the polishing tool 30 in a state where the polishing tool 30 is mounted on the polishing head 10 (see FIG. 2).
The electrolytic solution supply pore 38 is a through hole provided in communication with the cathode electrode 34 and the insulating layer 35 in order to supply the electrolytic solution E to the polishing electrolytic solution storage portion F2. The electrolyte supply pores 38 communicate with the electrolyte supply path 13 of the polishing tool 30 in a state where the polishing tool 30 is mounted on the polishing head 10 (see FIG. 2).
 図4に示すように、廃液チャネルCh1は、通電用電解液収容部F1に供給され充填された電解液Eを、研磨工具30の外部に排出するための貫通孔である。廃液チャネルCh1は、絶縁層32の貫通孔のうち通電用電解液収容部F1を形成するものを径方向に接続し、さらに外部に抜けるようなスリットによって形成される。
 図5に示すように、このスットは、絶縁層32を積層して研磨工具30の状態にしたときに、通電用電解液収容部F1を径方向Rに連結し、外周部に開口して抜けるような貫通孔を構成して、廃液チャネルCh1が構成される(図3参照)。
As shown in FIG. 4, the waste liquid channel Ch <b> 1 is a through hole for discharging the electrolytic solution E supplied and filled in the energizing electrolytic solution storage unit F <b> 1 to the outside of the polishing tool 30. The waste liquid channel Ch <b> 1 is formed by a slit that connects the through holes of the insulating layer 32 that form the energizing electrolyte housing part F <b> 1 in the radial direction and further passes outside.
As shown in FIG. 5, when the insulating layer 32 is laminated to form the polishing tool 30, this soot connects the energizing electrolyte container F <b> 1 in the radial direction R, opens to the outer peripheral portion, and comes out. Such a through-hole is configured to configure the waste liquid channel Ch1 (see FIG. 3).
 図4に示すように、廃液チャネルCh2は、研磨用電解液収容部F2に供給され充填された電解液Eを、研磨工具30の外部に排出するための貫通孔である。廃液チャネルCh2は、絶縁層32の貫通孔のうち研磨用電解液収容部F2を形成するものを径方向に接続し、さらに外部に抜けるようなスリットによって形成される。
 図5に示すように、このスリットは、絶縁層32を積層して研磨30の状態にしたときに、研磨用電解液収容部F2を径方向Rに連結し、さらに外周部に開口して抜けるような貫通孔を構成して、廃液チャネルCh2が構成される(図3参照)。
As shown in FIG. 4, the waste liquid channel Ch <b> 2 is a through hole for discharging the electrolytic solution E supplied and filled in the polishing electrolytic solution storage part F <b> 2 to the outside of the polishing tool 30. The waste liquid channel Ch2 is formed by a slit that connects the through-holes of the insulating layer 32 that form the polishing electrolyte container F2 in the radial direction and further passes out.
As shown in FIG. 5, when the insulating layer 32 is laminated and the state of the polishing 30 is established, this slit connects the polishing electrolyte container F2 in the radial direction R, and further opens to the outer peripheral portion and comes out. Such a through hole is configured to configure a waste liquid channel Ch2 (see FIG. 3).
(研磨装置1の研磨時の動作、通電用セルC1及び研磨用セルC2の構成)
 次に、研磨装置1の研磨時の動作と、通電用セルC1及び研磨用セルC2について説明する。
 図6は、第1実施形態の研磨時の研磨装置1を模式的に示す縦断面図(図3のVI-VI部矢視断面に相当する図)である。
(電解液Eの供給)
 図6に示すように、電解液供給装置3によって、電解液Eが研磨ヘッド10に送り出されると、電解液Eは、研磨ヘッド10の電解液供給路13を通って、研磨工具30へと供給される。
 図5に示すように、さらに電解液Eは、研磨工具30の電解液供給細孔37を通って通電用電解液収容部F1に供給され、また、研磨工具30の電解液供給細孔38を通って研磨用電解液収容部F2に供給される。これによって、各電解液収容部F1,F2は、電解液Eが満たされた状態になる。なお、研磨時には、各電解液収容部F1,F2は、開口部がデバイスウエハDによって蓋をされた状態になるので、余剰の電解液Eが漏れることがない。これによって、電解液Eの消費量を低減することができる。
(Operation of polishing apparatus 1 during polishing, configuration of energizing cell C1 and polishing cell C2)
Next, the operation | movement at the time of grinding | polishing of the grinding | polishing apparatus 1, the cell C1 for electricity supply, and the cell C2 for grinding | polishing are demonstrated.
FIG. 6 is a vertical cross-sectional view (corresponding to the cross section taken along the line VI-VI in FIG. 3) schematically showing the polishing apparatus 1 during polishing according to the first embodiment.
(Supply of electrolyte E)
As shown in FIG. 6, when the electrolytic solution E is sent to the polishing head 10 by the electrolytic solution supply device 3, the electrolytic solution E is supplied to the polishing tool 30 through the electrolytic solution supply path 13 of the polishing head 10. Is done.
As shown in FIG. 5, the electrolyte E is further supplied to the energizing electrolyte container F <b> 1 through the electrolyte supply pores 37 of the polishing tool 30, and also passes through the electrolyte supply pores 38 of the polishing tool 30. Then, it is supplied to the polishing electrolyte container F2. Thereby, each electrolyte solution accommodating part F1, F2 will be in the state with which the electrolyte solution E was satisfy | filled. At the time of polishing, each electrolyte container F1, F2 is in a state in which the opening is covered with the device wafer D, so that excess electrolyte E does not leak. Thereby, the consumption of the electrolyte solution E can be reduced.
(通電用セルC1及び研磨用セルC2の形成及び金属膜の溶解)
 図6に示すように、アノード電極33は、電源2のプラス極2aに接続されており、一方、カソード電極34は、電源2のマイナス極2bに接続されている。このため電圧が印加されると、アノード電極33の表面と電解液Eとの界面、カソード電極34の表面と電解液Eとの界面、金属膜D1の表面と通電用電解液収容部F1に充填された電解液Eとの界面、金属膜D1の表面と研磨用電解液収容部F2に充填された電解液Eとの界面で、それぞれ電子の授受が行われ電流が流れる。
 そして、金属膜D1と通電用電解液収容部F1に充填された電解液Eとアノード電極33とによって、電気化学的セルである通電用セルC1が形成される。一方、金属膜D1と研磨用電解液収容部F2に充填された電解液Eとカソード電極34により電気化学的セルである研磨用セルC2が形成される。つまり、通電用セルC1と研磨用セルC2とは、金属膜D1を電気導通体として介して直列接続された電気化学的セルである。
(Formation of energization cell C1 and polishing cell C2 and dissolution of metal film)
As shown in FIG. 6, the anode electrode 33 is connected to the positive electrode 2 a of the power source 2, while the cathode electrode 34 is connected to the negative electrode 2 b of the power source 2. Therefore, when a voltage is applied, the interface between the surface of the anode electrode 33 and the electrolytic solution E, the interface between the surface of the cathode electrode 34 and the electrolytic solution E, the surface of the metal film D1 and the energizing electrolytic solution container F1 are filled. Electrons are exchanged and current flows at the interface with the electrolyte solution E and at the interface between the surface of the metal film D1 and the electrolyte solution E filled in the polishing electrolyte container F2.
An energization cell C1 that is an electrochemical cell is formed by the metal film D1, the electrolyte E filled in the energization electrolyte container F1 and the anode electrode 33. On the other hand, a polishing cell C2, which is an electrochemical cell, is formed by the metal film D1, the electrolyte E filled in the polishing electrolyte container F2, and the cathode electrode 34. That is, the energization cell C1 and the polishing cell C2 are electrochemical cells connected in series via the metal film D1 as an electrical conductor.
 例えば、電解液に金属膜D2の金属イオンとキレート反応する有機電解質と保護膜形成剤を使用する場合、通電用セルC1では、アノード電極33の表面から酸素ガスOが発生する。
 また、研磨用セルC2では、カソード電極34の表面から水素ガスHが発生し、電解液Eに接触する金属膜D1において、例えば金属膜D1が銅の場合には、溶解反応「Cu→Cu2++2e」により金属膜D1が溶解される。
For example, when an organic electrolyte that chelates with metal ions of the metal film D2 and a protective film forming agent are used in the electrolytic solution, oxygen gas O 2 is generated from the surface of the anode electrode 33 in the energization cell C1.
In the polishing cell C2, hydrogen gas H 2 is generated from the surface of the cathode electrode 34. When the metal film D1 is copper, for example, in the metal film D1 in contact with the electrolytic solution E, the dissolution reaction “Cu → Cu The metal film D1 is dissolved by “ 2+ + 2e ”.
 電解液Eには、クエン酸等の有機電解液、リン酸等の無機酸、硫酸銅等の塩を主成分とした電解質水溶液が使用でき、保護膜形成剤や研磨砥粒、酸化剤及び導電剤等を含ませることができる。ただし、電解液Eの主成分や添加剤の種類によっては、通電用セルC1に露出した金属膜D1に電解液中の陽イオンが析出する場合があるため、電解液Eの主成分や添加剤の種類、濃度等を選択する必要がある。 The electrolyte solution E can be an organic electrolyte solution such as citric acid, an aqueous electrolyte solution containing an inorganic acid such as phosphoric acid, or a salt such as copper sulfate as a main component. Agents and the like can be included. However, depending on the type of the main component and additive of the electrolytic solution E, cations in the electrolytic solution may be deposited on the metal film D1 exposed to the energization cell C1, so that the main component and additive of the electrolytic solution E It is necessary to select the type, concentration, etc.
(電解液Eの排出)
 図5に示すように、各電解液収容部F1,F2は、金属膜D1により蓋をされた形態であるので、電解液供給装置3の新たな電解液Eの供給圧力(吐出圧)によって、各電解液収容部F1,F2内の電解液Eは、廃液チャネルCh1,Ch2に送り出され、径方向Rの外周側R1に向けて排出される。廃液チャネルCh1,Ch2は、全ての電解液収容部F1,F2に設けられているので、全ての電解液収容部F1,F2に供給された電解液Eを排出することができる。
 廃液チャネルCh1と廃液チャネルCh2とは、独立して設けられているので、前述した各セルC1,C2内での電気化学的反応を妨げない程度に、廃液チャネルCh1内の電解液Eと廃液チャネルCh2内の電解液Eとを絶縁することができる。
(Discharge of electrolyte E)
As shown in FIG. 5, each electrolyte container F1, F2 has a form covered with a metal film D1, and therefore, by the supply pressure (discharge pressure) of the new electrolyte solution E of the electrolyte solution supply device 3, The electrolyte E in each electrolyte container F1, F2 is sent out to the waste liquid channels Ch1, Ch2 and discharged toward the outer peripheral side R1 in the radial direction R. Since the waste liquid channels Ch1 and Ch2 are provided in all the electrolytic solution storage portions F1 and F2, the electrolytic solution E supplied to all the electrolytic solution storage portions F1 and F2 can be discharged.
Since the waste liquid channel Ch1 and the waste liquid channel Ch2 are provided independently, the electrolyte solution E and the waste liquid channel in the waste liquid channel Ch1 are set to such an extent that the electrochemical reaction in each of the cells C1 and C2 is not disturbed. The electrolyte solution E in Ch2 can be insulated.
 なお、図6に示すように、通電用セルC1の電解液Eには、前述した電気化学的反応によって、酸素ガスO、水素ガスHが発生する。一方、研磨用セルC2の電解液Eには、水素ガスHが発生するし、また、銅の溶解反応により銅イオンが増加すると、カソード電極34表面に析出(めっき)する場合がある。
 このため、電解液Eを排出しない場合には、各セルC1,C2内での電気化学的反応が停滞しまう。これに対して、本実施形態の研磨装置1は、各電解液収容部F1,F2内の電解液Eの供給及び排出を行うことにより、各電解液収容部F1,F2内で発生した酸素ガスO、水素ガスHも、電解液Eと一緒に排出することができる。これによって、研磨装置1は、常に各電解液収容部F1,F2内の電解液Eをフレッシュな状態に保ち、電気化学的反応を停滞することがない。
As shown in FIG. 6, oxygen gas O 2 and hydrogen gas H 2 are generated in the electrolytic solution E of the energization cell C1 by the above-described electrochemical reaction. On the other hand, the electrolyte E of the polishing cell C2, to hydrogen gas H 2 is generated, and if copper ions by the dissolution reaction of the copper is increased, sometimes deposited (plated) on the cathode electrode 34 surface.
For this reason, when the electrolytic solution E is not discharged, the electrochemical reaction in each of the cells C1 and C2 is stagnant. On the other hand, the polishing apparatus 1 of the present embodiment supplies and discharges the electrolyte solution E in the electrolyte solution storage portions F1 and F2, thereby generating oxygen gas generated in the electrolyte solution storage portions F1 and F2. O 2 and hydrogen gas H 2 can also be discharged together with the electrolyte E. As a result, the polishing apparatus 1 always keeps the electrolyte solution E in the electrolyte solution storage portions F1 and F2 in a fresh state and does not stagnate the electrochemical reaction.
(機械的な研磨)
 デバイスウエハDの金属膜D1を平坦性よく研磨するために、電解液Eには、保護膜形成剤が添加される。保護膜形成剤が添加された電解液Eを使用すると、研磨用セルC1に露出した金属膜D1の表面には保護膜Gが形成され、保護膜Gを除去し金属膜D1の表面を電解液Eに露出させなければ、電気化学的反応が停滞してしまう。
 図2に示すように、研磨装置1は、研磨工具30の研磨表層(図4参照)の研磨面31aをデバイスウエハDの金属膜D1に表面に水平に当接させた状態で、研磨ヘッド10とテーブル21とを回転駆動して、研磨工具30とデバイスウエハDとを相対移動する。研磨装置1は、この相対移動によって、金属膜D1に形成された保護膜Gを、研磨面31aによって除去することができる。
(Mechanical polishing)
In order to polish the metal film D1 of the device wafer D with good flatness, a protective film forming agent is added to the electrolytic solution E. When the electrolytic solution E to which the protective film forming agent is added is used, the protective film G is formed on the surface of the metal film D1 exposed to the polishing cell C1, and the protective film G is removed and the surface of the metal film D1 is subjected to the electrolytic solution. If not exposed to E, the electrochemical reaction will stagnate.
As shown in FIG. 2, the polishing apparatus 1 has the polishing head 10 in a state where the polishing surface 31 a of the polishing surface layer (see FIG. 4) of the polishing tool 30 is in contact with the metal film D <b> 1 of the device wafer D horizontally. And the table 21 are rotationally driven to move the polishing tool 30 and the device wafer D relative to each other. By this relative movement, the polishing apparatus 1 can remove the protective film G formed on the metal film D1 with the polishing surface 31a.
 このため、研磨装置1は、保護膜Gを除去できればよい程度の研磨圧力下でこの相対移動を行えばよいので、研磨圧力をCMPに比べて著しく低減することができる。
 また、研磨装置1は、ロータリー型研磨装置と比較すると、研磨工具30の直径を小さくすることができる。このため、未作用の状態の電解液Eが排出される量が少なく、電解液Eの基板への作用効率が大きくできるので、電解液Eの消費量を低減することができる。
 さらに、研磨装置1は、eCMPによって金属膜D1を研磨するので、通電直流電流の大きさに応じた速度の研磨ができ、金属膜D1の高速研磨をすることできる。
For this reason, the polishing apparatus 1 only needs to perform this relative movement under a polishing pressure that is sufficient to remove the protective film G. Therefore, the polishing pressure can be significantly reduced as compared with CMP.
Further, the polishing apparatus 1 can reduce the diameter of the polishing tool 30 as compared to the rotary type polishing apparatus. For this reason, since the amount of the electrolyte E in an unactuated state is small and the working efficiency of the electrolyte E on the substrate can be increased, the consumption of the electrolyte E can be reduced.
Furthermore, since the polishing apparatus 1 polishes the metal film D1 by eCMP, it can polish at a speed corresponding to the magnitude of the energized direct current, and can polish the metal film D1 at a high speed.
(eCMPによる配線形成のメカニズム)
 次に、本実施形態のeCMPによる配線形成のメカニズムについて説明する。
 図7は、第1実施形態のデバイスウエハDの研磨工程を説明する縦断面図である。
 図7(a)は、研磨前の状態、図7(b)~図7(e)は、研磨中の状態、図7(f)は、研磨後の状態をそれぞれ示す図である。なお、以下の説明において、被研磨面(図中上側の面)を上面、その反対側の面を下面(図中下側の面)として説明する。
 最初に、デバイスウエハDの構成について説明する。
 図7(a)に示すように、研磨前には、デバイスウエハDは、上層側から、金属膜D1、バリアメタルD2、層間絶縁膜D3が積層されている(図中、トランジスタ部分は、省略して示す。)。
(Mechanism of wiring formation by eCMP)
Next, the mechanism of wiring formation by eCMP according to this embodiment will be described.
FIG. 7 is a longitudinal sectional view for explaining a polishing process of the device wafer D of the first embodiment.
FIG. 7A shows a state before polishing, FIGS. 7B to 7E show a state during polishing, and FIG. 7F shows a state after polishing. In the following description, the surface to be polished (upper surface in the figure) will be referred to as the upper surface, and the opposite surface will be described as the lower surface (lower surface in the figure).
First, the configuration of the device wafer D will be described.
As shown in FIG. 7A, before polishing, the device wafer D is laminated with a metal film D1, a barrier metal D2, and an interlayer insulating film D3 from the upper layer side (the transistor portion is omitted in the figure). To show.)
 金属膜D1は、デバイスウエハDの配線を構成するための層であり、例えば、銅をめっき等の手法を用いて積層して形成する。金属膜D1は、層間絶縁膜D3の上面を窪ませて設けられた配線溝D3aに積層された部分が、残存するように研磨されることにより(図7(f)参照)、デバイスウエハD内を配線する。金属膜D1は、層間絶縁膜D3の配線溝D3aの範囲に積層された部分に、窪み(凹部D1a)が形成される場合がある。ただし、金属膜D1に凹部D1aが形成されていても、本実施形態の研磨工具30は、後述するように、均一に金属膜D1を研磨することができる。 The metal film D1 is a layer for configuring the wiring of the device wafer D, and is formed, for example, by laminating copper using a technique such as plating. The metal film D1 is polished within the device wafer D by polishing so that the portion laminated in the wiring groove D3a provided by recessing the upper surface of the interlayer insulating film D3 remains (see FIG. 7F). Wiring. In the metal film D1, a depression (concave part D1a) may be formed in a portion of the interlayer insulating film D3 stacked in the range of the wiring groove D3a. However, even if the recess D1a is formed in the metal film D1, the polishing tool 30 of the present embodiment can uniformly polish the metal film D1 as described later.
 バリアメタルD2は、金属膜D1の金属原子が層間絶縁膜D3に移動(migration)することを防ぐために設けられている。このバリアメタルD2は、融点が高く、導電性がある材料、例えば、タンタル、窒化タンタルや窒化ニッケル等の金属及び金属窒化物を使用することができる。
 層間絶縁膜D3は、デバイスウエハDの各配線層の間を絶縁するための絶縁層(膜)である。
The barrier metal D2 is provided to prevent the metal atoms of the metal film D1 from migrating to the interlayer insulating film D3. As the barrier metal D2, a material having a high melting point and conductivity, for example, a metal such as tantalum, tantalum nitride, or nickel nitride, and a metal nitride can be used.
The interlayer insulating film D3 is an insulating layer (film) for insulating between the wiring layers of the device wafer D.
 次に、デバイスウエハDの研磨工程を説明する。
 図7(a)に示す状態において、デバイスウエハDの金属膜D1と研磨用電解液収容部F2の電解液Eとが当接すると、研磨用セルC2(図6参照)が形成され、金属膜D1は、上面の表面から溶解、除去されると同時に、図7(b)に示すように、電解液Eの保護膜形成剤(防食剤や界面活性剤)の作用により、金属膜D1の上面表面に電気化学的な保護膜G(銅の錯体層)が形成され、これが不動態皮膜(passive film)となり、金属膜D1の溶解が停止する。
 研磨工具30の研磨表層31は、研磨装置1(図1参照)によって、デバイスウエハDに対して相対移動しているので、保護膜Gは、機械的に除去される。このとき、凹部D1aに形成された保護膜Gは、研磨工具30に接しない(又は、接触による機械的摩擦力が凸部と比較して少ない)ので、金属膜D1の凸部D1c,D1dに形成された保護膜Gのみが除去される。
Next, the polishing process for the device wafer D will be described.
In the state shown in FIG. 7A, when the metal film D1 of the device wafer D and the electrolyte E of the polishing electrolyte container F2 come into contact with each other, a polishing cell C2 (see FIG. 6) is formed, and the metal film D1 is dissolved and removed from the surface of the upper surface, and at the same time, as shown in FIG. An electrochemical protective film G (copper complex layer) is formed on the surface, which becomes a passive film, and dissolution of the metal film D1 stops.
Since the polishing surface layer 31 of the polishing tool 30 is moved relative to the device wafer D by the polishing apparatus 1 (see FIG. 1), the protective film G is mechanically removed. At this time, the protective film G formed in the concave portion D1a does not contact the polishing tool 30 (or the mechanical frictional force due to the contact is less than that of the convex portion), so that the convex portions D1c and D1d of the metal film D1 are not formed. Only the formed protective film G is removed.
 そして、図7(c)に示すように、金属膜D1の凸部D1c,D1dの金属が露出したならば、この露出した部分のみが、研磨用セルC2によって、溶解、除去され、再び形成された保護膜Gが機械的に除去される。
 以上のような工程が瞬時に繰り返され、研磨工具30は、金属膜D1を電気化学的機械的に研磨し、凸部D1c,D1dの除去速度を、凹部D1aよりも速くすることができる。そして、研磨工具30は、金属膜D1の表面を、図7(d)に示すように、平面にすることができる。
Then, as shown in FIG. 7C, if the metal of the convex portions D1c and D1d of the metal film D1 is exposed, only the exposed portions are dissolved and removed by the polishing cell C2 and formed again. The protective film G is mechanically removed.
The steps as described above are repeated instantaneously, and the polishing tool 30 can electrochemically and mechanically polish the metal film D1 to make the removal rate of the convex portions D1c and D1d faster than the concave portion D1a. And the grinding | polishing tool 30 can make the surface of the metal film D1 into a plane as shown in FIG.7 (d).
 図7(d)の状態では、金属膜D1は、上面が平面であるので、バリアメタルD2上面までの部分(図7(d)に示す範囲H1の部分)は、同一の研磨レートで電気化学的機械的に除去され、図7(e)の状態となる。 In the state of FIG. 7D, since the upper surface of the metal film D1 is flat, the portion up to the upper surface of the barrier metal D2 (the portion in the range H1 shown in FIG. 7D) is electrochemical at the same polishing rate. It is mechanically removed and the state shown in FIG.
 図7(e)の状態では、デバイスウエハDは、金属膜D1とバリアメタルD2とが、上面に露出した状態となる。多層積層配線化をする場合には、層間絶縁膜D3を露出させ(図7(f)の状態)、この上にさらに層間絶縁膜を堆積する。このため、金属膜D1と、金属膜D1と材質の異なるバリアメタルD2の上面の表層(図7(e)に示す範囲H2の部分)を同時に層間絶縁膜D3の表面まで除去する必要がある。これらの除去は、前述したマルチプラテンマルチヘッド型の研磨装置を用いて、第2ステップとして、従来の化学的機械的研磨(CMP)により行われる。さらにデッシング(金属膜D1が余分に研磨除去された状態)の修正が必要な場合、第3ステップとして、層間絶縁膜D3を化学的機械的に研磨する。 7 (e), the device wafer D is in a state where the metal film D1 and the barrier metal D2 are exposed on the upper surface. In the case of multilayer wiring, the interlayer insulating film D3 is exposed (the state shown in FIG. 7F), and an interlayer insulating film is further deposited thereon. Therefore, it is necessary to simultaneously remove the metal film D1 and the surface layer on the upper surface of the barrier metal D2 made of a material different from that of the metal film D1 (the portion in the range H2 shown in FIG. 7E) to the surface of the interlayer insulating film D3. These removals are performed by conventional chemical mechanical polishing (CMP) as the second step using the above-described multi-platen multi-head type polishing apparatus. Further, when it is necessary to correct the dishing (a state in which the metal film D1 is excessively polished and removed), the interlayer insulating film D3 is chemically and mechanically polished as a third step.
 以上のように、電気化学的機械的研磨は、デバイスウエハDの金属膜D1を、図7(a)から図7(e)の状態に研磨するものであり、電気的な保護膜の形成と保護膜の機械的除去及び金属の溶解除去(電気化学的除去)をバランスよく行い、研磨レートの高い面内均一性を維持したまま、平坦化することができる。 As described above, the electrochemical mechanical polishing is performed by polishing the metal film D1 of the device wafer D from the state shown in FIG. 7A to the state shown in FIG. The mechanical removal of the protective film and the dissolution removal of the metal (electrochemical removal) can be performed in a well-balanced manner, and the surface can be flattened while maintaining the in-plane uniformity with a high polishing rate.
 (eCMPの終点検出の方法例)
 図8は、第1実施形態のデバイスウエハDの配線形成を模式的に説明する図である。
 図8(a)は、研磨前の状態を示すもので、デバイスウエハD(Si基板)に配線用溝又はビアホールが形成され、バリアメタルが成膜された後に金属膜D1が厚さHに堆積された状態を示す図である。
 図8(b)は、eCMPによる研磨後の状態を示すもので、金属膜D1が所望の状態に加工された状態を示す図である。
(Example of eCMP end point detection method)
FIG. 8 is a diagram schematically illustrating the wiring formation of the device wafer D of the first embodiment.
FIG. 8A shows a state before polishing, in which wiring grooves or via holes are formed in the device wafer D (Si substrate), and after the barrier metal is formed, the metal film D1 is deposited to a thickness H. It is a figure which shows the state made.
FIG. 8B shows a state after polishing by eCMP and shows a state in which the metal film D1 is processed into a desired state.
 図8(b)の状態では、バリアメタルD2の凸部に堆積された金属膜D1は全て除去され、配線部D1eの金属膜D1の表面とバリアメタルD2の凸部の表面とが、同一水平面にある状態である。
 図8(b)の状態に加工する場合は、金属膜D1の厚さを加工中に計測し、エンドポイント(加工終了点)で加工を停止する方法が一般的である。
 エンドポイントが早すぎると(不足研磨)、図8(c)に示すようにバリアメタルD2の凸部の表面に金属膜D1が残り、配線間で電気的短絡が生じてしまう。これとは逆に、エンドポイントが遅すぎると(過剰研磨)、図8(d)に示すように、配線部D1eの金属膜D1の厚さが低下して(デッシング)、配線抵抗が増加してしまう。
In the state of FIG. 8B, all the metal film D1 deposited on the convex portion of the barrier metal D2 is removed, and the surface of the metal film D1 of the wiring portion D1e and the surface of the convex portion of the barrier metal D2 are on the same horizontal plane. It is in a state.
When processing into the state of FIG.8 (b), the method of measuring the thickness of the metal film D1 during a process and stopping a process at an end point (processing end point) is common.
If the end point is too early (insufficient polishing), as shown in FIG. 8C, the metal film D1 remains on the surface of the convex portion of the barrier metal D2, and an electrical short circuit occurs between the wirings. On the other hand, if the end point is too late (excessive polishing), as shown in FIG. 8D, the thickness of the metal film D1 of the wiring portion D1e is reduced (desching), and the wiring resistance is increased. End up.
 加工中計測法には、トルク計測法や電気抵抗計測法が利用される。
 トルク計測法は、ウエハキャリア部20や研磨ヘッド10の回転軸に生じるトルク値をモニターし、金属膜D1とバリアメタルD2の膜質の変化にともなうトルク値の変化を検出するものである。また、電気抵抗測定法は、金属のシート抵抗が膜厚に反比例することを利用して加工中の金属膜D1の厚さを計測する方法である。
 本実施形態の加工中計測法は、電源2(直流電源装置)の出力電圧をモニターして、出力電圧が一定の値に達した点を検出点(Detect Point 以下DP)とするもので、特別の計測装置を使用する必要がなく、容易に実施できるものである。
A torque measurement method or an electric resistance measurement method is used as the measuring method during processing.
In the torque measurement method, a torque value generated on the rotation axis of the wafer carrier unit 20 or the polishing head 10 is monitored, and a change in the torque value due to a change in film quality of the metal film D1 and the barrier metal D2 is detected. The electrical resistance measurement method is a method of measuring the thickness of the metal film D1 being processed by utilizing the fact that the metal sheet resistance is inversely proportional to the film thickness.
The measuring method during processing of this embodiment is to monitor the output voltage of the power source 2 (DC power supply device) and use the point where the output voltage reaches a certain value as a detection point (hereinafter referred to as DP). Therefore, it is not necessary to use a measuring device, and can be easily implemented.
 図9は、第1実施形態の加工中計測法における電流値Iと電圧V2に設定された電源条件でeCMPを実施したときの電圧、電流の時間変化の例を示す図である。
 第1実施形態の加工中計測法は、範囲9bの電圧値を検出点として、検出点から一定時間(T)を研磨終点とする研磨方法である。
 電源2は、設定電流値Iに対して、範囲9aに示すように、電解液抵抗や金属の電気化学的な溶解反応電圧に必要な電源電圧を出力するが、範囲9bに示すように、金属膜厚が減少すると金属膜D1のシート抵抗が増加して電源出力電圧が徐々に増加する。そして、範囲9cに示すように、金属膜D1がすべて除去されると、電源電流の殆どが、バリアメタルD2の表面での酸素ガスの生成反応に利用され、電圧が上昇して、電源2の制限電圧V2に達する。この時点T2で、電源2の出力電流は、制限電圧V2に応じた電流値I2に低下する。
FIG. 9 is a diagram illustrating an example of temporal changes in voltage and current when eCMP is performed under the power supply conditions set to the current value I and the voltage V2 in the measuring method during processing according to the first embodiment.
The in-process measurement method of the first embodiment is a polishing method in which the voltage value in the range 9b is a detection point and a certain time (T) from the detection point is a polishing end point.
The power supply 2 outputs a power supply voltage necessary for the electrolytic solution resistance and the electrochemical dissolution reaction voltage of the metal as shown in the range 9a with respect to the set current value I, but as shown in the range 9b, the metal When the film thickness decreases, the sheet resistance of the metal film D1 increases and the power supply output voltage gradually increases. Then, as shown in the range 9c, when all the metal film D1 is removed, most of the power source current is utilized for the oxygen gas generation reaction on the surface of the barrier metal D2, and the voltage rises. The limit voltage V2 is reached. At this time T2, the output current of the power source 2 decreases to a current value I2 corresponding to the limit voltage V2.
 電源2の制限電圧V2を、範囲9aの電圧値よりも高く、制限電圧V2よりも低い値V1に設定すると、電源2の出力電流は、範囲9b部で低下する。この時点T1では、金属膜D1はバリアメタルD2の凸部の表面に残っている。時点T1を検出点とし、残存している金属膜D1は、その後の低下した電流I1で所定の時間Tまで研磨し、残存している金属膜D1を除去することができる。 When the limit voltage V2 of the power source 2 is set to a value V1 that is higher than the voltage value in the range 9a and lower than the limit voltage V2, the output current of the power source 2 decreases in the range 9b. At this time T1, the metal film D1 remains on the surface of the convex portion of the barrier metal D2. Using the time point T1 as a detection point, the remaining metal film D1 can be polished up to a predetermined time T with the reduced current I1, and the remaining metal film D1 can be removed.
 この方法によれば、金属膜D1の厚さH(図8(a)参照)がロット内、ロット間で異なる場合でも、自動的に図8(b)の状態に加工できる。
 この方法は、電流I、電圧V1の設定値が、デバイスウエハDの径や研磨速度等のプロセス条件、電解液Eの種類(特に組成)で異なるため、テストウエハ等で予め条件出しをする必要があるが、一度設定すれば金属膜D1の厚さHが異なるデバイスウエハDに適用することができる。
According to this method, even when the thickness H (see FIG. 8A) of the metal film D1 is different between lots and between lots, the metal film D1 can be automatically processed into the state shown in FIG. 8B.
In this method, the set values of the current I and the voltage V1 differ depending on the process conditions such as the diameter and polishing speed of the device wafer D and the type (particularly composition) of the electrolyte E. However, once set, it can be applied to a device wafer D having a different thickness H of the metal film D1.
(第2実施形態)
 次に、本発明を適用した研磨装置の第2実施形態について説明する。
 第2実施形態の研磨装置は、第1実施形態の研磨工具30の構成を変形したものである。
 なお、以下の説明及び図面において、前述した第1実施形態と同様の機能を果たす部分には、同一の符号又は末尾に同一の符号を付して、重複する説明を適宜省略する。
(Second Embodiment)
Next, a second embodiment of a polishing apparatus to which the present invention is applied will be described.
The polishing apparatus of the second embodiment is a modification of the configuration of the polishing tool 30 of the first embodiment.
Note that, in the following description and drawings, the same reference numerals or the same reference numerals are given to the portions that perform the same functions as those in the first embodiment described above, and overlapping descriptions will be omitted as appropriate.
 図10は、第2実施形態の研磨工具230を斜め下側から見たときの斜視図(第1実施形態の図4に相当する図)である。
 研磨工具230は、廃液チャネルCh201,Ch202が研磨表層231の研磨面231aを窪ませて形成されているところが、第1実施形態の研磨工具30とは異なる。
FIG. 10 is a perspective view (a view corresponding to FIG. 4 of the first embodiment) when the polishing tool 230 of the second embodiment is viewed obliquely from below.
The polishing tool 230 is different from the polishing tool 30 of the first embodiment in that the waste liquid channels Ch201 and Ch202 are formed by recessing the polishing surface 231a of the polishing surface layer 231.
 研磨工具230は、廃液チャネルCh201,Ch202を研磨面231aに設けることにより、廃液チャネルCh201,Ch202を容易に形成することができ、低コストで作製することができる。
 また、研磨表層231は、研磨表層231及び絶縁層232を同一の絶縁材により一体で形成すれば、より低コストで作製することができる。
By providing the waste liquid channels Ch201 and Ch202 on the polishing surface 231a, the polishing tool 230 can easily form the waste liquid channels Ch201 and Ch202, and can be manufactured at low cost.
In addition, the polishing surface layer 231 can be manufactured at a lower cost if the polishing surface layer 231 and the insulating layer 232 are integrally formed of the same insulating material.
 以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されるものではなく、後述する変形形態のように種々の変形や変更が可能であって、それらも本発明の技術的範囲内である。また、実施形態に記載した効果は、本発明から生じる最も好適な効果を列挙したに過ぎず、本発明による効果は、実施形態に記載したものに限定されない。なお、上述した実施形態及び後述する変形形態は、適宜組み合わせて用いることもできるが、詳細な説明は省略する。 As mentioned above, although embodiment of this invention was described, this invention is not limited to embodiment mentioned above, Various deformation | transformation and a change are possible like the deformation | transformation form mentioned later, and these are also these. Within the technical scope. In addition, the effects described in the embodiments are merely a list of the most preferable effects resulting from the present invention, and the effects of the present invention are not limited to those described in the embodiments. In addition, although embodiment mentioned above and the deformation | transformation form mentioned later can also be used in combination as appropriate, detailed description is abbreviate | omitted.
(変形形態) (Deformation)
(1)各実施形態において、研磨装置は、デバイスウエハの金属膜のeCMPを行う例を示したが、これに限定されない。例えば、研磨装置は、極性(プラス極及びマイナス極)の電圧を実施形態とは逆にして印加することによって、デバイスウエハを電気めっきしてもよい。これによって、研磨装置は、金属膜の生成(配線材の埋め込み)に使用することができる。
 この場合、電解液を、金属膜と同じ金属イオンを含む塩基性電解液を主成分としたものを利用すればよい。例えば、金属膜が銅の場合は、半導体デバイスの銅配線プロセスに使用されるキャリアとブライトナとレベラ等の添加剤を含む電解液を使用できる。
 また、研磨装置は、電源の極性を交互に切り替えることによって、配線材の埋め込みとeCMPとを交互に実施し、半導体デバイスの配線形成を行うこともできる。
(1) In each embodiment, although the polishing apparatus showed the example which performs eCMP of the metal film of a device wafer, it is not limited to this. For example, the polishing apparatus may electroplate the device wafer by applying polar (positive and negative) voltages opposite to those in the embodiment. Thus, the polishing apparatus can be used for generation of a metal film (embedding of a wiring material).
In this case, an electrolytic solution having a basic electrolytic solution containing the same metal ion as that of the metal film as a main component may be used. For example, when the metal film is copper, an electrolytic solution containing additives such as carriers, brighteners, and levelers used in a copper wiring process of a semiconductor device can be used.
In addition, the polishing apparatus can alternately perform the embedding of the wiring material and the eCMP by alternately switching the polarity of the power source to form the wiring of the semiconductor device.
(2)各実施形態において、研磨工具の直径は、デバイスウエハの直径よりも小さい例を説明したが、これに限定されない。研磨工具の直径は、デバイスウエハの直径と同等又は大きくてもよい。この場合、研磨ヘッドを揺動させなくても、金属膜の表面(非研磨面)と研磨工具の研磨面とを、ばらつきなく均一に当接させることができるので、面内均一性が良好な研磨をすることができる。また、研磨ヘッドを揺動する構成が必要ないので、研磨装置の構成を簡単にすることができる。 (2) In each embodiment, the example in which the diameter of the polishing tool is smaller than the diameter of the device wafer has been described, but the present invention is not limited to this. The diameter of the polishing tool may be equal to or larger than the diameter of the device wafer. In this case, the surface of the metal film (non-polishing surface) and the polishing surface of the polishing tool can be brought into uniform contact without variation without having to swing the polishing head, so that in-plane uniformity is good. Polishing is possible. In addition, since a configuration for swinging the polishing head is not required, the configuration of the polishing apparatus can be simplified.
(3)各実施形態において、通電用電解液収容部の電解液と研磨用電解液収容部の電解液とは、電気的に絶縁された構成を説明したが、これに限定されない。例えば、研磨工具の研磨面に通電用電解液収容部と研磨用電解液収容部とを連結する溝(連結部)を設けて、研磨用電解液収容部の電解液と通電用電解液収容部の電解液とを、電気的に接続ある程度導通させてもよい。この場合、連結路内の電解液によって、研磨用電力がバイパスされるため電解研磨効率がある程度低下する。その反面、研磨用電力をバイパスさせることによって、金属膜の凹部(図7に示す凹部D1a)に形成された保護膜を破壊する電解電流を低下させることがきるので、金属膜の平坦性を向上することができる。
 なお、この研磨用電力のバイパス用の連結部を設ける場合には、連結部と廃液チャネルとを兼用するよりも、別々に設けた方が、設計、製作を容易にすることができる。
(3) In each embodiment, although the electrolytic solution in the energizing electrolyte container and the electrolytic solution in the polishing electrolyte container have been described as being electrically insulated, the present invention is not limited to this. For example, a groove (connecting portion) for connecting the energizing electrolyte accommodating portion and the polishing electrolyte accommodating portion to the polishing surface of the polishing tool is provided, and the electrolytic solution and the energizing electrolyte accommodating portion of the polishing electrolyte accommodating portion are provided. The electrolytic solution may be electrically connected to some extent. In this case, the polishing power is bypassed by the electrolytic solution in the connection path, so that the electrolytic polishing efficiency is reduced to some extent. On the other hand, by bypassing the polishing power, it is possible to reduce the electrolytic current that breaks the protective film formed in the concave portion of the metal film (the concave portion D1a shown in FIG. 7), thereby improving the flatness of the metal film. can do.
In the case of providing a connecting portion for bypassing the polishing power, it is easier to design and manufacture by providing the connecting portion separately than using the connecting portion and the waste liquid channel.
  1,200A,200B 研磨装置
  2 電源
  3 電解液供給装置
  10,210A,210B 研磨ヘッド
  12,212A 工具フォルダ
  13 電解液供給路
  15a,15b ヘッド内電気ケーブル
  16 ヘッド駆動部
  20 ウエハキャリア部
  21 テーブル
  22 ウエハ吸着部
  23 ウエハ支持リング
  24 テーブル駆動部
  30,230A,230B 研磨工具
  31,231A,231B 研磨表層
  33,233A アノード電極
  34,234A カソード電極
  37,38 電解液供給細孔
  C1 通電用セル
  C2 研磨用セル
  Ch1,Ch2,Ch201B,Ch202B 廃液チャネル
  E 電解液
  F1 通電用電解液収容部
  F2 研磨用電解液収容部
1,200A, 200B Polishing device 2 Power supply 3 Electrolyte supply device 10, 210A, 210B Polishing head 12, 212A Tool folder 13 Electrolyte supply path 15a, 15b Electric cable in the head 16 Head drive unit 20 Wafer carrier unit 21 Table 22 Wafer Adsorption part 23 Wafer support ring 24 Table drive part 30,230A, 230B Polishing tool 31,231A, 231B Polishing surface layer 33,233A Anode electrode 34,234 A Cathode electrode 37,38 Electrolyte supply pore C1 Current supply cell C2 Polishing cell Ch1, Ch2, Ch201B, Ch202B Waste liquid channel E Electrolyte F1 Electrolyte container for energization F2 Electrolyte container for polishing F2

Claims (7)

  1.  研磨面に開口した複数の電解液収容部が設けられた基板研磨体を装着可能であり、回転駆動されることによって、基板の表層に設けられた金属膜を電気化学的機械的に研磨する研磨ヘッドであって、
     前記基板研磨体を前記研磨面が鉛直方向下側に向けられた状態で装着する基板研磨体装着部と、
     前記電解液収容部に電解液を供給する電解液供給部と、
     電源の研磨用電力を前記電解液収容部に供給する電力伝達部と、
     を備える研磨ヘッド。
    Polishing that can attach a substrate polishing body provided with a plurality of electrolytic solution containing portions opened on the polishing surface and electrochemically polish the metal film provided on the surface layer of the substrate by being driven to rotate. Head,
    A substrate polishing body mounting portion for mounting the substrate polishing body in a state where the polishing surface is directed downward in the vertical direction;
    An electrolytic solution supply unit for supplying an electrolytic solution to the electrolytic solution storage unit;
    A power transmission unit for supplying power for polishing power to the electrolyte container;
    A polishing head comprising:
  2.  請求項1に記載の研磨ヘッドにおいて、
     複数の前記電解液収容部は、
     アノード電極を有し、収容した電解液と前記基板の前記金属膜とを接触させる通電用電解液収容部と、
     カソード電極を有し、収容した電解液と前記基板の前記金属膜とを接触させる研磨電解液収容部とを備え、
     前記電力伝達部は、
     電源のプラス極と前記通電用電解液収容部の前記アノード電極とを接続し、
     前記電源のマイナス極と前記研磨電解液収容部の前記マイナス極とを接続すること、
     を特徴とする研磨ヘッド。
    The polishing head according to claim 1, wherein
    The plurality of electrolyte solution storage portions are:
    An electrolysis solution container for energization that has an anode electrode and makes the contained electrolyte solution contact the metal film of the substrate;
    A polishing electrolyte container having a cathode electrode and contacting the accommodated electrolyte and the metal film of the substrate;
    The power transmission unit is
    Connecting the positive electrode of the power source and the anode electrode of the energizing electrolyte container,
    Connecting the negative pole of the power source and the negative pole of the polishing electrolyte container,
    A polishing head characterized by
  3.  請求項1又は請求項2に記載の研磨ヘッドにおいて、
     前記基板研磨体は、前記電解液供給部から供給され前記電解液収容部に収容された電解液を排出する排出部を備えること、
     を特徴とする研磨ヘッド。
    In the polishing head according to claim 1 or 2,
    The substrate polishing body includes a discharge unit that discharges the electrolyte solution supplied from the electrolyte solution supply unit and stored in the electrolyte solution storage unit,
    A polishing head characterized by
  4.  請求項1から請求項3までのいずれか1項に記載の研磨ヘッドと、
     基板研磨体を研磨面が下側に向けられた状態で装着し、前記研磨ヘッドを回転駆動するヘッド駆動部と、
     表層に金属膜が設けられ、前記基板研磨体よりも径が大きい前記基板を載置するテーブルと、
     前記テーブルを回転駆動するテーブル駆動部と、
     を備える研磨装置。
    The polishing head according to any one of claims 1 to 3,
    A head drive unit that mounts the substrate polishing body with the polishing surface facing downward, and rotationally drives the polishing head;
    A table on which a metal film is provided on a surface layer and the substrate having a diameter larger than that of the substrate polishing body is placed;
    A table drive unit for rotationally driving the table;
    A polishing apparatus comprising:
  5.  請求項1から請求項3までのいずれか1項に記載の研磨ヘッドに装着され、
     研磨面に開口した複数の電解液収容部と、
     前記研磨ヘッドの電解液供給部から供給され前記電解液収容部に収容された電解液を排出する排出部とを備えること、
     を特徴とする基板研磨体。
    It is mounted on the polishing head according to any one of claims 1 to 3,
    A plurality of electrolytic solution containing parts opened in the polishing surface;
    A discharge unit for discharging the electrolyte solution supplied from the electrolyte solution supply unit of the polishing head and stored in the electrolyte solution storage unit;
    A substrate polishing body characterized by the above.
  6.  請求項5に記載の基板研磨体において、
     複数の前記電解液収容部は、
     アノード電極を有し、収容した電解液と前記基板の前記金属膜とを接触させる通電用電解液収容部と、
     カソード電極を有し、収容した電解液と前記基板の前記金属膜とを接触させる研磨電解液収容部とを備えること、
     を特徴とする基板研磨体。
    In the substrate polishing body according to claim 5,
    The plurality of electrolyte solution storage portions are:
    An electrolysis solution container for energization that has an anode electrode and makes the contained electrolyte solution contact the metal film of the substrate;
    A polishing electrolyte container containing a cathode electrode and bringing the accommodated electrolyte into contact with the metal film of the substrate;
    A substrate polishing body characterized by the above.
  7.  請求項6に記載の基板研磨体において、
     前記排出部は、
     複数の前記通電用電解液収容部を接続し、この基板研磨体の外部に抜ける貫通孔である通電用電解液収容部貫通孔と、
     複数の前記研磨用電解液収容部を接続し、この基板研磨体の外部に抜ける貫通孔である研磨用電解液収容部貫通孔とを備えること、
     を特徴とする基板研磨体。
    The substrate polishing body according to claim 6,
    The discharge part is
    Connecting the plurality of energizing electrolyte accommodating parts, and energizing electrolyte accommodating part through-holes which are through-holes extending out of the substrate polishing body;
    Connecting a plurality of the polishing electrolyte accommodating portions, and comprising a polishing electrolyte accommodating portion through-hole that is a through-hole extending out of the substrate polishing body,
    A substrate polishing body characterized by the above.
PCT/JP2009/005911 2008-11-07 2009-11-06 Polishing head, polishing apparatus and substrate polishing body WO2010052917A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008287092 2008-11-07
JP2008-287092 2008-11-07

Publications (1)

Publication Number Publication Date
WO2010052917A1 true WO2010052917A1 (en) 2010-05-14

Family

ID=42152730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/005911 WO2010052917A1 (en) 2008-11-07 2009-11-06 Polishing head, polishing apparatus and substrate polishing body

Country Status (1)

Country Link
WO (1) WO2010052917A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001322036A (en) * 2000-03-09 2001-11-20 Sony Corp Grinding device
JP2007051374A (en) * 2005-08-12 2007-03-01 Ebara Corp Electroprocessing method and substrate treatment method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001322036A (en) * 2000-03-09 2001-11-20 Sony Corp Grinding device
JP2007051374A (en) * 2005-08-12 2007-03-01 Ebara Corp Electroprocessing method and substrate treatment method

Similar Documents

Publication Publication Date Title
TW528649B (en) Method and apparatus for electrochemical planarization of a workpiece
KR100745102B1 (en) Method for producing semiconductor device, polishing apparatus, and polishing method
US6893328B2 (en) Conductive polishing pad with anode and cathode
US7297239B2 (en) Method and apparatus for the electrochemical deposition and planarization of a material on a workpiece surface
US20040188244A1 (en) Electro-chemical machining apparatus
KR20010091952A (en) Methods of producing and polishing semiconductor device and polishing apparatus
US20040050817A1 (en) Advanced electrolytic polish (AEP) assisted metal wafer planarization method and apparatus
WO2002029859A2 (en) Method and apparatus for electrochemical planarization of a workpiece
KR20070103091A (en) Conductive polishing article for electrochemical mechanical polishing
US20090277802A1 (en) Pad-assisted electropolishing
US7361582B2 (en) Method of forming a damascene structure with integrated planar dielectric layers
US7144298B2 (en) Method for manufacturing semiconductor device and apparatus for manufacturing thereof
US20070034502A1 (en) Electrolytic processing apparatus
JP4644954B2 (en) Polishing equipment
US7344432B2 (en) Conductive pad with ion exchange membrane for electrochemical mechanical polishing
WO2007061064A1 (en) Polishing pad for device wafer
WO2010052917A1 (en) Polishing head, polishing apparatus and substrate polishing body
WO2003090964A1 (en) Polishing system and polishing method
JP2001326204A (en) Method of manufacturing semiconductor device and method of polishing semiconductor device
US20040149592A1 (en) Electropolishing apparatus and polishing method
JP2008198673A (en) Compound electrolytic polishing apparatus
JP2006527483A (en) Conductive polishing equipment for electrochemical mechanical polishing
US20090266707A1 (en) Pad-assisted electropolishing
JP4500885B2 (en) Device wafer polishing pad, polishing body, polishing tool structure and polishing method
TW491750B (en) Method and apparatus for electrochemical planarization of a workpiece

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09824617

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09824617

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP