WO2010052798A1 - 硬貨識別装置および硬貨識別方法 - Google Patents

硬貨識別装置および硬貨識別方法 Download PDF

Info

Publication number
WO2010052798A1
WO2010052798A1 PCT/JP2008/070416 JP2008070416W WO2010052798A1 WO 2010052798 A1 WO2010052798 A1 WO 2010052798A1 JP 2008070416 W JP2008070416 W JP 2008070416W WO 2010052798 A1 WO2010052798 A1 WO 2010052798A1
Authority
WO
WIPO (PCT)
Prior art keywords
coin
signal
side coil
coil
frequency
Prior art date
Application number
PCT/JP2008/070416
Other languages
English (en)
French (fr)
Inventor
和男 田路
Original Assignee
グローリー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by グローリー株式会社 filed Critical グローリー株式会社
Priority to JP2010536632A priority Critical patent/JP5306367B2/ja
Priority to PCT/JP2008/070416 priority patent/WO2010052798A1/ja
Priority to US13/128,293 priority patent/US8490771B2/en
Priority to EP08877993.9A priority patent/EP2352131B1/en
Priority to CN2008801319089A priority patent/CN102209978B/zh
Publication of WO2010052798A1 publication Critical patent/WO2010052798A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D5/00Testing specially adapted to determine the identity or genuineness of coins, e.g. for segregating coins which are unacceptable or alien to a currency
    • G07D5/08Testing the magnetic or electric properties

Definitions

  • the present invention relates to a coin discriminating apparatus and a coin discriminating method for generating a magnetic field by energizing an oscillating coil and detecting a signal excited by a receiving coil by the magnetic field, and in particular, a circuit scale.
  • the present invention relates to a coin discriminating apparatus and a coin discriminating method capable of performing a coin discriminating process promptly and with high accuracy without increasing the amount.
  • a coin discriminating apparatus that conveys coins using a transport mechanism and identifies the denomination or authenticity of a coin with a magnetic sensor composed of an oscillation side coil and a reception side coil disposed across a transport path is known ing.
  • Patent Document 1 a composite signal having a plurality of frequencies is input to an oscillation side coil, a signal excited on the reception side coil is output on the reception side, and an input signal and an output signal are compared.
  • a technique for identifying coins is disclosed.
  • a high frequency (for example, 250 kHz) oscillation signal, a medium frequency (for example, 16 kHz) oscillation signal, and a low frequency (for example, 4 kHz) oscillation signal are combined and input to the oscillation side coil.
  • the signal excited in the receiving side coil is extracted with a first filter for extracting a high frequency (for example, 250 kHz) signal and a second filter for extracting a medium frequency (for example, 16 kHz) signal. And a third filter that extracts a low-frequency (for example, 4 kHz) signal.
  • a first filter for extracting a high frequency (for example, 250 kHz) signal
  • a second filter for extracting a medium frequency (for example, 16 kHz) signal.
  • a third filter that extracts a low-frequency (for example, 4 kHz) signal.
  • each frequency signal (250 kHz, 16 kHz, or 4 kHz) constituting the synthesized wave is extracted.
  • a signal of each frequency (250 kHz, 16 kHz, or 4 kHz) is compared between the receiving side and the transmitting side, and the denomination and authenticity of the coin are identified based on the attenuation characteristics of the signal.
  • Patent Document 1 when the technique disclosed in Patent Document 1 is used, there is a problem that the circuit scale of the coin identifying device increases. Specifically, on the reception side, it is necessary to prepare the same number of filters as the types of frequencies to be extracted for each reception side coil. If there are many types of reception side coils, the number of filters to be prepared becomes enormous. .
  • the receiving side is at the timing when the coin center of the coin to be conveyed coincides with the sensor center. It is preferable to obtain the output signal of the coil.
  • the present invention has been made to solve the above-described problems of the prior art, and provides a coin identification device and a coin identification method capable of performing coin identification processing quickly and with high accuracy without increasing the circuit scale.
  • the purpose is to do.
  • the present invention uses a magnetic sensor that generates a magnetic field by energizing the oscillation side coil and detects a signal excited in the reception side coil by the magnetic field.
  • a coin discriminating apparatus for identifying a coin to be conveyed wherein a synthesized signal applying means for applying a synthesized signal obtained by synthesizing a plurality of signals of a specific frequency to the oscillation side coil, and the synthesized signal by the synthesized signal applying means.
  • the output signal from the reception side coil is converted into a digital signal and then developed on the frequency axis, and extracted from the signal developed by the development means.
  • identifying means for identifying the coin based on the amplitude of the signal of the specific frequency.
  • the present invention shows a substantially center line on the coin surface of the coin based on an output signal from the receiving coil when a single frequency signal is applied to the oscillation coil.
  • the apparatus further comprises coin center detecting means for detecting that a coin center has arrived at the magnetic sensor, and the combined signal applying means oscillates the combined signal when the coin center is detected by the coin center detecting means. It applies to a side coil, It is characterized by the above-mentioned.
  • the clock for generating the signal of the specific frequency applied to the oscillation side coil and the clock for converting the output signal from the reception side coil into a digital signal are the same in the above invention. It is based on a clock.
  • the present invention is characterized in that, in the above-mentioned invention, the signals of the specific frequency included in the synthesized signal are signals of frequencies that are not in an integral multiple relationship.
  • the identifying unit identifies the coin based on an output signal from the receiving coil corresponding to the single frequency signal used by the coin center detecting unit.
  • the present invention is a coin identifying method for identifying a coin to be conveyed by using a magnetic sensor that generates a magnetic field by energizing the oscillation side coil and detects a signal excited in the receiving side coil by the magnetic field.
  • a combined signal applying step of applying a combined signal obtained by combining a plurality of signals of a specific frequency to the oscillation side coil, and the combined signal being applied to the oscillation side coil in the combined signal applying step.
  • An expansion step of converting the output signal from the reception side coil into a digital signal and expanding it on the frequency axis, and the amplitude of the signal of the specific frequency extracted from the signal expanded by the expansion step, And an identification step for identifying coins.
  • a composite signal obtained by combining a plurality of signals having a specific frequency is applied to the oscillation side coil, and the output signal from the reception side coil when the composite signal is applied to the oscillation side coil is converted into a digital signal.
  • the coin is identified on the basis of the amplitude of the signal of the specific frequency extracted from the expanded signal after the conversion to the frequency axis, so that the coin identification process can be performed without increasing the circuit scale. There is an effect that it can be performed.
  • the coin center indicating a substantially center line on the coin surface of the coin based on the output signal from the receiving coil when a single frequency signal is applied to the oscillation coil is the magnetic sensor.
  • the composite signal is applied to the oscillation side coil.
  • the clock for generating a signal having a specific frequency applied to the oscillation side coil and the clock for converting the output signal from the reception side coil into a digital signal are based on the same clock.
  • the clocks derived from the same reference clock on the oscillation side and the reception side it is possible to prevent the operation timing between the oscillation side and the reception side from being shifted due to a clock shift. .
  • the signals of specific frequencies included in the combined signal are signals of frequencies that are not in an integer multiple relationship, it is possible to prevent the signals of specific frequencies from interfering with each other. Thus, there is an effect that noise due to signal interference can be reduced.
  • the coin since the coin is identified based on the output signal from the receiving coil corresponding to the single frequency signal, the identification by the single frequency application in addition to the identification element by the synthetic frequency application.
  • the element By using the element, there is an effect that the coin identification accuracy can be improved.
  • FIG. 1 is a diagram showing an outline of a coin identifying method according to the present invention.
  • FIG. 2 is a block value showing the configuration of the coin identifying device according to the present embodiment.
  • FIG. 3 is a diagram showing the arrangement of the coils.
  • FIG. 4 is a diagram illustrating an oscillation side coil and a reception side coil.
  • FIG. 5 is a diagram illustrating an outline of processing executed by the control unit.
  • FIG. 6 is a diagram showing an outline of the coin center detection process.
  • FIG. 7 is a diagram illustrating an example of denomination discrimination using Mahalanobis distance.
  • FIG. 8 is a flowchart showing a processing procedure executed by the coin identifying device.
  • FIG. 9 is a flowchart showing a processing procedure of coin center detection processing.
  • FIG. 10 is a diagram showing an outline of a coin identifying method according to the prior art.
  • FIG. 10 is a diagram showing an outline of a coin identifying method according to the prior art.
  • a PWM (Pulse Width Modulation) 91 shown in the figure is a device that outputs a rectangular wave having an arbitrary frequency by pulse width modulation.
  • the signal output from the PWM 91 is input to the driver 93 as a 250 kHz sine wave via the filter 92a, and also the driver 93 as a 4 kHz sine wave via the filter 92b. I was typing in.
  • the driver 93 synthesizes a 250 kHz sine wave and a 4 kHz sine wave and applies them to the oscillation coil 94.
  • the excited signal is amplified by the amplifier 96, the signal corresponding to the 250 kHz sine wave is extracted by the filter 97a, and the signal corresponding to the 4 kHz sine wave is extracted by the filter 97b. .
  • the rectifier circuit 98a converts the signal from the filter 97a into a DC voltage signal
  • the rectifier circuit 98b converts the signal from the filter 97b into a DC voltage signal.
  • the AD (analog-digital) converter 98 converts the DC voltage signal derived from the filter 97a and the DC voltage signal derived from the filter 97b into a digital signal, and a coin identifying process 99 is performed based on the digital signal from the AD converter 98. It was.
  • a combined signal of two frequencies is input to the oscillation coil 94 (see (1) in FIG. 10), and the signal excited in the receiving coil 95 is set to two frequencies.
  • the corresponding output signals were extracted by the filters (filter 97a and filter 97b).
  • the signals from the filter 97a and the filter 97b are converted into direct currents by the rectifier circuit 98a and the rectifier circuit 98b, respectively.
  • the number of filters on the receiving coil 95 side is increased accordingly. If a plurality of coils such as a transmission coil and a reflection coil are used as the reception coil 95, the number of filters on the reception coil 95 side increases according to the number of coils.
  • FIG. 1 is a diagram showing an outline of a coin identifying method according to the present invention.
  • a pulse width signal obtained by synthesizing the three frequencies output from the PWM 1a is converted into an amplitude signal (see 2 in the figure) by the filter 1b, and sent to the driver 1c.
  • the driver 1c inputs the combined signal received from the filter 1b to the oscillation coil 1d.
  • the filter 1b performs processing for converting the difference in pulse width in the pulse train received from the PWM 1a into voltage change, that is, FV (Frequency to Voltage) conversion.
  • FV Frequency to Voltage
  • the excited signal is amplified by the amplifier 1f and then input to the AD (analog / digital) converter 1g. Then, after the composite signal output from the AD converter 1g is accumulated in the memory 1h, the FFT processing 1i is performed and developed on the frequency axis (see 3 in the figure). By doing in this way, as shown in the figure, each frequency signal (3a, 3b and 3c in the figure) constituting the composite signal is developed by the FFT processing 1i.
  • a composite signal of three frequencies is input to the oscillation coil 1d (see (1) in the figure), and on the receiving coil 1e side, output signals corresponding to the three frequencies are subjected to FFT processing. It was decided to extract by (fast Fourier transform processing) (see (2) in the figure).
  • FFT processing fast Fourier transform processing
  • the timing at which the coin center of the conveyed coin coincides with the sensor center is detected based on the amplitude attenuation of the single frequency signal (see the memory 1j and the amplitude calculation process 1k in the figure). ). Further, the coin identifying process 1m is performed based on the output from the FFT process 1i from which the three frequencies are extracted and the output relating to the amplitude attenuation of the single frequency from the amplitude calculating process 1k, which will be described later.
  • FIG. 2 is a block diagram showing a configuration of the coin identifying device 10 according to the present embodiment.
  • the coin identification device 10 includes an oscillation side coil 11, a reception side coil 12, a timing sensor 13, a clock 14, and a control unit 15.
  • the control unit 15 further includes an oscillation control unit 15a, an AD (analog / digital) conversion unit 15b, an amplitude calculation unit 15c, a coin center detection unit 15d, a frequency expansion unit 15e, and a coin identification unit 15f. ing.
  • the oscillation side coil 11 is a primary coil to which a single frequency or a synthesized frequency is applied in accordance with an instruction from the oscillation control unit 15a of the control unit 15.
  • the reception side coil 12 is a secondary coil for acquiring a voltage excited by applying a signal to the oscillation side coil 11.
  • the oscillation side coil 11 and the reception side coil 12 will be described in more detail with reference to FIGS.
  • FIG. 3 is a diagram showing the arrangement of each coil.
  • 30a and 30b shown in the same figure have shown the both ends of a conveyance path, and the coin 101 is conveyed in the direction of the arrow shown in the figure in the state where it has been shifted to the conveyance path end 30a. To do.
  • a transmission side offset coil 32 and a transmission anti-offset side coil 33 corresponding to the transmission coil are disposed at positions facing the oscillation coil 31 via the conveyance path.
  • the transmission coil refers to a coil installed on the surface of the conveyance path facing the oscillation coil 31 via the conveyance path.
  • the transmission side offset coil 32 is located at a position where the coin end of the coin 101 in contact with the conveyance path end 30a can be easily detected, and the transmission counter offset side coil 33 is separated from the conveyance path end 30b. Each end is installed at a position where it can be easily detected regardless of the denomination.
  • the transmission side offset coil 32 is configured by winding a coil 32b around the outer periphery of the core 32a.
  • the transparent anti-collision side coil 33 is also configured by winding a coil 33b around the outer periphery of the core 33a.
  • the oscillation coil 31 is configured by winding a coil 31c as a unitary core 31a and core 32a separately arranged.
  • a reflection coil 34 is installed inside the coil 31c wound between the core 31a / core 31b of the oscillation coil 31.
  • the reflection coil 34 has a core side coil 34a corresponding to a secondary coil wound around a core corresponding to the central axis.
  • the reflection coil 34 is adjacent to the same conveyance path surface as the oscillation coil 31.
  • the oscillation coil 31 corresponds to the primary coil
  • the transmission side offset coil 32, the transmission counter side offset side coil 33, and the core side coil 34a of the reflection coil 34 correspond to the secondary coil described above.
  • FIG. 4 is a diagram illustrating an oscillation side coil and a reception side coil.
  • the oscillation coil 31 is classified as an oscillation side coil
  • 33 and the core side coil 34a of the reflection coil 34 are classified as reception side coils.
  • a combined wave of signals of 4069 Hz, 22380 Hz and 128174 Hz is applied to the oscillation coil 31.
  • the current flowing through the oscillation coil 31 is measured to identify the coin. It was decided to add to the judgment element in the processing.
  • signals corresponding to the signals of 4069 Hz, 22380 Hz, and 128174 Hz constituting the composite wave applied to the oscillation coil 31 are excited in the transmission side offset coil 32, the transmission anti-side offset coil 33, and the reflection coil 34, respectively.
  • the voltages generated in the transmission side offset coil 32, the transmission counter side offset coil 33, and the reflection coil 34 are measured and added to the determination elements in the coin identification process.
  • FIG. 4 the case where signals of 4069 Hz, 22380 Hz, and 128174 Hz are respectively used is illustrated.
  • other frequencies may be used as long as the frequency is not an integral multiple of each other and the characteristics of coins are easily detected. It is good also as changing to the frequency of.
  • the timing sensor 13 is provided on the upstream side of the conveyance path with respect to the oscillation side coil 11 and the reception coil 12, and includes, for example, a light emitting element and a light receiving element provided at positions facing each other across the conveyance path. In this case, the timing sensor 13 detects the approach of the coin by detecting that the light from the light emitting element is blocked by the coin with the light receiving element.
  • the clock 14 is a source oscillation clock when the oscillation control unit 15a and the AD conversion unit 15b operate, and determines the operation timing of each processing unit by multiplying the reference clock generated by the clock 14.
  • the oscillation control unit 15a and the AD conversion unit 15b operate on the basis of the reference clock generated by the clock 14, and thus the operation timing that occurs when each processing unit operates based on a different reference clock. Deviation can be prevented. As a result, even when a deviation occurs in the reference clock, a signal excited in the reception side coil 12 can be acquired as a signal having the same frequency as the frequency applied to the oscillation side coil 11.
  • the control unit 15 performs control to switch between a single frequency signal and a synthesized frequency signal for a signal applied to the oscillation side coil 11, and outputs and synthesizes a signal excited by the receiving side coil 12 corresponding to the single frequency signal. It is a processing unit that performs coin identification based on an output corresponding to a frequency signal.
  • FIG. 5 is a diagram illustrating an outline of processing executed by the control unit 15.
  • 3A shows a view of the magnetic sensor shown in FIG. 3 as viewed from a direction orthogonal to the conveyance path surface
  • FIG. 3B shows a signal applied to the oscillation side coil 11.
  • a timing chart is shown in (C) of the figure, and a timing chart of each processing based on a signal excited in the receiving coil 12 is shown.
  • the oscillation side coil 11 performs the three-frequency combined oscillation according to the instruction from the oscillation control unit 15a.
  • the reception side coil 12 performs sampling (a).
  • the frequency developing unit 15e performs an FFT process on the data acquired by sampling (a).
  • the amplitude value of each specific frequency obtained by the FFT processing is used as a reference value when the coin 100 is not present at the installation position of the oscillation side coil 11 / reception side coil 12.
  • the oscillation-side coil 11 performs single-frequency oscillation according to an instruction from the oscillation control unit 15a.
  • the coin center detecting section 15d performs the coin center detecting process.
  • this coin center detection process is performed based on the data acquired by the sampling (b) implemented in parallel.
  • the receiving coil 12 performs sampling (c).
  • the frequency developing unit 15e performs an FFT process on the data acquired by sampling (c).
  • the amplitude value of each specific frequency obtained by this FFT process is used as a measured value at a position where the coin center coincides with the sensor center.
  • the determination process by the coin identification part 15f is implemented in the control part 15, and the transmission process of a determination result is performed at a predetermined timing.
  • the oscillation control unit 15a is a processing unit that performs a process of receiving a reference clock from the clock 14 and switching a signal applied to the oscillation side coil 11 to either a single frequency or a synthesized frequency.
  • the single frequency is switched to the synthesized frequency, and when the predetermined number of samplings has elapsed, the single frequency is switched.
  • the coin center detection unit 15d notifies that the coin center coincides with the magnetic sensor center, the single frequency is switched to the synthesized frequency.
  • the frequency is switched to a single frequency.
  • the oscillation control unit 15a also performs a process of switching the frequency of a single frequency, each frequency constituting the synthesized frequency, and the number of frequency signals to be synthesized according to an instruction from an input unit (not shown). To do.
  • the AD (analog-digital) converter 15b converts the analog signal excited by the receiving coil 12 into a digital signal, and provides the amplitude signal to the amplitude calculator 15c and the frequency expander 15e. It is assumed that the AD converter 15b receives a reference clock from the clock 14 in the same manner as the oscillation controller 15a.
  • the amplitude calculation unit 15c is a processing unit that performs a process of calculating the total amplitude value by adding the signals acquired by the two transmission sensors (the transmission side offset coil 32 and the transmission counter offset side coil 33). The details of the amplitude calculation process performed by the amplitude calculator 15c will be described later with reference to FIG.
  • the amplitude calculation unit 15c also performs a process of outputting the calculated amplitude to the coin center detection unit 15d and the coin identification unit 15f.
  • the coin center detection unit 15d When a single frequency signal is applied to the oscillation side coil 11, the coin center detection unit 15d receives the signal excited by the reception side coil 12 via the AD conversion unit 15b, and changes the amplitude value of the excitation signal. Based on the above, a process of detecting the timing when the coin center coincides with the sensor center is performed. Here, an outline of the coin center detection process performed by the coin center detection unit 15d will be described with reference to FIG.
  • FIG. 6 is a diagram showing an outline of the coin center detection process.
  • the amplitude value of the excitation signal starts to decrease.
  • the change rate of the amplitude value becomes 0 (see B in the figure).
  • the coin center detection unit 15d monitors the change rate of the amplitude value obtained by the sampling (b) shown in FIG. 5, and detects the timing when the change rate becomes 0, that is, the minimum value of the amplitude value.
  • the frequency expansion unit 15e receives the signal excited by the reception side coil 12 via the AD conversion unit 15b when a composite frequency signal is applied to the oscillation side coil 11, and expands the excitation signal on the frequency axis. It is a processing unit that performs processing to extract each frequency signal constituting the synthesized frequency by performing processing. The frequency expansion unit 15e also performs a process of outputting each extracted frequency signal to the coin identification unit 15f.
  • the coin identifying unit 15f is based on the amplitude of the excitation signal when applying the single frequency signal received from the amplitude calculating unit 15c and each frequency signal extracted from the excitation signal when applying the synthesized frequency signal received from the frequency developing unit 15e. It is a processing unit that performs processing for identifying the denomination and authenticity of the coin 101 using the Mahalanobis distance.
  • the Mahalanobis distance is a distance considering a probability distribution, and is generally used for multivariate analysis using correlation between multivariables.
  • the Mahalanobis distance is calculated by using the voltage related to each frequency detected from each coil included in the receiving coil 12 shown in FIG. 4 and the amplitude calculated by the amplitude calculator 15c as variables. Will be.
  • denomination discrimination using Mahalanobis distance will be described with reference to FIG.
  • FIG. 7 is a diagram showing an example of denomination discrimination using Mahalanobis distance.
  • (A) of the figure shows the denomination discrimination using the conventional upper and lower thresholds for each element, and (B) of the same figure shows the denomination discrimination using the Mahalanobis distance. .
  • indicates the sample value of the denomination A
  • X indicates the sample value of the denomination B
  • the frequency ⁇ axis in the figure indicates various sensor values detected by each receiving side coil 12 when the frequency ⁇ is applied to the oscillation side coil 11, and the frequency ⁇ axis is a frequency ⁇ different from the frequency ⁇ . Is applied to the oscillation side coil 11 and indicates various sensor values detected by each reception side coil 12.
  • the threshold range regarded as the denomination A is set to the frequency ⁇ axis and the frequency ⁇ axis (see “denomination A range” in FIG. 7), and the denomination
  • the threshold range regarded as B was set to the frequency ⁇ axis and the frequency ⁇ axis (see “Denomination B range” in the figure).
  • the denomination A range and the denomination B range overlap for the frequency ⁇ axis, or the denomination A range and the denomination B range for the frequency ⁇ axis. If it overlaps, the denomination of the overlapping denomination cannot be clearly separated, and the separation ability of denomination A and denomination B cannot be said to be sufficient.
  • the denomination A range is an area within a predetermined closed curve with respect to the distribution center 71 (“denomination A” in the figure).
  • the denomination B range is an area within a predetermined closed curve with respect to the distribution center 72 (see “denomination B range” in the figure). Therefore, the separation ability between the denomination A and the denomination B can be improved by performing the multivariate analysis using the Mahalanobis distance.
  • FIG. 8 is a flowchart showing a processing procedure executed by the coin identifying device. If the timing sensor 13 detects the arrival of a coin (step S101, Yes), the oscillation control unit 15a instructs the oscillation side coil 11 to synthesize a plurality of frequencies (step S102). If the determination condition in step S101 is not satisfied (No in step S101), the process in step S101 is repeated.
  • the frequency expansion unit 15e that has received the signal excited by the reception side coil 12 via the AD conversion unit 15b performs an FFT process (step S103), and outputs an output signal amplitude value corresponding to each frequency constituting the combined oscillation. (Reference value without coins) is acquired (step S104).
  • step S105 the coin center detection process which acquires the timing which a coin center arrives at the sensor center by the coin center detection part 15d is performed (step S105), and when such a timing is detected, the oscillation control part 15a has multiple frequencies. Is instructed to the oscillation side coil 11 (step S106). The detailed processing procedure of step S105 will be described later with reference to FIG.
  • the frequency expansion unit 15e that has received the signal excited by the reception side coil 12 via the AD conversion unit 15b performs FFT processing (step S107), and outputs an output signal amplitude value corresponding to each frequency constituting the combined oscillation. (Coin reaction value) is acquired (step S108).
  • deployment part 15e is the multiple frequency correction value which deducted the single frequency output value acquired by step S105, and the coin-less time reference value acquired by step S104 from the coin reaction value acquired by step S108, and Is input to the coin identifying unit 15f (step S109). Subsequently, the coin identifying unit 15f performs a coin identifying process (step S110) and ends the process.
  • FIG. 9 is a flowchart showing a processing procedure of coin center detection processing.
  • the coin center detection unit 15d receives the input value to the oscillation coil 31 and the transmission.
  • Output values from the unilateral coil 32 (transmission L), the transmission anti-coincident side coil 33 (transmission R), and the reflection coil 34 are stored in a memory such as a ring buffer (step S202).
  • step S203 it is determined whether or not data for a predetermined time (for a predetermined period of the used wavelength) has been acquired. If data for a predetermined wavelength has been acquired (step S203, Yes), step is performed. A total amplitude value (transmission L amplitude value + transmission R amplitude value) is calculated for the data stored in S202 (step S204). In addition, when the determination condition of step S203 is not satisfied (step S203, No), the processing after step S202 is repeated.
  • the coin center detection unit 15d refers to the history of the amplitude total value calculated in step S204, and whether or not the rate of change of the amplitude total value is 0 or whether the amplitude total value has taken an extreme value. (Step S205), and when the change rate of the total amplitude value is 0 (step S205, Yes), the fact that the center of the coin has been detected is notified (step S206), and the process is terminated. In addition, when the determination condition of step S205 is not satisfied (step S205, No), the processing after step S202 is repeated.
  • the oscillation control unit applies a combined signal obtained by combining a plurality of signals having a specific frequency to the oscillation side coil, and the combined signal is applied to the oscillation side coil.
  • the output signal from the receiving coil is converted into a digital signal by an AD (analog-digital) conversion unit, then the frequency expansion unit is expanded on the frequency axis, and the coin identification unit is extracted from the expanded signal.
  • the coin identifying device is configured to identify a coin based on the amplitude of a signal having a specific frequency.
  • the coin center indicating a substantially center line on the coin surface of the coin based on the output signal from the receiving side coil when the coin center detecting unit applies a single frequency signal to the oscillation side coil is a magnetic sensor.
  • the coin discriminating apparatus is configured to apply the composite signal to the oscillation side coil when it is detected that the center of the coin has been detected. Therefore, the coin identification process can be performed quickly and with high accuracy without increasing the circuit scale.
  • the coin discriminating apparatus and the coin discriminating method according to the present invention are useful when it is desired to perform the coin discriminating process with high accuracy without increasing the circuit scale, and in particular, it is desirable to perform the coin discriminating process quickly. Suitable for cases.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Coins (AREA)

Abstract

 発振制御部が、特定周波数の信号を複数合成した合成信号を発振側コイルに対して印加し、合成信号が発振側コイルに対して印加された場合における受信側コイルからの出力信号をAD(アナログデジタル)変換部がデジタル信号へ変換したうえで、周波数展開部が、周波数軸上に展開し、硬貨識別部が、展開された信号からそれぞれ抽出された特定周波数の信号の振幅に基づいて硬貨を識別するように硬貨識別装置を構成する。また、単一周波数の信号を前記発振側コイルに対して印加した場合における受信側コイルからの出力信号に基づいて硬貨の硬貨面における略中心線を示す硬貨中心が磁気センサへ到来したことを検出し、硬貨中心が検出された場合に、合成信号を発振側コイルに対して印加するように硬貨識別装置を構成する。

Description

硬貨識別装置および硬貨識別方法
 本発明は、発振側コイルへ通電することで磁界を発生させ、この磁界によって受信側コイルに励起された信号を検知することで硬貨を識別する硬貨識別装置および硬貨識別方法に関し、特に、回路規模を増大させることなく硬貨識別処理を迅速かつ高精度に行うことができる硬貨識別装置および硬貨識別方法に関するものである。
 搬送機構を用いて硬貨を搬送し、搬送路を隔てて配設された発振側コイルと受信側コイルとから構成される磁気センサで硬貨の金種や真偽を識別する硬貨識別装置が知られている。
 たとえば、特許文献1には、複数の周波数からなる合成信号を発振側コイルへ入力し、受信側では、受信側コイルに励起された信号を出力し、入力信号と出力信号とを対比することで硬貨を識別する技術が開示されている。
 具体的には、高周波(たとえば、250kHz)の発振信号と、中周波(たとえば、16kHz)の発振信号と、低周波(たとえば、4kHz)の発振信号とを合成して発振側コイルへ入力する。
 一方、受信側では、受信側コイルに励磁された信号を、高周波(たとえば、250kHz)の信号を抽出する第1のフィルタと、中周波(たとえば、16kHz)の信号を抽出する第2のフィルタと、低周波(たとえば、4kHz)の信号を抽出する第3のフィルタとを用いて分離する。
 そして、合成波を構成する各周波数(250kHz、16kHzまたは4kHz)の信号をそれぞれ抽出する。つづいて、各周波数(250kHz、16kHzまたは4kHz)の信号を受信側と送信側とでそれぞれ対比し、信号の減衰特性に基づいて硬貨の金種や真偽を識別する。
特許第3995423号公報
 しかしながら、特許文献1に開示されている技術を用いると、硬貨識別装置の回路規模が増大してしまうという問題があった。具体的には、受信側では、抽出する周波数の種類と同数のフィルタを受信側コイルごとに用意する必要があり、受信側コイルの種類が多いと用意すべきフィルタの数が膨大となってしまう。
 ところで、搬送される硬貨の通過によって受信側コイルの出力信号が変動することを利用した硬貨識別を高精度に行うためには、搬送される硬貨の硬貨中心がセンサ中心と一致するタイミングで受信側コイルの出力信号を取得することが好ましい。
 しかし、従来は、受信側コイルの出力信号が変動する様子を記録し、記録結果から硬貨中心がセンサ中心と一致するタイミングを事後的に推定していたため、硬貨識別処理に係る処理遅れが発生するという問題もあった。
 これらのことから、回路規模を増大させることなく硬貨識別処理を迅速かつ高精度に行うことができる硬貨識別装置あるいは硬貨識別方法をいかにして実現するかが大きな課題となっている。
 本発明は、上述した従来技術の課題を解決するためになされたものであり、回路規模を増大させることなく硬貨識別処理を迅速かつ高精度に行うことができる硬貨識別装置および硬貨識別方法を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、発振側コイルへ通電することで磁界を発生させ該磁界によって受信側コイルに励起された信号を検知する磁気センサを用いることで搬送される硬貨を識別する硬貨識別装置であって、特定周波数の信号を複数合成した合成信号を前記発振側コイルに対して印加する合成信号印加手段と、前記合成信号印加手段によって前記合成信号が前記発振側コイルに対して印加された場合における前記受信側コイルからの出力信号をデジタル信号へ変換したうえで周波数軸上に展開する展開手段と、前記展開手段によって展開された信号からそれぞれ抽出された前記特定周波数の信号の振幅に基づいて前記硬貨を識別する識別手段とを備えたことを特徴とする。
 また、本発明は、上記の発明において、単一周波数の信号を前記発振側コイルに対して印加した場合における前記受信側コイルからの出力信号に基づいて前記硬貨の硬貨面における略中心線を示す硬貨中心が前記磁気センサへ到来したことを検出する硬貨中心検出手段をさらに備え、前記合成信号印加手段は、前記硬貨中心検出手段によって前記硬貨中心が検出された場合に、前記合成信号を前記発振側コイルに対して印加することを特徴とする。
 また、本発明は、上記の発明において、前記発振側コイルに対して印加される前記特定周波数の信号を生成するクロックおよび前記受信側コイルからの出力信号をデジタル信号へ変換するクロックは、同一のクロックに基づくものであることを特徴とする。
 また、本発明は、上記の発明において、前記合成信号に含まれる前記特定周波数の信号は、それぞれが整数倍の関係にない周波数の信号であることを特徴とする。
 また、本発明は、上記の発明において、前記識別手段は、前記硬貨中心検出手段が用いる前記単一周波数の信号に対応する前記受信側コイルからの出力信号に基づいて前記硬貨を識別することを特徴とする。
 また、本発明は、発振側コイルへ通電することで磁界を発生させ該磁界によって受信側コイルに励起された信号を検知する磁気センサを用いることで搬送される硬貨を識別する硬貨識別方法であって、特定周波数の信号を複数合成した合成信号を前記発振側コイルに対して印加する合成信号印加工程と、前記合成信号印加工程によって前記合成信号が前記発振側コイルに対して印加された場合における前記受信側コイルからの出力信号をデジタル信号へ変換したうえで周波数軸上に展開する展開工程と、前記展開工程によって展開された信号からそれぞれ抽出された前記特定周波数の信号の振幅に基づいて前記硬貨を識別する識別工程とを含んだことを特徴とする。
 本発明によれば、特定周波数の信号を複数合成した合成信号を発振側コイルに対して印加し、合成信号が発振側コイルに対して印加された場合における受信側コイルからの出力信号をデジタル信号へ変換したうえで周波数軸上に展開し、展開された信号からそれぞれ抽出された特定周波数の信号の振幅に基づいて硬貨を識別することとしたので、回路規模を増大させることなく硬貨識別処理を行うことができるという効果を奏する。
 また、本発明によれば、単一周波数の信号を前記発振側コイルに対して印加した場合における受信側コイルからの出力信号に基づいて硬貨の硬貨面における略中心線を示す硬貨中心が磁気センサへ到来したことを検出し、硬貨中心が検出された場合に、合成信号を発振側コイルに対して印加することとしたので、最も識別精度が高まる硬貨中心で合成信号による情報取得を行うことで、硬貨識別精度を向上させることができるという効果を奏する。
 また、本発明によれば、発振側コイルに対して印加される特定周波数の信号を生成するクロックおよび受信側コイルからの出力信号をデジタル信号へ変換するクロックは、同一のクロックに基づくものであることとしたので、発振側および受信側で同一の基準クロックに由来するクロックを用いることで、クロックのずれによって発振側と受信側との動作タイミングがずれることを防止することができるという効果を奏する。
 また、本発明によれば、合成信号に含まれる特定周波数の信号は、それぞれが整数倍の関係にない周波数の信号であることとしたので、各特定周波数の信号が干渉することを防止することで、信号干渉によるノイズを低減することができるという効果を奏する。
 また、本発明によれば、単一周波数の信号に対応する受信側コイルからの出力信号に基づいて硬貨を識別することとしたので、合成周波数印加による識別要素に加えて単一周波数印加による識別要素を用いることで、硬貨識別精度を向上させることができるという効果を奏する。
図1は、本発明に係る硬貨識別方法の概要を示す図である。 図2は、本実施例に係る硬貨識別装置の構成を示すブロック値である。 図3は、各コイルの配置を示す図である。 図4は、発振側コイルおよび受信側コイルを示す図である。 図5は、制御部が実行する処理の概要を示す図である。 図6は、硬貨中心検出処理の概要を示す図である。 図7は、マハラノビスの距離を用いた金種判別の例を示す図である。 図8は、硬貨識別装置が実行する処理手順を示すフローチャートである。 図9は、硬貨中心検出処理の処理手順を示すフローチャートである。 図10は、従来技術に係る硬貨識別方法の概要を示す図である。
符号の説明
  10  硬貨識別装置
  11  発振側コイル
  12  受信側コイル
  13  タイミングセンサ
  14  クロック
  15  制御部
  15a 発振制御部
  15b AD(アナログデジタル)変換部
  15c 振幅算出部
  15d 硬貨中心検出部
  15e 周波数展開部
  15f 硬貨識別部
  30a、30b 搬送路端
  31  発振コイル
  31a、31b コア
  32  透過片寄側コイル
  32a コア
  32b コイル
  33  透過反片寄側コイル
  33a コア
  33b コイル
  34  反射コイル
  34a コア側コイル
  51  搬送ピン
 101  硬貨
 以下に、添付図面を参照して、本発明に係る硬貨識別装置および硬貨識別方法の好適な実施例を詳細に説明する。なお、以下では、本発明に係る硬貨識別方法の概要について説明した後に、本発明に係る硬貨識別方法を適用した硬貨識別装置についての実施例を説明することとする。
 まず、本発明に係る硬貨識別方法の特徴点を明確化するために、従来技術に係る硬貨識別方法の概要について説明する。図10は、従来技術に係る硬貨識別方法の概要を示す図である。なお、同図に示すPWM(Pulse Width Modulation)91は、パルス幅変調によって任意の周波数の矩形波を出力するデバイスである。
 従来技術に係る硬貨識別方法では、同図に示すように、PWM91から出力された信号を、フィルタ92a経由で250kHz正弦波としてドライバ93へ入力するとともに、フィルタ92b経由で4kHz正弦波として同じくドライバ93へ入力していた。
 そして、ドライバ93は、250kHz正弦波と4kHz正弦波とを合成して発振コイル94へ印加していた。また、受信コイル95では、励起された信号をアンプ96で増幅したうえで、フィルタ97aで250kHz正弦波に対応する信号を抽出するとともに、フィルタ97bで4kHz正弦波に対応する信号を抽出していた。
 つづいて、整流回路98aは、フィルタ97aからの信号を直流電圧信号へ変換し、整流回路98bは、フィルタ97bからの信号を直流電圧信号へ変換していた。そして、AD(アナログデジタル)コンバータ98は、フィルタ97a由来の直流電圧信号およびフィルタ97b由来の直流電圧信号をデジタル信号へ変換し、ADコンバータ98からのデジタル信号に基づいて硬貨識別処理99が行われていた。
 このように、従来技術に係る硬貨識別方法では、2つの周波数の合成信号を発振コイル94へ入力し(図10の(1)参照)、受信コイル95に励起された信号について、2つの周波数にそれぞれ対応する出力信号を各フィルタ(フィルタ97aおよびフィルタ97b)で抽出していた。また、従来は、フィルタ97aおよびフィルタ97bからの信号を、整流回路98aおよび整流回路98bでそれぞれ直流化していた。
 このように、従来技術に係る硬貨識別方法では、抽出したい周波数にそれぞれ対応するフィルタおよび整流回路を受信コイル95側に用意する必要があり、回路規模が増大するという問題があった。また、従来技術に係る硬貨識別方法では、整流回路における整流化処理において信号遅れが発生していた。
 ここで、硬貨の金種や真偽を精度良く判別するには、硬貨の特徴を反映しやすい周波数の信号を数種類用いることが好ましい。しかし、周波数の種類を増加させると、これに伴って受信コイル95側のフィルタ数が増加してしまう。また、受信コイル95として、透過型コイルや反射型コイルといった複数のコイルを用いると、コイルの個数に応じて受信コイル95側のフィルタ数が増加してしまう。
 そこで、本発明に係る硬貨識別方法では、受信コイル側で抽出したい周波数を高速フーリエ変換処理(FFT処理)で抽出することとした。図1は、本発明に係る硬貨識別方法の概要を示す図である。同図に示すように、本発明に係る硬貨識別方法では、PWM1aが出力した3周波が合成されたパルス幅信号を、フィルタ1bが振幅信号(同図の2参照)へ変換してドライバ1cへ入力し、ドライバ1cは、フィルタ1bから受け取った合成信号を発振コイル1dへ入力することとした。
 具体的には、フィルタ1bは、PWM1aから受け取ったパルス列におけるパルス幅の違いを電圧変化へ変換する処理、すなわち、FV(Frequency to Voltage)変換を行う。なお、本実施例では、PWM1aおよびフィルタ1bを用いて合成信号を得る場合について示したが、DAコンバータを用いて合成信号を得ることとしてもよい。
 また、受信コイル1eでは、励起された信号をアンプ1fで増幅したうえで、AD(アナログデジタル)コンバータ1gへ入力することとした。そして、ADコンバータ1gから出力された合成信号をメモリ1hに蓄積した後に、FFT処理1iを行い、周波数軸上に展開することとした(同図の3参照)。このようにすることで、同図に示すように、合成信号を構成する各周波数の信号(同図の3a、3bおよび3c)が、FFT処理1iによってそれぞれ展開される。
 すなわち、本発明に係る硬貨識別方法では、3周波数の合成信号を発振コイル1dへ入力し(同図の(1)参照)、受信コイル1e側では、3周波数にそれぞれ対応する出力信号をFFT処理(高速フーリエ変換処理)で抽出することとした(同図の(2)参照)。このように、本発明に係る硬貨識別方法では、抽出したい信号をFFT処理で抽出することとしたので、回路規模の増大を抑制することができる。また、整流回路を必要としないので、整流化処理による信号遅れも発生しない。
 なお、本発明に係る硬貨識別方法では、搬送される硬貨の硬貨中心がセンサ中心と一致するタイミングを単一周波数信号の振幅減衰に基づいて検出する(同図のメモリ1jおよび振幅算出処理1k参照)。また、3周波数を抽出したFFT処理1iからの出力および振幅算出処理1kからの単一周波数の振幅減衰に係る出力に基づいて硬貨識別処理1mを行うが、この点については後述することとする。
 以下では、本発明に係る硬貨識別方法を適用した硬貨識別装置の実施例について説明する。なお、以下に示す実施例では、合成周波数として3つの周波数を合成したものを用いる場合について説明するが、4つ以上の周波数を合成する場合であっても回路規模の増大は発生しない。
 図2は、本実施例に係る硬貨識別装置10の構成を示すブロック図である。同図に示すように、硬貨識別装置10は、発振側コイル11と、受信側コイル12と、タイミングセンサ13と、クロック14と、制御部15とを備えている。そして、制御部15は、発振制御部15aと、AD(アナログデジタル)変換部15bと、振幅算出部15cと、硬貨中心検出部15dと、周波数展開部15eと、硬貨識別部15fとをさらに備えている。
 発振側コイル11は、制御部15の発振制御部15aからの指示に従って単一周波数または合成周波数が印加される1次コイルである。また、受信側コイル12は、発振側コイル11への信号印加によって励起される電圧を取得するための2次コイルである。ここで、発振側コイル11および受信側コイル12について図3および図4を用いてさらに詳細に説明する。
 図3は、各コイルの配置を示す図である。なお、同図に示す30aおよび30bは、搬送路の両端を示しており、硬貨101は、搬送路端30aに片寄せされた状態で、同図に示した矢印の方向へ搬送されるものとする。
 図3に示したように、発振コイル31と搬送路を介して対向する位置には、透過コイルに相当する透過片寄側コイル32と、透過反片寄側コイル33とが配設されている。ここで、透過コイルとは、発振コイル31と搬送路を介して対向する搬送路面に設置されたコイルのことを指す。
 また、透過片寄側コイル32は、搬送路端30aに接した硬貨101の硬貨端を検出しやすい位置に、透過反片寄側コイル33は、搬送路端30bから離れて搬送される硬貨101の他端を金種にかかわらず検出しやすい位置に、それぞれ設置される。
 ここで、透過片寄側コイル32は、コア32aの外周まわりにコイル32bを巻回することによって構成されている。また、透過反片寄側コイル33についても、コア33aの外周回りにコイル33bを巻回することによって構成されている。
 そして、発振コイル31は、分離して配置されたコア31aおよびコア32aを、一体としてコイル31cを巻回することによって構成されている。なお、発振コイル31のコア31a/コア31b間に巻かれたコイル31cの内側には、反射コイル34が設置される。
 かかる反射コイル34は、中心軸に相当するコアまわりに巻回された2次コイルに相当するコア側コイル34aを有している。なお、反射コイル34は、発振コイル31と同じ搬送路面に隣接している。
 このように、発振コイル31が1次コイルに該当し、透過片寄側コイル32と、透過反片寄側コイル33と、反射コイル34のコア側コイル34aとが、上記した2次コイルに該当する。
 次に、発振側コイル(1次コイル)および受信側コイル(2次コイル)について図4を用いて説明する。図4は、発振側コイルおよび受信側コイルを示す図である。図3に示した各コイルを発振側コイルと受信側コイルとに分類すると、図4に示したように、発振コイル31は発振側コイルに分類され、透過片寄側コイル32、透過反片寄側コイル33および反射コイル34のコア側コイル34aは、受信側コイルに分類される。
 ここで、発振コイル31には、たとえば、4069Hz、22380Hzおよび128174Hzの信号の合成波が印加されるが、本実施例に係る硬貨識別装置10では、発振コイル31に流れる電流を測定して硬貨識別処理における判定要素に加えることとした。
 また、透過片寄側コイル32、透過反片寄側コイル33および反射コイル34には、発振コイル31に印加された合成波を構成する4069Hz、22380Hzおよび128174Hzの信号にそれぞれ対応する信号が励起されるが、本実施例に係る硬貨識別装置10では、透過片寄側コイル32、透過反片寄側コイル33および反射コイル34に発生する電圧を測定して硬貨識別処理における判定要素に加えることとした。
 なお、図4では、4069Hz、22380Hzおよび128174Hzの信号をそれぞれ用いる場合を例示したが、お互いの周波数が整数倍の関係にない周波数であって、硬貨の特徴を検出しやすい周波数であれば、他の周波数に変更することとしてもよい。また、図4に示したように特定の周波数を用いるのではなく、各信号の周波数比率を決定しておき、クロック14から提供される基準クロックに基づいて各周波数の信号を生成することとしてもよい。
 図2の説明に戻り、タイミングセンサ13について説明する。タイミングセンサ13は、発振側コイル11および受信コイル12よりも搬送路上流側に設けられ、たとえば、搬送路を隔てて対向する位置にそれぞれ設けられた発光素子および受光素子で構成される。この場合、タイミングセンサ13は、発光素子からの光が硬貨で遮られたことを受光素子で検出することで、硬貨の接近を検知する。
 クロック14は、発振制御部15aおよびAD変換部15bが動作する際の原振クロックであり、クロック14が発生する基準クロックを逓倍することで、各処理部の動作タイミングを決定する。
 このように、クロック14が発生する基準クロックに基づき、発振制御部15aおよびAD変換部15bが動作することで、各処理部が異なる基準クロックに基づいて動作する場合に発生してしまう動作タイミングのずれを防止することができる。これにより、基準クロックにずれが発生した場合であっても、発振側コイル11に印加した周波数と同一の周波数の信号として、受信側コイル12に励起された信号を取得することができる。
 制御部15は、発振側コイル11に印加する信号について単一周波数信号と合成周波数信号とを切り替える制御を行うとともに、受信側コイル12に励起された信号について単一周波数信号に対応する出力、合成周波数信号に対応する出力に基づいて硬貨識別を行う処理部である。
 ここで、制御部15が実行する処理の概要について図5を用いて説明する。図5は、制御部15が実行する処理の概要を示す図である。なお、同図の(A)には、図3に示した磁気センサを搬送路面と直交する向きから見た図を、同図の(B)には、発振側コイル11に印加される信号のタイミングチャートを、同図の(C)には、受信側コイル12に励起された信号に基づく各処理のタイミングチャートを、それぞれ示している。
 同図の(A)に示したように、搬送ピン51で支持された硬貨101が同図の101aに示した位置に到来したタイミング、すなわち、タイミングセンサ13の位置に到来したタイミング(同図のα参照)で、同図の(B)に示したように、発振側コイル11は、発振制御部15aの指示によって3周波数合成発振を行う。
 ここで、同図の(C)に示したように、受信側コイル12では、サンプリング(a)が行われる。つづいて、周波数展開部15eは、サンプリング(a)で取得されたデータについて、FFT処理を行う。なお、かかるFFT処理によって得られた各特定周波数の振幅値は、発振側コイル11/受信側コイル12の設置位置に硬貨100がない場合の基準値として用いられる。
 ところで、同図の(B)に示したように、発振側コイル11では、3周波数合成発振が完了すると、発振制御部15aの指示によって単一周波数発振を行う。これに伴い、同図の(C)に示したように、受信側コイル12では、硬貨中心検出部15dによって硬貨中心検出処理が行われる。なお、かかる硬貨中心検出処理は、並行して実施されるサンプリング(b)で取得されたデータに基づいて行われる。
 つづいて、同図の(A)に示したように、硬貨101が同図の101bの位置、すなわち、硬貨中心がセンサ中心と一致する位置に達したタイミング(同図のβ参照)を、硬貨中心検出部15dが検出すると、同図の(B)に示したように、発振側コイル11では、発振制御部15aの指示によって3周波数合成発振を行う。
 ここで、同図の(C)に示したように、受信側コイル12では、サンプリング(c)が行われる。つづいて、周波数展開部15eは、サンプリング(c)で取得されたデータについて、FFT処理を行う。なお、かかるFFT処理によって得られた各特定周波数の振幅値は、硬貨中心がセンサ中心と一致する位置における計測値として用いられる。
 そして、受信側コイル12の各出力に基づき、制御部15において硬貨識別部15fによる判定処理が実施され、所定のタイミングで判定結果の送信処理が行われる。
 図2の説明に戻り、制御部15が備える各処理部について説明する。発振制御部15aは、クロック14から基準クロックの提供を受け、発振側コイル11へ印加する信号を単一周波数または合成周波数のいずれかに切り替える処理を行う処理部である。
 具体的には、タイミングセンサ13から硬貨101が磁気センサに近づいたことを通知されると、単一周波数から合成周波数に切り替え、所定のサンプリング回数が経過すると、単一周波数へ切り替える。また、硬貨中心検出部15dから、硬貨中心が磁気センサ中心と一致した旨を通知されると、単一周波数から合成周波数へ切り替える。そして、所定のサンプリング回数が経過すると、単一周波数へ切り替える。
 なお、発振制御部15aは、単一周波数の周波数、合成周波数を構成する各周波数および合成される周波数信号の個数を、図示しない入力部などからの指示に応じて切り替える処理を併せて行うものとする。
 AD(アナログデジタル)変換部15bは、受信側コイル12に励起されたアナログ信号をデジタル信号へ変換し、振幅算出部15cおよび周波数展開部15eへ提供する処理を行う。なお、AD変換部15bは、発振制御部15aと同様に、クロック14から基準クロックの提供を受けるものとする。
 振幅算出部15cは、2つの透過センサ(透過片寄側コイル32および透過反片寄側コイル33)がそれぞれ取得した信号を加算することで振幅合計値を算出する処理を行う処理部である。なお、振幅算出部15cが行う振幅算出処理の詳細については、図9を用いて後述する。また、振幅算出部15cは算出した振幅を、硬貨中心検出部15dおよび硬貨識別部15fへ出力する処理を併せて行う。
 硬貨中心検出部15dは、単一周波数の信号が発振側コイル11に印加された場合に、受信側コイル12に励起された信号をAD変換部15b経由で受け取り、励起信号の振幅値の変化率に基づいて硬貨中心がセンサ中心と一致するタイミングを検出する処理を行う。ここで、硬貨中心検出部15dが行う硬貨中心検出処理の概要について図6を用いて説明する。
 図6は、硬貨中心検出処理の概要を示す図である。同図に示すように、硬貨端が磁気センサに到来すると(同図のA参照)励起信号の振幅値は、減少しはじめる。そして、硬貨中心がセンサ中心と一致すると、振幅値の変化率は0となる(同図のB参照)。硬貨中心検出部15dは、図5に示したサンプリング(b)によって得られた振幅値の変化率をモニターし、変化率が0となるタイミング、すなわち、振幅値の極小値を検出する。
 図2の説明に戻り、周波数展開部15eについて説明する。周波数展開部15eは、合成周波数の信号が発振側コイル11に印加された場合に、受信側コイル12に励起された信号をAD変換部15b経由で受け取り、励起信号を周波数軸上に展開するFFT処理を行うことで、合成周波数を構成する各周波数信号を抽出する処理を行う処理部である。また、周波数展開部15eは、抽出した各周波数信号を硬貨識別部15fへ出力する処理を併せて行う。
 硬貨識別部15fは、振幅算出部15cから受け取った単一周波数信号印加時の励起信号の振幅、周波数展開部15eから受け取った合成周波数信号印加時の励起信号から抽出した各周波数信号に基づき、いわゆるマハラノビスの距離を用いて硬貨101の金種および真偽を識別する処理を行う処理部である。
 ここで、マハラノビスの距離とは、確率分布を考慮した距離であり、多変数間の相関を用いた多変量解析に一般的に用いられている。なお、本実施例では、図4に示した受信側コイル12に含まれる各コイルから検出した各周波数に係る電圧、振幅算出部15cが算出した振幅を、各変数として用いてマハラノビスの距離が算出されることになる。次に、マハラノビスの距離を用いた金種判別の例について図7を用いて説明する。
 図7は、マハラノビスの距離を用いた金種判別の例を示す図である。なお、同図の(A)には、従来の要素別上下限閾値を用いた金種判別について、同図の(B)には、マハラノビスの距離を用いた金種判別について、それぞれ示している。
 また、同図における「○」印は金種Aのサンプル値を、「×」印は金種Bのサンプル値を、それぞれ示している。そして、同図における周波数α軸は、周波数αを発振側コイル11に印加した場合の、各受信側コイル12で検出される各種センサ値を指し、周波数β軸は、周波数αとは異なる周波数βを発振側コイル11に印加した場合の、各受信側コイル12で検出される各種センサ値を指す。
 図7の(A)に示したように、従来は、金種Aとみなす閾値範囲を、周波数α軸および周波数β軸に設定するとともに(同図の「金種A範囲」参照)、金種Bとみなす閾値範囲を、周波数α軸および周波数β軸に設定していた(同図の「金種B範囲」参照)。
 しかし、図7の(A)に示したように、周波数α軸について、金種A範囲と金種B範囲とが重複したり、周波数β軸について、金種A範囲と金種B範囲とが重複したりすると、重複する範囲の金種を明確に分離できず、金種Aと金種Bとの分離能力が十分とはいえなかった。
 一方、図7の(B)に示したように、マハラノビスの距離を用いた金種判別では、金種A範囲は、分布中心71について所定の閉曲線内の領域となり(同図の「金種A範囲」参照)、金種B範囲は、分布中心72について所定の閉曲線内の領域となる(同図の「金種B範囲」参照)。したがって、マハラノビスの距離を用いた多変量解析を行うことで、金種Aと金種Bとの分離能力を向上させることができる。
 次に、硬貨識別装置10が実行する処理手順について図8を用いて説明する。図8は、硬貨識別装置が実行する処理手順を示すフローチャートである。タイミングセンサ13が硬貨到来を検出したならば(ステップS101,Yes)、発振制御部15aは、複数周波数の合成発振を発振側コイル11に対して指示する(ステップS102)。なお、ステップS101の判定条件を満たさなかった場合には(ステップS101,No)、ステップS101の処理を繰り返す。
 つづいて、受信側コイル12に励起された信号をAD変換部15b経由で受け取った周波数展開部15eは、FFT処理を行い(ステップS103)、合成発振を構成する各周波数に対応する出力信号振幅値(硬貨なし時基準値)を取得する(ステップS104)。
 そして、硬貨中心検出部15dによって硬貨中心がセンサ中心に到来するタイミングを取得する硬貨中心検出処理が行われ(ステップS105)、かかるタイミングが検出された場合には、発振制御部15aは、複数周波数の合成発振を発振側コイル11に対して指示する(ステップS106)。なお、ステップS105の詳細な処理手順については、図9を用いて後述する。
 つづいて、受信側コイル12に励起された信号をAD変換部15b経由で受け取った周波数展開部15eは、FFT処理を行い(ステップS107)、合成発振を構成する各周波数に対応する出力信号振幅値(硬貨反応値)を取得する(ステップS108)。
 そして、周波数展開部15eは、ステップS105で取得された単一周波数出力値と、ステップS108で取得された硬貨反応値からステップS104で取得された硬貨なし時基準値を差し引いた複数周波数補正値とを硬貨識別部15fへ入力する(ステップS109)。つづいて、硬貨識別部15fは、硬貨識別処理を行い(ステップS110)、処理を終了する。
 次に、図8のステップS105に示した硬貨中心検出処理の詳細な処理手順について図9を用いて説明する。図9は、硬貨中心検出処理の処理手順を示すフローチャートである。同図に示したように、発振制御部15aが、単一周波数の発振を発振側コイル11に対して指示すると(ステップS201)、硬貨中心検出部15dは、発振コイル31への入力値、透過片寄側コイル32(透過L)、透過反片寄側コイル33(透過R)および反射コイル34からの出力値をリングバッファなどのメモリに記憶する(ステップS202)。
 つづいて、所定時間分(使用波長の所定周期分)のデータが取得されたか否かが判定され(ステップS203)、所定波長分のデータが取得された場合には(ステップS203,Yes)、ステップS202において記憶されたデータを対象として振幅合計値(透過L振幅値+透過R振幅値)が算出される(ステップS204)。なお、ステップS203の判定条件を満たさなかった場合には(ステップS203,No)、ステップS202以降の処理を繰り返す。
 そして、硬貨中心検出部15dは、ステップS204で算出された振幅合計値の履歴を参照することで、振幅合計値の変化率が0か否か、あるいは、振幅合計値が極値をとったか否かを判定し(ステップS205)、振幅合計値の変化率が0である場合には(ステップS205,Yes)、硬貨中心を検出した旨を通知して(ステップS206)処理を終了する。なお、ステップS205の判定条件を満たさなかった場合には(ステップS205,No)、ステップS202以降の処理を繰り返す。
 上述してきたように、本実施例では、発振制御部が、特定周波数の信号を複数合成した合成信号を発振側コイルに対して印加し、合成信号が発振側コイルに対して印加された場合における受信側コイルからの出力信号をAD(アナログデジタル)変換部がデジタル信号へ変換したうえで、周波数展開部が、周波数軸上に展開し、硬貨識別部が、展開された信号からそれぞれ抽出された特定周波数の信号の振幅に基づいて硬貨を識別するように硬貨識別装置を構成した。
 また、硬貨中心検出部が、単一周波数の信号を前記発振側コイルに対して印加した場合における受信側コイルからの出力信号に基づいて硬貨の硬貨面における略中心線を示す硬貨中心が磁気センサへ到来したことを検出し、硬貨中心が検出された場合に、合成信号を発振側コイルに対して印加するように硬貨識別装置を構成した。したがって、回路規模を増大させることなく硬貨識別処理を迅速かつ高精度に行うことができる。
 以上のように、本発明に係る硬貨識別装置および硬貨識別方法は、回路規模を増大させることなく硬貨識別処理を高精度に行いたい場合に有用であり、特に、硬貨識別処理を迅速に行いたい場合に適している。

Claims (6)

  1.  発振側コイルへ通電することで磁界を発生させ該磁界によって受信側コイルに励起された信号を検知する磁気センサを用いることで搬送される硬貨を識別する硬貨識別装置であって、
     特定周波数の信号を複数合成した合成信号を前記発振側コイルに対して印加する合成信号印加手段と、
     前記合成信号印加手段によって前記合成信号が前記発振側コイルに対して印加された場合における前記受信側コイルからの出力信号をデジタル信号へ変換したうえで周波数軸上に展開する展開手段と、
     前記展開手段によって展開された信号からそれぞれ抽出された前記特定周波数の信号の振幅に基づいて前記硬貨を識別する識別手段と
     を備えたことを特徴とする硬貨識別装置。
  2.  単一周波数の信号を前記発振側コイルに対して印加した場合における前記受信側コイルからの出力信号に基づいて前記硬貨の硬貨面における略中心線を示す硬貨中心が前記磁気センサへ到来したことを検出する硬貨中心検出手段
     をさらに備え、
     前記合成信号印加手段は、
     前記硬貨中心検出手段によって前記硬貨中心が検出された場合に、前記合成信号を前記発振側コイルに対して印加することを特徴とする請求項1に記載の硬貨識別装置。
  3.  前記発振側コイルに対して印加される前記特定周波数の信号を生成するクロックおよび前記受信側コイルからの出力信号をデジタル信号へ変換するクロックは、同一のクロックに基づくものであることを特徴とする請求項1に記載の硬貨識別装置。
  4.  前記合成信号に含まれる前記特定周波数の信号は、
     それぞれが整数倍の関係にない周波数の信号であることを特徴とする請求項1に記載の硬貨識別装置。
  5.  前記識別手段は、
     前記硬貨中心検出手段が用いる前記単一周波数の信号に対応する前記受信側コイルからの出力信号に基づいて前記硬貨を識別することを特徴とする請求項1に記載の硬貨識別装置。
  6.  発振側コイルへ通電することで磁界を発生させ該磁界によって受信側コイルに励起された信号を検知する磁気センサを用いることで搬送される硬貨を識別する硬貨識別方法であって、
     特定周波数の信号を複数合成した合成信号を前記発振側コイルに対して印加する合成信号印加工程と、
     前記合成信号印加工程によって前記合成信号が前記発振側コイルに対して印加された場合における前記受信側コイルからの出力信号をデジタル信号へ変換したうえで周波数軸上に展開する展開工程と、
     前記展開工程によって展開された信号からそれぞれ抽出された前記特定周波数の信号の振幅に基づいて前記硬貨を識別する識別工程と
     を含んだことを特徴とする硬貨識別方法。
PCT/JP2008/070416 2008-11-10 2008-11-10 硬貨識別装置および硬貨識別方法 WO2010052798A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010536632A JP5306367B2 (ja) 2008-11-10 2008-11-10 硬貨識別装置および硬貨識別方法
PCT/JP2008/070416 WO2010052798A1 (ja) 2008-11-10 2008-11-10 硬貨識別装置および硬貨識別方法
US13/128,293 US8490771B2 (en) 2008-11-10 2008-11-10 Coin recognition apparatus and coin recognition method
EP08877993.9A EP2352131B1 (en) 2008-11-10 2008-11-10 Coin discriminating device and coin discriminating method
CN2008801319089A CN102209978B (zh) 2008-11-10 2008-11-10 硬币识别装置以及硬币识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/070416 WO2010052798A1 (ja) 2008-11-10 2008-11-10 硬貨識別装置および硬貨識別方法

Publications (1)

Publication Number Publication Date
WO2010052798A1 true WO2010052798A1 (ja) 2010-05-14

Family

ID=42152613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/070416 WO2010052798A1 (ja) 2008-11-10 2008-11-10 硬貨識別装置および硬貨識別方法

Country Status (5)

Country Link
US (1) US8490771B2 (ja)
EP (1) EP2352131B1 (ja)
JP (1) JP5306367B2 (ja)
CN (1) CN102209978B (ja)
WO (1) WO2010052798A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192378A1 (ja) * 2013-05-31 2014-12-04 日本電産サンキョー株式会社 コイン状被検出体識別装置
JP2014233330A (ja) * 2013-05-31 2014-12-15 日本電産サンキョー株式会社 コイン状被検出体識別装置
JP2014233329A (ja) * 2013-05-31 2014-12-15 日本電産サンキョー株式会社 コイン状被検出体識別装置
JP2014233331A (ja) * 2013-05-31 2014-12-15 日本電産サンキョー株式会社 コイン状被検出体識別装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9036890B2 (en) 2012-06-05 2015-05-19 Outerwall Inc. Optical coin discrimination systems and methods for use with consumer-operated kiosks and the like
GB2508377A (en) * 2012-11-29 2014-06-04 Crane Payment Solutions Ltd Preventing fraud in a coin payout mechanism
US8668069B1 (en) * 2012-11-30 2014-03-11 Outerwall Inc. Differential detection coin discrimination systems and methods for use with consumer-operated kiosks and the like
CN103116934B (zh) * 2012-12-27 2014-12-03 南京中钞长城金融设备有限公司 一种硬币鉴别系统
US9022841B2 (en) 2013-05-08 2015-05-05 Outerwall Inc. Coin counting and/or sorting machines and associated systems and methods
US9443367B2 (en) 2014-01-17 2016-09-13 Outerwall Inc. Digital image coin discrimination for use with consumer-operated kiosks and the like
JP6143685B2 (ja) * 2014-02-10 2017-06-07 ローレル精機株式会社 硬貨処理装置
CN106600808B (zh) * 2016-12-09 2022-12-02 深圳市倍量电子有限公司 硬币鉴别方法及其装置
JP6875904B2 (ja) * 2017-03-29 2021-05-26 グローリー株式会社 磁気検出装置、及び磁気検出装置による磁気検出方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0696324A (ja) * 1992-09-11 1994-04-08 Fuji Electric Co Ltd 硬貨選別装置
JPH0844926A (ja) * 1994-07-28 1996-02-16 Nippon Conlux Co Ltd コイン検査方法およびその装置
JPH10334299A (ja) * 1997-05-29 1998-12-18 Mitsubishi Heavy Ind Ltd 硬貨選別装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2323199B (en) * 1997-02-24 2000-12-20 Mars Inc Method and apparatus for validating coins
JP3995423B2 (ja) 2001-03-15 2007-10-24 グローリー株式会社 硬貨識別センサ
US6892871B2 (en) * 2002-03-11 2005-05-17 Cummins-Allison Corp. Sensor and method for discriminating coins of varied composition, thickness, and diameter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0696324A (ja) * 1992-09-11 1994-04-08 Fuji Electric Co Ltd 硬貨選別装置
JPH0844926A (ja) * 1994-07-28 1996-02-16 Nippon Conlux Co Ltd コイン検査方法およびその装置
JPH10334299A (ja) * 1997-05-29 1998-12-18 Mitsubishi Heavy Ind Ltd 硬貨選別装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2352131A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192378A1 (ja) * 2013-05-31 2014-12-04 日本電産サンキョー株式会社 コイン状被検出体識別装置
JP2014233330A (ja) * 2013-05-31 2014-12-15 日本電産サンキョー株式会社 コイン状被検出体識別装置
JP2014233329A (ja) * 2013-05-31 2014-12-15 日本電産サンキョー株式会社 コイン状被検出体識別装置
JP2014233331A (ja) * 2013-05-31 2014-12-15 日本電産サンキョー株式会社 コイン状被検出体識別装置
CN105264575A (zh) * 2013-05-31 2016-01-20 日本电产三协株式会社 硬币状被检测体识别装置
CN105264575B (zh) * 2013-05-31 2017-12-26 日本电产三协株式会社 硬币状被检测体识别装置

Also Published As

Publication number Publication date
US20110209967A1 (en) 2011-09-01
JP5306367B2 (ja) 2013-10-02
CN102209978B (zh) 2013-03-20
EP2352131A1 (en) 2011-08-03
EP2352131B1 (en) 2013-05-01
CN102209978A (zh) 2011-10-05
JPWO2010052798A1 (ja) 2012-03-29
EP2352131A4 (en) 2012-04-25
US8490771B2 (en) 2013-07-23

Similar Documents

Publication Publication Date Title
JP5306367B2 (ja) 硬貨識別装置および硬貨識別方法
CN101790752B (zh) 多麦克风声音活动检测器
US9618366B2 (en) Absolute encoder scale configuration with unique coded impedance modulations
JPWO2007080764A1 (ja) 対象音分析装置、対象音分析方法および対象音分析プログラム
JP2000148172A (ja) 音声の動作特性検出装置および検出方法
CN101727912A (zh) 噪声抑制装置及噪声抑制方法
US20110311060A1 (en) Method and system for separating unified sound source
KR100368289B1 (ko) 음성인식장치를 위한 음성명령식별기
JP2009063928A (ja) 補間方法、情報処理装置
EP3852099B1 (en) Keyword detection apparatus, keyword detection method, and program
JP2022182441A (ja) 干渉検知装置、干渉検知方法及びプログラム
JP7075064B2 (ja) 信号源識別装置、信号源識別方法、プログラム
JP4816507B2 (ja) 音声分析合成装置、及びプログラム
JP2007248529A (ja) 音声認識装置、音声認識プログラム、及び音声動作可能な装置
JP6502099B2 (ja) 声門閉鎖時刻推定装置、ピッチマーク時刻推定装置、ピッチ波形接続点推定装置、その方法及びプログラム
US11961517B2 (en) Continuous utterance estimation apparatus, continuous utterance estimation method, and program
US7289584B2 (en) Predictive multi-channel decoder
US12007229B2 (en) Sensor for detecting an object and method of evaluating a sensor signal
KR20100066829A (ko) 순환정적특성 신호 감지를 위한 신호 감지 방법 및 장치
KR100669566B1 (ko) 정보 전송 방법 및 그 방법을 수행하는 시스템
Jeon et al. Two-stage impulsive noise detection using inter-frame correlation and hidden Markov model for audio restoration
JP6841095B2 (ja) 音響解析方法および音響解析装置
Skoglund et al. On time-frequency masking in voiced speech
JPH07287584A (ja) 騒音制御装置
JP2005292036A (ja) ノイズ源識別システムとその方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880131908.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08877993

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010536632

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13128293

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008877993

Country of ref document: EP