WO2010050467A1 - Heliostat drive mechanism - Google Patents

Heliostat drive mechanism Download PDF

Info

Publication number
WO2010050467A1
WO2010050467A1 PCT/JP2009/068397 JP2009068397W WO2010050467A1 WO 2010050467 A1 WO2010050467 A1 WO 2010050467A1 JP 2009068397 W JP2009068397 W JP 2009068397W WO 2010050467 A1 WO2010050467 A1 WO 2010050467A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotation axis
mirror structure
driving force
rotation
arc rail
Prior art date
Application number
PCT/JP2009/068397
Other languages
French (fr)
Japanese (ja)
Inventor
義一 中村
Original Assignee
三鷹光器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三鷹光器株式会社 filed Critical 三鷹光器株式会社
Publication of WO2010050467A1 publication Critical patent/WO2010050467A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • G02B7/183Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors specially adapted for very large mirrors, e.g. for astronomy, or solar concentrators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/45Arrangements for moving or orienting solar heat collector modules for rotary movement with two rotation axes
    • F24S30/458Arrangements for moving or orienting solar heat collector modules for rotary movement with two rotation axes with inclined primary axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H19/00Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion
    • F16H19/001Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for conveying reciprocating or limited rotary motion
    • F16H19/003Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for conveying reciprocating or limited rotary motion comprising a flexible member
    • F16H19/005Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for conveying reciprocating or limited rotary motion comprising a flexible member for conveying oscillating or limited rotary motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S2030/10Special components
    • F24S2030/13Transmissions
    • F24S2030/133Transmissions in the form of flexible elements, e.g. belts, chains, ropes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S2030/10Special components
    • F24S2030/13Transmissions
    • F24S2030/136Transmissions for moving several solar collectors by common transmission elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S2030/10Special components
    • F24S2030/14Movement guiding means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Definitions

  • the present invention relates to a drive mechanism for a heliostat.
  • a plurality of reflecting mirrors are attached to a frame body to form a mirror structure, and the mirror structure is rotatably supported on a rotating shaft, and receives sunlight in an optimum direction or reflects it in a desired direction.
  • a heliostat is known.
  • the heliostat disclosed in Japanese Patent Publication No. 9-280664 has a structure in which a mirror structure is rotated by applying a driving force to a rotation shaft that supports the mirror structure.
  • the present invention has been made paying attention to such a conventional technique, and according to the present invention, it is possible to provide a drive mechanism of a heliostat capable of rotating a mirror structure with a small drive force.
  • a drive mechanism of a heliostat forms a mirror structure by attaching a plurality of reflecting mirrors to a frame body, and the mirror structure is first rotated.
  • the first rotation shaft is supported by a shaft so that the first rotation shaft is freely rotatable, and the first drive shaft is supported by a second rotation shaft that is orthogonal to the first rotation shaft together with the mirror constituents.
  • the driving force acting body is provided, and the driving force acting body is engaged with the rotation driving portion supported by the gantry.
  • the driving force acting body is a timing belt
  • the rotation driving unit is a timing roller
  • both ends of the driving force acting body are fixed to the arc rail via an elastic body.
  • both ends of the arc rail are attached to both side portions of the first rotation shaft on which the mirror structure is supported with the second rotation shaft interposed therebetween, and are provided along the arc rail. Since the rotation drive unit supported by the gantry is engaged with the long drive force acting body, the drive force of the rotation drive unit acts on both sides of the first rotation shaft via the arc rail. Therefore, even with a small driving force, the first rotation axis can be rotated together with the mirror structure about the second rotation axis. Since the driving force acting body is guided by the arc rail and the state with respect to the rotational driving portion is always constant and does not bend, the driving force acting body can be stably fed.
  • the driving force acting body is a timing belt and the rotation driving unit is a timing roller, stable feeding can be performed with no slip between the driving force acting body and the rotation driving unit.
  • the power acting body is always pressed against the arc rail with an appropriate tension by fixing both ends of the power acting body to the arc rail via the elastic body.
  • FIG. 1 is an overall perspective view of a heliostat according to an embodiment of the present invention.
  • the perspective view which shows the heliostat of the state which removed the reflective mirror.
  • the perspective view which shows a frame body and a mount frame.
  • the side view which shows the connection part of a 1st rotating shaft and a circular arc rail.
  • Sectional drawing which shows the state which rotates a mirror structure using an arc rail.
  • Sectional drawing which shows the state after rotating a mirror structure using an arc rail.
  • the enlarged view which shows a timing belt and a timing roller.
  • the enlarged view which shows a wire winding part.
  • the sectional side view of the partial cross section which shows a heliostat.
  • the sectional side view which shows the state which rotates a mirror structure using a wire winding part.
  • a plurality of reflecting mirrors 2 are attached to a frame body 1 configured by combining metal panels to form a mirror structural body 3.
  • the mirror structure 3 has a structure in which the same structure on the left and right is connected by a central connection plate 4 and a lower connection bar 5.
  • a plurality of support pieces 6 project from the central part of the mirror structure 3, and a first rotation axis A that is an declination axis passes therethrough. Therefore, the center of gravity of the mirror structure 3 is offset downward by the amount of the support piece 6.
  • the first rotation axis A that supports the mirror structure 3 is rotatably supported by a bearing 7 fixed to a second rotation axis B that is a polar axis parallel to the rotation axis of the earth. Both ends of the second rotation axis B are supported by a gantry 8 installed on the ground.
  • the mirror structure 3 is rotatable about the first rotation axis A in the declination direction related to the seasonal movement of the sun, and is related to the diurnal movement of the sun about the second rotation axis B. It is freely rotatable in the ascending direction.
  • the first rotation axis A and the second rotation axis B do not cross each other and maintain a predetermined distance. However, since the mirror structure 3 is offset by the support piece 6, the reflection mirror 2 is moved to the first rotation axis A. And a virtual plane including the second rotation axis B (see FIG. 5). Thereby, the movement of the incident position of the incident light beam due to the rotation of the mirror structure around the second rotation axis B can be reduced.
  • both ends of the arc rail 9 are located in a virtual plane orthogonal to the second rotation axis B and define an arc centered on the second rotation axis B.
  • the part is installed.
  • the terminal of the first rotation axis A is rotatable with respect to the end of the arc rail 9.
  • the arc rail 9 is opened at the outside of the arc and has a U-shaped cross section.
  • a timing belt (driving force actuating body) 10 is provided along the longitudinal direction inside the rail.
  • the timing belt 10 is fixed in the vicinity of both end portions of the arc rail 9 with the concave and convex surfaces on the inside and both ends thereof via springs 11 as long elastic bodies. By interposing the spring 11, the timing belt 10 is pressed against the arc rail 9 with an appropriate tension. Further, since a frictional force due to the contact between the timing belt 10 and the arc rail 9 is also generated, a part of the driving force generated by the timing roller 13 described later is dispersed in the contact area between the timing belt 10 and the arc rail 9 to generate an arc. It can be transmitted to the rail 9.
  • the gantry 8 is provided with a timing roller (rotation drive unit) 13 driven by a motor 12.
  • a part of the timing belt 10 is pulled out from the pair of idle pulleys 14 and engaged with the timing roller 13.
  • the motor 12 rotates by a necessary direction and a necessary number of revolutions by an output from a sensor (not shown).
  • the motor 12 rotates and the timing roller 13 rotates, the timing belt 10 is sent, the arc rail 9 rotates in the longitudinal direction, and the first rotation axis A together with the mirror structure 3 and the second rotation axis. Rotate around B.
  • both ends of the arc rail 9 are attached to both ends of the first rotation axis A, the radius of the arc can be set large, and the first rotation axis A together with the mirror structure 3 can be set even with a small driving force. 2 It can be rotated around the rotation axis B. That is, since the driving force acting on the arc rail 9 by the timing belt 10 gives torque around the second rotation axis B, the mirror structure 3 can be rotated even with a small driving force. Moreover, since the arc structure attached to the 1st rotation axis A can maintain the stable intensity
  • the timing belt 10 is guided by the arc rail 9, and always maintains a state in which tension and frictional force with the arc rail 9 can be generated over the entire length of the timing belt 10 regardless of the rotation of the mirror structure 3.
  • the path length (belt length) defined by the belt 10 is constant. Therefore, since the state with respect to the timing roller 13 is always constant and does not bend, the timing belt 10 can be stably fed. Further, since the timing belt 10 and the timing roller 13 are engaged, there is no slip between them, and stable feeding can be performed.
  • a support arm 15 that rotates downward integrally with the second rotation axis B is formed near the center of the second rotation axis B.
  • the support arm 15 extends in a direction perpendicular to the second rotation axis B, and a wire winding portion 16 is provided at the lower end thereof.
  • the wire 17 is wound around the wire winding unit 16, and the wire 17 can be sent out or wound by an output from a sensor (not shown).
  • the tip of the wire 17 is coupled to the connecting bar 5 at the bottom of the mirror structure 3. Since the support arm 15 is formed so as to extend in the direction perpendicular to the second rotation axis B, the wire winding portion 16 is connected to the connecting bar more than the position directly below the first rotation axis A in a side view. It is located in a direction away from 5 (see FIG. 10).
  • the mirror constituting body 3 is suspended and supported by the first rotation axis A through the support piece 6, and the center of gravity is always below the first rotation axis A and passes through the first rotation axis A. Because of the offset to the right side, a rotational force R (clockwise torque on the drawing) is applied to the mirror structure 3 due to the weight of the mirror structure 3 (see FIG. 10).
  • the mirror structure 3 is rotated horizontally and the wire 17 is wound up.
  • the lower connecting bar 5 of the mirror structure 3 is pulled, the mirror structure 3 is rotated so as to be vertical.
  • the wire winding unit 16 is retracted from just below the first rotation axis A, the stroke for drawing the mirror structure 3 is large, and the mirror structure 3 can be rotated to a position close to the vertical. .
  • the rotation to one side uses gravity, so that the mirror structure has a simple structure such as the wire winding unit 16 and a small driving force. 3 can be reliably rotated.
  • the equatorial ritual heliostat in which the second rotation axis B is inclined as the polar axis is taken as an example, but the second rotation axis B may be a horizontal pedestal. Further, as the driving force acting body along the arc rail 9, a chain or the like may be used instead of the timing belt 10.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)
  • Transmission Devices (AREA)

Abstract

Both ends of an arced rail (9) are mounted to both ends of a first rotary shaft (A), which supports a mirror component (3), and a timing roller (13), supported by a frame (8), is engaged with a timing belt (10) body that is disposed along said arced rail (9), whereby the driving force of the timing roller (13) acts on both sides of the first rotary shaft (A) by means of the arced rail (9). Consequently, the first rotary shaft (A), together with the mirror component (3), can be rotated, centered on a second rotary shaft (B) even with a small driving force.

Description

ヘリオスタットの駆動機構Heliostat drive mechanism
 本発明はヘリオスタットの駆動機構に関するものである。 The present invention relates to a drive mechanism for a heliostat.
 複数の反射ミラーをフレーム体に取付けてミラー構成体を形成し、そのミラー構成体を回動軸に回動自在に支持し、太陽光を最適な向きで受光したり、或いは所望する方向へ反射したりするヘリオスタットが知られている。たとえば、日本国特許公開公報第特開平9-280664号に開示されるヘリオスタットは、ミラー構成体を支持している回動軸に駆動力を作用させることにより、ミラー構成体を回動させる構造を有する。 A plurality of reflecting mirrors are attached to a frame body to form a mirror structure, and the mirror structure is rotatably supported on a rotating shaft, and receives sunlight in an optimum direction or reflects it in a desired direction. A heliostat is known. For example, the heliostat disclosed in Japanese Patent Publication No. 9-280664 has a structure in which a mirror structure is rotated by applying a driving force to a rotation shaft that supports the mirror structure. Have
発明が解決しようとする課題
 しかしながら、このような従来の技術にあっては、ミラー構成体を支持している回動軸に駆動力を作用させているため、回動軸に大きな駆動力を作用させる必要がある。そのため、大掛かりな駆動機構を必要とし、消費電力の増加を招いていた。
SUMMARY OF THE INVENTION Problems to be Solved by the Invention However, in such a conventional technique, since a driving force is applied to the rotating shaft that supports the mirror structure, a large driving force is applied to the rotating shaft. It is necessary to let For this reason, a large drive mechanism is required, resulting in an increase in power consumption.
 本発明はこのような従来の技術に着目してなされたものであり、本発明によれば小さな駆動力でミラー構成体を回動させることができるヘリオスタットの駆動機構を提供することができる。 The present invention has been made paying attention to such a conventional technique, and according to the present invention, it is possible to provide a drive mechanism of a heliostat capable of rotating a mirror structure with a small drive force.
課題を解決するための手段
 本発明の技術的側面によれば、ヘリオスタットの駆動機構は、フレーム体に複数の反射ミラーを取付けてミラー構成体を形成し、該ミラー構成体を第1回動軸に支持して該第1回動軸を中心を回動自在とし、該第1駆動軸をミラー構成体ごと第1回動軸に直交する第2回動軸に支持して該第2回動軸を中心に回動自在とし、第2回動軸の両端を架台に支持したヘリオスタットの駆動機構であって、前記第1回動軸における第2回動軸を挟んだ両側部位に、第2回動軸に対して直交する面内に存在し且つ第2回動軸を中心とした円弧レールの両端部を取付け、該円弧レールの外側面に沿って両端が固定された長尺状の駆動力作用体を設け、該駆動力作用体を架台に支持された回転駆動部に係合させたことを特徴とする。
Means for Solving the Problems According to a technical aspect of the present invention, a drive mechanism of a heliostat forms a mirror structure by attaching a plurality of reflecting mirrors to a frame body, and the mirror structure is first rotated. The first rotation shaft is supported by a shaft so that the first rotation shaft is freely rotatable, and the first drive shaft is supported by a second rotation shaft that is orthogonal to the first rotation shaft together with the mirror constituents. It is a heliostat drive mechanism that is rotatable about a moving shaft and that supports both ends of the second rotating shaft on a gantry, on both sides of the first rotating shaft across the second rotating shaft, A long shape in which both ends of the arc rail are located in a plane perpendicular to the second rotation axis and centered on the second rotation axis, and both ends are fixed along the outer surface of the arc rail The driving force acting body is provided, and the driving force acting body is engaged with the rotation driving portion supported by the gantry. .
 本発明の別の技術的側面によれば、さらに、駆動力作用体がタイミングベルトであり、回転駆動部がタイミングローラであることを特徴とする。 According to another technical aspect of the present invention, the driving force acting body is a timing belt, and the rotation driving unit is a timing roller.
 本発明のさらに別の技術的側面によれば、前記駆動力作用体の両端は弾性体を介して前記円弧レールに固定されることを特徴とする。 According to still another technical aspect of the present invention, both ends of the driving force acting body are fixed to the arc rail via an elastic body.
発明の効果
 本発明によれば、ミラー構成体が支持された第1回動軸における第2回動軸を挟んだ両側部位に円弧レールの両端部を取付け、該円弧レールに沿って設けられた長尺状の駆動力作用体に、架台に支持された回転駆動部を係合させているため、回転駆動部の駆動力が円弧レールを介して第1回動軸の両側に作用する。従って、小さな駆動力でも第1回動軸をミラー構成体ごと第2回動軸を中心として回動させることができる。駆動力作用体は円弧レールにガイドされており、回転駆動部に対する状態は常に一定で撓んだりすることがないため、安定した駆動力作用体の送りが行える。
Effects of the Invention According to the present invention, both ends of the arc rail are attached to both side portions of the first rotation shaft on which the mirror structure is supported with the second rotation shaft interposed therebetween, and are provided along the arc rail. Since the rotation drive unit supported by the gantry is engaged with the long drive force acting body, the drive force of the rotation drive unit acts on both sides of the first rotation shaft via the arc rail. Therefore, even with a small driving force, the first rotation axis can be rotated together with the mirror structure about the second rotation axis. Since the driving force acting body is guided by the arc rail and the state with respect to the rotational driving portion is always constant and does not bend, the driving force acting body can be stably fed.
 また発明によれば、駆動力作用体がタイミングベルトであり、回転駆動部がタイミングローラであるため、駆動力作用体と回転駆動部の間でスリップがない、安定した送りを行うことができる。 Further, according to the invention, since the driving force acting body is a timing belt and the rotation driving unit is a timing roller, stable feeding can be performed with no slip between the driving force acting body and the rotation driving unit.
 さらに本発明によれば、動力作用体の両端が弾性体を介して前記円弧レールに固定されることにより動力作用体は常に適度なテンションで円弧レールに押し付けられるため、動力作用体の全長にわたって張力および円弧レールとの摩擦力を発生しうる状態を常に安定に維持することができる。 Further, according to the present invention, the power acting body is always pressed against the arc rail with an appropriate tension by fixing both ends of the power acting body to the arc rail via the elastic body. In addition, it is possible to always maintain a stable state capable of generating a frictional force with the arc rail.
本発明の実施形態に係るヘリオスタットを全体斜視図。1 is an overall perspective view of a heliostat according to an embodiment of the present invention. 反射ミラーを外した状態のヘリオスタットを示す斜視図。The perspective view which shows the heliostat of the state which removed the reflective mirror. フレーム体と架台を示す斜視図。The perspective view which shows a frame body and a mount frame. 第1回動軸と円弧レールの結合部を示す側面図。The side view which shows the connection part of a 1st rotating shaft and a circular arc rail. 円弧レールを利用してミラー構成体を回動させる状態を示す断面図。Sectional drawing which shows the state which rotates a mirror structure using an arc rail. 円弧レールを利用してミラー構成体を回動させた後の状態を示す断面図。Sectional drawing which shows the state after rotating a mirror structure using an arc rail. タイミングベルトとタイミングローラを示す拡大図。The enlarged view which shows a timing belt and a timing roller. ワイヤ巻取部を示す拡大図。The enlarged view which shows a wire winding part. ヘリオスタットを示す一部断面の側断面図。The sectional side view of the partial cross section which shows a heliostat. ワイヤ巻取部を利用してミラー構成体を回動させる状態を示す側断面図。The sectional side view which shows the state which rotates a mirror structure using a wire winding part.
 本発明の好適な実施形態を図1~図10に基づいて説明する。 A preferred embodiment of the present invention will be described with reference to FIGS.
 金属パネルを組み合わせて構成したフレーム体1に、複数の反射ミラー2を取付けてミラー構成体3を形成している。ミラー構成体3は左右に同じ構造を有するものを、中央の連結板4と、下方の連結バー5で連結した構造になっている。 A plurality of reflecting mirrors 2 are attached to a frame body 1 configured by combining metal panels to form a mirror structural body 3. The mirror structure 3 has a structure in which the same structure on the left and right is connected by a central connection plate 4 and a lower connection bar 5.
 また、ミラー構成体3には中央部に複数の支持片6が突設され、そこに赤緯軸である第1回動軸Aが貫通している。従って、支持片6の分だけ、ミラー構成体3の重心は下方にオフセットしている。 Further, a plurality of support pieces 6 project from the central part of the mirror structure 3, and a first rotation axis A that is an declination axis passes therethrough. Therefore, the center of gravity of the mirror structure 3 is offset downward by the amount of the support piece 6.
 ミラー構成体3を支持した第1回動軸Aは、地球の自転軸と平行な極軸である第2回動軸Bの固定された軸受7に回動自在に支持されている。第2回動軸Bの両端は地面に設置した架台8に支持されている。 The first rotation axis A that supports the mirror structure 3 is rotatably supported by a bearing 7 fixed to a second rotation axis B that is a polar axis parallel to the rotation axis of the earth. Both ends of the second rotation axis B are supported by a gantry 8 installed on the ground.
 従って、ミラー構成体3は、第1回動軸Aを中心に太陽の季節運動に関連する赤緯方向で回動自在で、第2回動軸Bを中心に太陽の日周運動に関連する赤経方向で回転自在となっている。 Accordingly, the mirror structure 3 is rotatable about the first rotation axis A in the declination direction related to the seasonal movement of the sun, and is related to the diurnal movement of the sun about the second rotation axis B. It is freely rotatable in the ascending direction.
 第1回動軸Aと第2回動軸Bは交差せずに所定の距離を保つが、ミラー構造体3が支持片6によりオフセットしているので、反射ミラー2を第1回動軸Aに平行で第2回動軸Bを含む仮想面に沿って配置することができる(図5参照)。これによって第2回動軸Bのまわりのミラー構成体の回動による入射光線の入射位置の移動を低減することができる。 The first rotation axis A and the second rotation axis B do not cross each other and maintain a predetermined distance. However, since the mirror structure 3 is offset by the support piece 6, the reflection mirror 2 is moved to the first rotation axis A. And a virtual plane including the second rotation axis B (see FIG. 5). Thereby, the movement of the incident position of the incident light beam due to the rotation of the mirror structure around the second rotation axis B can be reduced.
 そして、第1回動軸Aの両端には、第2回動軸Bに対して直交する仮想平面内に存在し且つ第2回動軸Bを中心とした円弧を規定する円弧レール9の両端部が取付けられている。第1回動軸Aの端末は、図4に示すように、円弧レール9の端部に対して回動自在である。円弧レール9は、円弧の外側が開きその断面はU字形をなして、レールの内部には長手方向に沿ってタイミングベルト(駆動力作用体)10が設けられている。 At both ends of the first rotation axis A, both ends of the arc rail 9 are located in a virtual plane orthogonal to the second rotation axis B and define an arc centered on the second rotation axis B. The part is installed. As shown in FIG. 4, the terminal of the first rotation axis A is rotatable with respect to the end of the arc rail 9. The arc rail 9 is opened at the outside of the arc and has a U-shaped cross section. A timing belt (driving force actuating body) 10 is provided along the longitudinal direction inside the rail.
 タイミングベルト10は凹凸面を内側にした状態で、その両端が長形の弾性体としてのスプリング11を介した状態で円弧レール9の両端部付近に固定されている。スプリング11が介在することにより、タイミングベルト10は適度なテンションで円弧レール9に押し付けられている。さらに、タイミングベルト10と円弧レール9の間での接触による摩擦力も発生するため、後述するタイミングローラ13で発生する駆動力の一部をタイミングベルト10と円弧レール9の接触領域に分散して円弧レール9に伝達することができる。 The timing belt 10 is fixed in the vicinity of both end portions of the arc rail 9 with the concave and convex surfaces on the inside and both ends thereof via springs 11 as long elastic bodies. By interposing the spring 11, the timing belt 10 is pressed against the arc rail 9 with an appropriate tension. Further, since a frictional force due to the contact between the timing belt 10 and the arc rail 9 is also generated, a part of the driving force generated by the timing roller 13 described later is dispersed in the contact area between the timing belt 10 and the arc rail 9 to generate an arc. It can be transmitted to the rail 9.
  一方、架台8には、モータ12により駆動されるタイミングローラ(回転駆動部)13が設けられている。このタイミングローラ13にタイミングベルト10の一部を一対のアイドルプーリ14から引き出して係合させている。モータ12は図示せぬセンサーからの出力により必要な方向及び必要な回転数だけ回転する。モータ12が回転してタイミングローラ13が回転すると、タイミングベルト10が送られ、円弧レール9がその長手方向に回動して、第1回動軸Aがミラー構成体3とともに第2回動軸Bを中心に回動する。 Meanwhile, the gantry 8 is provided with a timing roller (rotation drive unit) 13 driven by a motor 12. A part of the timing belt 10 is pulled out from the pair of idle pulleys 14 and engaged with the timing roller 13. The motor 12 rotates by a necessary direction and a necessary number of revolutions by an output from a sensor (not shown). When the motor 12 rotates and the timing roller 13 rotates, the timing belt 10 is sent, the arc rail 9 rotates in the longitudinal direction, and the first rotation axis A together with the mirror structure 3 and the second rotation axis. Rotate around B.
 第1回動軸Aの両端に円弧レール9の両端部が取付けられているため、円弧の半径を大きく設定することができ、小さな駆動力でも第1回動軸Aをミラー構成体3ごと第2回動軸Bを中心として回動させることができる。すなわち、タイミングベルト10により円弧レール9に作用する駆動力が第2回動軸Bのまわりのトルクを付与するため、小さな駆動力でもミラー構造体3を回動することができる。また、第1回動軸Aに取り付けられる円弧構造は安定した強度を保つことができるため円弧レール9を軽量化することができる。 Since both ends of the arc rail 9 are attached to both ends of the first rotation axis A, the radius of the arc can be set large, and the first rotation axis A together with the mirror structure 3 can be set even with a small driving force. 2 It can be rotated around the rotation axis B. That is, since the driving force acting on the arc rail 9 by the timing belt 10 gives torque around the second rotation axis B, the mirror structure 3 can be rotated even with a small driving force. Moreover, since the arc structure attached to the 1st rotation axis A can maintain the stable intensity | strength, the arc rail 9 can be reduced in weight.
 タイミングベルト10は円弧レール9にガイドされており、ミラー構成体3の回動にかかわらず、タイミングベルト10の全長にわたって張力および円弧レール9との摩擦力を発生しうる状態を常に維持しなおかつタイミングベルト10が規定する経路長(ベルト長)は一定である。したがって、タイミングローラ13に対する状態は常に一定で撓んだりすることがないため、安定したタイミングベルト10の送りが行える。また、タイミングベルト10とタイミングローラ13の係合のため、両者間でスリップがなく、安定した送りを行うことができる。 The timing belt 10 is guided by the arc rail 9, and always maintains a state in which tension and frictional force with the arc rail 9 can be generated over the entire length of the timing belt 10 regardless of the rotation of the mirror structure 3. The path length (belt length) defined by the belt 10 is constant. Therefore, since the state with respect to the timing roller 13 is always constant and does not bend, the timing belt 10 can be stably fed. Further, since the timing belt 10 and the timing roller 13 are engaged, there is no slip between them, and stable feeding can be performed.
回動動作
 次に、第1回動軸Aを中心にした方向での回動を説明する。第2回動軸Bの中央付近には、下向きに第2回動軸Bと一体的に回動する支持アーム15が形成されている。支持アーム15は第2回動軸Bに対して直角方向に延びて、その下端部にはワイヤ巻取部16が設けられている。
Next, the rotation in the direction around the first rotation axis A will be described. Near the center of the second rotation axis B, a support arm 15 that rotates downward integrally with the second rotation axis B is formed. The support arm 15 extends in a direction perpendicular to the second rotation axis B, and a wire winding portion 16 is provided at the lower end thereof.
 ワイヤ巻取部16にはワイヤ17が巻き取られ、図示せぬセンサからの出力により、ワイヤ17を送り出したり、巻き取ったりすることができる。ワイヤ17の先端は、ミラー構成体3の下部の連結バー5に結合されている。支持アーム15が第2回動軸Bに対して直角方向に長く延びた状態で形成されているため、側面視で、ワイヤ巻取部16は第1回動軸Aの真下位置よりも連結バー5から離反する方向に位置している(図10参照)。 The wire 17 is wound around the wire winding unit 16, and the wire 17 can be sent out or wound by an output from a sensor (not shown). The tip of the wire 17 is coupled to the connecting bar 5 at the bottom of the mirror structure 3. Since the support arm 15 is formed so as to extend in the direction perpendicular to the second rotation axis B, the wire winding portion 16 is connected to the connecting bar more than the position directly below the first rotation axis A in a side view. It is located in a direction away from 5 (see FIG. 10).
 ミラー構成体3は、支持片6を介して第1回動軸Aに吊り下げ支持されており、その重心が常に第1回動軸Aよりも下方かつ第1回動軸Aを通る鉛直線よりも右側にオフセットしているため、ミラー構成体3の重量により、ミラー構成体3には水平になろうとする回転力R(図面上時計回りのトルク)が作用する(図10参照)。 The mirror constituting body 3 is suspended and supported by the first rotation axis A through the support piece 6, and the center of gravity is always below the first rotation axis A and passes through the first rotation axis A. Because of the offset to the right side, a rotational force R (clockwise torque on the drawing) is applied to the mirror structure 3 due to the weight of the mirror structure 3 (see FIG. 10).
 従って、このミラー構成体3の重量に起因した回転力Rを利用し、ワイヤ巻取部16からワイヤ17を送り出せば、ミラー構成体3は水平になるように回動し、ワイヤ17を巻き取れば、ミラー構成体3の下部の連結バー5が引き寄せられるため、ミラー構成体3は垂直になるように回動する。特に、ワイヤ巻取部16が第1回動軸Aの真下よりも後退しているため、ミラー構成体3を引き寄せるストロークが大きく、ミラー構成体3を垂直に近い位置まで回動させることができる。このように、第1回動軸Aを中心とした回動では、一方への回動は重力を利用するため、ワイヤ巻取部16のような簡略な構造で且つ小さな駆動力でもミラー構成体3を確実に回動させることができる。 Therefore, if the rotational force R resulting from the weight of the mirror structure 3 is used and the wire 17 is sent out from the wire take-up portion 16, the mirror structure 3 is rotated horizontally and the wire 17 is wound up. For example, since the lower connecting bar 5 of the mirror structure 3 is pulled, the mirror structure 3 is rotated so as to be vertical. In particular, since the wire winding unit 16 is retracted from just below the first rotation axis A, the stroke for drawing the mirror structure 3 is large, and the mirror structure 3 can be rotated to a position close to the vertical. . In this way, in the rotation around the first rotation axis A, the rotation to one side uses gravity, so that the mirror structure has a simple structure such as the wire winding unit 16 and a small driving force. 3 can be reliably rotated.
 以上の実施形態では、第2回動軸Bが極軸として傾斜した赤道儀式のヘリオスタットを例にしたが、第2回動軸Bも水平な経緯台でも良い。また、円弧レール9に沿わせる駆動力作用体としてはタイミングベルト10に代えてチェーン(鎖)等を利用しても良い。 In the above embodiment, the equatorial ritual heliostat in which the second rotation axis B is inclined as the polar axis is taken as an example, but the second rotation axis B may be a horizontal pedestal. Further, as the driving force acting body along the arc rail 9, a chain or the like may be used instead of the timing belt 10.
(米国指定)
 本国際特許出願は米国指定に関し、2008年10月27日に出願された日本国特許出願第2008-275205号(2008年10月27日出願)について米国特許法第119条(a)に基づく優先権の利益を援用し、当該開示内容を引用する。
(US designation)
This international patent application is based on US designation 119 (a) regarding Japanese Patent Application No. 2008-275205 (filed on Oct. 27, 2008) filed on Oct. 27, 2008. Incorporate the interests of the rights and cite the disclosure.

Claims (3)

  1.  フレーム体に複数の反射ミラーを取付けてミラー構成体を形成し、該ミラー構成体を第1回動軸に支持して該第1回動軸を中心を回動自在とし、該第1駆動軸をミラー構成体とともに第1回動軸に直交する第2回動軸に支持して該第2回動軸を中心に回動自在とし、第2回動軸の両端を架台に支持したヘリオスタットの駆動機構であって、
     前記第1回動軸における第2回動軸を挟んだ両側部位に、第2回動軸に対して直交する面内に存在し且つ第2回動軸を中心とした円弧を規定する円弧レールの両端部が取付けられ、
     該円弧レールの外側面に沿って両端が該円弧レールに固定された長尺状の駆動力作用体が設けられ、該駆動力作用体が架台に支持された回転駆動部に係合することを特徴とするヘリオスタットの駆動機構。
    A plurality of reflecting mirrors are attached to the frame body to form a mirror structure, the mirror structure is supported on a first rotation shaft, and the first drive shaft is rotatable about the first drive shaft. Is supported on a second rotating shaft orthogonal to the first rotating shaft together with the mirror structure so as to be rotatable around the second rotating shaft, and both ends of the second rotating shaft are supported by a gantry. Drive mechanism,
    An arc rail that defines an arc centered on the second rotation axis that exists in a plane perpendicular to the second rotation axis at both side portions of the first rotation axis across the second rotation axis. Both ends of the
    A long driving force acting body having both ends fixed to the arc rail along the outer surface of the arc rail is provided, and the driving force acting body is engaged with a rotation driving portion supported by a gantry. Heliostat drive mechanism.
  2.  前記駆動力作用体がタイミングベルトであり、前記回転駆動部がタイミングローラであることを特徴とする請求項1記載のヘリオスタットの駆動機構。 The heliostat drive mechanism according to claim 1, wherein the driving force acting body is a timing belt, and the rotation drive unit is a timing roller.
  3.  前記駆動力作用体の両端は弾性体を介して前記円弧レールに固定されることを特徴とする請求項1または2記載のヘリオスタットの駆動機構。 3. The driving mechanism for a heliostat according to claim 1, wherein both ends of the driving force acting body are fixed to the arc rail via an elastic body.
PCT/JP2009/068397 2008-10-27 2009-10-27 Heliostat drive mechanism WO2010050467A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-275205 2008-10-27
JP2008275205A JP2010101462A (en) 2008-10-27 2008-10-27 Mechanism for driving heliostat

Publications (1)

Publication Number Publication Date
WO2010050467A1 true WO2010050467A1 (en) 2010-05-06

Family

ID=42128828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068397 WO2010050467A1 (en) 2008-10-27 2009-10-27 Heliostat drive mechanism

Country Status (2)

Country Link
JP (1) JP2010101462A (en)
WO (1) WO2010050467A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010034986A1 (en) * 2010-08-20 2012-02-23 Philipp Schramek Solar central receiver system with a heliostat field
ES2428221A1 (en) * 2013-07-24 2013-11-06 Centro De Investigaciones Energéticas, Medioambientales Y Tecnológicas (C.I.E.M.A.T.) Solar concentrator

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102621678B (en) * 2011-01-28 2015-03-11 上海工电能源科技有限公司 Micro-arc curved surface glass collecting mirror of solar heliostat
KR101356801B1 (en) 2012-02-27 2014-02-11 주식회사 위스코하이텍 Apparatus for collecting solar energy
JP2013181669A (en) 2012-02-29 2013-09-12 Mitsubishi Heavy Ind Ltd Light condensing device, rotational axis setting method therefor, and heat collection apparatus and solar thermal power generation apparatus with light condensing device
WO2013129177A1 (en) 2012-02-29 2013-09-06 三菱重工業株式会社 Optical condenser, and heat collection apparatus and solar thermal power generation apparatus equipped therewith
JP2013204933A (en) 2012-03-28 2013-10-07 Mitsubishi Heavy Ind Ltd Method of manufacturing mirror structure, mirror structure, light-condensing unit with the same, heat collection facility, and solar thermal power generation facility

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57188965A (en) * 1981-05-18 1982-11-20 Takehisa Tomotsune Sun tracking device for solar heat collector
JPH09280664A (en) * 1996-04-15 1997-10-31 Aisin Seiki Co Ltd Solar thermal light collection device
JPH1153914A (en) * 1997-07-31 1999-02-26 San Fueibaa Japan:Kk Sunlight-tracking type sunlight condensing device
JP2001133676A (en) * 1999-11-04 2001-05-18 Mitsui Eng & Shipbuild Co Ltd Method and device for letting in sun light
JP2002098415A (en) * 2000-09-22 2002-04-05 Mitaka Koki Co Ltd Solar light condensing device
JP2004037037A (en) * 2002-07-05 2004-02-05 Mitaka Koki Co Ltd Heliostat for sunlight condensing system and control method thereof
JP2004527723A (en) * 2001-05-29 2004-09-09 ザ サン トラスト エルエルシー Solar energy conversion
JP2007180484A (en) * 2005-09-28 2007-07-12 Tec Okazaki:Kk Sun-tracking system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57188965A (en) * 1981-05-18 1982-11-20 Takehisa Tomotsune Sun tracking device for solar heat collector
JPH09280664A (en) * 1996-04-15 1997-10-31 Aisin Seiki Co Ltd Solar thermal light collection device
JPH1153914A (en) * 1997-07-31 1999-02-26 San Fueibaa Japan:Kk Sunlight-tracking type sunlight condensing device
JP2001133676A (en) * 1999-11-04 2001-05-18 Mitsui Eng & Shipbuild Co Ltd Method and device for letting in sun light
JP2002098415A (en) * 2000-09-22 2002-04-05 Mitaka Koki Co Ltd Solar light condensing device
JP2004527723A (en) * 2001-05-29 2004-09-09 ザ サン トラスト エルエルシー Solar energy conversion
JP2004037037A (en) * 2002-07-05 2004-02-05 Mitaka Koki Co Ltd Heliostat for sunlight condensing system and control method thereof
JP2007180484A (en) * 2005-09-28 2007-07-12 Tec Okazaki:Kk Sun-tracking system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010034986A1 (en) * 2010-08-20 2012-02-23 Philipp Schramek Solar central receiver system with a heliostat field
DE102010034986A8 (en) * 2010-08-20 2012-09-06 Dr. Schramek Philipp Solar central receiver system with a heliostat field
WO2012022418A3 (en) * 2010-08-20 2012-09-20 Philipp Schramek Central receiver solar system comprising a heliostat field
US9097438B2 (en) 2010-08-20 2015-08-04 Philipp Schramek Central receiver solar system comprising a heliostat field
ES2428221A1 (en) * 2013-07-24 2013-11-06 Centro De Investigaciones Energéticas, Medioambientales Y Tecnológicas (C.I.E.M.A.T.) Solar concentrator
WO2015011303A1 (en) * 2013-07-24 2015-01-29 Centro De Investigaciones Energéticas Medioambientales Y Tecnológicas (C.I.E.M.A.T) Solar concentrator

Also Published As

Publication number Publication date
JP2010101462A (en) 2010-05-06

Similar Documents

Publication Publication Date Title
WO2010050467A1 (en) Heliostat drive mechanism
CN103033931B (en) Optical scanner
US20130269885A1 (en) Motorized Operating Device Intended for Operating a Movable Screen with a Windable Canvas of a Window Covering Device or a Projection Screen Device
WO2015052341A1 (en) Motorised installation for manoeuvring a screen and associated screen device
WO2011157757A1 (en) Reducing device having a high reduction ratio, robot and haptic interface comprising at least one such reducing device
US11084425B2 (en) Actuator mechanism, exterior mirror device and vehicle
MA33186B1 (en) DRIVE MECHANISM FOR A SOLAR CONCENTRATOR ASSEMBLY
FR3059699A1 (en) SUSPENSION MEMBER, ELECTROMECHANICAL ACTUATOR COMPRISING SUCH SUSPENSION MEMBER AND SOLAR CLOSURE OR PROTECTION PLANT COMPRISING SUCH SUSPENSION OR ELECTROMECHANICAL ACTUATOR
WO2018087183A1 (en) Pipe winding/unwinding device
JP2010101591A (en) Drive mechanism of heliostat
US7837381B2 (en) Mechanical winding device for wristwatches and wristwatch for such a winding device
US8282062B2 (en) Tilting device
JPH04269257A (en) Projecting arm for sunshade
KR880008046A (en) View finder
FR2964160A1 (en) Energy recovery device for producing electrical energy to e.g. electrical circuit in aircraft, has wing supporting unit connected to energy transformation unit, and profiled wing placed along flow of fluid
CA2958260A1 (en) Sun tracking device for solar modules with elastic or resilient pseudo-hinges
KR20210126851A (en) Display device
US7052160B1 (en) Reflective mechanism for stage lamp
EP3234479B1 (en) System for rotating an assembly of reflectors of a concentrated solar power plant and concentrated solar power plant comprising such a system
CN219178009U (en) Solar bracket with damping mechanism
EP4178767B1 (en) Mobile platform carrying an on-board motor assembly and a parallel robot with cables comprising such a mobile platform
KR101472677B1 (en) natural lighting device and the method of natural lighting
EP0190062B1 (en) Adjustable support for the mirror in a following spotlight
JP6529242B2 (en) Drive mechanism
EP3138989A1 (en) Glazing provided with a concealing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09823577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09823577

Country of ref document: EP

Kind code of ref document: A1