JP2010101462A - Mechanism for driving heliostat - Google Patents

Mechanism for driving heliostat Download PDF

Info

Publication number
JP2010101462A
JP2010101462A JP2008275205A JP2008275205A JP2010101462A JP 2010101462 A JP2010101462 A JP 2010101462A JP 2008275205 A JP2008275205 A JP 2008275205A JP 2008275205 A JP2008275205 A JP 2008275205A JP 2010101462 A JP2010101462 A JP 2010101462A
Authority
JP
Japan
Prior art keywords
mirror structure
rotation axis
rotation
driving force
heliostat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008275205A
Other languages
Japanese (ja)
Inventor
Giichi Nakamura
義一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitaka Kohki Co Ltd
Original Assignee
Mitaka Kohki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitaka Kohki Co Ltd filed Critical Mitaka Kohki Co Ltd
Priority to JP2008275205A priority Critical patent/JP2010101462A/en
Priority to PCT/JP2009/068397 priority patent/WO2010050467A1/en
Publication of JP2010101462A publication Critical patent/JP2010101462A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • G02B7/183Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors specially adapted for very large mirrors, e.g. for astronomy, or solar concentrators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/45Arrangements for moving or orienting solar heat collector modules for rotary movement with two rotation axes
    • F24S30/458Arrangements for moving or orienting solar heat collector modules for rotary movement with two rotation axes with inclined primary axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H19/00Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion
    • F16H19/001Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for conveying reciprocating or limited rotary motion
    • F16H19/003Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for conveying reciprocating or limited rotary motion comprising a flexible member
    • F16H19/005Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for conveying reciprocating or limited rotary motion comprising a flexible member for conveying oscillating or limited rotary motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S2030/10Special components
    • F24S2030/13Transmissions
    • F24S2030/133Transmissions in the form of flexible elements, e.g. belts, chains, ropes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S2030/10Special components
    • F24S2030/13Transmissions
    • F24S2030/136Transmissions for moving several solar collectors by common transmission elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S2030/10Special components
    • F24S2030/14Movement guiding means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mechanism for driving a heliostat, which can turn a mirror structure with small driving force. <P>SOLUTION: Both ends of a circular rail 9 are fitted to both ends of a first rotary shaft A supporting the mirror structure 3, and a timing roller 13 supported by a framework 8 is engaged with a timing belt 10 provided along the circular rail 9. With this structure, driving force of the timing roller 13 is applied to both sides of the first rotary shaft A through the circular rail 9. Consequently, even small driving force can turn the first rotary shaft A with the mirror structure 3 around a second rotary shaft B. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はヘリオスタットの駆動機構に関するものである。   The present invention relates to a drive mechanism for a heliostat.

複数の反射ミラーをフレーム体に取付けてミラー構成体を形成し、そのミラー構成体を回動軸に回動自在に支持し、太陽光を最適な向きで受光したり、或いは所望する方向へ反射したりするヘリオスタットが知られている。この種のヘリオスタットの場合は、ミラー構成体を支持している回動軸に駆動力を作用させることにより、ミラー構成体を回動させる構造になっている(例えば、特許文献1参照)。
特開平9−280664号公報
A plurality of reflecting mirrors are attached to the frame body to form a mirror structure, and the mirror structure is rotatably supported on a rotating shaft so that sunlight is received in an optimal direction or reflected in a desired direction. A heliostat is known. In the case of this type of heliostat, a driving force is applied to a rotating shaft that supports the mirror structure, thereby rotating the mirror structure (see, for example, Patent Document 1).
JP-A-9-280664

しかしながら、このような従来の技術にあっては、ミラー構成体を支持している回動軸に駆動力を作用させているため、回動軸に大きな駆動力を作用させる必要がある。そのため、大掛かりな駆動機構を必要とし、消費電力の増加を招いていた。   However, in such a conventional technique, since a driving force is applied to the rotating shaft that supports the mirror structure, it is necessary to apply a large driving force to the rotating shaft. For this reason, a large drive mechanism is required, resulting in an increase in power consumption.

本発明は、このような従来の技術に着目してなされたものであり、小さな駆動力でミラー構成体を回動させることができるヘリオスタットの駆動機構を提供するものである。   The present invention has been made paying attention to such a conventional technique, and provides a drive mechanism of a heliostat capable of rotating a mirror structure with a small drive force.

請求項1記載の発明は、フレーム体に複数の反射ミラーを取付けてミラー構成体を形成し、該ミラー構成体を第1回動軸に支持して該第1回動軸を中心を回動自在とし、該第1駆動軸をミラー構成体ごと第1回動軸に直交する第2回動軸に支持して該第2回動軸を中心に回動自在とし、第2回動軸の両端を架台に支持したヘリオスタットの駆動機構であって、前記第1回動軸における第2回動軸を挟んだ両側部位に、第2回動軸に対して直交する面内に存在し且つ第2回動軸を中心とした円弧レールの両端部を取付け、該円弧レールの外側面に沿って両端が固定された長尺状の駆動力作用体を設け、該駆動力作用体を架台に支持された回転駆動部に係合させたことを特徴とする。   According to the first aspect of the present invention, a mirror structure is formed by attaching a plurality of reflecting mirrors to the frame body, the mirror structure is supported on a first rotation shaft, and is rotated about the first rotation shaft. The first drive shaft is supported by a second rotation shaft that is orthogonal to the first rotation shaft together with the mirror structure, and is rotatable about the second rotation shaft. A heliostat drive mechanism having both ends supported by a pedestal, the both sides of the first rotation shaft sandwiching the second rotation shaft, present in a plane orthogonal to the second rotation shaft, and Attach both ends of the arc rail around the second rotation axis, provide a long driving force acting body fixed at both ends along the outer surface of the arc rail, and use the driving force acting body as a gantry It is characterized by being engaged with a supported rotational drive unit.

請求項2記載の発明は、駆動力作用体がタイミングベルトであり、回転駆動部がタイミングローラであることを特徴とする。   The invention described in claim 2 is characterized in that the driving force acting body is a timing belt, and the rotation driving portion is a timing roller.

請求項1記載の発明によれば、ミラー構成体が支持された第1回動軸における第2回動軸を挟んだ両側部位に円弧レールの両端部を取付け、該円弧レールに沿って設けられた長尺状の駆動力作用体に、架台に支持された回転駆動部を係合させているため、回転駆動部の駆動力が円弧レールを介して第1回動軸の両側に作用する。従って、小さな駆動力でも第1回動軸をミラー構成体ごと第2回動軸を中心として回動させることができる。駆動力作用体は円弧レールにガイドされており、回転駆動部に対する状態は常に一定で撓んだりすることがないため、安定した駆動力作用体の送りが行える。   According to the first aspect of the present invention, the both ends of the arc rail are attached to both side portions of the first rotation shaft, on which the mirror structure is supported, sandwiching the second rotation shaft, and are provided along the arc rail. Since the rotation drive unit supported by the gantry is engaged with the long drive force acting body, the drive force of the rotation drive unit acts on both sides of the first rotation shaft via the arc rail. Therefore, even with a small driving force, the first rotation axis can be rotated together with the mirror structure about the second rotation axis. Since the driving force acting body is guided by the arc rail and the state with respect to the rotational driving portion is always constant and does not bend, the driving force acting body can be stably fed.

請求項2記載の発明によれば、駆動力作用体がタイミングベルトであり、回転駆動部がタイミングローラであるため、駆動力作用体と回転駆動部の間でスリップがない、安定した送りを行うことができる。   According to the second aspect of the present invention, since the driving force acting body is a timing belt and the rotation driving portion is a timing roller, there is no slip between the driving force acting body and the rotation driving portion, and stable feeding is performed. be able to.

本発明の好適な実施形態を図1〜図10に基づいて説明する。   A preferred embodiment of the present invention will be described with reference to FIGS.

金属パネルを組み合わせて構成したフレーム体1に、複数の反射ミラー2を取付けてミラー構成体3を形成している。ミラー構成体3は左右に同じ構造を有するものを、中央の連結板4と、下方の連結バー5で連結した構造になっている。   A mirror structure 3 is formed by attaching a plurality of reflection mirrors 2 to a frame body 1 configured by combining metal panels. The mirror structure 3 has a structure in which the same structure on the left and right is connected by a central connection plate 4 and a lower connection bar 5.

また、ミラー構成体3には中央部に複数の支持片6が突設され、そこに赤緯軸である第1回動軸Aが貫通している。従って、支持片6の分だけ、ミラー構成体3の重心は下方にオフセットしている。   In addition, a plurality of support pieces 6 project from the central portion of the mirror structure 3, and a first rotation axis A, which is the declination axis, passes therethrough. Therefore, the center of gravity of the mirror structure 3 is offset downward by the amount of the support piece 6.

ミラー構成体3を支持した第1回動軸Aは、地球の自転軸と平行な極軸である第2回動軸Bの固定された軸受7に回動自在に支持されている。第2回動軸Bの両端は地面に設置した架台8に支持されている。   The first rotation axis A that supports the mirror structure 3 is rotatably supported by a bearing 7 fixed to a second rotation axis B that is a polar axis parallel to the rotation axis of the earth. Both ends of the second rotation axis B are supported by a gantry 8 installed on the ground.

従って、ミラー構成体3は、第1回動軸Aを中心に太陽の季節運動に関連する赤緯方向で回動自在で、第2回動軸Bを中心に太陽の日周運動に関連する赤経方向で回転自在となっている。   Accordingly, the mirror structure 3 is rotatable about the first rotation axis A in the declination direction related to the seasonal movement of the sun, and is related to the diurnal movement of the sun about the second rotation axis B. It is freely rotatable in the ascending direction.

そして、第1回動軸Aの両端には、第2回動軸Bに対して直交する仮想平面内に存在し且つ第2回動軸Bを中心とした円弧を規定する円弧レール9の両端部が取付けられている。第1回動軸Aの端末は、円弧レール9の端部に対して回動自在である(図4参照)。円弧レール9の外側が開いた断面コ字形で、その内部には長手方向に沿ってタイミングベルト(駆動力作用体)10が設けられている。タイミングベルト10は凹凸面を内側にした状態で、その両端がスプリング11を介した状態で円弧レール9の両端部付近に固定されている。スプリング11が介在することにより、タイミングベルト10は適度なテンションで円弧レール9に押し付けられている。さらに、タイミングベルト10と円弧レール9の間での接触による摩擦力も発生するため、後述するタイミングローラ13で発生する駆動力の一部をタイミングベルト10と円弧レール9の接触領域に分散して円弧レール9に伝達することができる。   At both ends of the first rotation axis A, both ends of the arc rail 9 are located in a virtual plane orthogonal to the second rotation axis B and define an arc centered on the second rotation axis B. The part is installed. The terminal of the first rotation axis A is rotatable with respect to the end of the arc rail 9 (see FIG. 4). The outer side of the arc rail 9 is U-shaped in cross section, and a timing belt (driving force acting body) 10 is provided in the inside along the longitudinal direction. The timing belt 10 is fixed in the vicinity of both end portions of the arc rail 9 with both ends thereof interposed via springs 11 with the uneven surface inside. By interposing the spring 11, the timing belt 10 is pressed against the arc rail 9 with an appropriate tension. Further, since a frictional force due to the contact between the timing belt 10 and the arc rail 9 is also generated, a part of the driving force generated by the timing roller 13 described later is dispersed in the contact area between the timing belt 10 and the arc rail 9 to generate an arc. It can be transmitted to the rail 9.

一方、架台8には、モータ12により駆動されるタイミングローラ(回転駆動部)13が設けられている。このタイミングローラ13にタイミングベルト10の一部を一対のアイドルプーリ14から引き出して係合させている。モータ12は図示せぬセンサーからの出力により必要な方向及び必要な回転数だけ回転する。モータ12が回転してタイミングローラ13が回転すると、タイミングベルト10が送られ、円弧レール9がその長手方向に回動して、第1回動軸Aがミラー構成体3ごと第2回動軸Bを中心に回動する。   On the other hand, the gantry 8 is provided with a timing roller (rotation drive unit) 13 driven by a motor 12. A part of the timing belt 10 is pulled out from the pair of idle pulleys 14 and engaged with the timing roller 13. The motor 12 rotates by a necessary direction and a necessary number of revolutions by an output from a sensor (not shown). When the motor 12 rotates and the timing roller 13 rotates, the timing belt 10 is sent, the arc rail 9 rotates in the longitudinal direction, and the first rotation axis A together with the mirror structure 3 is the second rotation axis. Rotate around B.

第1回動軸Aの両端に円弧レール9の両端部が取付けられているため、小さな駆動力でも第1回動軸Aをミラー構成体3ごと第2回動軸Bを中心として回動させることができる。タイミングベルト10は円弧レール9にガイドされており、ミラー構成体3の回動にかかわらず、タイミングベルト10の全長にわたって張力を発生しうる状態を常に維持しなおかつタイミングベルト10が規定する経路長(ベルト長)は一定である。したがって、タイミングローラ13に対する状態は常に一定で撓んだりすることがないため、安定したタイミングベルト10の送りが行える。また、タイミングベルト10とタイミングローラ13の係合のため、両者間でスリップがなく、安定した送りを行うことができる。   Since both ends of the arc rail 9 are attached to both ends of the first rotation axis A, the first rotation axis A can be rotated together with the mirror structure 3 about the second rotation axis B even with a small driving force. be able to. The timing belt 10 is guided by the arc rail 9, and always maintains a state where tension can be generated over the entire length of the timing belt 10 regardless of the rotation of the mirror structure 3, and the path length defined by the timing belt 10 ( Belt length) is constant. Therefore, since the state with respect to the timing roller 13 is always constant and does not bend, the timing belt 10 can be stably fed. Further, since the timing belt 10 and the timing roller 13 are engaged, there is no slip between them, and stable feeding can be performed.

次に、第1回動軸Aを中心にした方向での回動を説明する。第2回動軸Bの中央付近には、下向きに第2回動軸Bと一体的に回動する支持アーム15が形成されている。支持アーム15は第2回動軸Bに対して直角方向に延びて、その下端部にはワイヤ巻取部16が設けられている。   Next, the rotation in the direction around the first rotation axis A will be described. Near the center of the second rotation axis B, a support arm 15 that rotates downward integrally with the second rotation axis B is formed. The support arm 15 extends in a direction perpendicular to the second rotation axis B, and a wire winding portion 16 is provided at the lower end thereof.

ワイヤ巻取部16にはワイヤ17が巻き取られ、図示せぬセンサからの出力により、ワイヤ17を送り出したり、巻き取ったりすることができる。ワイヤ17の先端は、ミラー構成体3の下部の連結バー5に結合されている。支持アーム15が第2回動軸Bに対して直角方向に長く延びた状態で形成されているため、側面視で、ワイヤ巻取部16は第1回動軸Aの真下位置よりも連結バー5から離反する方向に位置している(図10参照)。   A wire 17 is wound around the wire winding unit 16, and the wire 17 can be sent out or wound by an output from a sensor (not shown). The tip of the wire 17 is coupled to the connecting bar 5 at the bottom of the mirror structure 3. Since the support arm 15 is formed so as to extend in the direction perpendicular to the second rotation axis B, the wire winding portion 16 is connected to the connecting bar more than the position directly below the first rotation axis A in a side view. It is located in a direction away from 5 (see FIG. 10).

ミラー構成体3は、支持片6を介して第1回動軸Aに吊り下げ支持されており、その重心が第1回動軸Aよりも下方にオフセットしているため、ミラー構成体3自体の重量により、ミラー構成体3には水平になろうとする回転力R(図10参照)が作用する。   The mirror structure 3 is supported by being suspended from the first rotation axis A via the support piece 6, and its center of gravity is offset below the first rotation axis A. Therefore, the mirror structure 3 itself , A rotational force R (see FIG. 10) that acts to be horizontal acts on the mirror structure 3.

従って、このミラー構成体3の重量に起因した回転力Rを利用し、ワイヤ巻取部16からワイヤ17を送り出せば、ミラー構成体3は水平になるように回動し、ワイヤ17を巻き取れば、ミラー構成体3の下部の連結バー5が引き寄せられるため、ミラー構成体3は垂直になるように回動する。特に、ワイヤ巻取部16が第1回動軸Aの真下よりも後退しているため、ミラー構成体3を引き寄せるストロークが大きく、ミラー構成体3を垂直に近い位置まで回動させることができる。このように、第1回動軸Aを中心とした回動では、一方への回動は重力を利用するため、ワイヤ巻取部16のような簡略な構造で且つ小さな駆動力でもミラー構成体3を確実に回動させることができる。   Therefore, if the rotational force R resulting from the weight of the mirror structure 3 is used and the wire 17 is sent out from the wire take-up portion 16, the mirror structure 3 is rotated horizontally and the wire 17 is wound up. For example, the lower connecting bar 5 of the mirror structure 3 is pulled, so that the mirror structure 3 rotates to be vertical. In particular, since the wire winding unit 16 is retracted from directly below the first rotation axis A, the stroke for drawing the mirror structure 3 is large, and the mirror structure 3 can be rotated to a position close to the vertical. . In this way, in the rotation around the first rotation axis A, the rotation to one side uses gravity, so that the mirror structure has a simple structure such as the wire winding unit 16 and a small driving force. 3 can be reliably rotated.

以上の実施形態では、第2回動軸Bが極軸として傾斜した赤道儀式のヘリオスタットを例にしたが、第2回動軸Bも水平な経緯台でも良い。また、円弧レール9に沿わせる駆動力作用体としてはタイミングベルト10に代えてチェーン(鎖)等を利用しても良い。   In the above embodiment, the equatorial ritual type heliostat in which the second rotation axis B is inclined as a polar axis is taken as an example, but the second rotation axis B may also be a horizontal pedestal. Further, as the driving force acting body along the arc rail 9, a chain or the like may be used instead of the timing belt 10.

本発明の実施形態に係るヘリオスタットを全体斜視図。1 is an overall perspective view of a heliostat according to an embodiment of the present invention. 反射ミラーを外した状態のヘリオスタットを示す斜視図。The perspective view which shows the heliostat of the state which removed the reflective mirror. フレーム体と架台を示す斜視図。The perspective view which shows a frame body and a mount frame. 第1回動軸と円弧レールの結合部を示す側面図。The side view which shows the connection part of a 1st rotating shaft and a circular arc rail. 円弧レールを利用してミラー構成体を回動させる状態を示す断面図。Sectional drawing which shows the state which rotates a mirror structure using an arc rail. 円弧レールを利用してミラー構成体を回動させた後の状態を示す断面図。Sectional drawing which shows the state after rotating a mirror structure using an arc rail. タイミングベルトとタイミングローラを示す拡大図。The enlarged view which shows a timing belt and a timing roller. ワイヤ巻取部を示す拡大図。The enlarged view which shows a wire winding part. ヘリオスタットを示す一部断面の側断面図。The sectional side view of the partial cross section which shows a heliostat. ワイヤ巻取部を利用してミラー構成体を回動させる状態を示す側断面図。The sectional side view which shows the state which rotates a mirror structure using a wire winding part.

符号の説明Explanation of symbols

1 フレーム体
2 反射ミラー
3 ミラー構成体
5 連結バー
8 架台
9 円弧レール
10 タイミングベルト(駆動力作用体)
13 タイミングローラ(回転駆動部)
15 支持アーム
16 ワイヤ巻取部
17 ワイヤ
A 第1回動軸
B 第2回動軸
R 回転力
DESCRIPTION OF SYMBOLS 1 Frame body 2 Reflecting mirror 3 Mirror structure 5 Connection bar 8 Base 9 Arc rail 10 Timing belt (drive force action body)
13 Timing roller (rotary drive)
DESCRIPTION OF SYMBOLS 15 Support arm 16 Wire winding part 17 Wire A 1st rotating shaft B 2nd rotating shaft R Rotational force

Claims (2)

フレーム体に複数の反射ミラーを取付けてミラー構成体を形成し、該ミラー構成体を第1回動軸に支持して該第1回動軸を中心を回動自在とし、該第1駆動軸をミラー構成体ごと第1回動軸に直交する第2回動軸に支持して該第2回動軸を中心に回動自在とし、第2回動軸の両端を架台に支持したヘリオスタットの駆動機構であって、
前記第1回動軸における第2回動軸を挟んだ両側部位に、第2回動軸に対して直交する面内に存在し且つ第2回動軸を中心とした円弧を規定する円弧レールの両端部を取付け、
該円弧レールの外側面に沿って両端が該円弧レールに固定された長尺状の駆動力作用体を設け、該駆動力作用体を架台に支持された回転駆動部に係合させたことを特徴とするヘリオスタットの駆動機構。
A plurality of reflecting mirrors are attached to the frame body to form a mirror structure, the mirror structure is supported on a first rotation shaft, and the first rotation shaft is rotatable about the first drive shaft. A heliostat in which the mirror structure is supported on a second rotation shaft orthogonal to the first rotation shaft so as to be rotatable about the second rotation shaft, and both ends of the second rotation shaft are supported by a gantry. Drive mechanism,
An arc rail that defines an arc centered on the second rotation axis that is present in a plane perpendicular to the second rotation axis at both side portions of the first rotation axis across the second rotation axis. Attach both ends of
A long driving force acting body having both ends fixed to the arc rail along the outer surface of the arc rail is provided, and the driving force acting body is engaged with a rotation driving portion supported by a gantry. The drive mechanism of the characteristic heliostat.
駆動力作用体がタイミングベルトであり、回転駆動部がタイミングローラであることを特徴とする請求項1記載のヘリオスタットの駆動機構。   The heliostat drive mechanism according to claim 1, wherein the driving force acting body is a timing belt, and the rotational drive unit is a timing roller.
JP2008275205A 2008-10-27 2008-10-27 Mechanism for driving heliostat Pending JP2010101462A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008275205A JP2010101462A (en) 2008-10-27 2008-10-27 Mechanism for driving heliostat
PCT/JP2009/068397 WO2010050467A1 (en) 2008-10-27 2009-10-27 Heliostat drive mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008275205A JP2010101462A (en) 2008-10-27 2008-10-27 Mechanism for driving heliostat

Publications (1)

Publication Number Publication Date
JP2010101462A true JP2010101462A (en) 2010-05-06

Family

ID=42128828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008275205A Pending JP2010101462A (en) 2008-10-27 2008-10-27 Mechanism for driving heliostat

Country Status (2)

Country Link
JP (1) JP2010101462A (en)
WO (1) WO2010050467A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102621678A (en) * 2011-01-28 2012-08-01 上海工电能源科技有限公司 Micro-arc curved surface glass collecting mirror of solar heliostat
KR101356801B1 (en) 2012-02-27 2014-02-11 주식회사 위스코하이텍 Apparatus for collecting solar energy
US9441616B2 (en) 2012-02-29 2016-09-13 Mitsubishi Heavy Industries, Ltd. Optical condenser, rotational axis setting method therefor, and heat collection apparatus and solar power generation apparatus equipped with optical condenser
US9534812B2 (en) 2012-02-29 2017-01-03 Mitsubishi Heavy Industries, Ltd. Solar concentrator, and heat collection apparatus and solar thermal power generation apparatus including same
US9664416B2 (en) 2012-03-28 2017-05-30 Mitsubishi Heavy Industries, Ltd. Method for manufacturing mirror structure, mirror structure, light collection device having same, heat collection facility, and solar thermal power generation facility

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010034986A1 (en) * 2010-08-20 2012-02-23 Philipp Schramek Solar central receiver system with a heliostat field
ES2428221B1 (en) * 2013-07-24 2014-07-30 Centro De Investigaciones Energéticas, Medioambientales Y Tecnológicas (Ciemat) Solar concentrator

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57188965A (en) * 1981-05-18 1982-11-20 Takehisa Tomotsune Sun tracking device for solar heat collector
JPH09280664A (en) * 1996-04-15 1997-10-31 Aisin Seiki Co Ltd Solar thermal light collection device
JPH1153914A (en) * 1997-07-31 1999-02-26 San Fueibaa Japan:Kk Sunlight-tracking type sunlight condensing device
JP2001133676A (en) * 1999-11-04 2001-05-18 Mitsui Eng & Shipbuild Co Ltd Method and device for letting in sun light
JP2002098415A (en) * 2000-09-22 2002-04-05 Mitaka Koki Co Ltd Solar light condensing device
US6498290B1 (en) * 2001-05-29 2002-12-24 The Sun Trust, L.L.C. Conversion of solar energy
JP3701264B2 (en) * 2002-07-05 2005-09-28 三鷹光器株式会社 Heliostat for solar condensing system and control method thereof
JP2007180484A (en) * 2005-09-28 2007-07-12 Tec Okazaki:Kk Sun-tracking system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102621678A (en) * 2011-01-28 2012-08-01 上海工电能源科技有限公司 Micro-arc curved surface glass collecting mirror of solar heliostat
KR101356801B1 (en) 2012-02-27 2014-02-11 주식회사 위스코하이텍 Apparatus for collecting solar energy
US9441616B2 (en) 2012-02-29 2016-09-13 Mitsubishi Heavy Industries, Ltd. Optical condenser, rotational axis setting method therefor, and heat collection apparatus and solar power generation apparatus equipped with optical condenser
US9534812B2 (en) 2012-02-29 2017-01-03 Mitsubishi Heavy Industries, Ltd. Solar concentrator, and heat collection apparatus and solar thermal power generation apparatus including same
US9664416B2 (en) 2012-03-28 2017-05-30 Mitsubishi Heavy Industries, Ltd. Method for manufacturing mirror structure, mirror structure, light collection device having same, heat collection facility, and solar thermal power generation facility

Also Published As

Publication number Publication date
WO2010050467A1 (en) 2010-05-06

Similar Documents

Publication Publication Date Title
JP2010101462A (en) Mechanism for driving heliostat
MA33186B1 (en) DRIVE MECHANISM FOR A SOLAR CONCENTRATOR ASSEMBLY
CA1092814A (en) Guiding tape correction system in a billboard
JP3201904U (en) Solar panel mounting base
CN102943996A (en) Effect device for forming stage-lighting effects
JP2010101591A (en) Drive mechanism of heliostat
WO2010005014A1 (en) Sun-following light-collecting device of suspended type
JP2010019999A (en) Cross type solar tracking light condensing device
JP2007197952A (en) Electric blind driving unit
CN219587493U (en) Power component of rolling curtain and rolling curtain
US8282062B2 (en) Tilting device
DE602006020378D1 (en) Image forming apparatus
CN211207625U (en) Adjustable show link plate
CN210393211U (en) Winding device with tension linkage adjusting mechanism
FR2964160A1 (en) Energy recovery device for producing electrical energy to e.g. electrical circuit in aircraft, has wing supporting unit connected to energy transformation unit, and profiled wing placed along flow of fluid
KR101418578B1 (en) Winding apparatus of placard
CN207551790U (en) Motor drives roll device
KR102340514B1 (en) Display device
TW200509788A (en) Fishing line guide mechanism for spinning reel
US20170174136A1 (en) Actuator for a Power Fold Mechanism of a Rear View Device for a Vehicle
JP2009100594A (en) Motor and driving device for electric blind
CN213277614U (en) Paying-off machine for cable extruder
JPH0587352A (en) Electric heater
JPH05171882A (en) Screen driving device of motor driven roll blind
JP2008029439A (en) Device for making indoor carp streamer flutter