WO2010047177A1 - Method for producing metal oxide thin film - Google Patents

Method for producing metal oxide thin film Download PDF

Info

Publication number
WO2010047177A1
WO2010047177A1 PCT/JP2009/065050 JP2009065050W WO2010047177A1 WO 2010047177 A1 WO2010047177 A1 WO 2010047177A1 JP 2009065050 W JP2009065050 W JP 2009065050W WO 2010047177 A1 WO2010047177 A1 WO 2010047177A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
metal
thin film
solution
oxide thin
Prior art date
Application number
PCT/JP2009/065050
Other languages
French (fr)
Japanese (ja)
Inventor
哲男 土屋
智彦 中島
俊弥 熊谷
Original Assignee
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所 filed Critical 独立行政法人産業技術総合研究所
Priority to KR1020117009042A priority Critical patent/KR101261119B1/en
Priority to JP2010534749A priority patent/JP5697085B2/en
Publication of WO2010047177A1 publication Critical patent/WO2010047177A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/32Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G1/00Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
    • C01G1/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources

Definitions

  • the present invention relates to a method for efficiently producing a metal oxide thin film containing metal on an organic substrate or a glass substrate with low energy.
  • Metal oxides are stable in the atmosphere and exhibit magnetic, semiconducting, dielectric, superconducting and optical properties by controlling crystal structure, metal composition and oxygen non-stoichiometry. Creation of devices and innovative devices is expected. For example, the conductivity can be controlled by controlling element substitution and oxygen vacancies with different valences as in the case of semiconductors. However, oxides such as ITO show transparency in the visible region, so liquid crystals, solar cells, etc. It has supported the modern information society as an application.
  • Perovskite oxides such as lead titanate that exhibit high insulation and dielectric properties for these conductors have been used for capacitors and sensors in the past, but for further integration of LSIs by thinning the film. Expanding to non-volatile memory development. Similarly, high-temperature superconducting oxides, even for materials with perovskite-related structures, are being promoted for practical applications such as next-generation devices, source devices, and filter applications due to their thinning. As described above, since metal oxides have many functions, various thin film manufacturing methods have been developed so far.
  • the chemical solution method is expected as a low-cost manufacturing process for metal oxide thin films because it does not use a vacuum apparatus and can strictly control the composition of the solution.
  • the chemical solution method uses a method in which a gel film obtained by hydrolysis reaction of metal alkoxide is baked and a metal organic acid salt or metal acetylacetonate as a precursor film, which is used for thermal decomposition of organic compounds by thermal equilibrium reaction. It is broadly divided into MOD (metal organic decomposition) for crystal growth or coating thermal decomposition.
  • a metal oxide compound (metal organic acid) is a method for producing a metal oxide on a substrate without heat treatment at a high temperature as conventionally known as a coating pyrolysis method.
  • Patent Document 1 a metal oxide manufacturing method for forming a metal oxide on a substrate.
  • a metal organic compound is dissolved in a solvent to form a solution, which is applied to a substrate, dried, and then laser light having a wavelength of 400 nm or less, for example, an excimer selected from ArF, KrF, XeCl, XeF, and F 2
  • a method for producing a metal oxide is described in which a metal oxide is formed on a substrate by irradiating with a laser, and irradiation with a laser beam having a wavelength of 400 nm or less is performed in a plurality of stages. It is also described that the irradiation is performed with a weak irradiation that does not lead to complete decomposition of the metal organic compound, and then a strong irradiation that can be changed to an oxide.
  • the metal organic compound is two or more kinds of compounds made of different metals, and the obtained metal oxide is a composite metal oxide made of different metals, wherein the metal of the metal organic acid salt is iron, indium, tin, It is also known to be selected from the group consisting of zirconium, cobalt, iron, nickel and lead.
  • a low temperature preparation method of a La 1-x Sr x MnO 3 thin film for an infrared sensor bolometer thin film is also known (see Patent Document 2).
  • Patent Document 3 the Eu crystallization and luminescent center ions by irradiating Y 2 Y was dissolved in O 3 2 O 3 a: method for producing such Eu phosphor thin film is disclosed.
  • Patent Document 4 Furthermore, it is known to form an alignment film of a metal oxide (BaTiO 3 or the like) containing Ba and Ti on a metal film having a (111) crystal plane on a substrate (Patent Document 5).
  • the method for producing a metal oxide film obtained from a thin film production process using a metal organic compound is effective as a method for producing a high-luminance oxide phosphor on a silicon or glass substrate. It became clear that it was difficult to fabricate directly on an organic substrate because it was necessary to irradiate a laser beam with high intensity for growth. Susumu Mizuta and Toshiya Kumagai, “Synthesis of superconducting thin films by organic acid coating pyrolysis”, Industrial Materials, 35 (454), 78-79 (1987).
  • the present invention provides a method for producing a metal oxide film obtained from a thin film production process using a metal organic compound, and heating using a metal organic compound solution containing a metal oxide nanoparticle solution and metal oxide nanoparticles.
  • the present invention provides a method of directly manufacturing a phosphor thin film such as Y 2 O 3 : Eu or CaTiO 3 : Pr on an organic material (for example, PET) substrate by irradiating with ultraviolet rays or plasma.
  • a high-luminance phosphor that is irradiated with conventional low laser energy so that the phosphor does not form even when the film using a metal organic compound as a precursor is irradiated with a laser. It is an object to provide a method capable of manufacturing a thin film.
  • a metal oxide nanoparticle solution is applied to a support in advance, and then a metal oxide thin film is formed by firing or laser irradiation.
  • a precursor solution containing a metal is applied onto a thin film, and at least one or more of (1) a heat treatment step, (2) a plasma irradiation step, and (3) an ultraviolet irradiation step are simultaneously used.
  • a metal-containing metal oxide thin film is formed.
  • Metal oxide nanoparticles having the same metal composition and crystal structure as well as a metal structure having a crystal structure equivalent to that of the nanoparticles by a heating process or ultraviolet irradiation process in which the support is not decomposed or melted, and having a different metal composition A thin film made of product nanoparticles is formed on a support, and a precursor solution containing a metal is applied onto the thin film of these metal oxide nanoparticles, and this is (1) a heat treatment step, (2) A material other than metal and metal oxide is removed by simultaneously using at least one or a plurality of steps of plasma irradiation and (3) ultraviolet irradiation, thereby forming a metal-containing metal oxide thin film.
  • a method for producing a metal oxide thin film A method for producing a metal oxide thin film.
  • the present invention also provides the following inventions. 7) A method for producing a metal oxide thin film according to any one of 1) to 6) above, wherein the precursor film containing the solvent is irradiated with ultraviolet rays without drying. . 8) The method for producing a metal oxide thin film according to any one of 1) to 7) above, wherein the ultraviolet laser is irradiated after the ultraviolet irradiation by the ultraviolet lamp. 9) The metal oxide nanoparticles are produced by heating and / or irradiating ultraviolet rays with a raw material solution selected from any one of metal organic acid salts and ⁇ -diketonates or metal alkoxides. The manufacturing method of the metal oxide thin film as described in any one. 10) The metal organic compound solution is selected from the group consisting of metal organic acid salts and ⁇ -diketonates or metal alkoxides. The metal oxide thin film according to any one of 1) to 9) above Production method.
  • the present invention also provides the following inventions. 11) Form metal oxide nanoparticles using a precursor solution containing metal oxide nanoparticles having a perovskite structure, an ilmenite structure, a tungsten bronze structure, a spinel, a pyrochlore structure, a rutile structure, an anatase structure, and a fluorite structure. 10. The method for producing a metal oxide thin film according to any one of 1) to 10) above, wherein 12) The oxide nanoparticle is an insulator composite metal oxide, and is characterized by using a precursor solution in which a metal organic compound solution containing a metal having a different valence from the constituent metal of the insulator metal oxide is used.
  • the method for producing a metal oxide thin film according to any one of 1) to 11) above. 13) A metal organic compound containing at least one of Ce, Pr, Nd, Sm, Eu, GD, Tb, Dy, Ho, Er, Tm, and Yb is mixed with the metal oxide nanoparticle of the phosphor material. The method for producing a metal oxide thin film according to any one of 1) to 12) above, wherein the precursor solution is used. 14) The method for producing a metal oxide thin film according to any one of 1 to 11 above, wherein the oxide nanoparticles are AVO 3 (A Cs, Rb).
  • a metal organic acid salt, ⁇ -diketonate, metal alkoxide that does not cause a hydrolysis reaction, or the like can be used.
  • Specific examples include metal acetate, metal 2-ethylhexanoate, metal acetylacetonate, metal naphthenate, etc., but there is absorption to ultraviolet light and hydrolysis reaction does not proceed in the atmosphere.
  • Any metal organic compound that can be dissolved in a solvent can be used without particular limitation.
  • SrRuO 3 , LaNiO 3 , La-doped SrTiO 3 , Nb-doped SrTiO 3 , superconducting materials, and the like can be produced.
  • ABO 3 , A 2 BO 4 , and A 3 B 2 O 7 (however, the A, B, and O sites may be deficient) as the metal from which the oxide forms the phosphor substance. )
  • An oxide using at least one element selected from Ca, Sr, Ba, and B is Ti, Zr, Ce, Pr, Nd, Sm, Eu, GD, Tb, At least one of Dy, Ho, Er, Tm, Yb, and Lu is added, and in addition to this, one or more of Al, Ga, and In may be added. It is also effective for a thin film containing a small amount of a conductive material such as In 2 O 3 , SnO 2 , ZnO and metal in advance.
  • an organic substrate As the support, an organic substrate, a glass substrate, strontium titanate (SrTIO 3 ), lanthanum aluminate (LaAlO 3 ) , magnesium oxide (MgO), lanthanum strontium tantalum aluminum oxide ((La x Sr 1-x ) (Al x Ta 1-x ) O 3 ), neodymium gallate (NdGaO 3 ), yttrium aluminate (YAlO 3 ) single crystal, aluminum oxide (Al 2 O 3 ), yttria stabilized zirconia ((Zr, Y) O 2 , YSZ)
  • strontium titanate SrTIO 3
  • LaAlO 3 lanthanum aluminate
  • MgO magnesium oxide
  • La x Sr 1-x La x Ta 1-x
  • NdGaO 3 neodymium gallate
  • YAlO 3 yttrium aluminate
  • a thin film is first formed on a support using a target metal oxide nanoparticle solution or a dissimilar metal oxide having a crystal structure similar to that, and then a metal oxide nanoparticle solution containing a metal organic compound It is effective to reduce the energy of the irradiated ultraviolet rays.
  • the thin film is prepared by plasma irradiation or ultraviolet irradiation at room temperature on an organic substrate, and other supports such as glass may be in the range of 25 to 600 ° C. in order to achieve the above object.
  • the substrate can be heated to such an extent that the support is not deteriorated, and at the same time, a thin film can be formed by ultraviolet lamp, laser and plasma irradiation.
  • the heating method is not particularly limited as long as the support and the electrode are not decomposed or deteriorated, but various heating methods such as an electric furnace, an infrared heating furnace, and microwave heating can be used.
  • As the ultraviolet light source either a lamp of 400 nm or less and a pulse laser can be used.
  • the wavelength, light intensity, repetition rate (pulse or continuous) substrate temperature, and atmosphere in step 2 are appropriately selected according to the type of target thin film.
  • the wavelength of the ultraviolet light is not particularly limited, but is preferably 400 nm or less, and may be pulsed laser light or lamp light.
  • the light source used for the light irradiation may be either an ultraviolet laser or an ultraviolet lamp, but the ultraviolet laser XeF (351 nm), XeCl (308 nm), KrF (248 nm), ArF (193 nm), F2 having little heating effect. It is preferable to use an excimer laser such as (157 nm), a YAG laser (fourth harmonic: 266 nm), or an Ar ion laser (second harmonic: 257 nm). Since the transmittance of the optical material decreases as the wavelength becomes shorter, a KrF (248 nm) laser is suitable as a light source for applying a refractive optical system using a lens. As long as there is no heating effect, plasma irradiation can be performed in any gas in atmospheric pressure, nitrogen, and oxygen.
  • a thin film can be formed on a substrate containing an organic material, which has been impossible in the past, by irradiation with ultraviolet rays at low temperature and low energy. Therefore, it is possible to manufacture a metal oxide thin film with high production efficiency and suitable for mass production. It has an excellent effect.
  • the support is applied to the support before applying the metal organic compound.
  • the metal oxide is irradiated with plasma or ultraviolet light It is a manufacturing method of a thin film.
  • ultraviolet light used in the present invention include laser light.
  • a metal organic compound solution is spin-coated on a substrate, dried at 130 ° C. in a thermostatic chamber for solvent removal, or irradiated with an ultraviolet lamp, and then a sample is mounted on a sample holder in a laser chamber to create an atmosphere.
  • Laser irradiation can also be performed from room temperature to 500 ° C. under control.
  • a thin film is formed by firing or laser irradiation. Thereafter, laser irradiation is performed on each of the film obtained by applying the metal organic compound and drying the film and the main baking initial film.
  • SnO 2 Eu (europium) film was produced.
  • a CaTiO 3 Pr (praseodymium) nanoparticle film is applied to a PET (polyethylene terephthalate) support, dried, irradiated with an ultraviolet lamp, and irradiated with laser light at 25 ° C., thereby causing red photoluminescence.
  • a crystallization reaction and a solid solution reaction of the luminescent center atom proceed in a heat treatment at 900 ° C. or higher. It was confirmed that a thin film could be produced on the substrate.
  • the substrate used in the examples of the present invention was a non-alkali glass substrate, a glass substrate with ITO, and a PET substrate, which are typical substrate materials. Of course, other substrate materials can be used.
  • the following raw material solutions were used as the metal organic compound raw material solutions.
  • the precursor solutions other than those shown below will be described in the respective examples and comparative examples.
  • a raw material solution prepared and mixed with a calcium 2-ethylhexanoate solution and a 2-ethyl-1 hexanolate titanium solution.
  • RbVO 3 particles were fired at a firing temperature of 700 ° C. for 30 minutes by mixing Rv 2 CO 3 and V 2 O 5 in a predetermined ratio.
  • the powder obtained by pulverizing the product was dispersed in a mixed solvent of ethylene glycol.
  • Example 1-1 A BaTiO 3 nanoparticle solution (raw material solution 4) was spin-coated on a glass substrate with ITO. After drying at 200 ° C., baking was performed at 500 ° C. to prepare a BaTiO 3 / ITO / glass substrate. After coating this substrate with raw material solution 1 (2-ethylhexanoate solution, 2-ethyl-1-hexanolate titanium solution and 2-ethylhexanoate praseodymium solution), a 20 mJ / cm 2 KrF laser was applied at 50 Hz for 2 minutes. Irradiated.
  • raw material solution 1 2-ethylhexanoate solution, 2-ethyl-1-hexanolate titanium solution and 2-ethylhexanoate praseodymium solution
  • a 20 mJ / cm 2 KrF laser was applied at 50 Hz for 2 minutes. Irradiated.
  • Example 1-2 also, instead of praseodymium (Pr), 2-ethylhexanoic acid for each element of Ce, Nd, Sm, Eu, GD, Tb, Dy, Ho, Er, Tm, and Yb is prepared as an alternative solution of the raw material solution 1 Even when the calcium 2-ethylhexanoate solution was mixed with the 2-ethyl-1-hexanolate titanium solution, the presence of the CaTiO 3 thin film containing these rare earth metals could be confirmed by the same operation.
  • Pr praseodymium
  • Example 1-2 The glass substrate with ITO (ITO (100 nm) / glass substrate) without the support layer (BaTiO 3 nanoparticles) used in Example 1 was coated with the raw material solution 1-1, and then a 20 mJ / cm 2 KrF laser was applied. Irradiated at 50 Hz for 2 minutes. Regarding the irradiated portion, photoluminescence was measured with excitation light of 320 nm using Shimadzu UV5300, and no emission of 615 nm (red) was observed. Also in this case, as in Comparative Example 1-1, when there is no support layer made of oxide nanoparticles, the low-energy laser irradiation obtains predetermined characteristics even when the raw material solution 1 is used. I could't.
  • Example 2-1 Raw material solution 2-2 was used in place of raw material solution 2-1 used in the method. Other conditions were the same as in Example 1-1. As a result, 615 nm (red) photoluminescence was observed as in Example 1-1. This confirmed the presence of a CaTiO 3 phosphor thin film containing praseodymium by low-energy laser irradiation.
  • Example 2-3 Example 2-1
  • Raw material solution 2-3 was used in place of raw material solution 2-1 used in the method.
  • Other conditions were the same as in Example 1-1.
  • 615 nm (red) photoluminescence was observed as in Example 1-1. This confirmed the presence of a CaTiO 3 phosphor thin film containing praseodymium by low-energy laser irradiation.
  • Example 2-4 Example 2-1
  • Raw material solution 2-4 was used in place of raw material solution 2-1 used in the method.
  • Other conditions were the same as in Example 1-1. Thereby, 615 nm (red) photoluminescence was observed. This confirmed the presence of a CaTiO 3 phosphor thin film containing praseodymium by low-energy laser irradiation.
  • Example 2-5 Example 2-1 Raw material solution 2-5 was used in place of raw material solution 2-1 used in the method. Other conditions were the same as in Example 1-1. About the irradiated part, when the photoluminescence was measured with Shimadzu UV5300 with excitation light of 350 nm, white photoluminescence was observed. Further, the transmittance of the film was 80% in the visible region (550 nm). This confirmed the presence of the RbVO 3 transparent phosphor film by low-energy laser irradiation.
  • Example 2-6 Example 2-1 Raw material solution 2-6 was used in place of raw material solution 2-1 used in the method. Other conditions were the same as in Example 1-1. About the irradiated part, when the photoluminescence was measured with Shimadzu UV5300 with excitation light of 350 nm, white photoluminescence was observed. Further, the transmittance of the film was 80% in the visible region (550 nm). This confirmed the presence of the RbVO 3 transparent phosphor film by low-energy laser irradiation.
  • Example 2--7 Example 2-1 Raw material solution 2-7 was used in place of raw material solution 2-1 used in the method. Other conditions were the same as in Example 1-1. About the irradiated part, when the photoluminescence was measured with Shimadzu UV5300 with excitation light of 350 nm, white photoluminescence was observed. Further, the transmittance of the film was 80% in the visible region (550 nm). This confirmed the presence of the RbVO 3 transparent phosphor film by low-energy laser irradiation.
  • Example 2-9 A BaTiO 3 nanoparticle solution (raw material solution 4) was spin-coated on a PET substrate. After drying at 100 ° C., it was treated with a 172 nm ultraviolet lamp to prepare a BaTiO 3 / PET substrate. The substrate was coated with the raw material solution 2-1, and then irradiated with an ultraviolet lamp of 172 nm for 2 minutes. When the photoluminescence was measured with 320 nm excitation light using Shimadzu UV5300, 615 nm (red) light emission was observed. Thus, an ultraviolet lamp radiation, the presence of CaTiO 3 thin film containing praseodymium was confirmed.
  • Example 3-1 In the method of Example 1, the raw material solution 3 was used instead of the raw material solution 1-1.
  • the intensity of photoluminescence at 615 nm (red) increased.
  • a solution obtained by mixing the raw material solution 1-1 and the raw material solution 2-1, that is, the precursor solution contains a metal organic compound solution and a metal oxide nanoparticle solution, a CaTiO 3 phosphor thin film containing praseodymium It was confirmed that it is more effective for the formation of.
  • Example 3-2 When the raw material solution 1-1 or the raw material solution 1-2 and the raw material solution 2-1 or the raw material solution 2-2 were arbitrarily combined in place of the above Example 3-1, the same result as above was obtained. That is, instead of praseodymium (Pr), even when each metal element of Ce, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb is contained, the formation of the CaTiO 3 phosphor thin film It was confirmed that it was more effective.
  • Pr praseodymium
  • Example 4 In Example 2-1, as in Example 1-1, a BaTiO 3 / ITO / glass substrate was used as the substrate. However, in Example 4, a glass substrate with ITO was used, and a CaTiO 3 : Pr nanoparticle solution ( The raw material solution 2-1) was spin-coated on a glass substrate with ITO. After drying at 100 ° C., a 20 mJ / cm 2 KrF laser was irradiated at 50 Hz for 2 minutes. Regarding the irradiated part, light emission was observed at 615 nm (red) when photoluminescence was measured with 320 nm excitation light using Shimadzu UV5300. Thus, even if the precursor solution containing metal oxide nanoparticles was used as it was for a glass substrate, it was confirmed that it was effective for forming a CaTiO 3 phosphor thin film.
  • Example 5 A CaTiO 3 : Pr nanoparticle solution (raw material solution 2-1) was spin-coated on a PET substrate. After drying at 100 ° C., a 222 nm ultraviolet lamp was irradiated. The irradiated part was measured for photoluminescence with excitation light of 320 nm, and emission was observed at 615 nm (red). Thus, even when the precursor solution containing metal oxide nanoparticles was used as it was for a PET substrate, it was confirmed that it was effective for forming a CaTiO 3 phosphor thin film by irradiating an ultraviolet lamp. .
  • Example 5-1 A CaTiO 3 : Pr nanoparticle solution (raw material solution 2-1) was spin-coated on a PET substrate. After drying at 100 ° C., a 222 nm ultraviolet lamp was irradiated. Next, a 172 nm ultraviolet lamp was irradiated. The irradiated part was measured for photoluminescence with excitation light of 320 nm, and emission was observed at 615 nm (red). Thus, even when the precursor solution containing metal oxide nanoparticles was used as it was for a PET substrate, it was confirmed that it was effective for forming a CaTiO 3 phosphor thin film by irradiating an ultraviolet lamp. .
  • Example 5-2 A CaTiO 3 : Pr nanoparticle solution (raw material solution 2-2) was spin-coated on a PET substrate. After drying at 100 ° C., a 222 nm ultraviolet lamp was irradiated. The irradiated part was measured for photoluminescence with excitation light of 320 nm, and emission was observed at 615 nm (red). Further, the transmittance of the film was 80% in the visible region (550 nm). Thus, even if the precursor solution containing metal oxide nanoparticles is used as it is for a PET substrate, it is confirmed that it is effective for forming a CaTiO 3 : Pr phosphor thin film by irradiating an ultraviolet lamp. did it.
  • Example 5-3 A CaTiO 3 : Pr nanoparticle solution (raw material solution 2-3) was spin-coated on a PET substrate. After drying at 100 ° C., a 222 nm ultraviolet lamp was irradiated. The irradiated part was measured for photoluminescence with excitation light of 320 nm, and emission was observed at 615 nm (red). Further, the transmittance of the film was 80% in the visible region (550 nm). Thus, even if the precursor solution containing metal oxide nanoparticles is used as it is for a PET substrate, it is confirmed that it is effective for forming a CaTiO 3 : Pr phosphor thin film by irradiating an ultraviolet lamp. did it.
  • Example 5-4 A Ca 3 Ti 2 O 7 : Pr nanoparticle solution (raw material solution 2-4) was spin-coated on a PET substrate. After drying at 100 ° C., a 222 nm ultraviolet lamp was irradiated. The irradiated part was measured for photoluminescence with excitation light of 320 nm, and emission was observed at 615 nm (red). Further, the transmittance of the film was 80% in the visible region (550 nm). Thus, even if the precursor solution containing metal oxide nanoparticles is used as it is for a PET substrate, it is confirmed that it is effective for forming a CaTiO 3 : Pr phosphor thin film by irradiating an ultraviolet lamp. did it.
  • Example 5-5 An RbVO 3 particle solution (raw material solution 2-5) was spin-coated on a PET substrate. After drying at 100 ° C., a 222 nm ultraviolet lamp was irradiated. When the photoluminescence was measured with the excitation light of 350 nm, white light emission was observed. Further, the transmittance of the film was 80% in the visible region (550 nm). Thus, even if the precursor solution containing metal oxide nanoparticles is used as it is for a PET substrate, it can be confirmed that it is effective for the formation of an RbVO 3 transparent phosphor thin film by irradiating an ultraviolet lamp. It was.
  • Example 5-6 The RbVO 3 particle solution (raw material solution 2-6) was spin-coated on a PET substrate. After drying at 100 ° C., a 222 nm ultraviolet lamp was irradiated. When the photoluminescence was measured with the excitation light of 350 nm, white light emission was observed. Further, the transmittance of the membrane was 80% in the visible region (550 nm). Thus, even if the precursor solution containing metal oxide nanoparticles is used as it is for a PET substrate, it can be confirmed that it is effective for the formation of an RbVO 3 transparent phosphor thin film by irradiating an ultraviolet lamp. It was.
  • Example 6 A CaTiO 3 : Pr nanoparticle solution (raw material solution 2-1) was spin-coated on a PET substrate. After drying at 100 ° C., plasma was irradiated. When the irradiated portion was measured for photoluminescence with excitation light of 320 nm, light emission was observed at 615 nm (red). Thus, even if the precursor solution containing metal nanoparticles was used for a PET substrate as it was, it was confirmed that it was effective for forming a CaTiO 3 phosphor thin film by irradiating with plasma.
  • Example 7 A PET substrate is spin-coated with a 2-ethylhexanoate solution (raw material solution 1-3) and irradiated with an ultraviolet lamp of 222 nm to form BaTiO 3 nanoparticles, and then CaTiO 3 : Pr nano is formed on the substrate.
  • the particle solution (raw material solution 2-1) was spin-coated. After drying at 100 ° C., a 20 mJ / cm 2 KrF laser was irradiated at 50 Hz for 2 minutes. When photoluminescence was measured with excitation light of 320 nm, light emission was observed at 615 nm (red). In this case, similar results were obtained when SrTiO 3 nanoparticles were produced using a strontium 2-ethylhexanoate solution as the raw material solution 1-4.
  • the PET substrate was coated with the organometallic compound raw material solution 1 and then irradiated with a 20 mJ / cm 2 KrF laser at 50 Hz for 2 minutes. As a result, the PET substrate was decomposed by a photoreaction. In addition, when the photoluminescence was measured with 320 nm excitation light, no light emission was observed. From this, it was confirmed that the presence of oxide nanoparticles on at least the substrate was necessary.
  • This raw material solution 3-1 is a mixture of the raw material solution 1-1 and the raw material solution 2-1 in a predetermined ratio. That is, a raw material solution prepared by mixing a raw material solution 1-1: 2 ethyl calcium hexanoate solution with a 2-ethyl-1-hexanolate titanium (Ti) solution and a praseodymium 2-ethyl hexanoate (Pr) solution; and a raw material solution 2-1. It is a precursor solution consisting of a solution of CaTiO 3 : Pr nanoparticle powder.
  • the coated film was irradiated with an excimer lamp of 172 nm, and then photoluminescence was measured with excitation light of 320 nm. As a result, light emission was observed at 615 nm (red). Similar results were obtained when the raw material solution 1-2 or the raw material solution 2-2 was used as the precursor solution.
  • Example 3 A glass substrate was coated with the raw material solution 3-1. When photoluminescence was measured on the coated film with 320 nm excitation light, no light emission was observed. When compared with Example 9, it is understood that the phosphor cannot be formed because the excimer lamp of 172 nm is not irradiated.
  • Example 9 A metal organic compound solution containing Eu in SnO 2 nanoparticles was mixed with a glass substrate and applied to the substrate. At 300 ° C., an ArF laser of 80 mJ / cm 2 was irradiated at 10 Hz for 2 minutes. The irradiated portion was measured for photoluminescence with excitation light of 320 nm, and emission was observed at 590 nm.
  • Example 10 As a precursor solution for forming BaTiO 3 nanoparticles on a Pt-attached SiO 2 substrate, a metal organic compound solution containing a Ba2 ethylhexanoate solution having a metal composition of 1: 1 and Ti-2 ethyl-hexanolate is used. Mixed and applied to the substrate. When an ArF laser of 80 mJ / cm 2 was irradiated at 10 Hz for 2 minutes at room temperature, a BaTiO 3 film was formed.
  • the present invention uses a precursor solution containing metal oxide nanoparticles and an organometallic compound, and further has a crystal structure similar to that of a phosphor material that is a target metal oxide as a substrate.
  • This makes it possible to produce a metal oxide thin film at a low temperature with low laser irradiation energy, and to produce a metal oxide thin film on an organic substrate such as a PET substrate by ultraviolet laser, lamp and plasma irradiation. Therefore, it is useful for manufacturing a high-efficiency device by thinning.

Abstract

A method for producing a metal oxide thin film wherein the metal oxide thin film is obtained by a thin film production process using a metal organic compound.  By this method, a phosphor thin film such as a Y2O3:Eu or CaTiO3:Pr film is directly formed on an organic material substrate or a glass substrate efficiently by heating, ultraviolet light irradiation or plasma irradiation using a solution of metal oxide nanoparticles or a metal organic compound solution containing metal oxide nanoparticles. Specifically disclosed is a method for producing a metal oxide thin film by chemical solution deposition, which is characterized in that a metal-containing metal oxide thin film is formed as follows: a solution of metal oxide nanoparticles is applied over a supporting body in advance and then firing or laser irradiation is carried out, thereby forming a metal oxide thin film; and then a metal-containing precursor solution is applied over the metal oxide thin film and then at least one or more processes among (1) a heating process, (2) a plasma irradiation process and (3) an ultraviolet light irradiation process are carried out at the same time, thereby forming a metal-containing metal oxide thin film by removing the substances other than the metal and metal oxide.

Description

金属酸化物薄膜の製造方法Method for producing metal oxide thin film
 本発明は、有機基板やガラス基板上に、低エネルギーで効率的に金属を含有する金属酸化物薄膜を製造する方法に関する。 The present invention relates to a method for efficiently producing a metal oxide thin film containing metal on an organic substrate or a glass substrate with low energy.
 金属酸化物は、大気中で安定であり、結晶構造、金属組成及び酸素不定比性の制御により磁性、半導性、誘電性、超電導や光学的性質を示すことから、その薄膜化による高効率デバイスや革新的なデバイスの創製が期待されている。
 例えば、半導体と同様に原子価の異なる元素置換や酸素欠損を制御すると導電性の制御が可能でるが、ITOなどの酸化物は可視領域に置いて透明性を示すことから液晶や太陽電池などの応用として現代の情報化社会を支えてきている。
Metal oxides are stable in the atmosphere and exhibit magnetic, semiconducting, dielectric, superconducting and optical properties by controlling crystal structure, metal composition and oxygen non-stoichiometry. Creation of devices and innovative devices is expected.
For example, the conductivity can be controlled by controlling element substitution and oxygen vacancies with different valences as in the case of semiconductors. However, oxides such as ITO show transparency in the visible region, so liquid crystals, solar cells, etc. It has supported the modern information society as an application.
 これらの導電体に対し、高い絶縁性と誘電性を示すチタン酸鉛などのペロブスカイト酸化物は、従来、キャバシタやセンサなどに用いられてきたが、薄膜化によりLSIの更なる集積化のための不揮発メモリ開発へ展開している。
 また、同様にペロブスカイト類縁構造を持つ材料であっても高温超電導酸化物については、その薄膜化により、次世代のデバイスや源流器、フィルタ応用などの実用化研究が推進されている。このように金属酸化物は、多くの機能を有することから、これまでに種々の薄膜作製法の開発が行われてきた。
Perovskite oxides such as lead titanate that exhibit high insulation and dielectric properties for these conductors have been used for capacitors and sensors in the past, but for further integration of LSIs by thinning the film. Expanding to non-volatile memory development.
Similarly, high-temperature superconducting oxides, even for materials with perovskite-related structures, are being promoted for practical applications such as next-generation devices, source devices, and filter applications due to their thinning. As described above, since metal oxides have many functions, various thin film manufacturing methods have been developed so far.
 種々ある薄膜作製法の中で、化学溶液法は真空装置を用いない点や溶液の組成を厳密に制御できるため、金属酸化物薄膜の低コスト製造プロセスとして期待されている。
 化学溶液法は、金属アルコキシドの加水分解反応により得られたゲル膜を焼成する方法と金属有機酸塩や金属アセチルアセトナートなどを先駆体膜として用い、これを熱平衡反応により有機化合物の熱分解と結晶成長を行うMOD(metal organic decomposition)または塗布熱分解法に大別される。
Among various thin film manufacturing methods, the chemical solution method is expected as a low-cost manufacturing process for metal oxide thin films because it does not use a vacuum apparatus and can strictly control the composition of the solution.
The chemical solution method uses a method in which a gel film obtained by hydrolysis reaction of metal alkoxide is baked and a metal organic acid salt or metal acetylacetonate as a precursor film, which is used for thermal decomposition of organic compounds by thermal equilibrium reaction. It is broadly divided into MOD (metal organic decomposition) for crystal growth or coating thermal decomposition.
 MODや塗布熱分解法は、大気中で安定な有機金属化合物を用いるため、原料溶液の長期安定性に優れる特徴がある反面、金属アルコキシドを用いたゾルゲル法と比べて原料の有機成分の熱分解工程が必要であるため、高温の基板加熱処理を伴う問題がある。
 このため現行のシリコンデバイスへの作製ができない問題があった(非特許文献1及び非特許文献2参照)。
MOD and coating pyrolysis methods use organic metal compounds that are stable in the atmosphere, so they are characterized by excellent long-term stability of the raw material solution. On the other hand, compared to the sol-gel method using metal alkoxide, the thermal decomposition of the organic components of the raw materials Since the process is necessary, there is a problem with high-temperature substrate heat treatment.
For this reason, there is a problem that the current silicon device cannot be manufactured (see Non-Patent Document 1 and Non-Patent Document 2).
 このような問題を解決するため、従来、塗布熱分解法として知られているような高温下で熱処理することなく、基板上に金属酸化物を製造する方法であり、金属有機化合物(金属有機酸塩、金属アセチルアセトナート、炭素数6以上の有機基を有する金属アルコキシド)を溶媒に溶解させて溶液状とし、これを基板に塗布した後に、乾燥させ、波長400nm以下のレーザ光を照射することにより基板上に金属酸化物を形成する金属酸化物の製造方法が知られている(特許文献1参照)。 In order to solve such a problem, a metal oxide compound (metal organic acid) is a method for producing a metal oxide on a substrate without heat treatment at a high temperature as conventionally known as a coating pyrolysis method. Salt, metal acetylacetonate, metal alkoxide having an organic group having 6 or more carbon atoms) dissolved in a solvent to form a solution, which is applied to a substrate, dried, and irradiated with laser light having a wavelength of 400 nm or less There is known a metal oxide manufacturing method for forming a metal oxide on a substrate (see Patent Document 1).
 ここでは、金属有機化合物を溶媒に溶解させて溶液状とし、これを基板に塗布した後に、乾燥させ、波長400nm以下のレーザ光、例えば、ArF、KrF、XeCl、XeF、Fから選ばれるエキシマレーザを用いて照射することにより基板上に金属酸化物を形成することを特徴とする金属酸化物の製造方法が記載され、波長400nm以下のレーザ光の照射を、複数段階で行い、最初の段階の照射は金属有機化合物を完全に分解させるに至らない程度の弱い照射で行い、次に酸化物にまで変化させることができる強い照射を行うことも記載されている。 Here, a metal organic compound is dissolved in a solvent to form a solution, which is applied to a substrate, dried, and then laser light having a wavelength of 400 nm or less, for example, an excimer selected from ArF, KrF, XeCl, XeF, and F 2 A method for producing a metal oxide is described in which a metal oxide is formed on a substrate by irradiating with a laser, and irradiation with a laser beam having a wavelength of 400 nm or less is performed in a plurality of stages. It is also described that the irradiation is performed with a weak irradiation that does not lead to complete decomposition of the metal organic compound, and then a strong irradiation that can be changed to an oxide.
 また、金属有機化合物が異なる金属からなる2種以上の化合物であり、得られる金属酸化物が異なる金属からなる複合金属酸化物であって、金属有機酸塩の金属が、鉄、インジウム、錫、ジルコニウム、コバルト、鉄、ニッケル、鉛から成る群から選ばれるものであることも知られている。また、赤外センサーボロメータ薄膜用のLa1-xSrMnO薄膜の低温作製法も知られている(特許文献2参照)。 Further, the metal organic compound is two or more kinds of compounds made of different metals, and the obtained metal oxide is a composite metal oxide made of different metals, wherein the metal of the metal organic acid salt is iron, indium, tin, It is also known to be selected from the group consisting of zirconium, cobalt, iron, nickel and lead. In addition, a low temperature preparation method of a La 1-x Sr x MnO 3 thin film for an infrared sensor bolometer thin film is also known (see Patent Document 2).
 また、金属有機化合物原料を均一に混合した膜を支持体に塗布後、紫外線を照射する方法により低温でペロブスカイト関連蛍光体酸化物薄膜、SrTIOPr,Al(特許文献3)や200nm以下の紫外線を照射することで結晶化と発光中心イオンのEuをYに固溶したY:Eu蛍光体薄膜などの製造方法が開示されている。(特許文献4)
 さらに、基材上に(111)結晶面を有する金属膜上にBa及びTiを含む金属酸化物(BaTiO等)の配向膜の生成が知られている(特許文献5)。
In addition, a film in which a metal organic compound raw material is uniformly mixed is applied on a support, and then irradiated with ultraviolet rays at a low temperature by a method of irradiating ultraviolet rays, a perovskite-related phosphor oxide thin film, SrTIO 3 Pr, Al (Patent Document 3) the Eu crystallization and luminescent center ions by irradiating Y 2 Y was dissolved in O 3 2 O 3 a: method for producing such Eu phosphor thin film is disclosed. (Patent Document 4)
Furthermore, it is known to form an alignment film of a metal oxide (BaTiO 3 or the like) containing Ba and Ti on a metal film having a (111) crystal plane on a substrate (Patent Document 5).
 しかしながら、金属有機化合物を用いた薄膜製造工程より得られる金属酸化物膜の製造法では、シリコンやガラス基板上へ高輝度の酸化物蛍光体を作製する方法としては効果的であったが、結晶成長に高強度のレーザ光を照射する必要があるため、有機基板上に直接作製することは困難であることが明らかになった。
水田 進,熊谷俊弥著「有機酸塩塗布熱分解法による超伝導薄膜の合成」、工業材料,35 (454), 78-79 (1987). 水田 進、熊谷俊弥、真部高明著「 塗布熱分解法による超伝導膜の合成」、日本化学会誌, 1997, 11-23 (1997) 特開2001-031417 特開2002-284529 特開2008-044803 特開2008-075073 特開2008―028381
However, the method for producing a metal oxide film obtained from a thin film production process using a metal organic compound is effective as a method for producing a high-luminance oxide phosphor on a silicon or glass substrate. It became clear that it was difficult to fabricate directly on an organic substrate because it was necessary to irradiate a laser beam with high intensity for growth.
Susumu Mizuta and Toshiya Kumagai, "Synthesis of superconducting thin films by organic acid coating pyrolysis", Industrial Materials, 35 (454), 78-79 (1987). Susumu Mizuta, Toshiya Kumagai, Takaaki Manabe, "Synthesis of superconducting films by coating pyrolysis", The Chemical Society of Japan, 1997, 11-23 (1997) JP 2001-031417 A JP2002-284529 JP2008-0448803 JP2008-075073 JP2008-028381
 以上から、本発明は、金属有機化合物を用いた薄膜製造工程より得られる金属酸化物膜の製造法において、金属酸化物ナノ粒子溶液及び金属酸化物ナノ粒子を含む金属有機化合物溶液を用いて加熱、紫外線照射やプラズマを照射することにより、有機材料(例えばPET)基板上に、Y:EuやCaTiO:Prなどの蛍光体薄膜を直接製造する方法を提供するものである。
 また、ガラス基板上に作製する場合は、金属有機化合物を先駆体として用いた膜にレーザを照射しても蛍光体が生成しないような、従来の低レーザエネルギーを照射して高輝度の蛍光体薄膜を作製できる方法を提供することを課題とする。
As described above, the present invention provides a method for producing a metal oxide film obtained from a thin film production process using a metal organic compound, and heating using a metal organic compound solution containing a metal oxide nanoparticle solution and metal oxide nanoparticles. The present invention provides a method of directly manufacturing a phosphor thin film such as Y 2 O 3 : Eu or CaTiO 3 : Pr on an organic material (for example, PET) substrate by irradiating with ultraviolet rays or plasma.
In addition, when fabricated on a glass substrate, a high-luminance phosphor that is irradiated with conventional low laser energy so that the phosphor does not form even when the film using a metal organic compound as a precursor is irradiated with a laser. It is an object to provide a method capable of manufacturing a thin film.
 上記の課題を達成するために、具体的には次の発明を提供する。
 1)化学溶液法を用いて金属酸化物薄膜を製造する方法において、支持体に予め金属酸化物ナノ粒子溶液を塗布した後、焼成又はレーザ照射により金属酸化物薄膜を形成し、さらにこの金属酸化物薄膜上に、金属を含有する先駆体溶液を塗布し、これを(1)加熱処理工程、(2)プラズマ照射工程、(3)紫外線照射工程の少なくとも一つ又は複数の工程を同時に用いることにより、金属及び金属酸化物以外の物質を除去し、金属含有金属酸化物薄膜を形成することを特徴とする金属酸化物薄膜の製造方法。
 2)支持体が分解や溶融しない加熱工程または紫外線照射工程により、一の金属組成及び結晶構造をもつ金属酸化物ナノ粒子及びこのナノ粒子と同等の結晶構造を持ち、かつ異種金属組成の金属酸化物ナノ粒子からなる薄膜を支持体上に形成し、さらにこれらの金属酸化物ナノ粒子の薄膜上に、金属を含有する先駆体溶液を塗布し、これを(1)加熱処理工程、(2)プラズマ照射工程、(3)紫外線照射工程の少なくとも一つ又は複数の工程を同時に用いることにより、金属及び金属酸化物以外の物質を除去し、金属含有金属酸化物薄膜を形成することを特徴とする金属酸化物薄膜の製造方法。
 3)前記先駆体溶液が、金属酸化物ナノ粒子溶液又は金属有機化合物溶液であることを特徴とする請求項1又は2記載の金属酸化物薄膜の製造方法。
In order to achieve the above object, the following invention is specifically provided.
1) In a method for producing a metal oxide thin film using a chemical solution method, a metal oxide nanoparticle solution is applied to a support in advance, and then a metal oxide thin film is formed by firing or laser irradiation. A precursor solution containing a metal is applied onto a thin film, and at least one or more of (1) a heat treatment step, (2) a plasma irradiation step, and (3) an ultraviolet irradiation step are simultaneously used. By removing a substance other than metal and metal oxide, a metal-containing metal oxide thin film is formed.
2) Metal oxide nanoparticles having the same metal composition and crystal structure as well as a metal structure having a crystal structure equivalent to that of the nanoparticles by a heating process or ultraviolet irradiation process in which the support is not decomposed or melted, and having a different metal composition A thin film made of product nanoparticles is formed on a support, and a precursor solution containing a metal is applied onto the thin film of these metal oxide nanoparticles, and this is (1) a heat treatment step, (2) A material other than metal and metal oxide is removed by simultaneously using at least one or a plurality of steps of plasma irradiation and (3) ultraviolet irradiation, thereby forming a metal-containing metal oxide thin film. A method for producing a metal oxide thin film.
3) The method for producing a metal oxide thin film according to claim 1 or 2, wherein the precursor solution is a metal oxide nanoparticle solution or a metal organic compound solution.
 また、本発明は、次の発明を提供する。
 4)化学溶液法を用いて金属酸化物薄膜を製造する方法において、金属酸化物ナノ粒子溶液と金属有機化合物を含有する先駆体溶液を支持体に塗布後、(1)加熱処理工程、(2)プラズマ照射工程、(3)紫外線照射工程の少なくとも一つまたは複数の工程を同時に用いることにより有機物を除去し、金属を含有する金属酸化物薄膜を製造することを特徴とする金属酸化物薄膜の製造方法。
 5)前記先駆体溶液における金属酸化物ナノ粒子溶液の金属組成比と金属有機化合物の金属組成比が同一であることを特徴とする上記4)に記載の金属酸化物薄膜の製造方法。
 6)前記先駆体溶液の金属酸化物ナノ粒子を構成する金属と異なる金属を含む金属有機化合物から構成されることを特徴とする上記4)又は5)に記載の金属酸化物薄膜の製造方法。
The present invention also provides the following inventions.
4) In a method for producing a metal oxide thin film using a chemical solution method, after applying a precursor solution containing a metal oxide nanoparticle solution and a metal organic compound to a support, (1) a heat treatment step, (2 A metal oxide thin film characterized by producing a metal oxide thin film containing a metal by removing an organic substance by simultaneously using at least one or a plurality of steps of a plasma irradiation step and (3) an ultraviolet irradiation step. Production method.
5) The method for producing a metal oxide thin film as described in 4) above, wherein the metal composition ratio of the metal oxide nanoparticle solution in the precursor solution and the metal composition ratio of the metal organic compound are the same.
6) The method for producing a metal oxide thin film as described in 4) or 5) above, which comprises a metal organic compound containing a metal different from the metal constituting the metal oxide nanoparticles of the precursor solution.
 また、本発明は、次の発明を提供する。
 7)上記1)~6)のいずれか一項に記載の薄膜の製造方法において、溶媒が含まれる先駆体膜を乾燥せずに紫外線を照射することを特徴とする金属酸化物薄膜の製造方法。
 8)上記1)~7)のいずれか一項に記載の薄膜の製造方法において、紫外線ランプによる紫外線照射後に紫外線レーザを照射することを特徴とする金属酸化物薄膜の製造方法。
 9)金属酸化物ナノ粒子は、金属有機酸塩及びβジケトナート又は金属アルコキシドのいずれか一つから選ばれる原料溶液を加熱及び又は紫外線照射により製造することを特徴とする上記1)~8)のいずれか一項に記載の金属酸化物薄膜の製造方法。
 10)金属有機化合物溶液は、金属有機酸塩及びβジケトナート又は金属アルコキシドのいずれか一つから選ばれることを特徴とする上記1)~9)のいずれか一項に記載の金属酸化物薄膜の製造方法。
The present invention also provides the following inventions.
7) A method for producing a metal oxide thin film according to any one of 1) to 6) above, wherein the precursor film containing the solvent is irradiated with ultraviolet rays without drying. .
8) The method for producing a metal oxide thin film according to any one of 1) to 7) above, wherein the ultraviolet laser is irradiated after the ultraviolet irradiation by the ultraviolet lamp.
9) The metal oxide nanoparticles are produced by heating and / or irradiating ultraviolet rays with a raw material solution selected from any one of metal organic acid salts and β-diketonates or metal alkoxides. The manufacturing method of the metal oxide thin film as described in any one.
10) The metal organic compound solution is selected from the group consisting of metal organic acid salts and β-diketonates or metal alkoxides. The metal oxide thin film according to any one of 1) to 9) above Production method.
 また、本発明は、次の発明を提供する。
 11)ペロブスカイト構造、イルメナイト構造、タングステンブロンズ構造、スピネル、パイロクロア構造、ルチル構造、アナターゼ構造、蛍石構造を持つ金属酸化物ナノ粒子を含む先駆体溶液を用いて金属酸化物ナノ粒子を形成することを特徴とする上記1)~10)のいずれか一項に記載の金属酸化物薄膜の製造方法。
 12)酸化物ナノ粒子は絶縁体複合金属酸化物であって、絶縁体金属酸化物の構成金属の価数と異なった金属を含む金属有機化合物溶液を混合した先駆体溶液を用いることを特徴とする上記1)~11)のいずれか一項に記載の金属酸化物薄膜の製造方法。
 13)蛍光体材料の母物質の金属酸化物ナノ粒子に、Ce, Pr, Nd, Sm, Eu, GD, Tb, Dy, Ho, Er, Tm, Ybが少なくとも一つ含まれる金属有機化合物を混合した先駆体溶液を用いることを特徴とする上記1)~12)のいずれか一項に記載の金属酸化物薄膜の製造方法。
 14)酸化物ナノ粒子は、AVO(A=Cs, Rb)であることを特徴とする上記1~11のいずれか一項に記載の金属酸化物薄膜の製造方法。
The present invention also provides the following inventions.
11) Form metal oxide nanoparticles using a precursor solution containing metal oxide nanoparticles having a perovskite structure, an ilmenite structure, a tungsten bronze structure, a spinel, a pyrochlore structure, a rutile structure, an anatase structure, and a fluorite structure. 10. The method for producing a metal oxide thin film according to any one of 1) to 10) above, wherein
12) The oxide nanoparticle is an insulator composite metal oxide, and is characterized by using a precursor solution in which a metal organic compound solution containing a metal having a different valence from the constituent metal of the insulator metal oxide is used. The method for producing a metal oxide thin film according to any one of 1) to 11) above.
13) A metal organic compound containing at least one of Ce, Pr, Nd, Sm, Eu, GD, Tb, Dy, Ho, Er, Tm, and Yb is mixed with the metal oxide nanoparticle of the phosphor material. The method for producing a metal oxide thin film according to any one of 1) to 12) above, wherein the precursor solution is used.
14) The method for producing a metal oxide thin film according to any one of 1 to 11 above, wherein the oxide nanoparticles are AVO 3 (A = Cs, Rb).
 支持体が分解しない温度範囲において加熱後又は加熱しながらプラズマや紫外光を照射することで、目的とする金属酸化物薄膜の結晶成長や緻密化及び異種金属のドーピングを行うことが可能となる。これにより、金属酸化物薄膜材料の低温でプロセス時間の大幅な短縮が可能になるとともに、素子に必要なパターニングを製膜と同時に行うことができる。 The crystal growth or densification of the target metal oxide thin film and the doping of dissimilar metals can be performed by irradiating with plasma or ultraviolet light after heating or heating in a temperature range where the support is not decomposed. As a result, the process time of the metal oxide thin film material can be significantly reduced at a low temperature, and patterning necessary for the element can be performed simultaneously with the film formation.
 本発明のプロセスで用いる先駆体の有機原料については、金属有機酸塩、βジケトナート、加水分解反応を起こさない金属アルコキシドなどを用いることができる。具体的には、金属酢酸塩、金属2エチルヘキサン酸塩、金属アセチルアセトナート、金属ナフテン酸塩などがあげられるが、紫外線に対して吸収が有り、かつ大気中で加水分解反応が進まないことや溶媒に溶解する金属有機化合物であれば、特に制限なく用いることができる。 As the organic precursor material used in the process of the present invention, a metal organic acid salt, β-diketonate, metal alkoxide that does not cause a hydrolysis reaction, or the like can be used. Specific examples include metal acetate, metal 2-ethylhexanoate, metal acetylacetonate, metal naphthenate, etc., but there is absorption to ultraviolet light and hydrolysis reaction does not proceed in the atmosphere. Any metal organic compound that can be dissolved in a solvent can be used without particular limitation.
 また、金属酸化物ナノ粒子は、目的の金属組成を持つか、或いは導電性を発現するための異なった価数を持った異種金属や蛍光を示すための発光中心イオンを添加していない母物質の金属組成で、粒径が1-100nm程度、好ましくは,1~30nm程度のサイズであれば特に制限はなくCVD、水熱合成、ソルボサーマル合成、熱分解法、金属有機化合物に紫外線レーザを照射して作製する方法などを用いることができる。 In addition, the metal oxide nanoparticles have a target metal composition, or have a different valence for expressing conductivity, or a parent material not added with a luminescent center ion for showing fluorescence. There is no particular limitation as long as the particle size is about 1 to 100 nm, preferably about 1 to 30 nm, and CVD, hydrothermal synthesis, solvothermal synthesis, thermal decomposition method, UV laser is applied to metal organic compounds. A method of manufacturing by irradiation can be used.
 これらの金属酸化物ナノ粒子と金属有機化合物は有機溶媒を用いて均一に分散させることができる。溶媒は、メタノール、エタノール、プロパノール、ブタノール、ヘキサノール、ヘプタノール、酢酸エチル、酢酸ブチル、トルエン、キシレン、ベンゼン、アセチルアセトナート、エチレングリコールなどが好ましい。このように均一に分散された溶液は、スピンコート、スプレー、インクジェット、など基材上にコーティングする方法に制約はなく目的に応じて選択することができる。 These metal oxide nanoparticles and metal organic compounds can be uniformly dispersed using an organic solvent. The solvent is preferably methanol, ethanol, propanol, butanol, hexanol, heptanol, ethyl acetate, butyl acetate, toluene, xylene, benzene, acetylacetonate, ethylene glycol, or the like. The uniformly dispersed solution is not limited in the method of coating on the substrate such as spin coating, spraying, and inkjet, and can be selected according to the purpose.
 本法により作製可能な金属酸化物については特に制限はなく、ペロブスカイト構造、イルメナイト構造、タングステンブロンズ構造、スピネル、パイロクロア構造、ルチル構造、アナターゼ構造、蛍石構造を持つ金属酸化物膜を作製出来る。具体的な例を挙げると、強誘電体材料としては、PbTiO、Pb(Ti,Zr)O、SrBiTa、BiFeO, BiTi12、誘電体材料としては、BaTiO、LiNbO、 KTaO、SrTiOなどの作製が可能である。 The metal oxide that can be produced by this method is not particularly limited, and a metal oxide film having a perovskite structure, an ilmenite structure, a tungsten bronze structure, a spinel, a pyrochlore structure, a rutile structure, an anatase structure, and a fluorite structure can be produced. Specific examples of the ferroelectric material include PbTiO 3 , Pb (Ti, Zr) O 3 , SrBi 2 Ta 2 O 9 , BiFeO 3 , Bi 4 Ti 3 O 12 , BaTiO 3 , LiNbO 3 , KTaO 3 , SrTiO 3 and the like can be produced.
 また、導電性材料としては、複合酸化物であるA1-xMnO(A=Pr, Nd, La, Sm, B=Ca, Sr, Ba), La1-xSrCoO,SrRuO,LaNiO, La-doped SrTiO、Nb-doped SrTiO, 超伝導材料などの作製が可能である。 As the conductive material, A 1-x B x MnO 3 (A = Pr, Nd, La, Sm, B = Ca, Sr, Ba), La 1-x Sr x CoO 3 , which is a composite oxide, is used. SrRuO 3 , LaNiO 3 , La-doped SrTiO 3 , Nb-doped SrTiO 3 , superconducting materials, and the like can be produced.
 また、蛍光体材料では、酸化物が蛍光体物質を形成する金属として、ABO, ABO、A(但し,A,B,Oサイトには欠損があってもよい)の金属組成で表され、AがCa, Sr, Ba、 BがTi,Zrより選ばれる元素を少なくとも一つずつ用いた酸化物に、Ce, Pr, Nd, Sm, Eu, GD, Tb, Dy, Ho, Er, Tm, Yb, Luが、少なくとも一つ添加され、またこれに加えてAl, Ga, Inのうち一つ以上を添加してもよい。
 また、あらかじめ、In,SnO,ZnOおよび金属などの導電物質を微量含んだ薄膜にも効果的である。
In addition, in the phosphor material, ABO 3 , A 2 BO 4 , and A 3 B 2 O 7 (however, the A, B, and O sites may be deficient) as the metal from which the oxide forms the phosphor substance. ), An oxide using at least one element selected from Ca, Sr, Ba, and B is Ti, Zr, Ce, Pr, Nd, Sm, Eu, GD, Tb, At least one of Dy, Ho, Er, Tm, Yb, and Lu is added, and in addition to this, one or more of Al, Ga, and In may be added.
It is also effective for a thin film containing a small amount of a conductive material such as In 2 O 3 , SnO 2 , ZnO and metal in advance.
 支持体としては、有機基板、ガラス基板、チタン酸ストロンチウム(SrTIO)、ランタンアルミネート(LaAlO酸化マグネシウム(MgO)、酸化ランタンストロンチウムタンタルアルミニウム((LaSr1-x)(AlTa1-x)O)、ネオジムガレート(NdGaO)、イットリウムアルミネート(YAlO)単結晶、酸化アルミニウム(Al) 、イットリア安定化ジルコニア((Zr,Y)O, YSZ)基板から選ばれる1種等を用いることが出来る。 As the support, an organic substrate, a glass substrate, strontium titanate (SrTIO 3 ), lanthanum aluminate (LaAlO 3 ) , magnesium oxide (MgO), lanthanum strontium tantalum aluminum oxide ((La x Sr 1-x ) (Al x Ta 1-x ) O 3 ), neodymium gallate (NdGaO 3 ), yttrium aluminate (YAlO 3 ) single crystal, aluminum oxide (Al 2 O 3 ), yttria stabilized zirconia ((Zr, Y) O 2 , YSZ) One kind selected from substrates can be used.
 本発明では、支持体上に、まず目的の金属酸化物ナノ粒子溶液またはそれと同様の結晶構造を持つ異種金属酸化物を用いて薄膜を形成した後、金属有機化合物を含む金属酸化物ナノ粒子溶液を用いることが照射する紫外線のエネルギーの低減に有効である。
 本薄膜の作製には、有機基材上では、室温でプラズマ照射又は紫外線照射により作製し、その他のガラスなどの支持体では、上記目的を達成するために、25~600℃までに範囲であれば、支持体が劣化しない程度の基板加熱と同時に紫外線ランプやレーザおよびプラズマ照射により薄膜を作製することで作製ができる。
In the present invention, a thin film is first formed on a support using a target metal oxide nanoparticle solution or a dissimilar metal oxide having a crystal structure similar to that, and then a metal oxide nanoparticle solution containing a metal organic compound It is effective to reduce the energy of the irradiated ultraviolet rays.
The thin film is prepared by plasma irradiation or ultraviolet irradiation at room temperature on an organic substrate, and other supports such as glass may be in the range of 25 to 600 ° C. in order to achieve the above object. For example, the substrate can be heated to such an extent that the support is not deteriorated, and at the same time, a thin film can be formed by ultraviolet lamp, laser and plasma irradiation.
 加熱法は支持体や電極が分解や劣化しない目的であれば、特に制限はないが、電気炉や赤外線加熱炉、マイクロ波加熱など様々な加熱方法を用いることができる。紫外線光源としては、400nm以下のランプおよびパルスレーザのいずれか用いることができる。
 工程2における、紫外線の波長、光強度、繰り返し速度(パルスあるいは連続)基板温度、雰囲気は、対象とする薄膜の種類に応じて適宜選定される。紫外線の波長は特に制限されないが、400nm以下が好ましく、また、パルスレーザ光またはランプ光であってもよい。
The heating method is not particularly limited as long as the support and the electrode are not decomposed or deteriorated, but various heating methods such as an electric furnace, an infrared heating furnace, and microwave heating can be used. As the ultraviolet light source, either a lamp of 400 nm or less and a pulse laser can be used.
The wavelength, light intensity, repetition rate (pulse or continuous) substrate temperature, and atmosphere in step 2 are appropriately selected according to the type of target thin film. The wavelength of the ultraviolet light is not particularly limited, but is preferably 400 nm or less, and may be pulsed laser light or lamp light.
 光照射に用いる光源としては、紫外線レーザ、或いは紫外線ランプのいずれであってもよいが、加熱効果が少ない紫外レーザXeF(351nm)、XeCl(308nm)、KrF(248nm)、ArF(193nm)、F2(157nm)等のエキシマレーザや、YAGレーザ(四次高調波:266nm)、Arイオンレーザ(第二高調波:257nm)を用いることが好ましい。
 波長が短くなるに従って光学材料の透過率が減少するため、レンズを用いた屈折光学系を適用するにはKrF(248nm)レーザが光源として適当である。プラズマ照射は、加熱効果がないものであれば、大気圧、窒素、酸素中のいずれのガス中でも照射可能である。
The light source used for the light irradiation may be either an ultraviolet laser or an ultraviolet lamp, but the ultraviolet laser XeF (351 nm), XeCl (308 nm), KrF (248 nm), ArF (193 nm), F2 having little heating effect. It is preferable to use an excimer laser such as (157 nm), a YAG laser (fourth harmonic: 266 nm), or an Ar ion laser (second harmonic: 257 nm).
Since the transmittance of the optical material decreases as the wavelength becomes shorter, a KrF (248 nm) laser is suitable as a light source for applying a refractive optical system using a lens. As long as there is no heating effect, plasma irradiation can be performed in any gas in atmospheric pressure, nitrogen, and oxygen.
 本発明は、従来不可能であった有機を含む基板上に低温かつ低エネルギーの紫外線照射により薄膜を作製出来るため、製造効率が良く、大量生産に適した金属酸化物薄膜の製造が可能であるという優れた効果を有する。 In the present invention, a thin film can be formed on a substrate containing an organic material, which has been impossible in the past, by irradiation with ultraviolet rays at low temperature and low energy. Therefore, it is possible to manufacture a metal oxide thin film with high production efficiency and suitable for mass production. It has an excellent effect.
 金属酸化物ナノ粒子を支持体上に塗布し、プラズマや紫外光を照射する製造方法で、金属有機化合物を塗布する前に支持体に、例えば蛍光体を形成する母物質と同じか又は結晶構造が同様であるナノ粒子薄膜を形成し、その後、目的とする金属酸化物ナノ粒子溶液または金属酸化物ナノ粒子溶液を含んでも良い金属有機化合物溶液を塗布後、プラズマや紫外線を照射する金属酸化物薄膜の製造方法である。本発明で用いる紫外光としては、例えばレーザ光を挙げることができる。 In the manufacturing method in which metal oxide nanoparticles are applied on a support and irradiated with plasma or ultraviolet light, the support is applied to the support before applying the metal organic compound. After forming a nanoparticle thin film that is the same, and then applying a metal organic compound solution that may contain the target metal oxide nanoparticle solution or metal oxide nanoparticle solution, the metal oxide is irradiated with plasma or ultraviolet light It is a manufacturing method of a thin film. Examples of ultraviolet light used in the present invention include laser light.
 目的に応じて、所定の工程途中や各工程の前後を選ぶことが出来る。また、金属の有機化合物溶液を基板にスピンコートし、溶媒除去のため恒温槽中130℃で乾燥後、または、紫外線ランプを照射した後、レーザチャンバ内の試料ホルダーに試料を装着し、雰囲気を制御して室温から500℃でレーザ照射することもできる。
 支持体に金属酸化物ナノ粒子を塗布した後、焼成又はレーザ照射により薄膜を形成する。この後、金属有機化合物を塗布し乾燥させた膜および本焼成初期膜のそれぞれに対してレーザ照射を施す。
Depending on the purpose, it is possible to select in the middle of a predetermined process or before and after each process. In addition, a metal organic compound solution is spin-coated on a substrate, dried at 130 ° C. in a thermostatic chamber for solvent removal, or irradiated with an ultraviolet lamp, and then a sample is mounted on a sample holder in a laser chamber to create an atmosphere. Laser irradiation can also be performed from room temperature to 500 ° C. under control.
After applying metal oxide nanoparticles to the support, a thin film is formed by firing or laser irradiation. Thereafter, laser irradiation is performed on each of the film obtained by applying the metal organic compound and drying the film and the main baking initial film.
 例えば、SnO:Eu(ユウロピウム)膜を作製した場合について述べると、次の効果が確認された。ガラス基板にSnOナノ粒子にEu有機酸塩を混合した溶液を支持体上に塗布、乾燥後、紫外線ランプを照射し、室温~400℃以下の温度でArFレーザを照射することにより、オレンジ色のフォトルミネッセンスが観測されることが判明した。
 この現象は、紫外線照射により母物質であるSnOの結晶成長と発光中心であるユウロピウムイオンの固溶が促進されたことによるものと考えられる。
 また、従来のSnO:Eu薄膜形成法では、1000℃以上の熱処理において結晶化反応と発光中心原子の固溶反応が進むことが知られているが、本発明の蛍光体薄膜の製造方法は、室温から400℃の低温で結晶反応と発光中心原子の固溶反応が進むことを確認した。
For example, the following effects were confirmed when a SnO 2 : Eu (europium) film was produced. A glass substrate with a mixture of SnO 2 nanoparticles and Eu organic acid salt coated on a support, dried, irradiated with an ultraviolet lamp, and irradiated with an ArF laser at a temperature of room temperature to 400 ° C. It has been found that photoluminescence is observed.
This phenomenon is considered to be due to the fact that the crystal growth of SnO 2 as a base material and the solid solution of europium ions as a light emission center were promoted by ultraviolet irradiation.
In addition, in the conventional SnO 2 : Eu thin film formation method, it is known that a crystallization reaction and a solid solution reaction of the luminescent center atom proceed in a heat treatment at 1000 ° C. or higher. It was confirmed that the crystal reaction and the solid solution reaction of the luminescent center atom proceed at room temperature to a low temperature of 400 ° C.
 また、CaTiO:Pr(プラセオジウム)ナノ粒子膜を、PET(ポリテレフタル酸エチレン)支持体に塗布、乾燥後、紫外線ランプを照射し、25℃でレーザ光を照射することにより、赤色のフォトルミネッセンスが観測された。
 従来のCaTiO:Pr薄膜形成法では、900℃以上の熱処理において結晶化反応と発光中心原子の固溶反応が進むことが知られているが、本発明の蛍光体薄膜の製造方法は、PET基板上に薄膜が作製可能であることを確認した。
In addition, a CaTiO 3 : Pr (praseodymium) nanoparticle film is applied to a PET (polyethylene terephthalate) support, dried, irradiated with an ultraviolet lamp, and irradiated with laser light at 25 ° C., thereby causing red photoluminescence. Was observed.
In the conventional CaTiO 3 : Pr thin film formation method, it is known that a crystallization reaction and a solid solution reaction of the luminescent center atom proceed in a heat treatment at 900 ° C. or higher. It was confirmed that a thin film could be produced on the substrate.
 以下、本発明の特徴を実施例に基づいて、さらに詳しく説明する。なお、以下の説明は、本願発明の理解を容易にするためのものであり、これに制限されるものではない。すなわち、本願発明の技術思想に基づく変形、実施態様、他の例は、本願発明に含まれるものである。 Hereinafter, the features of the present invention will be described in more detail based on examples. In addition, the following description is for making an understanding of this invention easy, and is not restrict | limited to this. That is, modifications, embodiments, and other examples based on the technical idea of the present invention are included in the present invention.
 本発明の実施例で使用した基板は、代表的な基板材料である無アルカリガラス基板、ITO付きガラス基板及びPET基板を用いた。他の基板材料が使用できることは言うまでもない。金属有機化合物原料溶液としては、下記の原料溶液を用いた。下記に示す以外の先駆体溶液については、それぞれの実施例及び比較例において説明することとする。 The substrate used in the examples of the present invention was a non-alkali glass substrate, a glass substrate with ITO, and a PET substrate, which are typical substrate materials. Of course, other substrate materials can be used. The following raw material solutions were used as the metal organic compound raw material solutions. The precursor solutions other than those shown below will be described in the respective examples and comparative examples.
(原料溶液1-1)
 2エチルヘキサン酸カルシウム溶液に、2エチル-1ヘキサノラートチタン(Ti)溶液及び2―エチルヘキサン酸プラセオジム(Pr)溶液を所定の組成比に混合した原料溶液。
(Raw material solution 1-1)
A raw material solution in which a calcium 2-ethylhexanoate solution is mixed with a 2-ethyl-1-hexanolate titanium (Ti) solution and a praseodymium 2-ethylhexanoate (Pr) solution in a predetermined composition ratio.
(原料溶液1-2):(原料溶液1の代替原料溶液)
 上記原料溶液1-1のプラセオジム(Pr)に替えて、希土類金属であるCe,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Ybの各金属の2―エチルヘキサン酸を作製し、2エチルヘキサン酸カルシウム溶液及び2エチル-1ヘキサノラートチタン溶液と混合した原料溶液。
(Raw material solution 1-2): (Alternative raw material solution of raw material solution 1)
Instead of praseodymium (Pr) in the raw material solution 1-1, 2-ethylhexanoic acid of each of the rare earth metals Ce, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb is used. A raw material solution prepared and mixed with a calcium 2-ethylhexanoate solution and a 2-ethyl-1 hexanolate titanium solution.
(原料溶液1-3):(原料溶液1の代替原料溶液)
 2エチルヘキサン酸カルシウム溶液の代替として、2エチルヘキサン酸バリウム溶液を使用し、他は原料溶液1-1及び原料溶液1-2と同等の原料溶液とした。
(Raw material solution 1-3): (Alternative raw material solution of raw material solution 1)
As an alternative to the calcium 2-ethylhexanoate solution, a barium 2-ethylhexanoate solution was used, and the other raw material solutions were the same as the raw material solution 1-1 and the raw material solution 1-2.
(原料溶液1-4):(原料溶液1の代替原料溶液)
 2エチルヘキサン酸カルシウム溶液の代替として、2エチルヘキサン酸ストロンチウム溶液を使用し、他は原料溶液1-1及び原料溶液1-2と同等の原料溶液とした。
(Raw material solution 1-4): (Alternative raw material solution of raw material solution 1)
As an alternative to the calcium 2-ethylhexanoate solution, a strontium 2-ethylhexanoate solution was used, and the others were raw material solutions equivalent to the raw material solution 1-1 and the raw material solution 1-2.
(原料溶液1-5):(原料溶液1の代替原料溶液)
 前記原料溶液1-1の2エチル-1ヘキサノラートチタン(Ti)溶液の代替として、2エチルヘキサン酸ジルコニウム(Zr)溶液を使用し、他は原料溶液1-1及び原料溶液1-2と同等の原料溶液とした。
(Raw material solution 1-5): (Alternative raw material solution of raw material solution 1)
As an alternative to the 2-ethyl-1-hexanolate titanium (Ti) solution of the raw material solution 1-1, a zirconium 2-ethylhexanoate (Zr) solution was used, and the others were the raw material solution 1-1 and the raw material solution 1-2. Equivalent raw material solutions were obtained.
(原料溶液2-1)
 CaTiO:Prナノ粒子粉末は、原料溶液1を用い、以下の方法で作製した。原料溶液をるつぼに入れ、200℃で加熱し溶媒を除去した。その後、300℃、6時間仮焼成し、次いで500℃、12時間焼成した。生成した粉末はエタノール:エチレングリコールの混合溶媒に分散させた。すなわち、これはCaTiO:Prナノ粒子粉末を、一旦作製し、この粉末をさらに溶媒に分散させて先駆体溶液とした。
(Raw material solution 2-1)
The CaTiO 3 : Pr nanoparticle powder was prepared using the raw material solution 1 by the following method. The raw material solution was placed in a crucible and heated at 200 ° C. to remove the solvent. Then, it was calcined at 300 ° C. for 6 hours and then calcined at 500 ° C. for 12 hours. The produced powder was dispersed in a mixed solvent of ethanol: ethylene glycol. That is, a CaTiO 3 : Pr nanoparticle powder was once prepared, and this powder was further dispersed in a solvent to obtain a precursor solution.
(原料溶液2-2):(原料溶液2の代替原料溶液)
 上記原料溶液2-1のプラセオジム(Pr)に替えて、希土類金属であるCe, Nd, Sm, Eu, Gd,Tb, Dy, Ho, Er, Tm, Ybの各金属とCaTiOとの混合粒子粉末を作製し、この混合粒子粉末をさらに溶媒に分散させた先駆体溶液とした。
(Raw material solution 2-2): (Alternative raw material solution of raw material solution 2)
In place of the praseodymium (Pr) of the raw material solution 2-1, mixed particles of rare earth metals Ce, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and CaTiO 3 A precursor solution was prepared by preparing a powder and further dispersing the mixed particle powder in a solvent.
(原料溶液2-3)
 原料溶液2-1のCaTiO:Prナノ粒子粉末の作製の際に、最終焼成温度を900℃として、12時間焼成した。生成した粉末はエタノール:エチレングリコールの混合溶媒に分散させた。
(Raw material solution 2-3)
When the CaTiO 3 : Pr nanoparticle powder of the raw material solution 2-1 was produced, the final calcination temperature was set to 900 ° C., and calcination was performed for 12 hours. The produced powder was dispersed in a mixed solvent of ethanol: ethylene glycol.
(原料溶液2-4):(CaTi:Prナノ粒子溶液)
 原料溶液2-1の作製の際に、金属組成比がCa:Ti=3:2となるようにした以外は同様の操作を行った。
(Raw material solution 2-4): (Ca 3 Ti 2 O 7 : Pr nanoparticle solution)
The same operation was performed except that the metal composition ratio was set to Ca: Ti = 3: 2 when producing the raw material solution 2-1.
(原料溶液2-5):(CaTi:Prナノ粒子溶液)
 原料溶液2-3の作製の際に、金属組成比がCa:Ti=3:2となるようにした以外は同様の操作を行った。
(Raw material solution 2-5): (Ca 3 Ti 2 O 7 : Pr nanoparticle solution)
The same operation was performed except that the metal composition ratio was Ca: Ti = 3: 2 when the raw material solution 2-3 was produced.
(原料溶液2-6)
 RbVO粒子は、高純度化学のSYM-RbO溶液とVO溶液を所定比に混合して、400℃で1時間焼成後、700℃で30分焼成した。生成した粉末は、エチレングリコールの混合溶媒に分散させた。
(Raw material solution 2-6)
The RbVO 3 particles were prepared by mixing a high-purity SYM-RbO 3 solution and a VO 2 solution at a predetermined ratio, firing at 400 ° C. for 1 hour, and then firing at 700 ° C. for 30 minutes. The produced powder was dispersed in a mixed solvent of ethylene glycol.
(原料溶液2-7)
 RbVO粒子は、RvCOとVを所定比に混合して、焼成温度:700℃で30分焼成した。生成物を粉砕した粉末は、エチレングリコールの混合溶媒に分散させた。
(Raw material solution 2-7)
RbVO 3 particles were fired at a firing temperature of 700 ° C. for 30 minutes by mixing Rv 2 CO 3 and V 2 O 5 in a predetermined ratio. The powder obtained by pulverizing the product was dispersed in a mixed solvent of ethylene glycol.
(原料溶液3)
 原料溶液1-1又は原料溶液1-2と原料溶液2-1又は原料溶液2-2を所定比で混合した。
(Raw material solution 3)
The raw material solution 1-1 or the raw material solution 1-2 and the raw material solution 2-1 or the raw material solution 2-2 were mixed at a predetermined ratio.
(原料溶液4)
 BaTiOナノ粒子溶液は、ナイコール社の溶液を用いた。
(Raw material solution 4)
As the BaTiO 3 nanoparticle solution, a solution made by Nycol was used.
(原料溶液5)
 酸化スズナノ粒子溶液(三菱マテリアル社製)に2%のEu-EMOD溶液(高純度化学社製)を混合した。
(Raw material solution 5)
A 2% Eu-EMOD solution (manufactured by Koyo Chemical Co., Ltd.) was mixed with the tin oxide nanoparticle solution (manufactured by Mitsubishi Materials Corporation).
(紫外光照射)
 紫外光照射は、172nm,222nmエキシマランプおよびArF, KrF, XeClエキシマレーザを用いた。
(Ultraviolet light irradiation)
For irradiation with ultraviolet light, 172 nm and 222 nm excimer lamps and ArF, KrF, and XeCl excimer lasers were used.
(実施例1-1)
 BaTiOナノ粒子溶液(原料溶液4)をITO付きガラス基板にスピンコートとした。200℃で乾燥後、500℃で焼成し、BaTiO/ITO/ガラス基板を作製した。
 本基板に、原料溶液1(2エチルヘキサン酸カルシウム溶液に、2エチル-1ヘキサノラートチタン溶液及び2―エチルヘキサン酸プラセオジム溶液)をコート後、20mJ/cmのKrFレーザを50Hzで2分照射した。
Example 1-1
A BaTiO 3 nanoparticle solution (raw material solution 4) was spin-coated on a glass substrate with ITO. After drying at 200 ° C., baking was performed at 500 ° C. to prepare a BaTiO 3 / ITO / glass substrate.
After coating this substrate with raw material solution 1 (2-ethylhexanoate solution, 2-ethyl-1-hexanolate titanium solution and 2-ethylhexanoate praseodymium solution), a 20 mJ / cm 2 KrF laser was applied at 50 Hz for 2 minutes. Irradiated.
 照射部について、島津UV5300を用いて320nmの励起光でフォトルミネッセンスを測定したところ、615nm(赤色)の発光が観測された。これにより、低エネルギーのレーザ照射で、プラセオジムを含有するCaTiO薄膜の存在が確認できた。 When the photoluminescence was measured with 320 nm excitation light using Shimadzu UV5300, 615 nm (red) light emission was observed. Accordingly, in the laser irradiation of low energy, the presence of CaTiO 3 thin film containing praseodymium was confirmed.
(実施例1-2)
 また、原料溶液1の代替溶液として、プラセオジム(Pr)に替えて、Ce, Nd, Sm, Eu, GD, Tb, Dy, Ho, Er, Tm, Ybの各元素の2―エチルヘキサン酸を作製し、2エチルヘキサン酸カルシウム溶液に2エチル-1ヘキサノラートチタン溶液と混合した場合においても、同様の操作により、これらの希土類金属を含有するCaTiO薄膜の存在が確認できた。
Example 1-2
Also, instead of praseodymium (Pr), 2-ethylhexanoic acid for each element of Ce, Nd, Sm, Eu, GD, Tb, Dy, Ho, Er, Tm, and Yb is prepared as an alternative solution of the raw material solution 1 Even when the calcium 2-ethylhexanoate solution was mixed with the 2-ethyl-1-hexanolate titanium solution, the presence of the CaTiO 3 thin film containing these rare earth metals could be confirmed by the same operation.
(実施例1-3)
 BaTiOナノ粒子溶液(原料溶液4)をPET基板にスピンコートとした。100℃で乾燥後、172nmの紫外ランプで処理し、BaTiO/PET基板を作製した。
 本基板に、原料溶液1(2エチルヘキサン酸カルシウム溶液に、2エチル-1ヘキサノラートチタン溶液及び2―エチルヘキサン酸プラセオジム溶液)をコート後、40mJ/cmのKrFレーザを5Hzで5分照射した。照射部について、島津UV5300を用いて320nmの励起光でフォトルミネッセンスを測定したところ、615nm(赤色)の発光が観測された。これにより、低エネルギーのレーザ照射で、プラセオジムを含有するCaTiO薄膜の存在が確認できた。
(Example 1-3)
A BaTiO 3 nanoparticle solution (raw material solution 4) was spin-coated on a PET substrate. After drying at 100 ° C., it was treated with a 172 nm ultraviolet lamp to prepare a BaTiO 3 / PET substrate.
After coating this substrate with raw material solution 1 (2-ethylhexanoate solution, 2-ethyl-1-hexanolate titanium solution and 2-ethylhexanoate praseodymium solution), a 40 mJ / cm 2 KrF laser was applied at 5 Hz for 5 minutes. Irradiated. When the photoluminescence was measured with 320 nm excitation light using Shimadzu UV5300, 615 nm (red) light emission was observed. Accordingly, in the laser irradiation of low energy, the presence of CaTiO 3 thin film containing praseodymium was confirmed.
(比較例1-1) 
 実施例1で使用した支持体層(BaTiOナノ粒子)が存在しないITO付きガラス基板(ITO(100nm)/ガラス基板)に、原料溶液1をコート後、20mJ/cmのKrFレーザを50Hzで2分照射した。照射部について、島津UV5300にて、320nmの励起光でフォトルミネッセンスを測定したところ615nm(赤色)の発光は観測されなかった。
 このように、酸化物のナノ粒子から作製した支持層が存在しない場合には、低エネルギーのレーザ照射では、原料溶液1を用いた場合でも所定の特性を得ることができないことが分かった。上記実施例1と比較例から、酸化物のナノ粒子から作製した支持層の存在は重要であることが確認できる。
(Comparative Example 1-1)
After coating the raw material solution 1 on a glass substrate with ITO (ITO (100 nm) / glass substrate) without the support layer (BaTiO 3 nanoparticles) used in Example 1, a 20 mJ / cm 2 KrF laser was applied at 50 Hz. Irradiated for 2 minutes. Regarding the irradiated portion, photoluminescence was measured with excitation light of 320 nm using Shimadzu UV5300, and no emission of 615 nm (red) was observed.
Thus, it has been found that when there is no support layer made of oxide nanoparticles, predetermined characteristics cannot be obtained even when the raw material solution 1 is used by low-energy laser irradiation. From the above Example 1 and Comparative Example, it can be confirmed that the presence of the support layer prepared from the oxide nanoparticles is important.
(比較例1-2) 
 実施例1で使用した支持体層(BaTiOナノ粒子)が存在しないITO付きガラス基板(ITO(100nm)/ガラス基板)に、原料溶液1-1をコート後、20mJ/cmのKrFレーザを50Hzで2分照射した。照射部について、島津UV5300にて、320nmの励起光でフォトルミネッセンスを測定したところ615nm(赤色)の発光は観測されなかった。
 この場合も、比較例1-1と同様に、酸化物のナノ粒子から作製した支持層が存在しない場合には、低エネルギーのレーザ照射では、原料溶液1を用いた場合でも所定の特性を得ることができなかった。
(Comparative Example 1-2)
The glass substrate with ITO (ITO (100 nm) / glass substrate) without the support layer (BaTiO 3 nanoparticles) used in Example 1 was coated with the raw material solution 1-1, and then a 20 mJ / cm 2 KrF laser was applied. Irradiated at 50 Hz for 2 minutes. Regarding the irradiated portion, photoluminescence was measured with excitation light of 320 nm using Shimadzu UV5300, and no emission of 615 nm (red) was observed.
Also in this case, as in Comparative Example 1-1, when there is no support layer made of oxide nanoparticles, the low-energy laser irradiation obtains predetermined characteristics even when the raw material solution 1 is used. I couldn't.
(実施例2-1)
 実施例1方法で使用した原料溶液1の代わりに原料溶液2-1を用いた。他の条件は実施例1と同様とした。これによって、実施例1と同様に615nm(赤色)のフォトルミネッセンスが観測された。これにより、低エネルギーのレーザ照射で、プラセオジムを含有するCaTiO蛍光体薄膜の存在が確認できた。
Example 2-1
In place of the raw material solution 1 used in Example 1, the raw material solution 2-1 was used. Other conditions were the same as in Example 1. As a result, 615 nm (red) photoluminescence was observed as in Example 1. This confirmed the presence of a CaTiO 3 phosphor thin film containing praseodymium by low-energy laser irradiation.
(実施例2-2)
 実施例2-1方法で使用した原料溶液2-1の代わりに原料溶液2-2を用いた。他の条件は実施例1-1と同様とした。これによって、実施例1-1と同様に615nm(赤色)のフォトルミネッセンスが観測された。これにより、低エネルギーのレーザ照射で、プラセオジムを含有するCaTiO蛍光体薄膜の存在が確認できた。
(Example 2-2)
Example 2-1 Raw material solution 2-2 was used in place of raw material solution 2-1 used in the method. Other conditions were the same as in Example 1-1. As a result, 615 nm (red) photoluminescence was observed as in Example 1-1. This confirmed the presence of a CaTiO 3 phosphor thin film containing praseodymium by low-energy laser irradiation.
(実施例2-3)
 実施例2-1方法で使用した原料溶液2-1の代わりに原料溶液2-3を用いた。他の条件は実施例1-1と同様とした。これによって、実施例1-1と同様に615nm(赤色)のフォトルミネッセンスが観測された。これにより、低エネルギーのレーザ照射で、プラセオジムを含有するCaTiO蛍光体薄膜の存在が確認できた。
(Example 2-3)
Example 2-1 Raw material solution 2-3 was used in place of raw material solution 2-1 used in the method. Other conditions were the same as in Example 1-1. As a result, 615 nm (red) photoluminescence was observed as in Example 1-1. This confirmed the presence of a CaTiO 3 phosphor thin film containing praseodymium by low-energy laser irradiation.
(実施例2-4)
 実施例2-1方法で使用した原料溶液2-1の代わりに原料溶液2-4を用いた。他の条件は実施例1-1と同様とした。これによって、615nm(赤色)のフォトルミネッセンスが観測された。これにより、低エネルギーのレーザ照射で、プラセオジムを含有するCaTiO蛍光体薄膜の存在が確認できた。
(Example 2-4)
Example 2-1 Raw material solution 2-4 was used in place of raw material solution 2-1 used in the method. Other conditions were the same as in Example 1-1. Thereby, 615 nm (red) photoluminescence was observed. This confirmed the presence of a CaTiO 3 phosphor thin film containing praseodymium by low-energy laser irradiation.
(実施例2-5)
 実施例2-1方法で使用した原料溶液2-1の代わりに原料溶液2-5を用いた。他の条件は実施例1-1と同様とした。照射部について、島津UV5300にて、350nmの励起光でフォトルミネッセンスを測定したところ白色のフォトルミネッセンスが観測された。また、膜の透過率は、可視領域(550nm)で80%を示した。これにより、低エネルギーのレーザ照射で、RbVO透明蛍光体膜の存在が確認できた。
(Example 2-5)
Example 2-1 Raw material solution 2-5 was used in place of raw material solution 2-1 used in the method. Other conditions were the same as in Example 1-1. About the irradiated part, when the photoluminescence was measured with Shimadzu UV5300 with excitation light of 350 nm, white photoluminescence was observed. Further, the transmittance of the film was 80% in the visible region (550 nm). This confirmed the presence of the RbVO 3 transparent phosphor film by low-energy laser irradiation.
(実施例2-6)
 実施例2-1方法で使用した原料溶液2-1の代わりに原料溶液2-6を用いた。他の条件は実施例1-1と同様とした。照射部について、島津UV5300にて、350nmの励起光でフォトルミネッセンスを測定したところ白色のフォトルミネッセンスが観測された。また、膜の透過率は、可視領域(550nm)で80%を示した。これにより、低エネルギーのレーザ照射で、RbVO透明蛍光体膜の存在が確認できた。
(Example 2-6)
Example 2-1 Raw material solution 2-6 was used in place of raw material solution 2-1 used in the method. Other conditions were the same as in Example 1-1. About the irradiated part, when the photoluminescence was measured with Shimadzu UV5300 with excitation light of 350 nm, white photoluminescence was observed. Further, the transmittance of the film was 80% in the visible region (550 nm). This confirmed the presence of the RbVO 3 transparent phosphor film by low-energy laser irradiation.
 (実施例2-7)
 実施例2-1方法で使用した原料溶液2-1の代わりに原料溶液2-7を用いた。他の条件は実施例1-1と同様とした。照射部について、島津UV5300にて、350nmの励起光でフォトルミネッセンスを測定したところ白色のフォトルミネッセンスが観測された。また、膜の透過率は、可視領域(550nm)で80%を示した。これにより、低エネルギーのレーザ照射で、RbVO透明蛍光体膜の存在が確認できた。
(Example 2-7)
Example 2-1 Raw material solution 2-7 was used in place of raw material solution 2-1 used in the method. Other conditions were the same as in Example 1-1. About the irradiated part, when the photoluminescence was measured with Shimadzu UV5300 with excitation light of 350 nm, white photoluminescence was observed. Further, the transmittance of the film was 80% in the visible region (550 nm). This confirmed the presence of the RbVO 3 transparent phosphor film by low-energy laser irradiation.
(実施例2-8)
 BaTiOナノ粒子溶液(原料溶液4)をPET基板にスピンコートとした。100℃で乾燥後、172nmの紫外ランプで処理し、BaTiO/PET基板を作製した。
 本基板に、原料溶液2-1をコート後、40mJ/cmのKrFレーザを5Hzで5分照射した。照射部について、島津UV5300を用いて320nmの励起光でフォトルミネッセンスを測定したところ、615nm(赤色)の発光が観測された。これにより、低エネルギーのレーザ照射で、プラセオジムを含有するCaTiO薄膜の存在が確認できた。
(Example 2-8)
A BaTiO 3 nanoparticle solution (raw material solution 4) was spin-coated on a PET substrate. After drying at 100 ° C., it was treated with a 172 nm ultraviolet lamp to prepare a BaTiO 3 / PET substrate.
The substrate was coated with the raw material solution 2-1, and then irradiated with a 40 mJ / cm 2 KrF laser at 5 Hz for 5 minutes. When the photoluminescence was measured with 320 nm excitation light using Shimadzu UV5300, 615 nm (red) light emission was observed. Accordingly, in the laser irradiation of low energy, the presence of CaTiO 3 thin film containing praseodymium was confirmed.
(実施例2-9)
 BaTiOナノ粒子溶液(原料溶液4)をPET基板にスピンコートとした。100℃で乾燥後、172nmの紫外ランプで処理し、BaTiO/PET基板を作製した。
 本基板に、原料溶液2-1をコート後、172nmの紫外ランプを2分照射した。照射部について、島津UV5300を用いて320nmの励起光でフォトルミネッセンスを測定したところ、615nm(赤色)の発光が観測された。これにより、紫外線ランプ照射で、プラセオジムを含有するCaTiO薄膜の存在が確認できた。
(Example 2-9)
A BaTiO 3 nanoparticle solution (raw material solution 4) was spin-coated on a PET substrate. After drying at 100 ° C., it was treated with a 172 nm ultraviolet lamp to prepare a BaTiO 3 / PET substrate.
The substrate was coated with the raw material solution 2-1, and then irradiated with an ultraviolet lamp of 172 nm for 2 minutes. When the photoluminescence was measured with 320 nm excitation light using Shimadzu UV5300, 615 nm (red) light emission was observed. Thus, an ultraviolet lamp radiation, the presence of CaTiO 3 thin film containing praseodymium was confirmed.
(実施例3-1)
 実施例1方法で、原料溶液1-1の代わりに原料溶液3を用いた。615nm(赤色)のフォトルミネッセンスの強度が増大した。原料溶液1-1と原料溶液2-1を混合した溶液、すなわち先駆体溶液中に、金属有機化合物溶液とさらに金属酸化物ナノ粒子溶液を含む場合には、プラセオジムを含有するCaTiO蛍光体薄膜の形成に、さらに有効であることが確認できた。
Example 3-1
In the method of Example 1, the raw material solution 3 was used instead of the raw material solution 1-1. The intensity of photoluminescence at 615 nm (red) increased. When a solution obtained by mixing the raw material solution 1-1 and the raw material solution 2-1, that is, the precursor solution, contains a metal organic compound solution and a metal oxide nanoparticle solution, a CaTiO 3 phosphor thin film containing praseodymium It was confirmed that it is more effective for the formation of.
(実施例3-2)
 上記実施例3-1に替え、原料溶液1-1又は原料溶液1-2と原料溶液2-1又は原料溶液2-2を任意に組み合わせた場合も、上記と同様の結果が得られた。
 すなわち、プラセオジム(Pr)に替えて、Ce, Nd,Sm,Eu, Gd,Tb,Dy, Ho, Er, Tm,Ybの各金属元素を含有する場合も、CaTiO蛍光体薄膜の形成に、さらに有効であることが確認できた。
(Example 3-2)
When the raw material solution 1-1 or the raw material solution 1-2 and the raw material solution 2-1 or the raw material solution 2-2 were arbitrarily combined in place of the above Example 3-1, the same result as above was obtained.
That is, instead of praseodymium (Pr), even when each metal element of Ce, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb is contained, the formation of the CaTiO 3 phosphor thin film It was confirmed that it was more effective.
(実施例4)
 実施例2-1では、実施例1-1と同様に、基板としてBaTiO/ITO/ガラス基板使用したが,本実施例4ではITO付きガラス基板を使用し、CaTiO:Prナノ粒子溶液(原料溶液2-1)をITO付きガラス基板にスピンコートとした。100℃で乾燥後、20mJ/cmのKrFレーザを50Hzで2分照射した。
 照射部について、島津UV5300を用いて、320nmの励起光でフォトルミネッセンスを測定したところの615nm(赤色)に発光が観測された。
 このように、金属酸化物ナノ粒子を含有する先駆体溶液を、そのままガラス基板に使用しても、CaTiO蛍光体薄膜の形成に有効であることが確認できた。
Example 4
In Example 2-1, as in Example 1-1, a BaTiO 3 / ITO / glass substrate was used as the substrate. However, in Example 4, a glass substrate with ITO was used, and a CaTiO 3 : Pr nanoparticle solution ( The raw material solution 2-1) was spin-coated on a glass substrate with ITO. After drying at 100 ° C., a 20 mJ / cm 2 KrF laser was irradiated at 50 Hz for 2 minutes.
Regarding the irradiated part, light emission was observed at 615 nm (red) when photoluminescence was measured with 320 nm excitation light using Shimadzu UV5300.
Thus, even if the precursor solution containing metal oxide nanoparticles was used as it was for a glass substrate, it was confirmed that it was effective for forming a CaTiO 3 phosphor thin film.
(実施例5)
 CaTiO:Prナノ粒子溶液(原料溶液2-1)をPET基板にスピンコートとした。100℃で乾燥後、222nmの紫外線ランプを照射した。照射部は、320nmの励起光でフォトルミネッセンスを測定したところ615nm(赤色)に発光が観測された。
 このように、金属酸化物ナノ粒子を含有する先駆体溶液を、そのままPET基板に使用しても、紫外線ランプを照射することにより、CaTiO蛍光体薄膜の形成に有効であることが確認できた。
(Example 5)
A CaTiO 3 : Pr nanoparticle solution (raw material solution 2-1) was spin-coated on a PET substrate. After drying at 100 ° C., a 222 nm ultraviolet lamp was irradiated. The irradiated part was measured for photoluminescence with excitation light of 320 nm, and emission was observed at 615 nm (red).
Thus, even when the precursor solution containing metal oxide nanoparticles was used as it was for a PET substrate, it was confirmed that it was effective for forming a CaTiO 3 phosphor thin film by irradiating an ultraviolet lamp. .
(実施例5―1)
 CaTiO:Prナノ粒子溶液(原料溶液2-1)をPET基板にスピンコートとした。100℃で乾燥後、222nmの紫外線ランプを照射した。
 次いで、172nmの紫外線ランプを照射した。照射部は、320nmの励起光でフォトルミネッセンスを測定したところ615nm(赤色)に発光が観測された。
 このように、金属酸化物ナノ粒子を含有する先駆体溶液を、そのままPET基板に使用しても、紫外線ランプを照射することにより、CaTiO蛍光体薄膜の形成に有効であることが確認できた。
(Example 5-1)
A CaTiO 3 : Pr nanoparticle solution (raw material solution 2-1) was spin-coated on a PET substrate. After drying at 100 ° C., a 222 nm ultraviolet lamp was irradiated.
Next, a 172 nm ultraviolet lamp was irradiated. The irradiated part was measured for photoluminescence with excitation light of 320 nm, and emission was observed at 615 nm (red).
Thus, even when the precursor solution containing metal oxide nanoparticles was used as it was for a PET substrate, it was confirmed that it was effective for forming a CaTiO 3 phosphor thin film by irradiating an ultraviolet lamp. .
(実施例5―2)
 CaTiO:Prナノ粒子溶液(原料溶液2-2)をPET基板にスピンコートとした。100℃で乾燥後、222nmの紫外線ランプを照射した。照射部は、320nmの励起光でフォトルミネッセンスを測定したところ615nm(赤色)に発光が観測された。また、膜の透過率は、可視領域(550nm)で80%を示した。このように、金属酸化物ナノ粒子を含有する先駆体溶液を、そのままPET基板に使用しても、紫外線ランプを照射することにより、CaTiO:Pr蛍光体薄膜の形成に有効であることが確認できた。
(Example 5-2)
A CaTiO 3 : Pr nanoparticle solution (raw material solution 2-2) was spin-coated on a PET substrate. After drying at 100 ° C., a 222 nm ultraviolet lamp was irradiated. The irradiated part was measured for photoluminescence with excitation light of 320 nm, and emission was observed at 615 nm (red). Further, the transmittance of the film was 80% in the visible region (550 nm). Thus, even if the precursor solution containing metal oxide nanoparticles is used as it is for a PET substrate, it is confirmed that it is effective for forming a CaTiO 3 : Pr phosphor thin film by irradiating an ultraviolet lamp. did it.
(実施例5-3)
 CaTiO:Prナノ粒子溶液(原料溶液2-3)をPET基板にスピンコートとした。100℃で乾燥後、222nmの紫外線ランプを照射した。照射部は、320nmの励起光でフォトルミネッセンスを測定したところ615nm(赤色)に発光が観測された。また、膜の透過率は、可視領域(550nm)で80%を示した。このように、金属酸化物ナノ粒子を含有する先駆体溶液を、そのままPET基板に使用しても、紫外線ランプを照射することにより、CaTiO:Pr蛍光体薄膜の形成に有効であることが確認できた。
(Example 5-3)
A CaTiO 3 : Pr nanoparticle solution (raw material solution 2-3) was spin-coated on a PET substrate. After drying at 100 ° C., a 222 nm ultraviolet lamp was irradiated. The irradiated part was measured for photoluminescence with excitation light of 320 nm, and emission was observed at 615 nm (red). Further, the transmittance of the film was 80% in the visible region (550 nm). Thus, even if the precursor solution containing metal oxide nanoparticles is used as it is for a PET substrate, it is confirmed that it is effective for forming a CaTiO 3 : Pr phosphor thin film by irradiating an ultraviolet lamp. did it.
(実施例5-4)
 CaTi:Prナノ粒子溶液(原料溶液2-4)をPET基板にスピンコートとした。100℃で乾燥後、222nmの紫外線ランプを照射した。照射部は、320nmの励起光でフォトルミネッセンスを測定したところ615nm(赤色)に発光が観測された。また、膜の透過率は、可視領域(550nm)で80%を示した。このように、金属酸化物ナノ粒子を含有する先駆体溶液を、そのままPET基板に使用しても、紫外線ランプを照射することにより、CaTiO:Pr蛍光体薄膜の形成に有効であることが確認できた。
(Example 5-4)
A Ca 3 Ti 2 O 7 : Pr nanoparticle solution (raw material solution 2-4) was spin-coated on a PET substrate. After drying at 100 ° C., a 222 nm ultraviolet lamp was irradiated. The irradiated part was measured for photoluminescence with excitation light of 320 nm, and emission was observed at 615 nm (red). Further, the transmittance of the film was 80% in the visible region (550 nm). Thus, even if the precursor solution containing metal oxide nanoparticles is used as it is for a PET substrate, it is confirmed that it is effective for forming a CaTiO 3 : Pr phosphor thin film by irradiating an ultraviolet lamp. did it.
(実施例5-5)
 RbVO粒子溶液(原料溶液2-5)をPET基板にスピンコートとした。100℃で乾燥後、222nmの紫外線ランプを照射した。照射部は、350nmの励起光でフォトルミネッセンスを測定したところ白色発光が観測された。また、膜の透過率は、可視領域(550nm)で80%を示した。このように、金属酸化物ナノ粒子を含有する先駆体溶液を、そのままPET基板に使用しても、紫外線ランプを照射することにより、RbVO透明蛍光体薄膜の形成に有効であることが確認できた。
(Example 5-5)
An RbVO 3 particle solution (raw material solution 2-5) was spin-coated on a PET substrate. After drying at 100 ° C., a 222 nm ultraviolet lamp was irradiated. When the photoluminescence was measured with the excitation light of 350 nm, white light emission was observed. Further, the transmittance of the film was 80% in the visible region (550 nm). Thus, even if the precursor solution containing metal oxide nanoparticles is used as it is for a PET substrate, it can be confirmed that it is effective for the formation of an RbVO 3 transparent phosphor thin film by irradiating an ultraviolet lamp. It was.
(実施例5-6)
 RbVO粒子溶液(原料溶液2-6)をPET基板にスピンコートとした。100℃で乾燥後、222nmの紫外線ランプを照射した。照射部は、350nmの励起光でフォトルミネッセンスを測定したところ白色発光が観測された。また、膜の透過率は、可視領域(550nm)で80%を示した。このように、金属酸化物ナノ粒子を含有する先駆体溶液を、そのままPET基板に使用しても、紫外線ランプを照射することにより、RbVO透明蛍光体薄膜の形成に有効であることが確認できた。
(Example 5-6)
The RbVO 3 particle solution (raw material solution 2-6) was spin-coated on a PET substrate. After drying at 100 ° C., a 222 nm ultraviolet lamp was irradiated. When the photoluminescence was measured with the excitation light of 350 nm, white light emission was observed. Further, the transmittance of the membrane was 80% in the visible region (550 nm). Thus, even if the precursor solution containing metal oxide nanoparticles is used as it is for a PET substrate, it can be confirmed that it is effective for the formation of an RbVO 3 transparent phosphor thin film by irradiating an ultraviolet lamp. It was.
(実施例6)
 CaTiO:Prナノ粒子溶液(原料溶液2-1)をPET基板にスピンコートとした。100℃で乾燥後、プラズマを照射した。照射部は320nmの励起光でフォトルミネッセンスを測定したところ、615nm(赤色)に発光が観測された。このように、金属ナノ粒子を含有する先駆体溶液を、そのままPET基板に使用しても、プラズマを照射することにより、CaTiO蛍光体薄膜の形成に有効であることが確認できた。
(Example 6)
A CaTiO 3 : Pr nanoparticle solution (raw material solution 2-1) was spin-coated on a PET substrate. After drying at 100 ° C., plasma was irradiated. When the irradiated portion was measured for photoluminescence with excitation light of 320 nm, light emission was observed at 615 nm (red). Thus, even if the precursor solution containing metal nanoparticles was used for a PET substrate as it was, it was confirmed that it was effective for forming a CaTiO 3 phosphor thin film by irradiating with plasma.
(実施例7)
 2エチルヘキサン酸バリウム溶液を含有する(原料溶液1-3)をPET基板にスピンコートとし、222nmの紫外線ランプを照射して、BaTiOナノ粒子を形成した後、この基板にCaTiO:Prナノ粒子溶液(原料溶液2-1)をスピンコートとした。100℃で乾燥後、20mJ/cmのKrFレーザを50Hzで2分照射した。320nmの励起光でフォトルミネッセンスを測定したところ615nm(赤色)に発光が観測された。
 この場合、原料溶液1-4である2エチルヘキサン酸ストロンチウム溶液を使用してSrTiOナノ粒子を作製した場合も同様な結果が得られた。
(Example 7)
A PET substrate is spin-coated with a 2-ethylhexanoate solution (raw material solution 1-3) and irradiated with an ultraviolet lamp of 222 nm to form BaTiO 3 nanoparticles, and then CaTiO 3 : Pr nano is formed on the substrate. The particle solution (raw material solution 2-1) was spin-coated. After drying at 100 ° C., a 20 mJ / cm 2 KrF laser was irradiated at 50 Hz for 2 minutes. When photoluminescence was measured with excitation light of 320 nm, light emission was observed at 615 nm (red).
In this case, similar results were obtained when SrTiO 3 nanoparticles were produced using a strontium 2-ethylhexanoate solution as the raw material solution 1-4.
(比較例2)
 PET基板に、有機金属化合物原料溶液1をコート後、20mJ/cmのKrFレーザを50Hzで2分照射したところ、PET基板が光反応により分解された。また、照射部は320nmの励起光でフォトルミネッセンスを測定したところ発光は観測されなかった。このことから、少なくとも基板上に酸化物ナノ粒子の存在が必要であることが確認できた。
(Comparative Example 2)
The PET substrate was coated with the organometallic compound raw material solution 1 and then irradiated with a 20 mJ / cm 2 KrF laser at 50 Hz for 2 minutes. As a result, the PET substrate was decomposed by a photoreaction. In addition, when the photoluminescence was measured with 320 nm excitation light, no light emission was observed. From this, it was confirmed that the presence of oxide nanoparticles on at least the substrate was necessary.
 (実施例8)
 ガラス基板に原料溶液3-1をコートした。この原料溶液3-1は、原料溶液1-1と原料溶液2-1を所定比で混合したものである。
 すなわち原料溶液1-1:2エチルヘキサン酸カルシウム溶液に、2エチル-1ヘキサノラートチタン(Ti)溶液及び2―エチルヘキサン酸プラセオジム(Pr)溶液を混合した原料溶液と、原料溶液2-1であるCaTiO:Prナノ粒子粉末の溶液からなる先駆体溶液である。
 コートした膜を172nmのエキシマランプを照射した後、320nmの励起光でフォトルミネッセンスを測定したところ615nm(赤色)に発光が観測された。原料溶液1-2又は原料溶液2-2を先駆体溶液とした場合も同様の結果となった。
(Example 8)
A glass substrate was coated with the raw material solution 3-1. This raw material solution 3-1 is a mixture of the raw material solution 1-1 and the raw material solution 2-1 in a predetermined ratio.
That is, a raw material solution prepared by mixing a raw material solution 1-1: 2 ethyl calcium hexanoate solution with a 2-ethyl-1-hexanolate titanium (Ti) solution and a praseodymium 2-ethyl hexanoate (Pr) solution; and a raw material solution 2-1. It is a precursor solution consisting of a solution of CaTiO 3 : Pr nanoparticle powder.
The coated film was irradiated with an excimer lamp of 172 nm, and then photoluminescence was measured with excitation light of 320 nm. As a result, light emission was observed at 615 nm (red). Similar results were obtained when the raw material solution 1-2 or the raw material solution 2-2 was used as the precursor solution.
(比較例3)
 ガラス基板に原料溶液3-1をコートした。コート後の膜を320nmの励起光でフォトルミネッセンスを測定したところ発光は観測されなかった。実施例9と対比した場合、172nmのエキシマランプを照射していないので、蛍光体を形成することができないことが分かる。
(Comparative Example 3)
A glass substrate was coated with the raw material solution 3-1. When photoluminescence was measured on the coated film with 320 nm excitation light, no light emission was observed. When compared with Example 9, it is understood that the phosphor cannot be formed because the excimer lamp of 172 nm is not irradiated.
(比較例4)
 ガラス基板に原料溶液1-1をコートした膜に、172nmのエキシマランプを照射したところ、320nmの励起光でフォトルミネッセンスを測定したところ発光は観測されなかった。
 このように、酸化物のナノ粒子が存在しない場合には、172nmのエキシマランプでは、原料溶液1-1を用いた場合でも、所定の特性を得ることができないことが分かった。上記実施例と比較例から、酸化物のナノ粒子を含む溶液から作製することが重要であることが確認できる。
(Comparative Example 4)
When a film having a glass substrate coated with the raw material solution 1-1 was irradiated with an excimer lamp of 172 nm, no photoluminescence was observed when photoluminescence was measured with an excitation light of 320 nm.
Thus, it has been found that in the absence of oxide nanoparticles, the 172 nm excimer lamp cannot obtain predetermined characteristics even when the raw material solution 1-1 is used. From the above Examples and Comparative Examples, it can be confirmed that it is important to prepare from a solution containing oxide nanoparticles.
(実施例9)
 ガラス基板に、SnOナノ粒子にEuを含む金属有機化合物溶液を混合し、基板に塗布した。300℃にて、80mJ/cmのArFレーザを10Hzで2分照射した。照射部は320nmの励起光でフォトルミネッセンスを測定したところ590nmに発光が観測された。
Example 9
A metal organic compound solution containing Eu in SnO 2 nanoparticles was mixed with a glass substrate and applied to the substrate. At 300 ° C., an ArF laser of 80 mJ / cm 2 was irradiated at 10 Hz for 2 minutes. The irradiated portion was measured for photoluminescence with excitation light of 320 nm, and emission was observed at 590 nm.
(実施例10)
 Pt付きSiO基板に、BaTiOナノ粒子を形成するための先駆体溶液として、金属組成が1:1のBa2エチルヘキサン酸塩溶液とTi―2エチルーヘキサノラートを含む金属有機化合物溶液を混合し、基板に塗布した。室温で80mJ/cmのArFレーザを10Hzで2分照射したところBaTiO膜が生成した。
(Example 10)
As a precursor solution for forming BaTiO 3 nanoparticles on a Pt-attached SiO 2 substrate, a metal organic compound solution containing a Ba2 ethylhexanoate solution having a metal composition of 1: 1 and Ti-2 ethyl-hexanolate is used. Mixed and applied to the substrate. When an ArF laser of 80 mJ / cm 2 was irradiated at 10 Hz for 2 minutes at room temperature, a BaTiO 3 film was formed.
 以上のように、本発明は金属酸化物ナノ粒子と有機金属化合物を含む先駆体溶液を用いること、さらには基材として、目的とする金属酸化物である蛍光体材料と同様の結晶構造を有する作製することで、低いレーザ照射エネルギーで金属酸化物薄膜を低温で作製することが可能となり、またPET基板などの有機基板に紫外線レーザやランプ及びプラズマ照射により金属酸化物薄膜の作製が可能となるので、薄膜化による高効率デバイスの作製に有用である。 As described above, the present invention uses a precursor solution containing metal oxide nanoparticles and an organometallic compound, and further has a crystal structure similar to that of a phosphor material that is a target metal oxide as a substrate. This makes it possible to produce a metal oxide thin film at a low temperature with low laser irradiation energy, and to produce a metal oxide thin film on an organic substrate such as a PET substrate by ultraviolet laser, lamp and plasma irradiation. Therefore, it is useful for manufacturing a high-efficiency device by thinning.

Claims (14)

  1.  化学溶液法を用いて金属酸化物薄膜を製造する方法において、支持体に予め金属酸化物ナノ粒子溶液を塗布した後、焼成又はレーザ照射により金属酸化物薄膜を形成し、さらにこの金属酸化物薄膜上に、金属を含有する先駆体溶液を塗布し、これを(1)加熱処理工程、(2)プラズマ照射工程、(3)紫外線照射工程の少なくとも一つ又は複数の工程を同時に用いることにより、金属及び金属酸化物以外の物質を除去し、金属含有金属酸化物薄膜を形成することを特徴とする金属酸化物薄膜の製造方法。 In a method for producing a metal oxide thin film using a chemical solution method, a metal oxide nanoparticle solution is applied to a support in advance, and then a metal oxide thin film is formed by firing or laser irradiation. On top of this, by applying a precursor solution containing a metal and simultaneously using at least one or more of (1) a heat treatment step, (2) a plasma irradiation step, and (3) an ultraviolet irradiation step, A method for producing a metal oxide thin film, comprising removing a substance other than metal and metal oxide to form a metal-containing metal oxide thin film.
  2.  支持体が分解や溶融しない加熱工程または紫外線照射工程により、一の金属組成及び結晶構造をもつ金属酸化物ナノ粒子及びこのナノ粒子と同等の結晶構造を持ち、かつ異種金属組成の金属酸化物ナノ粒子からなる薄膜を支持体上に形成し、さらにこれらの金属酸化物ナノ粒子の薄膜上に、金属を含有する先駆体溶液を塗布し、これを(1)加熱処理工程、(2)プラズマ照射工程、(3)紫外線照射工程の少なくとも一つ又は複数の工程を同時に用いることにより、金属及び金属酸化物以外の物質を除去し、金属含有金属酸化物薄膜を形成することを特徴とする金属酸化物薄膜の製造方法。 Metal oxide nanoparticles having a single metal composition and crystal structure and a metal oxide nanoparticle having a different metal composition and having a crystal structure equivalent to that of the nanoparticles by a heating process or ultraviolet irradiation process in which the support does not decompose or melt. A thin film composed of particles is formed on a support, and a precursor solution containing a metal is applied onto the thin film of these metal oxide nanoparticles, and this is applied to (1) a heat treatment step and (2) plasma irradiation. (3) Metal oxidation characterized by removing a substance other than metal and metal oxide by simultaneously using at least one or a plurality of ultraviolet irradiation processes to form a metal-containing metal oxide thin film. Method of manufacturing a thin film.
  3.  前記先駆体溶液が、金属酸化物ナノ粒子溶液又は金属有機化合物溶液であることを特徴とする請求項1又は2記載の金属酸化物薄膜の製造方法。 3. The method for producing a metal oxide thin film according to claim 1, wherein the precursor solution is a metal oxide nanoparticle solution or a metal organic compound solution.
  4.  化学溶液法を用いて金属酸化物薄膜を製造する方法において、金属酸化物ナノ粒子溶液と金属有機化合物を含有する先駆体溶液を支持体に塗布後、(1)加熱処理工程、(2)プラズマ照射工程、(3)紫外線照射工程の少なくとも一つまたは複数の工程を同時に用いることにより有機物を除去し、金属を含有する金属酸化物薄膜を製造することを特徴とする金属酸化物薄膜の製造方法。 In a method of manufacturing a metal oxide thin film using a chemical solution method, after applying a precursor solution containing a metal oxide nanoparticle solution and a metal organic compound to a support, (1) a heat treatment step, (2) plasma A method for producing a metal oxide thin film, wherein an organic substance is removed by simultaneously using at least one or a plurality of steps of (3) an ultraviolet irradiation step to produce a metal oxide thin film containing a metal. .
  5.  前記先駆体溶液における金属酸化物ナノ粒子溶液の金属組成比と金属有機化合物の金属組成比が同一であることを特徴とする請求項4に記載の金属酸化物薄膜の製造方法。 The method for producing a metal oxide thin film according to claim 4, wherein the metal composition ratio of the metal oxide nanoparticle solution in the precursor solution and the metal composition ratio of the metal organic compound are the same.
  6.  前記先駆体溶液の金属酸化物ナノ粒子を構成する金属と異なる金属を含む金属有機化合物から構成されることを特徴とする請求項4又は5に記載の金属酸化物薄膜の製造方法。 6. The method for producing a metal oxide thin film according to claim 4 or 5, comprising a metal organic compound containing a metal different from the metal constituting the metal oxide nanoparticles of the precursor solution.
  7.  請求項1~6のいずれか一項に記載の薄膜の製造方法において、溶媒が含まれる先駆体膜を乾燥せずに紫外線を照射することを特徴とする金属酸化物薄膜の製造方法。 The method for producing a metal oxide thin film according to any one of claims 1 to 6, wherein the precursor film containing the solvent is irradiated with ultraviolet rays without being dried.
  8.  請求項1~7のいずれか一項に記載の薄膜の製造方法において、紫外線ランプによる紫外線照射後に紫外線レーザを照射することを特徴とする金属酸化物薄膜の製造方法。 The method for producing a metal oxide thin film according to any one of claims 1 to 7, wherein the ultraviolet laser is irradiated after the ultraviolet irradiation by the ultraviolet lamp.
  9.  金属酸化物ナノ粒子は、金属有機酸塩及びβジケトナート又は金属アルコキシドのいずれか一つから選ばれる原料溶液を加熱及び又は紫外線照射により製造することを特徴とする請求項1~8のいずれか一項に記載の金属酸化物薄膜の製造方法。 The metal oxide nanoparticles are produced by heating and / or irradiating ultraviolet rays with a raw material solution selected from any one of metal organic acid salts and β-diketonates or metal alkoxides. The manufacturing method of the metal oxide thin film as described in a term.
  10.  金属有機化合物溶液は、金属有機酸塩及びβジケトナート又は金属アルコキシドのいずれか一つから選ばれることを特徴とする請求項1~9のいずれか一項に記載の金属酸化物薄膜の製造方法。 The method for producing a metal oxide thin film according to any one of claims 1 to 9, wherein the metal organic compound solution is selected from any one of a metal organic acid salt and a β-diketonate or a metal alkoxide.
  11.  ペロブスカイト構造、イルメナイト構造、タングステンブロンズ構造、スピネル、パイロクロア構造、ルチル構造、アナターゼ構造、蛍石構造を持つ金属酸化物ナノ粒子を含む先駆体溶液を用いて金属酸化物ナノ粒子を形成することを特徴とする請求項1~10のいずれか一項に記載の金属酸化物薄膜の製造方法。 Forming metal oxide nanoparticles using precursor solution containing metal oxide nanoparticles with perovskite structure, ilmenite structure, tungsten bronze structure, spinel, pyrochlore structure, rutile structure, anatase structure, fluorite structure The method for producing a metal oxide thin film according to any one of claims 1 to 10.
  12.  酸化物ナノ粒子は絶縁体複合金属酸化物であって、絶縁体金属酸化物の構成金属の価数と異なった金属を含む金属有機化合物溶液を混合した先駆体溶液を用いることを特徴とする請求項1~11のいずれか一項に記載の金属酸化物薄膜の製造方法。 The oxide nanoparticle is an insulator composite metal oxide, and uses a precursor solution in which a metal organic compound solution containing a metal having a different valence from the constituent metal of the insulator metal oxide is used. Item 12. The method for producing a metal oxide thin film according to any one of Items 1 to 11.
  13.  蛍光体材料の母物質の金属酸化物ナノ粒子に、Ce, Pr, Nd, Sm, Eu, GD, Tb, Dy, Ho, Er, Tm, Ybが少なくとも一つ含まれる金属有機化合物を混合した先駆体溶液を用いることを特徴とする請求項1~12のいずれか一項に記載の金属酸化物薄膜の製造方法。 A precursor in which a metal organic compound containing at least one of Ce, Pr, Nd, Sm, Eu, GD, Tb, Dy, Ho, Er, Tm, Yb is mixed with the metal oxide nanoparticles of the phosphor material matrix The method for producing a metal oxide thin film according to any one of claims 1 to 12, wherein a body solution is used.
  14.  酸化物ナノ粒子は、AVO(A=Cs, Rb)であることを特徴とする請求項1~11のいずれか一項に記載の金属酸化物薄膜の製造方法。 The method for producing a metal oxide thin film according to any one of claims 1 to 11, wherein the oxide nanoparticles are AVO 3 (A = Cs, Rb).
PCT/JP2009/065050 2008-10-21 2009-08-28 Method for producing metal oxide thin film WO2010047177A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020117009042A KR101261119B1 (en) 2008-10-21 2009-08-28 Method for producing metal oxide thin film
JP2010534749A JP5697085B2 (en) 2008-10-21 2009-08-28 Method for producing metal oxide thin film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-270667 2008-10-21
JP2008270667 2008-10-21

Publications (1)

Publication Number Publication Date
WO2010047177A1 true WO2010047177A1 (en) 2010-04-29

Family

ID=42119225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/065050 WO2010047177A1 (en) 2008-10-21 2009-08-28 Method for producing metal oxide thin film

Country Status (3)

Country Link
JP (1) JP5697085B2 (en)
KR (1) KR101261119B1 (en)
WO (1) WO2010047177A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015157287A (en) * 2015-04-30 2015-09-03 国立研究開発法人産業技術総合研究所 Technology for enhancing performance of photocatalyst
JP2016129211A (en) * 2015-01-09 2016-07-14 国立研究開発法人産業技術総合研究所 Manufacturing method of thermistor
JP2020090594A (en) * 2018-12-04 2020-06-11 リンテック株式会社 Luminescent film and manufacturing method therefor, and ultraviolet irradiation type luminescent sheet

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102002190B1 (en) * 2011-09-22 2019-07-19 스미또모 가가꾸 가부시키가이샤 Process for producing metallic particle assembly
KR101977366B1 (en) * 2017-05-16 2019-05-10 한국세라믹기술원 Method for manufacturing resistive oxide thin film and method of manufacturing bolometer
WO2020111385A1 (en) * 2018-11-30 2020-06-04 한양대학교에리카산학협력단 Rare earth metal plating solution, rare earth metal composite structure, and method for plating rare earth metal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004075511A (en) * 2002-06-19 2004-03-11 Nippon Shokubai Co Ltd Particulate-containing metal oxide film and method for forming the same
JP2005213105A (en) * 2004-01-30 2005-08-11 Matsushita Electric Ind Co Ltd Polycrystallline metal oxide thin film and its manufacturing method, and non-volatile memory
JP2005272157A (en) * 2004-03-23 2005-10-06 Japan Science & Technology Agency Method for producing oxide semiconductor thin film by irradiation with laser light
JP2006282464A (en) * 2005-03-31 2006-10-19 Dainippon Printing Co Ltd Method for producing metal oxide film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004075511A (en) * 2002-06-19 2004-03-11 Nippon Shokubai Co Ltd Particulate-containing metal oxide film and method for forming the same
JP2005213105A (en) * 2004-01-30 2005-08-11 Matsushita Electric Ind Co Ltd Polycrystallline metal oxide thin film and its manufacturing method, and non-volatile memory
JP2005272157A (en) * 2004-03-23 2005-10-06 Japan Science & Technology Agency Method for producing oxide semiconductor thin film by irradiation with laser light
JP2006282464A (en) * 2005-03-31 2006-10-19 Dainippon Printing Co Ltd Method for producing metal oxide film

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NAKAJIMA TOMOHIKO ET AL.: "Direct fabrication of metavanadate phosphor films on organic substrates for white-light-emitting devices", NAT MATER, vol. 7, no. 9, September 2008 (2008-09-01), pages 735 - 740 *
TETSUO TSUCHIYA ET AL.: "Nanoparticle o Mochiita Tofu Koshosha-ho ni yoru ITO-maku no Sakusei to Hyoka", DAI 69 KAI EXTENDED ABSTRACTS; THE JAPAN SOCIETY OF APPLIED PHYSICS SEPARATE, vol. 2, 2 September 2008 (2008-09-02) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016129211A (en) * 2015-01-09 2016-07-14 国立研究開発法人産業技術総合研究所 Manufacturing method of thermistor
JP2015157287A (en) * 2015-04-30 2015-09-03 国立研究開発法人産業技術総合研究所 Technology for enhancing performance of photocatalyst
JP2020090594A (en) * 2018-12-04 2020-06-11 リンテック株式会社 Luminescent film and manufacturing method therefor, and ultraviolet irradiation type luminescent sheet
JP7185823B2 (en) 2018-12-04 2022-12-08 リンテック株式会社 Luminescent film, manufacturing method thereof, and UV irradiation type luminescent sheet

Also Published As

Publication number Publication date
KR20110057257A (en) 2011-05-31
KR101261119B1 (en) 2013-05-07
JP5697085B2 (en) 2015-04-08
JPWO2010047177A1 (en) 2012-03-22

Similar Documents

Publication Publication Date Title
JP5740645B2 (en) Oriented perovskite oxide thin films
JP5697085B2 (en) Method for producing metal oxide thin film
Bhuiyan et al. Solution-derived textured oxide thin films—a review
US7771531B2 (en) Manufacturing method and usage of crystallized metal oxide thin film
Sun et al. The photoluminescence and electrical properties of lead-free (Bi0. 5Na0. 5) TiO3: Pr ceramics
JP3548801B2 (en) A solution composition containing a metal complex in which a specific ligand is coordinated to a specific metal species, a solution composition for producing a rare-earth superconducting film, an amorphous solid of a specific metal complex, a specific coordination to a specific metal species A method for producing a solution containing a metal complex coordinated with an atom, a method for producing a solution for producing a rare earth superconducting film, and a method for forming a superconducting thin film.
Pérez-Juache et al. Luminescent properties of Pr3+-doped SrZrO3 phosphors
CN108352443B (en) Method for forming PZT ferroelectric film
US8877520B2 (en) Ferroelectric film containing a perovskite structure oxide and method for manufacturing a ferroelectric film
JP4963062B2 (en) Method for producing A-site layered ordered perovskite Mn oxide thin film
Sakka History of ferroelectric materials prepared by sol-gel method
Mehra et al. Detailed chemical mechanism of the phase transition in nano-SrTiO3 perovskite with visible luminescence
US10190045B2 (en) Nano-composite structure and processes making of
KR100918225B1 (en) Method for producing fluorescent substance films
Venugopal et al. Effect of annealing temperature in the emission properties of nanocrystalline CaZr0. 9SmxDy0. 1− xO3 systems prepared via self-propagating combustion synthesis
JP2008075073A (en) Manufacturing method of phosphor thin film
Xie et al. Strong red emission and electrical properties of highly c-axis oriented Eu3+-doped bismuth vanadate ferroelectric thin films
de Figueiredo et al. Luminescence property of perovskite structure
JP4952956B2 (en) Phosphor with crystallized metal oxide thin film
JP2003160313A (en) Compound for forming metal oxide thin film, method for producing metal oxide and metal oxide thin film
Garcia Hernandez et al. The influence of polyvinylpyrrolidone on thick and optical properties of BaTiO 3: Er 3+ thin films prepared by sol–gel method
Tubchareon et al. Effect of Na content on the physical properties of powders
JP2001185358A (en) Encapsulated fluorescent particle for electroluminescence and el display panel, and manufacturing method for the same
JP3548802B2 (en) A solution composition containing a metal complex having a specific ligand coordinated to a specific metal species, a solution composition for producing a rare-earth superconducting film, an amorphous solid of a specific metal complex, a specific coordination to a specific metal species A method for producing a solution containing a metal complex to which a ligand is coordinated, a method for producing a solution for producing a rare earth superconducting film, and a method for producing a superconducting thin film.
Wang et al. Influence of Tm-doping on microstructure and luminescence behavior of barium strontium titanate thick films

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09821877

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010534749

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20117009042

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09821877

Country of ref document: EP

Kind code of ref document: A1