WO2020111385A1 - Rare earth metal plating solution, rare earth metal composite structure, and method for plating rare earth metal - Google Patents

Rare earth metal plating solution, rare earth metal composite structure, and method for plating rare earth metal Download PDF

Info

Publication number
WO2020111385A1
WO2020111385A1 PCT/KR2019/001369 KR2019001369W WO2020111385A1 WO 2020111385 A1 WO2020111385 A1 WO 2020111385A1 KR 2019001369 W KR2019001369 W KR 2019001369W WO 2020111385 A1 WO2020111385 A1 WO 2020111385A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
rare earth
plating
calcium
earth metal
Prior art date
Application number
PCT/KR2019/001369
Other languages
French (fr)
Korean (ko)
Inventor
좌용호
김종렬
유봉영
황태연
이지민
Original Assignee
한양대학교에리카산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190011809A external-priority patent/KR102143714B1/en
Application filed by 한양대학교에리카산학협력단 filed Critical 한양대학교에리카산학협력단
Priority to JP2021504829A priority Critical patent/JP7131866B2/en
Publication of WO2020111385A1 publication Critical patent/WO2020111385A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/04Dry methods smelting of sulfides or formation of mattes by aluminium, other metals or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/48Coating with alloys
    • C23C18/50Coating with alloys with alloys based on iron, cobalt or nickel

Definitions

  • the present invention relates to a rare earth metal plating solution, a rare earth composite structure, and a method for plating a rare earth metal, and more particularly, to a rare earth metal plating solution for plating a rare earth metal, a rare earth composite structure, and a method for plating a rare earth metal.
  • electroless plating is a plating method in which metal ions in a plating solution are catalytically reduced by a reducing agent to precipitate metal on the surface of the mother phase.
  • a platinum (Pd)-tin (Sn) catalyst must be applied to the substrate surface.
  • hydrochloric acid (HCl) which is a very strong acid, is used as a Pd-Sn precursor solution.
  • HCl hydrochloric acid
  • These can not only cause damage to the metal matrix, but also have a disadvantage in that a filtration and washing process of the metal matrix is required several times from the catalytic treatment that has been roughly performed in two steps.
  • the rare earth metal materials including scandium, yttrium, and lanthanide elements (La to Lu) are plated by an electroless plating method, there is a great risk of damage to the rare earth metal as a base material. Accordingly, studies have been actively conducted on a method of forming a homogeneous plating film without damaging the rare earth metal.
  • One technical problem to be solved by the present invention is to provide a rare-earth metal plating solution, a rare-earth composite structure, and a rare-earth metal plating method with a simplified process.
  • Another technical problem to be solved by the present invention is to provide a rare earth metal plating solution with improved acid resistance, corrosion resistance, and durability, a rare earth composite structure, and a method for plating a rare earth metal.
  • Another technical problem to be solved by the present invention is to provide a rare earth metal plating solution using a by-product of a reducing agent, a rare earth composite structure, and a method for plating a rare earth metal.
  • the technical problem to be solved by the present invention is not limited to the above.
  • the present invention provides a method for plating rare earth metals.
  • the method of plating the rare earth metal comprises: preparing a base metal including a calcium (Ca) compound, and a rare earth metal compound, a calcium reactant, a first metal precursor including a first metal, and Preparing a plating source including a second metal precursor containing a second metal, and providing the plating source to the base metal, thereby reacting the calcium contained in the calcium compound with the calcium reactant, And plating an alloy of the first metal and the second metal on the surface of the rare earth metal compound.
  • a base metal including a calcium (Ca) compound, and a rare earth metal compound, a calcium reactant, a first metal precursor including a first metal, and Preparing a plating source including a second metal precursor containing a second metal, and providing the plating source to the base metal, thereby reacting the calcium contained in the calcium compound with the calcium reactant, And plating an alloy of the first metal and the second metal on the surface of the rare earth metal compound.
  • the calcium compound when the base metal is provided with the plating source, the calcium compound is dissociated into calcium ions and electrons, the first metal of the first metal precursor, and the second metal of the second metal precursor It may include that formed of an alloy of the first and second metals by receiving the electrons.
  • the calcium ion may include reacting with the calcium reactant to form a functional material.
  • the calcium reactant may include fluorine (F), and the functional material may include a reaction between a fluorine anion and a calcium cation.
  • F fluorine
  • the functional material may include a reaction between a fluorine anion and a calcium cation.
  • the calcium reactant may include any of NH 4 F or HF.
  • the preparing of the base metal includes preparing a base precursor comprising a rare earth element and a metal element, and reducing the base precursor using a reducing agent containing calcium. can do.
  • the rare earth element Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, or at least any one of Lu It can contain.
  • the calcium compound may include calcium oxide (CaO).
  • the preparing of the plating source comprises mixing ultrapure water and the calcium reactant to prepare a mixed solution, and providing the first metal precursor and the second metal precursor to the mixed solution.
  • the ratio of the first metal precursor and the second metal precursor provided to the mixed solution may include different things.
  • the sum of the number of moles of the first metal included in the first metal precursor and the number of moles of the second metal included in the second metal precursor may include more than 1 mmol and less than 75 mmol.
  • the plating step by reacting the plating source to the base metal, on the rare earth metal compound, the functional material, the alloy of the first and second metal, the calcium and the calcium reactant reacted , And an alloy oxide of the first and second metals, a pre-plating layer forming step, and reducing the pre-plating layer, so that the functional material and the first and second metal alloys are formed on the rare-earth metal compound. It may include the step of forming a plating layer comprising a.
  • the present invention provides a rare earth metal plating solution.
  • the plating solution is a calcium reactant containing fluorine (F), the first having a lower ionization tendency than the calcium
  • the metal may include a first metal precursor including a metal, and a second metal precursor including a second metal having a lower ionization tendency than calcium.
  • the present invention provides a rare earth composite structure.
  • the rare earth composite structure is a rare earth metal compound
  • F fluorine
  • the alloy, and the functional material may include those produced at the same time.
  • Plating method of the rare earth metal the step of preparing a base metal comprising a calcium (Ca) compound, and a rare earth metal compound, a calcium reactant, a first metal precursor comprising a first metal, agent Preparing a plating source including a second metal precursor containing 2 metals, and providing the plating source to the base metal, thereby reacting the calcium contained in the calcium compound with the calcium reactant, and And plating an alloy of the first metal and the second metal on the surface of the rare earth metal compound.
  • a base metal comprising a calcium (Ca) compound, and a rare earth metal compound, a calcium reactant, a first metal precursor comprising a first metal, agent Preparing a plating source including a second metal precursor containing 2 metals, and providing the plating source to the base metal, thereby reacting the calcium contained in the calcium compound with the calcium reactant, and And plating an alloy of the first metal and the second metal on the surface of the rare earth metal compound.
  • the method of plating the rare earth metal according to the embodiment may be plated using a by-product without removing the by-product of a reducing agent containing Ca. Accordingly, a method of plating rare earth metals may be provided as a process of removing Ca by-products and a simplified process without catalytic treatment.
  • FIG. 1 is a flowchart illustrating a method of plating a rare earth metal according to an embodiment of the present invention.
  • Figure 2 is a flow chart specifically explaining the base metal preparation step of the method of plating the rare earth metal according to an embodiment of the present invention.
  • FIG 3 is a view showing a base metal used in the method of plating a rare earth metal according to an embodiment of the present invention.
  • FIG. 4 is a flowchart specifically explaining a step of preparing a plating source among plating methods of rare earth metals according to an exemplary embodiment of the present invention.
  • FIG. 5 is a flowchart specifically explaining a plating step of a method of plating a rare earth metal according to an embodiment of the present invention.
  • FIG. 6 is a view showing a plating process of a rare earth metal according to an embodiment of the present invention.
  • FIG. 7 is a view showing a rare earth composite structure according to an embodiment of the present invention.
  • FIG. 8 is a photograph of a base metal according to an embodiment of the present invention.
  • Example 9 is a photograph of a rare earth composite structure according to Example 1 of the present invention.
  • Example 10 is a photograph of a rare earth composite structure according to Example 2 of the present invention.
  • 11 to 15 are photographs of rare earth composite structures according to Examples 3 to 7 of the present invention.
  • Example 16 is a photograph of a rare earth composite structure according to Example 8 of the present invention.
  • 17 and 18 are diagrams showing components of a rare earth composite structure according to Example 7 of the present invention.
  • 19 is a graph showing the configuration of a rare earth composite structure according to embodiments of the present invention.
  • Example 20 is a graph showing the configuration of a base metal and a rare earth composite structure according to Example 6 of the present invention.
  • a component when referred to as being on another component, it means that it may be formed directly on another component, or a third component may be interposed between them.
  • a third component may be interposed between them.
  • the thickness of the films and regions are exaggerated for effective description of the technical content.
  • first, second, and third are used to describe various components, but these components should not be limited by these terms. These terms are only used to distinguish one component from another component. Therefore, what is referred to as the first component in one embodiment may be referred to as the second component in another embodiment.
  • first component in one embodiment may be referred to as the second component in another embodiment.
  • second component in another embodiment.
  • Each embodiment described and illustrated herein also includes its complementary embodiment.
  • 'and/or' is used to mean including at least one of the components listed before and after.
  • FIG. 1 is a flowchart illustrating a method of plating a rare earth metal according to an embodiment of the present invention
  • FIG. 2 is a flowchart illustrating a step of preparing a base metal among plating methods of a rare earth metal according to an embodiment of the present invention
  • 3 is a view showing a base metal used in the method of plating the rare earth metal according to an embodiment of the present invention
  • Figure 4 is a flow chart specifically explaining the plating source preparation step of the plating method of the rare earth metal according to an embodiment of the present invention to be.
  • a base metal 100 including a calcium (Ca) compound 120 and a rare earth metal compound 110 may be prepared (S110 ).
  • the base metal 100 preparation step (S110) includes preparing a base precursor comprising a rare earth element and a metal element (S112), and the base precursor 100 containing calcium. It may include the step of reducing using a reducing agent (S114).
  • the rare earth element may include at least one of Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, or Lu have.
  • the metal element may include at least one of Fe, Co, or Ni.
  • the reducing agent may include at least one of Ca or CaH 2 .
  • the base metal 100 may be prepared by reducing a base precursor containing Sm and Co to CaH 2 .
  • Sm and Co form an SmCo compound, and CaO, a by-product of CaH 2 , may be formed on the surface of the SmCo compound.
  • the base metal 100 may include SmCo, which is a rare earth metal compound 110, and CaO, which is a calcium compound 120. That is, the base metal used in the method of plating the rare earth metal according to the embodiment may be a rare earth metal compound in which a by-product of a reducing agent containing Ca is generated on the surface as it is reduced through a reducing agent containing Ca.
  • a plating source including a calcium reactant, a first metal precursor, and a second metal precursor may be prepared (S120 ).
  • the first metal precursor may include a first metal.
  • the second metal precursor may include a second metal.
  • the first and second metals may have a lower ionization tendency than the calcium.
  • the first metal precursor may include Fe.
  • the first metal precursor may include iron nitrate hexahydrate (Fe(NO 3 ) 3 9H 2 O).
  • the second metal precursor may include Co.
  • the second metal precursor may include cobalt nitrate hexahydrate (Co(NO 3 ) 2 6H 2 O). In this case, in the plating step described later, the plating layer can be easily formed. More detailed description will be given later.
  • the plating source preparation step (S120) is a step of preparing a mixed solution by mixing ultrapure water and the calcium reactant (S122), and the first metal precursor in the mixed solution, and the second It may include the step of providing a metal precursor (S124).
  • the calcium reactant may include fluorine (F).
  • the calcium reactant may include at least one of NH 4 F or HF.
  • the ratio of the first metal precursor and the second metal precursor provided in the mixed solution may be adjusted according to the composition of the metal alloy to be plated. Specifically, the ratio of the first metal precursor: second metal precursor provided in the mixed solution for plating of Fe 7 Co 3 may be 7:3.
  • the number of moles of the first metal included in the first metal precursor provided in the mixed solution, and the number of moles of the second metal included in the second metal precursor may be controlled. Specifically, the sum of the number of moles of the first metal included in the first metal precursor and the number of moles of the second metal included in the second metal precursor may be greater than 1 mmol and less than 75 mmol. In this case, the rare earth composite structure described later can be easily formed. Alternatively, when the sum of the number of moles of the first metal included in the first metal precursor and the number of moles of the second metal included in the second metal precursor is 1 mmol or less, the rare earth metal compound, the plating layer to be described later is easily Problems that do not form may occur.
  • the plating source may further include a pH adjusting agent, an antioxidant, and a stabilizer.
  • the pH adjusting agent is any one of sulfuric acid (H 2 SO 4 ), hydrochloric acid (HCl), nitric acid (HNO 3 ), potassium hydroxide (KOH), sodium hydroxide (NaOH), and ammonia water (NH 4 OH). It may include.
  • the antioxidant catechol (catechol), hydroquinone (hydroquinone), ascorbic acid (ascorbic acid), and may include any one of ascorbic acid salts (ascorbic acide).
  • the stabilizer formaldehyde (HCHO), sodium borohydride (NaBH 4 ), citrate (citrate), polyacrylamide (PA), polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), and polyethylene glycol ( PEG).
  • HCHO formaldehyde
  • NaBH 4 sodium borohydride
  • citrate citrate
  • PA polyacrylamide
  • PVA polyvinyl alcohol
  • PVP polyvinylpyrrolidone
  • PEG polyethylene glycol
  • FIG. 5 is a flow chart specifically explaining the plating step of the plating method of the rare earth metal according to an embodiment of the present invention
  • FIG. 6 is a view showing a plating process of the rare earth metal according to an embodiment of the present invention
  • FIG. It is a view showing a rare earth composite structure according to an embodiment of the invention.
  • the base metal 100 may be provided by a method immersed in the plating source 200.
  • each step is explained in more detail.
  • the forming of the preliminary plating layer 310 may be performed by a method of reacting the plating source 200 with the base metal 100.
  • the calcium compound contained in the base metal 100 may be dissociated into calcium anions and electrons.
  • the dissociated calcium anion may be reacted with the calcium reactant (CaR) included in the plating source 200.
  • a functional material (FM) may be formed. More specifically, the dissociated calcium anion may react with a fluorine (F) cation contained in the calcium reactant (CaR) to form a calcium fluoride (CaF 2 ) ionic compound.
  • the functional material (FM) may include a calcium fluoride (CaF 2 ) ionic compound.
  • the functional material FM may improve electrical resistance, corrosion resistance, and the like of the rare earth composite structure described later.
  • the dissociated electrons may react with the first metal (M 1 ) of the first metal precursor included in the plating source 200 and the second metal (M 2 ) of the second metal precursor. . Accordingly, an alloy (M 1 +M 2 alloy) of the first and second metals may be formed.
  • the first and second metals (M 1 +M 2 alloy) as well as the first Alloy oxides of the first and second metals (M 1 +M 2 oxide) may be formed.
  • the first metal M 1 includes Fe and the second metal M 2 includes Co
  • FeCo and FeCo oxides may be formed.
  • the functional material FM, the first and second metal alloys (M 1 +M 2 alloy), and the first and second metal alloy oxides (M 1 +M 2 oxide) are the rare earth metal compounds It may be formed on the (110) surface. Accordingly, the functional material (FM) on the surface of the rare earth metal compound 110, the alloys of the first and second metals (M 1 +M 2 alloy), and the alloy oxides of the first and second metals ( M 1 +M 2 oxide) may be formed of the pre-plating layer 310.
  • the Calcium compounds can dissociate calcium anions, and electrons. Calcium dissociated from the calcium compound reacts with the calcium reactant to form the functional material (FM), and at the same time, electrons dissociated from the fraudulent calcium compound are combined with the first and second metals (M 1 , M 2 ).
  • the rare earth metal compound 110 may be plated with an alloy of the first and second metals (M 1 +M 2 alloy) on the surface.
  • the forming of the plating layer 320 may be performed by reducing the pre-plating layer 310.
  • the pre-plating layer 310 may be reduced by heat treatment in a H 2 atmosphere at a temperature of 700° C. for 30 minutes.
  • the first and second metal alloy oxides (M 1 +M 2 oxide) included in the pre-plating layer 310 are alloys of the first and second metals ( M 1 +M 2 alloy).
  • the rare earth composite structure 400 manufactured by the method of plating the rare earth metal according to the embodiment may be manufactured. That is, the rare earth composite structure 400 includes the rare earth metal compound 110 and the plating layer 320 surrounding the rare earth metal compound 110, wherein the plating layer 320 includes the first metal and the second. It may include an alloy of metal (M 1 +M 2 alloy), and the functional material (FM). In addition, the content of the first metal and the second metal alloy (M 1 +M 2 alloy) in the plating layer 320 may be greater than the content of the functional material (FM).
  • the pre-plating layer 310 includes the first and second metal alloy oxides (M 1 +M 2 oxide)
  • oxidation occurs in an atmospheric atmosphere, and the pre-plating layer 310 is corroded. Can be.
  • the pre-plating layer 310 is reduced, the first and second metal alloy oxides (M 1 +M 2 oxide) are converted to the first and second metal alloys (M 1 +M 2 alloy). As it is reduced, the phenomenon that the plating layer 320 is oxidized and corroded in an atmosphere can be prevented.
  • the first and second metal alloys (M 1 +M 2 alloy) through the plating source 200 including the first and second metal precursors ) Is plated as an example, but a single metal may be plated on the rare earth metal compound through a plating source including a single metal precursor. Further, the first to third metal alloys may be plated through a plating source including the first to third metal precursors. That is, the type of metal precursor included in the plating source 200 and the alloy plated thereby is not limited.
  • the base metal used in the method of plating the rare earth metal according to the embodiment may be a rare earth metal compound formed by-product of a reducing agent containing Ca.
  • a reducing agent containing Ca In order to plate other metals on the rare earth metal compound formed with these Ca by-products, complex processes such as a removal process of Ca by-product, a degreasing and pickling process, and a plating process have been required.
  • each of the processes can damage the base rare earth metal compound, it is difficult to obtain an excellent quality rare earth composite structure.
  • the Ca byproduct removal process is a process for removing Ca byproducts formed on the surface of the rare earth metal compound, and may be performed by a method of washing with ultrapure water or weak acid.
  • a rare earth metal compound may be damaged or a problem in which a calcium passivation film (Ca(OH) 2 ) is generated may occur.
  • the degreasing and pickling process is a process of removing oxides, foreign substances, oils, and the like present on the surface of the rare earth metal compound, and may be performed by washing with an acid or alkali surfactant.
  • a rare earth metal compound may be damaged by an acid or alkali surfactant, or a rare earth metal compound may be contaminated by foreign substances that cannot be removed.
  • an electroless plating method was mainly used as a plating process.
  • a sensitizing and activating process using a catalyst and a plating process using an electroless plating solution are required.
  • the sensitizing and activating process using a catalyst is a process of coating catalyst particles on the surface of a rare earth metal compound, and may be performed by a method of applying a platinum (Pd)-tin (Sn) catalyst.
  • a platinum (Pd)-tin (Sn) catalyst as a strong acid hydrochloric acid (HCl) is used as a precursor, not only can the rare earth metal compound be damaged, but also the filtration and washing process of the rare earth metal compound Problems may be required several times.
  • the plating process using an electroless plating solution is a process in which metal ions plated on a rare earth metal compound are combined with a platinum (Pd)-tin (Sn) catalyst to provide a rare earth metal compound with a precursor containing a metal to be plated.
  • a platinum (Pd)-tin (Sn) catalyst to provide a rare earth metal compound with a precursor containing a metal to be plated.
  • the method of plating a rare earth metal comprises the steps of preparing the base metal 100 including the calcium (Ca) compound 120 and the rare earth metal compound 110, the The plating source 200 including the calcium reactant (CaR), the first metal precursor including the first metal (M 1 ), and the second metal precursor including the second metal (M 2 ) Preparing, and providing the plating source 200 to the base metal 100, while reacting the calcium contained in the calcium compound 120 with the calcium reactant (CaR), the rare earth metal compound Plating an alloy of the first metal and the second metal (M 1 +M 2 alloy) on the (110) surface may be included.
  • the method of plating the rare earth metal according to the embodiment may be plated using a by-product without removing the by-product of a reducing agent containing Ca. Accordingly, a method of plating rare earth metals may be provided as a process of removing Ca by-products and a simplified process without catalytic treatment.
  • the rare earth metal plating solution As described above, the rare earth metal plating solution, the rare earth composite structure, and the rare earth metal plating method according to embodiments of the present invention have been described. Hereinafter, specific experimental examples and property evaluation results for the rare earth metal plating solution, the rare earth composite structure, and the rare earth metal plating method according to the above embodiment will be described.
  • An oxide nanopowder composed of SmCoO 3 , Sm 2 O 3 and Co 3 O 4 (purity>99.9%) is prepared.
  • the heated powder was dried in a vacuum oven at 70° C. to prepare a base metal according to the above embodiment in which CaO by-products were formed on the SmCo rare earth metal compound.
  • the chemical composition ratio of the base metal according to the embodiment is summarized in ⁇ Table 1> below.
  • the chemical composition ratio was measured by XRF equipment.
  • the sum of the number of moles of iron nitrate hexahydrate (Fe(NO 3 ) 3 9H 2 O) and cobalt nitrate hexahydrate (Co(NO 3 ) 2 6H 2 O) is 0 mmol, 1 mmol, 5 mmol, 10 mmol , 15 mmol, 30 mmol, 50 mmol, and 75 mmol were controlled to prepare plating sources according to Examples 1 to 8, respectively.
  • Example 2 The number of moles of Fe precursor and Co precursor
  • Example 3 2 mL 5 mmol
  • Example 4 2 mL 10 mmol
  • Example 5 2 mL 15 mmol
  • Example 6 2 mL 30 mmol
  • Example 7 2 mL 50 mmol
  • Example 8 2 mL 75 mmol
  • Example 9 1 mL 50 mmol
  • Example 10 0 mL 50 mmol
  • 0.05 g of base metal according to the embodiment and a plating source according to Examples 1 to 10 are prepared.
  • the prepared base metals were immersed in the plating sources according to Examples 1 to 10, respectively, stirred using a spatula, and then subjected to a plating reaction for 10 minutes at room temperature. Thereafter, the plated SmCo powder was filtered through centrifugation, washed several times with ultrapure water and methanol, and then sufficiently dried in a vacuum oven at a temperature of 70°C. In addition, the dried structure was reduced in a H 2 atmosphere at a temperature of 700° C. for a period of 30 minutes to prepare a rare earth composite structure according to Examples 1 to 10 in which an FeCo pre-plated layer was formed on the SmCo rare earth metal compound.
  • Plating results of the rare earth composite structure according to the above embodiments are summarized through ⁇ Table 3> below, and chemical composition ratios of the rare earth composite structure according to Example 1 are summarized through ⁇ Table 4> below.
  • FIG. 8 is a photograph of a base metal according to an embodiment of the present invention.
  • the base metal according to the above embodiment was photographed by SEM (Scanning Electron Microscope). As can be seen in FIG. 8, it was confirmed that the base metal according to the above embodiment formed CaO, a by-product of the CaH 2 reducing agent, on the surface of the SmCo rare earth metal compound.
  • Example 9 is a photograph of a rare earth composite structure according to Example 1 of the present invention.
  • FIGS. 9(a) and 9(b) SEM images are respectively shown in FIGS. 9(a) and 9(b).
  • the rare earth composite structure according to Example 1 in which the Fe precursor and the Co precursor are not provided are SmCo rare earth as the base metal according to the embodiment shown in FIG. It was confirmed that CaO was formed on the metal compound.
  • FIG. 10 is a photograph of a rare earth composite structure according to Example 2 of the present invention.
  • SEM images of the rare earth composite structure according to Example 2 before and after reduction are respectively shown in FIGS. 10A and 10B.
  • FIGS. 10A and 10B As can be seen from (a) and (b) of FIG. 10, it was confirmed that the CaF 2 particles were formed on the SmCo rare earth metal compound in the rare earth composite structure according to Example 2.
  • 11 to 15 are photographs of rare earth composite structures according to Examples 3 to 7 of the present invention. 11 to 15, before and after the rare earth composite structures according to Examples 3 to 7 are reduced, SEM images are respectively shown in FIGS. 11 to 15 (a) and (b). As can be seen in FIGS. 11 to 15, it was confirmed that the rare earth composite structures according to Examples 3 to 7 were formed with a plating layer containing FeCo and CaF 2 on the SmCo rare earth metal compound.
  • FIG. 16 is a photograph of a rare earth composite structure according to Example 8 of the present invention. Referring to FIG. 16, SEM images of before and after the rare earth composite structure according to Example 8 were reduced are shown in FIGS. 16A and 16B. As can be seen in Figure 16, the rare earth composite structure according to Example 8, it was found that the plating layer containing FeCo and CaF 2 was formed, but the SmCo rare earth metal compound was damaged.
  • the molar sum of Fe precursors and Co precursors included in the plating source exceeds 1 mmol 75 It can be seen that it should be controlled to less than mmol.
  • 17 and 18 are diagrams showing components of a rare earth composite structure according to Example 7 of the present invention.
  • the rare earth composite structure according to Example 6 was shown by qualitative analysis using a scanning electron microscope/energy dispersive X-ray detection spectrometer (SEM/EDS). As can be seen in FIGS. 17 and 18, it was confirmed that the rare earth composite structure according to Example 7 includes Sm, Fe, Ca, and F.
  • 19 is a graph showing the configuration of a rare earth composite structure according to embodiments of the present invention.
  • Example 20 is a graph showing the configuration of a base metal and a rare earth composite structure according to Example 6 of the present invention.
  • the base metal according to the embodiment is seen as a pattern for CaO and a pattern for Sm 2 Co 17 appear, Sm 2 Co 17 CaO by-product formed on the rare earth metal compound could know.
  • the rare earth composite structure according to Example 6 before reduction is not only a pattern for Sm 2 Co 17 , a pattern for CaF 2 , and a pattern for Fe 11 Co 5 , ( Fe,Co) It was confirmed that the pattern for 7 O 11 also appeared, FeCo alloy oxide was formed.
  • the rare earth composite structure according to Example 6 after reduction has a pattern for Sm 2 Co 17 , a pattern for CaF 2 , and a pattern for Fe 11 Co 5 , ( Fe,Co) It was confirmed that the pattern for 7 O 11 does not appear, FeCo alloy oxide was reduced to FeCo alloy.
  • the rare earth metal plating solution according to an embodiment of the present invention may be used for plating a metal structure containing rare earth.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

A method for plating rare earth metal is provided. The method for plating rare earth metal may comprise the steps of: preparing a base metal comprising a calcium (Ca) compound and a rare earth metal compound; preparing a plating source including a calcium reactant, a first metal precursor comprising a first metal, and a second metal precursor comprising a second metal; and providing the plating source to the base metal so that while the calcium included in the calcium compound reacts with the calcium reactant, an alloy of the first metal and the second metal is plated on the surface of the rare earth metal compound.

Description

희토류 금속 도금 용액, 희토류 복합 구조체, 및 희토류 금속의 도금 방법Rare earth metal plating solution, rare earth composite structure, and plating method of rare earth metal
본 발명은 희토류 금속 도금 용액, 희토류 복합 구조체, 및 희토류 금속의 도금 방법에 관한 것으로서, 보다 구체적으로, 희토류 금속을 도금하는 희토류 금속 도금 용액, 희토류 복합 구조체, 및 희토류 금속의 도금 방법에 관련된 것이다. The present invention relates to a rare earth metal plating solution, a rare earth composite structure, and a method for plating a rare earth metal, and more particularly, to a rare earth metal plating solution for plating a rare earth metal, a rare earth composite structure, and a method for plating a rare earth metal.
금속 A에 금속 B를 더하여 내부식성, 내구성, 내산성 등 기계적 물성을 향상시키는 방법은, 널리 알려져 있다. 예를 들어, 복합구조체를 합성하는 기술에는 각각의 분말 또는 각각의 전구체 물질을 단순 혼합한 후 가공하는 기술, 금속 A에 B를 코팅(coating)하거나 증착하여 금속B 피막 또는 코어-쉘(core-shell) 형태를 형성하는 기술 등이 보고되었다. 특히, 균질한 구조를 얻기 위해서는 무전해도금 또는 전해도금을 통해 피막을 형성하는 것이 가장 일반적이다. 전기에너지를 공급해야만 하는 전해도금과 달리, 무전해도금은 도금 용액 내 금속이온을 환원제에 의해 자기 촉매적으로 환원시켜서 모상의 표면에 금속이 석출되도록하는 도금방식이다. Methods for improving mechanical properties such as corrosion resistance, durability, and acid resistance by adding metal B to metal A are well known. For example, in the technique of synthesizing a composite structure, a technique of simply mixing and processing each powder or each precursor material, coating or depositing B on metal A, or coating a metal B film or core-shell (core- shell) has been reported. In particular, in order to obtain a homogeneous structure, it is most common to form a film through electroless plating or electrolytic plating. Unlike electrolytic plating, in which electrical energy must be supplied, electroless plating is a plating method in which metal ions in a plating solution are catalytically reduced by a reducing agent to precipitate metal on the surface of the mother phase.
이러한 무전해도금 방법에서는 반드시 백금(Pd)-주석(Sn)촉매가 기판 표면에 도포되어야 하는데, 이 과정에서 Pd-Sn 전구체 용액으로 매우 강산인 염산(HCl)이 사용된다. 이들은, 금속 모상의 손상을 유발할 수 있을 뿐만 아니라, 2단계에 거친 촉매처리로부터 금속 모상의 여과 및 수세 공정이 수 차례 요구되는 단점이 있다. 특히, 스칸듐, 이트륨, 란타나이드계 원소(La~Lu)를 포함하는 희토류계 금속재들을 무전해도금 방법으로 도금하는 경우, 모재가 되는 희토류 금속의 손상 위험이 큰 문제점이 있다. 이에 따라, 희토류 금속을 손상시키지 않으면서도, 균질한 도금 피막을 형성하는 방법에 관한 연구들이 활발히 이루어지고 있다. In this electroless plating method, a platinum (Pd)-tin (Sn) catalyst must be applied to the substrate surface. In this process, hydrochloric acid (HCl), which is a very strong acid, is used as a Pd-Sn precursor solution. These can not only cause damage to the metal matrix, but also have a disadvantage in that a filtration and washing process of the metal matrix is required several times from the catalytic treatment that has been roughly performed in two steps. In particular, when the rare earth metal materials including scandium, yttrium, and lanthanide elements (La to Lu) are plated by an electroless plating method, there is a great risk of damage to the rare earth metal as a base material. Accordingly, studies have been actively conducted on a method of forming a homogeneous plating film without damaging the rare earth metal.
본 발명이 해결하고자 하는 일 기술적 과제는, 공정 과정이 간소화된 희토류 금속 도금 용액, 희토류 복합 구조체, 및 희토류 금속의 도금 방법을 제공하는 데 있다. One technical problem to be solved by the present invention is to provide a rare-earth metal plating solution, a rare-earth composite structure, and a rare-earth metal plating method with a simplified process.
본 발명이 해결하고자 하는 다른 기술적 과제는, 내산성, 내식성, 내구성이 향상된 희토류 금속 도금 용액, 희토류 복합 구조체, 및 희토류 금속의 도금 방법을 제공하는 데 있다. Another technical problem to be solved by the present invention is to provide a rare earth metal plating solution with improved acid resistance, corrosion resistance, and durability, a rare earth composite structure, and a method for plating a rare earth metal.
본 발명이 해결하고자 하는 또 다른 기술적 과제는, 환원제의 부산물을 이용하는 희토류 금속 도금 용액, 희토류 복합 구조체, 및 희토류 금속의 도금 방법을 제공하는 데 있다. Another technical problem to be solved by the present invention is to provide a rare earth metal plating solution using a by-product of a reducing agent, a rare earth composite structure, and a method for plating a rare earth metal.
본 발명이 해결하고자 하는 기술적 과제는 상술된 것에 제한되지 않는다. The technical problem to be solved by the present invention is not limited to the above.
상술된 기술적 과제들을 해결하기 위해 본 발명은 희토류 금속의 도금 방법을 제공한다. In order to solve the above technical problems, the present invention provides a method for plating rare earth metals.
일 실시 예에 따르면, 상기 희토류 금속의 도금 방법은, 칼슘(Ca) 화합물, 및 희토류 금속 화합물을 포함하는 베이스 금속을 준비하는 단계, 칼슘 반응제, 제1 금속을 포함하는 제1 금속 전구체, 및 제2 금속을 포함하는 제2 금속 전구체를 포함하는 도금 소스를 준비하는 단계, 및 상기 베이스 금속에 상기 도금 소스를 제공하여, 상기 칼슘 화합물이 포함하는 상기 칼슘을 상기 칼슘 반응제와 반응시키는 동시에, 상기 희토류 금속 화합물 표면 상에 상기 제1 금속 및 제2 금속의 합금을 도금하는 단계를 포함할 수 있다. According to one embodiment, the method of plating the rare earth metal comprises: preparing a base metal including a calcium (Ca) compound, and a rare earth metal compound, a calcium reactant, a first metal precursor including a first metal, and Preparing a plating source including a second metal precursor containing a second metal, and providing the plating source to the base metal, thereby reacting the calcium contained in the calcium compound with the calcium reactant, And plating an alloy of the first metal and the second metal on the surface of the rare earth metal compound.
일 실시 예에 따르면, 상기 베이스 금속에 상기 도금 소스가 제공되는 경우, 상기 칼슘 화합물은 칼슘 이온과 전자로 해리되고, 상기 제1 금속 전구체의 제1 금속, 및 상기 제2 금속 전구체의 제2 금속은, 상기 전자를 제공받아, 상기 제1 및 제2 금속의 합금으로 형성되는 것을 포함할 수 있다. According to one embodiment, when the base metal is provided with the plating source, the calcium compound is dissociated into calcium ions and electrons, the first metal of the first metal precursor, and the second metal of the second metal precursor It may include that formed of an alloy of the first and second metals by receiving the electrons.
일 실시 예에 따르면, 상기 칼슘 이온은, 상기 칼슘 반응제와 반응되어 기능성 물질을 형성하는 것을 포함할 수 있다. According to one embodiment, the calcium ion may include reacting with the calcium reactant to form a functional material.
일 실시 예에 따르면, 상기 칼슘 반응제는, 불소(F)를 포함하고, 상기 기능성 물질은 불소 음이온과 칼슘 양이온이 반응된 것을 포함할 수 있다. According to an embodiment, the calcium reactant may include fluorine (F), and the functional material may include a reaction between a fluorine anion and a calcium cation.
일 실시 예에 따르면, 상기 칼슘 반응제는, NH4F 또는 HF 중 어느 하나를 포함할 수 있다. According to one embodiment, the calcium reactant may include any of NH 4 F or HF.
일 실시 예에 따르면, 상기 베이스 금속을 준비하는 단계는, 희토류 원소, 및 금속 원소를 포함하는 베이스 전구체를 준비하는 단계, 및 상기 베이스 전구체를, 칼슘을 포함하는 환원제를 이용하여 환원하는 단계를 포함할 수 있다. According to one embodiment, the preparing of the base metal includes preparing a base precursor comprising a rare earth element and a metal element, and reducing the base precursor using a reducing agent containing calcium. can do.
일 실시 예에 따르면, 상기 희토류 원소는, Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, 또는 Lu 중 적어도 어느 하나를 포함할 수 있다. According to one embodiment, the rare earth element, Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, or at least any one of Lu It can contain.
일 실시 예에 따르면, 상기 칼슘 화합물은, 칼슘 산화물(CaO)을 포함할 수 있다. According to an embodiment, the calcium compound may include calcium oxide (CaO).
일 실시 예에 따르면, 상기 도금 소스를 준비하는 단계는, 초순수, 및 상기 칼슘 반응제를 혼합하여 혼합 용액을 제조하는 단계, 상기 혼합 용액에 상기 제1 금속 전구체, 및 상기 제2 금속 전구체를 제공하는 단계를 포함하되, 상기 혼합 용액에 제공되는 상기 제1 금속 전구체, 및 상기 제2 금속 전구체의 비율은 서로 다른 것을 포함할 수 있다. According to one embodiment, the preparing of the plating source comprises mixing ultrapure water and the calcium reactant to prepare a mixed solution, and providing the first metal precursor and the second metal precursor to the mixed solution. However, the ratio of the first metal precursor and the second metal precursor provided to the mixed solution may include different things.
일 실시 예에 따르면, 상기 제1 금속 전구체가 포함하는 제1 금속의 몰수 및 상기 제2 금속 전구체가 포함하는 제2 금속의 몰수 합은 1 mmol 초과 75 mmol 미만인 것을 포함할 수 있다. According to an embodiment, the sum of the number of moles of the first metal included in the first metal precursor and the number of moles of the second metal included in the second metal precursor may include more than 1 mmol and less than 75 mmol.
일 실시 예에 따르면, 상기 도금 단계는, 상기 베이스 금속에 상기 도금 소스를 반응시켜, 상기 희토류 금속 화합물 상에, 상기 칼슘과 상기 칼슘 반응제가 반응된 기능성 물질, 상기 제1 및 제2 금속의 합금, 및 상기 제1 및 제2 금속의 합금 산화물을 포함하는, 예비 도금층 형성 단계, 및 상기 예비 도금층을 환원시켜, 상기 희토류 금속 화합물 상에, 상기 기능성 물질, 및 상기 제1 및 제2 금속의 합금을 포함하는 도금층을 형성하는 단계를 포함할 수 있다. According to one embodiment, the plating step, by reacting the plating source to the base metal, on the rare earth metal compound, the functional material, the alloy of the first and second metal, the calcium and the calcium reactant reacted , And an alloy oxide of the first and second metals, a pre-plating layer forming step, and reducing the pre-plating layer, so that the functional material and the first and second metal alloys are formed on the rare-earth metal compound. It may include the step of forming a plating layer comprising a.
상술된 기술적 과제들을 해결하기 위해 본 발명은 희토류 금속 도금 용액을 제공한다. In order to solve the above technical problems, the present invention provides a rare earth metal plating solution.
일 실시 예에 따르면, 칼슘(Ca) 화합물, 및 희토류 화합물을 포함하는 베이스 금속의 도금 용액으로서, 상기 도금 용액은, 불소(F)를 포함하는 칼슘 반응제, 상기 칼슘보다 이온화 경향이 낮은 제1 금속을 포함하는 제1 금속 전구체, 및 상기 칼슘보다 이온화 경향이 낮은 제2 금속을 포함하는 제2 금속 전구체를 포함할 수 있다. According to one embodiment, as a plating solution of a base metal containing a calcium (Ca) compound, and a rare earth compound, the plating solution is a calcium reactant containing fluorine (F), the first having a lower ionization tendency than the calcium The metal may include a first metal precursor including a metal, and a second metal precursor including a second metal having a lower ionization tendency than calcium.
상술된 기술적 과제들을 해결하기 위해 본 발명은 희토류 복합 구조체를 제공한다. In order to solve the above technical problems, the present invention provides a rare earth composite structure.
일 실시 예에 따르면, 상기 희토류 복합 구조체는 희토류 금속 화합물, 및According to one embodiment, the rare earth composite structure is a rare earth metal compound, and
제1 금속 및 제2 금속의 합금, 및 불소(F)를 포함하는 기능성 물질을 포함하고, 상기 희토류 금속 화합물을 둘러싸는 도금층을 포함하되, 상기 도금층 내에서 상기 합금의 함유량은, 상기 기능성 물질의 함유량 보다 많은 것을 포함할 수 있다. An alloy of a first metal and a second metal, and a functional material comprising fluorine (F), including a plating layer surrounding the rare earth metal compound, wherein the content of the alloy in the plating layer is It may contain more than the content.
일 실시 예에 따르면, 상기 합금, 및 상기 기능성 물질은 동시에 생성된 것을 포함할 수 있다. According to one embodiment, the alloy, and the functional material may include those produced at the same time.
본 발명의 실시 예에 따른 희토류 금속의 도금 방법은, 칼슘(Ca) 화합물, 및 희토류 금속 화합물을 포함하는 베이스 금속을 준비하는 단계, 칼슘 반응제, 제1 금속을 포함하는 제1 금속 전구체, 제2 금속을 포함하는 제2 금속 전구체를 포함하는 도금 소스를 준비하는 단계, 및 상기 베이스 금속에 상기 도금 소스를 제공하여, 상기 칼슘 화합물이 포함하는 상기 칼슘을 상기 칼슘 반응제와 반응시키는 동시에, 상기 희토류 금속 화합물 표면 상에 상기 제1 금속 및 제2 금속의 합금을 도금하는 단계를 포함할 수 있다. Plating method of the rare earth metal according to an embodiment of the present invention, the step of preparing a base metal comprising a calcium (Ca) compound, and a rare earth metal compound, a calcium reactant, a first metal precursor comprising a first metal, agent Preparing a plating source including a second metal precursor containing 2 metals, and providing the plating source to the base metal, thereby reacting the calcium contained in the calcium compound with the calcium reactant, and And plating an alloy of the first metal and the second metal on the surface of the rare earth metal compound.
즉, 상기 실시 예에 따른 희토류 금속의 도금 방법은, Ca를 포함하는 환원제의 부산물을 제거하지 않고, 부산물을 이용하여 도금할 수 있다. 이에 따라, Ca 부산물을 제거하는 공정 및 촉매처리가 없는 간소화된 공정으로, 희토류 금속을 도금하는 방법이 제공될 수 있다. That is, the method of plating the rare earth metal according to the embodiment may be plated using a by-product without removing the by-product of a reducing agent containing Ca. Accordingly, a method of plating rare earth metals may be provided as a process of removing Ca by-products and a simplified process without catalytic treatment.
도 1은 본 발명의 실시 예에 따른 희토류 금속의 도금 방법을 설명하는 순서도이다. 1 is a flowchart illustrating a method of plating a rare earth metal according to an embodiment of the present invention.
도 2는 본 발명의 실시 예에 따른 희토류 금속의 도금 방법 중 베이스 금속 준비 단계를 구체적으로 설명하는 순서도이다. Figure 2 is a flow chart specifically explaining the base metal preparation step of the method of plating the rare earth metal according to an embodiment of the present invention.
도 3은 본 발명의 실시 예에 따른 희토류 금속의 도금 방법에 사용되는 베이스 금속을 나타내는 도면이다. 3 is a view showing a base metal used in the method of plating a rare earth metal according to an embodiment of the present invention.
도 4는 본 발명의 실시 예에 따른 희토류 금속의 도금 방법 중 도금 소스 준비 단계를 구체적으로 설명하는 순서도이다. 4 is a flowchart specifically explaining a step of preparing a plating source among plating methods of rare earth metals according to an exemplary embodiment of the present invention.
도 5는 본 발명의 실시 예에 따른 희토류 금속의 도금 방법 중 도금 단계를 구체적으로 설명하는 순서도이다. 5 is a flowchart specifically explaining a plating step of a method of plating a rare earth metal according to an embodiment of the present invention.
도 6은 본 발명의 실시 예에 따른 희토류 금속의 도금 공정을 나타내는 도면이다. 6 is a view showing a plating process of a rare earth metal according to an embodiment of the present invention.
도 7은 본 발명의 실시 예에 따른 희토류 복합 구조체를 나타내는 도면이다. 7 is a view showing a rare earth composite structure according to an embodiment of the present invention.
도 8은 본 발명의 실시 예에 따른 베이스 금속을 촬영한 사진이다. 8 is a photograph of a base metal according to an embodiment of the present invention.
도 9는 본 발명의 실시 예 1에 따른 희토류 복합 구조체를 촬영한 사진이다. 9 is a photograph of a rare earth composite structure according to Example 1 of the present invention.
도 10은 본 발명의 실시 예 2에 따른 희토류 복합 구조체를 촬영한 사진이다.10 is a photograph of a rare earth composite structure according to Example 2 of the present invention.
도 11 내지 도 15는 본 발명의 실시 예 3 내지 7에 따른 희토류 복합 구조체를 촬영한 사진이다.11 to 15 are photographs of rare earth composite structures according to Examples 3 to 7 of the present invention.
도 16은 본 발명의 실시 예 8에 따른 희토류 복합 구조체를 촬영한 사진이다.16 is a photograph of a rare earth composite structure according to Example 8 of the present invention.
도 17 및 도 18은 본 발명의 실시 예 7에 따른 희토류 복합 구조체의 성분을 나타내는 도면이다. 17 and 18 are diagrams showing components of a rare earth composite structure according to Example 7 of the present invention.
도 19는 본 발명의 실시 예들에 따른 희토류 복합 구조체의 구성을 나타내는 그래프이다. 19 is a graph showing the configuration of a rare earth composite structure according to embodiments of the present invention.
도 20은 본 발명의 실시 예 6에 따른 베이스 금속 및 희토류 복합 구조체의 구성을 나타내는 그래프이다. 20 is a graph showing the configuration of a base metal and a rare earth composite structure according to Example 6 of the present invention.
이하, 첨부된 도면들을 참조하여 본 발명의 바람직한 실시 예를 상세히 설명할 것이다. 그러나 본 발명의 기술적 사상은 여기서 설명되는 실시 예에 한정되지 않고 다른 형태로 구체화 될 수도 있다. 오히려, 여기서 소개되는 실시 예는 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the technical spirit of the present invention is not limited to the embodiments described herein and may be embodied in other forms. Rather, the embodiments introduced herein are provided to ensure that the disclosed contents are thorough and complete and that the spirit of the present invention is sufficiently conveyed to those skilled in the art.
본 명세서에서, 어떤 구성요소가 다른 구성요소 상에 있다고 언급되는 경우에 그것은 다른 구성요소 상에 직접 형성될 수 있거나 또는 그들 사이에 제 3의 구성요소가 개재될 수도 있다는 것을 의미한다. 또한, 도면들에 있어서, 막 및 영역들의 두께는 기술적 내용의 효과적인 설명을 위해 과장된 것이다. In the present specification, when a component is referred to as being on another component, it means that it may be formed directly on another component, or a third component may be interposed between them. In addition, in the drawings, the thickness of the films and regions are exaggerated for effective description of the technical content.
또한, 본 명세서의 다양한 실시 예 들에서 제1, 제2, 제3 등의 용어가 다양한 구성요소들을 기술하기 위해서 사용되었지만, 이들 구성요소들이 이 같은 용어들에 의해서 한정되어서는 안 된다. 이들 용어들은 단지 어느 구성요소를 다른 구성요소와 구별시키기 위해서 사용되었을 뿐이다. 따라서, 어느 한 실시 예에 제 1 구성요소로 언급된 것이 다른 실시 예에서는 제 2 구성요소로 언급될 수도 있다. 여기에 설명되고 예시되는 각 실시 예는 그것의 상보적인 실시 예도 포함한다. 또한, 본 명세서에서 '및/또는'은 전후에 나열한 구성요소들 중 적어도 하나를 포함하는 의미로 사용되었다.In addition, in various embodiments of the present specification, terms such as first, second, and third are used to describe various components, but these components should not be limited by these terms. These terms are only used to distinguish one component from another component. Therefore, what is referred to as the first component in one embodiment may be referred to as the second component in another embodiment. Each embodiment described and illustrated herein also includes its complementary embodiment. In addition, in this specification,'and/or' is used to mean including at least one of the components listed before and after.
명세서에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함한다. 또한, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 구성요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 구성요소 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 배제하는 것으로 이해되어서는 안 된다. 또한, 본 명세서에서 "연결"은 복수의 구성 요소를 간접적으로 연결하는 것, 및 직접적으로 연결하는 것을 모두 포함하는 의미로 사용된다.In the specification, a singular expression includes a plural expression unless the context clearly indicates otherwise. Also, terms such as “include” or “have” are intended to indicate the presence of features, numbers, steps, elements, or combinations thereof described in the specification, and one or more other features, numbers, steps, or configurations. It should not be understood as excluding the possibility of the presence or addition of elements or combinations thereof. In addition, in the present specification, “connecting” is used in a sense to include both indirectly connecting a plurality of components, and directly connecting.
또한, 하기에서 본 발명을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다.In addition, in the following description of the present invention, when it is determined that detailed descriptions of related known functions or configurations may unnecessarily obscure the subject matter of the present invention, detailed descriptions thereof will be omitted.
도 1은 본 발명의 실시 예에 따른 희토류 금속의 도금 방법을 설명하는 순서도이고, 도 2는 본 발명의 실시 예에 따른 희토류 금속의 도금 방법 중 베이스 금속 준비 단계를 구체적으로 설명하는 순서도이고, 도 3은 본 발명의 실시 예에 따른 희토류 금속의 도금 방법에 사용되는 베이스 금속을 나타내는 도면이고, 도 4는 본 발명의 실시 예에 따른 희토류 금속의 도금 방법 중 도금 소스 준비 단계를 구체적으로 설명하는 순서도이다. 1 is a flowchart illustrating a method of plating a rare earth metal according to an embodiment of the present invention, and FIG. 2 is a flowchart illustrating a step of preparing a base metal among plating methods of a rare earth metal according to an embodiment of the present invention. 3 is a view showing a base metal used in the method of plating the rare earth metal according to an embodiment of the present invention, Figure 4 is a flow chart specifically explaining the plating source preparation step of the plating method of the rare earth metal according to an embodiment of the present invention to be.
도 1 내지 도 3을 참조하면, 칼슘(Ca) 화합물(120), 및 희토류 금속 화합물(110)을 포함하는 베이스 금속(100)이 준비될 수 있다(S110). 일 실시 예에 따르면, 상기 베이스 금속(100) 준비 단계(S110)는, 희토류 원소, 및 금속 원소를 포함하는 베이스 전구체를 준비하는 단계(S112), 및 상기 베이스 전구체(100)를 칼슘을 포함하는 환원제를 이용하여 환원하는 단계(S114)를 포함할 수 있다. 예를 들어, 상기 희토류 원소는 Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, 또는 Lu 중 적어도 어느 하나를 포함할 수 있다. 상기 금속 원소는, Fe, Co, 또는, Ni 중 적어도 어느 하나를 포함할 수 있다. 상기 환원제는, Ca 또는 CaH2 중 적어도 어느 하나를 포함할 수 있다. 1 to 3, a base metal 100 including a calcium (Ca) compound 120 and a rare earth metal compound 110 may be prepared (S110 ). According to an embodiment, the base metal 100 preparation step (S110) includes preparing a base precursor comprising a rare earth element and a metal element (S112), and the base precursor 100 containing calcium. It may include the step of reducing using a reducing agent (S114). For example, the rare earth element may include at least one of Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, or Lu have. The metal element may include at least one of Fe, Co, or Ni. The reducing agent may include at least one of Ca or CaH 2 .
보다 구체적으로, 상기 베이스 금속(100)은 Sm 및 Co를 포함하는 베이스 전구체를 CaH2로 환원하여 제조될 수 있다. 이 경우, 상기 베이스 전구체가 환원되는 과정에서, Sm 및 Co는 SmCo 화합물을 이루게 되고, SmCo 화합물의 표면에는 CaH2의 부산물인 CaO가 형성될 수 있다. 이에 따라, 상기 베이스 금속(100)은 희토류 금속 화합물(110)인 SmCo, 및 칼슘 화합물(120)인 CaO를 포함할 수 있다. 즉, 상기 실시 예에 따른 희토류 금속의 도금 방법에 사용되는 베이스 금속은, Ca를 포함하는 환원제를 통해 환원됨에 따라, 표면에 Ca를 포함하는 환원제의 부산물이 생성된 희토류 금속 화합물일 수 있다. More specifically, the base metal 100 may be prepared by reducing a base precursor containing Sm and Co to CaH 2 . In this case, in the process of reducing the base precursor, Sm and Co form an SmCo compound, and CaO, a by-product of CaH 2 , may be formed on the surface of the SmCo compound. Accordingly, the base metal 100 may include SmCo, which is a rare earth metal compound 110, and CaO, which is a calcium compound 120. That is, the base metal used in the method of plating the rare earth metal according to the embodiment may be a rare earth metal compound in which a by-product of a reducing agent containing Ca is generated on the surface as it is reduced through a reducing agent containing Ca.
도 1 및 도 4를 참조하면, 칼슘 반응제, 제1 금속 전구체, 및 제2 금속 전구체를 포함하는 도금 소스가 준비될 수 있다(S120). 상기 제1 금속 전구체는, 제1 금속을 포함할 수 있다. 상기 제2 금속 전구체는, 제2 금속을 포함할 수 있다. 1 and 4, a plating source including a calcium reactant, a first metal precursor, and a second metal precursor may be prepared (S120 ). The first metal precursor may include a first metal. The second metal precursor may include a second metal.
일 실시 예에 따르면, 상기 제1 및 제2 금속은, 상기 칼슘보다 이온화 경향이 낮을 수 있다. 예를 들어, 상기 제1 금속 전구체는, Fe를 포함할 수 있다. 구체적으로, 상기 제1 금속 전구체는, 철 질산 9 수화물(Fe(NO3)39H2O)을 포함할 수 있다. 예를 들어, 상기 제2 금속 전구체는, Co를 포함할 수 있다. 구체적으로, 상기 제2 금속 전구체는, 코발트 질산 6 수화물(Co(NO3)26H2O)를 포함할 수 있다. 이 경우, 후술되는 도금 단계에서, 도금층이 용이하게 형성될 수 있다. 보다 구체적인 설명은 후술된다.According to an embodiment, the first and second metals may have a lower ionization tendency than the calcium. For example, the first metal precursor may include Fe. Specifically, the first metal precursor may include iron nitrate hexahydrate (Fe(NO 3 ) 3 9H 2 O). For example, the second metal precursor may include Co. Specifically, the second metal precursor may include cobalt nitrate hexahydrate (Co(NO 3 ) 2 6H 2 O). In this case, in the plating step described later, the plating layer can be easily formed. More detailed description will be given later.
일 실시 예에 따르면, 상기 도금 소스 준비 단계(S120)는, 초순수 및 상기 칼슘 반응제를 혼합하여 혼합 용액을 제조하는 단계(S122), 및 상기 혼합 용액에 상기 제1 금속 전구체, 및 상기 제2 금속 전구체를 제공하는 단계(S124)를 포함할 수 있다. 예를 들어, 상기 칼슘 반응제는 불소(F)를 포함할 수 있다. 구체적으로, 상기 칼슘 반응제는 NH4F 또는 HF 중 적어도 어느 하나를 포함할 수 있다. According to one embodiment, the plating source preparation step (S120) is a step of preparing a mixed solution by mixing ultrapure water and the calcium reactant (S122), and the first metal precursor in the mixed solution, and the second It may include the step of providing a metal precursor (S124). For example, the calcium reactant may include fluorine (F). Specifically, the calcium reactant may include at least one of NH 4 F or HF.
일 실시 예에 따르면, 상기 혼합 용액에 제공되는 상기 제1 금속 전구체, 및 상기 제2 금속 전구체의 비율은 도금하고자 하는 금속 합금의 조성에 따라 조절 될 수 있다. 구체적으로, Fe7Co3의 도금을 위해 상기 혼합 용액에 제공되는 상기 제1 금속 전구체: 제2 금속 전구체의 비율은 7:3 일 수 있다. According to one embodiment, the ratio of the first metal precursor and the second metal precursor provided in the mixed solution may be adjusted according to the composition of the metal alloy to be plated. Specifically, the ratio of the first metal precursor: second metal precursor provided in the mixed solution for plating of Fe 7 Co 3 may be 7:3.
또한, 상기 혼합 용액에 제공되는 상기 제1 금속 전구체가 포함하는 제1 금속의 몰수, 및 상기 제2 금속 전구체가 포함하는 제2 금속의 몰수가 제어될 수 있다. 구체적으로, 상기 제1 금속 전구체가 포함하는 제1 금속의 몰수, 및 상기 제2 금속 전구체가 포함하는 제2 금속의 몰수 합은 1 mmol 초과 75 mmol 미만일 수 있다. 이 경우, 후술되는 희토류 복합 구조체가 용이하게 형성될 수 있다. 이와 달리, 상기 제1 금속 전구체가 포함하는 제1 금속의 몰수, 및 상기 제2 금속 전구체가 포함하는 제2 금속의 몰수 합이 1 mmol 이하인 경우, 상기 희토류 금속 화합물에, 후술되는 도금층이 용이하게 형성되지 않는 문제점이 발생될 수 있다. 반면, 상기 제1 금속 전구체가 포함하는 제1 금속의 몰수, 및 상기 제2 금속 전구체가 포함하는 제2 금속의 몰수 합이 75 mmol 이상인 경우, 상기 도금 소스의 산성도가 높아져, 상기 베이스 금속이 손상되는 문제점이 발생될 수 있다. In addition, the number of moles of the first metal included in the first metal precursor provided in the mixed solution, and the number of moles of the second metal included in the second metal precursor may be controlled. Specifically, the sum of the number of moles of the first metal included in the first metal precursor and the number of moles of the second metal included in the second metal precursor may be greater than 1 mmol and less than 75 mmol. In this case, the rare earth composite structure described later can be easily formed. Alternatively, when the sum of the number of moles of the first metal included in the first metal precursor and the number of moles of the second metal included in the second metal precursor is 1 mmol or less, the rare earth metal compound, the plating layer to be described later is easily Problems that do not form may occur. On the other hand, when the sum of the number of moles of the first metal included in the first metal precursor and the number of moles of the second metal included in the second metal precursor is 75 mmol or more, the acidity of the plating source is increased, and the base metal is damaged. Problems may occur.
일 실시 예에 따르면, 상기 도금 소스는 pH 조절제, 산화방지제, 및 안정제를 더 포함할 수 있다. 예를 들어, 상기 pH 조절제는, 황산(H2SO4), 염산(HCl), 질산(HNO3), 수산화 칼륨(KOH), 수산화 나트륨(NaOH), 및 암모니아수(NH4OH) 중 어느 하나를 포함할 수 있다. 상기 산화방지제는, 카테콜(catechol), 하이드로퀴논(hydroquinone), 아스코르빈산(ascorbic acid), 및 아스코르빈산 염(ascorbic acide) 중 어느 하나를 포함할 수 있다. 상기 안정제는, 포름알데히드(HCHO), 보론수소화소듐(NaBH4), 구연산염(citrate), 폴리아크릴아마이드(PA), 폴리비닐알코올(PVA), 폴리비닐피롤리돈(PVP), 및 폴리에틸렌글리콜(PEG) 중 어느 하나를 포함할 수 있다. According to one embodiment, the plating source may further include a pH adjusting agent, an antioxidant, and a stabilizer. For example, the pH adjusting agent is any one of sulfuric acid (H 2 SO 4 ), hydrochloric acid (HCl), nitric acid (HNO 3 ), potassium hydroxide (KOH), sodium hydroxide (NaOH), and ammonia water (NH 4 OH). It may include. The antioxidant, catechol (catechol), hydroquinone (hydroquinone), ascorbic acid (ascorbic acid), and may include any one of ascorbic acid salts (ascorbic acide). The stabilizer, formaldehyde (HCHO), sodium borohydride (NaBH 4 ), citrate (citrate), polyacrylamide (PA), polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), and polyethylene glycol ( PEG).
도 5는 본 발명의 실시 예에 따른 희토류 금속의 도금 방법 중 도금 단계를 구체적으로 설명하는 순서도이고, 도 6은 본 발명의 실시 예에 따른 희토류 금속의 도금 공정을 나타내는 도면이고, 도 7은 본 발명의 실시 예에 따른 희토류 복합 구조체를 나타내는 도면이다. 5 is a flow chart specifically explaining the plating step of the plating method of the rare earth metal according to an embodiment of the present invention, FIG. 6 is a view showing a plating process of the rare earth metal according to an embodiment of the present invention, and FIG. It is a view showing a rare earth composite structure according to an embodiment of the invention.
도 1, 및 도 5 내지 도 7을 참조하면, 상기 베이스 금속(100)에 상기 도금 소스(200)를 제공하여, 상기 희토류 금속 화합물(110) 표면 상에 상기 제1 금속(M1), 및 상기 제2 금속(M2)의 합금을 도금할 수 있다(S130). 예를 들어, 상기 베이스 금속(100)은 상기 도금 소스(200) 내에 침지되는 방법으로 제공될 수 있다. 1 and 5 to 7, the first metal (M 1 ) on the surface of the rare earth metal compound 110 by providing the base metal 100 with the plating source 200, and An alloy of the second metal (M 2 ) may be plated (S130). For example, the base metal 100 may be provided by a method immersed in the plating source 200.
일 실시 예에 따르면, 상기 도금 단계(S130)는, 상기 희토류 금속 화합물(110) 상에, 예비 도금층(310)을 형성하는 단계(S132), 및 상기 예비 도금층(310)을 환원시켜, 상기 희토류 금속 화합물(110) 상에, 도금층(320)을 형성하는 단계(S134)를 포함할 수 있다. 이하, 각 단계에 대해 보다 구체적으로 설명된다. According to one embodiment, the plating step (S130), forming a pre-plating layer 310 on the rare-earth metal compound 110 (S132), and reducing the pre-plating layer 310 to reduce the rare earth On the metal compound 110, a step (S134) of forming a plating layer 320 may be included. Hereinafter, each step is explained in more detail.
상기 예비 도금층(310) 형성 단계(S132)는, 상기 베이스 금속(100)에 상기 도금 소스(200)를 반응시키는 방법으로 수행될 수 있다. 상기 베이스 금속(100)이 상기 도금 소스(200)와 반응되는 경우, 상기 베이스 금속(100)이 포함하는 칼슘 화합물은 칼슘 음이온과 전자로 해리될 수 있다. 해리된 상기 칼슘 음이온은 상기 도금 소스(200)가 포함하는 상기 칼슘 반응제(CaR)와 반응될 수 있다. 이에 따라, 기능성 물질(functional material, FM)이 형성될 수 있다. 보다 구체적으로, 해리된 상기 칼슘 음이온은, 상기 칼슘 반응제(CaR)가 포함하는 불소(F) 양이온과 반응되어, 불화칼슘(CaF2) 이온화합물을 형성할 수 있다. 이에 따라, 상기 기능성 물질(FM)은 불화칼슘(CaF2) 이온화합물을 포함할 수 있다. 상기 기능성 물질(FM)은 후술되는 희토류 복합 구조체의 전기저항성, 내식성 등을 향상시킬 수 있다. The forming of the preliminary plating layer 310 (S132) may be performed by a method of reacting the plating source 200 with the base metal 100. When the base metal 100 is reacted with the plating source 200, the calcium compound contained in the base metal 100 may be dissociated into calcium anions and electrons. The dissociated calcium anion may be reacted with the calcium reactant (CaR) included in the plating source 200. Accordingly, a functional material (FM) may be formed. More specifically, the dissociated calcium anion may react with a fluorine (F) cation contained in the calcium reactant (CaR) to form a calcium fluoride (CaF 2 ) ionic compound. Accordingly, the functional material (FM) may include a calcium fluoride (CaF 2 ) ionic compound. The functional material FM may improve electrical resistance, corrosion resistance, and the like of the rare earth composite structure described later.
반면, 해리된 전자는 상기 도금 소스(200)가 포함하는 상기 제1 금속 전구체의 상기 제1 금속(M1), 및 상기 제2 금속 전구체의 상기 제2 금속(M2)과 반응될 수 있다. 이에 따라, 상기 제1 및 제2 금속의 합금(M1+M2 alloy)이 형성될 수 있다. 또한, 상기 제1 금속(M1), 및 상기 제2 금속(M2)이 상기 전자와 반응된 경우, 상기 제1 및 제2 금속의 합금(M1+M2 alloy)뿐만 아니라, 상기 제1 및 제2 금속의 합금 산화물(M1+M2 oxide)이 형성될 수 있다. 예를 들어, 상기 제1 금속(M1)이 Fe를 포함하고, 상기 제2 금속(M2)이 Co를 포함하는 경우, FeCo 및 FeCo 산화물이 형성될 수 있다. On the other hand, the dissociated electrons may react with the first metal (M 1 ) of the first metal precursor included in the plating source 200 and the second metal (M 2 ) of the second metal precursor. . Accordingly, an alloy (M 1 +M 2 alloy) of the first and second metals may be formed. In addition, when the first metal (M 1 ) and the second metal (M 2 ) are reacted with the electron, the first and second metals (M 1 +M 2 alloy) as well as the first Alloy oxides of the first and second metals (M 1 +M 2 oxide) may be formed. For example, when the first metal M 1 includes Fe and the second metal M 2 includes Co, FeCo and FeCo oxides may be formed.
상기 기능성 물질(FM), 상기 제1 및 제2 금속의 합금(M1+M2 alloy), 및 상기 제1 및 제2 금속의 합금 산화물(M1+M2 oxide)은, 상기 희토류 금속 화합물(110) 표면에 형성될 수 있다. 이에 따라, 상기 희토류 금속 화합물(110) 표면 상에 상기 기능성 물질(FM), 상기 제1 및 제2 금속의 합금(M1+M2 alloy), 및 상기 제1 및 제2 금속의 합금 산화물(M1+M2 oxide)을 포함하는 상기 예비 도금층(310)이 형성될 수 있다. The functional material FM, the first and second metal alloys (M 1 +M 2 alloy), and the first and second metal alloy oxides (M 1 +M 2 oxide) are the rare earth metal compounds It may be formed on the (110) surface. Accordingly, the functional material (FM) on the surface of the rare earth metal compound 110, the alloys of the first and second metals (M 1 +M 2 alloy), and the alloy oxides of the first and second metals ( M 1 +M 2 oxide) may be formed of the pre-plating layer 310.
즉, 상기 베이스 금속(100)에 상기 도금 소스(200)가 제공되는 경우, 상술된 바와 같이 상기 제1 및 제2 금속(M1, M2)이 상기 칼슘보다 이온화 경향이 낮음에 따라, 상기 칼슘 화합물은 칼슘 음이온, 및 전자로 해리될 수 있다. 상기 칼슘 화합물로부터 해리된 칼슘은 상기 칼슘 반응제와 반응되어 상기 기능성 물질(FM)을 형성하고, 이와 동시에 사기 칼슘 화합물로부터 해리된 전자는 상기 제1 및 제2 금속(M1, M2)과 반응되어, 상기 희토류 금속 화합물(110) 표면 상에 상기 제1 및 제2 금속의 합금(M1+M2 alloy)으로 도금될 수 있다. That is, when the base metal 100 is provided with the plating source 200, as described above, as the first and second metals M 1 and M 2 have a lower ionization tendency than the calcium, the Calcium compounds can dissociate calcium anions, and electrons. Calcium dissociated from the calcium compound reacts with the calcium reactant to form the functional material (FM), and at the same time, electrons dissociated from the fraudulent calcium compound are combined with the first and second metals (M 1 , M 2 ). By reacting, the rare earth metal compound 110 may be plated with an alloy of the first and second metals (M 1 +M 2 alloy) on the surface.
상기 도금층(320) 형성 단계(S134)는, 상기 예비 도금층(310)을 환원시키는 방법으로 수행될 수 있다. 예를 들어, 상기 예비 도금층(310)을 H2 분위기에서 700℃의 온도로 30분의 시간 동안 열처리 하는 방법으로 환원시킬 수 있다. 상기 예비 도금층(310)이 환원되는 경우, 상기 예비 도금층(310)이 포함하는 상기 제1 및 제2 금속의 합금 산화물(M1+M2 oxide)은, 상기 제1 및 제2 금속의 합금(M1+M2 alloy)으로 환원될 수 있다. The forming of the plating layer 320 (S134) may be performed by reducing the pre-plating layer 310. For example, the pre-plating layer 310 may be reduced by heat treatment in a H 2 atmosphere at a temperature of 700° C. for 30 minutes. When the pre-plating layer 310 is reduced, the first and second metal alloy oxides (M 1 +M 2 oxide) included in the pre-plating layer 310 are alloys of the first and second metals ( M 1 +M 2 alloy).
이에 따라, 상기 실시 예에 따른 희토류 금속의 도금 방법으로 제조된 희토류 복합 구조체(400)가 제조될 수 있다. 즉, 상기 희토류 복합 구조체(400)는 상기 희토류 금속 화합물(110), 및 상기 희토류 금속 화합물(110)을 둘러싸는 도금층(320)을 포함하되, 상기 도금층(320)은 상기 제1 금속 및 제2 금속의 합금(M1+M2 alloy), 및 상기 기능성 물질(FM)을 포함할 수 있다. 또한, 상기 상기 도금층(320) 내에서 상기 제1 금속 및 제2 금속의 합금(M1+M2 alloy)의 함유량은, 상기 기능성 물질(FM)의 함유량보다 많을 수 있다. Accordingly, the rare earth composite structure 400 manufactured by the method of plating the rare earth metal according to the embodiment may be manufactured. That is, the rare earth composite structure 400 includes the rare earth metal compound 110 and the plating layer 320 surrounding the rare earth metal compound 110, wherein the plating layer 320 includes the first metal and the second. It may include an alloy of metal (M 1 +M 2 alloy), and the functional material (FM). In addition, the content of the first metal and the second metal alloy (M 1 +M 2 alloy) in the plating layer 320 may be greater than the content of the functional material (FM).
상기 예비 도금층(310)이 상기 제1 및 제2 금속의 합금 산화물(M1+M2 oxide)을 포함하는 경우, 대기 분위기에서 산화가 발생되어, 상기 예비 도금층(310)이 부식되는 문제점이 발생될 수 있다. 하지만, 상기 예비 도금층(310)을 환원시키게 되면, 상기 제1 및 제2 금속의 합금 산화물(M1+M2 oxide)이 상기 제1 및 제2 금속의 합금(M1+M2 alloy)으로 환원됨에 따라, 상기 도금층(320)이 대기 분위기에서 산화되어 부식되는 현상이 예방될 수 있다. When the pre-plating layer 310 includes the first and second metal alloy oxides (M 1 +M 2 oxide), oxidation occurs in an atmospheric atmosphere, and the pre-plating layer 310 is corroded. Can be. However, when the pre-plating layer 310 is reduced, the first and second metal alloy oxides (M 1 +M 2 oxide) are converted to the first and second metal alloys (M 1 +M 2 alloy). As it is reduced, the phenomenon that the plating layer 320 is oxidized and corroded in an atmosphere can be prevented.
상기 실시 예에 따른 희토류 금속의 도금 방법을 설명함에 있어, 상기 제1 및 제2 금속 전구체를 포함하는 상기 도금 소스(200)를 통해, 상기 제1 및 제2 금속 합금(M1+M2 alloy)이 도금되는 것을 일 예로 들었지만, 단일 금속 전구체를 포함하는 도금 소스를 통해, 상기 희토류 금속 화합물 상에 단일 금속이 도금될 수도 있다. 또한, 제1 내지 제3 금속 전구체를 포함하는 도금 소스를 통해, 제1 내지 제3 금속 합금이 도금될 수도 있다. 즉, 상기 도금 소스(200)가 포함하는 금속 전구체, 및 이로 인해 도금되는 합금의 종류는 제한되지 않는다. In describing the method of plating the rare earth metal according to the embodiment, the first and second metal alloys (M 1 +M 2 alloy) through the plating source 200 including the first and second metal precursors ) Is plated as an example, but a single metal may be plated on the rare earth metal compound through a plating source including a single metal precursor. Further, the first to third metal alloys may be plated through a plating source including the first to third metal precursors. That is, the type of metal precursor included in the plating source 200 and the alloy plated thereby is not limited.
상술된 바와 같이, 상기 실시 예에 따른 희토류 금속의 도금 방법에 사용되는 베이스 금속은, Ca를 포함하는 환원제의 부산물이 형성된 희토류 금속 화합물일 수 있다. 이러한 Ca 부산물이 형성된 희토류 금속 화합물에 다른 금속을 도금하기 위해, 종래에는 Ca 부산물을 제거공정, 탈지 및 산세 공정, 및 도금 공정 등의 복잡한 공정들이 요구되었다. 하지만, 각각의 공정들이 베이스가 되는 희토류 금속 화합물을 손상시킬 수 있어, 우수한 품질의 희토류 복합 구조체를 획득하기 어려운 문제점이 있었다. As described above, the base metal used in the method of plating the rare earth metal according to the embodiment may be a rare earth metal compound formed by-product of a reducing agent containing Ca. In order to plate other metals on the rare earth metal compound formed with these Ca by-products, complex processes such as a removal process of Ca by-product, a degreasing and pickling process, and a plating process have been required. However, since each of the processes can damage the base rare earth metal compound, it is difficult to obtain an excellent quality rare earth composite structure.
보다 구체적으로, Ca 부산물 제거공정은, 희토류 금속 화합물 표면에 생성된 Ca 부산물을 제거하는 공정으로서, 초순수, 약산 등을 사용하여 수세하는 방법으로 수행될 수 있다. 하지만, 이러한 수세 과정에서, 희토류 금속 화합물이 손상되거나 칼슘 부동태막(Ca(OH)2)이 생성되는 문제점이 발생될 수 있다. More specifically, the Ca byproduct removal process is a process for removing Ca byproducts formed on the surface of the rare earth metal compound, and may be performed by a method of washing with ultrapure water or weak acid. However, in this washing process, a rare earth metal compound may be damaged or a problem in which a calcium passivation film (Ca(OH) 2 ) is generated may occur.
또한, 탈지 및 산세 공정은, 희토류 금속 화합물 표면 상에 존재하는 산화물이나 이물질, 유지분 등을 제거하는 공정으로서, 산 또는 알칼리 계면활성제를 사용하여 수세하는 방법으로 수행될 수 있다. 하지만, 산 또는 알칼리 계면활성제에 의하여 희토류 금속 화합물이 손상되거나, 제거되지 못한 이물질 등에 의해 희토류 금속 화합물이 오염되는 문제점이 발생될 수 있다. In addition, the degreasing and pickling process is a process of removing oxides, foreign substances, oils, and the like present on the surface of the rare earth metal compound, and may be performed by washing with an acid or alkali surfactant. However, a rare earth metal compound may be damaged by an acid or alkali surfactant, or a rare earth metal compound may be contaminated by foreign substances that cannot be removed.
또한, 도금 공정으로서 무전해도금법이 주로 이용되었는데, 무전해도금법을 통해 도금하기 위해서는, 촉매를 이용한 센시타이징 및 액티베이팅 공정과, 무전해도금액을 이용한 도금 공정이 요구된다. In addition, an electroless plating method was mainly used as a plating process. In order to plate through the electroless plating method, a sensitizing and activating process using a catalyst and a plating process using an electroless plating solution are required.
촉매를 이용한 센시타이징 및 액티베이팅 공정은, 희토류 금속 화합물 표면 상에 촉매입자를 입히는 공정으로서, 백금(Pd)-주석(Sn) 촉매를 도포하는 방법으로 수행될 수 있다. 하지만, 백금(Pd)-주석(Sn) 촉매를 도포하기 위해서는, 전구체로 강산인 염산(HCl)이 사용됨에 따라, 희토류 금속 화합물이 손상될 수 있을 뿐만 아니라, 희토류 금속 화합물의 여과 및 수세 공정이 수 차례 요구되는 문제점이 발생될 수 있다. The sensitizing and activating process using a catalyst is a process of coating catalyst particles on the surface of a rare earth metal compound, and may be performed by a method of applying a platinum (Pd)-tin (Sn) catalyst. However, in order to apply a platinum (Pd)-tin (Sn) catalyst, as a strong acid hydrochloric acid (HCl) is used as a precursor, not only can the rare earth metal compound be damaged, but also the filtration and washing process of the rare earth metal compound Problems may be required several times.
또한, 무전해도금액을 이용한 도금 공정은, 희토류 금속 화합물에 도금되는 금속 이온이 백금(Pd)-주석(Sn) 촉매와 결합되는 공정으로서, 도금되는 금속을 포함하는 전구체를 희토류 금속 화합물에 제공하는 방법으로 수행될 수 있다. 하지만, 도금되는 금속을 포함하는 전구체의 경우 강염기성을 나타내는데, 강산에 의해 촉매 처리된 희토류 금속 화합물이 강염기와 반응됨에 따라, 희토류 금속 화합물이 손상되는 문제점이 발생될 수 있다. In addition, the plating process using an electroless plating solution is a process in which metal ions plated on a rare earth metal compound are combined with a platinum (Pd)-tin (Sn) catalyst to provide a rare earth metal compound with a precursor containing a metal to be plated. Method. However, in the case of a precursor containing a metal to be plated, it exhibits strong basicity. As a rare earth metal compound catalyzed by a strong acid reacts with a strong base, a problem that the rare earth metal compound is damaged may occur.
이와 달리, 본 발명의 실시 예에 따른 희토류 금속의 도금 방법은, 상기 칼슘(Ca) 화합물(120), 및 상기 희토류 금속 화합물(110)을 포함하는 상기 베이스 금속(100)을 준비하는 단계, 상기 칼슘 반응제(CaR), 상기 제1 금속(M1)을 포함하는 상기 제1 금속 전구체, 상기 제2 금속(M2)을 포함하는 상기 제2 금속 전구체를 포함하는 상기 도금 소스(200)를 준비하는 단계, 및 상기 베이스 금속(100)에 상기 도금 소스(200)를 제공하여, 상기 칼슘 화합물(120)이 포함하는 상기 칼슘을 상기 칼슘 반응제(CaR)와 반응시키는 동시에, 상기 희토류 금속 화합물(110) 표면 상에 상기 제1 금속 및 제2 금속의 합금(M1+M2 alloy)을 도금하는 단계를 포함할 수 있다. Alternatively, the method of plating a rare earth metal according to an embodiment of the present invention comprises the steps of preparing the base metal 100 including the calcium (Ca) compound 120 and the rare earth metal compound 110, the The plating source 200 including the calcium reactant (CaR), the first metal precursor including the first metal (M 1 ), and the second metal precursor including the second metal (M 2 ) Preparing, and providing the plating source 200 to the base metal 100, while reacting the calcium contained in the calcium compound 120 with the calcium reactant (CaR), the rare earth metal compound Plating an alloy of the first metal and the second metal (M 1 +M 2 alloy) on the (110) surface may be included.
즉, 상기 실시 예에 따른 희토류 금속의 도금 방법은, Ca를 포함하는 환원제의 부산물을 제거하지 않고, 부산물을 이용하여 도금할 수 있다. 이에 따라, Ca 부산물을 제거하는 공정 및 촉매처리가 없는 간소화된 공정으로, 희토류 금속을 도금하는 방법이 제공될 수 있다. That is, the method of plating the rare earth metal according to the embodiment may be plated using a by-product without removing the by-product of a reducing agent containing Ca. Accordingly, a method of plating rare earth metals may be provided as a process of removing Ca by-products and a simplified process without catalytic treatment.
이상, 본 발명의 실시 예에 따른 희토류 금속 도금 용액, 희토류 복합 구조체, 및 희토류 금속의 도금 방법이 설명되었다. 이하, 상기 실시 예에 따른 희토류 금속 도금 용액, 희토류 복합 구조체, 및 희토류 금속의 도금 방법에 대한 구체적인 실험 예 및 특성 평가 결과가 설명된다. As described above, the rare earth metal plating solution, the rare earth composite structure, and the rare earth metal plating method according to embodiments of the present invention have been described. Hereinafter, specific experimental examples and property evaluation results for the rare earth metal plating solution, the rare earth composite structure, and the rare earth metal plating method according to the above embodiment will be described.
실시 예에 따른 베이스 금속 제조Preparation of base metal according to the embodiment
SmCoO3, Sm2O3, Co3O4 (순도>99.9%)로 구성된 산화물 나노분말이 준비된다. 준비된 산화물 나노분말을 CaH2 환원제와 CaH2: 나노분말 = 2: 1의 부피비율로 혼합한 후, 비활성분위기에서 700℃의 온도로 3시간 동안 가열하였다. 가열된 분말을 70℃의 진공오븐에서 건조하여, SmCo 희토류 금속 화합물에 CaO 부산물이 형성된 상기 실시 예에 따른 베이스 금속을 제조하였다. An oxide nanopowder composed of SmCoO 3 , Sm 2 O 3 and Co 3 O 4 (purity>99.9%) is prepared. The prepared oxide nanopowder was mixed with a CaH 2 reducing agent and CaH 2 : nanopowder = 2: 1 in a volume ratio, and then heated in an inert atmosphere at a temperature of 700° C. for 3 hours. The heated powder was dried in a vacuum oven at 70° C. to prepare a base metal according to the above embodiment in which CaO by-products were formed on the SmCo rare earth metal compound.
상기 실시 예에 따른 베이스 금속의 화학적 조성비가 아래 <표 1>로 정리된다. 화학적 조성비는 XRF 장비를 통해 측정되었다.The chemical composition ratio of the base metal according to the embodiment is summarized in <Table 1> below. The chemical composition ratio was measured by XRF equipment.
구분division 함유량 (wt%)Content (wt%)
CoCo 62.56362.563
SmSm 20.26820.268
CaCa 16.74616.746
ClCl 0.2030.203
SS 0.1070.107
PP 0.0630.063
SiSi 0.0290.029
CrCr 0.0210.021
실시 예에 따른 도금 소스 제조Plating source production according to the embodiment
초순수 72 mL에 40 w/v%의 불화암모늄(NH4F)을 2 mL 주입하여 교반기에서 혼합하여 혼합 용액을 제조하였다. 이후, 철 질산 9 수화물(Fe(NO3)39H2O)과 코발트 질산 6 수화물(Co(NO3)26H2O)의 비율이 Fe:Co=7:3이 되도록 하여 이를 혼합 용액에 제공하되, 철 질산 9 수화물(Fe(NO3)39H2O)과 코발트 질산 6 수화물(Co(NO3)26H2O)의 몰수의 합이 0 mmol, 1 mmol, 5 mmol, 10 mmol, 15 mmol, 30 mmol, 50 mmol, 및 75 mmol이 되도록 제어하여 각각 실시 예 1 내지 8에 따른 도금 소스를 제조하였다. 2 mL of 40 w/v% ammonium fluoride (NH 4 F) was added to 72 mL of ultrapure water and mixed in a stirrer to prepare a mixed solution. Thereafter, the ratio of iron nitrate hexahydrate (Fe(NO 3 ) 3 9H 2 O) and cobalt nitrate hexahydrate (Co(NO 3 ) 2 6H 2 O) is set to Fe:Co=7:3, which is then added to the mixed solution. Provided, the sum of the number of moles of iron nitrate hexahydrate (Fe(NO 3 ) 3 9H 2 O) and cobalt nitrate hexahydrate (Co(NO 3 ) 2 6H 2 O) is 0 mmol, 1 mmol, 5 mmol, 10 mmol , 15 mmol, 30 mmol, 50 mmol, and 75 mmol were controlled to prepare plating sources according to Examples 1 to 8, respectively.
또한, 상기 실시 예 1 내지 8에 따른 도금 소스의 제조 방법을 통해 제조하되, 불화암모늄(NH4F)이 1 mL 주입되고 철 질산 9 수화물(Fe(NO3)39H2O)과 코발트 질산 6 수화물(Co(NO3)26H2O)의 몰수의 합이 50 mmol로 제어된 실시 예 9에 따른 도금 소스도 제조하였다. In addition, it is prepared through the manufacturing method of the plating sources according to Examples 1 to 8, but 1 mL of ammonium fluoride (NH 4 F) is injected and iron nitrate 9 hydrate (Fe(NO 3 ) 3 9H 2 O) and cobalt nitric acid A plating source according to Example 9 in which the sum of the number of moles of hexahydrate (Co(NO 3 ) 2 6H 2 O) was controlled to 50 mmol was also prepared.
또한, 상기 실시 예 1 내지 8에 따른 도금 소스의 제조 방법을 통해 제조하되, 불화암모늄(NH4F)이 주입되지 않고, 철 질산 9 수화물(Fe(NO3)39H2O)과 코발트 질산 6 수화물(Co(NO3)26H2O)의 몰수의 합이 50 mmol로 제어된 실시 예 10에 따른 도금 소스도 제조하였다. In addition, it is prepared through the manufacturing method of the plating source according to Examples 1 to 8, but ammonium fluoride (NH 4 F) is not injected, iron nitrate 9 hydrate (Fe(NO 3 ) 3 9H 2 O) and cobalt nitric acid A plating source according to Example 10 in which the sum of the number of moles of hexahydrate (Co(NO 3 ) 2 6H 2 O) was controlled to 50 mmol was also prepared.
상기 실시 예 1 내지 10에 따른 도금 소스의 제조시 사용된 물질들이 아래 <표 2>를 통해 정리된다. Materials used in the production of the plating sources according to Examples 1 to 10 are summarized through <Table 2> below.
구분division 주입된 NH4F의 양The amount of NH 4 F injected Fe 전구체 및 Co 전구체의 몰수 합The number of moles of Fe precursor and Co precursor
실시 예 1Example 1 2 mL2 mL 0 mmol0 mmol
실시 예 2Example 2 2 mL2 mL 1 mmol1 mmol
실시 예 3Example 3 2 mL2 mL 5 mmol5 mmol
실시 예 4Example 4 2 mL2 mL 10 mmol10 mmol
실시 예 5Example 5 2 mL2 mL 15 mmol15 mmol
실시 예 6Example 6 2 mL2 mL 30 mmol30 mmol
실시 예 7Example 7 2 mL2 mL 50 mmol50 mmol
실시 예 8Example 8 2 mL2 mL 75 mmol75 mmol
실시 예 9Example 9 1 mL1 mL 50 mmol50 mmol
실시 예 10Example 10 0 mL0 mL 50 mmol50 mmol
실시 예에 따른 희토류 복합 구조체 제조Preparation of rare earth composite structures according to embodiments
실시 예에 따른 베이스 금속 0.05g 및 실시 예 1 내지 10에 따른 도금 소스가 준비된다. 준비된 베이스 금속을 각각 상기 실시 예 1 내지 10에 따른 도금 소스에 담그고, 스패츌러를 이용하여 저어준 뒤 상온에서 10분의 시간동안 도금 반응을 진행시켰다. 이후, 원심분리를 통해 도금된 SmCo 분말을 걸러내어 초순수와 메탄올로 수 회 세척한 후, 70℃온도의 진공오븐에서 충분히 건조시켰다. 또한, 건조된 구조체를 H2 분위기에서 700℃의 온도로 30분의 시간동안 환원시켜, SmCo 희토류 금속 화합물에 FeCo 예비 도금층이 형성된 상기 실시 예 1 내지 10에 따른 희토류 복합 구조를 제조하였다. 0.05 g of base metal according to the embodiment and a plating source according to Examples 1 to 10 are prepared. The prepared base metals were immersed in the plating sources according to Examples 1 to 10, respectively, stirred using a spatula, and then subjected to a plating reaction for 10 minutes at room temperature. Thereafter, the plated SmCo powder was filtered through centrifugation, washed several times with ultrapure water and methanol, and then sufficiently dried in a vacuum oven at a temperature of 70°C. In addition, the dried structure was reduced in a H 2 atmosphere at a temperature of 700° C. for a period of 30 minutes to prepare a rare earth composite structure according to Examples 1 to 10 in which an FeCo pre-plated layer was formed on the SmCo rare earth metal compound.
상기 실시 예들에 따른 희토류 복합 구조체의 도금 결과가 아래 <표 3>을 통해 정리되고, 상기 실시 예 1에 따른 희토류 복합 구조체의 화학적 조성비가 아래 <표 4>를 통해 정리된다. Plating results of the rare earth composite structure according to the above embodiments are summarized through <Table 3> below, and chemical composition ratios of the rare earth composite structure according to Example 1 are summarized through <Table 4> below.
구분division 도금 결과Plating result
실시 예 1Example 1 CaF2 생성CaF 2 generation
실시 예 3Example 3 CaF2 생성, FeCo 생성CaF 2 production, FeCo production
실시 예 4Example 4 CaF2 생성, FeCo 생성CaF 2 production, FeCo production
실시 예 6Example 6 CaF2 생성, FeCo 생성CaF 2 production, FeCo production
실시 예 7Example 7 CaF2 생성, FeCo 생성CaF 2 production, FeCo production
실시 예 8Example 8 CaF2 생성, FeCo 생성, SmCo 용해CaF 2 production, FeCo production, SmCo dissolution
실시 예 9Example 9 CaF2 생성, FeCo 생성, SmCo 용해CaF 2 production, FeCo production, SmCo dissolution
실시 예 10Example 10 FeCo 생성, SmCo 용해FeCo generation, SmCo dissolution
구분division 함유량 (wt%)Content (wt%)
CoCo 71.10771.107
SmSm 25.49525.495
CaCa 1.1441.144
FF 1.0061.006
FeFe 0.2730.273
ClCl 0.2010.201
SS 0.1190.119
PP 0.0610.061
도 8은 본 발명의 실시 예에 따른 베이스 금속을 촬영한 사진이다. 8 is a photograph of a base metal according to an embodiment of the present invention.
도 8을 참조하면, 상기 실시 예에 따른 베이스 금속을 SEM(Scanning Electron Microscope)촬영하였다. 도 8에서 확인할 수 있듯이, 상기 실시 예에 따른 베이스 금속은, SmCo 희토류 금속 화합물 표면에 CaH2 환원제의 부산물인 CaO가 형성되어 있는 것을 확인할 수 있었다. 8, the base metal according to the above embodiment was photographed by SEM (Scanning Electron Microscope). As can be seen in FIG. 8, it was confirmed that the base metal according to the above embodiment formed CaO, a by-product of the CaH 2 reducing agent, on the surface of the SmCo rare earth metal compound.
도 9는 본 발명의 실시 예 1에 따른 희토류 복합 구조체를 촬영한 사진이다. 9 is a photograph of a rare earth composite structure according to Example 1 of the present invention.
도 9를 참조하면, 상기 실시 예 1에 따른 희토류 복합 구조체가 환원되기 전 과 환원된 후를 각각 SEM 촬영하여 도 9의 (a) 및 (b)에 나타내었다. 도 9의 (a) 및 (b)에서 확인할 수 있듯이, Fe 전구체 및 Co 전구체가 제공되지 않은 상기 실시 예 1에 따른 희토류 복합 구조체는, 도 8 도시된 상기 실시 예에 따른 베이스 금속과 같이 SmCo 희토류 금속 화합물 상에 CaO가 형성되어 있는 것을 확인할 수 있었다. Referring to FIG. 9, before and after the rare earth composite structure according to Example 1 is reduced, SEM images are respectively shown in FIGS. 9(a) and 9(b). As can be seen from (a) and (b) of FIG. 9, the rare earth composite structure according to Example 1 in which the Fe precursor and the Co precursor are not provided are SmCo rare earth as the base metal according to the embodiment shown in FIG. It was confirmed that CaO was formed on the metal compound.
도 10은 본 발명의 실시 예 2에 따른 희토류 복합 구조체를 촬영한 사진이다. 도 10을 참조하면, 상기 실시 예 2에 따른 희토류 복합 구조체가 환원되기 전과 환원된 후를 각각 SEM 촬영하여 도 10의 (a) 및 (b)에 나타내었다. 도 10의 (a) 및 (b)에서 확인할 수 있듯이, 상기 실시 예 2에 따른 희토류 복합 구조체는, SmCo 희토류 금속 화합물 상에 CaF2입자들이 형성된 것을 확인할 수 있었다. 10 is a photograph of a rare earth composite structure according to Example 2 of the present invention. Referring to FIG. 10, SEM images of the rare earth composite structure according to Example 2 before and after reduction are respectively shown in FIGS. 10A and 10B. As can be seen from (a) and (b) of FIG. 10, it was confirmed that the CaF 2 particles were formed on the SmCo rare earth metal compound in the rare earth composite structure according to Example 2.
도 11 내지 도 15는 본 발명의 실시 예 3 내지 7에 따른 희토류 복합 구조체를 촬영한 사진이다. 도 11 내지 도 15를 참조하면, 상기 실시 예 3 내지 7에 따른 희토류 복합 구조체가 환원되기 전과 환원된 후를 각각 SEM 촬영하여 도 11 내지 도 15의 (a) 및 (b)에 각각 나타내었다. 도 11 내지 도 15에서 확인할 수 있듯이, 상기 실시 예 3 내지 7에 따른 희토류 복합 구조체는, SmCo 희토류 금속 화합물 상에 FeCo 및 CaF2를 포함하는 도금층이 형성되어 있는 것을 확인할 수 있었다. 11 to 15 are photographs of rare earth composite structures according to Examples 3 to 7 of the present invention. 11 to 15, before and after the rare earth composite structures according to Examples 3 to 7 are reduced, SEM images are respectively shown in FIGS. 11 to 15 (a) and (b). As can be seen in FIGS. 11 to 15, it was confirmed that the rare earth composite structures according to Examples 3 to 7 were formed with a plating layer containing FeCo and CaF 2 on the SmCo rare earth metal compound.
도 16은 본 발명의 실시 예 8에 따른 희토류 복합 구조체를 촬영한 사진이다. 도 16을 참조하면, 상기 실시 예 8에 따른 희토류 복합 구조체가 환원되기 전과 환원된 후를 각각 SEM촬영하여 도 16의 (a) 및 (b)에 나타내었다. 도 16에서 확인할 수 있듯이, 상기 실시 예 8에 따른 희토류 복합 구조체는, FeCo 및 CaF2를 포함하는 도금층이 형성되었지만, SmCo 희토류 금속 화합물이 손상된 것을 알 수 있었다. 16 is a photograph of a rare earth composite structure according to Example 8 of the present invention. Referring to FIG. 16, SEM images of before and after the rare earth composite structure according to Example 8 were reduced are shown in FIGS. 16A and 16B. As can be seen in Figure 16, the rare earth composite structure according to Example 8, it was found that the plating layer containing FeCo and CaF 2 was formed, but the SmCo rare earth metal compound was damaged.
도 10 내지 도 16을 통해 알 수 있듯이, SmCo 희토류 금속 화합물 상에 FeCo 및 CaF2를 포함하는 도금층이 용이하게 형성되기 위해, 도금 소스가 포함하는 Fe 전구체 및 Co 전구체의 몰수 합이 1 mmol 초과 75 mmol 미만으로 제어되어야 함을 알 수 있다. 10 to 16, in order to easily form a plating layer containing FeCo and CaF 2 on the SmCo rare earth metal compound, the molar sum of Fe precursors and Co precursors included in the plating source exceeds 1 mmol 75 It can be seen that it should be controlled to less than mmol.
도 17 및 도 18은 본 발명의 실시 예 7에 따른 희토류 복합 구조체의 성분을 나타내는 도면이다. 17 and 18 are diagrams showing components of a rare earth composite structure according to Example 7 of the present invention.
도 17 및 도 18을 촬영하면, 상기 실시 예 6에 따른 희토류 복합 구조체를 주사전자현미경/에너지 분산형 X-선 검출 분광기(SEM/EDS)로 정성 분석하여 나타내었다. 도 17 및 도 18에서 확인할 수 있듯이, 상기 실시 예 7에 따른 희토류 복합 구조체는, Sm, Fe, Ca, 및 F를 포함하고 있는 것을 확인할 수 있었다. 17 and 18, the rare earth composite structure according to Example 6 was shown by qualitative analysis using a scanning electron microscope/energy dispersive X-ray detection spectrometer (SEM/EDS). As can be seen in FIGS. 17 and 18, it was confirmed that the rare earth composite structure according to Example 7 includes Sm, Fe, Ca, and F.
도 19는 본 발명의 실시 예들에 따른 희토류 복합 구조체의 구성을 나타내는 그래프이다. 19 is a graph showing the configuration of a rare earth composite structure according to embodiments of the present invention.
도 19의 (a) 내지 (e)를 참조하면, 상기 실시 예 1, 실시 예 4, 실시 예 6, 실시 예 7, 및 실시 예 8에 따른 희토류 복합 구조체에 대해 각각 2 theta(deg.)에 따른 Relative Intensity(a.u.)를 측정하여, X-선 회절 패턴을 나타내었다. 19 (a) to (e), for the rare earth composite structures according to Example 1, Example 4, Example 6, Example 7, and Example 8 to 2 theta (deg.) Relative Intensity (au) was measured, and an X-ray diffraction pattern was displayed.
도 19의 (a)에서 확인할 수 있듯이, 상기 실시 예 1에 따른 희토류 복합 구조체는, Sm2Co17에 대한 패턴은 확인되지만, FeCo 및 CaF2에 대한 패턴은 확인되지 않아, 도금이 용이하게 이루어지지 않은 것을 확인할 수 있었다. 반면, 도 19의 (b) 내지 (e)에서 확인할 수 있듯이, 상기 실시 예 4, 실시 예 6, 실시 예 7, 및 실시 예8에 따른 희토류 복합 구조체는, CaF2에 대한 패턴 및 Fe11Co5에 대한 패턴이 확인되는 것으로 보아, 도금이 용이하게 이루어진 것을 확인할 수 있었다. As can be seen in Figure 19 (a), the rare earth composite structure according to Example 1, the pattern for Sm 2 Co 17 is confirmed, but the pattern for FeCo and CaF 2 is not confirmed, plating is made easily I could confirm that I didn't lose. On the other hand, as can be seen from (b) to (e) of FIG. 19, the rare earth composite structures according to Example 4, Example 6, Example 7, and Example 8, the pattern for CaF 2 and Fe 11 Co The pattern for 5 was confirmed, and it was confirmed that plating was easily performed.
도 20은 본 발명의 실시 예 6에 따른 베이스 금속 및 희토류 복합 구조체의 구성을 나타내는 그래프이다. 20 is a graph showing the configuration of a base metal and a rare earth composite structure according to Example 6 of the present invention.
도 20의 (a) 내지 (c)를 참조하면, 상기 실시 예에 따른 베이스 금속, 환원되기 전의 실시 예 6에 따른 희토류 복합 구조체, 및 환원된 후의 실시 예 6에 따른 희토류 복합 구조체 각각에 대해 2 theta(deg.)에 따른 Relative Intensity(a.u.)를 측정하여, X-선 회절 패턴을 나타내었다. 20 (a) to (c), the base metal according to the embodiment, the rare earth composite structure according to Example 6 before reduction, and the rare earth composite structure according to Example 6 after reduction 2 Relative Intensity (au) according to theta (deg.) was measured to show an X-ray diffraction pattern.
도 20의 (a)에서 확인할 수 있듯이, 상기 실시 예에 따른 베이스 금속은 CaO에 대한 패턴 및 Sm2Co17에 대한 패턴이 나타나는 것으로 보아, Sm2Co17 희토류 금속 화합물 상에 CaO 부산물이 형성된 것을 알 수 있었다. As can be seen in Figure 20 (a), the base metal according to the embodiment is seen as a pattern for CaO and a pattern for Sm 2 Co 17 appear, Sm 2 Co 17 CaO by-product formed on the rare earth metal compound Could know.
도 20의 (b)에서 확인할 수 있듯이, 환원되기 전의 실시 예 6에 따른 희토류 복합 구조체는, Sm2Co17에 대한 패턴, CaF2에 대한 패턴, 및 Fe11Co5에 대한 패턴뿐만 아니라, (Fe,Co)7O11에 대한 패턴도 나타나는 것으로 보아, FeCo 합금 산화물이 형성된 것을 확인할 수 있었다. As can be seen in FIG. 20(b), the rare earth composite structure according to Example 6 before reduction is not only a pattern for Sm 2 Co 17 , a pattern for CaF 2 , and a pattern for Fe 11 Co 5 , ( Fe,Co) It was confirmed that the pattern for 7 O 11 also appeared, FeCo alloy oxide was formed.
도 20의 (c)에서 확인할 수 있듯이, 환원된 후의 실시 예 6에 따른 희토류 복합 구조체는, Sm2Co17에 대한 패턴, CaF2에 대한 패턴, 및 Fe11Co5에 대한 패턴이 나타나고, (Fe,Co)7O11에 대한 패턴은 나타나지 않는 것으로 보아, FeCo 합금 산화물이 FeCo 합금으로 환원된 것을 확인할 수 있었다. 20(c), the rare earth composite structure according to Example 6 after reduction has a pattern for Sm 2 Co 17 , a pattern for CaF 2 , and a pattern for Fe 11 Co 5 , ( Fe,Co) It was confirmed that the pattern for 7 O 11 does not appear, FeCo alloy oxide was reduced to FeCo alloy.
이상, 본 발명을 바람직한 실시 예를 사용하여 상세히 설명하였으나, 본 발명의 범위는 특정 실시 예에 한정되는 것은 아니며, 첨부된 특허청구범위에 의하여 해석되어야 할 것이다. 또한, 이 기술분야에서 통상의 지식을 습득한 자라면, 본 발명의 범위에서 벗어나지 않으면서도 많은 수정과 변형이 가능함을 이해하여야 할 것이다.As described above, the present invention has been described in detail using preferred embodiments, but the scope of the present invention is not limited to specific embodiments, and should be interpreted by the appended claims. In addition, those skilled in the art should understand that many modifications and variations are possible without departing from the scope of the present invention.
본 발명의 실시 예에 따른 희토류 금속 도금 용액은, 희토류를 포함하는 금속 구조체의 도금에 이용될 수 있다.The rare earth metal plating solution according to an embodiment of the present invention may be used for plating a metal structure containing rare earth.

Claims (14)

  1. 칼슘(Ca) 화합물, 및 희토류 금속 화합물을 포함하는 베이스 금속을 준비하는 단계; Preparing a base metal including a calcium (Ca) compound and a rare earth metal compound;
    칼슘 반응제, 제1 금속을 포함하는 제1 금속 전구체, 및 제2 금속을 포함하는 제2 금속 전구체를 포함하는 도금 소스를 준비하는 단계; 및Preparing a plating source comprising a calcium reactant, a first metal precursor comprising a first metal, and a second metal precursor comprising a second metal; And
    상기 베이스 금속에 상기 도금 소스를 제공하여, 상기 칼슘 화합물이 포함하는 상기 칼슘을 상기 칼슘 반응제와 반응키는 동시에, 상기 희토류 금속 화합물 표면 상에 상기 제1 금속 및 제2 금속의 합금을 도금하는 단계를 포함하는, 희토류 금속의 도금 방법. Providing the plating source to the base metal, reacting the calcium contained in the calcium compound with the calcium reactant, and simultaneously plating the first metal and the second metal alloy on the rare earth metal compound surface. A method of plating a rare earth metal comprising a step.
  2. 제1 항에 있어서, According to claim 1,
    상기 베이스 금속에 상기 도금 소스가 제공되는 경우, 상기 칼슘 화합물은 칼슘 이온과 전자로 해리되고, When the base metal is provided with the plating source, the calcium compound is dissociated into calcium ions and electrons,
    상기 제1 금속 전구체의 제1 금속, 및 상기 제2 금속 전구체의 제2 금속은, 상기 전자와 반응되어, 상기 제1 및 제2 금속의 합금으로 형성되는 것을 포함하는 희토류 금속의 도금 방법. The first metal of the first metal precursor, and the second metal of the second metal precursor is reacted with the electrons, a method of plating a rare earth metal comprising forming an alloy of the first and second metals.
  3. 제2 항에 있어서, According to claim 2,
    상기 칼슘 이온은, 상기 칼슘 반응제와 반응되어 기능성 물질을 형성하는 것을 포함하는, 희토류 금속의 도금 방법. The calcium ion is a method of plating a rare earth metal comprising reacting with the calcium reactant to form a functional material.
  4. 제3 항에 있어서, According to claim 3,
    상기 칼슘 반응제는, 불소(F)를 포함하고, 상기 기능성 물질은 불소 음이온과 칼슘 양이온이 반응된 것을 포함하는, 희토류 금속의 도금 방법. The calcium reactant includes fluorine (F), and the functional material comprises a reaction of a fluorine anion and a calcium cation, a method for plating a rare earth metal.
  5. 제3 항에 있어서, According to claim 3,
    상기 칼슘 반응제는, NH4F 또는 HF 중 어느 하나를 포함하는 희토류 금속의 도금 방법. The calcium reactant is a method of plating rare earth metals containing either NH 4 F or HF.
  6. 제1 항에 있어서, According to claim 1,
    상기 베이스 금속을 준비하는 단계는, The step of preparing the base metal,
    희토류 원소, 및 금속 원소를 포함하는 베이스 전구체를 준비하는 단계; 및Preparing a base precursor comprising a rare earth element and a metal element; And
    상기 베이스 전구체를, 칼슘을 포함하는 환원제를 이용하여 환원하는 단계를 포함하는 희토류 금속의 도금 방법. A method of plating a rare earth metal comprising the step of reducing the base precursor using a reducing agent containing calcium.
  7. 제6 항에 있어서, The method of claim 6,
    상기 희토류 원소는, Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, 또는 Lu 중 적어도 어느 하나를 포함하는 희토류 금속의 도금 방법. The rare earth element is plating of rare earth metals including at least one of Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, or Lu Way.
  8. 제1 항에 있어서, According to claim 1,
    상기 칼슘 화합물은, 칼슘 산화물(CaO)을 포함하는 희토류 금속의 도금 방법. The calcium compound is a method of plating a rare earth metal containing calcium oxide (CaO).
  9. 제1 항에 있어서, According to claim 1,
    상기 도금 소스를 준비하는 단계는, The step of preparing the plating source,
    초순수, 및 상기 칼슘 반응제를 혼합하여 혼합 용액을 제조하는 단계; Preparing a mixed solution by mixing ultrapure water and the calcium reactant;
    상기 혼합 용액에 상기 제1 금속 전구체, 및 상기 제2 금속 전구체를 제공하는 단계를 포함하되, Providing the first metal precursor, and the second metal precursor to the mixed solution,
    상기 혼합 용액에 제공되는 상기 제1 금속 전구체, 및 상기 제2 금속 전구체의 비율은 서로 다른 것을 포함하는 희토류 금속의 도금 방법. A method of plating rare earth metals comprising different proportions of the first metal precursor and the second metal precursor provided in the mixed solution.
  10. 제9 항에 있어서, The method of claim 9,
    상기 제1 금속 전구체가 포함하는 제1 금속의 몰수 및 상기 제2 금속 전구체가 포함하는 제2 금속의 몰수 합은 1 mmol 초과 75 mmol 미만인 것을 포함하는 희토류 금속의 도금 방법. A method of plating a rare earth metal, wherein the sum of the number of moles of the first metal included in the first metal precursor and the number of moles of the second metal included in the second metal precursor is greater than 1 mmol and less than 75 mmol.
  11. 제1 항에 있어서, According to claim 1,
    상기 도금 단계는, The plating step,
    상기 베이스 금속에 상기 도금 소스를 반응시켜, 상기 희토류 금속 화합물 상에, 상기 칼슘과 상기 칼슘 반응제가 반응된 기능성 물질, 상기 제1 및 제2 금속의 합금, 및 상기 제1 및 제2 금속의 합금 산화물을 포함하는, 예비 도금층 형성 단계; 및 The base metal is reacted with the plating source, and on the rare earth metal compound, a functional material in which the calcium and the calcium reactant are reacted, an alloy of the first and second metals, and an alloy of the first and second metals Forming a pre-plating layer containing oxide; And
    상기 예비 도금층을 환원시켜, 상기 희토류 금속 화합물 상에, 상기 기능성 물질, 및 상기 제1 및 제2 금속의 합금을 포함하는 도금층을 형성하는 단계를 포함하는, 희토류 금속의 도금 방법. And reducing the preliminary plating layer to form a plating layer comprising the functional material and an alloy of the first and second metals on the rare earth metal compound.
  12. 칼슘(Ca) 화합물, 및 희토류 화합물을 포함하는 베이스 금속의 도금 용액으로서, A plating solution of a base metal containing a calcium (Ca) compound and a rare earth compound,
    상기 도금 용액은, The plating solution,
    불소(F)를 포함하는 칼슘 반응제; Calcium reactants containing fluorine (F);
    상기 칼슘보다 이온화 경향이 낮은 제1 금속을 포함하는 제1 금속 전구체; 및 A first metal precursor including a first metal having a lower ionization tendency than the calcium; And
    상기 칼슘보다 이온화 경향이 낮은 제2 금속을 포함하는 제2 금속 전구체를 포함하는 희토류 금속 도금 용액. A rare earth metal plating solution comprising a second metal precursor containing a second metal having a lower ionization tendency than the calcium.
  13. 희토류 금속 화합물; 및Rare earth metal compounds; And
    제1 금속 및 제2 금속의 합금, 및 불소(F)를 포함하는 기능성 물질을 포함하고, 상기 희토류 금속 화합물을 둘러싸는 도금층;을 포함하되,The first metal and the alloy of the second metal, and a functional material comprising a fluorine (F), and a plating layer surrounding the rare earth metal compound; includes,
    상기 도금층 내에서 상기 합금의 함유량은, 상기 기능성 물질의 함유량 보다 많은 것을 포함하는, 희토류 복합 구조체. The rare earth composite structure in which the content of the alloy in the plating layer contains more than the content of the functional material.
  14. 제13 항에 있어서, The method of claim 13,
    상기 합금, 및 상기 기능성 물질은 동시에 생성된 것을 포함하는 희토류 복합 구조체. The rare earth composite structure comprising the alloy, and the functional material produced at the same time.
PCT/KR2019/001369 2018-11-30 2019-01-31 Rare earth metal plating solution, rare earth metal composite structure, and method for plating rare earth metal WO2020111385A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021504829A JP7131866B2 (en) 2018-11-30 2019-01-31 Rare earth metal plating solution, rare earth composite structure, and rare earth metal plating method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0152368 2018-11-30
KR20180152368 2018-11-30
KR1020190011809A KR102143714B1 (en) 2018-11-30 2019-01-30 Rare-earth metal plating solution, Rare-earth complex structure, and Method for plating rare=earth metal
KR10-2019-0011809 2019-01-30

Publications (1)

Publication Number Publication Date
WO2020111385A1 true WO2020111385A1 (en) 2020-06-04

Family

ID=70852179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/001369 WO2020111385A1 (en) 2018-11-30 2019-01-31 Rare earth metal plating solution, rare earth metal composite structure, and method for plating rare earth metal

Country Status (1)

Country Link
WO (1) WO2020111385A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363680A (en) * 2001-06-12 2002-12-18 Tdk Corp Rare-earth/transition metal alloy material with coating layer
KR20110057257A (en) * 2008-10-21 2011-05-31 도꾸리쯔교세이호진 상교기쥬쯔 소고겡뀨죠 Method for producing metal oxide thin film
KR20120043273A (en) * 2010-10-26 2012-05-04 한양대학교 산학협력단 Method for forming rare earth metal hydride and method for forming rare earth metal-transition metal alloy powder using the same
KR20140044776A (en) * 2011-01-11 2014-04-15 오엠지 일렉트로닉 케미컬즈, 엘엘씨 Electroless plating bath composition and method of plating particulate matter
KR20170104118A (en) * 2016-03-04 2017-09-14 한양대학교 에리카산학협력단 Method of fabricating of magnetic nano structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363680A (en) * 2001-06-12 2002-12-18 Tdk Corp Rare-earth/transition metal alloy material with coating layer
KR20110057257A (en) * 2008-10-21 2011-05-31 도꾸리쯔교세이호진 상교기쥬쯔 소고겡뀨죠 Method for producing metal oxide thin film
KR20120043273A (en) * 2010-10-26 2012-05-04 한양대학교 산학협력단 Method for forming rare earth metal hydride and method for forming rare earth metal-transition metal alloy powder using the same
KR20140044776A (en) * 2011-01-11 2014-04-15 오엠지 일렉트로닉 케미컬즈, 엘엘씨 Electroless plating bath composition and method of plating particulate matter
KR20170104118A (en) * 2016-03-04 2017-09-14 한양대학교 에리카산학협력단 Method of fabricating of magnetic nano structure

Similar Documents

Publication Publication Date Title
EP2916627B1 (en) Method for manufacturing ceramic circuit board
WO2015194850A1 (en) Silver-coated copper nanowire and preparation method therefor
EP3661337B1 (en) Ceramic circuit board and production method therefor
TWI510592B (en) Method for manufacturing conductive copper particles
CN113632217A (en) Silicon nitride substrate, silicon nitride-metal composite, silicon nitride circuit substrate, and semiconductor package
JPH0480303A (en) Manufacture of copper powder coated with silver
WO2015008952A1 (en) Electroless nickel plating solution, electroless nickel plating method using same, and flexible nickel plated layer formed by using same
WO2013095072A1 (en) Conversion coating composition, surface treated steel sheet, and method for manufacturing the same
WO2010140788A2 (en) Chemical-mechanical polishing slurry composition comprising nonionized heat-activated nanocatalyst, and polishing method using same
WO2012053871A9 (en) Metal-coated steel sheet, galvannealed steel sheet, and method for manufacturing same
WO2020111385A1 (en) Rare earth metal plating solution, rare earth metal composite structure, and method for plating rare earth metal
Zhao et al. Reaction of thin metal films with crystalline and amorphous Al2O3
WO2013165148A1 (en) Method for producing high-purity trimanganese tetraoxide and high-purity trimanganese tetraoxide produced by the method
WO2022108323A1 (en) Ammoxidation catalyst, method for producing same, and method for producing acrylonitrile using ammoxidation catalyst
WO2022075576A1 (en) Method for producing nickel nanopowder and nickel nanopowder produced using same
WO2022059952A1 (en) Cubic boron nitride powder and manufacturing method therefor
JP7175532B2 (en) METAL FILM-FORMING COMPOSITION AND METAL FILM-FORMING METHOD
WO2020071841A1 (en) Silver powder and method for manufacturing same
WO2016175409A1 (en) Method for preparing metal/ceramic composite nanostructure, metal/ceramic composite nanostructure prepared by method, and catalyst comprising same
EP3287465A1 (en) Metal catalyst, manufacturing method and application therof
KR102143714B1 (en) Rare-earth metal plating solution, Rare-earth complex structure, and Method for plating rare=earth metal
WO2019013373A1 (en) Radical scavenger composition for pemfc, radical scavenger for pemfc, and preparation method therefor
WO2014069698A1 (en) Oxidation resistant copper nanoparticles and method for producing same
WO2018080025A1 (en) Method for preparing butadiene with excellent catalyst reproducibility
WO2014061892A1 (en) Novel method of preparing olivine-type electrode material using formic acid derivative

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19889390

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021504829

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19889390

Country of ref document: EP

Kind code of ref document: A1