WO2010046998A1 - Electric power supply system - Google Patents

Electric power supply system Download PDF

Info

Publication number
WO2010046998A1
WO2010046998A1 PCT/JP2008/069379 JP2008069379W WO2010046998A1 WO 2010046998 A1 WO2010046998 A1 WO 2010046998A1 JP 2008069379 W JP2008069379 W JP 2008069379W WO 2010046998 A1 WO2010046998 A1 WO 2010046998A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power supply
contract
power consumption
magnetic energy
Prior art date
Application number
PCT/JP2008/069379
Other languages
French (fr)
Japanese (ja)
Inventor
雅人 志賀
忠幸 北原
諭 神子
小島 直人
志郎 福田
Original Assignee
株式会社MERSTech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社MERSTech filed Critical 株式会社MERSTech
Priority to PCT/JP2008/069379 priority Critical patent/WO2010046998A1/en
Priority to JP2009548516A priority patent/JP4445040B1/en
Publication of WO2010046998A1 publication Critical patent/WO2010046998A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1415Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle with a generator driven by a prime mover other than the motor of a vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/34Plug-like or socket-like devices specially adapted for contactless inductive charging of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/63Monitoring or controlling charging stations in response to network capacity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L8/00Electric propulsion with power supply from forces of nature, e.g. sun or wind
    • B60L8/003Converting light into electric energy, e.g. by using photo-voltaic systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L8/00Electric propulsion with power supply from forces of nature, e.g. sun or wind
    • B60L8/006Converting flow of air into electric energy, e.g. by using wind turbines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/20AC to AC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]

Definitions

  • the present invention relates to a power supply system, and more particularly to a power supply system that controls power fluctuations of a distributed power source such as renewable energy so as not to cause frequency fluctuations in the power system.
  • the frequency of the power system must be controlled so as to always match the amount of power generation equal to the total power consumption, and if there is a difference, it varies from the target value of 50 Hz or 60 Hz with a time constant of several seconds to several tens of seconds. Will do.
  • the power supply frequency changes, the power flow from other power grids connected to the transmission line changes, causing fluctuations in other power grids, and overcurrent in the grid transmission lines. This must be avoided as it may be.
  • Frequency control is based on planned power plant operation, and hydroelectric power generation, pumped storage power generation, and thermal power plant output are controlled by a real-time automatic control function so that the target frequency is maintained with respect to momentary changes. It is changing. As a result, the frequency of the power system is controlled within a stable accuracy range within 0.05% of the target value.
  • the “specific load”, which is the load of a specific consumer who has contracted to allow the power consumption to be controlled (the output may be fluctuated), is represented by the power system as the total amount of power consumption in time series.
  • a system stabilization system has been proposed for controlling the power generation amount of a plurality of distributed power sources connected to the power source so as to be equal to the total amount in time series (Patent Document 5).
  • This document discloses the concept of stabilizing the system by making the total amount of power consumption of a specific load time series equal to the total amount of power generation of a distributed power source. There is no specific method for adjusting the power consumption of each time, how to match the total amount.
  • JP 2008-228422 A JP 2003-174723 A JP 2004-56996 A JP 2005-269744 A JP 2006-353079 A
  • the present invention has been made in view of the above circumstances, and is a power consumption source that allows a plurality of power fluctuations connected to the power system to be instantaneously supplied from a power source with large fluctuations to the power system. It is an exemplary problem to provide a power supply system that can effectively use unstable distributed power supply such as natural energy power generation by making the amount of power consumed in the system correspond.
  • a power supply system as an exemplary aspect of the present invention includes a plurality of power supply systems that allow an instantaneous variation rate with respect to a rated consumption power of power supplied from a power system to a predetermined contract short-time allowable variation rate.
  • a power supply amount calculating means for calculating a power supply amount having a large fluctuation to be supplied to the contract power consumption source at a predetermined cycle distribution timing, and distributing the power supply amount to a plurality of contract power consumption sources in a predetermined cycle
  • a power supply distribution means for distributing at a timing; a plurality of load power adjustment switches configured to be connectable to each of a plurality of contract power consumption sources; and a control means connected to each of the plurality of load power adjustment switches.
  • the load power By changing the output voltage magnitude and current phase of the connected load power adjustment switch based on the distribution signal from the power supply distribution means, the load power And a control means for changing the magnitude of power supplied to the contract power consumption source to which the regulating switch is connected, wherein the power supply distribution means includes a plurality of load power adjustment switches.
  • a long-term cumulative fluctuation rate that is a long-term cumulative value of the instantaneous fluctuation rate of power supplied from the power system for the rated power consumption of each of the plurality of contracted power consumption sources.
  • Select multiple contract power consumption sources that do not exceed the predetermined long-term allowable fluctuation rate smaller than the predetermined contract short-time allowable fluctuation rate, and instantaneously supply the power supply amount to each of the selected multiple contract power consumption sources Distribution is configured so that the fluctuation rate does not exceed a predetermined contract short-time allowable fluctuation rate.
  • the control means sets the long-term cumulative fluctuation rate, which is a long-term cumulative value of the instantaneous fluctuation rate of the power supplied from the power grid to the rated power consumption of each contracted power consumption source for a large fluctuation in power supply amount.
  • This system uses a power generation device with unstable power generation without affecting the power system on the assumption that power supplied by a power generation device with stable power generation is consumed by a power consumption source that requires stability.
  • the supply power that fluctuates from time to time is consumed by multiple contract power consumption sources that have agreed to allow the fluctuation rate of the supply power to a predetermined level of fluctuation that does not require much stability of the supply power, i.e. low “Power generation follow-up consumption” on the consumption side according to the quality power supply amount can be realized.
  • this system can construct a power supply system according to the present invention using an existing power supply system using a load power adjustment switch and a control means. Therefore, system construction can be performed at low cost.
  • the power and power generation amount fluctuating and not stable are referred to as “low quality”, and the fluctuation and stable are referred to as “high quality”.
  • low quality power consumption for example, charging of electric vehicles such as electric vehicles, plug-in hybrid vehicles, electric assist bicycles, electric refrigerators, electric freezers, air conditioners, Power for washing machines, water heaters, pumps, and compression pumps.
  • representative examples of power consumption that requires high quality include power supplied to electronic devices such as computers, network devices, and measuring devices.
  • Each of the plurality of contract power consumption sources can set one of a plurality of short-term allowable fluctuation rates as a predetermined contract short-time allowable fluctuation rate, and the power supply distribution means can determine the instantaneous fluctuation rate of each of the plurality of contract power consumption sources. However, the distribution may be made so as not to exceed the set predetermined contract short-time allowable fluctuation rate.
  • each of the plurality of contract power consumption sources can set one of a plurality of long-time allowable fluctuation rates as a predetermined long-time allowable fluctuation rate
  • the power supply distribution means can set each of the plurality of contract power consumption sources for a long time.
  • a configuration may be adopted in which a plurality of contract power consumption sources whose cumulative fluctuation rates do not exceed the set predetermined long-term allowable fluctuation rates are selected.
  • the predetermined long-term allowable fluctuation rate may be a contract long-time allowable fluctuation rate for each of the contract periods of a plurality of contract power consumption sources.
  • the predetermined long-term allowable fluctuation rate is set to a predetermined long-term allowable fluctuation rate at the end of the contract period of each of the plurality of contract power consumption sources, and the allowable long-term fluctuation rate during the contract period. A larger value may be set.
  • the “long-term permissible fluctuation rate” may be larger than the “contract long-term permissible fluctuation rate” in the middle of the contract period, so that the system supplies power to each contract power consumption source. Increases flexibility. In addition, it is possible to discount power charges according to the allowance of this mechanism, and it becomes easy for the manager (user) of the power consumption source to participate in the contract power consumption source.
  • the power supply amount is distributed to a plurality of selected contract power consumption sources at the distribution timing, and the respective instantaneous variation rates of the selected plurality of contract power consumption sources according to the respective predetermined contract short-time allowable variation rates You may comprise so that it may distribute uniformly.
  • the power supply amount is distributed to a plurality of selected contract power consumption sources at a distribution timing so that the instantaneous fluctuation rate of each of the selected plurality of contract power consumption sources increases as the rated power consumption increases. You may comprise as follows.
  • the control related to distribution can be simplified.
  • the contract power consumption sources with higher rated power consumption can be distributed mainly.
  • the contract power consumption source is small, and the stability of the control can be increased.
  • the power supply amount calculating means is configured to calculate a power supply amount based on outputs from a plurality of power generation amount detecting means connected to some or all of a plurality of power generation devices connected to the power system and having large fluctuations in generated power. It's okay.
  • the instantaneous variation rate of each of the plurality of contract power consumption sources may be adjusted so that the change of the instantaneous variation rate with respect to the rated power consumption does not exceed a predetermined value in a predetermined cycle.
  • the load power adjustment switch includes a bridge circuit composed of four reverse conducting semiconductor switches and a magnetic energy storage capacitor that is connected between the DC terminals of the bridge circuit and stores the magnetic energy of the current at the time of current interruption.
  • the magnetic energy regenerative switch is provided, the AC terminal of the bridge circuit is connected to the contract power consumption source and the power system, respectively, and the control means gives a control signal to the gate of each reverse conducting semiconductor switch, and is positioned on the diagonal line
  • the operation of turning on the reverse conducting semiconductor switch of one pair and turning off the reverse conducting semiconductor switch of the other pair simultaneously, and turning on the reverse conducting semiconductor switch in synchronization with the frequency of the AC power supply of the power system Controls to perform switching operation for alternately switching the pair and the pair to be turned off, and from the power supply distribution means Magnetic energy regeneration that changes the magnitude of the input voltage and current phase of the load power adjustment switch by changing the gate phase of each reverse conducting semiconductor switch according to the signal and changing the phase of the switching operation for the AC power supply. You may comprise so that it may be a switch.
  • a magnetic energy regenerative switch is used as a load power adjustment switch connected to each of the contract power consumption sources, so that zero switching can be performed as described later, and harmonics in each contract power consumption source can be achieved. Less noise and less power loss.
  • a magnetic energy regenerative switch is connected in parallel to each of the two diodes and a bridge circuit composed of two reverse conducting semiconductor switches and two diodes facing the reverse conducting semiconductor switches. It may be replaced with a configuration having two magnetic energy storage capacitors connected in series.
  • the magnetic energy regenerative switch connects two reverse conducting semiconductor switches connected in reverse series and two magnetic energy storage capacitors connected in series in parallel, the two reverse conducting switches
  • the configuration may be replaced with a configuration having a midpoint of the type semiconductor switch and a wiring connected to the midpoints of the two magnetic energy storage capacitors.
  • the plurality of power generation devices with large fluctuations in generated power may be at least one of a solar power generation device, a wind power generation device, and a geothermal power generation device.
  • Each of the plurality of contract power consumption sources is at least one of an electric vehicle, a plug-in hybrid vehicle, an electric vehicle such as an electric assist bicycle, an electric refrigerator, an electric freezer, an air conditioner, a washing machine, a water heater, a pump, and a compression pump. Any one may be sufficient.
  • the amount of power consumed by a power consumption source that allows a plurality of power fluctuations connected to the power system is made to correspond to the amount of power that is supplied to the power system from a power source with large power fluctuations.
  • unstable supply power such as natural energy power generation can be used effectively.
  • FIGS. 3A and 3B are diagrams for explaining switching control of the magnetic energy regenerative switch (MERS) by the control unit.
  • 4A and 4B are diagrams for explaining switching control of the magnetic energy regenerative switch (MERS) by the control unit.
  • the power supply system is a so-called network-type power supply system that supplies generated power with large power fluctuations to a power consumption source that allows a plurality of power fluctuations.
  • This power supply system can be connected to each of a power supply amount calculation means for calculating a power supply amount to be supplied to a power consumption source that allows a plurality of power fluctuations, a power supply distribution means, and a plurality of contract power consumption sources.
  • a load power adjustment switch that adjusts the load power in the power consumption source, and a control unit (control means) that controls the load power adjustment switch.
  • This power supply system is connected to a power consumption source and inputs power generation information every moment to control the power consumption of a power consumption source that allows multiple power fluctuations according to the momentary power generation situation To do.
  • the load power adjustment switch is, for example, a magnetic energy regenerative switch (Magnetic Energy Recovery Switch: MERS: hereinafter referred to as MERS).
  • MERS Magnetic Energy Recovery Switch
  • the control unit controls the gate phase of the magnetic energy regenerative switch (MERS) based on the digital signal converted by the signal conversion means, thereby adjusting the power consumption (ie, supply power) in the power consumption source within the rated power range. And has a function of changing the amount of electric power.
  • Magnetic energy regenerative switch for example, does not have reverse blocking capability, that is, it is possible to turn on / off current in both forward and reverse directions only by gate control using four reverse conducting semiconductor elements and cut off the current.
  • This is a switch that can regenerate magnetic energy without loss by storing the magnetic energy of the current in the magnetic energy storage capacitor and releasing it to the load side through the semiconductor element provided with an on-gate. It is a magnetic energy regenerative switch with low loss that can be controlled.
  • This patent publication discloses a full-bridge magnetic energy regenerative switch (MERS).)
  • the magnetic energy regenerative switch As a reverse conduction type semiconductor element, for example, a semiconductor element capable of forward control such as a power MOSFET, a transistor having an IGBT or a diode connected in reverse parallel (hereinafter referred to as a reverse conduction type semiconductor switch). Is used).
  • the magnetic energy regenerative switch (MERS) is configured by connecting a bridge circuit composed of the four reverse conducting semiconductor switches and a magnetic energy storage capacitor that absorbs and releases magnetic energy to the positive and negative electrodes of the bridge circuit. .
  • the magnetic energy regenerative switch (MERS) can flow current in either direction by controlling the gate phase of these four reverse conducting semiconductor switches.
  • the magnetic energy regenerative switch is a pair of two reverse conducting semiconductor switches located on a diagonal line among four reverse conducting semiconductor switches connected in a bridge, and the two pairs are turned on / off. These switching operations are performed in synchronization with the frequency of the power supply, and when one pair is on, the other pair is turned off.
  • the magnetic energy storage capacitor repeats charging and discharging of magnetic energy in accordance with the on / off switching timing.
  • the current conducted in the forward direction is changed to the first diode of the other pair—the magnetic energy storage capacitor—the second of the other pair.
  • the magnetic energy storage capacitor is charged. That is, the magnetic energy of the current is stored in the magnetic energy storage capacitor.
  • the magnetic energy of the current at the time of current interruption is stored in the magnetic energy storage capacitor until the voltage of the magnetic energy storage capacitor rises and the current becomes zero. When the voltage of the magnetic energy storage capacitor increases until the capacitor current becomes zero, the current interruption is completed.
  • the magnetic energy regenerative switch controls the on / off gate phase of two pairs of two reverse conducting semiconductor switches located on the diagonal line among the four reverse conducting semiconductor switches.
  • MERS magnetic energy regenerative switch
  • FIG. 1 is a diagram showing a basic configuration of a magnetic energy regenerative switch (MERS) embedded system 10.
  • a magnetic energy regenerative switch (MERS) embedded system 10 includes an AC power supply 20 and an inductive load 50 having inductance.
  • a magnetic energy regenerative switch (MERS) 30 is inserted between the AC power supply 20 and the inductive load 50.
  • the magnetic energy regenerative switch (MERS) embedded system 10 includes a control unit 40 that controls switching of the magnetic energy regenerative switch (MERS) 30.
  • the magnetic energy regenerative switch (MERS) 30 is a magnetic energy regenerative switch that can control currents in both forward and reverse directions and can regenerate magnetic energy to the load side without loss.
  • the magnetic energy regenerative switch (MERS) 30 absorbs the magnetic energy of the current that flows through the bridge circuit composed of the four reverse conducting semiconductor switches SW1, SW2, SW3, and SW4 and the switch of the bridge circuit. And a magnetic energy storage capacitor 32.
  • a reverse conducting semiconductor switch SW1 and a reverse conducting semiconductor switch SW4 are connected in series, a reverse conducting semiconductor switch SW2 and a reverse conducting semiconductor switch SW3 are connected in series, and they are connected in parallel. Is formed.
  • the magnetic energy storage capacitor 32 is connected to the DC terminal DC (P) at the connection point between the reverse conducting semiconductor switch SW1 and the reverse conducting semiconductor switch SW3, and between the reverse conducting semiconductor switch SW2 and the reverse conducting semiconductor switch SW4. It is connected to a DC terminal DC (N) at a point. Further, there is an alternating current between the AC terminal at the connection point between the reverse conduction type semiconductor switch SW1 and the reverse conduction type semiconductor switch SW4 and the AC terminal at the connection point between the reverse conduction type semiconductor switch SW2 and the reverse conduction type semiconductor switch SW3.
  • the power supply 20 and the inductive load 50 are connected in series.
  • the second pair is alternately turned on / off in synchronization with the power supply frequency. That is, when one pair is on, the other pair is off. Then, for example, when an off-gate is given to the first pair and an on-gate is given to the second pair, the current that has been conducted in the forward direction becomes the reverse conduction type semiconductor switch SW3-magnetic energy storage capacitor of the second pair.
  • 32--reverse conduction type semiconductor switch SW4 flows through the path, whereby the magnetic energy storage capacitor 32 is charged. That is, the magnetic energy of the current is stored in the magnetic energy storage capacitor 32.
  • the magnetic energy of the current at the time of current interruption is accumulated in the magnetic energy storage capacitor 32 until the voltage of the magnetic energy storage capacitor 32 increases and the current becomes zero, and the voltage of the magnetic energy storage capacitor 32 until the capacitor current becomes zero.
  • the current interruption is completed.
  • the second pair has already been turned on, so that the charge of the magnetic energy storage capacitor 32 is discharged to the inductive load 50 through the reverse conducting semiconductor switches SW3 and SW4 that are turned on, and the magnetic energy storage.
  • the magnetic energy stored in the capacitor 32 is regenerated to the inductive load 50.
  • a pulse voltage is applied to the inductive load 50, and the magnitude of the voltage depends on the reverse conduction type semiconductor switches SW1 to SW4 and the inductive load according to the capacitance of the magnetic energy storage capacitor 32. 50 withstand voltage tolerance can be set. Unlike the conventional series power factor correction capacitor, a DC capacitor can be used for the magnetic energy regenerative switch (MERS) 30.
  • the reverse conducting semiconductor switches SW1 to SW4 are made of, for example, power MOSFETs and have gates G1, G2, G3, and G4, respectively. Body diodes (parasitic diodes) are connected in parallel to the channels of the reverse conducting semiconductor switches SW1 to SW4.
  • a diode may be added in reverse parallel to the reverse conducting semiconductor switches SW1 to SW4.
  • the reverse conducting semiconductor switches SW1 to SW4 for example, an element such as an IGBT or a transistor having a diode connected in reverse parallel can be used.
  • the control unit 40 controls the switching of the reverse conduction type semiconductor switches SW1 to SW4 of the magnetic energy regenerative switch (MERS) 30. Specifically, it includes an on / off operation of a pair of reverse conducting semiconductor switches SW1 and SW2 located on a diagonal line in a bridge circuit of the magnetic energy regenerative switch (MERS) 30 and reverse conducting semiconductor switches SW3 and SW4. A control signal is transmitted to the gates G1 to G4 so that the pair is turned on and off simultaneously every half cycle so that when one is turned on, the other is turned off.
  • 2A, 2 ⁇ / b> B, 3 ⁇ / b> A, 3 ⁇ / b> B, 4 ⁇ / b> A, and 4 ⁇ / b> B are diagrams for explaining switching control of the MERS 30 by the control unit 40.
  • the controller 40 turns off the reverse conducting semiconductor switches SW1 and SW2 at a predetermined timing before the voltage of the AC power supply 20 is inverted, for example, about 2 ms. (This corresponds to a gate phase angle ⁇ for controlling the reverse conducting semiconductor switch of about 36 deg when the AC frequency is 50 Hz.)
  • Type semiconductor switch SW3-magnetic energy storage capacitor 32-reverse conduction type semiconductor switch SW4 flows through the path.
  • magnetic energy is absorbed (charged) in the magnetic energy storage capacitor 32.
  • the reverse conducting semiconductor switches SW3 and SW4 are turned on at the timing when the reverse conducting semiconductor switches SW1 and SW2 are turned off.
  • the current is cut off.
  • the reverse conducting semiconductor switches SW3 and SW4 are already on, and the magnetic energy storage capacitor 32 has a charging voltage. Therefore, as shown in FIG.
  • the reverse conduction type semiconductor switch SW4 flows through a path passing through the magnetic energy storage capacitor 32 and the reverse conduction type semiconductor switch SW3. Then, the magnetic energy stored in the magnetic energy storage capacitor 32 is released (discharged).
  • the control unit 40 turns off the reverse conducting semiconductor switches SW3 and SW4.
  • the current flows through a path passing through the reverse conducting semiconductor switch SW1, the magnetic energy storage capacitor 32, and the reverse conducting semiconductor switch SW2.
  • the reverse conducting semiconductor switches SW1 and SW2 are turned on at the timing when the reverse conducting semiconductor switches SW3 and SW4 are turned off.
  • the magnetic energy regenerative switch (MERS) 30 can cause a current to flow in both directions by alternately bringing two opposing pairs of reverse conducting semiconductor switches into a conducting state.
  • FIGS. 5A, 5B, 5C and 5D show magnetic energy when the frequency of the AC power supply 20 is 50 Hz and the gate phase angle ⁇ for controlling the reverse conducting semiconductor switch is about 36 deg. It is a figure for demonstrating the operation result of the regenerative switch (MERS) embedded system.
  • FIG. 5A shows power supply voltage and current waveforms when the magnetic energy regenerative switch (MERS) 30 is not incorporated.
  • FIG. 5B shows the magnetic energy regenerative switch (MERS) 30 incorporated.
  • the waveforms of the power supply voltage, current, and load voltage are shown.
  • 5C shows the waveform of the magnetic energy storage capacitor voltage and the current flowing through the reverse conducting semiconductor switch SW1
  • FIG. 5D shows the timing when the reverse conducting semiconductor switch SW1 is turned on.
  • the phase of the current is delayed from the phase of the power supply voltage due to the influence of the inductive load 50. Therefore, the power factor of the AC power supply 20 is smaller than 1.
  • the phase of the current can be advanced as shown in FIG. The power factor of the AC power supply 20 can be made close to 1.
  • the magnetic energy regenerative switch (MERS) 30 adjusts the gate phase of the two pairs on the diagonal line of the reverse conduction type semiconductor switches SW1 to SW4, so that the magnetic energy of the inductive load 50 is transferred to the magnetic energy storage capacitor 32. It is possible to store and advance the phase of the current, thereby bringing the power factor of the AC power supply 20 close to 1. In addition, the magnetic energy regenerative switch (MERS) 30 can not only advance the phase of the current but also can arbitrarily control the phase of the current, thereby arbitrarily adjusting the power factor. Furthermore, by storing the magnetic energy of the inductive load 50 in the magnetic energy storage capacitor 32 and regenerating the stored magnetic energy in the inductive load 50, the load voltage can be increased or decreased steplessly.
  • the magnetic energy storage capacitor voltage is 0, and the current flowing through the reverse conducting semiconductor switch SW1. Is the current that flows through the diode of the reverse conducting semiconductor switch SW1 during parallel conduction.
  • the magnetic energy storage capacitor voltage is 0 even at the timing when the reverse conducting semiconductor switch SW1 is turned off. That is, switching is performed at 0 voltage and 0 current, and therefore loss due to switching can be eliminated. Since the other three reverse conducting semiconductor switches SW2 to SW4 are switched in synchronization with the reverse conducting semiconductor switch SW1, the same result is obtained.
  • FIGS. 5A, 5 ⁇ / b> B, 5 ⁇ / b> C, and 5 ⁇ / b> D are obtained when the gate phase angle ⁇ for controlling the reverse conducting semiconductor switch is about 36 deg when the AC frequency is 50 Hz.
  • the gate phase angle ⁇ for controlling the reverse conducting semiconductor switch of the magnetic energy regenerative switch (MERS) 30 is continuously controlled from 0 deg to 360 deg. can do.
  • FIG. 6 shows approximate values of load voltage / rated voltage when the gate phase angle ⁇ for controlling the reverse conducting semiconductor switch is changed when an ice making machine using a 2 KW induction motor is used as a load.
  • the rated voltage is a voltage corresponding to 100% of the power supply voltage.
  • MERS magnetic energy regenerative switch
  • the charging / discharging cycle of the magnetic energy storage capacitor 32 is a half cycle of the resonance cycle of the inductive load 50 and the capacitor 32, and when the switching cycle is longer than the resonance cycle determined by the inductive load 50 and the capacitor 32,
  • the magnetic energy regenerative switch (MERS) 30 can always perform zero voltage zero current switching, that is, soft switching.
  • the magnetic energy storage capacitor 32 used for the magnetic energy regenerative switch (MERS) 30 is only for storing the magnetic energy of the inductance in the circuit. For this reason, the capacitor capacity can be significantly reduced as compared with the voltage source capacitor of the conventional voltage type inverter.
  • the capacitor capacity is selected so that the resonance period with the load is shorter than the switching frequency. For this reason, harmonic noise that tends to be a problem in the conventional voltage type inverter hardly occurs in the switching in the magnetic energy regenerative switch (MERS) 30. Therefore, adverse effects due to harmonic noise on precision instruments and measuring instruments hardly occur in the magnetic energy regenerative switch (MERS) 30, and the magnetic energy regenerative switch (MERS) 30 can be used safely in hospitals and the like. it can. Moreover, since it is soft switching, there is little power loss and there is also little heat_generation
  • the magnetic energy regenerative switch (MERS) 30 when used as a gate pulse generator, a unique ID number can be assigned to each magnetic energy regenerative switch (MERS) 30, and a control signal from the outside can be used using this. Can be received and each magnetic energy regeneration switch (MERS) 30 can be controlled. For example, it is possible to wirelessly control the magnetic energy regenerative switch (MERS) 30 by sending a control signal wirelessly using a communication line such as the Internet.
  • the magnetic energy regenerative switch (MERS) 30 is connected between a bridge circuit formed by four reverse conducting semiconductor switches SW1 to SW4 and a DC terminal of the bridge circuit.
  • the magnetic energy regenerative switch (MERS) 30 may be configured as follows.
  • FIG. 7 and 8 are diagrams showing another aspect of the magnetic energy regenerative switch (MERS) 30.
  • FIG. The magnetic energy regenerative switch (MERS) 30a shown in FIG. 7 is different from the full bridge type magnetic energy regenerative switch (MERS) 30 including the four reverse conducting semiconductor switches SW1 to SW4 and the single capacitor 32 described above. Thus, it is a vertical half bridge type composed of two reverse conducting semiconductor switches, two diodes, and two capacitors.
  • the vertical half-bridge magnetic energy regenerative switch (MERS) 30a includes two reverse conducting semiconductor switches SW5 and SW6 connected in series and the two reverse conducting semiconductor switches SW5. , Two magnetic energy storage capacitors 33, 34 connected in series and provided in parallel with SW6, and two diodes D1, connected in parallel with the two magnetic energy storage capacitors 33, 34, respectively. D2.
  • the horizontal half-bridge magnetic energy regenerative switch (MERS) 30b includes two reverse conducting semiconductor switches and two capacitors.
  • the horizontal half-bridge structure magnetic energy regenerative switch (MERS) 30b includes a reverse conduction type semiconductor switch SW7 and a magnetic energy storage capacitor 35 provided in series on the first path, and the first path.
  • a reverse conducting semiconductor switch SW8 and a magnetic energy storage capacitor 36 provided in series on a second path parallel to the first path, and a wiring connected in parallel to the first and second paths. .
  • FIG. 9 is a block configuration diagram showing a schematic configuration of the power supply system 100 according to the present embodiment.
  • the power generation device G a plurality of stable power generation devices G11 to G12 capable of supplying stable and high-quality power such as nuclear power generation and thermal power generation, and a natural energy power generation device that provides unstable and low-quality power supply
  • a plurality of wind power generators G21 to G23 are connected to the power system 90
  • power generation amount sensors 61 to 63 are installed and connected to the power control unit 70, respectively.
  • the power generation amount sensors 61 to 63 are for detecting the amount of power (power generation amount) generated by the wind power generators G21 to G23. As the power generation amount sensors 61 to 63, existing power meters and the like can be applied. The power generation amount sensors 61 to 63 constantly or regularly monitor the power generation amount by the wind power generators G21 to G23, and the value of the power generation amount that fluctuates with time is directed to the power control unit 70 constantly or periodically. Sending.
  • the power supply system 100 includes a power generation amount sensor (power generation amount detection means) 61 to 63, a power control unit 70, and a magnetic energy regenerative switch (MERS) 31 as a load power adjustment switch.
  • a power generation amount sensor power generation amount detection means
  • a power control unit 70 power control unit 70
  • a magnetic energy regenerative switch MERS
  • Magnetic energy regenerative switches (MERS) 31 to 33 are chargers 81 to 83 as contract power consumption sources that allow predetermined supply power fluctuations, and connectors for connecting the chargers 81 to 83 to the power system 90, respectively. It is installed between 21 and 23. Magnetic energy regenerative switches (MERS) 31 to 33 are connected to the corresponding control units 41 to 43, respectively, and adjust the load power to the chargers 81 to 83 based on the gate phase control from the control units 41 to 43. It has a function to do.
  • the power control unit 70 transmits the gate phase to be controlled to the control units 41 to 43, and the control units 41 to 43
  • the connector 21 is controlled by controlling the gate phases of the magnetic energy regenerative switches (MERS) 31 to 33 connected to the chargers 81 to 83 which are contract power consumption sources in accordance with the gate phase signal transmitted from the power control unit 70.
  • MERS magnetic energy regenerative switches
  • the gate phases of the magnetic energy regeneration switches (MERS) 31 to 33 are adjusted by the gate phase control by the control units 41 to 43, The load power of the chargers 81 to 83 is reduced. Further, when the amount of power generated by the wind power generators G21 to G23 (power generation amount) is large, the gate phases of the magnetic energy regenerative switches (MERS) 31 to 33 are adjusted by the gate phase control by the control units 41 to 43, The load power of the chargers 81 to 83 is increased.
  • the connectors 21 to 23 are, for example, plug insertion ports, and are interfaces for electrically connecting electrical products as power consumption sources.
  • the chargers 81 to 83 are secondary batteries (for charging the battery 9) of the electric vehicles C1 to C3 that can be driven by electric power.
  • the electric vehicles C1 to C3 and the charger 81 are used at night.
  • the secondary batteries (batteries) in the electric vehicles C1 to C3 are fully charged by the next morning.
  • the chargers 81 to 83 It takes several hours to charge with the chargers 81 to 83. Even if the power supply voltage fluctuates somewhat, there is no particular problem if the electric vehicles C1 to C3 are fully charged by the next morning. Therefore, the power supplied to the connectors 21 to 23 does not have to be high-quality power, and may be low-quality supply power including power fluctuation.
  • the power supplied to the chargers 81 to 83 varies depending on the amount of power (power generation amount) generated by the wind power generators G21 to G23. However, the chargers 81 to 83 are not particularly affected because they are hardly affected by power fluctuations. Accordingly, the chargers 81 to 83 are all contract power consumption sources that allow a predetermined supply power fluctuation.
  • each contract power consumption source (such as the chargers 81 to 83) is performed by using a magnetic energy regenerative switch (MERS) connected to each contract power consumption source (such as the charger 81 to 83). ) This is performed based on the gate phase control of 31-33.
  • MERS magnetic energy regenerative switch
  • the inductive load 50 in the above description corresponds to “chargers 81 to 83 that are contract power consumption sources” in the present embodiment.
  • a computer P as another power consumption source is connected to the connector 24.
  • the computer P is composed of a large number of electronic devices including a CPU, and performs arithmetic processing using electric signals. Therefore, if the power supply voltage varies during operation, the computer P does not operate normally. Therefore, the power supplied to the connector 24 for the computer P needs to be high quality and supplied power with little fluctuation.
  • the power control unit 70 includes power generation amount signal receiving units 75 to 77, a power supply amount calculation unit 72, a power supply distribution unit 73, and a contract power consumption source information storage device 74.
  • the power generation amount signal receiving sections 75 to 77 have a function of detecting the power generation amount from the power generation amount sensors 61 to 63 and transmitting the detected power generation amount to the power supply amount calculation means 72.
  • the power supply amount calculation means 72 is a “power supply amount with a large fluctuation” to be distributed to contract power consumption sources such as the chargers 81 to 83 at a distribution timing of a predetermined period based on signals from the power generation amount signal receiving units 75 to 77. Is calculated.
  • FIG. 10 shows an outline of the calculation contents of the power supply amount calculation means 72.
  • the power generation amount sensors 61 to 63 constantly or regularly monitor the power generation amount by the wind power generators G21 to G23, and the value of the power generation amount that varies with time is constantly directed toward the power control unit 70. Or send regularly.
  • a signal related to the power generation amount is transmitted to the power supply amount calculation means 72 via the power generation amount signal receiving units 75 to 77.
  • the power supply amount calculating means 72 calculates the total amount of power generated by the wind power generators G21 to G23 (power basic supply amount having a large variation) Ps at a predetermined cycle timing (distribution timing).
  • the power basic supply amount Ps having a large variation may be used as it is as the power supply amount Pd to be distributed to a plurality of contract power consumption sources.
  • the power supply amount Pd since it is distributed to a plurality of contract power consumption sources according to the power supply amount Pd that varies from moment to moment, accurate “power generation follow-up consumption” can be realized.
  • a value obtained by adding a predetermined value to the power basic supply quantity Ps having a large fluctuation or a power basic supply quantity Ps having a large fluctuation. A value obtained by subtracting the predetermined value may be used as the power supply amount Pd.
  • the power supply amount Pd calculated as a basic power supply amount Ps with large fluctuations
  • the power supply amount Pd calculated as a basic power supply quantity Ps + 100 with large fluctuations.
  • the contract power consumption source information storage device 74 is connected to the power supply amount calculation means 72 and the power supply distribution means 73 and stores each contract power consumption source information therein.
  • FIG. 11 is a diagram for explaining the storage information of the contract power consumption source information storage device 74.
  • the owner of the power consumption source that allows the fluctuation of the power supplied from the power system with respect to the rated power consumption is related to the administrator of the power supply system 100, the target power consumption source, and the rated power in advance. Amount, short-term allowable range (to what percentage of the rated power amount the instantaneous power fluctuation performed by the power supply system 100 is allowed), contract period (allowing the instantaneous power fluctuation performed by the power supply system 100 Time zone, day of week, etc.), and long-term tolerance (up to what percentage of the rated power is allowed to accumulate power fluctuations throughout the contract period).
  • the contract power consumption source information storage device 74 stores related information related to all the latest contract power consumption sources and is updated as needed.
  • the display example shows a charger for an electric vehicle with a rated power of 2000 W as a contract power consumption source with ID number 00003, ⁇ 20% as a short-term tolerance, ⁇ 2.5% as a long-term tolerance
  • the contract period is set to 23: 00-6: 00 every day, and further, the long-term tolerance is allowed to deviate in the middle of the contract period, that is, the long-term tolerance is ⁇ 6 in the morning at the end of the contract period.
  • a special agreement has been agreed that it may be within 2.5%, and the long-term tolerance may not be within ⁇ 2.5% at the middle of the contract period (for example, 5:00 in the morning).
  • the power supply distribution unit 73 is connected to the control units 41 to 43, and the “power supply amount with large fluctuation” calculated by the power supply amount calculation unit 72 is converted into the chargers 81 to 83 at a distribution timing of a predetermined period. It has a function to distribute to the contract power consumption sources.
  • the connection between the power supply distribution means 73 and the control units 41 to 43 may be via a dedicated line, via the Internet, or via radio.
  • the timing (distribution timing) of the predetermined cycle may be determined as appropriate according to the characteristics of the means for connecting the power supply distribution means 73 and the control units 41 to 43 (via a dedicated line, via the Internet, via wireless, etc.). For example, it may be every 200 Sec to every 30 Sec.
  • the power supply system target activation switches 51 to 53 are arranged, respectively.
  • the power supply system target activation switches 51 to 53 are each connected to the power supply distribution means 73.
  • the power supply system target activation switches 51 to 53 are automatically turned on when detecting that the power sources of the respective contract power consumption sources such as the chargers 81 to 83 are turned on, and transmit them to the power supply distribution means 73. To do. Further, the power supply system target activation switches 51 to 53 may be configured to remain off even when the power source of the contract power consumption source is turned on.
  • the contract power consumption source is set as a control target of the power supply system 100 and variation from the rated power is allowed. And can be used normally at rated power.
  • connection between the power supply system target activation switches 51 to 53 and the power supply distribution means 73 may be any of a dedicated line, the Internet, and a wireless connection.
  • FIG. 12 is a flowchart for explaining the processing of the power supply distribution unit 73. The following steps are repeatedly performed in the cycle by a trigger signal at a distribution timing of a predetermined cycle (for example, every 30 Sec).
  • the contract power consumption source within the contract period and the power supply system target activation switch ON is selected (S1). Specifically, the flag F1 is set for each subroutine within the contract period and the power supply system target activation switch is ON, and the flag F1 is set in the main routine. Select.
  • the long-term cumulative fluctuation rate DLcum that is the long-term cumulative value of the instantaneous fluctuation rate D of power up to the previous distribution timing (for example, 30 Sec before) in each contract period (time) Is calculated (S2).
  • DLcum DLcum (n ⁇ 1) + D (n ⁇ 1) ⁇ (1 / time (seconds) since selection of the contract power consumption source ⁇ 5)
  • DLcum (n-1) is the long-term cumulative fluctuation rate DLcum value obtained at the previous distribution timing (for example, 30 Sec)
  • D (n-1) is the previous distribution timing (for example, 30 Sec).
  • the long-term allowable variation rate DLlim may be set to the contract long-term allowable variation rate DLag, or set to the contract long-time allowable variation rate DLag at the end of the contract period, and in the middle of the contract period You may set to a bigger value than contract long time allowable fluctuation rate DLag.
  • the contract power consumption source whose long-term cumulative fluctuation rate DLcum does not exceed the long-time allowable fluctuation rate DLlim is selected (S4) and specified as the contract power consumption source to be controlled. Specifically, in a subroutine, the long-time cumulative fluctuation rate DLcum and the long-time allowable fluctuation rate DLlim are compared, and a flag F2 is set for the long-time cumulative fluctuation rate DLcum ⁇ long-time allowable fluctuation rate DLlim. Choose what is standing.
  • the long-term cumulative fluctuation rate DLcum is in the direction opposite to the instantaneous fluctuation rate D at the previous distribution timing (for example, 30 Sec)
  • all the corresponding contract power consumption sources are selected (S5), and the contract power to be controlled is selected. Identify consumption sources. Specifically, if DLcum (n ⁇ 1)> 0 and D (n ⁇ 1) ⁇ 0, or DLcum (n ⁇ 1) ⁇ 0 and D (n ⁇ 1)> 0, flag F3 is set.
  • the contract power consumption source rated consumption Pc0 which is the sum of the rated power consumptions of all the contract power consumption sources that are controlled, is calculated (S6).
  • Increase / decrease rate (target) Dtarget is calculated by contract power consumption source consumption (target) Pc / contract power consumption source rated consumption Pc0 (S8).
  • the rate of change (target) Dtarget is distributed to all contracted power consumption sources that are controlled (S9).
  • the distribution method is, for example, to distribute uniformly according to the contract short-term allowable fluctuation rate (contract power consumption sources with a large contract short-term allowable fluctuation rate are roughly distributed, but the same contract short-term allowable fluctuation rate is
  • the contract power consumption sources may be distributed uniformly), or may be distributed more largely as the rated power consumption increases.
  • the instantaneous fluctuation rate D is compared with each short-time allowable fluctuation rate Dag, and when the short-time allowable fluctuation rate Dag is exceeded, the instantaneous fluctuation rate D is limited to the short-time allowable fluctuation rate Dag (S10).
  • a signal is transmitted from the power supply distribution means 73 to the control unit (for example, the control units 41 to 43) of the corresponding contract power consumption source (S11).
  • the change in the instantaneous variation rate D from the instantaneous variation rate D (n ⁇ 1) at the previous distribution timing (for example, 30 Sec) may not exceed a predetermined value.
  • the corresponding contract power consumption source control unit (for example, the control unit 41 to 43), based on the signal of the instantaneous fluctuation rate D transmitted from the power supply distribution means 73, the gates of the magnetic energy regenerative switches (MERS) 31 to 33 The phase is adjusted and the load power of the chargers 81 to 83 is controlled.
  • the gate phases of the magnetic energy regenerative switches (MERS) 31 to 33 are maintained until a signal at the next distribution timing (for example, after 30 Sec) is received, and updated by the instantaneous variation rate D of the next distribution timing.
  • a control unit for example, the control unit 41 of a specific contract power consumption source
  • a control unit for example, control of a specific contract power consumption source
  • the unit 41 does not recognize the signal of the instantaneous variation rate D from the power supply distribution means 73 (for example, when it does not recognize five times continuously)
  • the contract power consumption source charger 81
  • the instantaneous fluctuation rate D is calculated simultaneously at each distribution timing (for example, every 30 Sec) for all contract power consumption sources selected in step S1, and each contract power consumption source is controlled.
  • each distribution timing for example, every 30 Sec
  • all the contract power consumption sources selected in step S1 are divided into six groups
  • each divided into six groups and each divided distribution timing into six groups Every 5 Sec
  • the instantaneous fluctuation rate D of the contract power consumption source of each group divided into 6 at each distribution timing (every 5 Sec) is calculated, thereby controlling each contract power consumption source
  • You may comprise as follows.
  • the signal transmitted from the power supply distribution unit 73 from each contract power consumption source is at each distribution timing (for example, every 30 Sec), but from the power supply distribution unit 73, “power generation” Control for “quantity follow-up consumption” can be performed at each distribution timing (every 5 Sec) divided into six.
  • the power supply amount calculation means 72 monitors the increase / decrease rate (target) Dtarget, and when the cumulative value of the increase / decrease rate (target) Dtarg becomes equal to or less than a predetermined value, the target power for performing “power generation follow-up consumption” When the supply amount Pd is increased and the cumulative value of the increase / decrease rate (target) Dtarg is equal to or greater than a predetermined value, the power supply amount Pd may be controlled to decrease.
  • FIG. 13 is for explanation, a basic configuration of a screen for monitoring the operation of the power supply system 100 every moment may be used.
  • FIG. 13 shows the state of control at a certain timing (03:37:30 of xx year xx month xx).
  • the power supply amount Pd0 250 MW of the power generation source with a large fluctuation is calculated.
  • FIG. 13 shows the contract power consumption source that is the target of control by selecting the contract power consumption source that is within the contract period at that timing and that is the power supply system target activation switch ON in step S1.
  • the contract power consumption source is set to three types of contract short-time allowable fluctuation rate Dag from + 10% to ⁇ 10%, from + 20% to ⁇ 20%, and from + 20% to ⁇ 70%.
  • the contract long-term allowable fluctuation rate DLag is set from + 2.0% to -2.0%, from + 2.5% to -2.5%, and from + 3.0% to -3.0%, respectively.
  • the contract short-time allowable variation rate Dag and the contract long-time allowable variation rate DLag are not limited to three, but may be one, two, four or more, and may be set independently. Note that the contract short-time allowable variation rate Dag and the contract long-time allowable variation rate DLag are both an increase / decrease rate with respect to the rated power amount of each contract power consumption source.
  • step S2 the long-term cumulative fluctuation rate DLcum is calculated, and in S3, the long-time allowable fluctuation rate DLlim is calculated.
  • the long-time allowable fluctuation rate DLlim may be set to be always set to the contract long-time allowable fluctuation rate DLag and to be set to a value larger than the contract long-time allowable fluctuation rate DLag during the contract period.
  • step S4 or S5 a contract power consumption source to be controlled is selected.
  • the contract power consumption source to be controlled at this timing is indicated by ⁇ .
  • step S9 the instantaneous fluctuation rate D of each contract power consumption source is distributed.
  • the contract power consumption sources having a large contract short-time allowable fluctuation rate are roughly distributed to the contract power consumption sources, but the contract power consumption sources having the same contract short-time allowable fluctuation rate are uniformly distributed.
  • step S10 the distributed instantaneous fluctuation rate D of each contract power consumption source is compared with the respective short-time allowable fluctuation rate Dag. It is limited to the allowable fluctuation rate Dag. At this timing, none of the instantaneous fluctuation rates D exceeds the short-time allowable fluctuation rate Dag, and no limitation is made.
  • step S11 a signal is transmitted to the control unit (for example, control unit 41 to 43) of the corresponding contract power consumption source based on each instantaneous fluctuation rate D, and each contract power consumption source is based on this signal.
  • Gate phase control of magnetic energy regenerative switches (MERS) 31 to 33 connected to (chargers 81 to 83, etc.) is performed, and power supply to each contract power consumption source (chargers 81 to 83, etc.) is controlled. Is called.
  • the fluctuation in the amount of power generated by the unstable wind power generators G21 to G23 is effectively absorbed by the power supply system 100 that organically bundles the contract power consumption sources that allow the power fluctuation in various modes. Can do.
  • stable power generators G11 and G12 that perform high-quality power generation, wind power generators G21 to G23 that perform low-quality power generation, and power consumption that requires high-quality power supply Even if the power source (computer P) and the low-quality supply power and the sufficient power consumption source (chargers 81 to 83) are connected to the same power system 90, the wind generators G21 to G23 that generate low-quality power The influence of the fluctuation in the amount of power generation can be prevented from reaching the computer P that requires high-quality supply power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

This power supply system (100) supplies electric power from a plurality of wind power generators (G21)-(G23) with big generation fluctuations to electric chargers (81)-(83) as contracted electric power consumption sources that allow a plurality of supplied electric power components to fluctuate. An electric power supply distribution means (73) distributes electric power with big fluctuations generated by the wind power generators (G21)-(G23) to each contracted electric power consumption source so as to satisfy both “a contracted short time fluctuation allowance rate” and “a contracted long time fluctuation allowance rate” that are agreed with a manager of each contracted electric power consumption source, changes a gate phase of a magnetic energy regeneration switch (MERS) (30) connected with each contracted electric power consumption source, and adjusts an electric power consumption amount of each contracted electric power consumption source, thereby carrying out “generated electric power amount following consumption”.

Description

電力供給システムPower supply system
 本発明は、電力供給システムに関し、特に、再生可能エネルギー等の分散電源の電力変動が電力系統に周波数変動を与えないように制御する電力供給システムに関するものである。 The present invention relates to a power supply system, and more particularly to a power supply system that controls power fluctuations of a distributed power source such as renewable energy so as not to cause frequency fluctuations in the power system.
 電力系統の周波数は総消費電力に等しい発電量に常に一致するように制御されなければならず、差がある場合、数秒から数十秒の時定数で目標値である50ヘルツまたは60ヘルツから変動することになる。電源周波数が変化すると、送電線で連系する他の電力系統からの電力潮流が変化し、他の電力系統に変動が波及すると共に、連系送電線に過電流が発生するなど、障害が発生する可能性があるので、これを避けなければならない。周波数の制御は計画的な発電所の運用をベースに、時々刻々の変化に対して、目標周波数を維持するように、リアルタイム自動制御機能によって、水力発電、揚水発電、更に火力発電所の出力を変化させている。これによって、電力系統の周波数は、目標値の0.05%以内の安定した精度範囲に制御されている。 The frequency of the power system must be controlled so as to always match the amount of power generation equal to the total power consumption, and if there is a difference, it varies from the target value of 50 Hz or 60 Hz with a time constant of several seconds to several tens of seconds. Will do. When the power supply frequency changes, the power flow from other power grids connected to the transmission line changes, causing fluctuations in other power grids, and overcurrent in the grid transmission lines. This must be avoided as it may be. Frequency control is based on planned power plant operation, and hydroelectric power generation, pumped storage power generation, and thermal power plant output are controlled by a real-time automatic control function so that the target frequency is maintained with respect to momentary changes. It is changing. As a result, the frequency of the power system is controlled within a stable accuracy range within 0.05% of the target value.
 しかし、大容量の負荷が突然投入された場合、過渡的状態では周波数が低下し、過渡状態を脱するのに数秒の時間を必要とする。同様に、発電電力の変動も系統の周波数に影響を与える。 However, when a large-capacity load is suddenly applied, the frequency drops in the transient state, and it takes several seconds to get out of the transient state. Similarly, fluctuations in generated power also affect the system frequency.
  ところで、近年、環境問題が取り沙汰されており、例えば、発電においても太陽光や風力等の自然エネルギーを利用した発電装置の利用が注目されている。この太陽光発電は、シリコン被膜を用いた太陽電池パネルを太陽光の方向に向けて受光し、光電変換原理に基づき太陽光エネルギーを利用して発電を行うものである。また、風力発電は、風力によって回転する風車を発電機に接続し、運動エネルギーを電気エネルギーに変換して発電を行うものである。これらの発電装置においては、太陽光や風力といった自然エネルギーを電気エネルギーに変換することにより発電を行うので、発電に際してCOの排出がない。したがって、クリーンなエネルギーとして注目されている。また、比較的小型の発電設備の構築が可能であることから、設置に広大な敷地や多大なコストを必要とせず、今後益々増加するものと予想されている。また、コージェネとして、企業が所有する自家発電所の電力を電力会社に供給する場合もあり、分散型電源への移行の流れがある。 By the way, in recent years, environmental problems have been addressed. For example, in power generation, the use of a power generation device that uses natural energy such as sunlight or wind power has attracted attention. In this solar power generation, a solar cell panel using a silicon coating is received in the direction of sunlight, and power is generated using solar energy based on the photoelectric conversion principle. In wind power generation, a windmill rotated by wind power is connected to a generator, and kinetic energy is converted into electric energy to generate power. Since these power generators generate power by converting natural energy such as sunlight or wind power into electric energy, there is no CO 2 emission during power generation. Therefore, it attracts attention as clean energy. In addition, since it is possible to construct a relatively small power generation facility, it does not require a large site or a large cost for installation, and is expected to increase in the future. In addition, as cogeneration, there are cases where the power of private power plants owned by companies is supplied to electric power companies, and there is a flow of transition to distributed power sources.
 このような、分散型電源の出力を負荷電力量に追従するため、及び目標発電量に合わせるための技術がいろいろ提案されている。(特許文献1及び2参照)また、分散型電源の電圧・周波数調整を目的とした分散型電源と地域送配電系統との協調制御、配電系統の電圧を調整するための制御アルゴリズムを確率した配電系統情報監視システムも提案されている。(特許文献3及び4参照) Various techniques have been proposed for tracking the output of a distributed power source in accordance with the load power amount and matching the target power generation amount. (Refer to Patent Documents 1 and 2) Also, coordinated control of the distributed power supply and the regional power transmission / distribution system for the purpose of adjusting the voltage / frequency of the distributed power supply, and distribution with probability control algorithm for adjusting the voltage of the distribution system A grid information monitoring system has also been proposed. (See Patent Documents 3 and 4)
 しかしながら、分散型電源、特に自然エネルギーを利用する発電においては、発電量の管理が難しい面がある。すなわち、太陽光や風力といった比較的不安定な自然エネルギーに依存した発電であるので、発電量が不安定でバラツキが大きく、品質の高い電力供給が難しいという問題がある。これらは、再生可能エネルギーを利用した優れた発電装置であり、今後重要なエネルギー源として電力系統に接続される模様であるが、この普及が進めば周波数変動要因になる。 However, in the case of power generation using distributed power sources, particularly natural energy, it is difficult to manage the power generation amount. That is, since power generation depends on relatively unstable natural energy such as sunlight and wind power, there is a problem that the amount of power generation is unstable and varies widely, and it is difficult to supply high-quality power. These are excellent power generators that use renewable energy, and it seems that they will be connected to the power system as important energy sources in the future.
 一方、電力を消費する側から見れば、例えばコンピュータ等の電源として電力を使用する場合などは、安定的に高品質な電力供給が要求されるが、電力消費源によっては、必ずしも高品質な電力供給を必要としない場合がある。例えば、電気温水器においては、過熱ヒータ電力が多少変動してもお湯を沸かす機能に問題は生じず、使用中に常時安定した高品質の電力供給を必要とするわけではない。 On the other hand, from the viewpoint of power consumption, for example, when power is used as a power source for a computer or the like, stable and high-quality power supply is required. However, depending on the power consumption source, high-quality power is not always required. May not require supply. For example, in an electric water heater, there is no problem in the function of boiling hot water even if the superheater power fluctuates somewhat, and a stable and high-quality power supply is not always required during use.
 そこで、消費電力を制御する(出力を変動させてもよい)ことを許容する契約をした特定の需要家の負荷である「特定の負荷」を、その消費電力の時系列の総量が、電力系統に接続される複数の分散電源の発電量の時系列の総量に等しくなるように制御するための系統安定化システムが提案されている(特許文献5)。 Therefore, the “specific load”, which is the load of a specific consumer who has contracted to allow the power consumption to be controlled (the output may be fluctuated), is represented by the power system as the total amount of power consumption in time series. A system stabilization system has been proposed for controlling the power generation amount of a plurality of distributed power sources connected to the power source so as to be equal to the total amount in time series (Patent Document 5).
 この文献には、特定の負荷の消費電力の時系列の総量を、分散電源の発電量の時系列の総量に等しくすることにより系統の安定化を図る考え方が開示されているが、特定の負荷の消費電力の時々刻々の具体的な調整方法、総量をどのように一致させるかに関するものは見当たらない。 This document discloses the concept of stabilizing the system by making the total amount of power consumption of a specific load time series equal to the total amount of power generation of a distributed power source. There is no specific method for adjusting the power consumption of each time, how to match the total amount.
特開2008-228422号公報JP 2008-228422 A 特開2003-174723号公報JP 2003-174723 A 特開2004-56996号公報JP 2004-56996 A 特開2005-269744号公報JP 2005-269744 A 特開2006-353079号公報JP 2006-353079 A
 本発明は、上記の事情に鑑みて為されたもので、変動の大きい電源から電力系統に供給される時々刻々の電力量に、電力系統に接続された複数の電力変動を許容する電力消費源で消費する電力量を対応させることにより、自然エネルギー発電のような不安定な分散電源電力を有効に利用することのできる電力供給システムを提供することを例示的課題とする。 The present invention has been made in view of the above circumstances, and is a power consumption source that allows a plurality of power fluctuations connected to the power system to be instantaneously supplied from a power source with large fluctuations to the power system. It is an exemplary problem to provide a power supply system that can effectively use unstable distributed power supply such as natural energy power generation by making the amount of power consumed in the system correspond.
 上記課題を解決するために、本発明の例示的側面としての電力供給システムは、電力系統から供給される電力の定格消費電力に対する瞬間変動率を所定の契約短時間許容変動率まで許容する複数の契約電力消費源に供給すべき、変動の大きい電力供給量を、所定の周期の分配タイミングで算出する電力供給量算出手段と、電力供給量を複数の契約電力消費源に、所定の周期の分配タイミングにて分配する電力供給分配手段と、複数の契約電力消費源のそれぞれに接続可能に構成された複数の負荷電力調整スイッチと、複数の負荷電力調整スイッチにそれぞれ接続された制御手段であって、電力供給分配手段からの分配信号に基づいて、接続している負荷電力調整スイッチの出力電圧の大きさと電流の位相を変化させることにより、負荷電力調整スイッチが接続している契約電力消費源に供給される電力の大きさを変化させる制御手段と、を備えた電力供給システムであって、電力供給分配手段は、複数の負荷電力調整スイッチがそれぞれ接続された複数の契約電力消費源であって、複数の契約電力消費源のそれぞれの定格消費電力に対して電力系統から供給する電力の瞬間変動率の長時間累積値である長時間累積変動率が所定の契約短時間許容変動率より小さい所定の長時間許容変動率を超えない複数の契約電力消費源を選択して、電力供給量を、選択されたそれぞれの複数の契約電力消費源に瞬間変動率が所定の契約短時間許容変動率を超えないように、分配するように構成されている。 In order to solve the above-described problems, a power supply system as an exemplary aspect of the present invention includes a plurality of power supply systems that allow an instantaneous variation rate with respect to a rated consumption power of power supplied from a power system to a predetermined contract short-time allowable variation rate. A power supply amount calculating means for calculating a power supply amount having a large fluctuation to be supplied to the contract power consumption source at a predetermined cycle distribution timing, and distributing the power supply amount to a plurality of contract power consumption sources in a predetermined cycle A power supply distribution means for distributing at a timing; a plurality of load power adjustment switches configured to be connectable to each of a plurality of contract power consumption sources; and a control means connected to each of the plurality of load power adjustment switches. By changing the output voltage magnitude and current phase of the connected load power adjustment switch based on the distribution signal from the power supply distribution means, the load power And a control means for changing the magnitude of power supplied to the contract power consumption source to which the regulating switch is connected, wherein the power supply distribution means includes a plurality of load power adjustment switches. A long-term cumulative fluctuation rate that is a long-term cumulative value of the instantaneous fluctuation rate of power supplied from the power system for the rated power consumption of each of the plurality of contracted power consumption sources. Select multiple contract power consumption sources that do not exceed the predetermined long-term allowable fluctuation rate smaller than the predetermined contract short-time allowable fluctuation rate, and instantaneously supply the power supply amount to each of the selected multiple contract power consumption sources Distribution is configured so that the fluctuation rate does not exceed a predetermined contract short-time allowable fluctuation rate.
 制御手段は、変動の大きい電力供給量を、契約電力消費源のそれぞれの定格消費電力に対して電力系統から供給する電力の瞬間変動率の長時間累積値である長時間累積変動率が「所定の長時間許容変動率(後出の所定の契約短時間許容変動率より小さい)」を超えない契約電力消費源を選択して、選択された契約電力消費源に瞬間変動率が「所定の契約短時間許容変動率」を超えないように分配するように、負荷電力調整スイッチの出力電圧の大きさと電流の位相を制御することにより、変動の大きい電力供給量の複数の契約電力消費源への確実かつ安定な分配を行っている。すなわち、短時間では瞬間変動率を比較的大きい「契約短時間許容変動率」まで許容することにより、契約電力消費源全体として十分な電力変動吸収能力を確保しつつ、長時間では長時間累積変動率を小さな「長時間許容変動率」を超えないように調整することにより、各契約電力消費源の側の問題も生じない。 The control means sets the long-term cumulative fluctuation rate, which is a long-term cumulative value of the instantaneous fluctuation rate of the power supplied from the power grid to the rated power consumption of each contracted power consumption source for a large fluctuation in power supply amount. Select a contract power consumption source that does not exceed the long-term permissible fluctuation rate (less than the predetermined contract short-term permissible fluctuation rate described later), and the instantaneous fluctuation rate is “predetermined contract” for the selected contract power consumption source. By controlling the output voltage magnitude and current phase of the load power adjustment switch so that it does not exceed the `` short-time allowable fluctuation rate '', it is possible to supply multiple contracted power consumption sources with large fluctuations in the power supply amount. A reliable and stable distribution is performed. In other words, by allowing the instantaneous fluctuation rate to a relatively large “contract short-term allowable fluctuation rate” in a short time, sufficient power fluctuation absorption capacity is secured as a whole of the contract power consumption source, while long-term cumulative fluctuations are achieved. By adjusting the rate so that it does not exceed a small “permissible long-term fluctuation rate”, there is no problem on the side of each contract power consumption source.
 このシステムは、発電量の安定した発電装置による供給電力を、安定性が要求される電力消費源により消費させることを前提としている電力系統に影響を及ぼすことなく、発電量の安定しない発電装置による時々刻々と変動する供給電力を、供給電力の安定性を余り要求しない、供給電力の変動率を所定のレベルの変動まで許容することに合意した複数の契約電力消費源により消費させ、すなわち、低品質電力供給量に応じた消費側での「発電量追従消費」を実現することができる。更に、このシステムは、負荷電力調整スイッチと制御手段とを用いて、既存の電力供給システムを利用して本発明に係る電力供給システムを構築することができる。したがって、低コストでシステム構築を行うことができる。 This system uses a power generation device with unstable power generation without affecting the power system on the assumption that power supplied by a power generation device with stable power generation is consumed by a power consumption source that requires stability. The supply power that fluctuates from time to time is consumed by multiple contract power consumption sources that have agreed to allow the fluctuation rate of the supply power to a predetermined level of fluctuation that does not require much stability of the supply power, i.e. low “Power generation follow-up consumption” on the consumption side according to the quality power supply amount can be realized. Furthermore, this system can construct a power supply system according to the present invention using an existing power supply system using a load power adjustment switch and a control means. Therefore, system construction can be performed at low cost.
 なお、ここで、電力や発電量が変動し安定しないことを「低品質」と言い、変動が少なく安定していることを「高品質」と言うこととする。また、高品質を要求しない消費電力(低品質な消費電力)の代表例としては、例えば、電気自動車、プラグインハイブリッド自動車、電動アシスト自転車等の電気車両の充電、電気冷蔵庫、電気冷凍庫、エアコン、洗濯機、温水器、揚水ポンプ、圧縮ポンプ用の電力が挙げられる。一方、高品質を要求する消費電力の代表例としては、例えばコンピュータ、ネットワーク機器、計測機器等の電子機器への供給電力が挙げられる。 It should be noted that here, the power and power generation amount fluctuating and not stable are referred to as “low quality”, and the fluctuation and stable are referred to as “high quality”. In addition, as representative examples of power consumption that does not require high quality (low quality power consumption), for example, charging of electric vehicles such as electric vehicles, plug-in hybrid vehicles, electric assist bicycles, electric refrigerators, electric freezers, air conditioners, Power for washing machines, water heaters, pumps, and compression pumps. On the other hand, representative examples of power consumption that requires high quality include power supplied to electronic devices such as computers, network devices, and measuring devices.
 複数の契約電力消費源は、それぞれ所定の契約短時間許容変動率として複数の短時間許容変動率のいずれかを設定でき、電力供給分配手段は、複数の契約電力消費源のそれぞれの瞬間変動率が、設定したそれぞれの所定の契約短時間許容変動率を超えないように分配する構成としてもよい。 Each of the plurality of contract power consumption sources can set one of a plurality of short-term allowable fluctuation rates as a predetermined contract short-time allowable fluctuation rate, and the power supply distribution means can determine the instantaneous fluctuation rate of each of the plurality of contract power consumption sources. However, the distribution may be made so as not to exceed the set predetermined contract short-time allowable fluctuation rate.
 このシステムによれば、電力消費源の実情に合わせた「契約短時間許容変動率」を設定でき、また許容する「契約短時間許容変動率」に応じた電力料金割引等もでき、電力消費源の管理者(使用者)が契約電力消費源に参加しやすくなる。 According to this system, it is possible to set a “contract short-term allowable fluctuation rate” that matches the actual situation of the power consumption source, and also to discount power charges according to the allowable “contract short-term allowable fluctuation rate”. Managers (users) can easily participate in contracted power consumption sources.
 また、複数の契約電力消費源は、それぞれ所定の長時間許容変動率として複数の長時間許容変動率のいずれかを設定でき、電力供給分配手段は、複数の契約電力消費源のそれぞれの長時間累積変動率が、設定したそれぞれの所定の長時間許容変動率を超えない複数の契約電力消費源を選択する構成としてもよい。 Further, each of the plurality of contract power consumption sources can set one of a plurality of long-time allowable fluctuation rates as a predetermined long-time allowable fluctuation rate, and the power supply distribution means can set each of the plurality of contract power consumption sources for a long time. A configuration may be adopted in which a plurality of contract power consumption sources whose cumulative fluctuation rates do not exceed the set predetermined long-term allowable fluctuation rates are selected.
 このシステムによれば、電力消費源の実情に合わせた「長時間許容変動率」を設定でき、また許容する「長時間許容変動率」に応じた電力料金割引等もでき、電力消費源の管理者(使用者)が契約電力消費源に参加しやすくなる。 According to this system, it is possible to set a “long-term permissible fluctuation rate” that matches the actual situation of the power consumption source, and also to discount power charges according to the allowable “long-term permissible fluctuation rate”. (Users) can easily participate in contract power consumption sources.
 所定の長時間許容変動率は、複数の契約電力消費源のそれぞれの契約期間の契約長時間許容変動率であってもよい。 The predetermined long-term allowable fluctuation rate may be a contract long-time allowable fluctuation rate for each of the contract periods of a plurality of contract power consumption sources.
また、所定の長時間許容変動率は、複数の契約電力消費源のそれぞれの契約期間の終了時点で所定の契約長時間許容変動率に設定すると共に、契約期間の途中では契約長時間許容変動率より大きな値に設定してもよい。 The predetermined long-term allowable fluctuation rate is set to a predetermined long-term allowable fluctuation rate at the end of the contract period of each of the plurality of contract power consumption sources, and the allowable long-term fluctuation rate during the contract period. A larger value may be set.
 このシステムによれば、「長時間許容変動率」は契約期間の途中では「契約長時間許容変動率」より大きな値であってもよいので、システムとしてそれぞれの契約電力消費源への電力供給の柔軟性が増える。また、この仕組みを許容することに応じた電力料金割引等もでき、電力消費源の管理者(使用者)が契約電力消費源に参加しやすくなる。 According to this system, the “long-term permissible fluctuation rate” may be larger than the “contract long-term permissible fluctuation rate” in the middle of the contract period, so that the system supplies power to each contract power consumption source. Increases flexibility. In addition, it is possible to discount power charges according to the allowance of this mechanism, and it becomes easy for the manager (user) of the power consumption source to participate in the contract power consumption source.
 電力供給量を、分配タイミングにて、選択された複数の契約電力消費源に、選択された複数の契約電力消費源のそれぞれの瞬間変動率をそれぞれの所定の契約短時間許容変動率に応じて一律にして分配するように構成してもよい。また、電力供給量を、分配タイミングにて、選択された複数の契約電力消費源に、選択された複数の契約電力消費源のそれぞれの瞬間変動率をそれぞれの定格消費電力が大きいほど大きく分配するように構成してもよい。 The power supply amount is distributed to a plurality of selected contract power consumption sources at the distribution timing, and the respective instantaneous variation rates of the selected plurality of contract power consumption sources according to the respective predetermined contract short-time allowable variation rates You may comprise so that it may distribute uniformly. In addition, the power supply amount is distributed to a plurality of selected contract power consumption sources at a distribution timing so that the instantaneous fluctuation rate of each of the selected plurality of contract power consumption sources increases as the rated power consumption increases. You may comprise as follows.
 選択された複数の契約電力消費源のそれぞれの瞬間変動率を一律に分配する方式では、分配に関する制御を簡潔にできる。一方、選択された複数の契約電力消費源のそれぞれの瞬間変動率をそれぞれの定格消費電力が大きいほど大きく分配する方式では、定格消費電力が大きい契約電力消費源を中心に配分できるため調整すべき契約電力消費源が少なくて済み、制御の安定性を増加できる。 方式 In the method of uniformly distributing the instantaneous fluctuation rate of each of a plurality of selected contract power consumption sources, the control related to distribution can be simplified. On the other hand, in the method in which the instantaneous fluctuation rate of each of the selected multiple contract power consumption sources is increased as the rated power consumption increases, the contract power consumption sources with higher rated power consumption can be distributed mainly. The contract power consumption source is small, and the stability of the control can be increased.
 電力供給量算出手段は、電力系統に接続された複数の発電電力変動の大きい発電装置の一部、又は全部に接続された複数の発電量検出手段からの出力に基づき電力供給量を算出する構成でよい。 The power supply amount calculating means is configured to calculate a power supply amount based on outputs from a plurality of power generation amount detecting means connected to some or all of a plurality of power generation devices connected to the power system and having large fluctuations in generated power. It's okay.
 契約電力消費源に配分すべき電力供給量を、電力系統に接続された複数の発電電力変動の大きい発電装置の一部、又は全部に接続された複数の発電量検出手段からの出力に基づいて算出するため、時々刻々と変動する「発電量」に応じた正確な「発電量追従消費」を実現できる。また、「発電量」の変動に追従した電力消費を行えばよいので、「発電量」に所定値を加えた値、又は「発電量」から所定値を減じた値を電力供給量とすることもできる。 The power supply amount to be allocated to the contract power consumption source is determined based on outputs from a plurality of power generation amount detection means connected to some or all of a plurality of power generation devices connected to the power grid and having large fluctuations in generated power. Since the calculation is performed, it is possible to realize accurate “power generation follow-up consumption” corresponding to “power generation amount” that fluctuates every moment. In addition, since it is sufficient to perform power consumption following the fluctuation of “power generation amount”, a value obtained by adding a predetermined value to “power generation amount” or a value obtained by subtracting a predetermined value from “power generation amount” is set as the power supply amount. You can also.
 また、複数の契約電力消費源のそれぞれの瞬間変動率は、所定の周期における、定格消費電力に対する瞬間変動率の変化が所定値を超えないように調整されてもよい。 Also, the instantaneous variation rate of each of the plurality of contract power consumption sources may be adjusted so that the change of the instantaneous variation rate with respect to the rated power consumption does not exceed a predetermined value in a predetermined cycle.
 このシステムによれば、急減な変化を避けるように設定されているため、契約電力消費源の機器に対する悪影響がない。 こ の According to this system, since it is set so as to avoid sudden changes, there is no adverse effect on the contract power consumption equipment.
 負荷電力調整スイッチは、4個の逆導通型半導体スイッチにて構成されるブリッジ回路と、ブリッジ回路の直流端子間に接続され、電流遮断時の電流の持つ磁気エネルギーを蓄積する磁気エネルギー蓄積コンデンサを備えた磁気エネルギー回生スイッチであって、ブリッジ回路の交流端子が契約電力消費源と電力系統にそれぞれ接続され、制御手段が各逆導通型半導体スイッチのゲートに制御信号を与えて、対角線上に位置する一方ペアの逆導通型半導体スイッチをオン、他方のペアの逆導通型半導体スイッチをオフにする動作を同時に、かつ電力系統の交流電源の周波数に同期して逆導通型半導体スイッチをオンにするペアとオフにするペアとを交互に切り替えるスイッチング動作をするように制御するとともに、電力供給分配手段からの信号に応じて、各逆導通型半導体スイッチのゲート位相を変化させ、交流電源に対するスイッチング動作の位相を変化させることにより、負荷電力調整スイッチの入力電圧の大きさと電流の位相を変化させる磁気エネルギー回生スイッチであるように構成してよい。 The load power adjustment switch includes a bridge circuit composed of four reverse conducting semiconductor switches and a magnetic energy storage capacitor that is connected between the DC terminals of the bridge circuit and stores the magnetic energy of the current at the time of current interruption. The magnetic energy regenerative switch is provided, the AC terminal of the bridge circuit is connected to the contract power consumption source and the power system, respectively, and the control means gives a control signal to the gate of each reverse conducting semiconductor switch, and is positioned on the diagonal line The operation of turning on the reverse conducting semiconductor switch of one pair and turning off the reverse conducting semiconductor switch of the other pair simultaneously, and turning on the reverse conducting semiconductor switch in synchronization with the frequency of the AC power supply of the power system Controls to perform switching operation for alternately switching the pair and the pair to be turned off, and from the power supply distribution means Magnetic energy regeneration that changes the magnitude of the input voltage and current phase of the load power adjustment switch by changing the gate phase of each reverse conducting semiconductor switch according to the signal and changing the phase of the switching operation for the AC power supply. You may comprise so that it may be a switch.
 このシステムでは、契約電力消費源のそれぞれに接続される負荷電力調整スイッチとして磁気エネルギー回生スイッチを用いているので、後述の通り、ゼロスイッチングを行うことができ、それぞれの契約電力消費源における高調波ノイズの発生も少なく、電力損失も少ない。 In this system, a magnetic energy regenerative switch is used as a load power adjustment switch connected to each of the contract power consumption sources, so that zero switching can be performed as described later, and harmonics in each contract power consumption source can be achieved. Less noise and less power loss.
 また、磁気エネルギー回生スイッチが、2個の逆導通型半導体スイッチ及び逆導通型半導体スイッチに対向する2個のダイオードにより構成されたブリッジ回路と、前記2個のダイオードのそれぞれに対して並列に接続され都合2個の直列に接続された磁気エネルギー蓄積コンデンサと、を有する構成で置き換えた構成でもよい。 In addition, a magnetic energy regenerative switch is connected in parallel to each of the two diodes and a bridge circuit composed of two reverse conducting semiconductor switches and two diodes facing the reverse conducting semiconductor switches. It may be replaced with a configuration having two magnetic energy storage capacitors connected in series.
また、磁気エネルギー回生スイッチが、逆直列に接続された2個の逆導通型半導体スイッチと、直列に接続された2個の磁気エネルギー蓄積コンデンサと、を並列に接続し、該2個の逆導通型半導体スイッチの中点と該2個の磁気エネルギー蓄積コンデンサの中点同士に結線された配線と、を有する構成で置き換えた構成でもよい。 In addition, the magnetic energy regenerative switch connects two reverse conducting semiconductor switches connected in reverse series and two magnetic energy storage capacitors connected in series in parallel, the two reverse conducting switches The configuration may be replaced with a configuration having a midpoint of the type semiconductor switch and a wiring connected to the midpoints of the two magnetic energy storage capacitors.
 複数の発電電力変動の大きい発電装置は、太陽光発電装置、風力発電装置、又は地熱発電装置のうち少なくともいずれか1つであってもよい。 The plurality of power generation devices with large fluctuations in generated power may be at least one of a solar power generation device, a wind power generation device, and a geothermal power generation device.
 複数の契約電力消費源のそれぞれは、電気自動車、プラグインハイブリッド自動車、電動アシスト自転車等の電気車両の充電、電気冷蔵庫、電気冷凍庫、エアコン、洗濯機、温水器用、揚水ポンプ、圧縮ポンプのうち少なくともいずれか1つであってよい。 Each of the plurality of contract power consumption sources is at least one of an electric vehicle, a plug-in hybrid vehicle, an electric vehicle such as an electric assist bicycle, an electric refrigerator, an electric freezer, an air conditioner, a washing machine, a water heater, a pump, and a compression pump. Any one may be sufficient.
 本発明の更なる目的又はその他の特徴は、以下添付図面を参照して説明される好ましい実施の形態によって明らかにされるであろう。 Further objects and other features of the present invention will become apparent from the preferred embodiments described below with reference to the accompanying drawings.
 本発明によれば、電力変動の大きい電源から電力系統に供給される時々刻々の電力量に、電力系統に接続された複数の電力変動を許容する電力消費源で消費する電力量を対応させることにより、自然エネルギー発電のような不安定な供給電力を有効に利用することができる。 According to the present invention, the amount of power consumed by a power consumption source that allows a plurality of power fluctuations connected to the power system is made to correspond to the amount of power that is supplied to the power system from a power source with large power fluctuations. Thus, unstable supply power such as natural energy power generation can be used effectively.
磁気エネルギー回生スイッチ(MERS)組み込みシステムの基本構成を示す図である。It is a figure which shows the basic composition of a magnetic energy regeneration switch (MERS) built-in system. 図2(a)、(b)は、制御部による磁気エネルギー回生スイッチ(MERS)のスイッチング制御を説明するための図である。2A and 2B are diagrams for explaining switching control of the magnetic energy regenerative switch (MERS) by the control unit. 図3(a)、(b)は、制御部による磁気エネルギー回生スイッチ(MERS)のスイッチング制御を説明するための図である。FIGS. 3A and 3B are diagrams for explaining switching control of the magnetic energy regenerative switch (MERS) by the control unit. 図4(a)、(b)は、制御部による磁気エネルギー回生スイッチ(MERS)のスイッチング制御を説明するための図である。4A and 4B are diagrams for explaining switching control of the magnetic energy regenerative switch (MERS) by the control unit. 磁気エネルギー回生スイッチ(MERS)組み込みシステムの動作シミュレーション結果を示す図である。It is a figure which shows the operation simulation result of a magnetic energy regeneration switch (MERS) built-in system. 磁気エネルギー回生スイッチ(MERS)組み込みシステムを誘導性負荷に接続し、ゲート位相角を変化させたときの負荷電圧/定格電圧の概略値を示す図である。It is a figure which shows the approximate value of load voltage / rated voltage when a magnetic energy regeneration switch (MERS) built-in system is connected to an inductive load and the gate phase angle is changed. 磁気エネルギー回生スイッチ(MERS)の他の態様を示す図である。It is a figure which shows the other aspect of a magnetic energy regeneration switch (MERS). 磁気エネルギー回生スイッチ(MERS)の他の態様を示す図である。It is a figure which shows the other aspect of a magnetic energy regeneration switch (MERS). 本発明の実施形態に係る電力供給システムの概略構成を示すブロック構成図である。It is a block block diagram which shows schematic structure of the electric power supply system which concerns on embodiment of this invention. 電力供給量算出手段の算出内容の概要を示す図である。It is a figure which shows the outline | summary of the calculation content of an electric power supply amount calculation means. 契約電力消費源情報蓄積装置の蓄積情報を説明するための図である。It is a figure for demonstrating the storage information of a contract electric power consumption source information storage device. 電力供給分配手段の処理を説明するフローチャートである。It is a flowchart explaining the process of an electric power supply distribution means. 本発明の実施形態に係る電力供給システムのあるタイミングにおける制御の状態を説明する図である。It is a figure explaining the state of control in a certain timing of the electric power supply system concerning the embodiment of the present invention.
符号の説明Explanation of symbols
AC、AC:交流端子
C1~C3:電気自動車
D:瞬間変動率
DLcum:長時間累積変動率
DLlim:長時間許容変動率
Dag:契約短時間許容変動率
DLag:契約長時間許容変動率
Dtarg:増減率(目標) 
DC(P)、DC(N):直流端子
D1、D2:ダイオード
G:発電装置
G1~G4:ゲート
G11~G12:安定発電装置
G21~G23:風力発電機
Pc:契約電力消費源消費量(目標)
Pc0:契約電力消費源定格消費量
Ps:電力基礎供給量
Pd:電力供給量
P:コンピュータ
SW1~SW8:逆導通型半導体スイッチ
10:磁気エネルギー回生スイッチ(MERS)組み込みシステム
20:交流電源 
21~24:コネクタ
30、30a、30b、31~33:磁気エネルギー回生スイッチ(MERS)
32、33、34、35、36:磁気エネルギー蓄積コンデンサ
40~43:制御部(制御手段)
50:誘導性負荷
51~53:電力供給システム起動スイッチ
61~63:発電量センサー
70:電力制御部
72:発電供給量算出手段
73:電力供給分配手段
74:契約電力消費源情報蓄積装置
75~77:発電量信号受信部 
81~83:充電器(契約電力消費源)
90:電力系統
100:電力供給システム
AC, AC: AC terminals C1 to C3: Electric vehicle D: Instantaneous fluctuation rate DLcum: Long-term cumulative fluctuation rate DLlim: Long-time allowable fluctuation rate Dag: Contract short-time allowable fluctuation rate DLag: Contract long-time allowable fluctuation rate Dtarget: Increase / decrease Rate (goal)
DC (P), DC (N): DC terminals D1, D2: Diode G: Power generation devices G1-G4: Gates G11-G12: Stable power generation devices G21-G23: Wind power generator Pc: Contract power consumption source consumption (target) )
Pc0: Contract power consumption source rated consumption Ps: Basic power supply Pd: Power supply P: Computers SW1 to SW8: Reverse conduction type semiconductor switch 10: Magnetic energy regenerative switch (MERS) embedded system 20: AC power supply
21-24: Connectors 30, 30a, 30b, 31-33: Magnetic energy regenerative switch (MERS)
32, 33, 34, 35, 36: Magnetic energy storage capacitors 40 to 43: Control unit (control means)
50: Inductive load 51-53: Power supply system start switches 61-63: Power generation amount sensor 70: Power control unit 72: Power generation supply amount calculation means 73: Power supply distribution means 74: Contract power consumption source information storage device 75- 77: Power generation amount signal receiver
81-83: Charger (contract power consumption source)
90: Power system 100: Power supply system
発明を実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION
 以下、本発明に係る好適な実施の形態について、図面を参照しながら説明する。各図面に示される同一又は同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組合せは、必ずしも発明の本質的なものであるとは限らない。 Hereinafter, preferred embodiments according to the present invention will be described with reference to the drawings. The same or equivalent components, members, and processes shown in the drawings are denoted by the same reference numerals, and repeated descriptions are omitted as appropriate. Further, the embodiments do not limit the invention but are exemplifications, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention.
 本実施形態に係る電力供給システムは、電力変動の大きい発電電力を、複数の電力変動を許容する電力消費源に供給する、いわゆるネットワーク型の電力供給システムである。この電力供給システムは、複数の電力変動を許容する電力消費源に供給すべき電力供給量を算出する電力供給量算出手段と、電力供給分配手段と、複数の契約電力消費源のそれぞれに接続可能に構成され、電力消費源における負荷電力を調整する負荷電力調整スイッチと、負荷電力調整スイッチを制御する制御部(制御手段)と、を備える。この電力供給システムは、電力消費源と接続されると共に、時々刻々の発電情報を入力することにより、時々刻々の発電状況に応じて複数の電力変動を許容する電力消費源の電力消費量を制御する。 The power supply system according to the present embodiment is a so-called network-type power supply system that supplies generated power with large power fluctuations to a power consumption source that allows a plurality of power fluctuations. This power supply system can be connected to each of a power supply amount calculation means for calculating a power supply amount to be supplied to a power consumption source that allows a plurality of power fluctuations, a power supply distribution means, and a plurality of contract power consumption sources. And a load power adjustment switch that adjusts the load power in the power consumption source, and a control unit (control means) that controls the load power adjustment switch. This power supply system is connected to a power consumption source and inputs power generation information every moment to control the power consumption of a power consumption source that allows multiple power fluctuations according to the momentary power generation situation To do.
 負荷電力調整スイッチは、例えば磁気エネルギー回生スイッチ(Magnetic Energy Recovery Switch:MERS:以下、MERSと称する)である。制御部は、信号変換手段により変換されたデジタル信号に基づき磁気エネルギー回生スイッチ(MERS)のゲート位相を制御することにより、電力消費源における消費電力(すなわち供給電力)を定格電力の範囲内において調整し、電力量変化させる機能を有する。 The load power adjustment switch is, for example, a magnetic energy regenerative switch (Magnetic Energy Recovery Switch: MERS: hereinafter referred to as MERS). The control unit controls the gate phase of the magnetic energy regenerative switch (MERS) based on the digital signal converted by the signal conversion means, thereby adjusting the power consumption (ie, supply power) in the power consumption source within the rated power range. And has a function of changing the amount of electric power.
 磁気エネルギー回生スイッチ(MERS)は、例えば、逆阻止能力を持たない、すなわち逆導通型の半導体素子を4個用いて順逆両方向の電流をゲート制御のみでオン・オフ可能であり、かつ電流を遮断した際の電流の持つ磁気エネルギーを磁気エネルギー蓄積コンデンサに蓄積し、オンゲートが与えられた半導体素子を通して負荷側に放出することで磁気エネルギーをロスなく回生できるスイッチであり、このスイッチは、電流順逆両方向制御が可能なロスの少ない磁気エネルギー回生スイッチである。(例えば、特許第3634982号公報を参照。本特許公報では、フルブリッジ型の磁気エネルギー回生スイッチ(MERS)を開示している。)。 Magnetic energy regenerative switch (MERS), for example, does not have reverse blocking capability, that is, it is possible to turn on / off current in both forward and reverse directions only by gate control using four reverse conducting semiconductor elements and cut off the current. This is a switch that can regenerate magnetic energy without loss by storing the magnetic energy of the current in the magnetic energy storage capacitor and releasing it to the load side through the semiconductor element provided with an on-gate. It is a magnetic energy regenerative switch with low loss that can be controlled. (For example, refer to Japanese Patent No. 3634982. This patent publication discloses a full-bridge magnetic energy regenerative switch (MERS).)
 磁気エネルギー回生スイッチ(MERS)には、逆導通型の半導体素子として、例えば、パワーMOSFET、IGBTやダイオードを逆並列接続したトランジスタ等の順方向制御が可能な半導体素子(以下、逆導通型半導体スイッチと称する)が用いられている。磁気エネルギー回生スイッチ(MERS)は、この逆導通型半導体スイッチ4個で構成されるブリッジ回路と、ブリッジ回路の正極、負極に磁気エネルギーを吸収、放出する磁気エネルギー蓄積コンデンサを接続して構成される。そして、磁気エネルギー回生スイッチ(MERS)は、これら4個の逆導通型半導体スイッチのゲート位相を制御することで、電流をどちらの方向にも流すことが可能となっている。 For the magnetic energy regenerative switch (MERS), as a reverse conduction type semiconductor element, for example, a semiconductor element capable of forward control such as a power MOSFET, a transistor having an IGBT or a diode connected in reverse parallel (hereinafter referred to as a reverse conduction type semiconductor switch). Is used). The magnetic energy regenerative switch (MERS) is configured by connecting a bridge circuit composed of the four reverse conducting semiconductor switches and a magnetic energy storage capacitor that absorbs and releases magnetic energy to the positive and negative electrodes of the bridge circuit. . The magnetic energy regenerative switch (MERS) can flow current in either direction by controlling the gate phase of these four reverse conducting semiconductor switches.
 また、磁気エネルギー回生スイッチ(MERS)は、ブリッジ接続された4個の逆導通型半導体スイッチのうち、対角線上に位置する2個の逆導通型半導体スイッチがペアとなり、2つのペアのオン・オフの切換動作を電源の周波数に同期して行い、一方のペアがオンの時は他方のペアがオフとなるように動作する。また、このオン・オフの切換タイミングに合わせて、磁気エネルギー蓄積コンデンサは磁気エネルギーの充放電を繰り返す。 The magnetic energy regenerative switch (MERS) is a pair of two reverse conducting semiconductor switches located on a diagonal line among four reverse conducting semiconductor switches connected in a bridge, and the two pairs are turned on / off. These switching operations are performed in synchronization with the frequency of the power supply, and when one pair is on, the other pair is turned off. The magnetic energy storage capacitor repeats charging and discharging of magnetic energy in accordance with the on / off switching timing.
 そして、一方のペアにオフゲートが与えられ、他方のペアにオンゲートが与えられると、順方向に導通していた電流は他方のペアの第1のダイオード-磁気エネルギー蓄積コンデンサ-他方のペアの第2のダイオードという経路で流れ、これにより磁気エネルギー蓄積コンデンサに電荷を充電する。すなわち、電流の磁気エネルギーが磁気エネルギー蓄積コンデンサに蓄積される。電流遮断時の電流の磁気エネルギーは、磁気エネルギー蓄積コンデンサの電圧が上昇して電流がゼロになるまで磁気エネルギー蓄積コンデンサに蓄積される。コンデンサ電流がゼロになるまで磁気エネルギー蓄積コンデンサの電圧が上昇すると、電流の遮断が完了する。この時点で他方のペアには既にオンゲートが与えられているため、オンしている逆導通型半導体スイッチを通して磁気エネルギー蓄積コンデンサの電荷が負荷側に放電され、磁気エネルギー蓄積コンデンサに蓄積された磁気エネルギーが負荷側に回生される。 When an off-gate is applied to one pair and an on-gate is applied to the other pair, the current conducted in the forward direction is changed to the first diode of the other pair—the magnetic energy storage capacitor—the second of the other pair. In this way, the magnetic energy storage capacitor is charged. That is, the magnetic energy of the current is stored in the magnetic energy storage capacitor. The magnetic energy of the current at the time of current interruption is stored in the magnetic energy storage capacitor until the voltage of the magnetic energy storage capacitor rises and the current becomes zero. When the voltage of the magnetic energy storage capacitor increases until the capacitor current becomes zero, the current interruption is completed. At this point, since the other pair has already been turned on, the charge of the magnetic energy storage capacitor is discharged to the load side through the reverse conducting semiconductor switch that is turned on, and the magnetic energy stored in the magnetic energy storage capacitor is discharged. Is regenerated on the load side.
 このように、磁気エネルギー回生スイッチ(MERS)は、4個の逆導通型半導体スイッチのうち対角線上に位置する2個の逆導通型半導体スイッチからなるペア2つのオン・オフのゲート位相を制御することで、磁気エネルギー回生スイッチ(MERS)の出力電圧の大きさと電流の位相を任意に制御することが可能である。 Thus, the magnetic energy regenerative switch (MERS) controls the on / off gate phase of two pairs of two reverse conducting semiconductor switches located on the diagonal line among the four reverse conducting semiconductor switches. Thus, it is possible to arbitrarily control the magnitude of the output voltage of the magnetic energy regenerative switch (MERS) and the phase of the current.
 まず、負荷電力調整スイッチとしての磁気エネルギー回生スイッチ(MERS)の構成及び動作を説明する。本実施形態では、磁気エネルギー回生スイッチ(MERS)を交流電源と誘電性負荷との間に直列に接続した磁気エネルギー回生スイッチ(MERS)組み込みシステムとなっている。
 図1は、磁気エネルギー回生スイッチ(MERS)組み込みシステム10の基本構成を示す図である。図1において、磁気エネルギー回生スイッチ(MERS)組み込みシステム10は、交流電源20と、インダクタンスのある誘導性負荷50を備える。交流電源20と誘導性負荷50との間には、磁気エネルギー回生スイッチ(MERS)30が挿入されている。また、磁気エネルギー回生スイッチ(MERS)組み込みシステム10は、磁気エネルギー回生スイッチ(MERS)30のスイッチングを制御する制御部40を備える。
First, the configuration and operation of a magnetic energy regenerative switch (MERS) as a load power adjustment switch will be described. In the present embodiment, a magnetic energy regenerative switch (MERS) built-in system in which a magnetic energy regenerative switch (MERS) is connected in series between an AC power supply and a dielectric load.
FIG. 1 is a diagram showing a basic configuration of a magnetic energy regenerative switch (MERS) embedded system 10. In FIG. 1, a magnetic energy regenerative switch (MERS) embedded system 10 includes an AC power supply 20 and an inductive load 50 having inductance. A magnetic energy regenerative switch (MERS) 30 is inserted between the AC power supply 20 and the inductive load 50. The magnetic energy regenerative switch (MERS) embedded system 10 includes a control unit 40 that controls switching of the magnetic energy regenerative switch (MERS) 30.
 磁気エネルギー回生スイッチ(MERS)30は、順逆両方向の電流を制御可能であり、磁気エネルギーをロスなく負荷側に回生できる磁気エネルギー回生スイッチである。磁気エネルギー回生スイッチ(MERS)30は、4個の逆導通型半導体スイッチSW1、SW2、SW3、SW4にて構成されるブリッジ回路と、ブリッジ回路のスイッチ遮断時に回路に流れる電流の磁気エネルギーを吸収する磁気エネルギー蓄積コンデンサ32とを備える。 The magnetic energy regenerative switch (MERS) 30 is a magnetic energy regenerative switch that can control currents in both forward and reverse directions and can regenerate magnetic energy to the load side without loss. The magnetic energy regenerative switch (MERS) 30 absorbs the magnetic energy of the current that flows through the bridge circuit composed of the four reverse conducting semiconductor switches SW1, SW2, SW3, and SW4 and the switch of the bridge circuit. And a magnetic energy storage capacitor 32.
 ブリッジ回路は、逆導通型半導体スイッチSW1と逆導通型半導体スイッチSW4とが直列に接続され、逆導通型半導体スイッチSW2と逆導通型半導体スイッチSW3とが直列に接続され、それらが並列に接続されて形成されている。 In the bridge circuit, a reverse conducting semiconductor switch SW1 and a reverse conducting semiconductor switch SW4 are connected in series, a reverse conducting semiconductor switch SW2 and a reverse conducting semiconductor switch SW3 are connected in series, and they are connected in parallel. Is formed.
 磁気エネルギー蓄積コンデンサ32は、逆導通型半導体スイッチSW1と逆導通型半導体スイッチSW3との接続点にある直流端子DC(P)と、逆導通型半導体スイッチSW2と逆導通型半導体スイッチSW4との接続点にある直流端子DC(N)とに接続されている。また、逆導通型半導体スイッチSW1と逆導通型半導体スイッチSW4との接続点にある交流端子と、逆導通型半導体スイッチSW2と逆導通型半導体スイッチSW3との接続点にある交流端子とには交流電源20と誘導性負荷50とが直列接続されている。 The magnetic energy storage capacitor 32 is connected to the DC terminal DC (P) at the connection point between the reverse conducting semiconductor switch SW1 and the reverse conducting semiconductor switch SW3, and between the reverse conducting semiconductor switch SW2 and the reverse conducting semiconductor switch SW4. It is connected to a DC terminal DC (N) at a point. Further, there is an alternating current between the AC terminal at the connection point between the reverse conduction type semiconductor switch SW1 and the reverse conduction type semiconductor switch SW4 and the AC terminal at the connection point between the reverse conduction type semiconductor switch SW2 and the reverse conduction type semiconductor switch SW3. The power supply 20 and the inductive load 50 are connected in series.
 磁気エネルギー回生スイッチ(MERS)30に配設された対角線上に位置する逆導通型半導体スイッチSW1、SW2からなる第1のペアと、同じく対角線上に位置する逆導通型半導体スイッチSW3、SW4からなる第2のペアが、電源周波数に同期して交互にオン・オフされる。すなわち、片方のペアがオンのとき他方のペアはオフとなる。そして、例えば、第1のペアにオフゲートが与えられ、第2のペアにオンゲートが与えられると、順方向に導通していた電流が第2のペアの逆導通型半導体スイッチSW3-磁気エネルギー蓄積コンデンサ32-逆導通型半導体スイッチSW4という経路で流れ、これにより磁気エネルギー蓄積コンデンサ32が充電される。すなわち、電流の磁気エネルギーが磁気エネルギー蓄積コンデンサ32に蓄積される。 A first pair of reverse conducting semiconductor switches SW1 and SW2 located on a diagonal line disposed in a magnetic energy regenerative switch (MERS) 30 and a reverse conducting semiconductor switch SW3 and SW4 also located on the diagonal line The second pair is alternately turned on / off in synchronization with the power supply frequency. That is, when one pair is on, the other pair is off. Then, for example, when an off-gate is given to the first pair and an on-gate is given to the second pair, the current that has been conducted in the forward direction becomes the reverse conduction type semiconductor switch SW3-magnetic energy storage capacitor of the second pair. 32--reverse conduction type semiconductor switch SW4 flows through the path, whereby the magnetic energy storage capacitor 32 is charged. That is, the magnetic energy of the current is stored in the magnetic energy storage capacitor 32.
 電流遮断時の電流の磁気エネルギーは、磁気エネルギー蓄積コンデンサ32の電圧が上昇して電流がゼロになるまで磁気エネルギー蓄積コンデンサ32に蓄積され、コンデンサ電流がゼロになるまで磁気エネルギー蓄積コンデンサ32の電圧が上昇すると、電流の遮断が完了する。この時点で第2のペアには既にオンゲートが与えられているため、オンしている逆導通型半導体スイッチSW3、SW4を通して磁気エネルギー蓄積コンデンサ32の電荷が誘導性負荷50に放電され、磁気エネルギー蓄積コンデンサ32に蓄積された磁気エネルギーが誘導性負荷50に回生される。 The magnetic energy of the current at the time of current interruption is accumulated in the magnetic energy storage capacitor 32 until the voltage of the magnetic energy storage capacitor 32 increases and the current becomes zero, and the voltage of the magnetic energy storage capacitor 32 until the capacitor current becomes zero. When is increased, the current interruption is completed. At this time, the second pair has already been turned on, so that the charge of the magnetic energy storage capacitor 32 is discharged to the inductive load 50 through the reverse conducting semiconductor switches SW3 and SW4 that are turned on, and the magnetic energy storage. The magnetic energy stored in the capacitor 32 is regenerated to the inductive load 50.
 電流のオン・オフ時、誘導性負荷50にはパルス電圧が印加されるが、電圧の大きさは磁気エネルギー蓄積コンデンサ32の静電容量に応じて逆導通型半導体スイッチSW1~SW4と誘導性負荷50の耐電圧許容範囲内とすることができる。また、磁気エネルギー回生スイッチ(MERS)30には、従来の直列力率改善コンデンサと異なり、直流のコンデンサを用いることができる。逆導通型半導体スイッチSW1~SW4は、例えば、パワーMOSFETからなり、それぞれゲートG1、G2、G3、G4を有する。逆導通型半導体スイッチSW1~SW4のチャネルには、それぞれボディダイオード(寄生ダイオード)が並列接続されている。 When the current is turned on / off, a pulse voltage is applied to the inductive load 50, and the magnitude of the voltage depends on the reverse conduction type semiconductor switches SW1 to SW4 and the inductive load according to the capacitance of the magnetic energy storage capacitor 32. 50 withstand voltage tolerance can be set. Unlike the conventional series power factor correction capacitor, a DC capacitor can be used for the magnetic energy regenerative switch (MERS) 30. The reverse conducting semiconductor switches SW1 to SW4 are made of, for example, power MOSFETs and have gates G1, G2, G3, and G4, respectively. Body diodes (parasitic diodes) are connected in parallel to the channels of the reverse conducting semiconductor switches SW1 to SW4.
 磁気エネルギー回生スイッチ(MERS)30には、ボディダイオードに加えて、逆導通型半導体スイッチSW1~SW4と逆並列にダイオードを加えてもよい。なお、逆導通型半導体スイッチSW1~SW4としては、例えば、IGBTやトランジスタ等の素子にダイオードを逆並列接続したものを用いることもできる。 In the magnetic energy regenerative switch (MERS) 30, in addition to the body diode, a diode may be added in reverse parallel to the reverse conducting semiconductor switches SW1 to SW4. As the reverse conducting semiconductor switches SW1 to SW4, for example, an element such as an IGBT or a transistor having a diode connected in reverse parallel can be used.
 制御部40は、磁気エネルギー回生スイッチ(MERS)30の逆導通型半導体スイッチSW1~SW4のスイッチングを制御する。具体的には、磁気エネルギー回生スイッチ(MERS)30のブリッジ回路における対角線上に位置する逆導通型半導体スイッチSW1、SW2からなるペアのオン・オフ動作と、逆導通型半導体スイッチSW3、SW4からなるペアのオン・オフ動作とを、一方がオンのとき他方がオフとなるように、半サイクル毎にそれぞれ同時に行うようゲートG1~G4に制御信号を送信する。 The control unit 40 controls the switching of the reverse conduction type semiconductor switches SW1 to SW4 of the magnetic energy regenerative switch (MERS) 30. Specifically, it includes an on / off operation of a pair of reverse conducting semiconductor switches SW1 and SW2 located on a diagonal line in a bridge circuit of the magnetic energy regenerative switch (MERS) 30 and reverse conducting semiconductor switches SW3 and SW4. A control signal is transmitted to the gates G1 to G4 so that the pair is turned on and off simultaneously every half cycle so that when one is turned on, the other is turned off.
 続いて、制御部40による磁気エネルギー回生スイッチ(MERS)30のスイッチング制御について詳細に説明する。図2(a)、(b)、図3(a)、(b)、図4(a)、(b)は、制御部40によるMERS30のスイッチング制御を説明するための図である。 Subsequently, switching control of the magnetic energy regenerative switch (MERS) 30 by the control unit 40 will be described in detail. 2A, 2 </ b> B, 3 </ b> A, 3 </ b> B, 4 </ b> A, and 4 </ b> B are diagrams for explaining switching control of the MERS 30 by the control unit 40.
 まず、磁気エネルギー蓄積コンデンサ32に充電電圧がない状態で、制御部40が逆導通型半導体スイッチSW1、SW2をオンにした場合、図2(a)に示すように、電流は逆導通型半導体スイッチSW3、SW1を通る経路と、逆導通型半導体スイッチSW2、SW4を通る経路を流れ、並列導通状態となる。 First, when the control unit 40 turns on the reverse conducting semiconductor switches SW1 and SW2 in a state where the magnetic energy storage capacitor 32 has no charging voltage, as shown in FIG. A path that passes through SW3 and SW1 and a path that passes through reverse conducting semiconductor switches SW2 and SW4 flow in parallel.
 次に、交流電源20の電圧が反転する前の所定のタイミング、例えば、約2ms前に、制御部40は逆導通型半導体スイッチSW1、SW2をオフにする。(これは、交流の周波数が50Hzの場合において、逆導通型半導体スイッチを制御するゲート位相角αが約36degに相当する。)これにより、図2(b)に示すように、電流は逆導通型半導体スイッチSW3-磁気エネルギー蓄積コンデンサ32-逆導通型半導体スイッチSW4を通る経路を流れる。その結果、磁気エネルギー蓄積コンデンサ32に磁気エネルギーが吸収(充電)される。本実施形態では、逆導通型半導体スイッチSW1、SW2をオフにするタイミングで、逆導通型半導体スイッチSW3、SW4をオンにしている。 Next, the controller 40 turns off the reverse conducting semiconductor switches SW1 and SW2 at a predetermined timing before the voltage of the AC power supply 20 is inverted, for example, about 2 ms. (This corresponds to a gate phase angle α for controlling the reverse conducting semiconductor switch of about 36 deg when the AC frequency is 50 Hz.) As a result, as shown in FIG. Type semiconductor switch SW3-magnetic energy storage capacitor 32-reverse conduction type semiconductor switch SW4 flows through the path. As a result, magnetic energy is absorbed (charged) in the magnetic energy storage capacitor 32. In the present embodiment, the reverse conducting semiconductor switches SW3 and SW4 are turned on at the timing when the reverse conducting semiconductor switches SW1 and SW2 are turned off.
 磁気エネルギー蓄積コンデンサ32の充電が完了すると、すなわち磁気エネルギー蓄積コンデンサ32の電圧が所定値以上となると、電流は遮断される。そして、交流電源20の電圧が反転すると、逆導通型半導体スイッチSW3、SW4は既にオンであり、また磁気エネルギー蓄積コンデンサ32に充電電圧があるため、図3(a)に示すように、電流は逆導通型半導体スイッチSW4-磁気エネルギー蓄積コンデンサ32-逆導通型半導体スイッチSW3を通る経路を流れる。そして、磁気エネルギー蓄積コンデンサ32に蓄積した磁気エネルギーが放出(放電)される。 When the charging of the magnetic energy storage capacitor 32 is completed, that is, when the voltage of the magnetic energy storage capacitor 32 exceeds a predetermined value, the current is cut off. Then, when the voltage of the AC power supply 20 is inverted, the reverse conducting semiconductor switches SW3 and SW4 are already on, and the magnetic energy storage capacitor 32 has a charging voltage. Therefore, as shown in FIG. The reverse conduction type semiconductor switch SW4 flows through a path passing through the magnetic energy storage capacitor 32 and the reverse conduction type semiconductor switch SW3. Then, the magnetic energy stored in the magnetic energy storage capacitor 32 is released (discharged).
 次に、磁気エネルギー蓄積コンデンサ32からの放電が終了すると、図3(b)に示すように、電流は逆導通型半導体スイッチSW1、SW3を通る経路と、逆導通型半導体スイッチSW4、SW2を通る経路を流れ、並列導通状態となる。 Next, when the discharge from the magnetic energy storage capacitor 32 is completed, as shown in FIG. 3B, the current passes through the reverse conducting semiconductor switches SW1 and SW3 and the reverse conducting semiconductor switches SW4 and SW2. It flows through the path and becomes a parallel conduction state.
 次に、交流電源20の電圧が反転する前の所定のタイミングで、制御部40は逆導通型半導体スイッチSW3、SW4をオフにする。これにより、図4(a)に示すように、電流は逆導通型半導体スイッチSW1-磁気エネルギー蓄積コンデンサ32-逆導通型半導体スイッチSW2を通る経路を流れる。その結果、磁気エネルギー蓄積コンデンサ32に磁気エネルギーが吸収される。本実施形態では、逆導通型半導体スイッチSW3、SW4をオフにするタイミングで、逆導通型半導体スイッチSW1、SW2をオンにしている。 Next, at a predetermined timing before the voltage of the AC power supply 20 is inverted, the control unit 40 turns off the reverse conducting semiconductor switches SW3 and SW4. As a result, as shown in FIG. 4 (a), the current flows through a path passing through the reverse conducting semiconductor switch SW1, the magnetic energy storage capacitor 32, and the reverse conducting semiconductor switch SW2. As a result, magnetic energy is absorbed by the magnetic energy storage capacitor 32. In the present embodiment, the reverse conducting semiconductor switches SW1 and SW2 are turned on at the timing when the reverse conducting semiconductor switches SW3 and SW4 are turned off.
 磁気エネルギー蓄積コンデンサ32の充電が完了すると電流は遮断され、そして交流電源20の電圧が反転すると、逆導通型半導体スイッチSW1、SW2は既にオンであり、また磁気エネルギー蓄積コンデンサ32に充電電圧があるため、図4(b)に示すように、電流は逆導通型半導体スイッチSW2-磁気エネルギー蓄積コンデンサ32-逆導通型半導体スイッチSW1を通る経路を流れる。そして、磁気エネルギー蓄積コンデンサ32に蓄積した磁気エネルギーが放電される。磁気エネルギー蓄積コンデンサ32からの放電が終了すると、図2(a)に示す並列導通状態となり、以後これを繰り返す。このように、磁気エネルギー回生スイッチ(MERS)30は対向するペア2組の逆導通型半導体スイッチを交互に導通状態にすることにより、双方向に電流を流すことができる。 When the charging of the magnetic energy storage capacitor 32 is completed, the current is cut off, and when the voltage of the AC power supply 20 is reversed, the reverse conducting semiconductor switches SW1 and SW2 are already on, and the magnetic energy storage capacitor 32 has a charging voltage. Therefore, as shown in FIG. 4B, the current flows through a path passing through the reverse conducting semiconductor switch SW2-the magnetic energy storage capacitor 32-the reverse conducting semiconductor switch SW1. Then, the magnetic energy stored in the magnetic energy storage capacitor 32 is discharged. When the discharge from the magnetic energy storage capacitor 32 is completed, the parallel conduction state shown in FIG. As described above, the magnetic energy regenerative switch (MERS) 30 can cause a current to flow in both directions by alternately bringing two opposing pairs of reverse conducting semiconductor switches into a conducting state.
 このような磁気エネルギー回生スイッチ(MERS)30のスイッチング制御により、次のような効果が得られる。図5(a)、(b)、(c)、(d)は、交流電源20の周波数が50Hzの場合において、逆導通型半導体スイッチを制御するゲート位相角αが約36degの場合における磁気エネルギー回生スイッチ(MERS)組み込みシステム10の動作結果を説明するための図である。図5(a)は、磁気エネルギー回生スイッチ(MERS)30が組み込まれていない場合の電源電圧と電流の波形を示し、図5(b)は、磁気エネルギー回生スイッチ(MERS)30が組み込まれた場合の電源電圧、電流、負荷電圧の波形を示している。また、図5(c)は磁気エネルギー蓄積コンデンサ電圧と逆導通型半導体スイッチSW1を流れる電流の波形を示し、図5(d)は逆導通型半導体スイッチSW1がオンになるタイミングを示している。 The following effects are obtained by the switching control of the magnetic energy regenerative switch (MERS) 30 as described above. FIGS. 5A, 5B, 5C and 5D show magnetic energy when the frequency of the AC power supply 20 is 50 Hz and the gate phase angle α for controlling the reverse conducting semiconductor switch is about 36 deg. It is a figure for demonstrating the operation result of the regenerative switch (MERS) embedded system. FIG. 5A shows power supply voltage and current waveforms when the magnetic energy regenerative switch (MERS) 30 is not incorporated. FIG. 5B shows the magnetic energy regenerative switch (MERS) 30 incorporated. The waveforms of the power supply voltage, current, and load voltage are shown. 5C shows the waveform of the magnetic energy storage capacitor voltage and the current flowing through the reverse conducting semiconductor switch SW1, and FIG. 5D shows the timing when the reverse conducting semiconductor switch SW1 is turned on.
 図5(a)に示すように、磁気エネルギー回生スイッチ(MERS)30が組み込まれていない場合、誘導性負荷50の影響により、電流の位相が電源電圧の位相よりも遅れている。そのため交流電源20の力率は1より小さい。一方、交流電源20と誘導性負荷50との間に磁気エネルギー回生スイッチ(MERS)30を直列に挿入した場合には、図5(b)に示すように電流の位相を進ませることができるため、交流電源20の力率を1に近づけることが可能である。 As shown in FIG. 5A, when the magnetic energy regenerative switch (MERS) 30 is not incorporated, the phase of the current is delayed from the phase of the power supply voltage due to the influence of the inductive load 50. Therefore, the power factor of the AC power supply 20 is smaller than 1. On the other hand, when a magnetic energy regenerative switch (MERS) 30 is inserted in series between the AC power supply 20 and the inductive load 50, the phase of the current can be advanced as shown in FIG. The power factor of the AC power supply 20 can be made close to 1.
 すなわち、磁気エネルギー回生スイッチ(MERS)30は、逆導通型半導体スイッチSW1~SW4の対角線上のペア2組のゲート位相を調整することで、誘導性負荷50の磁気エネルギーを磁気エネルギー蓄積コンデンサ32に蓄えて、電流の位相を進ませ、これにより交流電源20の力率を1に近づけることが可能である。また、磁気エネルギー回生スイッチ(MERS)30は、電流の位相を進ませるだけでなく、電流の位相を任意に制御することが可能であり、これにより任意に力率を調整することができる。更に、誘導性負荷50の磁気エネルギーを磁気エネルギー蓄積コンデンサ32に貯え、蓄えた磁気エネルギーを誘導性負荷50に回生することにより、負荷電圧を無段階に増減させることが可能である。 That is, the magnetic energy regenerative switch (MERS) 30 adjusts the gate phase of the two pairs on the diagonal line of the reverse conduction type semiconductor switches SW1 to SW4, so that the magnetic energy of the inductive load 50 is transferred to the magnetic energy storage capacitor 32. It is possible to store and advance the phase of the current, thereby bringing the power factor of the AC power supply 20 close to 1. In addition, the magnetic energy regenerative switch (MERS) 30 can not only advance the phase of the current but also can arbitrarily control the phase of the current, thereby arbitrarily adjusting the power factor. Furthermore, by storing the magnetic energy of the inductive load 50 in the magnetic energy storage capacitor 32 and regenerating the stored magnetic energy in the inductive load 50, the load voltage can be increased or decreased steplessly.
 また、図5(c)及び図5(d)に示すように、逆導通型半導体スイッチSW1がオンになるタイミングでは、磁気エネルギー蓄積コンデンサ電圧は0であり、逆導通型半導体スイッチSW1を流れる電流は、並列導通時に逆導通型半導体スイッチSW1のダイオードを流れる電流である。逆導通型半導体スイッチSW1がオフになるタイミングにおいても磁気エネルギー蓄積コンデンサ電圧は0である。すなわち、0電圧、0電流でスイッチングされており、そのためスイッチングによる損失を無くすことができる。他の3つの逆導通型半導体スイッチSW2~SW4については、逆導通型半導体スイッチSW1と同期してスイッチングしているため、同様の結果となる。 Further, as shown in FIGS. 5C and 5D, at the timing when the reverse conducting semiconductor switch SW1 is turned on, the magnetic energy storage capacitor voltage is 0, and the current flowing through the reverse conducting semiconductor switch SW1. Is the current that flows through the diode of the reverse conducting semiconductor switch SW1 during parallel conduction. The magnetic energy storage capacitor voltage is 0 even at the timing when the reverse conducting semiconductor switch SW1 is turned off. That is, switching is performed at 0 voltage and 0 current, and therefore loss due to switching can be eliminated. Since the other three reverse conducting semiconductor switches SW2 to SW4 are switched in synchronization with the reverse conducting semiconductor switch SW1, the same result is obtained.
 上記の通り、図5(a)、(b)、(c)、(d)は、交流の周波数が50Hzの場合において、逆導通型半導体スイッチを制御するゲート位相角αが約36degの場合における磁気エネルギー回生スイッチ(MERS)組み込みシステム10の動作結果を示しているが、磁気エネルギー回生スイッチ(MERS)30の逆導通型半導体スイッチを制御するゲート位相角αは、0degから360degまで連続的に制御することができる。図6は、負荷として2KWの誘導電動機を使用した製氷機を用いた場合、逆導通型半導体スイッチを制御するゲート位相角αを変化させたときの負荷電圧/定格電圧の概略値を示す。定格電圧とは、電源電圧の100%に相当する電圧である。負荷電圧/定格電圧は、ゲート位相角αが0degからの増加に伴い増加し、ゲート位相角α=約90degで約140%の極大値となり、ゲート位相角αが更に増加すると減少し、ゲート位相角α=180degでは約50%にまで減少する。途中のゲート位相角α=約135degで、負荷電圧/定格電圧=1になっている。従って、磁気エネルギー回生スイッチ(MERS)30のゲート位相角αを135degを基準に約±30deg制御することにより、負荷電圧を電源電圧の約60%から130%まで連続的に制御することができる。なお、ゲート位相角αを180degから360degまでの範囲で制御すると、180degから0degの向きに変化させたときの結果と同じになる。 As described above, FIGS. 5A, 5 </ b> B, 5 </ b> C, and 5 </ b> D are obtained when the gate phase angle α for controlling the reverse conducting semiconductor switch is about 36 deg when the AC frequency is 50 Hz. Although the operation result of the magnetic energy regenerative switch (MERS) embedded system 10 is shown, the gate phase angle α for controlling the reverse conducting semiconductor switch of the magnetic energy regenerative switch (MERS) 30 is continuously controlled from 0 deg to 360 deg. can do. FIG. 6 shows approximate values of load voltage / rated voltage when the gate phase angle α for controlling the reverse conducting semiconductor switch is changed when an ice making machine using a 2 KW induction motor is used as a load. The rated voltage is a voltage corresponding to 100% of the power supply voltage. The load voltage / rated voltage increases as the gate phase angle α increases from 0 deg, reaches a maximum value of about 140% at the gate phase angle α = about 90 deg, decreases as the gate phase angle α further increases, and decreases to the gate phase. At the angle α = 180 deg, it decreases to about 50%. On the way, the gate phase angle α = about 135 deg and the load voltage / rated voltage = 1. Therefore, the load voltage can be continuously controlled from about 60% to 130% of the power supply voltage by controlling the gate phase angle α of the magnetic energy regenerative switch (MERS) 30 by about ± 30 deg with reference to 135 deg. When the gate phase angle α is controlled in the range from 180 deg to 360 deg, the result is the same as when the direction is changed from 180 deg to 0 deg.
 磁気エネルギー蓄積コンデンサ32の充放電周期は、誘導性負荷50とコンデンサ32との共振周期の半周期分であり、スイッチング周期が誘導性負荷50とコンデンサ32とで決定される共振周期より長い時には、磁気エネルギー回生スイッチ(MERS)30は常に0電圧0電流スイッチング、すなわちソフトスイッチングが可能である。 The charging / discharging cycle of the magnetic energy storage capacitor 32 is a half cycle of the resonance cycle of the inductive load 50 and the capacitor 32, and when the switching cycle is longer than the resonance cycle determined by the inductive load 50 and the capacitor 32, The magnetic energy regenerative switch (MERS) 30 can always perform zero voltage zero current switching, that is, soft switching.
 磁気エネルギー回生スイッチ(MERS)30に用いられる磁気エネルギー蓄積コンデンサ32は、従来の電圧型インバータと異なり、回路にあるインダクタンスの磁気エネルギーを蓄積するためだけのものである。そのため、コンデンサ容量を従来の電圧型インバータの電圧源コンデンサに比べて著しく小さくできる。コンデンサ容量は、負荷との共振周期がスイッチング周波数より短くなるように選定する。そのため、従来の電圧型インバータで問題となりやすい高調波ノイズは、磁気エネルギー回生スイッチ(MERS)30におけるスイッチングでは殆ど発生しない。したがって、精密機器や計測機器等に対する高調波ノイズによる悪影響が、磁気エネルギー回生スイッチ(MERS)30においては殆ど発生せず、磁気エネルギー回生スイッチ(MERS)30を病院等においても安心して使用することができる。また、ソフトスイッチングであることから、電力損失が少なく、発熱も少ない。 Unlike the conventional voltage type inverter, the magnetic energy storage capacitor 32 used for the magnetic energy regenerative switch (MERS) 30 is only for storing the magnetic energy of the inductance in the circuit. For this reason, the capacitor capacity can be significantly reduced as compared with the voltage source capacitor of the conventional voltage type inverter. The capacitor capacity is selected so that the resonance period with the load is shorter than the switching frequency. For this reason, harmonic noise that tends to be a problem in the conventional voltage type inverter hardly occurs in the switching in the magnetic energy regenerative switch (MERS) 30. Therefore, adverse effects due to harmonic noise on precision instruments and measuring instruments hardly occur in the magnetic energy regenerative switch (MERS) 30, and the magnetic energy regenerative switch (MERS) 30 can be used safely in hospitals and the like. it can. Moreover, since it is soft switching, there is little power loss and there is also little heat_generation | fever.
 また、磁気エネルギー回生スイッチ(MERS)30をゲートパルス発生装置として用いた場合、各磁気エネルギー回生スイッチ(MERS)30に固有のIDナンバーを付与することができ、これを用いて外部からの制御信号を受信して各磁気エネルギー回生スイッチ(MERS)30を制御することができる。例えば、インターネット等の通信回線を利用して無線で制御信号を送り、磁気エネルギー回生スイッチ(MERS)30を無線制御できる。 In addition, when the magnetic energy regenerative switch (MERS) 30 is used as a gate pulse generator, a unique ID number can be assigned to each magnetic energy regenerative switch (MERS) 30, and a control signal from the outside can be used using this. Can be received and each magnetic energy regeneration switch (MERS) 30 can be controlled. For example, it is possible to wirelessly control the magnetic energy regenerative switch (MERS) 30 by sending a control signal wirelessly using a communication line such as the Internet.
 上述の磁気エネルギー回生スイッチ(MERS)組み込みシステム10では、磁気エネルギー回生スイッチ(MERS)30は4個の逆導通型半導体スイッチSW1~SW4で形成されるブリッジ回路と、ブリッジ回路の直流端子間に接続された磁気エネルギー蓄積コンデンサ32とからなる構成であったが、磁気エネルギー回生スイッチ(MERS)30は次のような構成であってもよい。 In the magnetic energy regenerative switch (MERS) embedded system 10 described above, the magnetic energy regenerative switch (MERS) 30 is connected between a bridge circuit formed by four reverse conducting semiconductor switches SW1 to SW4 and a DC terminal of the bridge circuit. However, the magnetic energy regenerative switch (MERS) 30 may be configured as follows.
 図7及び図8は、磁気エネルギー回生スイッチ(MERS)30の他の態様を示す図である。図7に示す磁気エネルギー回生スイッチ(MERS)30aは、上述の4個の逆導通型半導体スイッチSW1~SW4と1個のコンデンサ32とからなるフルブリッジ型の磁気エネルギー回生スイッチ(MERS)30に対して、2個の逆導通型半導体スイッチと2個のダイオード、及び2個のコンデンサで構成される縦型のハーフブリッジ型となっている。 7 and 8 are diagrams showing another aspect of the magnetic energy regenerative switch (MERS) 30. FIG. The magnetic energy regenerative switch (MERS) 30a shown in FIG. 7 is different from the full bridge type magnetic energy regenerative switch (MERS) 30 including the four reverse conducting semiconductor switches SW1 to SW4 and the single capacitor 32 described above. Thus, it is a vertical half bridge type composed of two reverse conducting semiconductor switches, two diodes, and two capacitors.
 より詳細には、この縦型ハーフブリッジ構造の磁気エネルギー回生スイッチ(MERS)30aは、直列に接続された2個の逆導通型半導体スイッチSW5、SW6と、この2個の逆導通型半導体スイッチSW5、SW6と並列に設けられた、直列に接続された2個の磁気エネルギー蓄積コンデンサ33、34と、この2個の磁気エネルギー蓄積コンデンサ33、34それぞれと並列に接続された2個のダイオードD1、D2と、を含んでいる。 More specifically, the vertical half-bridge magnetic energy regenerative switch (MERS) 30a includes two reverse conducting semiconductor switches SW5 and SW6 connected in series and the two reverse conducting semiconductor switches SW5. , Two magnetic energy storage capacitors 33, 34 connected in series and provided in parallel with SW6, and two diodes D1, connected in parallel with the two magnetic energy storage capacitors 33, 34, respectively. D2.
 図8に示す磁気エネルギー回生スイッチ(MERS)30bは、横型のハーフブリッジ型である。横型のハーフブリッジ型磁気エネルギー回生スイッチ(MERS)30bは、2つの逆導通型半導体スイッチと2つのコンデンサで構成されている。 8 is a horizontal half-bridge type magnetic energy regenerative switch (MERS) 30b. The horizontal half-bridge magnetic energy regenerative switch (MERS) 30b includes two reverse conducting semiconductor switches and two capacitors.
 より詳細には、この横型のハーフブリッジ構造磁気エネルギー回生スイッチ(MERS)30bは、第1の経路上に直列に設けられた逆導通型半導体スイッチSW7及び磁気エネルギー蓄積コンデンサ35と、第1の経路と並列な第2の経路上に直列に設けられた逆導通型半導体スイッチSW8及び磁気エネルギー蓄積コンデンサ36と、第1、第2の経路に対して並列に結線された配線と、を含んでいる。 More specifically, the horizontal half-bridge structure magnetic energy regenerative switch (MERS) 30b includes a reverse conduction type semiconductor switch SW7 and a magnetic energy storage capacitor 35 provided in series on the first path, and the first path. A reverse conducting semiconductor switch SW8 and a magnetic energy storage capacitor 36 provided in series on a second path parallel to the first path, and a wiring connected in parallel to the first and second paths. .
 続いて、本実施形態に係る電力供給システムについて説明する。 Subsequently, the power supply system according to the present embodiment will be described.
 図9は、本実施形態に係る電力供給システム100の概略構成を示すブロック構成図である。ここでは、発電装置Gとして、原子力発電や火力発電等の安定した高品質な電力供給が可能な複数の安定発電装置G11~G12と不安定で低品質な電力供給となる自然エネルギー発電装置としての複数の風力発電機G21~G23とが電力系統90に接続されている例について説明する。
風力発電機G21~G23と電力系統90との経路には、各々発電量センサー61~63が設置され、それぞれ電力制御部70に接続されている。
FIG. 9 is a block configuration diagram showing a schematic configuration of the power supply system 100 according to the present embodiment. Here, as the power generation device G, a plurality of stable power generation devices G11 to G12 capable of supplying stable and high-quality power such as nuclear power generation and thermal power generation, and a natural energy power generation device that provides unstable and low-quality power supply An example in which a plurality of wind power generators G21 to G23 are connected to the power system 90 will be described.
On the path between the wind power generators G21 to G23 and the power system 90, power generation amount sensors 61 to 63 are installed and connected to the power control unit 70, respectively.
 発電量センサー61~63は、風力発電機G21~G23において発電された電力量(発電量)を検出するためのものである。発電量センサー61~63としては、既存の電力計などを適用することができる。発電量センサー61~63は、風力発電機G21~G23による発電量を常時又は定期的に監視しており、時間と共に変動するその発電量の値を電力制御部70に向けて常時又は定期的に送信している。 The power generation amount sensors 61 to 63 are for detecting the amount of power (power generation amount) generated by the wind power generators G21 to G23. As the power generation amount sensors 61 to 63, existing power meters and the like can be applied. The power generation amount sensors 61 to 63 constantly or regularly monitor the power generation amount by the wind power generators G21 to G23, and the value of the power generation amount that fluctuates with time is directed to the power control unit 70 constantly or periodically. Sending.
 図9に示すように、本実施形態に係る電力供給システム100は、発電量センサー(発電量検出手段)61~63、電力制御部70、負荷電力調整スイッチとしての磁気エネルギー回生スイッチ(MERS)31~33、磁気エネルギー回生スイッチ(MERS)31~33を調整する制御部(制御手段)41~43により大略構成されている。 As shown in FIG. 9, the power supply system 100 according to this embodiment includes a power generation amount sensor (power generation amount detection means) 61 to 63, a power control unit 70, and a magnetic energy regenerative switch (MERS) 31 as a load power adjustment switch. To 33 and control units (control means) 41 to 43 for adjusting magnetic energy regenerative switches (MERS) 31 to 33.
 磁気エネルギー回生スイッチ(MERS)31~33は、所定の供給電力変動を許容する契約電力消費源としての充電器81~83と、充電器81~83のそれぞれを電力系統90に接続するためのコネクタ21~23との間に設置されている。磁気エネルギー回生スイッチ(MERS)31~33は、それぞれ対応する制御部41~43に接続されており、制御部41~43からのゲート位相制御に基づき、充電器81~83への負荷電力を調整する機能を有している。より具体的には、発電量センサー61~63からの発電量信号に基づいて、電力制御部70は、制御部41~43に制御を行うべきゲート位相を伝達し、制御部41~43は、電力制御部70から伝達されたゲート位相信号に応じて契約電力消費源である充電器81~83に接続された磁気エネルギー回生スイッチ(MERS)31~33のゲート位相を制御することにより、コネクタ21~23を介して電力系統90に接続された充電器81~83の負荷電力(消費電力)を調整するように構成されている。すなわち、風力発電機G21~G23において発電された電力量(発電量)が小さい場合に、制御部41~43によるゲート位相制御によって磁気エネルギー回生スイッチ(MERS)31~33のゲート位相を調整し、充電器81~83の負荷電力を減少させる。また、風力発電機G21~G23において発電された電力量(発電量)が大きい場合に、制御部41~43によるゲート位相制御によって磁気エネルギー回生スイッチ(MERS)31~33のゲート位相を調整し、充電器81~83の負荷電力を増大させる。 Magnetic energy regenerative switches (MERS) 31 to 33 are chargers 81 to 83 as contract power consumption sources that allow predetermined supply power fluctuations, and connectors for connecting the chargers 81 to 83 to the power system 90, respectively. It is installed between 21 and 23. Magnetic energy regenerative switches (MERS) 31 to 33 are connected to the corresponding control units 41 to 43, respectively, and adjust the load power to the chargers 81 to 83 based on the gate phase control from the control units 41 to 43. It has a function to do. More specifically, based on the power generation amount signals from the power generation amount sensors 61 to 63, the power control unit 70 transmits the gate phase to be controlled to the control units 41 to 43, and the control units 41 to 43 The connector 21 is controlled by controlling the gate phases of the magnetic energy regenerative switches (MERS) 31 to 33 connected to the chargers 81 to 83 which are contract power consumption sources in accordance with the gate phase signal transmitted from the power control unit 70. Are configured to adjust the load power (power consumption) of the chargers 81 to 83 connected to the power system 90 through. That is, when the amount of electric power (power generation amount) generated by the wind power generators G21 to G23 is small, the gate phases of the magnetic energy regeneration switches (MERS) 31 to 33 are adjusted by the gate phase control by the control units 41 to 43, The load power of the chargers 81 to 83 is reduced. Further, when the amount of power generated by the wind power generators G21 to G23 (power generation amount) is large, the gate phases of the magnetic energy regenerative switches (MERS) 31 to 33 are adjusted by the gate phase control by the control units 41 to 43, The load power of the chargers 81 to 83 is increased.
 ここで、コネクタ21~23は、例えばプラグ差込口であって、電力消費源としての電気製品を電気的に接続するためのインターフェースである。 Here, the connectors 21 to 23 are, for example, plug insertion ports, and are interfaces for electrically connecting electrical products as power consumption sources.
 この充電器81~83は、電動力で走行可能な電気自動車C1~C3の二次電池(バッテリー9に充電するためのものである。例えば、夜中のうちに電気自動車C1~C3と充電器81~83とを接続し、充電器81~83をそれぞれコネクタ21~23に接続することにより、翌朝までに電気自動車C1~C3内の二次電池(バッテリー)がフル充電状態となる。 The chargers 81 to 83 are secondary batteries (for charging the battery 9) of the electric vehicles C1 to C3 that can be driven by electric power. For example, the electric vehicles C1 to C3 and the charger 81 are used at night. To 83 and the chargers 81 to 83 to the connectors 21 to 23, respectively, the secondary batteries (batteries) in the electric vehicles C1 to C3 are fully charged by the next morning.
 充電器81~83による充電には、数時間の時間が必要となる。また、多少電源電圧に変動があっても、翌朝までに電気自動車C1~C3にフル充電がされれば特に問題がない。従って、コネクタ21~23に供給される電力は、高品質な電力である必要はなく、電力変動を含む低品質な供給電力であってもよい。充電器81~83に供給される電力は、風力発電機G21~G23において発電された電力量(発電量)に応じて変動する。しかしながら、充電器81~83は、電力変動による影響を殆ど受けないので特に問題はない。従って、充電器81~83は、いずれも所定の供給電力変動を許容する契約電力消費源である。また、各契約電力消費源(充電器81~83など)への供給電力制御は、上述のように、各契約電力消費源(充電器81~83など)に接続された磁気エネルギー回生スイッチ(MERS)31~33のゲート位相制御に基づいて行われている。なお、上述の説明における誘導性負荷50が、本実施形態においては、「契約電力消費源である充電器81~83」に相当する。 It takes several hours to charge with the chargers 81 to 83. Even if the power supply voltage fluctuates somewhat, there is no particular problem if the electric vehicles C1 to C3 are fully charged by the next morning. Therefore, the power supplied to the connectors 21 to 23 does not have to be high-quality power, and may be low-quality supply power including power fluctuation. The power supplied to the chargers 81 to 83 varies depending on the amount of power (power generation amount) generated by the wind power generators G21 to G23. However, the chargers 81 to 83 are not particularly affected because they are hardly affected by power fluctuations. Accordingly, the chargers 81 to 83 are all contract power consumption sources that allow a predetermined supply power fluctuation. Further, as described above, the power supply control to each contract power consumption source (such as the chargers 81 to 83) is performed by using a magnetic energy regenerative switch (MERS) connected to each contract power consumption source (such as the charger 81 to 83). ) This is performed based on the gate phase control of 31-33. The inductive load 50 in the above description corresponds to “chargers 81 to 83 that are contract power consumption sources” in the present embodiment.
 一方、コネクタ24には、別の電力消費源としてのコンピュータPが接続される。このコンピュータPは、CPUを含む多数の電子デバイスにより構成されており、電気信号による演算処理を行うものであるので、その稼働中に電源電圧の変動があると正常動作しない。従って、コンピュータP用にコネクタ24に供給される電力は、高品質で変動の少ない供給電力である必要がある。 On the other hand, a computer P as another power consumption source is connected to the connector 24. The computer P is composed of a large number of electronic devices including a CPU, and performs arithmetic processing using electric signals. Therefore, if the power supply voltage varies during operation, the computer P does not operate normally. Therefore, the power supplied to the connector 24 for the computer P needs to be high quality and supplied power with little fluctuation.
 電力制御部70は、内部に、発電量信号受信部75~77、電力供給量算出手段72、電力供給分配手段73、及び契約電力消費源情報蓄積装置74を備えている。 The power control unit 70 includes power generation amount signal receiving units 75 to 77, a power supply amount calculation unit 72, a power supply distribution unit 73, and a contract power consumption source information storage device 74.
 発電量信号受信部75~77は、発電量センサー61~63からの発電量を検出して、電力供給量算出手段72に伝達する機能を有する。 The power generation amount signal receiving sections 75 to 77 have a function of detecting the power generation amount from the power generation amount sensors 61 to 63 and transmitting the detected power generation amount to the power supply amount calculation means 72.
 電力供給量算出手段72は、発電量信号受信部75~77からの信号に基づき所定周期の分配タイミングで充電器81~83などの契約電力消費源に分配すべき「変動の大きい電力供給量」を算出する。 The power supply amount calculation means 72 is a “power supply amount with a large fluctuation” to be distributed to contract power consumption sources such as the chargers 81 to 83 at a distribution timing of a predetermined period based on signals from the power generation amount signal receiving units 75 to 77. Is calculated.
 図10は、電力供給量算出手段72の算出内容の概要を示す。上述の通り、発電量センサー61~63は、風力発電機G21~G23による発電量を常時又は定期的に監視しており、時間と共に変動するその発電量の値を電力制御部70に向けて常時又は定期的に送信している。発電量に関する信号は、発電量信号受信部75~77を介して電力供給量算出手段72に伝達される。電力供給量算出手段72は、所定の周期のタイミング(分配タイミング)で、風力発電機G21~G23による発電量の合計(変動の大きい電力基礎供給量)Psを算出する。変動の大きい電力基礎供給量Psをそのまま、複数の契約電力消費源に分配すべき電力供給量Pdにしてもよい。後述の通り、時々刻々と変動する電力供給量Pdに応じて複数の契約電力消費源に分配されるので正確な「発電量追従消費」を実現できる。また、変動の大きい電力基礎供給量Psの変動部分に追従した電力消費を行えばよいので、変動の大きい電力基礎供給量Psに所定値を加えた値、又は変動の大きい電力基礎供給量Psから所定値を減じた値を電力供給量Pdとしてもよい。 FIG. 10 shows an outline of the calculation contents of the power supply amount calculation means 72. As described above, the power generation amount sensors 61 to 63 constantly or regularly monitor the power generation amount by the wind power generators G21 to G23, and the value of the power generation amount that varies with time is constantly directed toward the power control unit 70. Or send regularly. A signal related to the power generation amount is transmitted to the power supply amount calculation means 72 via the power generation amount signal receiving units 75 to 77. The power supply amount calculating means 72 calculates the total amount of power generated by the wind power generators G21 to G23 (power basic supply amount having a large variation) Ps at a predetermined cycle timing (distribution timing). The power basic supply amount Ps having a large variation may be used as it is as the power supply amount Pd to be distributed to a plurality of contract power consumption sources. As will be described later, since it is distributed to a plurality of contract power consumption sources according to the power supply amount Pd that varies from moment to moment, accurate “power generation follow-up consumption” can be realized. Further, since it is sufficient to perform power consumption following the fluctuation part of the power basic supply amount Ps having a large fluctuation, a value obtained by adding a predetermined value to the power basic supply quantity Ps having a large fluctuation or a power basic supply quantity Ps having a large fluctuation. A value obtained by subtracting the predetermined value may be used as the power supply amount Pd.
 図10では、時間a-bでは電力供給量Pd=変動の大きい電力基礎供給量Psとして算出され、時間b-cでは電力供給量Pd=変動の大きい電力基礎供給量Ps+100として算出されている。 In FIG. 10, at time a−b, the power supply amount Pd = calculated as a basic power supply amount Ps with large fluctuations, and at time bc, the power supply amount Pd = calculated as a basic power supply quantity Ps + 100 with large fluctuations.
 契約電力消費源情報蓄積装置74は、電力供給量算出手段72及び電力供給分配手段73に接続されると共に、その内部に各契約電力消費源情報を蓄積している。 The contract power consumption source information storage device 74 is connected to the power supply amount calculation means 72 and the power supply distribution means 73 and stores each contract power consumption source information therein.
 図11は、契約電力消費源情報蓄積装置74の蓄積情報を説明するための図である。電力系統から供給される電力の定格消費電力に対する変動を許容する電力消費源所有者は、対象とする電力消費源に関して、予め電力供給システム100の管理者と、対象となる電力消費源、定格電力量、短期的許容範囲(電力供給システム100が行う瞬間的な電力変動を定格電力量に対して何%まで許容するか)、契約期間(電力供給システム100が行う瞬間的な電力変動を許容する時間帯、曜日等)、長期的許容範囲(契約期間を通じた累積電力変動を定格電力量に対して何%まで許容するか)等に関して、合意している。契約電力消費源情報蓄積装置74には、全ての最新の契約電力消費源に関する関連情報が蓄積され、随時更新されている。表示例として示しているものは、ID番号00003の契約電力消費源の定格電力量2000Wの電気自動車用充電器であり、短期的許容範囲として±20%、長期的許容範囲として±2.5%、契約期間として毎日23:00-6:00とし、更に、長期的許容範囲の契約期間途中の逸脱を許容、すなわち契約期間の終了時である朝6:00の時点で長期的許容範囲が±2.5%以内であればよく、契約期間の途中(例えば、朝5:00)の時点では長期的許容範囲が±2.5%以内でなくてもよい、という特約に合意している。 FIG. 11 is a diagram for explaining the storage information of the contract power consumption source information storage device 74. The owner of the power consumption source that allows the fluctuation of the power supplied from the power system with respect to the rated power consumption is related to the administrator of the power supply system 100, the target power consumption source, and the rated power in advance. Amount, short-term allowable range (to what percentage of the rated power amount the instantaneous power fluctuation performed by the power supply system 100 is allowed), contract period (allowing the instantaneous power fluctuation performed by the power supply system 100 Time zone, day of week, etc.), and long-term tolerance (up to what percentage of the rated power is allowed to accumulate power fluctuations throughout the contract period). The contract power consumption source information storage device 74 stores related information related to all the latest contract power consumption sources and is updated as needed. The display example shows a charger for an electric vehicle with a rated power of 2000 W as a contract power consumption source with ID number 00003, ± 20% as a short-term tolerance, ± 2.5% as a long-term tolerance The contract period is set to 23: 00-6: 00 every day, and further, the long-term tolerance is allowed to deviate in the middle of the contract period, that is, the long-term tolerance is ± 6 in the morning at the end of the contract period. A special agreement has been agreed that it may be within 2.5%, and the long-term tolerance may not be within ± 2.5% at the middle of the contract period (for example, 5:00 in the morning).
 電力供給分配手段73は、制御部41~43と接続されており、電力供給量算出手段72によって算出された「変動の大きい電力供給量」を、所定周期の分配タイミングで充電器81~83などの契約電力消費源に分配する機能を有する。電力供給分配手段73と制御部41~43との接続は、専用線経由、インターネット経由、無線経由のいずれであってもよい。 The power supply distribution unit 73 is connected to the control units 41 to 43, and the “power supply amount with large fluctuation” calculated by the power supply amount calculation unit 72 is converted into the chargers 81 to 83 at a distribution timing of a predetermined period. It has a function to distribute to the contract power consumption sources. The connection between the power supply distribution means 73 and the control units 41 to 43 may be via a dedicated line, via the Internet, or via radio.
 所定の周期のタイミング(分配タイミング)は、電力供給分配手段73と制御部41~43とを接続する手段(専用線経由、インターネット経由、無線経由、等)の特性によって、適宜決めればよい。例えば、200mSec毎から30Sec毎であってよい。 The timing (distribution timing) of the predetermined cycle may be determined as appropriate according to the characteristics of the means for connecting the power supply distribution means 73 and the control units 41 to 43 (via a dedicated line, via the Internet, via wireless, etc.). For example, it may be every 200 Sec to every 30 Sec.
 なお、磁気エネルギー回生スイッチ(MERS)31~33とコネクタ21~23の間には、それぞれ電力供給システム対象起動スイッチ51~53が配置される。電力供給システム対象起動スイッチ51~53は、それぞれ電力供給分配手段73に接続される。電力供給システム対象起動スイッチ51~53は、充電器81~83などの各契約電力消費源の電源がオンになったことを検知すると自動的にオンになり、それを電力供給分配手段73に伝達する。また、電力供給システム対象起動スイッチ51~53は、契約電力消費源の電源がオンになった場合であっても、オフのままにしておくことができるように構成してもよい。この場合、契約電力消費源の管理者が電力供給システム対象起動スイッチ51~53をオフにすれば、契約電力消費源を、この電力供給システム100の制御対象にして定格電力からの変動を許容することなく、定格電力にて通常使用することができる。 In addition, between the magnetic energy regeneration switches (MERS) 31 to 33 and the connectors 21 to 23, the power supply system target activation switches 51 to 53 are arranged, respectively. The power supply system target activation switches 51 to 53 are each connected to the power supply distribution means 73. The power supply system target activation switches 51 to 53 are automatically turned on when detecting that the power sources of the respective contract power consumption sources such as the chargers 81 to 83 are turned on, and transmit them to the power supply distribution means 73. To do. Further, the power supply system target activation switches 51 to 53 may be configured to remain off even when the power source of the contract power consumption source is turned on. In this case, if the administrator of the contract power consumption source turns off the power supply system target activation switches 51 to 53, the contract power consumption source is set as a control target of the power supply system 100 and variation from the rated power is allowed. And can be used normally at rated power.
 電力供給システム対象起動スイッチ51~53と電力供給分配手段73との接続は、専用線経由、インターネット経由、無線経由のいずれであってもよい。 The connection between the power supply system target activation switches 51 to 53 and the power supply distribution means 73 may be any of a dedicated line, the Internet, and a wireless connection.
 図12は、電力供給分配手段73の処理を説明するフローチャートである。
所定の周期の分配タイミング(例えば、30Sec毎に)のトリガー信号により、以下のステップがその周期で繰り返し行われる。
FIG. 12 is a flowchart for explaining the processing of the power supply distribution unit 73.
The following steps are repeatedly performed in the cycle by a trigger signal at a distribution timing of a predetermined cycle (for example, every 30 Sec).
 その時契約期間の時間内であって、かつ電力供給システム対象起動スイッチ・オンの契約電力消費源を選択(S1)する。具体的には、サブルーチンで、契約期間の時間内のもの、かつ電力供給システム対象起動スイッチ・オンのものには、それぞれフラグF1が立てられており、メインルーチンにてフラグF1が立っているものを選択する。 At that time, the contract power consumption source within the contract period and the power supply system target activation switch ON is selected (S1). Specifically, the flag F1 is set for each subroutine within the contract period and the power supply system target activation switch is ON, and the flag F1 is set in the main routine. Select.
 選択された各契約電力消費源につき、それぞれの契約期間(時間)における、前回の分配タイミング(例えば、30Sec前)までの電力の瞬間変動率Dの長時間累積値である長時間累積変動率DLcumを算出(S2)する。具体的には、例えば、DLcum=DLcum(n-1)+D(n-1)x(1/その契約電力消費源の選択されてからの時間(秒)x5)で近似計算してもよい。DLcum(n-1)は、前回の分配タイミング(例えば、30Sec前)で求めた長時間累積変動率DLcum値であり、D(n-1)は、前回の分配タイミング(例えば、30Sec前)の瞬間変動率Dである。 For each selected contract power consumption source, the long-term cumulative fluctuation rate DLcum that is the long-term cumulative value of the instantaneous fluctuation rate D of power up to the previous distribution timing (for example, 30 Sec before) in each contract period (time) Is calculated (S2). Specifically, for example, DLcum = DLcum (n−1) + D (n−1) × (1 / time (seconds) since selection of the contract power consumption source × 5) may be approximately calculated. DLcum (n-1) is the long-term cumulative fluctuation rate DLcum value obtained at the previous distribution timing (for example, 30 Sec), and D (n-1) is the previous distribution timing (for example, 30 Sec). Instantaneous fluctuation rate D.
 長時間許容変動率DLlimを算出(S3)する。具体的には、長時間許容変動率DLlim=契約長時間許容変動率DLagに設定してもよく、又は契約期間の終了時点で契約長時間許容変動率DLagに設定すると共に、契約期間の途中では契約長時間許容変動率DLagより大きな値に設定してもよい。 Calculate long-term allowable fluctuation rate DLlim (S3). Specifically, the long-term allowable variation rate DLlim may be set to the contract long-term allowable variation rate DLag, or set to the contract long-time allowable variation rate DLag at the end of the contract period, and in the middle of the contract period You may set to a bigger value than contract long time allowable fluctuation rate DLag.
 長時間累積変動率DLcumが長時間許容変動率DLlimを超えない契約電力消費源を選択(S4)し、制御対象の契約電力消費源に特定する。具体的には、サブルーチンで、長時間累積変動率DLcumと長時間許容変動率DLlimとを比較し、長時間累積変動率DLcum⊆長時間許容変動率DLlimのものにフラグF2を立て、フラグF2の立っているものを選択する。 The contract power consumption source whose long-term cumulative fluctuation rate DLcum does not exceed the long-time allowable fluctuation rate DLlim is selected (S4) and specified as the contract power consumption source to be controlled. Specifically, in a subroutine, the long-time cumulative fluctuation rate DLcum and the long-time allowable fluctuation rate DLlim are compared, and a flag F2 is set for the long-time cumulative fluctuation rate DLcum⊆long-time allowable fluctuation rate DLlim. Choose what is standing.
 また、長時間累積変動率DLcumが、前回の分配タイミング(例えば、30Sec前)における瞬間変動率Dと反対方向の場合、該当する契約電力消費源は全て選択(S5)し、制御対象の契約電力消費源に特定する。具体的には、DLcum(n-1)>0かつD(n-1)<0、又はDLcum(n-1)<0かつD(n-1)>0の場合、フラグF3を立てる。 If the long-term cumulative fluctuation rate DLcum is in the direction opposite to the instantaneous fluctuation rate D at the previous distribution timing (for example, 30 Sec), all the corresponding contract power consumption sources are selected (S5), and the contract power to be controlled is selected. Identify consumption sources. Specifically, if DLcum (n−1)> 0 and D (n−1) <0, or DLcum (n−1) <0 and D (n−1)> 0, flag F3 is set.
 制御対象となった全ての契約電力消費源の定格電力量の合計である、契約電力消費源定格消費量Pc0を算出(S6)する。 The contract power consumption source rated consumption Pc0, which is the sum of the rated power consumptions of all the contract power consumption sources that are controlled, is calculated (S6).
 電力供給量算出手段72の算出した電力供給量Pdを読み出し、制御対象の契約電力消費源が消費すべき契約電力消費源消費量(目標)Pc=電力供給量Pdと設定(S7)する。 The power supply amount Pd calculated by the power supply amount calculation means 72 is read, and the contract power consumption source consumption amount (target) Pc to be consumed by the contract power consumption source to be controlled is set as Pc = power supply amount Pd (S7).
 増減率(目標)Dtargを、契約電力消費源消費量(目標)Pc/契約電力消費源定格消費量Pc0により算出(S8)する。 Increase / decrease rate (target) Dtarget is calculated by contract power consumption source consumption (target) Pc / contract power consumption source rated consumption Pc0 (S8).
 増減率(目標)Dtargを制御対象となった全ての契約電力消費源に分配(S9)する。分配方法は、例えば、契約短時間許容変動率に応じて一律にして分配する(契約短時間許容変動率の大きい契約電力消費源は大目に傾斜配分するが、同じ契約短時間許容変動率の契約電力消費源は一律に配分)方式でもよく、又は定格消費電力が大きいほど大きく分配する方式でもよい。 The rate of change (target) Dtarget is distributed to all contracted power consumption sources that are controlled (S9). The distribution method is, for example, to distribute uniformly according to the contract short-term allowable fluctuation rate (contract power consumption sources with a large contract short-term allowable fluctuation rate are roughly distributed, but the same contract short-term allowable fluctuation rate is The contract power consumption sources may be distributed uniformly), or may be distributed more largely as the rated power consumption increases.
 瞬間変動率Dは、それぞれの短時間許容変動率Dagと比較され、短時間許容変動率Dagを超える場合は、その瞬間変動率Dを短時間許容変動率Dagに制限(S10)する。 The instantaneous fluctuation rate D is compared with each short-time allowable fluctuation rate Dag, and when the short-time allowable fluctuation rate Dag is exceeded, the instantaneous fluctuation rate D is limited to the short-time allowable fluctuation rate Dag (S10).
 各契約電力消費源の瞬間変動率Dに基づき、電力供給分配手段73より、対応する契約電力消費源の制御部(例えば、制御部41~43)に信号を伝達(S11)する。このとき、瞬間変動率Dが、前回の分配タイミング(例えば、30Sec前)の瞬間変動率D(n-1)からの変化が所定値を超えないようにしてもよい。対応する契約電力消費源の制御部(例えば、制御部41~43)は、電力供給分配手段73より伝達された瞬間変動率Dの信号に基づき、磁気エネルギー回生スイッチ(MERS)31~33のゲート位相を調整し、充電器81~83の負荷電力を制御する。この磁気エネルギー回生スイッチ(MERS)31~33のゲート位相は、次回の分配タイミング(例えば、30Sec後)の信号を受け取るまで維持され、次回の分配タイミングの瞬間変動率Dによって更新される。 Based on the instantaneous fluctuation rate D of each contract power consumption source, a signal is transmitted from the power supply distribution means 73 to the control unit (for example, the control units 41 to 43) of the corresponding contract power consumption source (S11). At this time, the change in the instantaneous variation rate D from the instantaneous variation rate D (n−1) at the previous distribution timing (for example, 30 Sec) may not exceed a predetermined value. The corresponding contract power consumption source control unit (for example, the control unit 41 to 43), based on the signal of the instantaneous fluctuation rate D transmitted from the power supply distribution means 73, the gates of the magnetic energy regenerative switches (MERS) 31 to 33 The phase is adjusted and the load power of the chargers 81 to 83 is controlled. The gate phases of the magnetic energy regenerative switches (MERS) 31 to 33 are maintained until a signal at the next distribution timing (for example, after 30 Sec) is received, and updated by the instantaneous variation rate D of the next distribution timing.
 なお、電力供給分配手段73と特定の契約電力消費源の制御部(例えば、制御部41)との通信が途絶えた場合、具体的には、特定の契約電力消費源の制御部(例えば、制御部41)が電力供給分配手段73からの瞬間変動率Dの信号を認識しない場合(例えば、連続して5回認識しない場合)、通信が途絶えたと判断して電力供給システム対象起動スイッチ51をオフにするように構成してよい。この場合、この契約電力消費源(充電器81)は、電力供給システム100の制御対象から除外され、定格電力からの変動を許容することなく、定格電力にて通常使用される。 When communication between the power supply distribution means 73 and a control unit (for example, the control unit 41) of a specific contract power consumption source is interrupted, specifically, a control unit (for example, control of a specific contract power consumption source) When the unit 41) does not recognize the signal of the instantaneous variation rate D from the power supply distribution means 73 (for example, when it does not recognize five times continuously), it is determined that communication has been interrupted and the power supply system target activation switch 51 is turned off. You may comprise. In this case, the contract power consumption source (charger 81) is excluded from the control target of the power supply system 100 and is normally used at the rated power without allowing variation from the rated power.
 上述の制御では、ステップS1で選択された全契約電力消費源につき、各分配タイミング(例えば、30Sec毎)に同時に瞬間変動率Dを算出し各契約電力消費源を制御しているが、ラウンドロビン方式により、例えば、各分配タイミング(例えば、30Sec毎)を6分割し、ステップS1で選択された全契約電力消費源を6グループ分割し、6分割された各グループと6分割された各分配タイミング(5Sec毎)とを関連付け、6分割された各分配タイミング(5Sec毎)に6分割された各グループの契約電力消費源の瞬間変動率Dを算出し、それによって各契約電力消費源を制御するように構成してもよい。このように構成すれば、各契約電力消費源から見れば電力供給分配手段73から伝達される信号は各分配タイミング(例えば、30Sec毎)でありながら、電力供給分配手段73から見れば、「発電量追従消費」のための制御は6分割された各分配タイミング(5Sec毎)にて行うことができる。 In the above-described control, the instantaneous fluctuation rate D is calculated simultaneously at each distribution timing (for example, every 30 Sec) for all contract power consumption sources selected in step S1, and each contract power consumption source is controlled. According to the method, for example, each distribution timing (for example, every 30 Sec) is divided into six, all the contract power consumption sources selected in step S1 are divided into six groups, each divided into six groups and each divided distribution timing into six groups (Every 5 Sec) is correlated, and the instantaneous fluctuation rate D of the contract power consumption source of each group divided into 6 at each distribution timing (every 5 Sec) is calculated, thereby controlling each contract power consumption source You may comprise as follows. With this configuration, the signal transmitted from the power supply distribution unit 73 from each contract power consumption source is at each distribution timing (for example, every 30 Sec), but from the power supply distribution unit 73, “power generation” Control for “quantity follow-up consumption” can be performed at each distribution timing (every 5 Sec) divided into six.
 また、電力供給量算出手段72は、増減率(目標)Dtargを監視し、増減率(目標)Dtargの累積値が所定値以下になった場合、「発電量追従消費」を行う目標となる電力供給量Pdを増大させ、増減率(目標)Dtargの累積値が所定値以上になった場合、電力供給量Pdを減少させるように制御してよい。 Further, the power supply amount calculation means 72 monitors the increase / decrease rate (target) Dtarget, and when the cumulative value of the increase / decrease rate (target) Dtarg becomes equal to or less than a predetermined value, the target power for performing “power generation follow-up consumption” When the supply amount Pd is increased and the cumulative value of the increase / decrease rate (target) Dtarg is equal to or greater than a predetermined value, the power supply amount Pd may be controlled to decrease.
 続いて、本発明の実施形態に係る電力供給システム100の動作について、図13に基づき説明する。図13は、説明のためのものであるが、電力供給システム100の時々刻々の動作を監視する画面の基本構成としてもよい。 Subsequently, the operation of the power supply system 100 according to the embodiment of the present invention will be described with reference to FIG. Although FIG. 13 is for explanation, a basic configuration of a screen for monitoring the operation of the power supply system 100 every moment may be used.
 図13は、あるタイミング(xx年xx月xx日の03時37分30秒)における制御の状態を示す。変動の大きい発電源の電力定格供給量Pd0=250MWであるが、このタイミングにおける電力供給量Pdは、電力供給量算出手段72により、Pd=235.06MWと算出されている。 FIG. 13 shows the state of control at a certain timing (03:37:30 of xx year xx month xx). The power supply amount Pd0 = 250 MW of the power generation source with a large fluctuation is calculated. The power supply amount Pd at this timing is calculated as Pd = 235.06 MW by the power supply amount calculation means 72.
 図13には、ステップS1により、そのタイミングで契約期間の時間内であって、かつ電力供給システム対象起動スイッチ・オンの契約電力消費源を選択し、制御対象となった契約電力消費源が示されている。この例では、契約電力消費源は、契約短時間許容変動率Dagが+10%から▲10%まで、+20%から▲20%まで、+20%から▲70%までの3通りが設定されている。また、契約長時間許容変動率DLagが、それぞれ、+2.0%から▲2.0%まで、+2.5%から▲2.5%まで、+3.0%から▲3.0%までが設定されている。契約短時間許容変動率Dag及び契約長時間許容変動率DLagは、それぞれ3通りに限らず、1つでも、2通りでも、又は4通り以上でもよく、またそれぞれ独立して設定することもできる。なお、契約短時間許容変動率Dag及び契約長時間許容変動率DLagは、いずれもそれぞれの契約電力消費源の定格電力量に対する増減率である。 FIG. 13 shows the contract power consumption source that is the target of control by selecting the contract power consumption source that is within the contract period at that timing and that is the power supply system target activation switch ON in step S1. Has been. In this example, the contract power consumption source is set to three types of contract short-time allowable fluctuation rate Dag from + 10% to ▲ 10%, from + 20% to ▲ 20%, and from + 20% to ▲ 70%. The contract long-term allowable fluctuation rate DLag is set from + 2.0% to -2.0%, from + 2.5% to -2.5%, and from + 3.0% to -3.0%, respectively. Has been. The contract short-time allowable variation rate Dag and the contract long-time allowable variation rate DLag are not limited to three, but may be one, two, four or more, and may be set independently. Note that the contract short-time allowable variation rate Dag and the contract long-time allowable variation rate DLag are both an increase / decrease rate with respect to the rated power amount of each contract power consumption source.
 ステップS2により、長時間累積変動率DLcumを算出し、S3により、長時間許容変動率DLlimを算出する。長時間許容変動率DLlimは、常に契約長時間許容変動率DLagに設定するものと、契約期間の途中では契約長時間許容変動率DLagより大きな値に設定するものとが混在してよい。 In step S2, the long-term cumulative fluctuation rate DLcum is calculated, and in S3, the long-time allowable fluctuation rate DLlim is calculated. The long-time allowable fluctuation rate DLlim may be set to be always set to the contract long-time allowable fluctuation rate DLag and to be set to a value larger than the contract long-time allowable fluctuation rate DLag during the contract period.
 次に、ステップS4、又はS5により、制御対象になる契約電力消費源が選択される。このタイミングにおいて制御対象になる契約電力消費源が、○で表示されている。 Next, in step S4 or S5, a contract power consumption source to be controlled is selected. The contract power consumption source to be controlled at this timing is indicated by ○.
 ステップS6により、制御対象になった契約電力消費源の定格電力量の合計である、契約電力消費源定格消費量Pc0を算出する。このタイミングでは、契約電力消費源定格消費量Pc0=252.10MWである。 In step S6, the contract power consumption source rated consumption Pc0, which is the total of the rated power consumption of the contract power consumption sources that are controlled, is calculated. At this timing, the contract power consumption source rated consumption Pc0 = 252.10 MW.
 次に、ステップS7により、制御対象の契約電力消費源が消費すべき契約電力消費源消費量(目標)Pc=電力供給量Pdと設定する。このタイミングでは、契約電力消費源消費量(目標)Pc=235.06MWである。 Next, in step S7, contract power consumption source consumption (target) Pc = power supply amount Pd to be consumed by the contract power consumption source to be controlled is set. At this timing, the contract power consumption source consumption (target) Pc = 235.06 MW.
 更に、ステップS8により、制御対象の契約電力消費源全体の増減率(目標)Dtargを算定し、このタイミングでは、増減率(目標)Dtarg=▲6.76%(93.24%)である。 Further, in step S8, the increase / decrease rate (target) Dtarget of the entire contract power consumption target to be controlled is calculated, and at this timing, the increase / decrease rate (target) Dtarget = ▲ 6.76% (93.24%).
 次に、ステップS9により、各契約電力消費源の瞬間変動率Dが分配される。この例では、契約短時間許容変動率の大きい契約電力消費源に大目に傾斜配分するが、同じ契約短時間許容変動率の契約電力消費源は一律に配分する方式を取っている。 Next, in step S9, the instantaneous fluctuation rate D of each contract power consumption source is distributed. In this example, the contract power consumption sources having a large contract short-time allowable fluctuation rate are roughly distributed to the contract power consumption sources, but the contract power consumption sources having the same contract short-time allowable fluctuation rate are uniformly distributed.
 ステップS10により、分配された各契約電力消費源の瞬間変動率Dは、それぞれの短時間許容変動率Dagと比較され、短時間許容変動率Dagを超える場合は、その瞬間変動率Dを短時間許容変動率Dagに制限される。このタイミングでは、いずれの瞬間変動率Dも短時間許容変動率Dagを超えておらず、制限は行われない。 In step S10, the distributed instantaneous fluctuation rate D of each contract power consumption source is compared with the respective short-time allowable fluctuation rate Dag. It is limited to the allowable fluctuation rate Dag. At this timing, none of the instantaneous fluctuation rates D exceeds the short-time allowable fluctuation rate Dag, and no limitation is made.
 最後に、ステップS11により、それぞれの瞬間変動率Dに基づき、対応する契約電力消費源の制御部(例えば、制御部41~43)に信号が伝達され、この信号に基づき、各契約電力消費源(充電器81~83など)に接続された磁気エネルギー回生スイッチ(MERS)31~33のゲート位相制御が行われ、各契約電力消費源(充電器81~83など)への供給電力制御が行われる。 Finally, in step S11, a signal is transmitted to the control unit (for example, control unit 41 to 43) of the corresponding contract power consumption source based on each instantaneous fluctuation rate D, and each contract power consumption source is based on this signal. Gate phase control of magnetic energy regenerative switches (MERS) 31 to 33 connected to (chargers 81 to 83, etc.) is performed, and power supply to each contract power consumption source (chargers 81 to 83, etc.) is controlled. Is called.
 このように、不安定な風力発電機G21~G23による発電量の変動分を、様々な態様の電力変動を許容する契約電力消費源を有機的に束ねる電力供給システム100によって効果的に吸収することができる。このように、この電力供給システム100によれば、高品質な発電を行う安定発電装置G11、G12、低品質な発電を行う風力発電機G21~G23、高品質な供給電力を必要とする電力消費源(コンピュータP)、低品質な供給電力で充分な電力消費源(充電器81~83)が同一の電力系統90に接続されていても、低品質な発電を行う風力発電機G21~G23の発電量変動の影響を、高品質な供給電力を要求するコンピュータPに及ばないようにできる。 In this way, the fluctuation in the amount of power generated by the unstable wind power generators G21 to G23 is effectively absorbed by the power supply system 100 that organically bundles the contract power consumption sources that allow the power fluctuation in various modes. Can do. Thus, according to this power supply system 100, stable power generators G11 and G12 that perform high-quality power generation, wind power generators G21 to G23 that perform low-quality power generation, and power consumption that requires high-quality power supply Even if the power source (computer P) and the low-quality supply power and the sufficient power consumption source (chargers 81 to 83) are connected to the same power system 90, the wind generators G21 to G23 that generate low-quality power The influence of the fluctuation in the amount of power generation can be prevented from reaching the computer P that requires high-quality supply power.
 なお、本発明は、上述の実施の形態に限定されるものではなく、当業者の知識に基づいて各種の設計変更等の変形を加えることも可能であり、そのような変形が加えられた実施形態も本発明の範囲に含まれうるものである。 The present invention is not limited to the above-described embodiment, and various modifications such as design changes can be added based on the knowledge of those skilled in the art. The form can also be included in the scope of the present invention.

Claims (14)

  1.  電力系統から供給される電力の定格消費電力に対する瞬間変動率を所定の契約短時間許容変動率まで許容する複数の契約電力消費源に供給すべき、変動の大きい電力供給量を、所定の周期の分配タイミングで算出する電力供給量算出手段と、
     前記電力供給量を前記複数の契約電力消費源に、前記所定の周期の分配タイミングにて分配する電力供給分配手段と、
     前記複数の契約電力消費源のそれぞれに接続可能に構成された複数の負荷電力調整スイッチと、
     前記複数の負荷電力調整スイッチにそれぞれ接続された制御手段であって、前記電力供給分配手段からの分配信号に基づいて、接続している前記負荷電力調整スイッチの出力電圧の大きさと電流の位相を変化させることにより、前記負荷電力調整スイッチが接続している前記契約電力消費源に供給される電力の大きさを変化させる制御手段と、を備えた電力供給システムであって、
     前記電力供給分配手段は、前記複数の負荷電力調整スイッチがそれぞれ接続された前記複数の契約電力消費源であって、前記複数の契約電力消費源のそれぞれの定格消費電力に対して前記電力系統から供給する電力の瞬間変動率の長時間累積値である長時間累積変動率が前記所定の契約短時間許容変動率より小さい所定の長時間許容変動率を超えない前記複数の契約電力消費源を選択して、前記電力供給量を、選択されたそれぞれの前記複数の契約電力消費源に前記瞬間変動率が前記所定の契約短時間許容変動率を超えないように分配する、電力供給システム。
    The power supply amount with large fluctuations to be supplied to a plurality of contract power consumption sources that allow the instantaneous fluctuation rate of the power supplied from the power grid to the rated short-term allowable fluctuation rate with respect to the rated consumption power of the specified power consumption is a predetermined cycle. Power supply amount calculating means for calculating at distribution timing;
    Power supply distribution means for distributing the power supply amount to the plurality of contract power consumption sources at a distribution timing of the predetermined period;
    A plurality of load power adjustment switches configured to be connectable to each of the plurality of contract power consumption sources;
    Control means connected to each of the plurality of load power adjustment switches, based on a distribution signal from the power supply distribution means, the magnitude of the output voltage of the connected load power adjustment switch and the phase of the current A control means for changing the magnitude of the power supplied to the contract power consumption source connected to the load power adjustment switch by changing the power supply system,
    The power supply distribution means is the plurality of contract power consumption sources to which the plurality of load power adjustment switches are connected, respectively, from the power system for the rated power consumption of each of the plurality of contract power consumption sources. The plurality of contract power consumption sources that do not exceed a predetermined long-term allowable fluctuation rate smaller than the predetermined contract short-time allowable fluctuation rate that is a long-term cumulative value of the instantaneous fluctuation rate of the supplied power are selected. Then, the power supply system distributes the power supply amount to each of the selected plurality of contract power consumption sources so that the instantaneous variation rate does not exceed the predetermined contract short-time allowable variation rate.
  2.  前記複数の契約電力消費源は、それぞれ前記所定の契約短時間許容変動率として複数の短時間許容変動率のいずれかが設定され、前記電力供給分配手段は、前記複数の契約電力消費源のそれぞれの前記短時間変動率が、設定されたそれぞれの前記所定の契約短時間許容変動率を超えないように分配する、請求の範囲第1項に記載の電力供給システム。 Each of the plurality of contract power consumption sources is set with any one of a plurality of short-time allowable fluctuation rates as the predetermined contract short-time allowable fluctuation rate, and the power supply distribution means is configured to each of the plurality of contract power consumption sources. 2. The power supply system according to claim 1, wherein the short-time fluctuation rate is distributed so as not to exceed the set predetermined contract short-time allowable fluctuation rate.
  3.  前記複数の契約電力消費源は、それぞれ前記所定の長時間許容変動率として複数の長時間許容変動率のいずれかが設定され、前記電力供給分配手段は、前記複数の契約電力消費源のそれぞれの前記長時間累積変動率が、設定されたそれぞれの前記所定の長時間許容変動率を超えない前記複数の契約電力消費源を選択する、請求の範囲第1項又は第2項のいずれか1項に記載の電力供給システム。 Each of the plurality of contract power consumption sources is set with one of a plurality of long-time allowable fluctuation rates as the predetermined long-time allowable fluctuation rate, and the power supply distribution means is configured to set each of the plurality of contract power consumption sources. The range of any one of claims 1 and 2, wherein the plurality of contract power consumption sources are selected such that the long-term cumulative fluctuation rate does not exceed the set predetermined long-term allowable fluctuation rate. The power supply system described in 1.
  4.  前記所定の長時間許容変動率は、前記複数の契約電力消費源のそれぞれの契約期間の所定の契約長時間許容変動率である、請求の範囲項1乃至請求項3のいずれか1項に記載の電力供給システム。 The predetermined long-term allowable fluctuation rate is a predetermined long-term allowable fluctuation rate for each of the contract periods of the plurality of contract power consumption sources. Power supply system.
  5.  前記所定の長時間許容変動率は、前記複数の契約電力消費源のそれぞれの契約期間の終了時点で所定の契約長時間許容変動率に設定されると共に、前記契約期間の途中では所定の契約長時間許容変動率より大きな値に設定される、請求の範囲項1乃至請求項3のいずれか1項に記載の電力供給システム。 The predetermined long-term allowable fluctuation rate is set to a predetermined long-term allowable fluctuation rate at the end of the contract period of each of the plurality of contract power consumption sources, and a predetermined contract length in the middle of the contract period. The power supply system according to any one of claims 1 to 3, wherein the power supply system is set to a value larger than the allowable time variation rate.
  6.  前記電力供給量を、前記分配タイミングにて、選択された前記複数の契約電力消費源に、選択された前記複数の契約電力消費源のそれぞれの前記瞬間変動率をそれぞれの前記所定の契約短時間許容変動率に応じて一律にして分配する、請求の範囲項1乃至請求項5のいずれか1項に記載の電力供給システム。 The power supply amount is set to the plurality of contract power consumption sources selected at the distribution timing, and the instantaneous variation rate of each of the selected contract power consumption sources is set to the predetermined contract short time. The power supply system according to any one of claims 1 to 5, wherein the power is distributed uniformly according to an allowable fluctuation rate.
  7.  前記電力供給量を、前記分配タイミングにて、選択された前記複数の契約電力消費源に、選択された前記複数の契約電力消費源のそれぞれの前記瞬間変動率をそれぞれの定格消費電力が大きいほど大きく分配する、請求の範囲項1乃至請求項5のいずれか1項に記載の電力供給システム。 The power supply amount is set to the plurality of contract power consumption sources selected at the distribution timing, and the instantaneous variation rate of each of the selected contract power consumption sources is increased as the rated power consumption increases. The power supply system according to any one of claims 1 to 5, wherein the power supply system is largely distributed.
  8.  前記電力供給量算出手段は、電力系統に接続された複数の発電電力変動の大きい発電装置の一部、又は全部に接続された複数の発電量検出手段からの出力に基づき前記電力供給量を算出する、請求の範囲項1乃至請求項7のいずれか1項に記載の電力供給システム。 The power supply amount calculation means calculates the power supply amount based on outputs from a plurality of power generation amount detection means connected to some or all of a plurality of power generation devices connected to the power grid and having large fluctuations in generated power. The power supply system according to any one of claims 1 to 7.
  9.  前記複数の契約電力消費源のそれぞれの前記瞬間変動率は、前記所定の周期における前記瞬間変動率の変化が所定値を超えないように調整される、請求の範囲項1乃至請求項8のいずれか1項に記載の電力供給システム。 9. The instantaneous fluctuation rate of each of the plurality of contract power consumption sources is adjusted such that a change in the instantaneous fluctuation rate in the predetermined period does not exceed a predetermined value. The power supply system according to claim 1.
  10.  前記負荷電力調整スイッチは、4個の逆導通型半導体スイッチにて構成されるブリッジ回路と、該ブリッジ回路の直流端子間に接続され、電流遮断時の電流の持つ磁気エネルギーを蓄積する磁気エネルギー蓄積コンデンサを備えた磁気エネルギー回生スイッチであって、前記ブリッジ回路の交流端子が前記契約電力消費源と前記電力系統にそれぞれ接続され、前記制御手段が前記各逆導通型半導体スイッチのゲートに制御信号を与えて、対角線上に位置する一方ペアの前記逆導通型半導体スイッチをオン、他方のペアの前記逆導通型半導体スイッチをオフにする動作を同時に、かつ前記電力系統の交流電源の周波数に同期して前記逆導通型半導体スイッチをオンにするペアとオフにするペアとを交互に切り替えるスイッチング動作をするように制御するとともに、前記電力供給分配手段からの信号に応じて、前記各逆導通型半導体スイッチのゲート位相を変化させ、前記交流電源に対する前記スイッチング動作の位相を変化させることにより、前記負荷電力調整スイッチの入力電圧の大きさと電流の位相を変化させる磁気エネルギー回生スイッチである、請求の範囲項1乃至請求項9のいずれか1項に記載の電力供給システム。 The load power adjustment switch is connected between a bridge circuit composed of four reverse conducting semiconductor switches and a DC terminal of the bridge circuit, and stores magnetic energy stored in the current at the time of current interruption. A magnetic energy regenerative switch comprising a capacitor, wherein the AC terminal of the bridge circuit is connected to the contract power consumption source and the power system, respectively, and the control means sends a control signal to the gate of each reverse conducting semiconductor switch. The operation of turning on the reverse conducting semiconductor switch of one pair located on the diagonal line and turning off the reverse conducting semiconductor switch of the other pair simultaneously and synchronized with the frequency of the AC power supply of the power system Switching operation for alternately switching between the pair for turning on and the pair for turning off the reverse conducting semiconductor switch. And controlling the load power by changing the gate phase of each of the reverse conducting semiconductor switches and changing the phase of the switching operation with respect to the AC power supply in accordance with a signal from the power supply distribution means. The power supply system according to any one of claims 1 to 9, wherein the power supply system is a magnetic energy regenerative switch that changes a magnitude of an input voltage and a phase of a current of the switch.
  11.  前記磁気エネルギー回生スイッチが、2個の前記逆導通型半導体スイッチ及び該逆導通型半導体スイッチに対向する2個のダイオードにより構成されたブリッジ回路と、前記2個のダイオードのそれぞれに対して並列に接続され都合2個の直列に接続された磁気エネルギー蓄積コンデンサと、を有する構成で置き換えた請求の範囲第10項に記載の電力供給システム。 The magnetic energy regenerative switch is connected in parallel to each of the two diodes, and a bridge circuit composed of two reverse conducting semiconductor switches and two diodes facing the reverse conducting semiconductor switches. 11. The power supply system according to claim 10, wherein the power supply system is replaced with a configuration having two magnetic energy storage capacitors connected in series and connected in series.
  12.  前記磁気エネルギー回生スイッチが、逆直列に接続された2個の前記逆導通型半導体スイッチと、直列に接続された2個の磁気エネルギー蓄積コンデンサと、を並列に接続し、該2個の逆導通型半導体スイッチの中点と該2個の磁気エネルギー蓄積コンデンサの中点同士に結線された配線と、を有する構成で置き換えた請求の範囲第10項に記載の電力供給システム。 The magnetic energy regenerative switch connects two reverse conducting semiconductor switches connected in anti-series and two magnetic energy storage capacitors connected in series in parallel, and the two reverse conducting switches 11. The power supply system according to claim 10, wherein the power supply system is replaced with a configuration having a middle point of the type semiconductor switch and a wiring connected to the middle points of the two magnetic energy storage capacitors.
  13.  前記複数の発電電力変動の大きい発電装置は、太陽光発電装置、風力発電装置、又は地熱発電装置のうち少なくともいずれか1つである、請求の範囲項1乃至請求項12のいずれか1項に記載の電力供給システム。 13. The power generation device according to claim 1, wherein the plurality of power generation devices having large fluctuations in generated power are at least one of a solar power generation device, a wind power generation device, and a geothermal power generation device. The power supply system described.
  14.  前記複数の契約電力消費源のそれぞれは、電気自動車、プラグインハイブリッド自動車、電動アシスト自転車等の電気車両の充電、電気冷蔵庫、電気冷凍庫、エアコン、洗濯機、温水器用、揚水ポンプ、圧縮ポンプのうち少なくともいずれか1つである、請求の範囲項1乃至請求項13のいずれか1項に記載の電力供給システム。
     
    Each of the plurality of contract power consumption sources is an electric vehicle, a plug-in hybrid vehicle, an electric vehicle such as an electric assist bicycle, an electric refrigerator, an electric freezer, an air conditioner, a washing machine, a water heater, a pump, a compression pump The power supply system according to any one of claims 1 to 13, wherein the power supply system is at least one of them.
PCT/JP2008/069379 2008-10-24 2008-10-24 Electric power supply system WO2010046998A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2008/069379 WO2010046998A1 (en) 2008-10-24 2008-10-24 Electric power supply system
JP2009548516A JP4445040B1 (en) 2008-10-24 2008-10-24 Power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/069379 WO2010046998A1 (en) 2008-10-24 2008-10-24 Electric power supply system

Publications (1)

Publication Number Publication Date
WO2010046998A1 true WO2010046998A1 (en) 2010-04-29

Family

ID=42119058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/069379 WO2010046998A1 (en) 2008-10-24 2008-10-24 Electric power supply system

Country Status (2)

Country Link
JP (1) JP4445040B1 (en)
WO (1) WO2010046998A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103904749A (en) * 2014-04-15 2014-07-02 苏州能谷电力科技有限公司 Electric automobile orderly charging control method with wind power output fluctuation considered
CN106786977A (en) * 2017-01-22 2017-05-31 中南大学 A kind of charging dispatching method of electric automobile charging station
CN107036279A (en) * 2017-04-17 2017-08-11 昆明理工大学 A kind of industrial solar heating engineering system with wind-force device for supplying
WO2018215071A1 (en) * 2017-05-25 2018-11-29 Abb Schweiz Ag Energy storage system
WO2022167071A1 (en) * 2021-02-03 2022-08-11 Hitachi Energy Switzerland Ag A series compensation unit and a method for controlling power in an electric power line

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102324752B (en) * 2011-06-17 2013-11-13 辽宁省电力有限公司 Wind power generation-combined ordered charge and discharge coordinated control system of pure electric vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006288079A (en) * 2005-03-31 2006-10-19 Toshiba Corp Power equipment connection device, power supply system, power equipment connection method, and power system operation method
JP2006353079A (en) * 2005-05-17 2006-12-28 Tokyo Institute Of Technology Power system stabilization system utilizing communication line
JP2006352933A (en) * 2005-06-13 2006-12-28 Hitachi Ltd Power supply control method and system
JP2007058676A (en) * 2005-08-25 2007-03-08 Tokyo Institute Of Technology Alternating voltage control device by leading current
JP2008193817A (en) * 2007-02-06 2008-08-21 Tokyo Institute Of Technology Ac/dc power conversion equipment using magnetic energy regenerating switch

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006288079A (en) * 2005-03-31 2006-10-19 Toshiba Corp Power equipment connection device, power supply system, power equipment connection method, and power system operation method
JP2006353079A (en) * 2005-05-17 2006-12-28 Tokyo Institute Of Technology Power system stabilization system utilizing communication line
JP2006352933A (en) * 2005-06-13 2006-12-28 Hitachi Ltd Power supply control method and system
JP2007058676A (en) * 2005-08-25 2007-03-08 Tokyo Institute Of Technology Alternating voltage control device by leading current
JP2008193817A (en) * 2007-02-06 2008-08-21 Tokyo Institute Of Technology Ac/dc power conversion equipment using magnetic energy regenerating switch

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103904749A (en) * 2014-04-15 2014-07-02 苏州能谷电力科技有限公司 Electric automobile orderly charging control method with wind power output fluctuation considered
CN103904749B (en) * 2014-04-15 2016-02-24 苏州能谷电力科技有限公司 A kind ofly consider the orderly charge control method of the electric automobile of wind power output fluctuation
CN106786977A (en) * 2017-01-22 2017-05-31 中南大学 A kind of charging dispatching method of electric automobile charging station
CN106786977B (en) * 2017-01-22 2019-12-13 中南大学 Charging scheduling method of electric vehicle charging station
CN107036279A (en) * 2017-04-17 2017-08-11 昆明理工大学 A kind of industrial solar heating engineering system with wind-force device for supplying
CN107036279B (en) * 2017-04-17 2020-01-10 昆明理工大学 Industrial solar hot water engineering system with wind power supply device
WO2018215071A1 (en) * 2017-05-25 2018-11-29 Abb Schweiz Ag Energy storage system
WO2022167071A1 (en) * 2021-02-03 2022-08-11 Hitachi Energy Switzerland Ag A series compensation unit and a method for controlling power in an electric power line

Also Published As

Publication number Publication date
JPWO2010046998A1 (en) 2012-03-15
JP4445040B1 (en) 2010-04-07

Similar Documents

Publication Publication Date Title
US12003107B2 (en) Method and apparatus for storing and depleting energy
US10886754B2 (en) Electric energy storage and a battery management system used therein
EP1986306B1 (en) Power supply system
KR101147202B1 (en) Power storage apparatus
JP4445040B1 (en) Power supply system
US20130099581A1 (en) Energy Storage System
KR101147205B1 (en) Apparatus and method of controlling high current, and power storage apparatus using the same
CN103168404A (en) Storage battery system and method for controlling same
JP2013085459A (en) Power storage system and control method therefor
KR102308628B1 (en) Hybrid Power Conversion System and Method for Determining Maximum Efficiency Using the Same
JP2007295718A (en) Power supply system
KR101106413B1 (en) Inverter of energy storage system
JP2023138478A (en) Method of controlling battery energy storage system of electric power system with high dynamic load
WO2015001767A1 (en) Control device and power management system
Zhao et al. A daily optimization method for a PV-battery microgrid considering the battery lifetime and time-of-use pricing
US20110206953A1 (en) Method for controlling sodium-sulfur battery
KR20150085227A (en) The control device and method for Energy Storage System
KR102415745B1 (en) Electrical energy supply unit and its control method
JP2012151977A (en) Load leveling system
KR101042746B1 (en) Bidirectional inverter of new and renewable energy storage system
JP2005048207A (en) Hydrogen production system
CN114467238A (en) Energy storage device connected to a plurality of power buses
WO2019123529A1 (en) Storage battery system and operating method therefor
KR102535198B1 (en) Maximum Power Point Tracking Control System for Photovoltaic Energy Storage System
KR102591100B1 (en) A energy flow and voltage control method for the distributed DC nanogrid system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2009548516

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08877564

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 3845/DELNP/2011

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 08877564

Country of ref document: EP

Kind code of ref document: A1