JP2005048207A - Hydrogen production system - Google Patents

Hydrogen production system Download PDF

Info

Publication number
JP2005048207A
JP2005048207A JP2003203532A JP2003203532A JP2005048207A JP 2005048207 A JP2005048207 A JP 2005048207A JP 2003203532 A JP2003203532 A JP 2003203532A JP 2003203532 A JP2003203532 A JP 2003203532A JP 2005048207 A JP2005048207 A JP 2005048207A
Authority
JP
Japan
Prior art keywords
hydrogen production
power
storage battery
production device
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003203532A
Other languages
Japanese (ja)
Inventor
Kiyonori Okura
清徳 大倉
Hiroshi Arase
央 荒瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Original Assignee
Hitachi Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP2003203532A priority Critical patent/JP2005048207A/en
Publication of JP2005048207A publication Critical patent/JP2005048207A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen production system where a storage battery is provided between a solar battery and a hydrogen production device, and electric power can be fed from the storage battery in accordance with the demands of the hydrogen production device. <P>SOLUTION: A storage 3 and a controller 4 for controlling storage amount of electricity and input power to a hydrogen production device 5 are incorporated into the space between a solar battery 1 and the hydrogen production device 5, so that power supply in accordance with the demands of the hydrogen production device 5 is made possible. Further, the output power of the solar battery 1 is predicted based on the variation data on the value of solar radiation at a plant building site, and from the value, the scale of the hydrogen production device 5 and the volume of the storage battery 3 are decided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、太陽光を利用して太陽電池で発電した太陽光発電電力によって水素を製造する水素製造システムに関する。
【0002】
【従来の技術】
【特許文献1】特開2002―180281号公報
太陽光発電を利用した水素製造装置は例えば、上記特許文献1に記載されている。従来技術によれば自然エネルギーである太陽光発電電力は天候により発電量が刻々と変動し水素発生量の変動幅も大きいので、利用者に必要とされる太陽光発電装置、水素製造装置、水素貯蔵設備が大型化する。その対策として、商用電力を併用し、その電力コスト、水素利用先での水素消費量及び水素貯蔵量に応じた水素製造装置の運転制御を行う制御装置を備えた水素の利用システムを提案している。すなわち、水素利用者が太陽光発電での変動分の吸収策として商用電力を利用するのであるが、商用電力から需要家が熱源や燃料電池の燃料として水素を製造するのでは、エネルギーの効率的な利用法とはならない。
【0003】
【発明が解決しようとする課題】
このように個々の水素利用者が水素の製造装置及び貯蔵装置を備えたシステムで、商用電力を利用せずに自然エネルギーの1つである太陽光発電電力のみで水素を製造しようとすると、太陽電池パネル、水素製造装置は大型化せざるを得ない状況となり、設備コストが増大するという問題点がある。
【0004】
本発明の目的は、太陽電池と水素製造装置の間に蓄電池を設け水素製造装置の需要に応じて蓄電池から電力を供給できる水素製造システムを提供することにある。
【0005】
【課題を解決するための手段】
前記課題を解決するためには、太陽電池パネルの設置地点における日照データを基に、あるプラント運転期間における太陽電池パネルの出力を算出して、その発電電力量と必要水素製造量から水素製造装置の規模と稼動時間を決定し、蓄電池容量はその発電電力量程度とする。
【0006】
このようにすることにより、最適な設備規模を持ち、低コストでの水素製造が行えるシステムの構築が可能となる。また、太陽光発電設備を商用電力系統に接続し、電力計を経由させて発電電力を送電する。水素製造装置も同じく商用電力系統に接続されており、太陽電池パネルでの発電電力と同量を受電して水素製造を行う。これにより、太陽光発電が容易に行える条件を持った地域に発電設備を配置し、水素の消費地付近に水素製造装置を設置することでより効率良く水素製造を行うことも可能となる。
【0007】
【発明の実施の形態】
本発明の実施の形態を図1に基づいて説明する。
【0008】
図1において、太陽電池1で発電された電力は制御装置4を経て蓄電池3に貯蔵される。太陽電池1と制御装置4の間には太陽電池の保守・点検時に利用する接続箱2が設けられている。接続箱2には直流開閉器や落雷時のサージ電圧から太陽電池パネルを保護するサージ電圧吸収素子、太陽電池1に電流が逆流するのを防止する逆流防止ダイオードが収納されている。
【0009】
水素製造装置5で必要な電力は制御装置4を経て、水素製造装置5の定格電圧及び電流で供給される。制御装置4は水素製造装置5の各種運転モードを選択できる。運転モードとしては次のようなものがある。まず、一例目は水素製造装置5の運転開始時刻の指定である。これは蓄電池3の充電量によらず指定可能であり、運転終了時刻の指定をしない場合は蓄電池3が過放電状態になるまで運転を継続する。二例目は蓄電池3の充電量により水素製造装置5の運転開始を決定するものである。例えば、蓄電池電圧がある値以上になったら水素製造装置5の運転を開始するという制御を行う。三例目は太陽電池1の出力を蓄電池3でフォローするものである。これは、太陽電池1の出力電力だけでは水素製造装置5の消費電力を補いきれない場合に、蓄電池3の電力を利用して連続的に水素製造を行うものである。
【0010】
以上のような運転モードのもとに、水素製造装置5では入力電力を用いた純水の電気分解により水素を発生させる。
【0011】
制御装置4の一例を図2に示す。
【0012】
図2において、太陽電池1の出力電圧は太陽電池電圧計測回路6で測定して演算処理装置(CPU)12に送られる。CPU12は太陽電池1の出力電圧と予め設定されている水素製造装置5への供給電圧を比較する。太陽電池1の出力電圧が高い場合、水素製造装置5で必要な電力は出力回路11を介して供給され、余剰電力は充電回路7を介して蓄電池3に蓄電される。
【0013】
一方、水素製造装置5への供給電圧の方が高い場合、不足分の電力は蓄電池3から放電回路10及び出力回路11を介して水素製造装置5に供給される。また、運転の開始及び終了時間を設定する場合はタイマー9を使用する。蓄電池3の過充電及び過放電は蓄電池電圧計測回路8で蓄電池3の電圧を測定することで監視する。
【0014】
図3に蓄電池3の代わりに商用電力系統15をバッファとして利用する例を示す。
【0015】
図3において、広範囲に亘って太陽電池1が設置可能であったり、日射が強い地域など、効率良く太陽光発電が行える地域で発電された電力は外部の商用電力系統15と接続され、発電電力はその商用電力系統15に送電される。商用電力系統15には水素製造装置5も接続されている。
【0016】
太陽電池1と商用電力系統15の間や商用電力系統15と水素製造装置5の間には電力計13及びインバータ14が設けられている。電力計13は入出力電力を計測し、また、インバータ14は直流電力を交流電力に変換する。水素製造装置5に供給される電力は太陽電池1で発電され、商用電力系統15に送電された電力分となる。水素製造装置5の給電電力は太陽電池1の出力変化に拘らず予め設定した任意期間内で発電量と同量となるように制御装置4で調整する。
【0017】
次に、水素製造装置5の規模と蓄電池3の容量について説明する。
【0018】
水素製造装置5が24時間連続して水素製造を行う場合、夜間は太陽電池1で発電が行われないため、蓄電池3の電力で水素製造を行うことになる。その場合、夜間の水素製造装置5における電力消費量が蓄電池3の蓄電量以上であると連続的に水素を製造することが不可能となる。そこで、1日の日射量が1年の内で最大となる時期の太陽光発電量をもとに、ある運転期間において目標の水素量が製造可能となるように蓄電池3の容量と水素製造装置5の規模を決定する必要がある。
【0019】
以下に、太陽電池1の1日の発電量から水素製造装置5の規模と蓄電池3の容量について説明する。図4は1日の太陽電池1の出力変動を表す特性図である。
図4の縦軸は設置地域における太陽電池出力で、横軸は時間である。図中のYは日射量が最大となる夏至における太陽電池出力特性、Yは1日の平均発電電力を表している。
【0020】
蓄電池3は供給電力量A以上であれば昼間の余剰電力を全て貯蔵して、夜間の水素製造に利用することが可能となる。また、水素製造装置5への入力電力は平均発電電力Y以下であれば24時間一定の割合で水素製造が可能となる。具体例として、夏至付近の1日の日射量が約6.67kWh/mで、太陽電池1の面積が1mとすると、太陽電池1の変換効率が10%の場合、発電電力量は約0.67kWhとなる。この電力量で24時間水素製造を行うには、消費電力が0.028kW以下の水素製造装置5を利用すれば良いことになる。
【0021】
また、1mの太陽電池パネル1が0.028kW発電するには0.28kWh/mの日射量が必要となるため、日射量がそれ以下の時間帯では蓄電池3の蓄電電力を利用することになる。日射量が0.28kWh/m以下の時間帯が1日に14時間あると仮定すると、蓄電容量が0.39kWh以上の蓄電池3を使用しなければならない、ということになる。
【0022】
次に、水素製造装置5の規模や蓄電池3の容量を最大日射量が得られる時期の日射データに基づかずに決めた場合のシステム運転例を示す。
【0023】
まず、一例目は太陽電池1の発電電力によらず、常に一定の割合で水素製造を行う方式である。この場合、太陽電池出力が十分得られる時間帯は一定量の水素を連続的に製造し、余剰電力は蓄電池3に蓄電する。発電量が不足する時間帯に水素製造を行う場合は、発電電力と蓄電電力を併用して必要とする量の水素を連続的に、もしくは蓄電電力量がなくなるまで製造し続ける。発電が不可能な夜間に水素製造を行う場合は、蓄電電力を利用して、電力がなくなるまで水素製造を継続する。
【0024】
二例目は、蓄電電力量に依存した水素製造を行う方式である。ある程度の時間、水素製造装置5が最も効率の良い状態で運転可能となるだけの電力量が蓄電されたら水素製造を開始し、蓄電量が不足してきたら水素製造装置5の運転を停止し、十分な蓄電量が得られるまでは太陽電池1からの出力で充電を行うようにする。
【0025】
【発明の効果】
本発明によれば、これまで各設備が大規模化する傾向にあった水素製造システムにおいて、蓄電池の容量や水素製造装置の規模を太陽光発電設備の出力を最大限利用するのに最適なものにする事が可能となる。これにより、設備コストの低減やそれに伴う製造コストの低下が実現できる。
【0026】
また、太陽光発電に適した環境のもとで発電された電力を、商用電力系統を利用することにより、遠隔地の水素消費地に設置した水素製造装置で利用可能となる。
【図面の簡単な説明】
【図1】本発明の一実施例を示す構成図である。
【図2】図1における制御装置の一例詳細構成図である。
【図3】本発明の他の実施例を示す構成図である。
【図4】本発明を説明するための特性図である。
【符号の説明】
1 太陽電池
2 接続箱
3 蓄電池
4 制御装置
5 水素製造装置
6 太陽電池電圧計測回路
7 充電回路
8 蓄電池電圧計測回路
9 タイマー
10 放電回路
11 出力回路
12 CPU
13 電力計
14 インバータ
15 商用電力系統
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrogen production system that produces hydrogen using photovoltaic power generated by a solar cell using sunlight.
[0002]
[Prior art]
[Patent Document 1] Japanese Patent Laid-Open No. 2002-180281 A hydrogen production apparatus using solar power generation is described in, for example, Patent Document 1 described above. According to the conventional technology, the amount of generated power of solar power generated by natural energy fluctuates every moment according to the weather, and the fluctuation range of the amount of hydrogen generation is large. Therefore, solar power generation devices, hydrogen production devices, hydrogen The storage facilities will become larger. As a countermeasure, we propose a hydrogen utilization system with a control device that controls the operation of the hydrogen production device according to the power cost, the hydrogen consumption at the hydrogen usage destination, and the hydrogen storage amount. Yes. In other words, hydrogen users use commercial power as a measure to absorb fluctuations in solar power generation, but if consumers produce hydrogen from commercial power as a heat source or fuel for fuel cells, energy efficiency It will not be a proper usage.
[0003]
[Problems to be solved by the invention]
In this way, when individual hydrogen users attempt to produce hydrogen using only photovoltaic power, which is one of natural energy, without using commercial power in a system equipped with hydrogen production equipment and storage equipment, The battery panel and the hydrogen production apparatus have to be increased in size, and there is a problem that the equipment cost increases.
[0004]
The objective of this invention is providing the storage battery between a solar cell and a hydrogen production apparatus, and providing the hydrogen production system which can supply electric power from a storage battery according to the demand of a hydrogen production apparatus.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the output of the solar cell panel in a certain plant operation period is calculated on the basis of the sunshine data at the installation point of the solar cell panel, and the hydrogen production device is obtained from the generated power amount and the required hydrogen production amount. The scale and operating time of the battery are determined, and the storage battery capacity is about the amount of generated power.
[0006]
By doing so, it is possible to construct a system that has an optimum facility scale and can produce hydrogen at low cost. Moreover, a photovoltaic power generation facility is connected to a commercial power system, and generated power is transmitted via a power meter. The hydrogen production apparatus is also connected to the commercial power system, and receives the same amount of power generated by the solar cell panel to produce hydrogen. Accordingly, it is possible to perform hydrogen production more efficiently by arranging power generation equipment in an area where conditions for easily performing solar power generation and installing a hydrogen production apparatus near the hydrogen consumption area.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIG.
[0008]
In FIG. 1, the electric power generated by the solar cell 1 is stored in the storage battery 3 via the control device 4. A junction box 2 is provided between the solar cell 1 and the control device 4 for use in maintenance and inspection of the solar cell. The junction box 2 contains a DC switch, a surge voltage absorbing element that protects the solar cell panel from a surge voltage during a lightning strike, and a backflow prevention diode that prevents current from flowing back into the solar cell 1.
[0009]
Electric power necessary for the hydrogen production device 5 is supplied through the control device 4 at the rated voltage and current of the hydrogen production device 5. The control device 4 can select various operation modes of the hydrogen production device 5. There are the following operation modes. First, the first example is the designation of the operation start time of the hydrogen production apparatus 5. This can be specified regardless of the amount of charge of the storage battery 3, and if the operation end time is not specified, the operation is continued until the storage battery 3 is in an overdischarged state. In the second example, the operation start of the hydrogen production device 5 is determined by the charge amount of the storage battery 3. For example, when the storage battery voltage becomes a certain value or higher, control is performed to start the operation of the hydrogen production device 5. In the third example, the output of the solar cell 1 is followed by the storage battery 3. In this case, when the output power of the solar battery 1 alone cannot supplement the power consumption of the hydrogen production device 5, hydrogen production is continuously performed using the power of the storage battery 3.
[0010]
Under the operation mode as described above, the hydrogen production apparatus 5 generates hydrogen by electrolysis of pure water using input power.
[0011]
An example of the control device 4 is shown in FIG.
[0012]
In FIG. 2, the output voltage of the solar cell 1 is measured by the solar cell voltage measuring circuit 6 and sent to the arithmetic processing unit (CPU) 12. The CPU 12 compares the output voltage of the solar battery 1 with a preset supply voltage to the hydrogen production apparatus 5. When the output voltage of the solar cell 1 is high, electric power necessary for the hydrogen production device 5 is supplied via the output circuit 11, and surplus electric power is stored in the storage battery 3 via the charging circuit 7.
[0013]
On the other hand, when the supply voltage to the hydrogen production device 5 is higher, the insufficient power is supplied from the storage battery 3 to the hydrogen production device 5 via the discharge circuit 10 and the output circuit 11. Further, when setting the start and end times of the operation, the timer 9 is used. Overcharge and overdischarge of the storage battery 3 are monitored by measuring the voltage of the storage battery 3 with the storage battery voltage measuring circuit 8.
[0014]
FIG. 3 shows an example in which the commercial power system 15 is used as a buffer instead of the storage battery 3.
[0015]
In FIG. 3, the electric power generated in an area where the solar cell 1 can be installed over a wide range or where solar power generation can be performed efficiently, such as an area where the solar radiation is strong, is connected to an external commercial power system 15 to generate electric power. Is transmitted to the commercial power system 15. A hydrogen production apparatus 5 is also connected to the commercial power system 15.
[0016]
A wattmeter 13 and an inverter 14 are provided between the solar cell 1 and the commercial power system 15 or between the commercial power system 15 and the hydrogen production apparatus 5. The wattmeter 13 measures input / output power, and the inverter 14 converts DC power into AC power. The electric power supplied to the hydrogen production device 5 is generated by the solar cell 1 and becomes the electric power transmitted to the commercial power system 15. Regardless of the output change of the solar cell 1, the power supply power of the hydrogen production device 5 is adjusted by the control device 4 so as to be the same amount as the power generation amount within a preset arbitrary period.
[0017]
Next, the scale of the hydrogen production apparatus 5 and the capacity of the storage battery 3 will be described.
[0018]
When the hydrogen production device 5 performs hydrogen production continuously for 24 hours, power generation is not performed by the solar cell 1 at night, and therefore hydrogen production is performed by the power of the storage battery 3. In that case, it is impossible to continuously produce hydrogen when the power consumption in the hydrogen production apparatus 5 at night is equal to or greater than the amount of electricity stored in the storage battery 3. Therefore, the capacity of the storage battery 3 and the hydrogen production device so that the target amount of hydrogen can be produced in a certain operation period based on the amount of solar power generation at the time when the daily solar radiation becomes the maximum in one year. The scale of 5 needs to be determined.
[0019]
Below, the scale of the hydrogen production apparatus 5 and the capacity | capacitance of the storage battery 3 are demonstrated from the electric power generation amount of the solar cell 1 per day. FIG. 4 is a characteristic diagram showing the output fluctuation of the solar cell 1 for one day.
The vertical axis in FIG. 4 is the solar cell output in the installation area, and the horizontal axis is time. In the figure, Y 1 represents the solar cell output characteristics at the summer solstice where the amount of solar radiation is maximum, and Y 2 represents the daily average generated power.
[0020]
If the storage battery 3 is greater than or equal to the supplied power amount A, it can store all surplus power during the day and use it for nighttime hydrogen production. The input power to the hydrogen production device 5 becomes capable of hydrogen produced in 24 hours a constant rate if the average generated power Y 2 or less. As a specific example, assuming that the daily solar radiation in the vicinity of the summer solstice is about 6.67 kWh / m 2 and the area of the solar cell 1 is 1 m 2 , when the conversion efficiency of the solar cell 1 is 10%, the generated power is about 0.67 kWh. In order to perform hydrogen production for 24 hours with this amount of electric power, the hydrogen production apparatus 5 with power consumption of 0.028 kW or less may be used.
[0021]
Further, since the solar cell panel 1 of 1 m 2 is required insolation 0.28kWh / m 2 to the power generation 0.028KW, utilizing the stored power of the storage battery 3 is in the amount of solar radiation less hours become. Assuming that the solar radiation amount is 0.28 kWh / m 2 or less for 14 hours per day, the storage battery 3 having a storage capacity of 0.39 kWh or more must be used.
[0022]
Next, an example of system operation when the scale of the hydrogen production device 5 and the capacity of the storage battery 3 are determined without being based on the solar radiation data at the time when the maximum solar radiation amount can be obtained will be shown.
[0023]
First, the first example is a method in which hydrogen production is always performed at a constant rate regardless of the generated power of the solar cell 1. In this case, a certain amount of hydrogen is continuously produced during a time period in which sufficient solar cell output is obtained, and surplus power is stored in the storage battery 3. When hydrogen production is performed during a time period when the amount of power generation is insufficient, the required amount of hydrogen is continuously produced until the amount of stored power is exhausted by using the generated power and the stored power together. When hydrogen production is performed at night when power generation is not possible, the hydrogen production is continued using the stored power until the power is exhausted.
[0024]
The second example is a method of performing hydrogen production depending on the amount of stored power. When a sufficient amount of power is stored for a certain period of time, the hydrogen production device 5 starts operating in the most efficient state, and hydrogen production is started. When the amount of power storage is insufficient, the operation of the hydrogen production device 5 is stopped and sufficient. Charging is performed with the output from the solar cell 1 until a sufficient amount of electricity is obtained.
[0025]
【The invention's effect】
According to the present invention, in a hydrogen production system that has tended to increase the scale of each facility so far, the capacity of the storage battery and the scale of the hydrogen production apparatus are optimal for making maximum use of the output of the photovoltaic power generation facility. It becomes possible to make it. Thereby, reduction of equipment cost and the fall of the manufacturing cost accompanying it can be implement | achieved.
[0026]
Moreover, the electric power generated in an environment suitable for solar power generation can be used in a hydrogen production apparatus installed in a remote hydrogen consumption area by using a commercial power system.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an embodiment of the present invention.
FIG. 2 is a detailed configuration diagram of an example of the control device in FIG. 1;
FIG. 3 is a block diagram showing another embodiment of the present invention.
FIG. 4 is a characteristic diagram for explaining the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Solar cell 2 Connection box 3 Storage battery 4 Control apparatus 5 Hydrogen production apparatus 6 Solar cell voltage measurement circuit 7 Charging circuit 8 Storage battery voltage measurement circuit 9 Timer 10 Discharge circuit 11 Output circuit 12 CPU
13 Power meter 14 Inverter 15 Commercial power system

Claims (1)

電気分解により水素を発生する水素製造装置と、太陽光を用いて発電を行い前記水素製造装置に給電する太陽電池と、前記水素製造装置に電力を供給する蓄電池と、前記太陽電池の給電電力制御と前記蓄電池の充電制御を行う制御装置から構成され、前記制御装置は、前記太陽電池の出力電圧を測定する太陽電池電圧計測手段と、前記太陽電池の出力により前記蓄電池を充電する充電手段と、前記蓄電池の電圧を測定して過充電や過放電を防止する蓄電池電圧計測手段と、前記蓄電池の電力を放電させる放電手段と、前記太陽電池の出力電力及び前記蓄電池の出力電力を前記水素製造装置に印加する出力手段と、前記水素製造装置への電力供給時間を設定するタイマーと、前記太陽電池の出力電力と前記水素製造装置の必要電力を比較する演算手段とを有することを特徴とする太陽光を利用した水素製造システム。A hydrogen production device that generates hydrogen by electrolysis, a solar cell that generates power using sunlight and supplies power to the hydrogen production device, a storage battery that supplies power to the hydrogen production device, and a feed power control for the solar cell And a control device that performs charging control of the storage battery, the control device measuring the output voltage of the solar battery, charging means for charging the storage battery by the output of the solar battery, Storage battery voltage measuring means for measuring the voltage of the storage battery to prevent overcharge and overdischarge, discharge means for discharging the power of the storage battery, output power of the solar battery and output power of the storage battery to the hydrogen production device An output means for applying power to the hydrogen generator, a timer for setting a power supply time to the hydrogen production device, and an output power for comparing the output power of the solar cell and the required power of the hydrogen production device. Hydrogen production system utilizing sunlight, characterized in that a means.
JP2003203532A 2003-07-30 2003-07-30 Hydrogen production system Pending JP2005048207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003203532A JP2005048207A (en) 2003-07-30 2003-07-30 Hydrogen production system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003203532A JP2005048207A (en) 2003-07-30 2003-07-30 Hydrogen production system

Publications (1)

Publication Number Publication Date
JP2005048207A true JP2005048207A (en) 2005-02-24

Family

ID=34262849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003203532A Pending JP2005048207A (en) 2003-07-30 2003-07-30 Hydrogen production system

Country Status (1)

Country Link
JP (1) JP2005048207A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008063615A (en) * 2006-09-07 2008-03-21 Hitachi Zosen Corp Water electrolytic apparatus
JP2011208242A (en) * 2010-03-30 2011-10-20 Jfe Steel Corp Hydrogen production apparatus using waste heat and method for producing hydrogen using waste heat
CN105112947A (en) * 2015-09-14 2015-12-02 攀枝花学院 Device for direct-current electrolysis by using solar power generation
JP2019029050A (en) * 2017-07-25 2019-02-21 東京瓦斯株式会社 Electrolysis system
WO2019189501A1 (en) * 2018-03-27 2019-10-03 旭化成株式会社 Design device, method, program, planning device, control device, and hydrogen production system
CN113122879A (en) * 2021-04-16 2021-07-16 阳光新能源开发有限公司 Hydrogen production control method and hydrogen production system
CN113790394A (en) * 2021-08-24 2021-12-14 阳光新能源开发有限公司 Hydrogen production and hydrogenation system, control method and control device
KR20230029025A (en) * 2021-08-23 2023-03-03 현대엔지니어링 주식회사 Method of calculating the capacity of renewable energy facility to keep the output of renewable energy constant

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008063615A (en) * 2006-09-07 2008-03-21 Hitachi Zosen Corp Water electrolytic apparatus
JP2011208242A (en) * 2010-03-30 2011-10-20 Jfe Steel Corp Hydrogen production apparatus using waste heat and method for producing hydrogen using waste heat
CN105112947A (en) * 2015-09-14 2015-12-02 攀枝花学院 Device for direct-current electrolysis by using solar power generation
JP2019029050A (en) * 2017-07-25 2019-02-21 東京瓦斯株式会社 Electrolysis system
WO2019189501A1 (en) * 2018-03-27 2019-10-03 旭化成株式会社 Design device, method, program, planning device, control device, and hydrogen production system
JPWO2019189501A1 (en) * 2018-03-27 2020-12-03 旭化成株式会社 Design equipment, methods, programs, planning equipment, controls, and hydrogen production systems
JP7256790B2 (en) 2018-03-27 2023-04-12 旭化成株式会社 DESIGN APPARATUS, METHOD AND PROGRAM
CN113122879A (en) * 2021-04-16 2021-07-16 阳光新能源开发有限公司 Hydrogen production control method and hydrogen production system
KR20230029025A (en) * 2021-08-23 2023-03-03 현대엔지니어링 주식회사 Method of calculating the capacity of renewable energy facility to keep the output of renewable energy constant
KR102542292B1 (en) * 2021-08-23 2023-06-12 현대엔지니어링 주식회사 Method of calculating the capacity of renewable energy facility to keep the output of renewable energy constant
CN113790394A (en) * 2021-08-24 2021-12-14 阳光新能源开发有限公司 Hydrogen production and hydrogenation system, control method and control device
CN113790394B (en) * 2021-08-24 2023-06-30 阳光新能源开发股份有限公司 Hydrogen production hydrogenation system, control method and control device

Similar Documents

Publication Publication Date Title
JP5584763B2 (en) DC power distribution system
JP5175451B2 (en) Power supply system
WO2017026287A1 (en) Control device, energy management device, system, and control method
US9343926B2 (en) Power controller
JP5824614B2 (en) Charge / discharge system
JP5395251B2 (en) Hybrid energy storage system, renewable energy system including the storage system, and method of use thereof
El Fathi et al. Performance parameters of a standalone PV plant
KR100993224B1 (en) Charging equipment of hybrid generating system
JP2003079054A (en) Solar power generation system having storage battery
KR101794837B1 (en) The charge and discharge of photovoltaic power generation the control unit system
KR20150106694A (en) Energy storage system and method for driving the same
KR20140111118A (en) Solar-cell system having maximum power saving function and method thereof
JP5841279B2 (en) Electric power charging device
JP2013066278A (en) Power system supporting system
KR20150085227A (en) The control device and method for Energy Storage System
JP2005048207A (en) Hydrogen production system
KR100961834B1 (en) Apparatus and method of controlling power supply driving by multiple power source
JP2006060984A (en) Power supply device
KR101077880B1 (en) emergency power source supply system using multiple power generation
JP2007300728A (en) Power generating device
WO2013046509A1 (en) Power supply system and power supply method
Adouane et al. Monitoring and smart management for hybrid plants (photovoltaic–generator) in Ghardaia
EP3472907A1 (en) A system and method for controlling devices in a power distribution network
Misak et al. Results from hybrid off-grid power system operation analysis
KR102333046B1 (en) Charge-discharge amount control device of energy storage system and control method