KR102535198B1 - Maximum Power Point Tracking Control System for Photovoltaic Energy Storage System - Google Patents

Maximum Power Point Tracking Control System for Photovoltaic Energy Storage System Download PDF

Info

Publication number
KR102535198B1
KR102535198B1 KR1020220041646A KR20220041646A KR102535198B1 KR 102535198 B1 KR102535198 B1 KR 102535198B1 KR 1020220041646 A KR1020220041646 A KR 1020220041646A KR 20220041646 A KR20220041646 A KR 20220041646A KR 102535198 B1 KR102535198 B1 KR 102535198B1
Authority
KR
South Korea
Prior art keywords
battery
converter module
transformer
power generation
converter
Prior art date
Application number
KR1020220041646A
Other languages
Korean (ko)
Inventor
이상훈
신민호
Original Assignee
주식회사 에너밸리
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에너밸리 filed Critical 주식회사 에너밸리
Priority to KR1020220041646A priority Critical patent/KR102535198B1/en
Application granted granted Critical
Publication of KR102535198B1 publication Critical patent/KR102535198B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/285Single converters with a plurality of output stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • H02J2300/26The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/14Energy storage units

Abstract

본 발명은 태양광발전 ESS시스템용 MPPT 제어시스템에 관한 것으로서, 태양광발전(PV)을 이용하여 배터리를 충전하는 태양광발전 ESS(Energy Storage System; 에너지저장장치) 시스템에 있어서, 태양광발전모듈로부터 생산된 전기에너지(DC; 직류)를 공급받아 배터리 측 충전 가능한 DC(직류)로 변환하여 배터리에 충전하기 위한 DC/DC컨버터;를 포함하되, 상기 DC/DC컨버터는 제1 DC/DC컨버터모듈과 제2 DC/DC 컨버터모듈로 2개를 구비하여 병렬 연결 및 풀브릿지 회로로 구성하며, 제1 DC/DC컨버터모듈은 제1변압기를 포함하고, 제2 DC/DC 컨버터모듈은 제2변압기를 포함하는 것을 특징으로 한다.
본 발명에 따르면, 충전시 전압차가 크게 변동되는 태양광발전 ESS시스템에 있어 전력변환부 측 효율을 증대시킬 수 있고, 저전력으로 동작될 때와 전압차가 크거나 작을 때 발생되는 손실을 최소화할 수 있으며, 배터리 측 충전효율을 향상시킬 수 있을 뿐만 아니라 태양광발전(PV)에서의 풀 파워(full power) 발전을 유도할 수 있는 태양광발전 ESS시스템용 MPPT 제어시스템을 제공할 수 있다.
The present invention relates to an MPPT control system for a solar power generation ESS system, and in a solar power generation ESS (Energy Storage System) system for charging a battery using photovoltaic power generation (PV), a solar power module A DC/DC converter for receiving electric energy (DC; direct current) produced from the battery and converting it into DC (direct current) that can be charged on the battery side, and charging the battery; wherein the DC/DC converter is a first DC/DC converter. A module and a second DC/DC converter module are provided and configured as a parallel connection and full bridge circuit, the first DC/DC converter module includes a first transformer, and the second DC/DC converter module includes a second DC/DC converter module. Characterized in that it includes a transformer.
According to the present invention, in a photovoltaic power generation ESS system in which the voltage difference fluctuates greatly during charging, the efficiency of the power conversion unit can be increased, and losses generated when operating at low power and when the voltage difference is large or small can be minimized, , It is possible to provide an MPPT control system for a photovoltaic ESS system capable of inducing full power generation in photovoltaic power generation (PV) as well as improving battery-side charging efficiency.

Description

태양광발전 ESS시스템용 MPPT 제어시스템{Maximum Power Point Tracking Control System for Photovoltaic Energy Storage System}MPPT control system for solar power generation ESS system {Maximum Power Point Tracking Control System for Photovoltaic Energy Storage System}

본 발명은 태양광발전을 이용하여 배터리를 충전하는 ESS(Energy Storage System; 에너지저장장치) 시스템에 관한 기술로서, 더욱 상세하게는 변압기의 턴비 매칭을 이용한 MPPT(Maximum Power Point Tracking; 최대 출력점 추적) 제어기술을 전력변환장치에 접목함으로써 전압변동이 높은 고전압 태양광발전 ESS시스템 측 배터리의 충전 효율을 높일 수 있도록 한 태양광발전 ESS시스템용 MPPT 제어시스템에 관한 것이다.The present invention relates to an ESS (Energy Storage System) system for charging a battery using photovoltaic power generation, and more specifically, MPPT (Maximum Power Point Tracking) using transformer turn ratio matching; maximum output point tracking ) It is about an MPPT control system for a solar power generation ESS system that can increase the charging efficiency of a battery in a high voltage solar power generation ESS system with high voltage fluctuation by grafting control technology to a power converter.

최근 지구상의 환경문제가 대두되면서 탄소중립정책의 수립 및 신재생에너지를 이용한 전기에너지의 사용을 권장하고 있다.Recently, as environmental problems on earth have emerged, the establishment of a carbon-neutral policy and the use of electric energy using renewable energy are recommended.

이에, 최근에는 전기에너지의 안정적인 공급 및 관리를 위해 에너지저장장치, 즉 ESS시스템을 접목하고 있으며, 이러한 ESS시스템은 배터리팩에 전기에너지를 저장했다가 필요에 따라 전력을 공급하는 것으로서, 에너지효율을 높이는데 활용되고 있다.Accordingly, in recent years, an energy storage device, that is, an ESS system, has been grafted for the stable supply and management of electric energy. This ESS system stores electric energy in a battery pack and supplies power as needed, which improves energy efficiency. It is used to elevate.

이와 같이, ESS(Energy Storage System; 에너지저장장치) 시스템은 각종 산업시설 등에 설치되어 필요 전력을 공급하기 위한 고정형 설비뿐만 아니라 이동형 등에도 활용되고 있다.As described above, ESS (Energy Storage System) systems are installed in various industrial facilities and are used not only for fixed facilities for supplying necessary power but also for mobile devices.

한편, 신재생에너지의 대표적인 예로서, 태양광에너지를 이용하여 발전하는 태양광발전(PV; Photovoltaic)을 들 수 있는데, 앞서 기술한 바와 같이 배터리팩에 전기에너지를 저장했다가 필요에 따라 전력을 공급하는 ESS시스템과 연결하여 태양광에너지를 이용하여 생산된 전기에너지를 배터리에 축적하여 저장하고 있다.On the other hand, as a representative example of new and renewable energy, photovoltaic (PV), which generates power using solar energy, can be cited. As described above, electrical energy is stored in a battery pack and then used as needed. Connected to the supplied ESS system, the electrical energy produced using solar energy is accumulated and stored in the battery.

이와 같은 태양광발전 ESS 시스템은 이동형 또는 고정형 중 독립형 발전에 많이 사용되고 있으며, 태양광에너지를 이용하여 발전된 전기에너지를 ESS시스템의 배터리 측 충전 가능한 DC(직류)로 변환하여 배터리에 충전하기 위한 DC/DC 전력변환장치를 포함한다.Such a solar power generation ESS system is widely used for stand-alone power generation, either mobile or stationary. Includes a DC power converter.

이때, 종래 DC/DC 전력변환장치는 입출력 전압차이를 고려하지 않고 태양광의 발전량을 계산하여 전력 변환을 수행하며, 태양광에서 발전된 전력을 최대한 사용할 수 있도록 제어한다.At this time, the conventional DC/DC power converter performs power conversion by calculating the amount of solar power generation without considering the input/output voltage difference, and controls to use the power generated from the solar light to the maximum.

하지만, 종래 태양광발전 ESS 시스템에 있어 DC/DC 전력변환장치에서는 입출력 전압차이에 의한 전력변환 손실이 큰 문제점이 있었다.However, in the conventional solar power generation ESS system, the DC/DC power converter has a problem in that the power conversion loss due to the input/output voltage difference is large.

또한, 종래의 상술한 문제점을 해결하기 위해 변압기 턴비가 높은 DC/DC 전력변환장치를 사용하기도 하나, 여전히 입출력 전압 차이에 따른 전력변환 손실이 발생되는 문제점을 갖고 있으며, 개선이 요구되는 실정에 있다.In addition, in order to solve the above-mentioned problems of the prior art, a DC / DC power converter with a high transformer turns ratio is used, but it still has a problem that power conversion loss occurs due to the difference in input and output voltage, and improvement is required. .

부연하여, 종래 태양광발전 ESS시스템에 적용된 DC/DC 전력변환장치는 태양광발전에 따른 전력변환시 MPPT(Maximum Power Point Tracking; 최대 출력점 추적) 제어를 수행하고 있으나, MPPT 제어시 동작되는 낮은 전압과 배터리 SOC(State Of Charge; 충전상태)가 높을 때 전압의 턴비로 구성되어 있음에 의해 손실이 크게 발생되고 있다.To elaborate, the DC/DC power converter applied to the conventional solar power generation ESS system performs MPPT (Maximum Power Point Tracking) control when converting power according to solar power generation, but the low voltage operated during MPPT control And when the battery SOC (State Of Charge) is high, the loss is large because it is composed of the turn ratio of the voltage.

즉, 종래에는 입출력시 높은 전압 차이로 인하여 변압기 턴비의 손실이 크게 발생되며, 태양광 발전이 낮을 경우에는 DC/DC 전력변환장치의 설계용량보다 적게 사용되어 저전력 전력변환에 의한 손실도 크게 발생되는 문제점을 갖고 있다. That is, in the prior art, due to the high voltage difference at the time of input and output, the loss of the turn ratio of the transformer is large, and when the photovoltaic power generation is low, less than the design capacity of the DC / DC power converter is used, resulting in a large loss due to low power power conversion have a problem

한편, 본 발명 관련한 종래 선행기술문헌을 살펴보면, 국내등록특허 제10-2161812호에 개시된 '유효 전력 제어를 이용한 태양광 발전 시스템의 MPPT 제어를 위한 장치 및 방법', 국내공개특허 제10-2021-0147108호에 개시된 '직류 전력량계 및 태양광 발전의 MPPT 제어 방법' 등을 참조할 수 있다.On the other hand, looking at the prior art literature related to the present invention, 'apparatus and method for MPPT control of photovoltaic power generation system using active power control' disclosed in Korean Patent Registration No. 10-2161812, Korean Patent Publication No. 10-2021- Reference may be made to 'MPPT control method of direct current watt-hour meter and solar power generation' disclosed in No. 0147108.

대한민국 등록특허공보 제10-2161812호Republic of Korea Patent Registration No. 10-2161812 대한민국 공개특허공보 제10-2021-0147108호Republic of Korea Patent Publication No. 10-2021-0147108

본 발명은 상술한 문제점 등을 개선 및 이를 감안하여 안출된 것으로서, 변압기의 턴비 매칭을 이용한 MPPT(Maximum Power Point Tracking; 최대 출력점 추적) 제어기술을 전력변환장치에 접목함으로써 전압변동이 높은 고전압 태양광발전 ESS시스템 측 배터리의 충전 효율을 높일 수 있도록 한 태양광발전 ESS시스템용 MPPT 제어시스템을 제공하는데 그 목적이 있다.The present invention has been devised in consideration of and improvement of the above-mentioned problems, and by applying MPPT (Maximum Power Point Tracking) control technology using transformer turn ratio matching to a power converter, a high-voltage solar system with high voltage fluctuation The purpose is to provide an MPPT control system for a photovoltaic ESS system that can increase the charging efficiency of the battery of the photovoltaic ESS system.

본 발명은 태양광발전(PV)에서 발전된 전력을 ESS시스템 측 배터리에 충전하는 전력변환장치의 전력변환에 따른 효율을 향상시킬 수 있도록 하며 전력손실을 줄일 수 있도록 한 태양광발전 ESS시스템용 MPPT 제어시스템을 제공하는데 그 목적이 있다.The present invention is an MPPT control for a photovoltaic ESS system that can improve the efficiency of power conversion of a power conversion device that charges the power generated in photovoltaic power generation (PV) to a battery on the ESS system side and reduce power loss Its purpose is to provide a system.

본 발명은 변압기의 턴비가 다른 2개의 변압기를 갖는 2개의 풀브릿지 DC/DC컨버터로 전력변환장치를 구성함으로써 ESS시스템 측 배터리의 충전에 따른 전압과 태양광발전(PV) 측 태양광패널의 온도에 따른 전력량간의 입출력 전압 차이에 의한 운전 제어를 통해 전력변환효율을 증대시킴과 더불어 배터리 충전효율을 향상시킬 수 있도록 한 태양광발전 ESS시스템용 MPPT 제어시스템을 제공하는데 그 목적이 있다.The present invention configures a power converter with two full-bridge DC/DC converters having two transformers with different turn ratios, so that the voltage according to the charging of the battery on the ESS system and the temperature of the solar panel on the photovoltaic (PV) side The purpose is to provide an MPPT control system for a photovoltaic power generation ESS system that can improve battery charging efficiency as well as increase power conversion efficiency through operation control based on the difference in input/output voltage between the amount of power according to.

본 발명은 태양광발전(PV)에서의 풀 파워(full power) 발전을 유도할 수 있도록 하면서 배터리 측 충전효율을 향상시킬 수 있도록 한 태양광발전 ESS시스템용 MPPT 제어시스템을 제공할 수 있다.The present invention can provide an MPPT control system for a photovoltaic power generation ESS system that can improve battery-side charging efficiency while inducing full power generation in photovoltaic power generation (PV).

상기의 목적을 달성하기 위한 본 발명에 따른 태양광발전 ESS시스템용 MPPT 제어시스템은, 태양광발전(PV)을 이용하여 배터리를 충전하는 태양광발전 ESS(Energy Storage System; 에너지저장장치) 시스템에 있어서, 태양광발전모듈로부터 생산된 전기에너지(DC; 직류)를 공급받아 배터리 측 충전 가능한 DC(직류)로 변환하여 배터리에 충전하기 위한 DC/DC컨버터;를 포함하되, 상기 DC/DC컨버터는, 제1 DC/DC컨버터모듈과 제2 DC/DC 컨버터모듈로 2개를 구비하여 병렬 연결 및 풀브릿지 회로로 구성하며, 제1 DC/DC컨버터모듈은 제1변압기를 포함하고, 제2 DC/DC 컨버터모듈은 제2변압기를 포함하는 것을 특징으로 한다.MPPT control system for solar power generation ESS system according to the present invention for achieving the above object is a solar power generation ESS (Energy Storage System; Energy Storage System) system for charging a battery using photovoltaic power generation (PV) In the present invention, a DC / DC converter for receiving electrical energy (DC; direct current) produced from the photovoltaic module and converting it into battery-side chargeable DC (direct current) to charge the battery; including, the DC / DC converter , The first DC / DC converter module and the second DC / DC converter module are provided with two, configured in parallel connection and full bridge circuit, the first DC / DC converter module includes a first transformer, and the second DC The /DC converter module is characterized in that it includes a second transformer.

본 발명에 있어, 상기 제1 DC/DC컨버터모듈은, 태양광발전모듈과 제1변압기에 연결되는 제1MOSFET회로부와, 제1MOSFET회로부에 입력측이 연결되고 출력측이 배터리에 연결되는 제1변압기, 및 제1변압기의 출력측과 배터리에 연결되는 제1정류회로부를 포함하고; 상기 제2 DC/DC컨버터모듈은, 태양광발전모듈과 제2변압기에 연결되는 제2MOSFET회로부와, 제2MOSFET회로부에 입력측이 연결되고 출력측이 배터리에 연결되는 제2변압기, 및 제2변압기의 출력측과 배터리에 연결되는 제2정류회로부를 포함하며; 상기 제1 및 제2 MOSFET회로부 각각은 4개의 MOSFET에 매칭시켜 다이오드 및 콘덴서를 연결한 구성이고, 상기 제1 및 제2 정류회로부는 4개의 다이오드를 연결한 구성인 것을 특징으로 한다.In the present invention, the first DC / DC converter module includes a first MOSFET circuit unit connected to the photovoltaic power generation module and a first transformer, a first transformer having an input side connected to the first MOSFET circuit unit and an output side connected to a battery, and a first rectifier circuit part connected to the output side of the first transformer and the battery; The second DC/DC converter module includes a second MOSFET circuit part connected to the photovoltaic module and the second transformer, a second transformer having an input side connected to the second MOSFET circuit part and an output side connected to a battery, and an output side of the second transformer. and a second rectifier circuit connected to the battery; Each of the first and second MOSFET circuit units is configured by matching four MOSFETs and connecting diodes and capacitors, and the first and second rectifying circuit units are configured by connecting four diodes.

본 발명에 있어, 상기 제1변압기와 제2변압기는 서로 다른 턴비를 갖는 구성인 것을 특징으로 한다.In the present invention, the first transformer and the second transformer are characterized in that they have different turn ratios.

본 발명에 있어, 상기 제1 DC/DC컨버터모듈은 태양광 발전량을 MPPT 제어시 저하되는 최저전압을 기준으로 하고 출력은 배터리 SOC(충전상태) 기준 100%일 때의 전압을 턴비로 제1변압기 턴비를 갖도록 구성하고. 상기 제2 DC/DC컨버터모듈은 태양광 발전시 최대전압과 출력은 SOC(충전상태) 80% 구간의 전압으로 제2변압기 턴비를 갖도록 구성하는 것을 특징으로 한다.In the present invention, the first DC / DC converter module is based on the lowest voltage that is reduced during MPPT control of the amount of solar power generation, and outputs the voltage when the battery SOC (state of charge) is 100% as a turn ratio. Configured to have a turnby. The second DC/DC converter module is characterized in that it is configured to have a second transformer turn ratio with a maximum voltage and an output voltage of an 80% SOC (state of charge) section during solar power generation.

본 발명에 있어, 상기 제1 DC/DC컨버터모듈은 제1변압기 턴비에 있어 태양광발전모듈에 연결되는 입력 측 : ESS 배터리에 연결되는 출력 측 = 1 : 8의 턴비를 갖고, 상기 제2 DC/DC컨버터모듈은 제2변압기 턴비에 있어 태양광발전모듈에 연결되는 입력 측 : ESS 배터리에 연결되는 출력 측 = 1 : 3의 턴비를 갖는 것을 특징으로 한다.In the present invention, the first DC / DC converter module has a turn ratio of the input side connected to the photovoltaic module: the output side connected to the ESS battery = 1: 8 in the turn ratio of the first transformer, and the second DC The /DC converter module is characterized in that it has a turn ratio of the input side connected to the photovoltaic module: the output side connected to the ESS battery = 1: 3 in the turns ratio of the second transformer.

본 발명에 있어, 상기 DC/DC컨버터 측 입출력 특성에 따라서 전압차이 만큼 상기 제1 DC/DC컨버터모듈과 제2 DC/DC 컨버터모듈 중 어느 하나를 독립적으로 단독 운전 또는 2개 모두를 병렬 운전하도록 동작 제어하는 것을 특징으로 한다.In the present invention, either the first DC/DC converter module or the second DC/DC converter module is independently operated alone or both are operated in parallel by a voltage difference according to the input/output characteristics of the DC/DC converter. It is characterized by operation control.

본 발명에 있어, 태양광발전모듈에서의 발전량이 적어서 MPPT 제어시 전압이 낮게 되고 배터리 측 충전량이 높을 경우, 상기 제1 DC/DC컨버터모듈과 제2 DC/DC 컨버터모듈 중 변압기 턴비가 높은 어느 하나를 단독 동작시켜 배터리에 충전을 수행하는 것을 특징으로 한다.In the present invention, when the amount of power generation in the photovoltaic module is low and the voltage is low during MPPT control and the amount of charge on the battery side is high, whichever of the first DC/DC converter module and the second DC/DC converter module has a high transformer turn ratio It is characterized in that the battery is charged by operating one independently.

본 발명에 있어, 태양광발전모듈에서의 발전효율이 높게 발생되어 MPPT 제어시 전압 강하가 높지 않을 경우, 상기 제1 DC/DC컨버터모듈과 제2 DC/DC 컨버터모듈 중 변압기 턴비가 낮은 어느 하나를 단독 동작시켜 배터리에 충전을 수행하는 것을 특징으로 한다.In the present invention, when the power generation efficiency in the photovoltaic module is high and the voltage drop is not high during MPPT control, one of the first DC/DC converter module and the second DC/DC converter module has a low transformer turns ratio. It is characterized in that the battery is charged by operating independently.

본 발명에 있어, 태양광발전모듈에서의 발전효율이 높고 발전량이 많아서 높은 전력으로 충전이 요구되는 경우, 상기 제1 DC/DC컨버터모듈과 제2 DC/DC 컨버터모듈 모두를 동작시켜 배터리에 충전을 수행하는 것을 특징으로 한다.In the present invention, when the photovoltaic module has high power generation efficiency and a large amount of power generation, charging with high power is required by operating both the first DC/DC converter module and the second DC/DC converter module to charge the battery. It is characterized by performing.

본 발명에 있어, 상기 제1 DC/DC컨버터모듈과 제2 DC/DC 컨버터모듈 모두를 동작시켜 배터리에 충전을 수행하되, 태양광발전모듈에서의 발전상태 또는 배터리에서의 충전상태에 따라 상기 제1 DC/DC컨버터모듈과 제2 DC/DC 컨버터모듈 각각에 있어 게이트 입력신호 제어로 각 변압기의 1차측 턴수 출력 대 2차측 턴수 출력을 가변 제어하는 것을 특징으로 한다.In the present invention, the battery is charged by operating both the first DC/DC converter module and the second DC/DC converter module, and the battery is charged according to the state of power generation in the photovoltaic module or the state of charge in the battery. In each of the first DC/DC converter module and the second DC/DC converter module, the number of turns output on the primary side of each transformer versus the output on the secondary side is variably controlled by controlling the gate input signal.

본 발명에 있어, 상기 제1 DC/DC컨버터모듈과 제2 DC/DC 컨버터모듈 측 각각에 있어 게이트 입력신호 제어로 각 변압기의 1차측 턴수 출력 대 2차측 턴수 출력을 가변 제어하되, 양측 출력비를 1 : 9 내지 9 : 1 범위로 가변 제어하는 것을 특징으로 한다.In the present invention, in each of the first DC/DC converter module and the second DC/DC converter module, gate input signal control variably controls the output of the number of turns on the primary side of each transformer to the number of turns on the secondary side of each transformer, and the output ratio of both sides is It is characterized by variable control in the range of 1: 9 to 9: 1.

본 발명에 따르면, 변압기의 턴비 매칭을 이용한 MPPT(Maximum Power Point Tracking; 최대 출력점 추적) 제어기술을 전력변환장치에 접목함으로써 전압변동이 높은 고전압 태양광발전 ESS시스템 측 배터리의 충전 효율을 높일 수 있는 태양광발전 ESS시스템용 MPPT 제어시스템을 제공할 수 있다.According to the present invention, by incorporating MPPT (Maximum Power Point Tracking) control technology using transformer turns ratio matching into a power converter, the charging efficiency of a high-voltage solar power generation ESS system battery with high voltage fluctuation can be improved. It is possible to provide an MPPT control system for a photovoltaic power generation ESS system.

본 발명에 따르면, 태양광발전(PV)에서 발전된 전력을 ESS시스템 측 배터리에 충전하는 전력변환장치의 전력변환에 따른 효율을 향상시킬 수 있으며 전력손실을 줄일 수 있는 태양광발전 ESS시스템용 MPPT 제어시스템을 제공할 수 있다.According to the present invention, MPPT control for a solar power generation ESS system that can improve efficiency according to power conversion of a power conversion device that charges the power generated in photovoltaic power generation (PV) to a battery on the ESS system side and reduce power loss system can be provided.

본 발명에 따르면, 변압기의 턴비가 다른 2개의 변압기를 갖는 2개의 풀브릿지 DC/DC컨버터로 전력변환장치를 구성함으로써 ESS시스템 측 배터리의 충전에 따른 전압과 태양광발전(PV) 측 태양광패널의 온도에 따른 전력량간의 입출력 전압 차이에 의한 운전 제어를 통해 전력변환효율을 증대시킴과 더불어 배터리 충전효율을 향상시킬 수 있는 태양광발전 ESS시스템용 MPPT 제어시스템을 제공할 수 있다.According to the present invention, by configuring a power converter with two full-bridge DC / DC converters having two transformers with different turn ratios, the voltage according to the charging of the battery on the ESS system side and the solar panel on the photovoltaic (PV) side It is possible to provide an MPPT control system for a photovoltaic ESS system that can improve battery charging efficiency as well as increase power conversion efficiency through operation control by the difference in input and output voltage between the amount of power according to the temperature of the temperature.

본 발명에 따르면, 충전시 전압차가 크게 변동되는 태양광발전 ESS시스템에 있어 전력변환부 측 효율을 증대시킬 수 있으며, 저전력으로 동작될 때와 전압차가 크거나 작을 때 발생되는 손실을 최소화할 수 있는 태양광발전 ESS시스템용 MPPT 제어시스템을 제공할 수 있다.According to the present invention, in a photovoltaic power generation ESS system in which the voltage difference fluctuates greatly during charging, the efficiency of the power conversion unit can be increased, and the loss generated when operated at low power and when the voltage difference is large or small can be minimized. MPPT control system for solar power generation ESS system can be provided.

본 발명에 따르면, 태양광발전(PV)에서의 풀 파워(full power) 발전을 유도할 수 있고, 배터리 충전효율을 향상시킬 수 있는 태양광발전 ESS시스템용 MPPT 제어시스템을 제공할 수 있다.According to the present invention, it is possible to provide an MPPT control system for a photovoltaic ESS system capable of inducing full power generation from photovoltaic (PV) and improving battery charging efficiency.

본 발명에 따르면, 입출력 전압 차이가 크게 발생되어 전압차이에 의한 전력변환 손실이 큰 DC전력을 갖는 분야 중 태양광뿐만 아니라 풍력, 배터리 to 배터리 등의 입력전압이 변동되면서 배터리를 충전하는 충전기분야에서 적용이 가능하다.According to the present invention, in the field of DC power where the input/output voltage difference is large and the power conversion loss due to the voltage difference is large, in the charger field that charges the battery as the input voltage fluctuates, such as solar power, wind power, battery to battery, etc. can be applied

도 1은 본 발명의 실시예에 따른 태양광발전 ESS시스템용 MPPT 제어시스템을 나타낸 구성도이다.
도 2는 발명의 실시예에 따른 태양광발전 ESS시스템용 MPPT 제어시스템에 있어 높은 변압기 턴비에서의 단독 운전모드를 설명하기 위해 나타낸 도면이다.
도 3은 발명의 실시예에 따른 태양광발전 ESS시스템용 MPPT 제어시스템에 있어 낮은 변압기 턴비에서의 단독 운전모드를 설명하기 위해 나타낸 도면이다.
도 4는 발명의 실시예에 따른 태양광발전 ESS시스템용 MPPT 제어시스템에 있어 2개의 DC/DC컨버터모듈을 모두 사용하는 병렬 운전모드를 설명하기 위해 나타낸 도면이다.
1 is a configuration diagram showing an MPPT control system for a photovoltaic ESS system according to an embodiment of the present invention.
2 is a diagram for explaining a single operation mode at a high transformer turns ratio in the MPPT control system for a photovoltaic ESS system according to an embodiment of the present invention.
3 is a diagram illustrating a single operation mode at a low transformer turns ratio in the MPPT control system for a photovoltaic ESS system according to an embodiment of the present invention.
4 is a diagram illustrating a parallel operation mode using both DC/DC converter modules in the MPPT control system for a photovoltaic ESS system according to an embodiment of the present invention.

본 발명에 대해 첨부한 도면을 참조하여 바람직한 실시예를 설명하면 다음과 같으며, 이와 같은 상세한 설명을 통해서 본 발명의 목적과 구성 및 그에 따른 특징들을 보다 잘 이해할 수 있게 될 것이다.Preferred embodiments of the present invention will be described with reference to the accompanying drawings, and through this detailed description, the purpose and configuration of the present invention and the characteristics thereof will be better understood.

도 1 내지 도 4는 본 발명의 실시예에 따른 태양광발전 ESS시스템용 MPPT 제어시스템을 설명하기 위해 나타낸 도면들이다.1 to 4 are diagrams for explaining an MPPT control system for a photovoltaic ESS system according to an embodiment of the present invention.

본 발명의 실시예에 따른 태양광발전 ESS시스템용 MPPT 제어시스템은 도 1에 나타낸 바와 같이, 태양광발전(PV)을 이용하여 배터리를 충전하는 태양광발전 ESS(Energy Storage System; 에너지저장장치) 시스템에 있어서, 태양광발전모듈(10)로부터 생산된 전기에너지(DC; 직류)를 공급받아 ESS 배터리(20) 측 충전 가능한 DC(직류)로 변환하여 배터리(20)에 충전하기 위한 DC/DC컨버터(100)를 포함하는 구성으로 이루어진다.As shown in FIG. 1, the MPPT control system for a photovoltaic ESS system according to an embodiment of the present invention is a photovoltaic ESS (Energy Storage System) that charges a battery using photovoltaic power generation (PV). In the system, DC / DC for charging the battery 20 by receiving electrical energy (DC; direct current) produced from the photovoltaic module 10 and converting it into DC (direct current) that can be charged on the ESS battery 20 side It consists of a configuration including the converter 100.

상기 DC/DC컨버터(100)는 제1 DC/DC컨버터모듈(110)과 제2 DC/DC 컨버터모듈(120)로 2개를 구비하여 이들을 병렬 연결하는 풀브릿지 회로로 구성한다.The DC/DC converter 100 includes a first DC/DC converter module 110 and a second DC/DC converter module 120, and is configured as a full bridge circuit connecting them in parallel.

상기 제1 DC/DC컨버터모듈(110)과 제2 DC/DC 컨버터모듈(120)은 각각 서로 다른 턴비를 갖는 제1 및 제2 변압기(112)(122)를 포함하는 구성을 갖는다.The first DC/DC converter module 110 and the second DC/DC converter module 120 each include first and second transformers 112 and 122 having different turn ratios.

상기 태양광발전모듈(10)은 상기 DC/DC컨버터(100)의 입력 측에 연결되고, 상기 ESS 배터리(20)는 상기 DC/DC컨버터(100)의 출력 측에 연결되며, 태양광발전모듈(10)로부터 생산된 전기에너지(DC; 직류)를 직류 변환하여 ESS 배터리(20)로 충전하는 작업을 수행한다.The photovoltaic module 10 is connected to the input side of the DC/DC converter 100, the ESS battery 20 is connected to the output side of the DC/DC converter 100, and the photovoltaic module The electric energy (DC; direct current) produced from (10) is converted into direct current and charged to the ESS battery (20).

상기 제1 DC/DC컨버터모듈(110)과 제2 DC/DC 컨버터모듈(120)은 각각 변압기(112)(122)를 포함하는 동일한 회로 구성을 갖되, 상기 제1 및 제2 변압기(112)(122) 측 입력과 출력에 대한 턴비를 서로 다르게 한 구성을 갖게 할 수 있다.The first DC/DC converter module 110 and the second DC/DC converter module 120 have the same circuit configuration including transformers 112 and 122, respectively, and the first and second transformers 112 It is possible to have a configuration in which turn ratios for the (122) side input and output are different from each other.

상기 제1 및 제2 변압기(112)(122) 각각은 입력측이 4개의 MOSFET에 매칭시켜 다이오드 및 콘덴서를 연결 구성한 제1 및 제2 MOSFET회로부(111)(121)에 매칭 연결되고, 출력측이 4개의 다이오드를 연결 구성한 제1 및 제2 정류회로부(113)(123)에 매칭 연결되게 구성할 수 있다.The first and second transformers 112 and 122 are matched and connected to the first and second MOSFET circuit parts 111 and 121 configured by connecting diodes and capacitors by matching the input side to four MOSFETs, and the output side has 4 It may be configured to be matched and connected to the first and second rectifier circuit units 113 and 123 configured by connecting two diodes.

이때, 상기 제1 및 제2 MOSFET회로부(111)(121)는 태양광발전모듈(10)에 연결되고, 상기 제1 및 제2 정류회로부(113)(123)는 ESS 배터리(20)에 연결된다.At this time, the first and second MOSFET circuit parts 111 and 121 are connected to the photovoltaic module 10, and the first and second rectifier circuit parts 113 and 123 are connected to the ESS battery 20 do.

여기에서, 상기 제1 및 제2 MOSFET회로부(111)(121)에서는 게이트 입력신호 제어(PWM 제어)를 통해 제1 및 제2 변압기(112)(122) 측 각각의 1차측과 2차측 출력비(턴수 출력)를 가변 제어하는 기능을 수행할 수 있다.Here, in the first and second MOSFET circuit parts 111 and 121, the primary side and the secondary side output ratio of the first and second transformers 112 and 122, respectively, through gate input signal control (PWM control) ( turn number output) can be performed.

구체적으로, 상기 제1 DC/DC컨버터모듈(110)은 태양광 발전량을 MPPT 제어시 저하되는 최저전압을 기준으로 하고 출력은 배터리 SOC(충전상태) 기준 100%일 때의 전압을 턴비로 제1변압기(112) 턴비를 갖도록 구성할 수 있다.Specifically, the first DC/DC converter module 110 sets the amount of photovoltaic power generation based on the lowest voltage that is reduced during MPPT control, and outputs the voltage when the battery SOC (state of charge) is 100% as a turn ratio. The transformer 112 may be configured to have a turns ratio.

상기 제2 DC/DC컨버터모듈(120)은 태양광 발전시 최대전압과 출력은 SOC(충전상태) 80% 구간의 전압으로 제2변압기 턴비를 갖도록 구성할 수 있다.The second DC/DC converter module 120 may be configured to have a second transformer turns ratio with a maximum voltage and an output voltage of an 80% SOC (state of charge) section during photovoltaic power generation.

일 예로서, 상기 제1 DC/DC컨버터모듈(110)은 제1변압기(112) 턴비에 있어 태양광발전모듈(10)에 연결되는 입력 측 : ESS 배터리(20)에 연결되는 출력 측 = 1 : 8의 턴비로 고정하는 구성을 갖게 할 수 있다.As an example, in the first DC/DC converter module 110, the input side connected to the photovoltaic module 10 in the turn ratio of the first transformer 112: the output side connected to the ESS battery 20 = 1 : It can have a fixed configuration with a turn ratio of 8.

상기 제2 DC/DC컨버터모듈(120)은 제2변압기(122) 턴비에 있어 태양광발전모듈(10)에 연결되는 입력 측 : ESS 배터리(20)에 연결되는 출력 측 = 1 : 3의 턴비로 고정하는 구성을 갖게 할 수 있다.The second DC / DC converter module 120 has a turn ratio of the second transformer 122, the input side connected to the photovoltaic module 10: the output side connected to the ESS battery 20 = 1: 3 turns It can be made to have a configuration that is fixed by rain.

또한, 본 발명에 있어서는 상술한 구성을 갖는 DC/DC컨버터(100) 측 입출력 특성에 따라서 전압차이 만큼 상기 제1 DC/DC컨버터모듈(110)과 제2 DC/DC 컨버터모듈(120) 중 어느 하나를 독립적으로 단독 운전 또는 2개 모두를 병렬 운전하도록 동작 제어할 수 있다.In addition, in the present invention, according to the input/output characteristics of the DC/DC converter 100 having the above-described configuration, whichever of the first DC/DC converter module 110 and the second DC/DC converter module 120 is selected as much as the voltage difference. Operation can be controlled so that one operates independently or both operate in parallel.

또한, 상기 태양광발전모듈(10)에서의 발전상태 또는 배터리(20)에서의 충전상태에 따라 상기 제1 DC/DC컨버터모듈(110)과 제2 DC/DC 컨버터모듈(120) 각각에 있어 게이트 입력신호 제어로 제1 및 제2 변압기(112)(122) 각각의 1차측 턴수 출력 대 2차측 턴수 출력을 가변 제어하는 동작을 갖게 할 수 있다.In addition, each of the first DC / DC converter module 110 and the second DC / DC converter module 120 according to the state of power generation in the photovoltaic module 10 or the state of charge in the battery 20 By controlling the gate input signal, the first and second transformers 112 and 122 may have an operation of variably controlling the output of the number of turns on the primary side and the number of turns on the secondary side, respectively.

이와 같은 상술한 구성을 갖는 본 발명에 따른 태양광발전 ESS시스템용 MPPT 제어시스템은 아래와 같이 4가지 모드(Mode)로 구분하여 동작되게 처리할 수 있으며, 도 2 내지 도 4를 참조하여 상세하게 설명하기로 한다.The MPPT control system for a photovoltaic ESS system according to the present invention having the above-described configuration can be operated in four modes as follows, and will be described in detail with reference to FIGS. 2 to 4 I'm going to do it.

도 2에서 보여주는 바와 같이, 태양광발전모듈(10)에서의 발전량이 적어서 MPPT 제어시 전압이 낮게 되고 배터리(20) 측 충전량이 높을 경우, 상기 제1 DC/DC컨버터모듈(110)과 제2 DC/DC 컨버터모듈(120) 중 변압기 턴비가 높은 어느 하나를 단독 동작시켜 배터리(20)에 충전을 수행할 수 있다.As shown in FIG. 2, when the amount of power generation in the photovoltaic module 10 is low and the voltage is low during MPPT control and the amount of charge in the battery 20 is high, the first DC/DC converter module 110 and the second The battery 20 may be charged by independently operating one of the DC/DC converter modules 120 having a high transformer turn ratio.

도시한 바에 의하면, 제2변압기에 비해 제1변압기(112)의 턴비가 높은 제1 DC/DC컨버터모듈(110)을 단독 동작할 수 있다.As shown, the first DC/DC converter module 110 having a higher turn ratio of the first transformer 112 than the second transformer can be operated independently.

도 3에서 보여주는 바와 같이, 태양광발전모듈(10)에서의 발전효율이 높게 발생되어 MPPT 제어시 전압 강하가 높지 않을 경우, 상기 제1 DC/DC컨버터모듈(110)과 제2 DC/DC 컨버터모듈(120) 중 변압기 턴비가 낮은 어느 하나를 단독 동작시켜 배터리(20)에 충전을 수행할 수 있다.As shown in FIG. 3, when the power generation efficiency of the photovoltaic module 10 is high and the voltage drop is not high during MPPT control, the first DC/DC converter module 110 and the second DC/DC converter The battery 20 may be charged by independently operating one of the modules 120 having a low transformer turns ratio.

도시한 바에 의하면, 제1변압기(112)에 비해 제2변압기(122)의 턴비가 낮은 제2 DC/DC컨버터모듈(120)을 단독 동작할 수 있다.As illustrated, the second DC/DC converter module 120 having a lower turns ratio of the second transformer 122 than that of the first transformer 112 can operate independently.

도 4에서 보여주는 바와 같이, 태양광발전모듈(10)에서의 발전효율이 높고 발전량이 많아서 높은 전력으로 충전이 요구되는 경우, 상기 제1 DC/DC컨버터모듈(110)과 제2 DC/DC 컨버터모듈(120) 모두를 동작시켜 병렬모드로 운전함에 의해 배터리에(20) 충전을 수행할 수 있다.As shown in FIG. 4, when the photovoltaic module 10 has a high power generation efficiency and a large amount of power generation, charging with high power is required, the first DC/DC converter module 110 and the second DC/DC converter. By operating all of the modules 120 and operating in parallel mode, the battery 20 may be charged.

도시한 바에 의하면, 병렬 연결된 구성이고 제1변압기와 제2변압기 측 각각의 턴비를 일정하게 고정시킨 제1 DC/DC컨버터모듈(110)과 제2 DC/DC컨버터모듈(120)을 모두 동작할 수 있다.As shown in the figure, both the first DC/DC converter module 110 and the second DC/DC converter module 120 having the turn ratios of the first transformer and the second transformer side fixed in parallel are connected in parallel can be operated. can

또한, 본 발명에서는 2개의 병렬 연결된 구조를 갖는 상기 제1 DC/DC컨버터모듈(110)과 제2 DC/DC 컨버터모듈(120)을 도 4의 예시에서와 같이 복합적으로 동작시켜 배터리(20)에 충전을 수행하되, 태양광발전모듈(10)에서의 발전상태 또는 배터리(20)에서의 충전상태에 따라 상기 제1 DC/DC컨버터모듈(110)과 제2 DC/DC 컨버터모듈(120) 각각에 있어 게이트 입력신호 제어로 제1변압기와 제2변압기 각각의 1차측 턴수 출력 대 2차측 턴수 출력을 가변 제어하는 형태로 운전할 수 있다.In addition, in the present invention, the first DC/DC converter module 110 and the second DC/DC converter module 120 having two parallel-connected structures are operated in combination as shown in the example of FIG. While performing charging, the first DC / DC converter module 110 and the second DC / DC converter module 120 according to the state of power generation in the photovoltaic module 10 or the state of charge in the battery 20 In each case, it is possible to operate in the form of variably controlling the output of the number of turns on the primary side and the number of turns on the secondary side of each of the first transformer and the second transformer by controlling the gate input signal.

즉, 하이브리드 모드로 운전을 제어할 수 있다.That is, driving can be controlled in a hybrid mode.

이때, 상기 제1 DC/DC컨버터모듈(110)과 제2 DC/DC 컨버터모듈(120) 각각에 있어 제1 및 제2 MOSFET회로부(111)(121)에서의 게이트 입력신호 제어로 제1 및 제2 변압기(112)(122) 각각의 1차측 턴수 출력 대 2차측 턴수 출력을 가변 제어하되, 양측 출력비를 1 : 9 내지 9 : 1 범위로 가변 제어할 수 있다.At this time, in the first DC / DC converter module 110 and the second DC / DC converter module 120, respectively, the first and second MOSFET circuit parts 111 and 121 control the gate input signals to control the first and second MOSFET circuits. The output of the number of turns on the primary side and the number of turns on the secondary side of each of the second transformers 112 and 122 are variably controlled, and the output ratio of both sides may be variably controlled in the range of 1:9 to 9:1.

이를 통해, 태양광발전(PV)에서의 풀 파워(full power) 발전을 유도할 수 있을 뿐만 아니라 배터리 측 충전효율을 향상시킬 수 있다.Through this, it is possible to induce full power generation in photovoltaic power generation (PV) and to improve battery-side charging efficiency.

이에 따라, 본 발명에 따른 태양광발전 ESS시스템용 MPPT 제어시스템을 통해서는 변압기의 턴비 매칭을 이용한 MPPT(Maximum Power Point Tracking; 최대 출력점 추적) 제어기술을 전력변환장치에 접목함으로써 전압변동이 높은 고전압 태양광발전 ESS시스템 측 배터리의 충전 효율을 높일 수 있으며, 특히 충전시 전압차가 크게 변동되는 태양광발전 ESS시스템에 있어 전력변환장치 측 효율을 증대시킬 수 있고, 저전력으로 동작될 때와 전압차가 크거나 작을 때 발생되는 손실을 최소화할 수 있으며, 태양광발전(PV)에서의 풀 파워(full power) 발전을 유도할 수 있는 장점을 제공할 수 있다.Accordingly, through the MPPT control system for photovoltaic power generation ESS system according to the present invention, MPPT (Maximum Power Point Tracking) control technology using transformer turn ratio matching is applied to the power converter, so that voltage fluctuation is high. It is possible to increase the charging efficiency of the battery on the high-voltage solar power generation ESS system side. In particular, it is possible to increase the efficiency on the power converter side in the solar power generation ESS system where the voltage difference fluctuates greatly during charging. It is possible to minimize the loss that occurs when it is large or small, and can provide an advantage of inducing full power generation in photovoltaic power generation (PV).

이상에서 설명한 실시예는 본 발명의 바람직한 실시예를 설명한 것에 불과하고, 이러한 실시예에 극히 한정되지 않는다 할 것이며, 본 발명의 기술적 사상과 청구범위 내에서 이 기술분야의 당업자에 의하여 이루어지는 다양한 수정과 변형 또는 단계의 치환 등은 본 발명의 기술적 권리범위 내에 해당한다 할 것이다.The embodiments described above are merely those of the preferred embodiments of the present invention, and will not be extremely limited to these embodiments, and various modifications and modifications made by those skilled in the art within the scope of the technical spirit and claims of the present invention Modifications or substitutions of steps will fall within the scope of the technical rights of the present invention.

10: 태양광발전모듈 20: ESS 배터리
100: DC/DC컨버터 110: 제1 DC/DC컨버터모듈
111: 제1MOSFET회로부 112: 제1변압기
113: 제1정류회로부 120: 제2 DC/DC컨버터모듈
121: 제2MOSFET회로부 122: 제2변압기
123: 제2정류회로부
10: solar power module 20: ESS battery
100: DC / DC converter 110: first DC / DC converter module
111: first MOSFET circuit unit 112: first transformer
113: first rectifier circuit unit 120: second DC / DC converter module
121: second MOSFET circuit unit 122: second transformer
123: second rectifier circuit unit

Claims (11)

태양광발전(PV)을 이용하여 배터리를 충전하는 태양광발전 ESS(Energy Storage System; 에너지저장장치) 시스템에 있어서,
태양광발전모듈로부터 생산된 전기에너지(DC; 직류)를 공급받아 배터리 측 충전 가능한 DC(직류)로 변환하여 배터리에 충전하기 위한 DC/DC컨버터; 를 포함하되,
상기 DC/DC컨버터는,
제1 DC/DC컨버터모듈과 제2 DC/DC 컨버터모듈로 2개를 구비하여 병렬 연결 및 풀브릿지 회로로 구성하며, 제1 DC/DC컨버터모듈은 제1변압기를 포함하고, 제2 DC/DC 컨버터모듈은 제2변압기를 포함하고,
상기 제1 DC/DC컨버터모듈은 태양광 발전량을 MPPT 제어시 저하되는 최저전압을 기준으로 하고 출력은 배터리 SOC(충전상태) 기준 100%일 때의 전압을 턴비로 제1변압기 턴비를 갖도록 구성하고,
상기 제2 DC/DC컨버터모듈은 태양광 발전시 최대전압과 출력은 SOC(충전상태) 80% 구간의 전압으로 제2변압기 턴비를 갖도록 구성하는 것을 특징으로 하는 태양광발전 ESS시스템용 MPPT 제어시스템.
In a solar power generation ESS (Energy Storage System) system that charges a battery using photovoltaic power generation (PV),
A DC/DC converter for charging the battery by converting the electrical energy (DC; direct current) produced from the photovoltaic module into battery-side chargeable DC (direct current); Including,
The DC/DC converter,
A first DC/DC converter module and a second DC/DC converter module are provided, and configured as a parallel connection and a full bridge circuit, the first DC/DC converter module includes a first transformer, and the second DC/DC converter module includes a second DC/DC converter module. The DC converter module includes a second transformer,
The first DC / DC converter module is based on the lowest voltage that is reduced during MPPT control of the amount of solar power generation, and the output is configured to have a first transformer turn ratio with a turn ratio of the voltage when the battery SOC (state of charge) is 100% ,
The second DC / DC converter module is configured to have a turn ratio of the second transformer with a maximum voltage and output in the SOC (state of charge) 80% section during solar power generation MPPT control system for solar power generation ESS system, characterized in that .
제 1항에 있어서,
상기 제1 DC/DC컨버터모듈은,
태양광발전모듈과 제1변압기에 연결되는 제1MOSFET회로부와, 제1MOSFET회로부에 입력측이 연결되고 출력측이 배터리에 연결되는 제1변압기, 및 제1변압기의 출력측과 배터리에 연결되는 제1정류회로부를 포함하고;
상기 제2 DC/DC컨버터모듈은,
태양광발전모듈과 제2변압기에 연결되는 제2MOSFET회로부와, 제2MOSFET회로부에 입력측이 연결되고 출력측이 배터리에 연결되는 제2변압기, 및 제2변압기의 출력측과 배터리에 연결되는 제2정류회로부를 포함하며;
상기 제1 및 제2 MOSFET회로부 각각은 4개의 MOSFET에 매칭시켜 다이오드 및 콘덴서를 연결한 구성이고,
상기 제1 및 제2 정류회로부는 4개의 다이오드를 연결한 구성인 것을 특징으로 하는 태양광발전 ESS시스템용 MPPT 제어시스템.
According to claim 1,
The first DC / DC converter module,
A first MOSFET circuit unit connected to the photovoltaic power generation module and the first transformer, a first transformer having an input side connected to the first MOSFET circuit unit and an output side connected to a battery, and a first rectifier circuit unit connected to the output side of the first transformer and the battery. contain;
The second DC / DC converter module,
A second MOSFET circuit part connected to the photovoltaic module and the second transformer, a second transformer having an input side connected to the second MOSFET circuit part and an output side connected to the battery, and a second rectifier circuit part connected to the output side of the second transformer and the battery. contains;
Each of the first and second MOSFET circuit parts has a configuration in which diodes and capacitors are connected by matching four MOSFETs,
The first and second rectifier circuit parts are MPPT control systems for photovoltaic ESS systems, characterized in that the configuration of connecting four diodes.
제 1항에 있어서,
상기 제1변압기와 제2변압기는 서로 다른 턴비를 갖는 구성인 것을 특징으로 하는 태양광발전 ESS시스템용 MPPT 제어시스템.
According to claim 1,
The MPPT control system for a solar power generation ESS system, characterized in that the first transformer and the second transformer have a configuration having different turn ratios.
삭제delete 제 1항에 있어서,
상기 제1 DC/DC컨버터모듈은,
제1변압기 턴비에 있어 태양광발전모듈에 연결되는 입력 측 : ESS 배터리에 연결되는 출력 측 = 1 : 8의 턴비를 갖고,
상기 제2 DC/DC컨버터모듈은,
제2변압기 턴비에 있어 태양광발전모듈에 연결되는 입력 측 : ESS 배터리에 연결되는 출력 측 = 1 : 3의 턴비를 갖는 것을 특징으로 하는 태양광발전 ESS시스템용 MPPT 제어시스템.
According to claim 1,
The first DC / DC converter module,
In the turn ratio of the first transformer, the input side connected to the photovoltaic module: the output side connected to the ESS battery = has a turn ratio of 1: 8,
The second DC / DC converter module,
In the second transformer turn ratio, the input side connected to the photovoltaic module: the output side connected to the ESS battery = 1: MPPT control system for a photovoltaic ESS system, characterized in that it has a turn ratio of 3.
제 1항에 있어서,
상기 DC/DC컨버터 측 입출력 특성에 따라서 전압차이 만큼 상기 제1 DC/DC컨버터모듈과 제2 DC/DC 컨버터모듈 중 어느 하나를 독립적으로 단독 운전 또는 2개 모두를 병렬 운전하도록 동작 제어하는 것을 특징으로 하는 태양광발전 ESS시스템용 MPPT 제어시스템.
According to claim 1,
Characterized in that the operation is controlled so that either one of the first DC/DC converter module and the second DC/DC converter module is independently operated alone or both are operated in parallel by a voltage difference according to the input/output characteristics of the DC/DC converter. MPPT control system for solar power generation ESS system.
제 1항에 있어서,
MPPT 제어에 의해 배터리 충전을 수행하되,
상기 제1 DC/DC컨버터모듈과 제2 DC/DC 컨버터모듈 중 변압기 턴비가 높은 어느 하나를 단독 동작시켜 배터리 충전을 수행하는 방법, 상기 제1 DC/DC컨버터모듈과 제2 DC/DC 컨버터모듈 중 변압기 턴비가 낮은 어느 하나를 단독 동작시켜 배터리에 충전을 수행하는 방법, 태양광발전모듈에서의 발전상태 및 배터리에서의 충전상태에 따라, 상기 제1 DC/DC컨버터모듈과 제2 DC/DC 컨버터모듈 모두를 동작시켜 배터리 충전을 수행하는 방법 중에서 선택하여 충전을 수행하도록 제어하는 것을 특징으로 하는 태양광발전 ESS시스템용 MPPT 제어시스템.
According to claim 1,
Battery charging is performed by MPPT control,
A method for charging a battery by independently operating one of the first DC/DC converter module and the second DC/DC converter module having a high transformer turns ratio, the first DC/DC converter module and the second DC/DC converter module A method of charging the battery by operating one of the transformers with a low turns ratio alone, and according to the state of power generation in the photovoltaic module and the state of charge in the battery, the first DC / DC converter module and the second DC / DC An MPPT control system for a solar power generation ESS system, characterized in that it controls to perform charging by selecting from among the methods of operating all of the converter modules to perform battery charging.
삭제delete 삭제delete 태양광발전(PV)을 이용하여 배터리를 충전하는 태양광발전 ESS(Energy Storage System; 에너지저장장치) 시스템에 있어서,
태양광발전모듈로부터 생산된 전기에너지(DC; 직류)를 공급받아 배터리 측 충전 가능한 DC(직류)로 변환하여 배터리에 충전하기 위한 DC/DC컨버터; 를 포함하되,
상기 DC/DC컨버터는,
제1 DC/DC컨버터모듈과 제2 DC/DC 컨버터모듈로 2개를 구비하여 병렬 연결 및 풀브릿지 회로로 구성하며,
제1 DC/DC컨버터모듈은 제1변압기를 포함하고, 제2 DC/DC 컨버터모듈은 제2변압기를 포함하고,
상기 제1 DC/DC컨버터모듈과 제2 DC/DC 컨버터모듈을 복합적으로 동작시켜 배터리에 충전을 수행하되,
태양광발전모듈에서의 발전상태 또는 배터리에서의 충전상태에 따라 상기 제1 DC/DC컨버터모듈과 제2 DC/DC 컨버터모듈 각각에 있어 게이트 입력신호 제어로 각 변압기의 1차측 턴수 출력 대 2차측 턴수 출력을 가변 제어하는 것을 특징으로 하는 태양광발전 ESS시스템용 MPPT 제어시스템.
In a solar power generation ESS (Energy Storage System) system that charges a battery using photovoltaic power generation (PV),
A DC/DC converter for charging the battery by converting the electrical energy (DC; direct current) produced from the photovoltaic module into battery-side chargeable DC (direct current); Including,
The DC/DC converter,
A first DC / DC converter module and a second DC / DC converter module are provided and configured as a parallel connection and a full bridge circuit,
The first DC/DC converter module includes a first transformer, the second DC/DC converter module includes a second transformer,
Charge the battery by operating the first DC/DC converter module and the second DC/DC converter module in combination,
Depending on the state of power generation in the photovoltaic module or the state of charge in the battery, the first DC/DC converter module and the second DC/DC converter module control the gate input signal to output the number of primary turns to the secondary side of each transformer. An MPPT control system for a solar power generation ESS system characterized by variable control of turn output.
제 10항에 있어서,
상기 제1 DC/DC컨버터모듈과 제2 DC/DC 컨버터모듈 측 각각에 있어 게이트 입력신호 제어로 각 변압기의 1차측 턴수 출력 대 2차측 턴수 출력을 가변 제어하되, 양측 출력비를 1 : 9 내지 9 : 1 범위로 가변 제어하는 것을 특징으로 하는 태양광발전 ESS시스템용 MPPT 제어시스템.
According to claim 10,
In each of the first DC/DC converter module and the second DC/DC converter module, gate input signal control variably controls the output of the number of turns on the primary side of each transformer to the output on the secondary side, and the output ratio of both sides is 1:9 to 9 : MPPT control system for solar power generation ESS system characterized by variable control in the range of 1.
KR1020220041646A 2022-04-04 2022-04-04 Maximum Power Point Tracking Control System for Photovoltaic Energy Storage System KR102535198B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220041646A KR102535198B1 (en) 2022-04-04 2022-04-04 Maximum Power Point Tracking Control System for Photovoltaic Energy Storage System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220041646A KR102535198B1 (en) 2022-04-04 2022-04-04 Maximum Power Point Tracking Control System for Photovoltaic Energy Storage System

Publications (1)

Publication Number Publication Date
KR102535198B1 true KR102535198B1 (en) 2023-05-30

Family

ID=86529698

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220041646A KR102535198B1 (en) 2022-04-04 2022-04-04 Maximum Power Point Tracking Control System for Photovoltaic Energy Storage System

Country Status (1)

Country Link
KR (1) KR102535198B1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090011604A (en) * 2007-07-27 2009-02-02 현대자동차주식회사 Bi-directional tri-state pwm dc to dc converter for fuel cell vehicle
KR20100006544A (en) * 2008-07-09 2010-01-19 에스엠에이 솔라 테크놀로지 아게 Dc/dc converter
KR20130067338A (en) * 2011-12-13 2013-06-24 전자부품연구원 Bidirectional dc/dc converter system using interleave method and driving method thereof
KR20140114032A (en) * 2012-01-17 2014-09-25 인피니언 테크놀로지스 오스트리아 아게 Power converter circuit, power supply system and method
JP2017174283A (en) * 2016-03-25 2017-09-28 株式会社日立情報通信エンジニアリング Power conversion device
KR102161812B1 (en) 2019-06-18 2020-10-05 연세대학교 산학협력단 System and Method for Controlling MPPT of Photovoltaic System Using Active Power Control
KR20210147108A (en) 2016-07-14 2021-12-06 얀마 파워 테크놀로지 가부시키가이샤 Engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090011604A (en) * 2007-07-27 2009-02-02 현대자동차주식회사 Bi-directional tri-state pwm dc to dc converter for fuel cell vehicle
KR20100006544A (en) * 2008-07-09 2010-01-19 에스엠에이 솔라 테크놀로지 아게 Dc/dc converter
KR20130067338A (en) * 2011-12-13 2013-06-24 전자부품연구원 Bidirectional dc/dc converter system using interleave method and driving method thereof
KR20140114032A (en) * 2012-01-17 2014-09-25 인피니언 테크놀로지스 오스트리아 아게 Power converter circuit, power supply system and method
JP2017174283A (en) * 2016-03-25 2017-09-28 株式会社日立情報通信エンジニアリング Power conversion device
KR20210147108A (en) 2016-07-14 2021-12-06 얀마 파워 테크놀로지 가부시키가이샤 Engine
KR102161812B1 (en) 2019-06-18 2020-10-05 연세대학교 산학협력단 System and Method for Controlling MPPT of Photovoltaic System Using Active Power Control

Similar Documents

Publication Publication Date Title
US20210028641A1 (en) System for Battery Charging
She et al. On integration of solid-state transformer with zonal DC microgrid
KR101116483B1 (en) Energy Storage System
US20120153729A1 (en) Multi-input bidirectional dc-dc converter
US7009859B2 (en) Dual input DC-DC power converter integrating high/low voltage sources
US20140042815A1 (en) Balancing, filtering and/or controlling series-connected cells
US20130003423A1 (en) Multi-input bidirectional dc-dc converter with high voltage conversion ratio
US20130003424A1 (en) Multi-phase interleaved bidirectional dc-dc converter with high voltage conversion ratio
US9577441B2 (en) Method for charging the energy storage cells of an energy storage device, and rechargeable energy storage device
EP3591823A1 (en) Combined dc-dc converter for use in hybrid power system
CN110138217B (en) Three-port DC-DC converter and control method thereof
Ebadpour A multiport isolated DC-DC converter for plug-in electric vehicles based on combination of photovoltaic systems and power grid
EP4054065B1 (en) Voltage conversion circuit and power supply system
CN112653165A (en) Nimble multiplexing type light stores up and fills wisdom charging station based on high voltage direct current microgrid
KR101865246B1 (en) Changing and discharging apparatus for electric vehicle
KR101462338B1 (en) AC-connected power conversion circuit
CN108667114A (en) The control method of power supply system and power supply system
KR102535198B1 (en) Maximum Power Point Tracking Control System for Photovoltaic Energy Storage System
US20220388415A1 (en) Solar charging system for vehicle
US11811310B2 (en) Power conversion system and control method
Alhuwaishel et al. A single stage transformer-less micro inverter with integrated battery storage system for residential applications
WO2018070037A1 (en) Power conversion system, power supply system, and power conversion apparatus
Song et al. Design considerations for energy storage power electronics interfaces for high penetration of renewable energy sources
KR20210054247A (en) Appratus for charging batteries by using Energy Storage System
Anuradha et al. Bi-Directional Flyback DC-DC Converter For Solar PV-Battery Charger System

Legal Events

Date Code Title Description
GRNT Written decision to grant