WO2010046978A1 - Working medium circulating type engine - Google Patents

Working medium circulating type engine Download PDF

Info

Publication number
WO2010046978A1
WO2010046978A1 PCT/JP2008/069153 JP2008069153W WO2010046978A1 WO 2010046978 A1 WO2010046978 A1 WO 2010046978A1 JP 2008069153 W JP2008069153 W JP 2008069153W WO 2010046978 A1 WO2010046978 A1 WO 2010046978A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
working gas
condensed water
heat
circulation
Prior art date
Application number
PCT/JP2008/069153
Other languages
French (fr)
Japanese (ja)
Inventor
享 加藤
澤田 大作
黒木 錬太郎
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2008/069153 priority Critical patent/WO2010046978A1/en
Publication of WO2010046978A1 publication Critical patent/WO2010046978A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0203Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
    • F02M21/0206Non-hydrocarbon fuels, e.g. hydrogen, ammonia or carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/005Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for draining or otherwise eliminating condensates or moisture accumulating in the apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0227Means to treat or clean gaseous fuels or fuel systems, e.g. removal of tar, cracking, reforming or enriching
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/02Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/026Measuring or estimating parameters related to the fuel supply system
    • F02D19/027Determining the fuel pressure, temperature or volume flow, the fuel tank fill level or a valve position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/026Measuring or estimating parameters related to the fuel supply system
    • F02D19/029Determining density, viscosity, concentration or composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0248Injectors
    • F02M21/0275Injectors for in-cylinder direct injection, e.g. injector combined with spark plug
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a working gas circulation engine, and more particularly to a working gas circulation engine in which working gas contained in exhaust gas is circulated from the exhaust side to the intake side of the combustion chamber and can be supplied to the combustion chamber again.
  • a working gas circulation engine that is a so-called closed-cycle engine that can circulate the working gas contained in the exhaust gas from the exhaust side of the combustion chamber to the intake side and supply it again to the combustion chamber.
  • a working gas circulation engine includes oxygen as an oxidant, hydrogen as a fuel whose combustion is accelerated by the oxygen, a combustion chamber to which a working gas composed of a monoatomic gas is supplied, and a working gas.
  • a circulation path that can be circulated from the exhaust side to the intake side of the combustion chamber and re-supplied to the combustion chamber, and the working gas thermally expands with the combustion of hydrogen in the combustion chamber to generate power, and this operation The gas is supplied again to the combustion chamber via the circulation path without being released to the atmosphere.
  • a hydrogen engine disclosed in Patent Document 1 below As a conventional working gas circulation engine, for example, a hydrogen engine disclosed in Patent Document 1 below is known.
  • oxygen and hydrogen are supplied to a combustion chamber, and argon is circulated as a working gas to increase thermal efficiency, for example, composed of a monoatomic gas and having a higher specific heat ratio than air.
  • argon is thermally expanded by combustion of hydrogen in a combustion chamber, and thereby a piston is pushed down to generate power.
  • the hydrogen engine described in Patent Document 1 as a conventional working gas circulation engine is a molecule composed of three atoms (triatomic molecule), which liquefies and condenses water vapor having a smaller specific heat ratio than argon.
  • a condenser to be removed as water is arranged on the circulation path so that only argon as a working gas is circulated and supplied to the combustion chamber again, thereby suppressing a decrease in thermal efficiency.
  • the hydrogen engine described in Patent Document 1 has an exhaust gas pipe that passes through an exhaust gas pipe through which exhaust gas flows, such as an oil-water separator of condensed water described in Patent Document 2, for example.
  • the condensate is stored in a storage tank provided so as to cover the heat, and the condensed water stored in the storage tank and the outer surface of the exhaust gas pipe are brought into contact with each other to exchange heat. By treating after evaporation, the condensed water can be treated appropriately.
  • the condensate can be treated appropriately.
  • mountability That is, when the condensed water stored in the storage tank as described above is brought into contact with the outer surface of the exhaust gas pipe and the condensed water is evaporated using exhaust heat, the hydrogen engine is stored in the storage tank.
  • the storage tank In order to bring the condensed water stored in the tank into contact with the outer surface of the exhaust gas pipe, the storage tank must be arranged in a limited mounting space near the exhaust gas pipe. For this reason, this hydrogen engine has less flexibility in mounting the storage tank. For example, the engine can be increased in size to ensure sufficient storage tank capacity, or conversely, sufficient storage tank capacity can be ensured. There was a risk of not being able to.
  • an object of the present invention is to provide a working gas circulation engine that can improve the mountability.
  • a working gas circulation engine includes an oxidant, a fuel whose combustion is promoted by the oxidant and which generates steam by the combustion, and a working gas.
  • a combustion chamber capable of expanding the working gas with combustion of the fuel and capable of exhausting the water vapor and the working gas to the exhaust pipe as exhaust gas after combustion of the fuel; and in the exhaust gas
  • the working gas contained in the combustion chamber is circulated from the exhaust side to the intake side of the combustion chamber and can be supplied again to the combustion chamber, and the water vapor contained in the exhaust gas provided in the circulation path is condensed.
  • Condensing means for condensate storage means for storing the condensed water
  • exhaust heat of the exhaust gas is transmitted from the exhaust pipe to the condensed water stored in the storage means, and the condensed water is evaporated.
  • the transmission means is formed separately from the exhaust pipe, and the contact portion with the condensed water is made of a material having corrosion resistance against weak acidity. It is formed.
  • the transmission means supplies the condensed water from the exhaust pipe upstream of the condensing means to the condensed water with respect to the circulation direction of the working gas circulating in the circulation path. It is characterized by transmitting exhaust heat.
  • a heat exchange medium circulation path for circulating the heat exchange medium in the condensing means, and a cooling means capable of cooling the heat exchange medium circulating in the heat exchange medium circulation path The condensing means is included in the exhaust gas by exchanging heat between the heat exchange medium circulated through the heat exchange medium circulation path and cooled by the cooling means and the exhaust gas flowing through the circulation path.
  • the water vapor is condensed into the condensed water and separated from the exhaust gas, and the heat exchange medium circulation path stores the heat exchange medium after heat exchange with the exhaust gas and before cooling by the cooling means.
  • the condensed water stored in the means is circulated so as to be able to exchange heat.
  • the working gas circulation engine since the exhaust heat of the exhaust gas is transmitted from the exhaust pipe to the condensed water stored in the storing means and the condensed water is evaporated, the proper condensed water is provided. Mountability can be improved after processing.
  • FIG. 1 is a schematic configuration diagram of a working gas circulation engine according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic configuration diagram of a working gas circulation engine according to the second embodiment of the present invention.
  • FIG. 3 is a schematic configuration diagram of a working gas circulation engine according to Embodiment 3 of the present invention.
  • FIG. 4 is a schematic configuration diagram of a working gas circulation engine according to the first modification of the present invention.
  • FIG. 5 is a schematic configuration diagram of a working gas circulation engine according to the second modification of the present invention.
  • FIG. 1 is a schematic configuration diagram of a working gas circulation engine according to Embodiment 1 of the present invention.
  • the working gas circulation engine 1 of the present embodiment is a combustion that is supplied with an oxidant, a fuel that is promoted by the oxidant, and a working gas that generates power as the fuel burns.
  • the chamber CC and a circulation path 20 connecting the intake side and the exhaust side of the combustion chamber CC are provided, and the working gas is supplied again to the combustion chamber CC via the circulation path 20 without being released to the atmosphere.
  • This is a so-called closed cycle engine.
  • This working gas circulation engine 1 improves thermal efficiency by burning fuel in a combustion chamber CC and generating power by thermally expanding the working gas as the fuel burns.
  • the working gas circulation engine 1 includes an engine body 10 in which a combustion chamber CC is formed, a circulation path 20 that connects the intake side and the exhaust side of the combustion chamber CC, and an oxidant that supplies an oxidant to the combustion chamber CC.
  • a supply device 30, a fuel supply device 40 that supplies fuel to the combustion chamber CC, and an electronic control unit (ECU) 50 that controls each part of the working gas circulation engine 1 are provided.
  • the combustion chamber CC and the circulation path 20 of the engine body 10 are both filled with working gas, and the working gas circulates between the combustion chamber CC and the circulation path 20. 1 shows only one cylinder, the working gas circulation engine 1 of the present invention is not limited to this, and a multi-cylinder engine body 10 can also be applied.
  • the combustion chamber CC of the present embodiment is formed in the engine body 10.
  • the combustion chamber CC of the engine body 10 is supplied with an oxidizer, fuel that promotes combustion by the oxidizer and generates water vapor by combustion, and working gas, and the working gas expands as the fuel burns.
  • the engine body 10 includes a cylinder head 11, a cylinder block 12, and a piston 13 that form a combustion chamber CC.
  • the piston 13 is connected to a crankshaft (not shown) via a connecting rod 14 and is disposed so as to be able to reciprocate in the space between the recess 11 a on the lower surface of the cylinder head 11 and the cylinder bore 12 a of the cylinder block 12.
  • the combustion chamber CC is configured by a space surrounded by the wall surface of the recess 11 a of the cylinder head 11, the wall surface of the cylinder bore 12 a, and the top surface 13 a of the piston 13.
  • the engine body 10 has a cylinder head 11 formed with an intake port 11b and an exhaust port 11c. Both the intake port 11b and the exhaust port 11c form part of the circulation path 20. One end of each of the intake port 11b and the exhaust port 11c opens into the combustion chamber CC.
  • the engine main body 10 is provided with an intake valve 15 at an opening portion of the intake port 11b on the combustion chamber CC side.
  • the intake valve 15 opens the opening on the combustion chamber CC side of the intake port 11b when the valve is opened, and closes the opening on the combustion chamber CC side of the intake port 11b when the valve is closed.
  • the engine body 10 is provided with an exhaust valve 16 at an opening portion of the exhaust port 11c on the combustion chamber CC side.
  • the exhaust valve 16 opens the opening on the combustion chamber CC side of the exhaust port 11c when the valve is opened, and closes the opening on the combustion chamber CC side of the exhaust port 11c when the valve is closed.
  • the intake valve 15 and the exhaust valve 16 for example, there are those that are opened and closed in accordance with the rotation of a camshaft (not shown) and the elastic force of an elastic member (string spring).
  • a camshaft is interlocked with the rotation of the crankshaft by interposing a power transmission mechanism composed of a chain, a sprocket, etc. between the camshaft and the crankshaft. Open / close drive at the opened / closed timing.
  • the engine body 10 may include a variable valve mechanism such as a so-called variable valve timing & lift mechanism that can change the opening / closing timing and lift amount of the intake valve 15 and the exhaust valve 16, thereby The opening / closing timing and lift amount of the valve 15 and the exhaust valve 16 can be changed to suitable ones according to the operating conditions. Furthermore, the engine body 10 is applied with a so-called electromagnetically driven valve that opens and closes the intake valve 15 and the exhaust valve 16 using electromagnetic force in order to obtain the same effect as the variable valve mechanism. Also good.
  • a variable valve mechanism such as a so-called variable valve timing & lift mechanism that can change the opening / closing timing and lift amount of the intake valve 15 and the exhaust valve 16, thereby The opening / closing timing and lift amount of the valve 15 and the exhaust valve 16 can be changed to suitable ones according to the operating conditions.
  • the engine body 10 is applied with a so-called electromagnetically driven valve that opens and closes the intake valve 15 and the exhaust valve 16 using electromagnetic force in order to obtain the same effect as the variable valve mechanism. Also
  • the engine body 10 has an intake pipe 17 connected to an opening of the intake port 11b opposite to the combustion chamber CC side, and an exhaust pipe 18 connected to an opening of the exhaust port 11c opposite to the combustion chamber CC side. It is connected.
  • the intake pipe 17 and the exhaust pipe 18 together form part of the circulation path 20.
  • the intake pipe 17 is formed in a cylindrical shape and allows fluid to pass therethrough.
  • the combustion chamber CC contains argon (Ar) as a working gas and oxygen (O 2 ) as an oxidant. It is an intake passage for supplying. In other words, when the intake valve 15 is opened, the oxidant and the working gas are supplied (intake) from the intake pipe 17 to the combustion chamber CC via the intake port 11b.
  • the exhaust pipe 18 is formed in a cylindrical shape so that a fluid can pass therethrough.
  • the exhaust pipe 18 serves as a working gas from the combustion chamber CC.
  • This is an exhaust passage for discharging argon (Ar) and water vapor (H 2 O). That is, when the exhaust valve 16 is opened, the combustion chamber CC exhausts water vapor and working gas to the exhaust pipe 18 through the exhaust port 11c as exhaust gas after combustion of fuel.
  • the circulation path 20 can circulate the working gas contained in the exhaust gas exhausted to the exhaust pipe 18 from the exhaust side to the intake side of the combustion chamber CC and supply it to the combustion chamber CC again.
  • the circulation path 20 includes the intake port 11b and the exhaust port 11c described above, and a circulation passage 21 that connects the other end of the intake port 11b and the other end of the exhaust port 11c.
  • the circulation passage 21 is formed in a cylindrical shape and allows fluid to pass therethrough.
  • the intake pipe 17 and the exhaust pipe 18 described above form part of the circulation passage 21.
  • This working gas circulation engine 1 is filled with working gas in a closed space composed of the circulation path 20 and the combustion chamber CC.
  • the working gas circulation engine 1 circulates the working gas through the intake pipe 17 of the circulation path 20, the intake port 11b into the combustion chamber CC, the exhaust port 11c of the circulation path 20 from the combustion chamber CC, the exhaust pipe 18, and the exhaust gas.
  • the air is circulated from the port 11c and the exhaust pipe 18 to the intake pipe 17 and the intake port 11b through the circulation passage 21 again. That is, the circulation path 20 connects the intake side (intake port 11b side) and the exhaust side (exhaust port 11c side) of the combustion chamber CC outside the combustion chamber CC, and again without releasing the working gas to the atmosphere. Supply to combustion chamber CC.
  • the circulator 20 has both ends communicating with the combustion chamber CC, an exhaust gas containing water vapor and working gas flows from one end into the combustion chamber CC, and an oxidant that the combustion chamber CC takes in from the other end. And the working gas can flow out to the combustion chamber CC.
  • the working gas circulation engine 1 when the intake valve 15 is opened, the oxidant and working gas in the circulation passage 21 are supplied to the combustion chamber CC via the intake pipe 17 and the intake port 11b. Further, in the working gas circulation engine 1, when the exhaust valve 16 is opened, the exhaust gas in the combustion chamber CC is discharged to the circulation passage 21 through the exhaust port 11c and the exhaust pipe 18.
  • the circulation path 21 of the circulation path 20 includes a first circulation path 21a, a second circulation path 21b, and a third circulation path 21c.
  • the first circulation passage 21 a connects the other end of the intake port 11 b and a discharge port 32 a of an oxidant supply means 32 described later in the oxidant supply device 30.
  • the second circulation passage 21b connects the other end of the exhaust port 11c and an exhaust gas inlet 60a of a condenser 60 as a condensing means described later.
  • the third circulation passage 21 c connects the working gas discharge port 60 b of the condenser 60 and the working gas introduction port 32 b of the oxidant supply means 32.
  • the intake pipe 17 described above forms the first circulation passage 21a
  • the exhaust pipe 18 forms the second circulation passage 21b.
  • a monoatomic gas is used as the working gas filled in the closed space formed by the circulation path 20 and the combustion chamber CC.
  • the working gas of this embodiment has a higher specific heat ratio than air, and for example, a rare gas such as argon or helium, which is a monoatomic gas, is used.
  • the working gas is described as using argon (Ar) as described above.
  • the oxidant supply device 30 supplies oxidant to the combustion chamber CC via the intake pipe 17 and the intake port 11b of the circulation path 20, and includes an oxidant storage tank 31, an oxidant supply means 32, an oxidant.
  • a supply passage 33, a regulator 34, and an oxidant flow meter 35 are included.
  • the oxidant storage tank 31 stores the oxidant in a high pressure state.
  • the oxidant supply means 32 supplies the oxidant stored in the oxidant storage tank 31 to the circulation passage 21.
  • the oxidant supply passage 33 connects the oxidant storage tank 31 and the oxidant supply means 32.
  • the regulator 34 and the oxidant flow meter 35 are provided on the oxidant supply passage 33.
  • the regulator 34 and the oxidant flow meter 35 extend from the upstream side (oxidant storage tank 31 side) to the downstream side (oxidant supply means 32 side) with respect to the oxidant supply direction in the oxidant supply passage 33.
  • the regulator 34 and the oxidant flow meter 35 are provided in this order.
  • the oxidant supply means 32 of the present embodiment the oxidant flowing from the oxidant supply passage 33 and the working gas flowing from the circulation passage 21 through the working gas introduction port 32b are mixed, An oxidant mixing means is used for flowing the mixed oxidant and working gas from the discharge port 32a to the downstream side of the circulation passage 21 (the intake port 11b side). Therefore, the oxidant supply device 30 of the present embodiment can not only supply the oxidant to the circulation passage 21 but also mix it with the working gas passing through the circulation passage 21 and send it to the circulation passage 21. As a result, the oxidant is supplied to the combustion chamber CC together with the working gas via the intake port 11b when the intake valve 15 is opened.
  • the regulator 34 adjusts the pressure downstream of the regulator 34 in the oxidant supply passage 33 (the oxidant flow meter 35 side) to a target pressure according to a command from the electronic control unit 50.
  • the regulator 34 controls the flow rate of the oxidant in the oxidant supply passage 33.
  • the oxidant flow meter 35 is a means for measuring the flow rate of the oxidant in the oxidant supply passage 33 and measures the flow rate of the oxidant adjusted by the regulator 34.
  • the measurement signal of the oxidant flow meter 35 is transmitted to the electronic control unit 50.
  • oxygen (O 2 ) is used as the oxidant supplied by the oxidant supply device 30 as described above. That is, the oxidant storage tank 31 of the present embodiment stores oxygen (O 2 ) as an oxidant at a high pressure of, for example, about 70 MPa, and the oxidant supply means 32 circulates this high pressure oxygen (O 2 ) through the circulation path. 21.
  • the fuel supply device 40 supplies fuel to the combustion chamber CC, and includes a fuel storage tank 41, a fuel injection means 42, a fuel supply passage 43, a regulator 44, a fuel flow meter 45, a surge tank 46, and the like. It is comprised including.
  • the fuel storage tank 41 stores fuel in a high pressure state.
  • the fuel injection means 42 injects the fuel stored in the fuel storage tank 41 into the combustion chamber CC.
  • the fuel supply passage 43 connects the fuel storage tank 41 and the fuel injection means 42.
  • the regulator 44, the fuel flow meter 45, and the surge tank 46 are provided on the fuel supply passage 43.
  • the regulator 44, the fuel flow meter 45, and the surge tank 46 are directed from the upstream side (the fuel storage tank 41 side) to the downstream side (the fuel injection means 42 side) with respect to the fuel supply direction in the fuel supply passage 43.
  • the regulator 44, the fuel flow meter 45, and the surge tank 46 are provided in this order.
  • the fuel injection means 42 of the present embodiment is provided in the cylinder head 11 so that the fuel can be directly injected into the combustion chamber CC.
  • the fuel injection means 42 is a so-called fuel injection valve controlled by the electronic control unit 50.
  • the electronic control unit 50 controls the fuel injection timing and the injection amount in accordance with the operating state such as the engine speed.
  • the regulator 44 adjusts the pressure downstream of the regulator 44 in the fuel supply passage 43 (on the fuel flow meter 45 and surge tank 46 side) to the set pressure. In other words, the regulator 44 controls the flow rate of the fuel in the fuel supply passage 43.
  • the fuel flow meter 45 is a means for measuring the fuel flow rate in the fuel supply passage 43 and measures the fuel flow rate adjusted by the regulator 44. The measurement signal of the fuel flow meter 45 is transmitted to the electronic control device 50.
  • the surge tank 46 is intended to reduce pulsation generated in the fuel supply passage 43 when fuel is injected by the fuel injection means 42.
  • the fuel supplied by the fuel supply device 40 a fuel that promotes combustion by an oxidant and generates water vapor by this combustion is used.
  • hydrogen (H 2 ) is used as described above. Is used. That is, the fuel storage tank 41 of the present embodiment stores hydrogen (H 2 ) as fuel at a high pressure of, for example, about 70 MPa, and the fuel injection means 42 injects this high pressure hydrogen (H 2 ) into the combustion chamber CC. To do.
  • the working gas circulation engine 1 of the present embodiment supplies hydrogen (H 2 ) as fuel and oxygen (O 2 ) as an oxidant into the combustion chamber CC, and diffuses and burns hydrogen (H 2 ).
  • the working gas circulation engine 1 configured as described above includes high-pressure hydrogen (H 2 ) in high-temperature compressed gas (oxygen (O 2 ) and argon (Ar)) formed in the combustion chamber CC. ) by injecting, the hydrogen (part of H 2) is self-ignited, hydrogen (H 2) and compressed gas (oxygen (O 2)) and is burned while mixing diffusion.
  • water vapor (H 2 O) in the exhaust gas discharged at the same time is a molecule composed of three atoms (triatomic molecule) and has a specific heat ratio smaller than that of argon (Ar) composed of a single atom.
  • the combustion chamber CC the thermal efficiency of the engine body 10 may be reduced.
  • the working gas circulation engine 1 is provided with a means on the circulation path 20 for removing water vapor (H 2 O) contained in the exhaust gas.
  • the working gas circulation engine 1 includes a condenser 60 as a condensing means as means for removing water vapor (H 2 O) contained in exhaust gas flowing through the circulation path 20.
  • the working gas circulation engine 1 further includes a cooling water circulation path 61 as a heat exchange medium circulation path, a water pump 62, and a radiator 63 as a cooling means.
  • the condenser 60 is provided in the circulation path 20 to condense the water vapor (H 2 O) contained in the exhaust gas into condensed water (H 2 O).
  • the condenser 60 is provided between the second circulation passage 21b and the third circulation passage 21c on the circulation passage 21. That is, the condenser 60 is provided on the exhaust side of the oxidant supply means 32 on the circulation passage 21.
  • the condenser 60 is connected so that the cooling water circulation path 61 passes through the inside.
  • the cooling water circulation path 61 circulates cooling water as a heat exchange medium through the condenser 60, and the cooling water can flow.
  • the cooling water circulation path 61 is a closed annular path and is filled with cooling water.
  • the water pump 62 is provided on the cooling water circulation path 61, and the cooling water in the cooling water circulation path 61 can be circulated through the cooling water circulation path 61 by driving the water pump 62.
  • the radiator 63 is provided on the cooling water circulation path 61 and can cool the cooling water circulating in the cooling water circulation path 61.
  • the radiator 63 of the present embodiment acts as a heat radiating means, and can cool the cooling water circulating through the cooling water circulation path 61 by the traveling wind of the vehicle on which the working gas circulation engine 1 is mounted.
  • the condenser 60 circulates through the cooling water circulation path 61 and is circulated and supplied with the cooling water cooled by the radiator 63, thereby heat-exchanging the cooling water and the exhaust gas flowing through the circulation path 20.
  • water vapor (H 2 O) contained in the exhaust gas is liquefied and condensed to form condensed water (H 2 O), which is separated from the exhaust gas. That is, the condenser 60 can separate the exhaust gas into argon (Ar) and condensed water (H 2 O).
  • the cooling water whose temperature has risen due to heat exchange by exchanging heat with the exhaust gas in the circulation path 20 in the condenser 60 is radiated when circulating through the cooling water circulation path 61 and again passing through the radiator 63.
  • the temperature is lowered, that is, cooled. That is, the cooling water circulating in the cooling water circulation path 61 radiates the heat absorbed by the condenser 60 by the radiator 63.
  • the argon (Ar) separated by the condenser 60 is discharged to the third circulation passage 21 c through the working gas discharge port 60 b of the condenser 60.
  • the condensed water (H 2 O) separated by the condenser 60 is discharged to the condensed water passage 65 through the condensed water discharge port 60c of the condenser 60, and is stored outside the system of the circulation path 20, here described later. It is discharged to a condensed water storage tank 80 as a means.
  • the condenser 60 and the radiator 63 are configured to liquefy and condense water vapor (H 2 O) in the exhaust gas when the hottest exhaust gas that can be assumed during engine operation is discharged from the combustion chamber CC.
  • the exhaust gas temperature is set to a capacity (in other words, exhaust gas cooling performance) that can lower the exhaust gas temperature to a desired temperature.
  • the exhaust gas discharged from the combustion chamber CC includes not only water vapor (H 2 O) and argon (Ar) but also hydrogen (H 2 ) or oxygen (O 2 ). is there.
  • hydrogen (H 2 ) to the combustion chamber CC is larger than a predetermined amount with respect to oxygen (O 2 )
  • unburned hydrogen (H 2 ) remains and is discharged to the circulation path 20 as it is.
  • oxygen (O 2 ) remains and is discharged to the circulation path 20 as it is.
  • the working gas circulation engine 1 detects the amount of hydrogen (H 2 ) or oxygen (O 2 ) in the gas (circulation gas) circulating in the circulation path 20 from the exhaust side to the intake side, and detects hydrogen (H 2 ) Or oxygen (O 2 ) to reach the combustion chamber CC, the injection amount of hydrogen (H 2 ) from the fuel supply device 40 or the supply amount of oxygen (O 2 ) from the oxidant supply device 30 is determined. It is adjusting. Thereby, the working gas circulation engine 1 can prevent excessive hydrogen (H 2 ) or oxygen (O 2 ) in the combustion chamber CC.
  • the working gas circulation engine 1 is a fuel concentration detection means for detecting the concentration of fuel in the circulation gas circulating through the circulation path 20, here, a hydrogen concentration detection means for detecting the hydrogen concentration in the circulation gas.
  • a hydrogen concentration sensor 71 and an oxidant concentration detection means for detecting the concentration of the oxidant in the circulation gas here an oxygen concentration detection means for detecting the oxygen concentration in the circulation gas
  • an oxygen concentration sensor 72 is provided. Both the hydrogen concentration sensor 71 and the oxygen concentration sensor 72 are provided in the third circulation passage 21 c of the circulation passage 21.
  • the hydrogen concentration sensor 71 and the oxygen concentration sensor 72 each transmit a detection signal to the electronic control unit 50.
  • the electronic control unit 50 grasps the remaining amount of hydrogen (H 2 ) or oxygen (O 2 ) in the circulating gas from each detection signal, and the hydrogen (H 2 ) or oxygen (O 2 ) is in the combustion chamber.
  • the amount of hydrogen (H 2 ) injected by the fuel injection means 42 or the target pressure of the regulator 34 (that is, the supply amount of oxygen (O 2 )) is controlled in view of the time when it reaches CC.
  • the piston 13 is pushed down due to the thermal expansion of argon (Ar) having a large specific heat ratio accompanying the combustion of hydrogen (H 2 ) in the combustion chamber CC.
  • the piston 13 repeats reciprocating motion in the cylinder bore 12a, so that the intake stroke, the compression stroke, the combustion stroke, and the exhaust stroke are set as one cycle, and this cycle is repeated.
  • the reciprocating motion of the piston 13 is transmitted to a crankshaft (not shown) by the connecting rod 14, and the reciprocating motion is converted into a rotational motion by the action of the connecting rod 14 and the crankshaft, so that the crankshaft rotates.
  • the electronic control unit 50 controls the rotation position of the crankshaft, the accelerator opening that is the amount of operation of an accelerator pedal (not shown) provided in the driver's seat of the vehicle, hydrogen (H 2 ) or oxygen (O 2 )
  • the hydrogen (H 2 ) injection amount of the fuel injection means 42 or the target pressure of the regulator 34 is controlled according to the operating state such as the remaining amount of 2 ).
  • the intake valve 15 and the exhaust valve 16 reciprocate as the crankshaft (not shown) rotates, and the communication between the circulation path 20 and the combustion chamber CC is repeatedly interrupted. Then, intake and exhaust are performed and the above four steps are repeated.
  • the working gas circulation engine 1 supplies high-pressure hydrogen (H 2 ) into the high-temperature compressed gas (oxygen (O 2 ) and argon (Ar)) formed in the combustion chamber CC in the combustion stroke.
  • H 2 high-temperature compressed gas
  • oxygen (O 2 ) and argon (Ar) are combusted while being diffusely mixed.
  • argon (Ar) having a large specific heat ratio causes thermal expansion, and the piston 13 is caused by diffusion combustion of this hydrogen (H 2 ) and thermal expansion of argon (Ar). Is pushed down, and the working gas circulation engine 1 generates power.
  • the intake valve 15 is kept closed, the exhaust valve 16 is opened, and the piston 13 is moved from the bottom dead center side to the top dead center side.
  • the exhaust gas containing water vapor (H 2 O) and argon (Ar) is discharged from the combustion chamber CC to the exhaust pipe 18 via the exhaust port 11 c of the circulation path 20.
  • the working gas circulation engine 1 In the working gas circulation engine 1, exhaust gas containing water vapor (H 2 O) and argon (Ar) is discharged from the combustion chamber CC to the circulation path 20, and the exhaust gas circulates toward the combustion chamber CC.
  • water vapor (H 2 O) in the exhaust gas When circulating through the path 20, water vapor (H 2 O) in the exhaust gas is liquefied, condensed and separated by the condenser 60.
  • the working gas circulation engine 1 does not supply steam (H 2 O) having a small specific heat ratio to the combustion chamber CC, and again supplies argon (Ar) as a working gas having a large specific heat ratio to the combustion chamber CC. Therefore, operation with high thermal efficiency by working gas can be performed.
  • the working gas circulation engine 1 removes water vapor (H 2 O) in the exhaust gas in the condenser 60 when the exhaust gas is circulated toward the combustion chamber CC as a circulation gas. .
  • the working gas circulation engine 1 does not supply steam (H 2 O) having a small specific heat ratio to the combustion chamber CC, but again supplies argon (Ar) as a working gas having a large specific heat ratio to the combustion chamber CC. So, it is operating with high thermal efficiency.
  • the working gas circulation engine 1 discharges the condensed water (H 2 O) separated by the condenser 60 from the condensed water discharge port 60 c to the condensed water passage 65 and drains it outside the circulation path 20. It is necessary to treat this condensed water (H 2 O) appropriately.
  • the working gas circulation engine 1 is provided with a condensed water storage tank for storing condensed water (H 2 O), for example, so as to cover the exhaust pipe 18 through which high-temperature exhaust gas after combustion flows.
  • the condensed water (H 2 O) can be properly treated by evaporating the condensed water (H 2 O) by using this, but in this case, the mountability is further improved. There is room.
  • the working gas circulation engine 1 when the working gas circulation engine 1 is provided with a condensed water storage tank so as to cover the exhaust pipe 18 as described above and evaporates this condensed water (H 2 O) using the exhaust heat, the condensed water In order to bring the condensed water (H 2 O) stored in the storage tank into contact with the outer surface of the exhaust pipe 18, the condensed water storage tank must be disposed in a limited mounting space near the exhaust pipe 18. For this reason, the working gas circulation engine 1 has less freedom in mounting the condensed water storage tank. For example, to ensure a sufficient capacity of the condensed water storage tank, the working gas circulation engine 1 is made larger. On the other hand, there is a risk that sufficient condensate storage tank capacity cannot be secured.
  • the working gas circulation engine 1 of the present embodiment condensate water (H 2 O) in which the exhaust heat of the exhaust gas is stored in the condensate storage tank 80 as storage means from the exhaust pipe 18.
  • an exhaust heat transfer section 90 serving as a transmission means for evaporating the condensed water (H 2 O), so that proper condensate processing is performed and the working gas circulation engine 1 can be mounted. Has improved.
  • the condensed water storage tank 80 is capable of storing condensed water (H 2 O) separated by the condenser 60, and is connected to the condensed water passage 65. Therefore, the condensed water (H 2 O) separated by the condenser 60 is discharged to the condensed water passage 65 via the condensed water discharge port 60 c of the condenser 60 and discharged to the condensed water storage tank 80.
  • the exhaust heat transfer section 90 transmits the exhaust heat of the high-temperature exhaust gas after combustion from the exhaust pipe 18 to the condensed water (H 2 O) stored in the condensed water storage tank 80, and this condensed water (H 2 O). Evaporate. In other words, the exhaust heat transfer unit 90 moves the exhaust heat of the exhaust gas from the exhaust pipe 18 to the condensed water (H 2 O) stored in the condensed water storage tank 80.
  • the exhaust heat transfer unit 90 of the present embodiment includes an exhaust pipe side heat receiving unit 91, a tank side heat radiating unit 92, and a transfer unit 93.
  • the exhaust pipe side heat receiving portion 91 is a portion that receives the exhaust heat of the exhaust gas from the exhaust pipe 18 and is provided in contact with the outer surface of the exhaust pipe 18.
  • Tank-side heat radiating portion 92 is a portion for radiating the exhaust heat of condensed water (H 2 O), the condensed water stored in the condensed water storage tank 80 (H 2 O) and contactable to the condensate storage tank 80 Provided inside.
  • the transmission portion 93 is a portion that transmits the exhaust heat received by the exhaust pipe side heat receiving portion 91 from the exhaust pipe 18 to the tank side heat radiating portion 92.
  • the exhaust heat transfer unit 90 is formed separately from the exhaust pipe 18 and uses a material having good thermal conductivity.
  • the exhaust heat transfer unit 90 may be formed of a material having corrosion resistance against weak acid at least at a tank side heat radiating unit 92, that is, a contact portion with condensed water (H 2 O).
  • materials having corrosion resistance against weak acid include, for example, tin (Sn), copper (Cu), lead (Pb), gold (Au), silver (Ag), or platinum (Pt). At least one material selected can be used.
  • the exhaust heat transfer unit 90 of the present embodiment uses a copper tube as a material having a good thermal conductivity and having a corrosion resistance against weak acidity.
  • the exhaust heat transfer unit 90 is formed by integrally forming the exhaust pipe side heat receiving unit 91, the tank side heat radiating unit 92, and the transmission unit 93 with a copper pipe.
  • the exhaust pipe side heat receiving portion 91 is formed by winding a copper pipe around the outer surface of the exhaust pipe 18. Thereby, the exhaust pipe side heat receiving portion 91 can sufficiently secure a contact area with the outer surface of the exhaust pipe 18, that is, a heat receiving area, and can efficiently receive the exhaust heat from the exhaust pipe 18.
  • the exhaust pipe 18 provided with the exhaust pipe side heat receiving portion 91 is at a high temperature to such an extent that the heat amount capable of evaporating the condensed water (H 2 O) from the tank side heat radiating portion 92 can be received from the exhaust heat.
  • the exhaust pipe 18 provided with the exhaust pipe side heat receiving portion 91 is the exhaust pipe 18 upstream of the condenser 60 with respect to the circulation direction of the working gas circulating in the circulation path 20. That is, the exhaust pipe side heat receiving portion 91 receives exhaust heat from the exhaust pipe 18 located between the exhaust port 11 c and the condenser 60 in the circulation direction of the working gas circulating in the circulation path 20.
  • the tank side heat radiating portion 92 is formed so as to meander the copper pipe in the condensed water storage tank 80. Thereby, the tank side heat radiating portion 92 can sufficiently secure a contact area with the condensed water (H 2 O), that is, a heat radiating area, and efficiently radiate the exhaust heat to the condensed water (H 2 O). be able to.
  • the transmission part 93 is formed integrally with the exhaust pipe side heat receiving part 91 and the tank side heat radiating part 92 so as to connect one end of the exhaust pipe side heat receiving part 91 and one end of the tank side heat radiating part 92. Thereby, the transmission part 93 can efficiently transmit the exhaust heat received by the exhaust pipe side heat receiving part 91 to the tank side heat radiating part 92.
  • the exhaust pipe side heat receiving part 91 receives the exhaust heat of the high temperature exhaust gas from the exhaust pipe 18, and the transmission part 93 receives the exhaust heat from the exhaust pipe side heat receiving part. 91 to the tank side heat radiating portion 92. Then, in the working gas circulation engine 1, the tank-side heat radiating unit 92 radiates this exhaust heat to the condensed water (H 2 O) stored in the condensed water storage tank 80, so condensed water exhaust heat of the exhaust gas from the exhaust pipe 18 (H 2 O) was transferred to the condensed water (H 2 O) can be evaporated Te.
  • the working gas circulation engine 1 can release the condensed water (H 2 O) stored in the condensed water storage tank 80 to the atmosphere as water vapor (H 2 O), and is thus separated by the condenser 60.
  • the treated condensed water (H 2 O) can be appropriately treated.
  • the working gas circulation engine 1 transmits the exhaust heat of the exhaust gas from the exhaust pipe 18 to the condensed water (H 2 O) stored in the condensed water storage tank 80 by the exhaust heat transfer unit 90. Since (H 2 O) is evaporated, for example, it is not necessary to directly contact the condensed water (H 2 O) stored in the condensed water storage tank 80 and the outer surface of the exhaust pipe 18, and the limit in the vicinity of the exhaust pipe 18 is not necessary. It is not necessary to arrange the condensed water storage tank 80 in the mounted space. As a result, this working gas circulation engine 1 can improve the degree of freedom of the place where the condensed water storage tank 80 is mounted.
  • the working gas circulation engine 1 is, for example, intended to increase the size of the working gas circulation engine 1 in order to ensure a sufficient capacity of the condensed water storage tank 80, or conversely, a sufficient capacity of the condensed water storage tank 80. Can not be secured.
  • the working gas circulation engine 1 transmits the exhaust heat of the exhaust gas from the exhaust pipe 18 to the condensed water (H 2 O) stored in the condensed water storage tank 80 by the exhaust heat transfer unit 90. Since the condensed water (H 2 O) is not in direct contact with the exhaust pipe 18, it is possible to prevent the exhaust pipe 18 from being locally lowered in temperature, and as a result, thermal distortion occurs in the exhaust pipe 18. This can be suppressed, and thus the durability of the exhaust pipe 18 can be improved.
  • the working gas circulation engine 1 is configured such that the exhaust heat transfer unit 90 is converted into condensed water (H 2 O) from the exhaust pipe 18 upstream of the condenser 60 with respect to the circulation direction of the working gas circulating in the circulation path 20. Since the exhaust heat is transmitted, the exhaust pipe side heat receiving portion 91 receives the exhaust heat of the exhaust gas before reaching the condenser 60 from the exhaust pipe 18, so that the temperature of the exhaust gas introduced into the condenser 60 is lowered. Can be made. As a result, since the working gas circulation engine 1 can reduce the temperature of the exhaust gas introduced into the condenser 60, the exhaust gas is exhausted to a temperature at which water vapor (H 2 O) in the exhaust gas is liquefied and condensed.
  • H 2 O condensed water
  • the condenser 60 and the radiator 63 can be reduced in size.
  • the working gas circulation engine 1 can reduce the temperature of the exhaust gas introduced into the condenser 60, the amount of heat that the cooling water takes from the exhaust gas in the condenser 60 can be reduced.
  • the capacity of the device 60 and the radiator 63 can be reduced.
  • the working gas circulation engine 1 can separate the water vapor (H 2 O) from the exhaust gas by the condenser 60 and the radiator 63 having a relatively small capacity, thereby preventing a decrease in the average specific heat ratio of the working gas. Therefore, it is possible to maintain high efficiency operation while improving mountability.
  • the temperature of the exhaust gas after the exhaust pipe side heat receiving portion 91 is lowered by receiving the exhaust heat from the exhaust pipe 18 is a temperature at which condensed water (H 2 O) is not generated.
  • the working gas circulation engine 1 carbon dioxide (CO 2 ) may be contained in the exhaust gas discharged from the combustion chamber CC.
  • the condensed water (H 2 O) separated by the condenser 60 and stored in the condensed water storage tank 80 may have weak acidity due to the carbon dioxide (CO 2 ) contained in the exhaust gas.
  • the working gas circulation engine 1 of the present embodiment has at least a contact portion of the exhaust heat transfer unit 90 with the condensed water (H 2 O), that is, the tank side heat radiating unit 92 against weak acidity. Therefore, the corrosion of the tank side heat dissipating part 92 can be suppressed, and the durability of the exhaust heat transfer part 90 can be improved.
  • a circulation path 20 that can be supplied to the chamber CC, a condenser 60 that is provided in the circulation path 20 and that condenses water vapor (H 2 O) contained in the exhaust gas into condensed water (H 2 O), and condensed water ( H 2 O) capable of storing a condensed water storage tank 80, and a condensed water (H 2 O) was transferred to the condensed water (H 2 O) exhaust heat conducting part 90 to evaporate the to be stored the exhaust heat of the exhaust gases in the condensed water storage tank 80 from the exhaust pipe 18 Prepare.
  • the working gas circulation engine 1 transmits the exhaust heat of the exhaust gas from the exhaust pipe 18 to the condensed water (H 2 O) stored in the condensed water storage tank 80 by the exhaust heat transfer unit 90 and transmits this condensed water (H 2 O). Since H 2 O) is evaporated, the degree of freedom of the place where the condensate storage tank 80 is mounted can be improved, and the mountability can be improved after appropriate condensate treatment.
  • the exhaust heat transfer unit 90 is formed separately from the exhaust pipe 18 and is connected to the condensed water (H 2 O).
  • the contact portion is formed of a material having corrosion resistance against weak acid. Therefore, the working gas circulation engine 1 is formed of a material in which at least the contact portion of the exhaust heat transfer unit 90 with the condensed water (H 2 O), that is, the tank side heat radiating unit 92 has corrosion resistance against weak acidity. Therefore, the corrosion of the tank side heat radiating portion 92 can be suppressed, the durability of the exhaust heat transfer portion 90 can be improved, and therefore the proper condensed water can be treated over a long period of time. .
  • the exhaust heat transfer unit 90 is supplied from the condenser 60 with respect to the circulation direction of argon (Ar) circulating in the circulation path 20. Exhaust heat is transmitted from the upstream exhaust pipe 18 to the condensed water (H 2 O). Therefore, the working gas circulation engine 1 exhausts the condensed water (H 2 O) from the exhaust pipe 18 upstream of the condenser 60 with respect to the circulation direction of the working gas in which the exhaust heat transfer unit 90 circulates in the circulation path 20. Since the heat is transmitted, the temperature of the exhaust gas introduced into the condenser 60 can be lowered, and the capacity of the condenser 60 and the radiator 63 can be reduced. Therefore, the condenser 60 and the radiator 63 can be downsized. can do. As a result, the working gas circulation engine 1 can further improve the mountability.
  • FIG. 2 is a schematic configuration diagram of a working gas circulation engine according to the second embodiment of the present invention.
  • the working gas circulation engine according to the second embodiment has substantially the same configuration as the working gas circulation engine according to the first embodiment, but includes a plurality of condensing means, and the working gas circulation engine according to the first embodiment. Is different.
  • action, and effect which are common in embodiment mentioned above while overlapping description is abbreviate
  • the working gas circulation engine 201 includes two condensers 60 as condensing means, as shown in FIG. Therefore, the working gas circulation engine 201 includes two cooling water circulation paths 61 as the heat exchange medium circulation paths, a water pump 62, and a radiator 63 as the cooling means corresponding to the two condensers 60.
  • the second circulation passage 21b of the circulation passage 21 is disposed on the end opposite to the combustion chamber CC side of the exhaust port 11c and on the downstream side with respect to the circulation direction of the working gas in the circulation path 20.
  • the exhaust gas inlet 60a of the condenser 60 is connected.
  • the working gas circulation engine 201 of the present embodiment includes two exhaust heat transfer units 90 as transmission means.
  • the exhaust pipe side heat receiving part 91 of one exhaust heat transfer part 90 is connected to the exhaust pipe 18 located between the exhaust port 11 c and the upstream condenser 60 with respect to the circulation direction of the working gas circulating in the circulation path 20. Receives exhaust heat.
  • the exhaust pipe side heat receiving part 91 of the other exhaust heat transfer part 90 is located between the upstream condenser 60 and the downstream condenser 60 with respect to the circulation direction of the working gas circulating in the circulation path 20. The exhaust heat is received from the pipe 18.
  • this working gas circulation engine 201 is positioned between the exhaust pipe 18 positioned between the exhaust port 11 c and the upstream condenser 60, and between the upstream condenser 60 and the downstream condenser 60.
  • the exhaust heat of the exhaust gas is transmitted from each exhaust pipe 18 to the condensed water (H 2 O) stored in the condensed water storage tank 80 by the two exhaust heat transfer sections 90 corresponding to the exhaust pipe 18 that performs this condensed water. (H 2 O) can be evaporated.
  • the working gas circulation engine 201 uses the two exhaust heat transfer units 90 to convert the exhaust heat of the exhaust gas from each exhaust pipe 18 to the condensed water (H 2 O) stored in the condensed water storage tank 80. ) To evaporate the condensed water (H 2 O), so that the degree of freedom of the place where the condensed water storage tank 80 is mounted can be improved. Can be improved.
  • FIG. 3 is a schematic configuration diagram of a working gas circulation engine according to Embodiment 3 of the present invention.
  • the working gas circulation engine according to the third embodiment has substantially the same configuration as the working gas circulation engine according to the first embodiment, but the structure of the heat exchange medium circulation path is different from that of the working gas circulation engine according to the first embodiment. Different.
  • action, and effect which are common in embodiment mentioned above while overlapping description is abbreviate
  • the working gas circulation engine 301 includes a cooling water circulation path 361 as a heat exchange medium circulation path.
  • the cooling water circulation path 361 of the present embodiment is configured such that a part thereof is in contact with condensed water (H 2 O) stored in the condensed water storage tank 80.
  • the cooling water circulation path 361 has a circulation path heat radiation part 361a in the path, and this circulation path heat radiation part 361a is in contact with the condensed water (H 2 O) stored in the condensed water storage tank 80. Composed.
  • the circulation path heat radiation part 361 a is provided on the downstream side of the condenser 60 and the upstream side of the radiator 63 with respect to the circulation direction of the cooling water circulating in the cooling water circulation path 361.
  • the circulation path heat radiation part 361 a is formed so as to meander a part of the cooling water circulation path 361 in the condensed water storage tank 80.
  • the cooling water circulation path 361 uses the condensed water (H 2 O) and heat stored in the condensed water storage tank 80 after the heat exchange with the exhaust gas and before the cooling by the radiator 63 in the circulation water radiator 361a. It can be circulated interchangeably.
  • the cooling water circulating in the cooling water circulation path 361 exchanges heat with the exhaust gas in the circulation path 20 in the condenser 60, thereby absorbing heat and increasing the temperature. . Then, the cooling water whose temperature has risen circulates in the cooling water circulation path 61 and exchanges heat with the condensed water (H 2 O) stored in the condensed water storage tank 80 by the circulation path heat radiation part 361a. Accordingly, the condensed water (H 2 O) stored in the condensed water storage tank 80 is accelerated in temperature by receiving heat from the cooling water whose temperature has been increased in the condenser 60, and thus the condensed water storage tank 80. Evaporation of condensed water (H 2 O) stored in is promoted.
  • the cooling water after circulating through the cooling water circulation path 361 and passing through the circulation path heat radiation part 361a exchanges heat with the condensed water (H 2 O) stored in the condensed water storage tank 80 by the circulation path heat radiation part 361a.
  • the temperature is lowered before being introduced into the radiator 63.
  • the radiator 63 can be further downsized.
  • the working gas circulation engine 301 uses the exhaust heat transfer unit 90 to transfer the exhaust heat of the exhaust gas from the exhaust pipe 18 to the condensed water storage tank 80.
  • condensed water stored the (H 2 O) was transferred to the condensed water (H 2 O) from the evaporated, it is possible to improve the flexibility of the mounting location of the condensed water storage tank 80, an appropriate condensation Mountability can be improved after water treatment.
  • the cooling water circulation path 361 for circulating the cooling water to the condenser 60 and the cooling water circulating through the cooling water circulation path 361 can be cooled.
  • the condenser 60 circulates through the cooling water circulation path 361 and heat-exchanges the cooling water cooled by the radiator 63 and the exhaust gas flowing through the circulation path 20 to thereby contain water vapor ( H 2 O) is condensed to be condensed water (H 2 O) and separated from the exhaust gas, and the cooling water circulation path 361 stores the cooling water after heat exchange with the exhaust gas and before cooling by the radiator 63 as condensed water. Circulating the condensed water stored in the tank 80 so as to allow heat exchange.
  • the cooling water whose temperature has been increased by exchanging heat with the exhaust gas in the circulation path 20 in the condenser 60 circulates in the cooling water circulation path 361 and is stored in the condensed water storage tank 80. that condensed water and (H 2 O) from the heat exchanger, it is possible to accelerate the evaporation of the condensed water stored in the condensed water storage tank 80 (H 2 O).
  • the working gas circulation engine 301 is introduced into the radiator 63 because the cooling water circulates through the cooling water circulation path 361 and exchanges heat with the condensed water (H 2 O) stored in the condensed water storage tank 80.
  • the working gas circulation engine 301 can more efficiently evaporate the condensed water (H 2 O) stored in the condensed water storage tank 80, and achieve more appropriate condensed water treatment.
  • the mountability can be further improved.
  • the exhaust heat transfer unit 90 serving as a transmission means is made of a copper tube as a material having a good thermal conductivity and having a corrosion resistance against weak acid.
  • the exhaust heat transfer section 90 as a transmission means is formed by forming the exhaust heat transfer section 90 and the transfer section 93 with a material having good thermal conductivity, and only the tank side heat radiating section 92 has corrosion resistance against weak acidity. You may form with the material which has.
  • the exhaust heat transfer section 90 as a transfer means does not necessarily need to be formed of a material that has corrosion resistance against weak acidity. Even in this case, the working gas circulation engine 1 can obtain the effect of improving the mountability after processing the appropriate condensed water.
  • the transmission means of the present invention may use, for example, a heat pipe.
  • FIG. 4 is a schematic configuration diagram of a working gas circulation engine according to the first modification of the present invention.
  • the working gas circulation engine 1A of the present modification includes a heat pipe 90A as a transmission means.
  • the heat receiving portion 91A provided at one end contacts the exhaust pipe 18, and the heat radiating portion 92A provided at the other end contacts the condensed water (H 2 O) stored in the condensed water storage tank 80.
  • the pipe includes a pipe material, a capillary material (wick) lined in the metal pipe, and a small amount of liquid enclosed in the metal pipe.
  • the heat pipe 90A When the heat receiving portion 91A, which is the end portion of the metal pipe on the exhaust pipe 18 side, is heated by the exhaust heat through the exhaust pipe 18, the heat pipe 90A becomes a vapor flow of the liquid in the metal pipe on the low temperature side.
  • the exhaust heat is transferred from the exhaust pipe 18 to the condensed water (H 2 O) by moving to the heat radiating portion 92A, which is the end of the condensed water storage tank 80 on the condensed water (H 2 O) side.
  • the heat pipe 90A serving as the transmission means is configured such that when the vapor in the metal pipe is cooled by the heat radiating portion 92A that is the end portion on the condensed water (H 2 O) side, the condensed liquid is exhausted by a capillary phenomenon. Circulate to the end of the side.
  • the working gas circulation engine 1A transmits the exhaust heat of the exhaust gas from the exhaust pipe 18 to the condensed water (H 2 O) stored in the condensed water storage tank 80 through the heat pipe 90A. Since the condensed water (H 2 O) is evaporated, the degree of freedom of the place where the condensed water storage tank 80 is mounted can be improved, and the mountability can be improved after processing the appropriate condensed water. it can.
  • the transmission means of the present invention may use a heat medium, for example.
  • FIG. 5 is a schematic configuration diagram of a working gas circulation engine according to the second modification of the present invention.
  • the working gas circulation engine 1B of this modification includes a heat medium circulation path 90B as a transmission means.
  • the heat medium circulation path 90B circulates the heat medium between the heat receiving part 91B provided on the exhaust pipe 18 side and the heat radiating part 92B provided on the condensed water storage tank 80 side, and the heat medium can flow inside. It is.
  • the heat medium circulation path 90B is a closed annular path, and the inside is filled with the heat medium.
  • the heat medium circulation path 90B is condensed water whose heat medium in the heat medium circulation path 90B is on the low temperature side.
  • the exhaust heat is transferred from the exhaust pipe 18 to the condensed water (H 2 O) by moving to the heat radiating portion 92B of the storage tank 80 on the condensed water (H 2 O) side.
  • the heat medium in the heat medium circuit 90B is cooled by the heat radiating portion 92B, which is a part on the condensed water (H 2 O) side, the heat medium is again turned on. It recirculates to the heat receiving portion 91B on the exhaust pipe 18 side.
  • the working gas circulation engine 1B transmits the exhaust heat of the exhaust gas from the exhaust pipe 18 to the condensed water (H 2 O) stored in the condensed water storage tank 80 through the heat medium circulation path 90B. Since this condensed water (H 2 O) is evaporated, the degree of freedom of the place where the condensed water storage tank 80 is mounted can be improved, and the mountability is improved after processing the appropriate condensed water. be able to.
  • the working gas circulation engine has been described as including the fuel injection means 42 so that the fuel is directly injected into the combustion chamber CC.
  • the fuel injection means 42 supplies the fuel to the intake port 11b. It may be attached to the cylinder head 11 for injection.
  • the working gas circulation engine of the present invention described above may be applied to a so-called port injection working gas circulation engine.
  • the mountability can be improved.
  • the working gas circulation engine has been exemplified as the one that diffuses and burns hydrogen (H 2 ) as a fuel.
  • the fuel is ignited by a spark plug (not shown), and so-called spark ignition combustion.
  • the fuel may be ignited with a spark plug to assist the ignition and diffusely burned. That is, the working gas circulation engine of the present invention described above may be applied to a working gas circulation engine having a different combustion form, and even in this case, after processing proper condensed water, , Mountability can be improved.
  • the working gas circulation engine according to the present invention can improve the mountability, and the working gas contained in the exhaust gas is circulated from the exhaust side of the combustion chamber to the intake side to be combusted again. It is suitable for application to various working gas circulation engines that can be supplied to the chamber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

A working medium circulating type engine (1) comprising a combustion chamber (CC) capable of expanding working medium as combustion of fuel progresses and exhausting to an exhaust pipe (18) vapor and working medium as exhaust gas after combustion of fuel, a circulating path (20) capable of circulating working medium contained in exhaust gas from the exhaust side of the combustion chamber (CC) to the supply side to supply it to the combustion chamber (CC) again, a condensing means (60) provided on the circulating path (20) and condensing vapor contained in exhaust gas into condensate water, a storing means (80) capable of storing condensate water, and a transferring means (90) for transferring exhaust heat in exhaust gas from the exhaust pipe (18) to condensate water stored in the storing means (80) to evaporate the condensate water, whereby it is possible to enhance mounting performance.

Description

作動ガス循環型エンジンWorking gas circulation engine
 本発明は、作動ガス循環型エンジンに関し、特に排気ガス中に含まれる作動ガスを燃焼室の排気側から吸気側に循環させ再び燃焼室に供給可能な作動ガス循環型エンジンに関するものである。 The present invention relates to a working gas circulation engine, and more particularly to a working gas circulation engine in which working gas contained in exhaust gas is circulated from the exhaust side to the intake side of the combustion chamber and can be supplied to the combustion chamber again.
 従来のエンジンとして、排気ガス中に含まれる作動ガスを燃焼室の排気側から吸気側に循環させ再び燃焼室に供給可能な、いわゆる、閉サイクルエンジンである作動ガス循環型エンジンが知られている。このような作動ガス循環型エンジンは、酸化剤としての酸素と、この酸素によって燃焼が促進される燃料としての水素と、単原子ガスからなる作動ガスとが供給される燃焼室と、作動ガスを燃焼室の排気側から吸気側に循環させ再び燃焼室に供給可能な循環経路とを備え、燃焼室にて水素の燃焼に伴って作動ガスが熱膨張することで動力を発生させると共に、この作動ガスが大気へと放出されることなく循環経路を介して再び燃焼室に供給される。 As a conventional engine, a working gas circulation engine that is a so-called closed-cycle engine that can circulate the working gas contained in the exhaust gas from the exhaust side of the combustion chamber to the intake side and supply it again to the combustion chamber is known. . Such a working gas circulation engine includes oxygen as an oxidant, hydrogen as a fuel whose combustion is accelerated by the oxygen, a combustion chamber to which a working gas composed of a monoatomic gas is supplied, and a working gas. A circulation path that can be circulated from the exhaust side to the intake side of the combustion chamber and re-supplied to the combustion chamber, and the working gas thermally expands with the combustion of hydrogen in the combustion chamber to generate power, and this operation The gas is supplied again to the combustion chamber via the circulation path without being released to the atmosphere.
 従来の作動ガス循環型エンジンとしては、例えば、下記の特許文献1に開示された水素エンジンが知られている。特許文献1に記載されている水素エンジンは、燃焼室に酸素と、水素とが供給されると共に、熱効率を高めるべく作動ガスとして、例えば、単原子ガスからなり空気より比熱比が大きいアルゴンが循環されている。この作動ガス循環型エンジンは、燃焼室内での水素の燃焼によってアルゴンを熱膨張させ、これによりピストンを押し下げて動力を発生させる。 As a conventional working gas circulation engine, for example, a hydrogen engine disclosed in Patent Document 1 below is known. In the hydrogen engine described in Patent Document 1, oxygen and hydrogen are supplied to a combustion chamber, and argon is circulated as a working gas to increase thermal efficiency, for example, composed of a monoatomic gas and having a higher specific heat ratio than air. Has been. In this working gas circulation engine, argon is thermally expanded by combustion of hydrogen in a combustion chamber, and thereby a piston is pushed down to generate power.
 ところで、燃焼室内では水素の燃焼に伴って水素と酸素とが結合することで水蒸気が発生するので、循環経路には燃焼室からの排気ガスとして、アルゴンと共に水蒸気が排出される。このため、この従来の作動ガス循環型エンジンとしての特許文献1に記載されている水素エンジンは、3原子からなる分子(3原子分子)であり、アルゴンよりも比熱比が小さい水蒸気を液化させ凝縮水として取り除く凝縮器を循環経路上に配設し、作動ガスとしてのアルゴンのみが循環して再び燃焼室に供給されるように構成することで、熱効率の低下を抑制している。 By the way, water vapor is generated by combining hydrogen and oxygen with hydrogen combustion in the combustion chamber, so that water vapor is discharged together with argon as exhaust gas from the combustion chamber in the circulation path. For this reason, the hydrogen engine described in Patent Document 1 as a conventional working gas circulation engine is a molecule composed of three atoms (triatomic molecule), which liquefies and condenses water vapor having a smaller specific heat ratio than argon. A condenser to be removed as water is arranged on the circulation path so that only argon as a working gas is circulated and supplied to the combustion chamber again, thereby suppressing a decrease in thermal efficiency.
 ここで、特許文献1に記載されている水素エンジンでは、例えば、凝縮器により排気ガスから凝縮された凝縮水を適正に処理する必要がある。これに対し、特許文献1に記載されている水素エンジンは、例えば、特許文献2に記載されている凝縮水の油水分離装置のように、排気ガスが流れる排気ガス管が貫通されこの排気ガス管を覆うようにして設けられる貯留槽に凝縮水を貯留し、この貯留槽に貯留された凝縮水と排気ガス管の外面とを接触させ熱交換させて、排気熱を利用してこの凝縮水を蒸発させてから処理することで、凝縮水を適正に処理することができる。 Here, in the hydrogen engine described in Patent Document 1, for example, it is necessary to appropriately treat the condensed water condensed from the exhaust gas by the condenser. On the other hand, the hydrogen engine described in Patent Document 1 has an exhaust gas pipe that passes through an exhaust gas pipe through which exhaust gas flows, such as an oil-water separator of condensed water described in Patent Document 2, for example. The condensate is stored in a storage tank provided so as to cover the heat, and the condensed water stored in the storage tank and the outer surface of the exhaust gas pipe are brought into contact with each other to exchange heat. By treating after evaporation, the condensed water can be treated appropriately.
特開平11-93681号公報JP-A-11-93681 特開2008-161785号公報JP 2008-161785 A
 しなしながら、上述のような特許文献1に記載されている水素エンジンと特許文献2に記載されている凝縮水の油水分離装置との組み合わせでは、凝縮水の処理を適正に行うことができるものの、例えば、搭載性の面でさらなる向上の余地があった。すなわち、上記のように貯留槽に貯留された凝縮水と排気ガス管の外面とを接触させて排気熱を利用してこの凝縮水を蒸発させてから処理する場合、この水素エンジンは、貯留槽に貯留された凝縮水と排気ガス管の外面とを接触させるために排気ガス管近傍の限られた搭載スペースに貯留槽を配置しなければならない。このため、この水素エンジンは、貯留槽の搭載における自由度が少なくなり、例えば、十分な貯留槽の容量を確保するためにエンジンの大型化をまねいたり、逆に十分な貯留槽の容量を確保できなかったりするおそれがあった。 However, in the combination of the hydrogen engine described in Patent Document 1 as described above and the oil / water separator of condensed water described in Patent Document 2, the condensate can be treated appropriately. For example, there was room for further improvement in terms of mountability. That is, when the condensed water stored in the storage tank as described above is brought into contact with the outer surface of the exhaust gas pipe and the condensed water is evaporated using exhaust heat, the hydrogen engine is stored in the storage tank. In order to bring the condensed water stored in the tank into contact with the outer surface of the exhaust gas pipe, the storage tank must be arranged in a limited mounting space near the exhaust gas pipe. For this reason, this hydrogen engine has less flexibility in mounting the storage tank. For example, the engine can be increased in size to ensure sufficient storage tank capacity, or conversely, sufficient storage tank capacity can be ensured. There was a risk of not being able to.
 そこで本発明は、搭載性を向上することができる作動ガス循環型エンジンを提供することを目的とする。 Therefore, an object of the present invention is to provide a working gas circulation engine that can improve the mountability.
 上記目的を達成するために、請求項1に係る発明による作動ガス循環型エンジンは、酸化剤と、当該酸化剤によって燃焼が促進されると共に当該燃焼により水蒸気を生成する燃料と、作動ガスとが供給され、前記燃料の燃焼に伴って前記作動ガスが膨張可能であると共に前記燃料の燃焼後の排気ガスとして前記水蒸気と前記作動ガスとを排気管に排気可能な燃焼室と、前記排気ガス中に含まれる前記作動ガスを前記燃焼室の排気側から吸気側に循環させ再び前記燃焼室に供給可能な循環経路と、前記循環経路に設けられ前記排気ガス中に含まれる前記水蒸気を凝縮して凝縮水とする凝縮手段と、前記凝縮水を貯留可能な貯留手段と、前記排気ガスの排気熱を前記排気管から前記貯留手段に貯留される前記凝縮水に伝達し当該凝縮水を蒸発させる伝達手段とを備えることを特徴とする。 In order to achieve the above object, a working gas circulation engine according to the first aspect of the present invention includes an oxidant, a fuel whose combustion is promoted by the oxidant and which generates steam by the combustion, and a working gas. A combustion chamber capable of expanding the working gas with combustion of the fuel and capable of exhausting the water vapor and the working gas to the exhaust pipe as exhaust gas after combustion of the fuel; and in the exhaust gas The working gas contained in the combustion chamber is circulated from the exhaust side to the intake side of the combustion chamber and can be supplied again to the combustion chamber, and the water vapor contained in the exhaust gas provided in the circulation path is condensed. Condensing means for condensate, storage means for storing the condensed water, exhaust heat of the exhaust gas is transmitted from the exhaust pipe to the condensed water stored in the storage means, and the condensed water is evaporated. Characterized in that it comprises a that transmission means.
 請求項2に係る発明による作動ガス循環型エンジンでは、前記伝達手段は、前記排気管とは別体に形成され、前記凝縮水との接触部分が弱酸性に対して耐腐食性を有する材料により形成されることを特徴とする。 In the working gas circulation engine according to the second aspect of the present invention, the transmission means is formed separately from the exhaust pipe, and the contact portion with the condensed water is made of a material having corrosion resistance against weak acidity. It is formed.
 請求項3に係る発明による作動ガス循環型エンジンでは、前記伝達手段は、前記循環経路を循環する前記作動ガスの循環方向に対して前記凝縮手段より上流側の前記排気管から前記凝縮水に前記排気熱を伝達することを特徴とする。 In the working gas circulation engine according to the third aspect of the present invention, the transmission means supplies the condensed water from the exhaust pipe upstream of the condensing means to the condensed water with respect to the circulation direction of the working gas circulating in the circulation path. It is characterized by transmitting exhaust heat.
 請求項4に係る発明による作動ガス循環型エンジンでは、前記凝縮手段に熱交換媒体を循環させる熱交換媒体循環経路と、前記熱交換媒体循環経路を循環する前記熱交換媒体を冷却可能な冷却手段とを備え、前記凝縮手段は、前記熱交換媒体循環経路を循環し前記冷却手段により冷却された前記熱交換媒体と前記循環経路を流れる前記排気ガスとを熱交換させることにより当該排気ガスに含まれる前記水蒸気を凝縮して前記凝縮水とし当該排気ガスから分離し、前記熱交換媒体循環経路は、前記排気ガスとの熱交換後でかつ前記冷却手段による冷却前の前記熱交換媒体を前記貯留手段に貯留される前記凝縮水と熱交換可能に循環させることを特徴とする。 In the working gas circulation engine according to the invention according to claim 4, a heat exchange medium circulation path for circulating the heat exchange medium in the condensing means, and a cooling means capable of cooling the heat exchange medium circulating in the heat exchange medium circulation path The condensing means is included in the exhaust gas by exchanging heat between the heat exchange medium circulated through the heat exchange medium circulation path and cooled by the cooling means and the exhaust gas flowing through the circulation path. The water vapor is condensed into the condensed water and separated from the exhaust gas, and the heat exchange medium circulation path stores the heat exchange medium after heat exchange with the exhaust gas and before cooling by the cooling means. The condensed water stored in the means is circulated so as to be able to exchange heat.
 本発明に係る作動ガス循環型エンジンによれば、排気ガスの排気熱を排気管から貯留手段に貯留される凝縮水に伝達し当該凝縮水を蒸発させる伝達手段を備えるので、適正な凝縮水の処理を図った上で、搭載性を向上することができる。 According to the working gas circulation engine according to the present invention, since the exhaust heat of the exhaust gas is transmitted from the exhaust pipe to the condensed water stored in the storing means and the condensed water is evaporated, the proper condensed water is provided. Mountability can be improved after processing.
図1は、本発明の実施形態1に係る作動ガス循環型エンジンの模式的な概略構成図である。FIG. 1 is a schematic configuration diagram of a working gas circulation engine according to Embodiment 1 of the present invention. 図2は、本発明の実施形態2に係る作動ガス循環型エンジンの模式的な概略構成図である。FIG. 2 is a schematic configuration diagram of a working gas circulation engine according to the second embodiment of the present invention. 図3は、本発明の実施形態3に係る作動ガス循環型エンジンの模式的な概略構成図である。FIG. 3 is a schematic configuration diagram of a working gas circulation engine according to Embodiment 3 of the present invention. 図4は、本発明の変形例1に係る作動ガス循環型エンジンの模式的な概略構成図である。FIG. 4 is a schematic configuration diagram of a working gas circulation engine according to the first modification of the present invention. 図5は、本発明の変形例2に係る作動ガス循環型エンジンの模式的な概略構成図である。FIG. 5 is a schematic configuration diagram of a working gas circulation engine according to the second modification of the present invention.
符号の説明Explanation of symbols
1、1A、1B、201、301  作動ガス循環型エンジン
10  エンジン本体
11b  吸気ポート
11c  排気ポート
17  吸気管
18  排気管
20  循環経路
30  酸化剤供給装置
40  燃料供給装置
50  電子制御装置
60  凝縮器(凝縮手段)
61、361  冷却水循環路(熱交換媒体循環経路)
63  ラジエータ(冷却手段)
80  凝縮水貯留タンク(貯留手段)
90  排気熱伝達部(伝達手段)
90A  ヒートパイプ(伝達手段)
90B  熱媒循環路(伝達手段)
91  排気管側受熱部
92  タンク側放熱部
93  伝達部
361a  循環路放熱部
CC  燃焼室
1, 1A, 1B, 201, 301 Working gas circulation engine 10 Engine body 11b Intake port 11c Exhaust port 17 Intake pipe 18 Exhaust pipe 20 Circulation path 30 Oxidant supply device 40 Fuel supply device 50 Electronic control device 60 Condenser means)
61,361 Cooling water circulation path (heat exchange medium circulation path)
63 Radiator (cooling means)
80 Condensate storage tank (storage means)
90 Exhaust heat transfer section (transfer means)
90A heat pipe (transmission means)
90B Heat transfer circuit (transmission means)
91 Exhaust pipe side heat receiving part 92 Tank side heat radiating part 93 Transmission part 361a Circulation path heat radiating part CC Combustion chamber
 以下に、本発明に係る作動ガス循環型エンジンの実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能かつ容易なもの、或いは実質的に同一のものが含まれる。 Hereinafter, an embodiment of a working gas circulation engine according to the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by this embodiment. In addition, constituent elements in the following embodiments include those that can be easily replaced by those skilled in the art or those that are substantially the same.
(実施形態1)
 図1は、本発明の実施形態1に係る作動ガス循環型エンジンの模式的な概略構成図である。
(Embodiment 1)
FIG. 1 is a schematic configuration diagram of a working gas circulation engine according to Embodiment 1 of the present invention.
 本実施形態の作動ガス循環型エンジン1は、図1に示すように、酸化剤、この酸化剤によって燃焼が促される燃料及びこの燃料の燃焼に伴って動力を発生させる作動ガスが供給される燃焼室CCと、この燃焼室CCの吸気側と排気側とを繋ぐ循環経路20とを備え、その作動ガスが大気へと放出されることなく循環経路20を介して再び燃焼室CCに供給されるよう構成した、いわゆる閉サイクルエンジンである。この作動ガス循環型エンジン1は、燃焼室CC内で燃料を燃焼させ、この燃料の燃焼に伴って作動ガスを熱膨張させて動力を発生させることで熱効率を向上するものである。 As shown in FIG. 1, the working gas circulation engine 1 of the present embodiment is a combustion that is supplied with an oxidant, a fuel that is promoted by the oxidant, and a working gas that generates power as the fuel burns. The chamber CC and a circulation path 20 connecting the intake side and the exhaust side of the combustion chamber CC are provided, and the working gas is supplied again to the combustion chamber CC via the circulation path 20 without being released to the atmosphere. This is a so-called closed cycle engine. This working gas circulation engine 1 improves thermal efficiency by burning fuel in a combustion chamber CC and generating power by thermally expanding the working gas as the fuel burns.
 この作動ガス循環型エンジン1は、燃焼室CCが形成されるエンジン本体10と、燃焼室CCの吸気側と排気側とを繋ぐ循環経路20と、その燃焼室CCに酸化剤を供給する酸化剤供給装置30と、その燃焼室CCに燃料を供給する燃料供給装置40と、作動ガス循環型エンジン1の各部を制御する電子制御装置(ECU)50とを備える。エンジン本体10の燃焼室CCと循環経路20とは、ともに作動ガスが充填されており、作動ガスは、燃焼室CCと循環経路20との間で循環する。なお、図1に例示するエンジン本体10は、1気筒のみを図示しているが、本発明の作動ガス循環型エンジン1は、これに限らず、多気筒のエンジン本体10も適用可能である。 The working gas circulation engine 1 includes an engine body 10 in which a combustion chamber CC is formed, a circulation path 20 that connects the intake side and the exhaust side of the combustion chamber CC, and an oxidant that supplies an oxidant to the combustion chamber CC. A supply device 30, a fuel supply device 40 that supplies fuel to the combustion chamber CC, and an electronic control unit (ECU) 50 that controls each part of the working gas circulation engine 1 are provided. The combustion chamber CC and the circulation path 20 of the engine body 10 are both filled with working gas, and the working gas circulates between the combustion chamber CC and the circulation path 20. 1 shows only one cylinder, the working gas circulation engine 1 of the present invention is not limited to this, and a multi-cylinder engine body 10 can also be applied.
 本実施形態の燃焼室CCは、エンジン本体10に形成される。このエンジン本体10の燃焼室CCは、酸化剤と、この酸化剤によって燃焼が促進されると共に燃焼により水蒸気を生成する燃料と、作動ガスとが供給され、燃料の燃焼に伴って作動ガスが膨張可能であると共に燃料の燃焼後の排気ガスとして水蒸気と作動ガスとを排気管18に排気可能なものである。 The combustion chamber CC of the present embodiment is formed in the engine body 10. The combustion chamber CC of the engine body 10 is supplied with an oxidizer, fuel that promotes combustion by the oxidizer and generates water vapor by combustion, and working gas, and the working gas expands as the fuel burns. In addition, it is possible to exhaust water vapor and working gas to the exhaust pipe 18 as exhaust gas after combustion of fuel.
 具体的には、エンジン本体10は、燃焼室CCを形成するシリンダヘッド11、シリンダブロック12及びピストン13を備えている。ピストン13は、コネクティングロッド14を介してクランクシャフト(不図示)に連結し、シリンダヘッド11の下面の凹部11aとシリンダブロック12のシリンダボア12aとの空間内に往復運動可能に配置される。燃焼室CCは、シリンダヘッド11の凹部11aの壁面とシリンダボア12aの壁面とピストン13の頂面13aとで囲まれた空間によって構成される。 Specifically, the engine body 10 includes a cylinder head 11, a cylinder block 12, and a piston 13 that form a combustion chamber CC. The piston 13 is connected to a crankshaft (not shown) via a connecting rod 14 and is disposed so as to be able to reciprocate in the space between the recess 11 a on the lower surface of the cylinder head 11 and the cylinder bore 12 a of the cylinder block 12. The combustion chamber CC is configured by a space surrounded by the wall surface of the recess 11 a of the cylinder head 11, the wall surface of the cylinder bore 12 a, and the top surface 13 a of the piston 13.
 エンジン本体10は、シリンダヘッド11に吸気ポート11b及び排気ポート11cが形成されている。吸気ポート11bと排気ポート11cとは、ともに循環経路20の一部をなすものである。吸気ポート11b、排気ポート11cは、それぞれ一端が燃焼室CC内に開口している。エンジン本体10は、吸気ポート11bの燃焼室CC側の開口部分に吸気バルブ15が配設されている。吸気バルブ15は、開弁時にこの吸気ポート11bの燃焼室CC側の開口を開く一方、閉弁時にこの吸気ポート11bの燃焼室CC側の開口を閉じるものである。エンジン本体10は、排気ポート11cの燃焼室CC側の開口部分に排気バルブ16が配設されている。排気バルブ16は、開弁時にこの排気ポート11cの燃焼室CC側の開口を開く一方、閉弁時にこの排気ポート11cの燃焼室CC側の開口を閉じるものである。 The engine body 10 has a cylinder head 11 formed with an intake port 11b and an exhaust port 11c. Both the intake port 11b and the exhaust port 11c form part of the circulation path 20. One end of each of the intake port 11b and the exhaust port 11c opens into the combustion chamber CC. The engine main body 10 is provided with an intake valve 15 at an opening portion of the intake port 11b on the combustion chamber CC side. The intake valve 15 opens the opening on the combustion chamber CC side of the intake port 11b when the valve is opened, and closes the opening on the combustion chamber CC side of the intake port 11b when the valve is closed. The engine body 10 is provided with an exhaust valve 16 at an opening portion of the exhaust port 11c on the combustion chamber CC side. The exhaust valve 16 opens the opening on the combustion chamber CC side of the exhaust port 11c when the valve is opened, and closes the opening on the combustion chamber CC side of the exhaust port 11c when the valve is closed.
 吸気バルブ15や排気バルブ16としては、例えば、不図示のカムシャフトの回転と弾性部材(弦巻バネ)の弾発力に伴って開閉駆動されるものがある。この種の吸気バルブ15や排気バルブ16においては、そのカムシャフトとクランクシャフトの間にチェーンやスプロケット等からなる動力伝達機構を介在させることによってそのカムシャフトをクランクシャフトの回転に連動させ、予め設定された開閉時期に開閉駆動させる。また、このエンジン本体10は、吸気バルブ15と排気バルブ16の開閉時期やリフト量を変更可能な、いわゆる可変バルブタイミング&リフト機構等の可変バルブ機構を備えていてもよく、これにより、その吸気バルブ15や排気バルブ16の開閉時期やリフト量を運転条件に応じた好適なものへと変更できるようになる。さらにまた、このエンジン本体10は、このような可変バルブ機構と同様の作用効果を得るべく、電磁力を利用して吸気バルブ15や排気バルブ16を開閉駆動させる、いわゆる電磁駆動弁を適用してもよい。 As the intake valve 15 and the exhaust valve 16, for example, there are those that are opened and closed in accordance with the rotation of a camshaft (not shown) and the elastic force of an elastic member (string spring). In this type of intake valve 15 and exhaust valve 16, a camshaft is interlocked with the rotation of the crankshaft by interposing a power transmission mechanism composed of a chain, a sprocket, etc. between the camshaft and the crankshaft. Open / close drive at the opened / closed timing. The engine body 10 may include a variable valve mechanism such as a so-called variable valve timing & lift mechanism that can change the opening / closing timing and lift amount of the intake valve 15 and the exhaust valve 16, thereby The opening / closing timing and lift amount of the valve 15 and the exhaust valve 16 can be changed to suitable ones according to the operating conditions. Furthermore, the engine body 10 is applied with a so-called electromagnetically driven valve that opens and closes the intake valve 15 and the exhaust valve 16 using electromagnetic force in order to obtain the same effect as the variable valve mechanism. Also good.
 また、エンジン本体10は、吸気ポート11bの燃焼室CC側とは反対側の開口に吸気管17が接続される一方、排気ポート11cの燃焼室CC側とは反対側の開口に排気管18が接続されている。吸気管17と排気管18とは、ともに循環経路20の一部をなすものである。吸気管17は、筒状に形成され内部を流体が通過可能なものであり、後述するように燃焼室CCに作動ガスとしてのアルゴン(Ar)と、酸化剤としての酸素(O)とを供給するための吸気通路である。つまり、燃焼室CCは、吸気バルブ15の開弁時に、この吸気管17から吸気ポート11bを介して酸化剤と作動ガスとが供給(吸気)される。一方、排気管18は、筒状に形成され内部を流体が通過可能なものであり、後述するように燃料としての水素(H)の燃焼後の排気ガスとして、燃焼室CCから作動ガスとしてのアルゴン(Ar)と、水蒸気(HO)とを排出するための排気通路である。つまり、燃焼室CCは、排気バルブ16の開弁時に、燃料の燃焼後の排気ガスとして、排気ポート11cを介して水蒸気と作動ガスとを排気管18に排気する。 The engine body 10 has an intake pipe 17 connected to an opening of the intake port 11b opposite to the combustion chamber CC side, and an exhaust pipe 18 connected to an opening of the exhaust port 11c opposite to the combustion chamber CC side. It is connected. The intake pipe 17 and the exhaust pipe 18 together form part of the circulation path 20. The intake pipe 17 is formed in a cylindrical shape and allows fluid to pass therethrough. As will be described later, the combustion chamber CC contains argon (Ar) as a working gas and oxygen (O 2 ) as an oxidant. It is an intake passage for supplying. In other words, when the intake valve 15 is opened, the oxidant and the working gas are supplied (intake) from the intake pipe 17 to the combustion chamber CC via the intake port 11b. On the other hand, the exhaust pipe 18 is formed in a cylindrical shape so that a fluid can pass therethrough. As will be described later, as an exhaust gas after combustion of hydrogen (H 2 ) as a fuel, the exhaust pipe 18 serves as a working gas from the combustion chamber CC. This is an exhaust passage for discharging argon (Ar) and water vapor (H 2 O). That is, when the exhaust valve 16 is opened, the combustion chamber CC exhausts water vapor and working gas to the exhaust pipe 18 through the exhaust port 11c as exhaust gas after combustion of fuel.
 循環経路20は、排気管18に排気された排気ガス中に含まれる作動ガスを燃焼室CCの排気側から吸気側に循環させ再び燃焼室CCに供給可能なものである。循環経路20は、上述した吸気ポート11b及び排気ポート11cと、吸気ポート11bの他端と排気ポート11cの他端とを繋ぐ循環通路21とを含んで構成される。これにより、この循環経路20内と燃焼室CC内とは、閉塞された空間をなす。循環通路21は、筒状に形成され内部を流体が通過可能なものであり、上述の吸気管17と排気管18とは、この循環通路21の一部をなす。 The circulation path 20 can circulate the working gas contained in the exhaust gas exhausted to the exhaust pipe 18 from the exhaust side to the intake side of the combustion chamber CC and supply it to the combustion chamber CC again. The circulation path 20 includes the intake port 11b and the exhaust port 11c described above, and a circulation passage 21 that connects the other end of the intake port 11b and the other end of the exhaust port 11c. As a result, the circulation path 20 and the combustion chamber CC form a closed space. The circulation passage 21 is formed in a cylindrical shape and allows fluid to pass therethrough. The intake pipe 17 and the exhaust pipe 18 described above form part of the circulation passage 21.
 この作動ガス循環型エンジン1は、循環経路20と燃焼室CCとからなる閉塞された空間内に作動ガスが充填される。作動ガス循環型エンジン1は、この作動ガスを循環経路20の吸気管17、吸気ポート11bから燃焼室CC内、燃焼室CC内から循環経路20の排気ポート11c、排気管18、そして、この排気ポート11c、排気管18から循環通路21を介して再び吸気管17、吸気ポート11bへと循環させる。つまり、循環経路20は、燃焼室CCの吸気側(吸気ポート11b側)と排気側(排気ポート11c側)とを燃焼室CCの外部で接続し、作動ガスを大気へと放出することなく再び燃焼室CCに供給する。さらに言えば、循環経路20は、両端が燃焼室CCに連通すると共に一端からは水蒸気と作動ガスとを含む排気ガスが燃焼室CCから流入し、他端からは燃焼室CCが吸気する酸化剤と作動ガスとが燃焼室CCに対して流出可能である。ここでは、作動ガス循環型エンジン1は、吸気バルブ15が開弁した際に、循環通路21の酸化剤、作動ガスが吸気管17、吸気ポート11bを介して燃焼室CCに供給される。また、作動ガス循環型エンジン1は、排気バルブ16が開弁した際に、燃焼室CC内の排気ガスが排気ポート11c、排気管18を介して循環通路21に排出される。 This working gas circulation engine 1 is filled with working gas in a closed space composed of the circulation path 20 and the combustion chamber CC. The working gas circulation engine 1 circulates the working gas through the intake pipe 17 of the circulation path 20, the intake port 11b into the combustion chamber CC, the exhaust port 11c of the circulation path 20 from the combustion chamber CC, the exhaust pipe 18, and the exhaust gas. The air is circulated from the port 11c and the exhaust pipe 18 to the intake pipe 17 and the intake port 11b through the circulation passage 21 again. That is, the circulation path 20 connects the intake side (intake port 11b side) and the exhaust side (exhaust port 11c side) of the combustion chamber CC outside the combustion chamber CC, and again without releasing the working gas to the atmosphere. Supply to combustion chamber CC. Furthermore, the circulator 20 has both ends communicating with the combustion chamber CC, an exhaust gas containing water vapor and working gas flows from one end into the combustion chamber CC, and an oxidant that the combustion chamber CC takes in from the other end. And the working gas can flow out to the combustion chamber CC. Here, in the working gas circulation engine 1, when the intake valve 15 is opened, the oxidant and working gas in the circulation passage 21 are supplied to the combustion chamber CC via the intake pipe 17 and the intake port 11b. Further, in the working gas circulation engine 1, when the exhaust valve 16 is opened, the exhaust gas in the combustion chamber CC is discharged to the circulation passage 21 through the exhaust port 11c and the exhaust pipe 18.
 さらに具体的には、循環経路20の循環通路21は、第1循環通路21aと、第2循環通路21bと、第3循環通路21cとを含んで構成されている。第1循環通路21aは、吸気ポート11bの他端と酸化剤供給装置30における後述する酸化剤供給手段32の排出口32aとを繋ぐものである。また、第2循環通路21bは、排気ポート11cの他端と後述する凝縮手段としての凝縮器60の排気ガス導入口60aとを繋ぐものである。また、第3循環通路21cは、この凝縮器60の作動ガス排出口60bと酸化剤供給手段32の作動ガス導入口32bとを繋ぐものである。上述の吸気管17は、第1循環通路21aをなす一方、排気管18は、第2循環通路21bをなす。 More specifically, the circulation path 21 of the circulation path 20 includes a first circulation path 21a, a second circulation path 21b, and a third circulation path 21c. The first circulation passage 21 a connects the other end of the intake port 11 b and a discharge port 32 a of an oxidant supply means 32 described later in the oxidant supply device 30. The second circulation passage 21b connects the other end of the exhaust port 11c and an exhaust gas inlet 60a of a condenser 60 as a condensing means described later. Further, the third circulation passage 21 c connects the working gas discharge port 60 b of the condenser 60 and the working gas introduction port 32 b of the oxidant supply means 32. The intake pipe 17 described above forms the first circulation passage 21a, while the exhaust pipe 18 forms the second circulation passage 21b.
 ここで、循環経路20と燃焼室CCとからなる閉塞された空間内に充填される作動ガスとしては、例えば、単原子ガスが用いられる。本実施形態の作動ガスは、空気よりも比熱比の高いものであって、例えば、単原子ガスであるアルゴンやヘリウム等の希ガスが用いられる。本実施形態では、作動ガスは、上述のようにアルゴン(Ar)を用いるものとして説明する。 Here, for example, a monoatomic gas is used as the working gas filled in the closed space formed by the circulation path 20 and the combustion chamber CC. The working gas of this embodiment has a higher specific heat ratio than air, and for example, a rare gas such as argon or helium, which is a monoatomic gas, is used. In the present embodiment, the working gas is described as using argon (Ar) as described above.
 酸化剤供給装置30は、循環経路20の吸気管17、吸気ポート11bを介して燃焼室CCに酸化剤を供給するものであり、酸化剤貯留タンク31と、酸化剤供給手段32と、酸化剤供給通路33と、レギュレータ34と、酸化剤流量計35とを含んで構成される。 The oxidant supply device 30 supplies oxidant to the combustion chamber CC via the intake pipe 17 and the intake port 11b of the circulation path 20, and includes an oxidant storage tank 31, an oxidant supply means 32, an oxidant. A supply passage 33, a regulator 34, and an oxidant flow meter 35 are included.
 酸化剤貯留タンク31は、酸化剤を高圧の状態で貯留するものである。酸化剤供給手段32は、酸化剤貯留タンク31に貯留された酸化剤を循環通路21に供給するものである。酸化剤供給通路33は、酸化剤貯留タンク31と酸化剤供給手段32とを繋ぐものである。レギュレータ34及び酸化剤流量計35は、この酸化剤供給通路33上に設けられる。レギュレータ34と酸化剤流量計35とは、酸化剤供給通路33における酸化剤の供給方向に対して、上流側(酸化剤貯留タンク31側)から下流側(酸化剤供給手段32側)向にかってレギュレータ34、酸化剤流量計35の順で設けられている。 The oxidant storage tank 31 stores the oxidant in a high pressure state. The oxidant supply means 32 supplies the oxidant stored in the oxidant storage tank 31 to the circulation passage 21. The oxidant supply passage 33 connects the oxidant storage tank 31 and the oxidant supply means 32. The regulator 34 and the oxidant flow meter 35 are provided on the oxidant supply passage 33. The regulator 34 and the oxidant flow meter 35 extend from the upstream side (oxidant storage tank 31 side) to the downstream side (oxidant supply means 32 side) with respect to the oxidant supply direction in the oxidant supply passage 33. The regulator 34 and the oxidant flow meter 35 are provided in this order.
 ここで、本実施形態の酸化剤供給手段32としては、酸化剤供給通路33から流入してきた酸化剤と、作動ガス導入口32bを介して循環通路21から流入してきた作動ガスとを混合し、混合後の酸化剤と作動ガスとを排出口32aから循環通路21の下流側(吸気ポート11b側)に流す酸化剤混合手段を用いる。したがって、本実施形態の酸化剤供給装置30は、酸化剤を単に循環通路21へと供給するだけではなく、循環通路21を通る作動ガスと混ぜ合わせて循環通路21に送り込ませることができる。この結果、酸化剤は、吸気バルブ15の開弁に伴い吸気ポート11bを介して作動ガスと共に燃焼室CCに供給されることになる。 Here, as the oxidant supply means 32 of the present embodiment, the oxidant flowing from the oxidant supply passage 33 and the working gas flowing from the circulation passage 21 through the working gas introduction port 32b are mixed, An oxidant mixing means is used for flowing the mixed oxidant and working gas from the discharge port 32a to the downstream side of the circulation passage 21 (the intake port 11b side). Therefore, the oxidant supply device 30 of the present embodiment can not only supply the oxidant to the circulation passage 21 but also mix it with the working gas passing through the circulation passage 21 and send it to the circulation passage 21. As a result, the oxidant is supplied to the combustion chamber CC together with the working gas via the intake port 11b when the intake valve 15 is opened.
 レギュレータ34は、酸化剤供給通路33におけるレギュレータ34よりも下流側(酸化剤流量計35側)の圧力を電子制御装置50の指令に従った目標圧力に調整するものである。言い換えれば、このレギュレータ34は、酸化剤供給通路33における酸化剤の流量を制御するものである。また、酸化剤流量計35は、酸化剤供給通路33における酸化剤の流量を計測する手段であって、レギュレータ34で調整された酸化剤の流量の計測を行う。この酸化剤流量計35の計測信号は、電子制御装置50に送信される。 The regulator 34 adjusts the pressure downstream of the regulator 34 in the oxidant supply passage 33 (the oxidant flow meter 35 side) to a target pressure according to a command from the electronic control unit 50. In other words, the regulator 34 controls the flow rate of the oxidant in the oxidant supply passage 33. The oxidant flow meter 35 is a means for measuring the flow rate of the oxidant in the oxidant supply passage 33 and measures the flow rate of the oxidant adjusted by the regulator 34. The measurement signal of the oxidant flow meter 35 is transmitted to the electronic control unit 50.
 ここで、この酸化剤供給装置30が供給する酸化剤としては、上述のように酸素(O)が用いられる。つまり、本実施形態の酸化剤貯留タンク31は、酸化剤としての酸素(O)を例えば70MPa程度の高圧で貯留し、酸化剤供給手段32は、この高圧の酸素(O)を循環通路21に供給する。 Here, oxygen (O 2 ) is used as the oxidant supplied by the oxidant supply device 30 as described above. That is, the oxidant storage tank 31 of the present embodiment stores oxygen (O 2 ) as an oxidant at a high pressure of, for example, about 70 MPa, and the oxidant supply means 32 circulates this high pressure oxygen (O 2 ) through the circulation path. 21.
 燃料供給装置40は、燃焼室CCに燃料を供給するものであり、燃料貯留タンク41と、燃料噴射手段42と、燃料供給通路43と、レギュレータ44と、燃料流量計45と、サージタンク46とを含んで構成される。 The fuel supply device 40 supplies fuel to the combustion chamber CC, and includes a fuel storage tank 41, a fuel injection means 42, a fuel supply passage 43, a regulator 44, a fuel flow meter 45, a surge tank 46, and the like. It is comprised including.
 燃料貯留タンク41は、燃料を高圧の状態で貯留するものである。燃料噴射手段42は、燃料貯留タンク41に貯留された燃料を燃焼室CCに噴射するものである。燃料供給通路43は、燃料貯留タンク41と燃料噴射手段42を繋ぐものである。レギュレータ44、燃料流量計45及びサージタンク46は、この燃料供給通路43上に設けられる。レギュレータ44と、燃料流量計45と、サージタンク46とは、燃料供給通路43における燃料の供給方向に対して、上流側(燃料貯留タンク41側)から下流側(燃料噴射手段42側)に向かってレギュレータ44、燃料流量計45、サージタンク46の順で設けられている。 The fuel storage tank 41 stores fuel in a high pressure state. The fuel injection means 42 injects the fuel stored in the fuel storage tank 41 into the combustion chamber CC. The fuel supply passage 43 connects the fuel storage tank 41 and the fuel injection means 42. The regulator 44, the fuel flow meter 45, and the surge tank 46 are provided on the fuel supply passage 43. The regulator 44, the fuel flow meter 45, and the surge tank 46 are directed from the upstream side (the fuel storage tank 41 side) to the downstream side (the fuel injection means 42 side) with respect to the fuel supply direction in the fuel supply passage 43. The regulator 44, the fuel flow meter 45, and the surge tank 46 are provided in this order.
 ここで、本実施形態の燃料噴射手段42は、燃料を燃焼室CC内に直接噴射可能なようにシリンダヘッド11に設けられる。この燃料噴射手段42は、電子制御装置50によって制御される、いわゆる、燃料噴射弁である。電子制御装置50は、例えば、エンジン回転数等の運転状態に応じて燃料の噴射時期や噴射量を制御する。 Here, the fuel injection means 42 of the present embodiment is provided in the cylinder head 11 so that the fuel can be directly injected into the combustion chamber CC. The fuel injection means 42 is a so-called fuel injection valve controlled by the electronic control unit 50. The electronic control unit 50 controls the fuel injection timing and the injection amount in accordance with the operating state such as the engine speed.
 レギュレータ44は、燃料供給通路43におけるレギュレータ44よりも下流側(燃料流量計45及びサージタンク46側)の圧力を設定圧力に調整するものである。言い換えれば、このレギュレータ44は、燃料供給通路43における燃料の流量を制御するものである。また、燃料流量計45は、燃料供給通路43における燃料の流量を計測する手段であって、レギュレータ44で調整された燃料の流量の計測を行う。この燃料流量計45の計測信号は、電子制御装置50に送信される。また、サージタンク46は、燃料噴射手段42による燃料の噴射時に燃料供給通路43内に発生する脈動の低減を図るものである。 The regulator 44 adjusts the pressure downstream of the regulator 44 in the fuel supply passage 43 (on the fuel flow meter 45 and surge tank 46 side) to the set pressure. In other words, the regulator 44 controls the flow rate of the fuel in the fuel supply passage 43. The fuel flow meter 45 is a means for measuring the fuel flow rate in the fuel supply passage 43 and measures the fuel flow rate adjusted by the regulator 44. The measurement signal of the fuel flow meter 45 is transmitted to the electronic control device 50. The surge tank 46 is intended to reduce pulsation generated in the fuel supply passage 43 when fuel is injected by the fuel injection means 42.
 ここで、この燃料供給装置40が供給する燃料としては、酸化剤によって燃焼が促進されると共にこの燃焼により水蒸気を生成するものが用いられ、本実施形態では、上述のように水素(H)が用いられる。つまり、本実施形態の燃料貯留タンク41は、燃料としての水素(H)を例えば70MPa程度の高圧で貯留し、燃料噴射手段42は、この高圧の水素(H)を燃焼室CCに噴射する。 Here, as the fuel supplied by the fuel supply device 40, a fuel that promotes combustion by an oxidant and generates water vapor by this combustion is used. In this embodiment, hydrogen (H 2 ) is used as described above. Is used. That is, the fuel storage tank 41 of the present embodiment stores hydrogen (H 2 ) as fuel at a high pressure of, for example, about 70 MPa, and the fuel injection means 42 injects this high pressure hydrogen (H 2 ) into the combustion chamber CC. To do.
 本実施形態の作動ガス循環型エンジン1は、燃焼室CC内に燃料としての水素(H)と酸化剤としての酸素(O)を供給し、水素(H)を拡散燃焼させるものとして例示する。すなわち、上記のように構成される作動ガス循環型エンジン1は、燃焼室CC内に形成された高温の圧縮ガス(酸素(O)及びアルゴン(Ar))の中に高圧の水素(H)を噴射することにより、この水素(H)の一部が自己着火し、水素(H)と圧縮ガス(酸素(O))とが拡散混合しながら燃焼する。この燃焼室CC内での水素(H)の燃焼によって、燃焼室CCの中では、水素(H)と酸素(O)が結合して水蒸気(HO)が生成されると共に、比熱比の大きいアルゴン(Ar)が熱膨張を起こす。この結果、この作動ガス循環型エンジン1は、水素(H)の拡散燃焼とアルゴン(Ar)の熱膨張とによってピストン13が押し下げられ、これにより動力を発生する。 The working gas circulation engine 1 of the present embodiment supplies hydrogen (H 2 ) as fuel and oxygen (O 2 ) as an oxidant into the combustion chamber CC, and diffuses and burns hydrogen (H 2 ). Illustrate. That is, the working gas circulation engine 1 configured as described above includes high-pressure hydrogen (H 2 ) in high-temperature compressed gas (oxygen (O 2 ) and argon (Ar)) formed in the combustion chamber CC. ) by injecting, the hydrogen (part of H 2) is self-ignited, hydrogen (H 2) and compressed gas (oxygen (O 2)) and is burned while mixing diffusion. By combustion of hydrogen (H 2 ) in the combustion chamber CC, in the combustion chamber CC, hydrogen (H 2 ) and oxygen (O 2 ) are combined to generate water vapor (H 2 O), and Argon (Ar) having a large specific heat ratio causes thermal expansion. As a result, in the working gas circulation engine 1, the piston 13 is pushed down by the diffusion combustion of hydrogen (H 2 ) and the thermal expansion of argon (Ar), thereby generating power.
 そして、作動ガス循環型エンジン1は、水素(H)の燃焼とアルゴン(Ar)の熱膨張とが一通り終わった際(例えば、ピストン13が下死点近くに位置している際)、排気バルブ16の開弁に伴って、燃焼室CC内から水蒸気(HO)とアルゴン(Ar)とを含む排気ガスが排気ポート11cを介して排気管18に排出される。ここで、排出された排気ガス中のアルゴン(Ar)は、エンジン本体10の熱効率を高めるために、循環経路20を介して燃焼室CCの排気側から吸気側に循環させ再び吸気側から燃焼室CCに供給する必要がある。しかしながら、同時に排出された排気ガス中の水蒸気(HO)は、3原子からなる分子(3原子分子)であり、単原子からなるアルゴン(Ar)よりも比熱比が小さいので、アルゴン(Ar)と共に燃焼室CCへ循環させてしまうと、エンジン本体10の熱効率を低下させるおそれがある。このため、この作動ガス循環型エンジン1は、排気ガスの中に含まれる水蒸気(HO)を取り除く手段を循環経路20上に設けている。 When the working gas circulation engine 1 completes the combustion of hydrogen (H 2 ) and the thermal expansion of argon (Ar) (for example, when the piston 13 is located near the bottom dead center), As the exhaust valve 16 is opened, exhaust gas containing water vapor (H 2 O) and argon (Ar) is discharged from the combustion chamber CC to the exhaust pipe 18 through the exhaust port 11c. Here, argon (Ar) in the exhaust gas discharged is circulated from the exhaust side to the intake side of the combustion chamber CC via the circulation path 20 in order to increase the thermal efficiency of the engine body 10, and again from the intake side to the combustion chamber. It is necessary to supply to CC. However, water vapor (H 2 O) in the exhaust gas discharged at the same time is a molecule composed of three atoms (triatomic molecule) and has a specific heat ratio smaller than that of argon (Ar) composed of a single atom. ) And the combustion chamber CC, the thermal efficiency of the engine body 10 may be reduced. For this reason, the working gas circulation engine 1 is provided with a means on the circulation path 20 for removing water vapor (H 2 O) contained in the exhaust gas.
 具体的には、作動ガス循環型エンジン1は、循環経路20を流動する排気ガスの中に含まれる水蒸気(HO)を取り除く手段として、凝縮手段としての凝縮器60を備える。さらに、この作動ガス循環型エンジン1は、熱交換媒体循環経路としての冷却水循環路61と、ウォーターポンプ62と、冷却手段としてのラジエータ63とを備える。 Specifically, the working gas circulation engine 1 includes a condenser 60 as a condensing means as means for removing water vapor (H 2 O) contained in exhaust gas flowing through the circulation path 20. The working gas circulation engine 1 further includes a cooling water circulation path 61 as a heat exchange medium circulation path, a water pump 62, and a radiator 63 as a cooling means.
 凝縮器60は、循環経路20に設けられ排気ガス中に含まれる水蒸気(HO)を凝縮して凝縮水(HO)とするものである。凝縮器60は、循環通路21上の第2循環通路21bと第3循環通路21cとの間に設けられる。つまり、凝縮器60は、循環通路21上の酸化剤供給手段32よりも排気側に設けられる。また、凝縮器60は、冷却水循環路61が内部を通るようにして接続されている。 The condenser 60 is provided in the circulation path 20 to condense the water vapor (H 2 O) contained in the exhaust gas into condensed water (H 2 O). The condenser 60 is provided between the second circulation passage 21b and the third circulation passage 21c on the circulation passage 21. That is, the condenser 60 is provided on the exhaust side of the oxidant supply means 32 on the circulation passage 21. The condenser 60 is connected so that the cooling water circulation path 61 passes through the inside.
 冷却水循環路61は、凝縮器60に熱交換媒体としての冷却水を循環させるものであり、冷却水が流動可能である。この冷却水循環路61は、閉じられた環状の経路になっており、内部に冷却水が充填されている。 The cooling water circulation path 61 circulates cooling water as a heat exchange medium through the condenser 60, and the cooling water can flow. The cooling water circulation path 61 is a closed annular path and is filled with cooling water.
 ウォーターポンプ62は、冷却水循環路61の経路上に設けられており、冷却水循環路61の冷却水は、このウォーターポンプ62が駆動することで冷却水循環路61を循環することができる。 The water pump 62 is provided on the cooling water circulation path 61, and the cooling water in the cooling water circulation path 61 can be circulated through the cooling water circulation path 61 by driving the water pump 62.
 ラジエータ63は、冷却水循環路61の経路上に設けられており、冷却水循環路61を循環する冷却水を冷却可能なものである。本実施形態のラジエータ63は、放熱手段として作用し、この作動ガス循環型エンジン1を搭載する車両の走行風などにより冷却水循環路61を循環する冷却水を冷却可能である。 The radiator 63 is provided on the cooling water circulation path 61 and can cool the cooling water circulating in the cooling water circulation path 61. The radiator 63 of the present embodiment acts as a heat radiating means, and can cool the cooling water circulating through the cooling water circulation path 61 by the traveling wind of the vehicle on which the working gas circulation engine 1 is mounted.
 したがって、この凝縮器60は、冷却水循環路61を循環しラジエータ63により冷却された冷却水が内部に循環、供給されることで、この冷却水と循環経路20を流れる排気ガスとを熱交換させ排気ガスを冷却することにより、排気ガスに含まれる水蒸気(HO)を液化、凝縮して凝縮水(HO)とし排気ガスから分離する。すなわち、凝縮器60は、排気ガスをアルゴン(Ar)と凝縮水(HO)とに分離することができる。このとき、凝縮器60にて循環経路20の排気ガスと熱交換をすることで熱を吸収し温度が上昇した冷却水は、冷却水循環路61を循環し再びラジエータ63を通過する際に放熱することで温度が低下し、すなわち、冷却される。つまり、冷却水循環路61を循環する冷却水は、凝縮器60にて吸収した熱をラジエータ63で放熱する。 Therefore, the condenser 60 circulates through the cooling water circulation path 61 and is circulated and supplied with the cooling water cooled by the radiator 63, thereby heat-exchanging the cooling water and the exhaust gas flowing through the circulation path 20. By cooling the exhaust gas, water vapor (H 2 O) contained in the exhaust gas is liquefied and condensed to form condensed water (H 2 O), which is separated from the exhaust gas. That is, the condenser 60 can separate the exhaust gas into argon (Ar) and condensed water (H 2 O). At this time, the cooling water whose temperature has risen due to heat exchange by exchanging heat with the exhaust gas in the circulation path 20 in the condenser 60 is radiated when circulating through the cooling water circulation path 61 and again passing through the radiator 63. As a result, the temperature is lowered, that is, cooled. That is, the cooling water circulating in the cooling water circulation path 61 radiates the heat absorbed by the condenser 60 by the radiator 63.
 そして、凝縮器60によって分離されたアルゴン(Ar)は、凝縮器60の作動ガス排出口60bを介して第3循環通路21cに排出される。一方、凝縮器60によって分離された凝縮水(HO)は、凝縮器60の凝縮水排出口60cを介して凝縮水通路65に排出され、循環経路20の系外、ここでは後述する貯留手段としての凝縮水貯留タンク80に排出される。 The argon (Ar) separated by the condenser 60 is discharged to the third circulation passage 21 c through the working gas discharge port 60 b of the condenser 60. On the other hand, the condensed water (H 2 O) separated by the condenser 60 is discharged to the condensed water passage 65 through the condensed water discharge port 60c of the condenser 60, and is stored outside the system of the circulation path 20, here described later. It is discharged to a condensed water storage tank 80 as a means.
 なお、この凝縮器60とラジエータ63とは、エンジン運転中に想定し得る最も高温の排気ガスが燃焼室CCから排出された際に、その排気ガス中の水蒸気(HO)が液化・凝縮される温度にまで排気ガス温度を下げることのできる容量(換言すれば排気ガスの冷却性能)に設定する。 The condenser 60 and the radiator 63 are configured to liquefy and condense water vapor (H 2 O) in the exhaust gas when the hottest exhaust gas that can be assumed during engine operation is discharged from the combustion chamber CC. The exhaust gas temperature is set to a capacity (in other words, exhaust gas cooling performance) that can lower the exhaust gas temperature to a desired temperature.
 ここで、燃焼室CCから排出された排気ガスの中には、水蒸気(HO)やアルゴン(Ar)だけでなく、水素(H)又は酸素(O)が含まれていることがある。例えば、酸素(O)に対して水素(H)の燃焼室CCへの供給量の方が所定よりも多いときには、未燃焼の水素(H)が残り、そのまま循環経路20へと排出される。また、水素(H)に対して酸素(O)の燃焼室CCへの供給量の方が所定よりも多いときには、酸素(O)が残り、そのまま循環経路20へと排出される。このため、排気ガス中の水素(H)や酸素(O)は、凝縮器60で排気ガス中の水蒸気(HO)が分離された後のアルゴン(Ar)と共に凝縮器60の作動ガス排出口60bから第3循環通路21cに排出される。したがって、排気ガス中の水素(H)や酸素(O)もアルゴン(Ar)と同様に循環経路20を循環し再び燃焼室CCに供給される。 Here, the exhaust gas discharged from the combustion chamber CC includes not only water vapor (H 2 O) and argon (Ar) but also hydrogen (H 2 ) or oxygen (O 2 ). is there. For example, when the supply amount of hydrogen (H 2 ) to the combustion chamber CC is larger than a predetermined amount with respect to oxygen (O 2 ), unburned hydrogen (H 2 ) remains and is discharged to the circulation path 20 as it is. Is done. When the supply amount of oxygen (O 2 ) to the combustion chamber CC is larger than a predetermined amount with respect to hydrogen (H 2 ), oxygen (O 2 ) remains and is discharged to the circulation path 20 as it is. For this reason, hydrogen (H 2 ) and oxygen (O 2 ) in the exhaust gas are actuated by the condenser 60 together with argon (Ar) after the water vapor (H 2 O) in the exhaust gas is separated by the condenser 60. The gas is discharged from the gas discharge port 60b to the third circulation passage 21c. Accordingly, hydrogen (H 2 ) and oxygen (O 2 ) in the exhaust gas are circulated through the circulation path 20 and supplied again to the combustion chamber CC, similarly to argon (Ar).
 そこで、作動ガス循環型エンジン1は、循環経路20を排気側から吸気側に循環するガス(循環ガス)中の水素(H)又は酸素(O)の量を検出し、水素(H)又は酸素(O)が燃焼室CCに到達する時期を見計らって、燃料供給装置40からの水素(H)の噴射量又は酸化剤供給装置30からの酸素(O)の供給量を調節している。これにより、作動ガス循環型エンジン1は、燃焼室CC内における水素(H)又は酸素(O)の過多を防ぐことができる。 Therefore, the working gas circulation engine 1 detects the amount of hydrogen (H 2 ) or oxygen (O 2 ) in the gas (circulation gas) circulating in the circulation path 20 from the exhaust side to the intake side, and detects hydrogen (H 2 ) Or oxygen (O 2 ) to reach the combustion chamber CC, the injection amount of hydrogen (H 2 ) from the fuel supply device 40 or the supply amount of oxygen (O 2 ) from the oxidant supply device 30 is determined. It is adjusting. Thereby, the working gas circulation engine 1 can prevent excessive hydrogen (H 2 ) or oxygen (O 2 ) in the combustion chamber CC.
 具体的には、作動ガス循環型エンジン1は、循環経路20を循環する循環ガス中の燃料の濃度を検出する燃料濃度検出手段、ここでは循環ガス中の水素濃度を検出する水素濃度検出手段であって、具体的には水素濃度センサ71と、循環ガス中の酸化剤の濃度を検出する酸化剤濃度検出手段、ここでは循環ガス中の酸素濃度を検出する酸素濃度検出手段であって、具体的には酸素濃度センサ72とを備えている。水素濃度センサ71と酸素濃度センサ72とは、ともに循環通路21の第3循環通路21cに設けられる。水素濃度センサ71と酸素濃度センサ72とは、各々検出信号を電子制御装置50に送信する。したがって、電子制御装置50は、その各検出信号から循環ガス中の水素(H)又は酸素(O)の残存量を把握し、その水素(H)又は酸素(O)が燃焼室CCに到達する時期を見計らって、燃料噴射手段42の水素(H)の噴射量又はレギュレータ34の目標圧力(つまり酸素(O)の供給量)を制御する。 Specifically, the working gas circulation engine 1 is a fuel concentration detection means for detecting the concentration of fuel in the circulation gas circulating through the circulation path 20, here, a hydrogen concentration detection means for detecting the hydrogen concentration in the circulation gas. Specifically, a hydrogen concentration sensor 71 and an oxidant concentration detection means for detecting the concentration of the oxidant in the circulation gas, here an oxygen concentration detection means for detecting the oxygen concentration in the circulation gas, Specifically, an oxygen concentration sensor 72 is provided. Both the hydrogen concentration sensor 71 and the oxygen concentration sensor 72 are provided in the third circulation passage 21 c of the circulation passage 21. The hydrogen concentration sensor 71 and the oxygen concentration sensor 72 each transmit a detection signal to the electronic control unit 50. Therefore, the electronic control unit 50 grasps the remaining amount of hydrogen (H 2 ) or oxygen (O 2 ) in the circulating gas from each detection signal, and the hydrogen (H 2 ) or oxygen (O 2 ) is in the combustion chamber. The amount of hydrogen (H 2 ) injected by the fuel injection means 42 or the target pressure of the regulator 34 (that is, the supply amount of oxygen (O 2 )) is controlled in view of the time when it reaches CC.
 上記のように構成される作動ガス循環型エンジン1は、燃焼室CC内での水素(H)の燃焼に伴って比熱比の大きいアルゴン(Ar)が熱膨張を起こすことでピストン13が押し下げられ、このピストン13がシリンダボア12a内で往復運動を繰り返すことにより、吸気行程、圧縮行程、燃焼行程、排気行程を1つのサイクルとしてこのサイクルを繰り返す。ピストン13の往復運動は、コネクティングロッド14によってクランクシャフト(不図示)に伝達され、コネクティングロッド14とクランクシャフトとの作用により往復運動が回転運動に変換され、クランクシャフトが回転する。この間、電子制御装置50は、クランクシャフトの回転位置や、車両の運転席に設けられるアクセルペダル(不図示)の操作量であるアクセル開度、循環ガス中の水素(H)又は酸素(O)の残存量等の運転状態に応じて、燃料噴射手段42の水素(H)の噴射量又はレギュレータ34の目標圧力(つまり酸素(O)の供給量)を制御する。 In the working gas circulation engine 1 configured as described above, the piston 13 is pushed down due to the thermal expansion of argon (Ar) having a large specific heat ratio accompanying the combustion of hydrogen (H 2 ) in the combustion chamber CC. The piston 13 repeats reciprocating motion in the cylinder bore 12a, so that the intake stroke, the compression stroke, the combustion stroke, and the exhaust stroke are set as one cycle, and this cycle is repeated. The reciprocating motion of the piston 13 is transmitted to a crankshaft (not shown) by the connecting rod 14, and the reciprocating motion is converted into a rotational motion by the action of the connecting rod 14 and the crankshaft, so that the crankshaft rotates. During this time, the electronic control unit 50 controls the rotation position of the crankshaft, the accelerator opening that is the amount of operation of an accelerator pedal (not shown) provided in the driver's seat of the vehicle, hydrogen (H 2 ) or oxygen (O 2 ) The hydrogen (H 2 ) injection amount of the fuel injection means 42 or the target pressure of the regulator 34 (that is, the supply amount of oxygen (O 2 )) is controlled according to the operating state such as the remaining amount of 2 ).
 また、作動ガス循環型エンジン1は、クランクシャフト(不図示)の回転に伴って吸気バルブ15や排気バルブ16が往復運動し、循環経路20と燃焼室CCとの連通と遮断とを繰り返すことにより、吸排気を行ない上記の4つの行程を繰り返す。 Further, in the working gas circulation engine 1, the intake valve 15 and the exhaust valve 16 reciprocate as the crankshaft (not shown) rotates, and the communication between the circulation path 20 and the combustion chamber CC is repeatedly interrupted. Then, intake and exhaust are performed and the above four steps are repeated.
 すなわち、作動ガス循環型エンジン1は、吸気行程において、吸気バルブ15が開弁する一方、排気バルブ16が閉弁すると共に、ピストン13が上死点側から下死点側に移動することにより、循環経路20の吸気管17、吸気ポート11bを介して燃焼室CCに酸素(O)とアルゴン(Ar)とが吸気される。 That is, in the working gas circulation engine 1, in the intake stroke, the intake valve 15 is opened, the exhaust valve 16 is closed, and the piston 13 is moved from the top dead center side to the bottom dead center side. Oxygen (O 2 ) and argon (Ar) are taken into the combustion chamber CC via the intake pipe 17 and the intake port 11b of the circulation path 20.
 次に、作動ガス循環型エンジン1は、圧縮行程において、吸気バルブ15が閉弁し吸気バルブ15と排気バルブ16の両方が閉弁状態となると共に、ピストン13が下死点側から上死点側に移動することにより、燃焼室CC内の酸素(O)、アルゴン(Ar)が圧縮され温度が上昇する。 Next, in the working gas circulation engine 1, in the compression stroke, the intake valve 15 is closed, both the intake valve 15 and the exhaust valve 16 are closed, and the piston 13 is moved from the bottom dead center to the top dead center. By moving to the side, oxygen (O 2 ) and argon (Ar) in the combustion chamber CC are compressed and the temperature rises.
 次に、作動ガス循環型エンジン1は、燃焼行程において、燃焼室CC内に形成された高温の圧縮ガス(酸素(O)及びアルゴン(Ar))の中に高圧の水素(H)を噴射することにより、この水素(H)の一部が自己着火し、水素(H)と圧縮ガス(酸素(O))とが拡散混合しながら燃焼する。そして、水素(H)が燃焼すると、これに伴って比熱比の大きいアルゴン(Ar)が熱膨張を起こし、この水素(H)の拡散燃焼とアルゴン(Ar)の熱膨張とによってピストン13が押し下げられ、これにより、作動ガス循環型エンジン1は、動力を発生する。 Next, the working gas circulation engine 1 supplies high-pressure hydrogen (H 2 ) into the high-temperature compressed gas (oxygen (O 2 ) and argon (Ar)) formed in the combustion chamber CC in the combustion stroke. By injecting, a part of this hydrogen (H 2 ) is self-ignited, and hydrogen (H 2 ) and compressed gas (oxygen (O 2 )) are combusted while being diffusely mixed. Then, when hydrogen (H 2 ) burns, argon (Ar) having a large specific heat ratio causes thermal expansion, and the piston 13 is caused by diffusion combustion of this hydrogen (H 2 ) and thermal expansion of argon (Ar). Is pushed down, and the working gas circulation engine 1 generates power.
 次に、作動ガス循環型エンジン1は、排気行程において、吸気バルブ15が閉弁状態を維持する一方、排気バルブ16が開弁すると共に、ピストン13が下死点側から上死点側に移動することにより、水蒸気(HO)とアルゴン(Ar)とを含む排気ガスが燃焼室CC内から循環経路20の排気ポート11cを介して排気管18に排出される。 Next, in the working gas circulation engine 1, in the exhaust stroke, the intake valve 15 is kept closed, the exhaust valve 16 is opened, and the piston 13 is moved from the bottom dead center side to the top dead center side. By doing so, the exhaust gas containing water vapor (H 2 O) and argon (Ar) is discharged from the combustion chamber CC to the exhaust pipe 18 via the exhaust port 11 c of the circulation path 20.
 そして、作動ガス循環型エンジン1は、水蒸気(HO)とアルゴン(Ar)とを含む排気ガスが燃焼室CC内から循環経路20に排出され、この排気ガスが燃焼室CCに向けて循環経路20を循環する際には、凝縮器60にて排気ガス中の水蒸気(HO)が液化・凝縮され分離される。これにより、作動ガス循環型エンジン1は、比熱比の小さい水蒸気(HO)が燃焼室CCに供給されず、比熱比の大きい作動ガスとしてのアルゴン(Ar)が燃焼室CCへと再び供給されるので、作動ガスによる熱効率の高い運転を行うことができる。 In the working gas circulation engine 1, exhaust gas containing water vapor (H 2 O) and argon (Ar) is discharged from the combustion chamber CC to the circulation path 20, and the exhaust gas circulates toward the combustion chamber CC. When circulating through the path 20, water vapor (H 2 O) in the exhaust gas is liquefied, condensed and separated by the condenser 60. As a result, the working gas circulation engine 1 does not supply steam (H 2 O) having a small specific heat ratio to the combustion chamber CC, and again supplies argon (Ar) as a working gas having a large specific heat ratio to the combustion chamber CC. Therefore, operation with high thermal efficiency by working gas can be performed.
 ところで、この作動ガス循環型エンジン1は、上述したように、排気ガスを循環ガスとして燃焼室CCに向けて循環させる際に、凝縮器60において排気ガスの中の水蒸気(HO)を取り除く。そして、作動ガス循環型エンジン1は、比熱比の小さい水蒸気(HO)を燃焼室CCに供給せず、比熱比の大きい作動ガスとしてのアルゴン(Ar)を燃焼室CCへ再び供給することで、熱効率の高い運転を行っている。このとき、この作動ガス循環型エンジン1は、凝縮器60によって分離された凝縮水(HO)を凝縮水排出口60cから凝縮水通路65に排出し循環経路20の系外に排水し、この凝縮水(HO)を適正に処理する必要がある。 By the way, as described above, the working gas circulation engine 1 removes water vapor (H 2 O) in the exhaust gas in the condenser 60 when the exhaust gas is circulated toward the combustion chamber CC as a circulation gas. . The working gas circulation engine 1 does not supply steam (H 2 O) having a small specific heat ratio to the combustion chamber CC, but again supplies argon (Ar) as a working gas having a large specific heat ratio to the combustion chamber CC. So, it is operating with high thermal efficiency. At this time, the working gas circulation engine 1 discharges the condensed water (H 2 O) separated by the condenser 60 from the condensed water discharge port 60 c to the condensed water passage 65 and drains it outside the circulation path 20. It is necessary to treat this condensed water (H 2 O) appropriately.
 また、作動ガス循環型エンジン1は、例えば、燃焼後の高温の排気ガスが流れる排気管18を覆うようにして凝縮水(HO)を貯留するための凝縮水貯留タンクを設けて排気熱を利用してこの凝縮水(HO)を蒸発させてから処理することで、凝縮水(HO)を適正に処理することもできるが、この場合、搭載性の面でさらなる向上の余地がある。すなわち、作動ガス循環型エンジン1は、上記のように排気管18を覆うようにして凝縮水貯留タンクを設けて排気熱を利用してこの凝縮水(HO)を蒸発させる場合、凝縮水貯留タンクに貯留された凝縮水(HO)と排気管18の外面とを接触させるために排気管18近傍の限られた搭載スペースに凝縮水貯留タンクを配置しなければならい。このため、作動ガス循環型エンジン1は、凝縮水貯留タンクの搭載における自由度が少なくなり、例えば、十分な凝縮水貯留タンクの容量を確保するために作動ガス循環型エンジン1の大型化をまねいたり逆に十分な凝縮水貯留タンクの容量を確保できなかったりするおそれがある。 Further, the working gas circulation engine 1 is provided with a condensed water storage tank for storing condensed water (H 2 O), for example, so as to cover the exhaust pipe 18 through which high-temperature exhaust gas after combustion flows. The condensed water (H 2 O) can be properly treated by evaporating the condensed water (H 2 O) by using this, but in this case, the mountability is further improved. There is room. That is, when the working gas circulation engine 1 is provided with a condensed water storage tank so as to cover the exhaust pipe 18 as described above and evaporates this condensed water (H 2 O) using the exhaust heat, the condensed water In order to bring the condensed water (H 2 O) stored in the storage tank into contact with the outer surface of the exhaust pipe 18, the condensed water storage tank must be disposed in a limited mounting space near the exhaust pipe 18. For this reason, the working gas circulation engine 1 has less freedom in mounting the condensed water storage tank. For example, to ensure a sufficient capacity of the condensed water storage tank, the working gas circulation engine 1 is made larger. On the other hand, there is a risk that sufficient condensate storage tank capacity cannot be secured.
 そこで、本実施形態の作動ガス循環型エンジン1は、図1に示すように、排気ガスの排気熱を排気管18から貯留手段としての凝縮水貯留タンク80に貯留される凝縮水(HO)に伝達しこの凝縮水(HO)を蒸発させる伝達手段としての排気熱伝達部90を備えることで、適正な凝縮水の処理を図った上で、作動ガス循環型エンジン1の搭載性を向上させている。 Therefore, the working gas circulation engine 1 of the present embodiment, as shown in FIG. 1, condensate water (H 2 O) in which the exhaust heat of the exhaust gas is stored in the condensate storage tank 80 as storage means from the exhaust pipe 18. ) And an exhaust heat transfer section 90 serving as a transmission means for evaporating the condensed water (H 2 O), so that proper condensate processing is performed and the working gas circulation engine 1 can be mounted. Has improved.
 ここで、凝縮水貯留タンク80は、凝縮器60によって分離された凝縮水(HO)を貯留可能なものであり、凝縮水通路65に接続されている。したがって、凝縮器60によって分離された凝縮水(HO)は、凝縮器60の凝縮水排出口60cを介して凝縮水通路65に排出され、この凝縮水貯留タンク80に排水される。 Here, the condensed water storage tank 80 is capable of storing condensed water (H 2 O) separated by the condenser 60, and is connected to the condensed water passage 65. Therefore, the condensed water (H 2 O) separated by the condenser 60 is discharged to the condensed water passage 65 via the condensed water discharge port 60 c of the condenser 60 and discharged to the condensed water storage tank 80.
 排気熱伝達部90は、燃焼後の高温の排気ガスの排気熱を排気管18から凝縮水貯留タンク80に貯留される凝縮水(HO)に伝達しこの凝縮水(HO)を蒸発させるものである。つまり、排気熱伝達部90は、排気ガスの排気熱を排気管18から凝縮水貯留タンク80に貯留される凝縮水(HO)に移動させるものである。 The exhaust heat transfer section 90 transmits the exhaust heat of the high-temperature exhaust gas after combustion from the exhaust pipe 18 to the condensed water (H 2 O) stored in the condensed water storage tank 80, and this condensed water (H 2 O). Evaporate. In other words, the exhaust heat transfer unit 90 moves the exhaust heat of the exhaust gas from the exhaust pipe 18 to the condensed water (H 2 O) stored in the condensed water storage tank 80.
 本実施形態の排気熱伝達部90は、排気管側受熱部91と、タンク側放熱部92と、伝達部93とを有する。排気管側受熱部91は、排気管18から排気ガスの排気熱を受熱する部分であり、排気管18の外面に接触して設けられる。タンク側放熱部92は、凝縮水(HO)に排気熱を放熱する部分であり、凝縮水貯留タンク80に貯留される凝縮水(HO)と接触可能に凝縮水貯留タンク80の内部に設けられる。伝達部93は、排気管側受熱部91が排気管18から受熱した排気熱をタンク側放熱部92に伝達する部分である。 The exhaust heat transfer unit 90 of the present embodiment includes an exhaust pipe side heat receiving unit 91, a tank side heat radiating unit 92, and a transfer unit 93. The exhaust pipe side heat receiving portion 91 is a portion that receives the exhaust heat of the exhaust gas from the exhaust pipe 18 and is provided in contact with the outer surface of the exhaust pipe 18. Tank-side heat radiating portion 92 is a portion for radiating the exhaust heat of condensed water (H 2 O), the condensed water stored in the condensed water storage tank 80 (H 2 O) and contactable to the condensate storage tank 80 Provided inside. The transmission portion 93 is a portion that transmits the exhaust heat received by the exhaust pipe side heat receiving portion 91 from the exhaust pipe 18 to the tank side heat radiating portion 92.
 排気熱伝達部90は、排気管18とは別体に形成され、熱伝導率が良好な材料を用いる。ここで、排気熱伝達部90は、少なくともタンク側放熱部92、すなわち、凝縮水(HO)との接触部分を弱酸性に対して耐腐食性を有する材料により形成するとよい。弱酸性に対して耐腐食性を有する材料としては、例えば、錫(Sn)、銅(Cu)、鉛(Pb)、金(Au)、銀(Ag)、あるいは白金(Pt)からなる群から選ばれる少なくとも1つの材料を用いることができる。本実施形態の排気熱伝達部90は、熱伝導率が良好な材料でかつ弱酸性に対して耐腐食性を有する材料として銅管を用いる。つまり、この排気熱伝達部90は、排気管側受熱部91、タンク側放熱部92及び伝達部93が一体で銅管により形成される。 The exhaust heat transfer unit 90 is formed separately from the exhaust pipe 18 and uses a material having good thermal conductivity. Here, the exhaust heat transfer unit 90 may be formed of a material having corrosion resistance against weak acid at least at a tank side heat radiating unit 92, that is, a contact portion with condensed water (H 2 O). Examples of materials having corrosion resistance against weak acid include, for example, tin (Sn), copper (Cu), lead (Pb), gold (Au), silver (Ag), or platinum (Pt). At least one material selected can be used. The exhaust heat transfer unit 90 of the present embodiment uses a copper tube as a material having a good thermal conductivity and having a corrosion resistance against weak acidity. In other words, the exhaust heat transfer unit 90 is formed by integrally forming the exhaust pipe side heat receiving unit 91, the tank side heat radiating unit 92, and the transmission unit 93 with a copper pipe.
 排気管側受熱部91は、銅管を排気管18の外面に巻きつけるようにして形成される。これにより、排気管側受熱部91は、排気管18の外面との接触面積、すなわち、受熱面積を十分に確保することができ、排気管18から効率よく排気熱を受熱することができる。 The exhaust pipe side heat receiving portion 91 is formed by winding a copper pipe around the outer surface of the exhaust pipe 18. Thereby, the exhaust pipe side heat receiving portion 91 can sufficiently secure a contact area with the outer surface of the exhaust pipe 18, that is, a heat receiving area, and can efficiently receive the exhaust heat from the exhaust pipe 18.
 ここで、排気管側受熱部91が設けられる排気管18は、タンク側放熱部92にて凝縮水(HO)を蒸発させることができる熱量を排気熱から受熱できる程度に高温となっている部分の排気管18である。本実施形態では、排気管側受熱部91が設けられる排気管18は、循環経路20を循環する作動ガスの循環方向に対して凝縮器60より上流側の排気管18である。つまり、この排気管側受熱部91は、循環経路20を循環する作動ガスの循環方向に対して排気ポート11cと凝縮器60との間に位置する排気管18から排気熱を受熱する。 Here, the exhaust pipe 18 provided with the exhaust pipe side heat receiving portion 91 is at a high temperature to such an extent that the heat amount capable of evaporating the condensed water (H 2 O) from the tank side heat radiating portion 92 can be received from the exhaust heat. This is the portion of the exhaust pipe 18. In the present embodiment, the exhaust pipe 18 provided with the exhaust pipe side heat receiving portion 91 is the exhaust pipe 18 upstream of the condenser 60 with respect to the circulation direction of the working gas circulating in the circulation path 20. That is, the exhaust pipe side heat receiving portion 91 receives exhaust heat from the exhaust pipe 18 located between the exhaust port 11 c and the condenser 60 in the circulation direction of the working gas circulating in the circulation path 20.
 タンク側放熱部92は、凝縮水貯留タンク80内で銅管を蛇行させるようにして形成される。これにより、タンク側放熱部92は、凝縮水(HO)との接触面積、すなわち、放熱面積を十分に確保することができ、凝縮水(HO)に効率よく排気熱を放熱することができる。 The tank side heat radiating portion 92 is formed so as to meander the copper pipe in the condensed water storage tank 80. Thereby, the tank side heat radiating portion 92 can sufficiently secure a contact area with the condensed water (H 2 O), that is, a heat radiating area, and efficiently radiate the exhaust heat to the condensed water (H 2 O). be able to.
 伝達部93は、排気管側受熱部91の一端とタンク側放熱部92の一端とを接続するようにして排気管側受熱部91、タンク側放熱部92と一体で形成される。これにより、伝達部93は、排気管側受熱部91で受熱した排気熱をタンク側放熱部92に効率よく伝達することができる。 The transmission part 93 is formed integrally with the exhaust pipe side heat receiving part 91 and the tank side heat radiating part 92 so as to connect one end of the exhaust pipe side heat receiving part 91 and one end of the tank side heat radiating part 92. Thereby, the transmission part 93 can efficiently transmit the exhaust heat received by the exhaust pipe side heat receiving part 91 to the tank side heat radiating part 92.
 上記のように構成される作動ガス循環型エンジン1は、排気管側受熱部91が排気管18から高温の排気ガスの排気熱を受熱し、伝達部93がこの排気熱を排気管側受熱部91からタンク側放熱部92に伝達する。そして、作動ガス循環型エンジン1は、タンク側放熱部92がこの排気熱を凝縮水貯留タンク80に貯留されている凝縮水(HO)に放熱することで、排気熱伝達部90を介して排気ガスの排気熱を排気管18から凝縮水(HO)に伝達しこの凝縮水(HO)を蒸発させることができる。したがって、この作動ガス循環型エンジン1は、凝縮水貯留タンク80に貯留されている凝縮水(HO)を水蒸気(HO)として大気に放出することができることから、凝縮器60によって分離された凝縮水(HO)を適正に処理することができる。 In the working gas circulation engine 1 configured as described above, the exhaust pipe side heat receiving part 91 receives the exhaust heat of the high temperature exhaust gas from the exhaust pipe 18, and the transmission part 93 receives the exhaust heat from the exhaust pipe side heat receiving part. 91 to the tank side heat radiating portion 92. Then, in the working gas circulation engine 1, the tank-side heat radiating unit 92 radiates this exhaust heat to the condensed water (H 2 O) stored in the condensed water storage tank 80, so condensed water exhaust heat of the exhaust gas from the exhaust pipe 18 (H 2 O) was transferred to the condensed water (H 2 O) can be evaporated Te. Therefore, the working gas circulation engine 1 can release the condensed water (H 2 O) stored in the condensed water storage tank 80 to the atmosphere as water vapor (H 2 O), and is thus separated by the condenser 60. The treated condensed water (H 2 O) can be appropriately treated.
 そして、この作動ガス循環型エンジン1は、排気熱伝達部90によって排気ガスの排気熱を排気管18から凝縮水貯留タンク80に貯留されている凝縮水(HO)に伝達しこの凝縮水(HO)を蒸発させることから、例えば、凝縮水貯留タンク80に貯留された凝縮水(HO)と排気管18の外面とを直接接触させる必要がなく、排気管18近傍の限られた搭載スペースに凝縮水貯留タンク80を配置する必要がない。この結果、この作動ガス循環型エンジン1は、凝縮水貯留タンク80の搭載場所の自由度を向上させることができる。したがって、この作動ガス循環型エンジン1は、例えば、十分な凝縮水貯留タンク80の容量を確保するために作動ガス循環型エンジン1の大型化をまねいたり逆に十分な凝縮水貯留タンク80の容量を確保できなかったりすることを防止することができる。また、この作動ガス循環型エンジン1は、排気熱伝達部90によって排気ガスの排気熱を排気管18から凝縮水貯留タンク80に貯留されている凝縮水(HO)に伝達することから、凝縮水(HO)が直接的に排気管18に接触していないので、排気管18が局所的に温度低下することを防止することができ、この結果、排気管18に熱ひずみが生じることを抑制することができ、よって、排気管18の耐久性を向上することができる。 The working gas circulation engine 1 transmits the exhaust heat of the exhaust gas from the exhaust pipe 18 to the condensed water (H 2 O) stored in the condensed water storage tank 80 by the exhaust heat transfer unit 90. Since (H 2 O) is evaporated, for example, it is not necessary to directly contact the condensed water (H 2 O) stored in the condensed water storage tank 80 and the outer surface of the exhaust pipe 18, and the limit in the vicinity of the exhaust pipe 18 is not necessary. It is not necessary to arrange the condensed water storage tank 80 in the mounted space. As a result, this working gas circulation engine 1 can improve the degree of freedom of the place where the condensed water storage tank 80 is mounted. Therefore, the working gas circulation engine 1 is, for example, intended to increase the size of the working gas circulation engine 1 in order to ensure a sufficient capacity of the condensed water storage tank 80, or conversely, a sufficient capacity of the condensed water storage tank 80. Can not be secured. In addition, the working gas circulation engine 1 transmits the exhaust heat of the exhaust gas from the exhaust pipe 18 to the condensed water (H 2 O) stored in the condensed water storage tank 80 by the exhaust heat transfer unit 90. Since the condensed water (H 2 O) is not in direct contact with the exhaust pipe 18, it is possible to prevent the exhaust pipe 18 from being locally lowered in temperature, and as a result, thermal distortion occurs in the exhaust pipe 18. This can be suppressed, and thus the durability of the exhaust pipe 18 can be improved.
 さらに、この作動ガス循環型エンジン1は、排気熱伝達部90が循環経路20を循環する作動ガスの循環方向に対して凝縮器60より上流側の排気管18から凝縮水(HO)に排気熱を伝達することから、排気管側受熱部91が凝縮器60に到達する前の排気ガスの排気熱を排気管18から受熱するので、凝縮器60に導入される排気ガスの温度を低下させることができる。この結果、作動ガス循環型エンジン1は、凝縮器60に導入される排気ガスの温度を低下させることができることから、排気ガス中の水蒸気(HO)が液化・凝縮される温度にまで排気ガス温度を下げることのできる凝縮器60、ラジエータ63の容量を小さくすることができるので、凝縮器60、ラジエータ63を小型化することができる。つまり、この作動ガス循環型エンジン1は、凝縮器60に導入される排気ガスの温度を低下させることができることから、凝縮器60で冷却水が排気ガスから奪う熱量が少なくてすみ、よって、凝縮器60、ラジエータ63の容量を小さくすることができる。言い換えれば、この作動ガス循環型エンジン1は、比較的容量の小さい凝縮器60、ラジエータ63によって排気ガスから水蒸気(HO)を分離することができ作動ガスの平均比熱比の低下を防止することができることから、搭載性を向上した上で高効率運転を維持することができる。なおここでは、排気管側受熱部91が排気管18から排気熱を受熱することによって低下した後の排気ガスの温度は、凝縮水(HO)が発生しない程度の温度である。 Further, the working gas circulation engine 1 is configured such that the exhaust heat transfer unit 90 is converted into condensed water (H 2 O) from the exhaust pipe 18 upstream of the condenser 60 with respect to the circulation direction of the working gas circulating in the circulation path 20. Since the exhaust heat is transmitted, the exhaust pipe side heat receiving portion 91 receives the exhaust heat of the exhaust gas before reaching the condenser 60 from the exhaust pipe 18, so that the temperature of the exhaust gas introduced into the condenser 60 is lowered. Can be made. As a result, since the working gas circulation engine 1 can reduce the temperature of the exhaust gas introduced into the condenser 60, the exhaust gas is exhausted to a temperature at which water vapor (H 2 O) in the exhaust gas is liquefied and condensed. Since the capacities of the condenser 60 and the radiator 63 that can lower the gas temperature can be reduced, the condenser 60 and the radiator 63 can be reduced in size. In other words, since the working gas circulation engine 1 can reduce the temperature of the exhaust gas introduced into the condenser 60, the amount of heat that the cooling water takes from the exhaust gas in the condenser 60 can be reduced. The capacity of the device 60 and the radiator 63 can be reduced. In other words, the working gas circulation engine 1 can separate the water vapor (H 2 O) from the exhaust gas by the condenser 60 and the radiator 63 having a relatively small capacity, thereby preventing a decrease in the average specific heat ratio of the working gas. Therefore, it is possible to maintain high efficiency operation while improving mountability. Here, the temperature of the exhaust gas after the exhaust pipe side heat receiving portion 91 is lowered by receiving the exhaust heat from the exhaust pipe 18 is a temperature at which condensed water (H 2 O) is not generated.
 ここで、この作動ガス循環型エンジン1は、燃焼室CCから排出された排気ガスに二酸化炭素(CO)が含有される場合がある。この場合、凝縮器60によって分離され凝縮水貯留タンク80に貯留される凝縮水(HO)は、この排気ガスの中の二酸化炭素(CO)が含有されることにより弱酸性を有するおそれがある。しかしながら、本実施形態の作動ガス循環型エンジン1は、上述したように、少なくとも排気熱伝達部90の凝縮水(HO)との接触部分、すなわち、タンク側放熱部92が弱酸性に対して耐腐食性を有する材料である銅管により形成されることから、タンク側放熱部92の腐食を抑制することができ、よって、排気熱伝達部90の耐久性を向上することができる。 Here, in the working gas circulation engine 1, carbon dioxide (CO 2 ) may be contained in the exhaust gas discharged from the combustion chamber CC. In this case, the condensed water (H 2 O) separated by the condenser 60 and stored in the condensed water storage tank 80 may have weak acidity due to the carbon dioxide (CO 2 ) contained in the exhaust gas. There is. However, as described above, the working gas circulation engine 1 of the present embodiment has at least a contact portion of the exhaust heat transfer unit 90 with the condensed water (H 2 O), that is, the tank side heat radiating unit 92 against weak acidity. Therefore, the corrosion of the tank side heat dissipating part 92 can be suppressed, and the durability of the exhaust heat transfer part 90 can be improved.
 以上で説明した本発明の実施形態に係る作動ガス循環型エンジン1によれば、酸素(O)と、この酸素(O)によって燃焼が促進されると共に燃焼により水蒸気(HO)を生成する水素(H)と、アルゴン(Ar)とが供給され、水素(H)の燃焼に伴ってアルゴン(Ar)が膨張可能であると共に水素(H)の燃焼後の排気ガスとして水蒸気(HO)とアルゴン(Ar)とを排気管18に排気可能な燃焼室CCと、排気ガス中に含まれるアルゴン(Ar)を燃焼室CCの排気側から吸気側に循環させ再び燃焼室CCに供給可能な循環経路20と、循環経路20に設けられ排気ガス中に含まれる水蒸気(HO)を凝縮して凝縮水(HO)とする凝縮器60と、凝縮水(HO)を貯留可能な凝縮水貯留タンク80と、排気ガスの排気熱を排気管18から凝縮水貯留タンク80に貯留される凝縮水(HO)に伝達しこの凝縮水(HO)を蒸発させる排気熱伝達部90とを備える。 According to the working gas circulation engine 1 according to the embodiment of the present invention described above, with oxygen (O 2), water vapor (H 2 O) by combustion with the combustion is promoted by the oxygen (O 2) and generated hydrogen (H 2), is supplied and argon (Ar), as an exhaust gas after combustion of hydrogen (H 2) with argon with the combustion of hydrogen (H 2) (Ar) is inflatable Combustion chamber CC in which water vapor (H 2 O) and argon (Ar) can be exhausted to exhaust pipe 18 and argon (Ar) contained in the exhaust gas are circulated from the exhaust side to the intake side of combustion chamber CC and burned again. A circulation path 20 that can be supplied to the chamber CC, a condenser 60 that is provided in the circulation path 20 and that condenses water vapor (H 2 O) contained in the exhaust gas into condensed water (H 2 O), and condensed water ( H 2 O) capable of storing a condensed water storage tank 80, and a condensed water (H 2 O) was transferred to the condensed water (H 2 O) exhaust heat conducting part 90 to evaporate the to be stored the exhaust heat of the exhaust gases in the condensed water storage tank 80 from the exhaust pipe 18 Prepare.
 したがって、作動ガス循環型エンジン1は、排気熱伝達部90によって排気ガスの排気熱を排気管18から凝縮水貯留タンク80に貯留されている凝縮水(HO)に伝達しこの凝縮水(HO)を蒸発させることから、凝縮水貯留タンク80の搭載場所の自由度を向上させることができ、適正な凝縮水の処理を図った上で、搭載性を向上することができる。 Therefore, the working gas circulation engine 1 transmits the exhaust heat of the exhaust gas from the exhaust pipe 18 to the condensed water (H 2 O) stored in the condensed water storage tank 80 by the exhaust heat transfer unit 90 and transmits this condensed water (H 2 O). Since H 2 O) is evaporated, the degree of freedom of the place where the condensate storage tank 80 is mounted can be improved, and the mountability can be improved after appropriate condensate treatment.
 さらに、以上で説明した本発明の実施形態に係る作動ガス循環型エンジン1によれば、排気熱伝達部90は、排気管18とは別体に形成され、凝縮水(HO)との接触部分が弱酸性に対して耐腐食性を有する材料により形成される。したがって、作動ガス循環型エンジン1は、少なくとも排気熱伝達部90の凝縮水(HO)との接触部分、すなわち、タンク側放熱部92が弱酸性に対して耐腐食性を有する材料により形成されることから、タンク側放熱部92の腐食を抑制することができ、排気熱伝達部90の耐久性を向上することができ、よって、長期間にわたって適正な凝縮水の処理を行うことができる。 Furthermore, according to the working gas circulation engine 1 according to the embodiment of the present invention described above, the exhaust heat transfer unit 90 is formed separately from the exhaust pipe 18 and is connected to the condensed water (H 2 O). The contact portion is formed of a material having corrosion resistance against weak acid. Therefore, the working gas circulation engine 1 is formed of a material in which at least the contact portion of the exhaust heat transfer unit 90 with the condensed water (H 2 O), that is, the tank side heat radiating unit 92 has corrosion resistance against weak acidity. Therefore, the corrosion of the tank side heat radiating portion 92 can be suppressed, the durability of the exhaust heat transfer portion 90 can be improved, and therefore the proper condensed water can be treated over a long period of time. .
 さらに、以上で説明した本発明の実施形態に係る作動ガス循環型エンジン1によれば、排気熱伝達部90は、循環経路20を循環するアルゴン(Ar)の循環方向に対して凝縮器60より上流側の排気管18から凝縮水(HO)に排気熱を伝達する。したがって、作動ガス循環型エンジン1は、排気熱伝達部90が循環経路20を循環する作動ガスの循環方向に対して凝縮器60より上流側の排気管18から凝縮水(HO)に排気熱を伝達することから、凝縮器60に導入される排気ガスの温度を低下させることができ、凝縮器60、ラジエータ63の容量を小さくすることができるので、凝縮器60、ラジエータ63を小型化することができる。この結果、作動ガス循環型エンジン1は、搭載性をさらに向上することができる。 Furthermore, according to the working gas circulation engine 1 according to the embodiment of the present invention described above, the exhaust heat transfer unit 90 is supplied from the condenser 60 with respect to the circulation direction of argon (Ar) circulating in the circulation path 20. Exhaust heat is transmitted from the upstream exhaust pipe 18 to the condensed water (H 2 O). Therefore, the working gas circulation engine 1 exhausts the condensed water (H 2 O) from the exhaust pipe 18 upstream of the condenser 60 with respect to the circulation direction of the working gas in which the exhaust heat transfer unit 90 circulates in the circulation path 20. Since the heat is transmitted, the temperature of the exhaust gas introduced into the condenser 60 can be lowered, and the capacity of the condenser 60 and the radiator 63 can be reduced. Therefore, the condenser 60 and the radiator 63 can be downsized. can do. As a result, the working gas circulation engine 1 can further improve the mountability.
(実施形態2)
 図2は、本発明の実施形態2に係る作動ガス循環型エンジンの模式的な概略構成図である。実施形態2に係る作動ガス循環型エンジンは、実施形態1に係る作動ガス循環型エンジンと略同様の構成であるが凝縮手段を複数備えている点で実施形態1に係る作動ガス循環型エンジンとは異なる。その他、上述した実施形態と共通する構成、作用、効果については、重複した説明はできるだけ省略するとともに、同一の符号を付す。
(Embodiment 2)
FIG. 2 is a schematic configuration diagram of a working gas circulation engine according to the second embodiment of the present invention. The working gas circulation engine according to the second embodiment has substantially the same configuration as the working gas circulation engine according to the first embodiment, but includes a plurality of condensing means, and the working gas circulation engine according to the first embodiment. Is different. In addition, about the structure, effect | action, and effect which are common in embodiment mentioned above, while overlapping description is abbreviate | omitted as much as possible, the same code | symbol is attached | subjected.
 実施形態2に係る作動ガス循環型エンジン201は、図2に示すように、凝縮手段としての凝縮器60を2つ備える。したがって、作動ガス循環型エンジン201は、この2つの凝縮器60に対応して、2組の熱交換媒体循環経路としての冷却水循環路61、ウォーターポンプ62及び冷却手段としてのラジエータ63を備える。本実施形態では、循環通路21の第2循環通路21bは、排気ポート11cの燃焼室CC側とは反対側の端部と、循環経路20における作動ガスの循環方向に対して下流側に配置される凝縮器60の排気ガス導入口60aとを繋ぐものである。 The working gas circulation engine 201 according to the second embodiment includes two condensers 60 as condensing means, as shown in FIG. Therefore, the working gas circulation engine 201 includes two cooling water circulation paths 61 as the heat exchange medium circulation paths, a water pump 62, and a radiator 63 as the cooling means corresponding to the two condensers 60. In the present embodiment, the second circulation passage 21b of the circulation passage 21 is disposed on the end opposite to the combustion chamber CC side of the exhaust port 11c and on the downstream side with respect to the circulation direction of the working gas in the circulation path 20. The exhaust gas inlet 60a of the condenser 60 is connected.
 そして、本実施形態の作動ガス循環型エンジン201は、伝達手段としての排気熱伝達部90を2つ備えている。一方の排気熱伝達部90の排気管側受熱部91は、循環経路20を循環する作動ガスの循環方向に対して排気ポート11cと上流側の凝縮器60との間に位置する排気管18から排気熱を受熱する。他方の排気熱伝達部90の排気管側受熱部91は、循環経路20を循環する作動ガスの循環方向に対して上流側の凝縮器60と下流側の凝縮器60との間に位置する排気管18から排気熱を受熱する。したがって、この作動ガス循環型エンジン201は、排気ポート11cと上流側の凝縮器60との間に位置する排気管18と、上流側の凝縮器60と下流側の凝縮器60との間に位置する排気管18とに対応した2つの排気熱伝達部90によって、排気ガスの排気熱を各排気管18から凝縮水貯留タンク80に貯留される凝縮水(HO)に伝達しこの凝縮水(HO)を蒸発させることができる。 The working gas circulation engine 201 of the present embodiment includes two exhaust heat transfer units 90 as transmission means. The exhaust pipe side heat receiving part 91 of one exhaust heat transfer part 90 is connected to the exhaust pipe 18 located between the exhaust port 11 c and the upstream condenser 60 with respect to the circulation direction of the working gas circulating in the circulation path 20. Receives exhaust heat. The exhaust pipe side heat receiving part 91 of the other exhaust heat transfer part 90 is located between the upstream condenser 60 and the downstream condenser 60 with respect to the circulation direction of the working gas circulating in the circulation path 20. The exhaust heat is received from the pipe 18. Therefore, this working gas circulation engine 201 is positioned between the exhaust pipe 18 positioned between the exhaust port 11 c and the upstream condenser 60, and between the upstream condenser 60 and the downstream condenser 60. The exhaust heat of the exhaust gas is transmitted from each exhaust pipe 18 to the condensed water (H 2 O) stored in the condensed water storage tank 80 by the two exhaust heat transfer sections 90 corresponding to the exhaust pipe 18 that performs this condensed water. (H 2 O) can be evaporated.
 この場合であっても、作動ガス循環型エンジン201は、2つの排気熱伝達部90によって排気ガスの排気熱を各排気管18から凝縮水貯留タンク80に貯留されている凝縮水(HO)に伝達しこの凝縮水(HO)を蒸発させることから、凝縮水貯留タンク80の搭載場所の自由度を向上させることができ、適正な凝縮水の処理を図った上で、搭載性を向上することができる。 Even in this case, the working gas circulation engine 201 uses the two exhaust heat transfer units 90 to convert the exhaust heat of the exhaust gas from each exhaust pipe 18 to the condensed water (H 2 O) stored in the condensed water storage tank 80. ) To evaporate the condensed water (H 2 O), so that the degree of freedom of the place where the condensed water storage tank 80 is mounted can be improved. Can be improved.
(実施形態3)
 図3は、本発明の実施形態3に係る作動ガス循環型エンジンの模式的な概略構成図である。実施形態3に係る作動ガス循環型エンジンは、実施形態1に係る作動ガス循環型エンジンと略同様の構成であるが熱交換媒体循環経路の構成が実施形態1に係る作動ガス循環型エンジンとは異なる。その他、上述した実施形態と共通する構成、作用、効果については、重複した説明はできるだけ省略するとともに、同一の符号を付す。
(Embodiment 3)
FIG. 3 is a schematic configuration diagram of a working gas circulation engine according to Embodiment 3 of the present invention. The working gas circulation engine according to the third embodiment has substantially the same configuration as the working gas circulation engine according to the first embodiment, but the structure of the heat exchange medium circulation path is different from that of the working gas circulation engine according to the first embodiment. Different. In addition, about the structure, effect | action, and effect which are common in embodiment mentioned above, while overlapping description is abbreviate | omitted as much as possible, the same code | symbol is attached | subjected.
 本実施形態に係る作動ガス循環型エンジン301は、熱交換媒体循環経路としての冷却水循環路361を備える。本実施形態の冷却水循環路361は、一部が凝縮水貯留タンク80に貯留される凝縮水(HO)と接触するように構成されている。ここでは、冷却水循環路361は、その経路中に循環路放熱部361aを有し、この循環路放熱部361aが凝縮水貯留タンク80に貯留される凝縮水(HO)と接触するように構成される。 The working gas circulation engine 301 according to the present embodiment includes a cooling water circulation path 361 as a heat exchange medium circulation path. The cooling water circulation path 361 of the present embodiment is configured such that a part thereof is in contact with condensed water (H 2 O) stored in the condensed water storage tank 80. Here, the cooling water circulation path 361 has a circulation path heat radiation part 361a in the path, and this circulation path heat radiation part 361a is in contact with the condensed water (H 2 O) stored in the condensed water storage tank 80. Composed.
 循環路放熱部361aは、冷却水循環路361を循環する冷却水の循環方向に対して凝縮器60の下流側でかつラジエータ63の上流側の部分に設けられる。循環路放熱部361aは、凝縮水貯留タンク80内でこの冷却水循環路361の一部分を蛇行させるようにして形成される。これにより、循環路放熱部361aは、凝縮水(HO)との接触面積、すなわち、放熱面積を十分に確保することができ、凝縮水(HO)に効率よく熱を放熱することができる。 The circulation path heat radiation part 361 a is provided on the downstream side of the condenser 60 and the upstream side of the radiator 63 with respect to the circulation direction of the cooling water circulating in the cooling water circulation path 361. The circulation path heat radiation part 361 a is formed so as to meander a part of the cooling water circulation path 361 in the condensed water storage tank 80. Thus, circulation heat radiating portion 361a, the contact area between the condensed water (H 2 O), i.e., it is possible to secure a sufficient heat radiation area, it dissipates heat efficiently in the condensed water (H 2 O) Can do.
 したがって、冷却水循環路361は、排気ガスとの熱交換後でかつラジエータ63による冷却前の冷却水を循環路放熱部361aで凝縮水貯留タンク80に貯留される凝縮水(HO)と熱交換可能に循環させることができる。 Therefore, the cooling water circulation path 361 uses the condensed water (H 2 O) and heat stored in the condensed water storage tank 80 after the heat exchange with the exhaust gas and before the cooling by the radiator 63 in the circulation water radiator 361a. It can be circulated interchangeably.
 上記のように構成される作動ガス循環型エンジン301は、冷却水循環路361を循環する冷却水が凝縮器60にて循環経路20の排気ガスと熱交換をすることで熱を吸収し温度上昇する。そして、この温度上昇した冷却水は、冷却水循環路61を循環し循環路放熱部361aで凝縮水貯留タンク80に貯留される凝縮水(HO)と熱交換する。これにより、凝縮水貯留タンク80に貯留される凝縮水(HO)は、凝縮器60にて温度上昇した冷却水から熱を受けとることで温度上昇が促進されるので、凝縮水貯留タンク80に貯留される凝縮水(HO)の蒸発が促進される。 In the working gas circulation engine 301 configured as described above, the cooling water circulating in the cooling water circulation path 361 exchanges heat with the exhaust gas in the circulation path 20 in the condenser 60, thereby absorbing heat and increasing the temperature. . Then, the cooling water whose temperature has risen circulates in the cooling water circulation path 61 and exchanges heat with the condensed water (H 2 O) stored in the condensed water storage tank 80 by the circulation path heat radiation part 361a. Accordingly, the condensed water (H 2 O) stored in the condensed water storage tank 80 is accelerated in temperature by receiving heat from the cooling water whose temperature has been increased in the condenser 60, and thus the condensed water storage tank 80. Evaporation of condensed water (H 2 O) stored in is promoted.
 一方、冷却水循環路361を循環し循環路放熱部361aを通過した後の冷却水は、循環路放熱部361aで凝縮水貯留タンク80に貯留される凝縮水(HO)と熱交換することでラジエータ63に導入される前に温度が低下する。この結果、作動ガス循環型エンジン301は、ラジエータ63の容量をさらに小さくすることができるので、ラジエータ63をさらに小型化することができる。 On the other hand, the cooling water after circulating through the cooling water circulation path 361 and passing through the circulation path heat radiation part 361a exchanges heat with the condensed water (H 2 O) stored in the condensed water storage tank 80 by the circulation path heat radiation part 361a. Thus, the temperature is lowered before being introduced into the radiator 63. As a result, since the working gas circulation engine 301 can further reduce the capacity of the radiator 63, the radiator 63 can be further downsized.
 以上で説明した本発明の実施形態に係る作動ガス循環型エンジン301によれば、作動ガス循環型エンジン301は、排気熱伝達部90によって排気ガスの排気熱を排気管18から凝縮水貯留タンク80に貯留されている凝縮水(HO)に伝達しこの凝縮水(HO)を蒸発させることから、凝縮水貯留タンク80の搭載場所の自由度を向上させることができ、適正な凝縮水の処理を図った上で、搭載性を向上することができる。 According to the working gas circulation engine 301 according to the embodiment of the present invention described above, the working gas circulation engine 301 uses the exhaust heat transfer unit 90 to transfer the exhaust heat of the exhaust gas from the exhaust pipe 18 to the condensed water storage tank 80. condensed water stored the (H 2 O) was transferred to the condensed water (H 2 O) from the evaporated, it is possible to improve the flexibility of the mounting location of the condensed water storage tank 80, an appropriate condensation Mountability can be improved after water treatment.
 さらに、以上で説明した本発明の実施形態に係る作動ガス循環型エンジン301によれば、凝縮器60に冷却水を循環させる冷却水循環路361と、冷却水循環路361を循環する冷却水を冷却可能なラジエータ63とを備え、凝縮器60は、冷却水循環路361を循環しラジエータ63により冷却された冷却水と循環経路20を流れる排気ガスとを熱交換させることによりこの排気ガスに含まれる水蒸気(HO)を凝縮して凝縮水(HO)としこの排気ガスから分離し、冷却水循環路361は、排気ガスとの熱交換後でかつラジエータ63による冷却前の冷却水を凝縮水貯留タンク80に貯留される凝縮水と熱交換可能に循環させる。 Furthermore, according to the working gas circulation engine 301 according to the embodiment of the present invention described above, the cooling water circulation path 361 for circulating the cooling water to the condenser 60 and the cooling water circulating through the cooling water circulation path 361 can be cooled. The condenser 60 circulates through the cooling water circulation path 361 and heat-exchanges the cooling water cooled by the radiator 63 and the exhaust gas flowing through the circulation path 20 to thereby contain water vapor ( H 2 O) is condensed to be condensed water (H 2 O) and separated from the exhaust gas, and the cooling water circulation path 361 stores the cooling water after heat exchange with the exhaust gas and before cooling by the radiator 63 as condensed water. Circulating the condensed water stored in the tank 80 so as to allow heat exchange.
 したがって、この作動ガス循環型エンジン301は、凝縮器60にて循環経路20の排気ガスと熱交換をすることで温度上昇した冷却水が冷却水循環路361を循環し凝縮水貯留タンク80に貯留される凝縮水(HO)と熱交換することから、凝縮水貯留タンク80に貯留される凝縮水(HO)の蒸発を促進することができる。また、この作動ガス循環型エンジン301は、冷却水が冷却水循環路361を循環し凝縮水貯留タンク80に貯留される凝縮水(HO)と熱交換することから、ラジエータ63に導入される前の冷却水の温度を低下させることができるので、ラジエータ63の容量をさらに小さくすることができ、ラジエータ63をさらに小型化することができる。この結果、作動ガス循環型エンジン301は、凝縮水貯留タンク80に貯留される凝縮水(HO)の蒸発をより効率的に行うことができ、より適正な凝縮水の処理を図ることができると共に、さらに搭載性を向上することができる。 Therefore, in this working gas circulation engine 301, the cooling water whose temperature has been increased by exchanging heat with the exhaust gas in the circulation path 20 in the condenser 60 circulates in the cooling water circulation path 361 and is stored in the condensed water storage tank 80. that condensed water and (H 2 O) from the heat exchanger, it is possible to accelerate the evaporation of the condensed water stored in the condensed water storage tank 80 (H 2 O). The working gas circulation engine 301 is introduced into the radiator 63 because the cooling water circulates through the cooling water circulation path 361 and exchanges heat with the condensed water (H 2 O) stored in the condensed water storage tank 80. Since the temperature of the previous cooling water can be lowered, the capacity of the radiator 63 can be further reduced, and the radiator 63 can be further downsized. As a result, the working gas circulation engine 301 can more efficiently evaporate the condensed water (H 2 O) stored in the condensed water storage tank 80, and achieve more appropriate condensed water treatment. In addition, the mountability can be further improved.
 なお、上述した本発明の実施形態に係る作動ガス循環型エンジンは、上述した実施形態に限定されず、特許請求の範囲に記載された範囲で種々の変更が可能である。 The working gas circulation engine according to the above-described embodiment of the present invention is not limited to the above-described embodiment, and various modifications can be made within the scope described in the claims.
 以上の説明では、伝達手段としての排気熱伝達部90は、熱伝導率が良好な材料でかつ弱酸性に対して耐腐食性を有する材料として銅管により排気管側受熱部91、タンク側放熱部92及び伝達部93を一体で形成するものとして説明したが、これに限らない。伝達手段としての排気熱伝達部90は、排気熱伝達部90と伝達部93とを熱伝導率が良好な材料により形成した上でタンク側放熱部92のみを弱酸性に対して耐腐食性を有する材料により形成してもよい。また、伝達手段としての排気熱伝達部90は、タンク側放熱部92を必ずしも弱酸性に対して耐腐食性を有する材料により形成しなくてもよい。この場合であっても、作動ガス循環型エンジン1は、適正な凝縮水の処理を図った上で、搭載性を向上するという効果は得ることができる。 In the above description, the exhaust heat transfer unit 90 serving as a transmission means is made of a copper tube as a material having a good thermal conductivity and having a corrosion resistance against weak acid. Although the part 92 and the transmission part 93 were demonstrated as what is formed integrally, it is not restricted to this. The exhaust heat transfer section 90 as a transmission means is formed by forming the exhaust heat transfer section 90 and the transfer section 93 with a material having good thermal conductivity, and only the tank side heat radiating section 92 has corrosion resistance against weak acidity. You may form with the material which has. Further, the exhaust heat transfer section 90 as a transfer means does not necessarily need to be formed of a material that has corrosion resistance against weak acidity. Even in this case, the working gas circulation engine 1 can obtain the effect of improving the mountability after processing the appropriate condensed water.
 また、本発明の伝達手段は、例えば、ヒートパイプを用いてもよい。 Also, the transmission means of the present invention may use, for example, a heat pipe.
 図4は、本発明の変形例1に係る作動ガス循環型エンジンの模式的な概略構成図である。本変形例の作動ガス循環型エンジン1Aは、伝達手段としてのヒートパイプ90Aを備える。ヒートパイプ90Aは、例えば、一端に設けられる受熱部91Aが排気管18と接触し他端に設けられる放熱部92Aが凝縮水貯留タンク80に貯留される凝縮水(HO)と接触する金属パイプと、この金属パイプの中に内張りされた毛細管材料(ウィック)と、この金属パイプ内に封入された少量の液体とを含んで構成される。そして、ヒートパイプ90Aは、金属パイプの排気管18側の端部である受熱部91Aが排気管18を介して排気熱により熱せられると、金属パイプ内の液体が蒸気流となって低温側である凝縮水貯留タンク80の凝縮水(HO)側の端部である放熱部92Aへと移動することで排気熱を排気管18から凝縮水(HO)に伝達する。そして、この伝達手段としてのヒートパイプ90Aは、金属パイプ内の蒸気が凝縮水(HO)側の端部である放熱部92Aで冷却されると、凝縮した液体が毛細管現象で排気管18側の端部へと環流する。 FIG. 4 is a schematic configuration diagram of a working gas circulation engine according to the first modification of the present invention. The working gas circulation engine 1A of the present modification includes a heat pipe 90A as a transmission means. In the heat pipe 90A, for example, the heat receiving portion 91A provided at one end contacts the exhaust pipe 18, and the heat radiating portion 92A provided at the other end contacts the condensed water (H 2 O) stored in the condensed water storage tank 80. The pipe includes a pipe material, a capillary material (wick) lined in the metal pipe, and a small amount of liquid enclosed in the metal pipe. When the heat receiving portion 91A, which is the end portion of the metal pipe on the exhaust pipe 18 side, is heated by the exhaust heat through the exhaust pipe 18, the heat pipe 90A becomes a vapor flow of the liquid in the metal pipe on the low temperature side. The exhaust heat is transferred from the exhaust pipe 18 to the condensed water (H 2 O) by moving to the heat radiating portion 92A, which is the end of the condensed water storage tank 80 on the condensed water (H 2 O) side. The heat pipe 90A serving as the transmission means is configured such that when the vapor in the metal pipe is cooled by the heat radiating portion 92A that is the end portion on the condensed water (H 2 O) side, the condensed liquid is exhausted by a capillary phenomenon. Circulate to the end of the side.
 この場合であっても、作動ガス循環型エンジン1Aは、ヒートパイプ90Aによって排気ガスの排気熱を排気管18から凝縮水貯留タンク80に貯留されている凝縮水(HO)に伝達しこの凝縮水(HO)を蒸発させることから、凝縮水貯留タンク80の搭載場所の自由度を向上させることができ、適正な凝縮水の処理を図った上で、搭載性を向上することができる。 Even in this case, the working gas circulation engine 1A transmits the exhaust heat of the exhaust gas from the exhaust pipe 18 to the condensed water (H 2 O) stored in the condensed water storage tank 80 through the heat pipe 90A. Since the condensed water (H 2 O) is evaporated, the degree of freedom of the place where the condensed water storage tank 80 is mounted can be improved, and the mountability can be improved after processing the appropriate condensed water. it can.
 また、本発明の伝達手段は、例えば、熱媒を用いてもよい。 Further, the transmission means of the present invention may use a heat medium, for example.
 図5は、本発明の変形例2に係る作動ガス循環型エンジンの模式的な概略構成図である。本変形例の作動ガス循環型エンジン1Bは、伝達手段としての熱媒循環路90Bを備える。熱媒循環路90Bは、排気管18側に設けられる受熱部91Bと凝縮水貯留タンク80側に設けられる放熱部92Bとの間で熱媒を循環させるものであり、内部を熱媒が流動可能である。熱媒循環路90Bは、閉じられた環状の経路になっており、内部に熱媒が充填されている。そして、熱媒循環路90Bは、排気管18側の部分である受熱部91Bが排気管18を介して排気熱により熱せられると、熱媒循環路90B内の熱媒が低温側である凝縮水貯留タンク80の凝縮水(HO)側の放熱部92Bへと移動することで排気熱を排気管18から凝縮水(HO)に伝達する。そして、この伝達手段としての熱媒循環路90Bは、熱媒循環路90B内の熱媒が凝縮水(HO)側の部分である放熱部92Bで冷却されると、この熱媒が再び排気管18側の受熱部91Bへと環流する。 FIG. 5 is a schematic configuration diagram of a working gas circulation engine according to the second modification of the present invention. The working gas circulation engine 1B of this modification includes a heat medium circulation path 90B as a transmission means. The heat medium circulation path 90B circulates the heat medium between the heat receiving part 91B provided on the exhaust pipe 18 side and the heat radiating part 92B provided on the condensed water storage tank 80 side, and the heat medium can flow inside. It is. The heat medium circulation path 90B is a closed annular path, and the inside is filled with the heat medium. And when the heat receiving part 91B which is a part at the side of the exhaust pipe 18 is heated by exhaust heat through the exhaust pipe 18, the heat medium circulation path 90B is condensed water whose heat medium in the heat medium circulation path 90B is on the low temperature side. The exhaust heat is transferred from the exhaust pipe 18 to the condensed water (H 2 O) by moving to the heat radiating portion 92B of the storage tank 80 on the condensed water (H 2 O) side. Then, when the heat medium in the heat medium circuit 90B is cooled by the heat radiating portion 92B, which is a part on the condensed water (H 2 O) side, the heat medium is again turned on. It recirculates to the heat receiving portion 91B on the exhaust pipe 18 side.
 この場合であっても、作動ガス循環型エンジン1Bは、熱媒循環路90Bによって排気ガスの排気熱を排気管18から凝縮水貯留タンク80に貯留されている凝縮水(HO)に伝達しこの凝縮水(HO)を蒸発させることから、凝縮水貯留タンク80の搭載場所の自由度を向上させることができ、適正な凝縮水の処理を図った上で、搭載性を向上することができる。 Even in this case, the working gas circulation engine 1B transmits the exhaust heat of the exhaust gas from the exhaust pipe 18 to the condensed water (H 2 O) stored in the condensed water storage tank 80 through the heat medium circulation path 90B. Since this condensed water (H 2 O) is evaporated, the degree of freedom of the place where the condensed water storage tank 80 is mounted can be improved, and the mountability is improved after processing the appropriate condensed water. be able to.
 なお、以上の説明では、作動ガス循環型エンジンは、燃料が燃焼室CC内に直接噴射されるよう燃料噴射手段42を設けるものとして説明したが、燃料噴射手段42は、燃料を吸気ポート11bに噴射させるべくシリンダヘッド11に取り付けられてもよい。つまり、以上で説明した本発明の作動ガス循環型エンジンは、いわゆるポート噴射式の作動ガス循環型エンジンに適用してもよく、この場合であっても、適正な凝縮水の処理を図った上で、搭載性を向上することができる。 In the above description, the working gas circulation engine has been described as including the fuel injection means 42 so that the fuel is directly injected into the combustion chamber CC. However, the fuel injection means 42 supplies the fuel to the intake port 11b. It may be attached to the cylinder head 11 for injection. In other words, the working gas circulation engine of the present invention described above may be applied to a so-called port injection working gas circulation engine. Thus, the mountability can be improved.
 また、以上の説明では、作動ガス循環型エンジンは、燃料としての水素(H)を拡散燃焼させるものとして例示したが、燃料に対して図示しない点火プラグで点火して、いわゆる、火花点火燃焼させる形態のものであってもよく、その燃料に対して点火プラグで点火して着火の補助を行い拡散燃焼させる形態のものであってもよい。つまり、以上で説明した本発明の作動ガス循環型エンジンは、燃焼形態の異なる作動ガス循環型エンジンに適用してもよく、この場合であっても、適正な凝縮水の処理を図った上で、搭載性を向上することができる。 In the above description, the working gas circulation engine has been exemplified as the one that diffuses and burns hydrogen (H 2 ) as a fuel. However, the fuel is ignited by a spark plug (not shown), and so-called spark ignition combustion. Alternatively, the fuel may be ignited with a spark plug to assist the ignition and diffusely burned. That is, the working gas circulation engine of the present invention described above may be applied to a working gas circulation engine having a different combustion form, and even in this case, after processing proper condensed water, , Mountability can be improved.
 以上のように、本発明に係る作動ガス循環型エンジンは、搭載性を向上することができるものであり、排気ガス中に含まれる作動ガスを燃焼室の排気側から吸気側に循環させ再び燃焼室に供給可能な種々の作動ガス循環型エンジンに適用して好適である。 As described above, the working gas circulation engine according to the present invention can improve the mountability, and the working gas contained in the exhaust gas is circulated from the exhaust side of the combustion chamber to the intake side to be combusted again. It is suitable for application to various working gas circulation engines that can be supplied to the chamber.

Claims (4)

  1.  酸化剤と、当該酸化剤によって燃焼が促進されると共に当該燃焼により水蒸気を生成する燃料と、作動ガスとが供給され、前記燃料の燃焼に伴って前記作動ガスが膨張可能であると共に前記燃料の燃焼後の排気ガスとして前記水蒸気と前記作動ガスとを排気管に排気可能な燃焼室と、
     前記排気ガス中に含まれる前記作動ガスを前記燃焼室の排気側から吸気側に循環させ再び前記燃焼室に供給可能な循環経路と、
     前記循環経路に設けられ前記排気ガス中に含まれる前記水蒸気を凝縮して凝縮水とする凝縮手段と、
     前記凝縮水を貯留可能な貯留手段と、
     前記排気ガスの排気熱を前記排気管から前記貯留手段に貯留される前記凝縮水に伝達し当該凝縮水を蒸発させる伝達手段とを備えることを特徴とする、
     作動ガス循環型エンジン。
    Combustion is promoted by the oxidant, fuel that generates water vapor by the combustion, and working gas are supplied, and the working gas can expand as the fuel burns, and the fuel A combustion chamber capable of exhausting the water vapor and the working gas into an exhaust pipe as exhaust gas after combustion;
    A circulation path through which the working gas contained in the exhaust gas can be circulated from the exhaust side to the intake side of the combustion chamber and supplied again to the combustion chamber;
    Condensation means provided in the circulation path to condense the water vapor contained in the exhaust gas into condensed water;
    Storage means capable of storing the condensed water;
    Transmission means for transmitting the exhaust heat of the exhaust gas from the exhaust pipe to the condensed water stored in the storage means and evaporating the condensed water,
    Working gas circulation engine.
  2.  前記伝達手段は、前記排気管とは別体に形成され、前記凝縮水との接触部分が弱酸性に対して耐腐食性を有する材料により形成されることを特徴とする、
     請求項1に記載の作動ガス循環型エンジン。
    The transmission means is formed separately from the exhaust pipe, and the contact portion with the condensed water is formed of a material having corrosion resistance against weak acidity.
    The working gas circulation engine according to claim 1.
  3.  前記伝達手段は、前記循環経路を循環する前記作動ガスの循環方向に対して前記凝縮手段より上流側の前記排気管から前記凝縮水に前記排気熱を伝達することを特徴とする、
     請求項1又は請求項2に記載の作動ガス循環型エンジン。
    The transmission means transmits the exhaust heat from the exhaust pipe upstream of the condensation means to the condensed water with respect to the circulation direction of the working gas circulating in the circulation path.
    The working gas circulation engine according to claim 1 or 2.
  4.  前記凝縮手段に熱交換媒体を循環させる熱交換媒体循環経路と、
     前記熱交換媒体循環経路を循環する前記熱交換媒体を冷却可能な冷却手段とを備え、
     前記凝縮手段は、前記熱交換媒体循環経路を循環し前記冷却手段により冷却された前記熱交換媒体と前記循環経路を流れる前記排気ガスとを熱交換させることにより当該排気ガスに含まれる前記水蒸気を凝縮して前記凝縮水とし当該排気ガスから分離し、
     前記熱交換媒体循環経路は、前記排気ガスとの熱交換後でかつ前記冷却手段による冷却前の前記熱交換媒体を前記貯留手段に貯留される前記凝縮水と熱交換可能に循環させることを特徴とする、
     請求項1乃至請求項3のいずれか1項に記載の作動ガス循環型エンジン。
    A heat exchange medium circulation path for circulating the heat exchange medium in the condensing means;
    Cooling means capable of cooling the heat exchange medium circulating in the heat exchange medium circulation path,
    The condensing means heat-exchanges the water vapor contained in the exhaust gas by exchanging heat between the heat exchange medium circulated through the heat exchange medium circulation path and cooled by the cooling means and the exhaust gas flowing through the circulation path. Condensed to form the condensed water and separated from the exhaust gas,
    The heat exchange medium circulation path circulates the heat exchange medium after heat exchange with the exhaust gas and before cooling by the cooling means so as to exchange heat with the condensed water stored in the storage means. And
    The working gas circulation engine according to any one of claims 1 to 3.
PCT/JP2008/069153 2008-10-22 2008-10-22 Working medium circulating type engine WO2010046978A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/069153 WO2010046978A1 (en) 2008-10-22 2008-10-22 Working medium circulating type engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/069153 WO2010046978A1 (en) 2008-10-22 2008-10-22 Working medium circulating type engine

Publications (1)

Publication Number Publication Date
WO2010046978A1 true WO2010046978A1 (en) 2010-04-29

Family

ID=42119039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/069153 WO2010046978A1 (en) 2008-10-22 2008-10-22 Working medium circulating type engine

Country Status (1)

Country Link
WO (1) WO2010046978A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011247174A (en) * 2010-05-26 2011-12-08 Honda Motor Co Ltd Method of recovering moisture in internal combustion engine exhaust gas
JP2016510868A (en) * 2013-03-08 2016-04-11 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテルハフツングMAHLE International GmbH Cooler

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57160577U (en) * 1981-03-31 1982-10-08
JPH01227811A (en) * 1988-03-07 1989-09-12 Teledyne Ind Inc Heat recovery muffler
JPH0211826A (en) * 1988-06-29 1990-01-16 Agency Of Ind Science & Technol Inert gas circulation hydrogen fuel internal combustion engine
JPH0814025A (en) * 1994-06-24 1996-01-16 Tokyo Gas Co Ltd Exhaust gas treating device in internal combustion engine
JP2006083703A (en) * 2004-09-14 2006-03-30 Honda Motor Co Ltd Muffler
JP2007064092A (en) * 2005-08-31 2007-03-15 Toyota Motor Corp Internal combustion engine
JP2007154796A (en) * 2005-12-06 2007-06-21 Toyota Motor Corp Exhaust bypass device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57160577U (en) * 1981-03-31 1982-10-08
JPH01227811A (en) * 1988-03-07 1989-09-12 Teledyne Ind Inc Heat recovery muffler
JPH0211826A (en) * 1988-06-29 1990-01-16 Agency Of Ind Science & Technol Inert gas circulation hydrogen fuel internal combustion engine
JPH0814025A (en) * 1994-06-24 1996-01-16 Tokyo Gas Co Ltd Exhaust gas treating device in internal combustion engine
JP2006083703A (en) * 2004-09-14 2006-03-30 Honda Motor Co Ltd Muffler
JP2007064092A (en) * 2005-08-31 2007-03-15 Toyota Motor Corp Internal combustion engine
JP2007154796A (en) * 2005-12-06 2007-06-21 Toyota Motor Corp Exhaust bypass device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011247174A (en) * 2010-05-26 2011-12-08 Honda Motor Co Ltd Method of recovering moisture in internal combustion engine exhaust gas
JP2016510868A (en) * 2013-03-08 2016-04-11 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテルハフツングMAHLE International GmbH Cooler

Similar Documents

Publication Publication Date Title
KR101417143B1 (en) Piston steam engine having internal flash vapourisation of a working medium
US6834503B2 (en) Method for the operation of a steam thermal engine, in particular as a vehicle power unit
US8833312B2 (en) External combustion engine
JP4793508B2 (en) Working gas circulation engine
KR20090100444A (en) Steam generator in a heat regenerative engine
JP2008064018A (en) Working gas circulation type engine
JP6292209B2 (en) Engine control device
CN101092915B (en) Charged combustion engine with an expander unit in a heat recovery loop
WO2010092684A1 (en) Operating gas circulation type engine
JP6354811B2 (en) Engine exhaust heat recovery device
JP2008255944A (en) Warm up device in engine
JP2018003682A (en) Engine with exhaust heat recovery function
WO2010046978A1 (en) Working medium circulating type engine
JP2010216454A (en) Working medium circulation type engine
JP2008095567A (en) Intake air heater
JP2009281206A (en) Working gas circulation type engine
JP6789884B2 (en) Engine catalyst cooling system
JP2019210824A (en) engine
JP4670837B2 (en) Engine exhaust heat recovery device and method
JP5330227B2 (en) Engine and method for operating the engine
US10662852B2 (en) Exhaust heat recovery device
JP2019183793A (en) Exhaust heat recovery device of engine
US11220946B1 (en) Exhaust gas heat recovery system having a thermosiphon heat transfer circuit with an accumulator
JP6341239B2 (en) Engine exhaust heat recovery device
JP6296123B2 (en) Engine exhaust heat recovery device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08877544

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 08877544

Country of ref document: EP

Kind code of ref document: A1