WO2010046728A1 - Mems fluid pump with integrated pressure sensor for dysfunction detection - Google Patents
Mems fluid pump with integrated pressure sensor for dysfunction detection Download PDFInfo
- Publication number
- WO2010046728A1 WO2010046728A1 PCT/IB2008/054353 IB2008054353W WO2010046728A1 WO 2010046728 A1 WO2010046728 A1 WO 2010046728A1 IB 2008054353 W IB2008054353 W IB 2008054353W WO 2010046728 A1 WO2010046728 A1 WO 2010046728A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pressure
- pumping
- previous
- pump
- during
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/168—Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/168—Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
- A61M5/16831—Monitoring, detecting, signalling or eliminating infusion flow anomalies
- A61M5/16854—Monitoring, detecting, signalling or eliminating infusion flow anomalies by monitoring line pressure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/168—Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
- A61M5/16831—Monitoring, detecting, signalling or eliminating infusion flow anomalies
- A61M2005/16863—Occlusion detection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/168—Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
- A61M5/16831—Monitoring, detecting, signalling or eliminating infusion flow anomalies
- A61M2005/16863—Occlusion detection
- A61M2005/16868—Downstream occlusion sensors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/02—General characteristics of the apparatus characterised by a particular materials
- A61M2205/0244—Micromachined materials, e.g. made from silicon wafers, microelectromechanical systems [MEMS] or comprising nanotechnology
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/02—General characteristics of the apparatus characterised by a particular materials
- A61M2205/0272—Electro-active or magneto-active materials
- A61M2205/0294—Piezoelectric materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/33—Controlling, regulating or measuring
- A61M2205/3331—Pressure; Flow
- A61M2205/3355—Controlling downstream pump pressure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/70—General characteristics of the apparatus with testing or calibration facilities
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/142—Pressure infusion, e.g. using pumps
- A61M5/14212—Pumping with an aspiration and an expulsion action
- A61M5/14224—Diaphragm type
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/36—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests with means for eliminating or preventing injection or infusion of air into body
- A61M5/365—Air detectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B43/00—Machines, pumps, or pumping installations having flexible working members
- F04B43/02—Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
- F04B43/04—Pumps having electric drive
- F04B43/043—Micropumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B51/00—Testing machines, pumps, or pumping installations
Definitions
- the present invention relates to medical pumping devices and more precisely to the detection of dysfunctions in such devices.
- the detection of dysfunctions is important because the life of the patient may depend on proper functioning of said devices.
- the potentially dangerous results of a failure are typically over-infusion or under-infusion of the drug into the patient.
- dysfunctions are leaks, occlusions or presence of air bubbles in the pumping line.
- occlusion detection devices operate on the piston of the syringe driver and need the building of high pressure inside the syringe before it is detected.
- Other occlusion detectors consist of pressure sensors situated after the pumping mechanism, on the patient line, which have little sensibility because of e.g. the compliance factor of the tubing line.
- the absence of detection of an occlusion at the onset of such occlusion result in a high glucose plasma concentration which may appear to the patient as a need to increase its insulin level, resulting in a re-programming of the pump which may result, in the event the occlusion would be suddenly released, in a larger quantity of insulin being suddenly administered with potential serious hazard to the patient.
- the present invention offers an alternative and several improvements with respect to state-of-the-art devices and methods.
- the detection of a dysfunction is based on the measurement of the pressure in the pumping line and more precisely between the inlet and outlet valve of the pumping chamber.
- Such a configuration offers a higher sensitivity as well as the potential to detect several potential kinds of dysfunction.
- the invention relates to a pumping device and to a related method as defined in the claims.
- the inlet and outlet of the pumping device include passive valves.
- a highly miniaturized infusion pump is considered. It is a membrane pump with two passive valves and is built using MEMS technology.
- a silicon micro-pump and preferably such micro-pumps are build from silicon, exhibits a more complex fluidic pathway and more precise control of the delivery while including valves with a hard seat which may potentially be leaking in the presence of particles.
- a further preferred embodiment of the invention uses a pressure sensor which comprises a silicon membrane.
- the pressure sensor is placed between the pumping chamber and the outlet. This configuration offers a more precise control of the occlusion (including the potential to detect immediately the onset of an occlusion during any pumping cycle) while addressing other purposes such as the detection of dysfunctions.
- the system comprises a further pressure sensor.
- This further pressure sensor may be preferably placed after the outlet valve, in the downstream line.
- the system also comprises a temperature sensor.
- the pressure sensor according to the invention may detect several types of dysfunctions such as occlusions, air bubbles or infusion line disconnection, generally during a very short time, i.e. a few seconds, when the pump is operating.
- Another objective of the present invention is to precisely characterize and/or monitor the characteristics of a pump during the manufacturing cycle to prevent any potential malfunction during use.
- the present also provides a system and a method which allows for a complete control of each pump produced without resulting in a contamination of such pump.
- Such testing is preferably carried out with filtered air and results in a detailed analysis of all important parameters and safety characteristics in a very short period of time of only a few seconds- This way remainscompatible with the cost objectives of such disposable pumps which need to remain very inexpensive to manufacture.
- Figure 1 shows a cut view of a micro-pump according to a preferred embodiment of the invention
- FIGS. 2 and 3 illustrate a possible process of functional testing of the pump
- Figure 4 illustrates another pressure profile of functional testing illustrating a dysfunction
- Figure 5 illustrates a typical pressure profile during an actuation cycle
- Figure 6 illustrates one preferred embodiment of an actuation cycle
- FIG. 7 illustrates pumping cycles of air and water
- Figure 8 illustrates a typical evolution of the outlet pressure profile in presence of an occlusion
- Figure 9 illustrates a typical evolution of the inlet pressure profile in presence of an occlusion
- Figure 10 illustrates an example of monitoring the outlet pressure during an occlusionFigure 1 1 illustrates a pressure profile of a pump with a presence of a leakage
- Figure 12 illustrates a monitoring of pumping accuracy in the presence of a decrease of flow rate
- Figure 13 illustrates the relative variation of viscosity for a temperature change of 1 °C
- Figures 14 shows how the definitions "peak” and “plateau” are used in the figures.
- the micro-pump 1 as illustrated in figure 1 is a highly miniaturized and reciprocating membrane pumping mechanism. It is made from silicon and glass, using technologies referred to as MEMS (Micro-Electro-Mechanical System). It contains an inlet control member, here an inlet valve 2, a pumping membrane 3, a functional detector 4 which allows detection of various failures in the system and an outlet valve 5.
- MEMS Micro-Electro-Mechanical System
- It contains an inlet control member, here an inlet valve 2, a pumping membrane 3, a functional detector 4 which allows detection of various failures in the system and an outlet valve 5.
- the principle of such micro-pumps is known in the prior art, for example from US 5,759,014.
- Figure 1 illustrates a pump with the stack of a glass layer (blue) as base plate 8, a silicon layer (purple) as second plate 9, secured to the base plate 8, and a second glass layer 10 (blue) as a top plate, secured to the silicon plate 9, thereby defining a pumping chamber 1 1 having a volume.
- An actuator (not represented here) linked to the mesa 6 allows the controlled displacement of the pumping membrane 3.
- a channel 7 is also present in order to connect the outlet control member, the outlet valve 5 to the outlet port placed on the opposite side of the pump.
- the pressure inside the pumping chamber varies during a pumping cycle depending on numerous factors, such as the actuation rate, the pressure at the inlet and the outlet, the potential presence of a bubble volume, the valve characteristics and their leak rates.
- the pressure sensor 4 in the micro-pump 1 is made of a silicon membrane placed between the pumping chamber and the pump outlet. It is located in a channel formed between the surface of the micro-pumps silicon layer and its top glass layer. In addition, it comprises a set of strain sensitive resistors in a
- the sensor is designed to make the signal linear with the pressure within the typical pressure range of the pump.
- the fluid is in contact with the surface of the interconnection leads and the piezo-resistors.
- a good electrical insulation of the bridge is ensured by using an additional surface doping of polarity opposite to that of the leads and the piezo- resistors .
- the pressure sensor includes an optical sensor.
- the sensor is preferably composed of one part which is included in the pathway of the pump in-between the two vales and at least some optical parts placed outside of such fluidic pathway and able to measure the pressure detected inside the fluidic pathway.
- the optical detection may also be placed entirely inside the pump while being able to measure the pressure in-between the two valves in the fluidic pathway.
- an optical astigmatic element is located within the light path, i.e. between a flexible membrane in the pump and the optical sensor. Any change of pressure in the pump induces a displacement of said membrane, a change of the light path and thus a change of the optical beam shape thanks to the presence of the astigmatic element.
- the optical sensor is preferably sensitive to the shape of the optical beam, e.g. by including a quadrant photodetector. Functional test
- a first process that can be carried out with the pump according to the present invention is a functional test of said pump, e.g. at the manufacturing level.
- the principle of this functional test process is the following: an overpressure is created inside the pump with the actuator and one monitors the pressure decay in the pumping chamber which is directly indicative of the leak rate.
- the maximum pressure is related to the compression ratio of the pump and its self- priming capability.
- the outlet valve e.g. pneumatically, in order to keep it closed during the compression as shown in figure 2 and 3.
- figures 2 and 3 represent the functional testing of the pump according to the present invention (in figure 2 the schematic process and in figure 3 the corresponding pressure profile). During this test one monitors the signal of the detector whereby:
- the pressure peak indicates the compression ratio of the micro-pump -
- the pressure decay indicates the leakage rate of the valves
- step 4 The pressure in the step 4 indicates the pretension of the inlet valve As illustrated (see for example the successive positions in figure 2), such test is started from a stand-by position.
- a pull step is first executed which "aspirates" gas into the chamber from the inlet valve 2 by movement of the membrane 3.
- the sensitivity of the method is very high due to the high pressure generated and the tiny volume involved.
- a direct correlation between the compression ratio and the stroke volume SV is found if one assumes that dead volume DV does not vary too much thanks to a suitable process control during the initial manufacturing of the pump (e.g. by MEMS techniques).
- Figure 4 illustrates the pressure profile in case of a failure of the functional test.
- the inlet valve of the pump is bonded (maintained closed) and moreover there is a leakage.
- These problem related to the inlet valve can be deducted by the large under pressure created during the pull move of the pump and the decay of the pressure after each actuation.
- the leakage is indicated by the decay at the end of the high compression step, at the end of the test cycle.
- the same result can also be obtained during the functioning of the pump in the event of a lack of fluid from the drug reservoir situated before the first valve (e.g. end of reservoir), in particular if using a closed soft reservoir with no air vent.
- the pressure inside the pumping chamber while in fluid operation depends directly on various functional and/or external parameters, such as the pressure at the inlet or at the outlet, the actuation characteristics, but also micro-pump characteristics such as the valve tightness, the actual stroke volume or the valves pre-tension.
- FIG. 5 A typical pressure profile during an actuation cycle with liquid is illustrated in figure 5.
- Any change of this profile indicates a dysfunction of the pump or an increase or decrease of pressure at the inlet or at the outlet (e.g. due to a bad venting, an under-pressure or an over-pressure of a liquid reservoir, situated before the inlet valve or an occlusion after the outlet valve).
- the position of the plateau just after the first peak of pressure measured inside the pumping chamber is a direct indication of the pressure at the outlet of the pump, after the outlet valve.
- the second peak we have a direct indication of the pressure at the inlet, before the inlet valve.
- the tightness of the valves and/or the presence of bubbles induce a variation of the peak-to- peak amplitude and the peak widths.
- the analysis of the pressure decay after each peak of pressure indicates the leak rate of any of the valves.
- the displacement of the membrane according to one embodiment of the invention during the normal actuation cycle of the pump is shown in Fig. 6.
- the cycle is initiated by a first half push movement of the membrane, leading to an increase of the pressure, an opening of the outlet valve and therefore an exhaust of liquid.
- the cycle is followed by a complete pull stroke in order to fill the pump (negative peak of pressure during the filling of the pump), and then the pumping membrane is released and therefore comes back to its rest position, inducing a second positive peak of pressure.
- the position of the plateau (+) just after a positive peak (+) of pressure depends on the outlet valve pretension and the pressure at the outlet of the pump after the outlet valve. 2.
- the position of the plateau (-) just after a negative peak (-) of pressure depends on the inlet valve pretension and the pressure at the inlet of the pump before the inlet valve.
- the priming of the pump can also be monitored.
- the significant difference of signal observed during the pumping of air and water is illustrated in figure 7.
- the peaks of pressure are modified by the presence of air in the pump.
- Air detection can be verified by:
- Figure 8 shows a typical evolution of the pressure profile during an actuation in presence of pressure at the outlet of the pump after the outlet valve.
- Figure 9 shows the same graph as figure 8, with pressure at the inlet.
- Such an inlet pressure monitoring can also help detecting the emptying of a drug reservoir, when such reservoir is e.g. a soft reservoir without air-vent.
- the monitoring of the outlet pressure allows the occlusion detection as shown in figure 10.
- Figure 1 1 illustrates the pressure profile of a pump with a leakage
- the pressure relaxes very quickly towards the external pressure after each actuation. Without leakage, the pressure should relax towards the valve pretension expressed in terms of pressure.
- leakage detection can be done by:
- one is able to detect the failures such as valve leakage or air bubble that can affect the pumping accuracy within the accuracy specifications.
- Figure 12 illustrates an example of the detector signal of a pump showing a nominal stroke volume and the same pump with particles that affect the pumping accuracy by 15%.
- the leakage induced by these particles can be easily detected by analysing the difference of level before and after the large negative peak
- This feature allows close-loop application by coupling the micro-pump to a glucometer thanks to the control of the insulin delivery accuracy via the detector.
- the detection here is similar to the leak detection, but the only focus is on leaks that affect the accuracy.
- any such close loop system would result in increasing or decreasing the administration of e.g. insulin because of the measured parameter (in such case continuous monitoring of glucose level in e.g. the plasma or the subcutaneous region, or the interstitial fluid), without taking into account the alteration of the delivery of the pump. It is of upmost importance, in the case of a close loop system, to ensure that the pumping parameters are well understood and controlled over time to prevent any wrong compensation which would be related to the pumping mechanism and not the patient characteristics. In particular, an over infusion of insulin because of an increase of glucose measurement could potentially result in a hazard to the patient if related to an unknown defective pump or infusion set.
- the infusion line may become disconnected from the pump and a leakage may occur between the pump outlet and the infusion line connector. Leakage may also be present if the user connects an unapproved infusion line to the pump outlet. This results in a lower fluidic resistance at the pump outlet because of such leakage.
- the small decrease of pressure at the pump outlet when the leak becomes significant could be detected by using the integrated detector or by placing a second pressure sensor in the micro-pump but after the outlet valve. The sensitivity of this sensor should be adapted to the pressure loss of the infusion line under normal conditions.
- a specific test of tightness of the infusion line can be done by generating for instance a stroke at higher speed for the liquid exhaust during the pump setting, preferably before the patient is connected (e.g. during priming of the pump).
- the main detector is placed in the pumping chamber. Its reference port is communicating with the air space inside the pump system's housing which is at atmospheric pressure as long as the pump system is well ventilated. This sensor is also a relative pressure sensor. It could be useful to get information about the patient's pressure, by placing an additional pressure sensor after the outlet valve.
- This additional pressure sensor is directly related to the patient's pressure.
- the two pressures sensors the main one measuring the pressure inside the pumping chamber and the one measuring the pressure after the outlet valve, should have the same reference port pressure. Comparing the evolution of the two signals after a stroke is useful for the detection of leaks within the pump, at the valve seats, or between the outlet port of the pump and the patient (typically a bad connection of the patient set). This will be described in more details further in the present description.
- This additional sensor can be also used for the detection of abnormal pressure at the outlet port, including occlusion of the infusion set.
- This additional sensor could also be calibrated if needed during the functional manufacturing testing, using gas as described above in the present specification
- This additional pressure sensor could be easily integrated into the pump chip by designing a second membrane for the pressure measurement: the pressure can be measured by using strain gauges in a Wheatstone bridge configuration as used for the other pressure sensor inside the pump. Ideally the implantation doses for the strain gauges are the equivalent ones to those of the main detector inside the pump. One can therefore adjust the sensitivity if necessary by simply modifying the membrane dimensions rather than the doses themselves.
- the fluidic pathway between the outlet valve of the pump and the patient set should preferably be made not to trap air during the initial pump priming.
- the width and the height of the peak of pressure can be exploited in order to get information about the tightness of the downstream line between the pump and the patient.
- the integral of the pressure versus time curve is theoretically proportional to the flow rate, for a given fluidic resistance.
- a change in this integral is a good indication of a dysfunction, including bubbles, leaks... but also temperature changes.
- Rf is the fluidic resistance between the additional pressure sensor and the patient
- Q(t) the instantaneous flow rate
- P(t) the pressure measured by the additional sensor.
- Laminar flow is taken into account and Rf is given by the Poiseuille's law.
- P(patient) is the pressure of the patient and also the pressure measured by the additional sensor after the flow vanishes.
- This sensor is also a good indicator for the pumping accuracy since we have a direct access to the flow rate variation with time.
- the fluidic resistance will vary with temperature via the fluid viscosity (Poiseuille's law).
- this pressure sensor will also be coupled to a temperature sensor.
- the temperature sensor could be placed within the pump, for instance in contact with the liquid even if it is strictly not necessary thanks to the small dimensions and good thermal conductivity of the pump components.
- the thermal sensor could be a simple thermo-resistor (RTD or resistance temperature detector) that shows a good sensitivity between 5 and 40 °C.
- the Wheatstone bridge of the pressure sensors also shows similar temperature dependence and could serve for this purpose.
- a thermocouple can also be incorporated in the pumping unit.
- a semiconductor temperature sensor based on the fundamental temperature and current characteristics of a diode or a transistor can be used.
- Figure 13 shows the relative variation of viscosity for a temperature change of 1 °C. Since the fluidic resistance varies linearly with the viscosity, it become possible to directly access to the flow rate accuracy which can be expected for a temperature sensor resolution of 1 °C: at 5°C the max error induced by the temperature sensor over the flow rate accuracy is 2.8%.
- the sensor may also be designed in order to introduce an error lower than the accuracy target for the flow rate.
- the coupling of the pressure sensor at the outlet and the temperature sensor could be used as a smart relative pulsed flow sensor which is efficient thanks to the small response time of the pressure sensor.
- the fluidic resistance between the additional pressure sensor and the patient should be known with a good accuracy.
- the patient's set shows typically large variation of fluidic resistance from one batch to another, by contrast to the fluidic resistance of a channel in the micro-pump. Care should also be taken to keep the fluidic resistance of the patient's set very low by contrast to the fluidic resistance of the outlet channels within the micro- pump.
- the fluidic resistance Rf given above can be controlled with an accuracy compatible with an absolute flow measurement.
- the flow measurement is valid as long as the fluidic resistance of the patient's set remains small, i.e. there is no occlusion of the fluidic line.
- the flow monitoring is also a very powerful feature but we still need information of both detectors for a correct interpretation of the flow data.
- additional pressure sensor calibration it is also possible to make a calibration of the integral of the pressure signal which is proportional to the flow rate (typically by using a commercial flow meter placed in series with the outlet of the pump). Here again care should be taken of not introducing a large fluidic resistance at the outlet during the test.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Hematology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Vascular Medicine (AREA)
- Anesthesiology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Emergency Medicine (AREA)
- Infusion, Injection, And Reservoir Apparatuses (AREA)
- Reciprocating Pumps (AREA)
Abstract
Description
Claims
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2011118233/14A RU2484851C2 (en) | 2008-10-22 | 2008-10-22 | Mems fluid pump with integrated pressure sensor for malfunction detection |
US13/059,507 US9192720B2 (en) | 2008-10-22 | 2008-10-22 | MEMS fluid pump with integrated pressure sensor for dysfunction detection |
CA2741195A CA2741195C (en) | 2008-10-22 | 2008-10-22 | Mems fluid pump with integrated pressure sensor for dysfunction detection |
PCT/IB2008/054353 WO2010046728A1 (en) | 2008-10-22 | 2008-10-22 | Mems fluid pump with integrated pressure sensor for dysfunction detection |
CN200880130983.3A CN102143775B (en) | 2008-10-22 | 2008-10-22 | There is the Mems fluid of the integrated pressure sensor for dysfunction detection |
JP2011532727A JP2012506279A (en) | 2008-10-22 | 2008-10-22 | Microelectromechanical fluid pump with integrated pressure sensor for detecting pump malfunction |
AU2008363189A AU2008363189B2 (en) | 2008-10-22 | 2008-10-22 | Mems fluid pump with integrated pressure sensor for dysfunction detection |
EP08875830.5A EP2352534B1 (en) | 2008-10-22 | 2008-10-22 | Mems fluid pump with integrated pressure sensor for dysfunction detection |
US14/949,460 US10316836B2 (en) | 2008-10-22 | 2015-11-23 | MEMS fluid pump with integrated pressure sensor for dysfunction detection |
US16/422,668 US11819662B2 (en) | 2008-10-22 | 2019-05-24 | MEMS fluid pump with integrated pressure sensor for dysfunction detection |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/IB2008/054353 WO2010046728A1 (en) | 2008-10-22 | 2008-10-22 | Mems fluid pump with integrated pressure sensor for dysfunction detection |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/059,507 A-371-Of-International US9192720B2 (en) | 2008-10-22 | 2008-10-22 | MEMS fluid pump with integrated pressure sensor for dysfunction detection |
US14/949,460 Division US10316836B2 (en) | 2008-10-22 | 2015-11-23 | MEMS fluid pump with integrated pressure sensor for dysfunction detection |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010046728A1 true WO2010046728A1 (en) | 2010-04-29 |
Family
ID=40940295
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2008/054353 WO2010046728A1 (en) | 2008-10-22 | 2008-10-22 | Mems fluid pump with integrated pressure sensor for dysfunction detection |
Country Status (8)
Country | Link |
---|---|
US (3) | US9192720B2 (en) |
EP (1) | EP2352534B1 (en) |
JP (1) | JP2012506279A (en) |
CN (1) | CN102143775B (en) |
AU (1) | AU2008363189B2 (en) |
CA (1) | CA2741195C (en) |
RU (1) | RU2484851C2 (en) |
WO (1) | WO2010046728A1 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102402206A (en) * | 2010-09-13 | 2012-04-04 | 常州宇科新技术开发有限公司 | Metal processing process monitor |
EP2469089A1 (en) | 2010-12-23 | 2012-06-27 | Debiotech S.A. | Electronic control method and system for a piezo-electric pump |
WO2012126744A1 (en) | 2011-03-18 | 2012-09-27 | Gambro Lundia Ab | Infusion system and method of integrity testing and leak detection |
WO2012176170A1 (en) | 2011-06-23 | 2012-12-27 | Debiotech S.A. | Method and system for detecting malfunction of a mems micropump |
EP2543404A1 (en) | 2011-07-04 | 2013-01-09 | Debiotech S.A. | Method and system for detecting malfunction of a mems micropump |
EP2551523A1 (en) | 2011-07-29 | 2013-01-30 | Debiotech S.A. | Method and device for accurate and low-consumption mems micropump actuation |
EP2623142A1 (en) | 2012-02-01 | 2013-08-07 | Debiotech S.A. | Medical liquid injection device having improved emptying detection features |
DE102012218096A1 (en) | 2012-10-04 | 2014-04-24 | Robert Bosch Gmbh | Micro-fluidic layer system for measuring of fluid printings for medical applications, has transparent layer arranged adjacent to tensile layer, and optical path influenced by recess of transparent layer by elongation unit of tensile layer |
EP2738386A1 (en) | 2012-11-29 | 2014-06-04 | Robert Bosch Gmbh | Metering pump, pump element for the metering pump and method for producing a pump element for a metering pump |
WO2014136090A1 (en) | 2013-03-07 | 2014-09-12 | Debiotech S.A. | Microfluidic valve having improved tolerance to particles |
WO2016030836A1 (en) | 2014-08-26 | 2016-03-03 | Debiotech S.A. | Detection of an infusion anomaly |
EP2906283A4 (en) * | 2012-10-12 | 2016-06-29 | Becton Dickinson Co | System and method for detecting occlusions in a medication infusion system using pulsewise pressure signals |
US9833561B2 (en) | 2012-12-31 | 2017-12-05 | Gambro Lundia Ab | Occlusion detection in delivery of fluids |
WO2018060505A1 (en) * | 2016-09-29 | 2018-04-05 | Koninklijke Philips N.V. | Piezoelectric membrane pump for the infusion of liquids |
US10589016B2 (en) | 2015-04-15 | 2020-03-17 | Gambro Lundia Ab | Treatment system with infusion apparatus pressure priming |
US10806866B2 (en) | 2015-07-10 | 2020-10-20 | Novo Nordisk A/S | Pressure based event detection |
US11246984B2 (en) | 2016-11-01 | 2022-02-15 | Sanofi-Aventis Deutschland Gmbh | Volume measuring arrangement |
WO2023104864A1 (en) * | 2021-12-09 | 2023-06-15 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Microfluidic component having means for determining external influencing factors on the basis of the actuation signal |
Families Citing this family (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE602005023458D1 (en) | 2005-09-12 | 2010-10-21 | Unomedical As | A delivery system for an infusion set having first and second spring units |
EP2352534B1 (en) * | 2008-10-22 | 2021-05-05 | Debiotech S.A. | Mems fluid pump with integrated pressure sensor for dysfunction detection |
AU2010315989B9 (en) | 2009-10-09 | 2015-07-02 | Fisher & Paykel Healthcare Limited | Breathing assistance apparatus |
US20110223253A1 (en) * | 2010-03-15 | 2011-09-15 | Artimplant Ab | Physically stabilized biodegradable osteochondral implant and methods for its manufacture and implantation |
WO2011121023A1 (en) | 2010-03-30 | 2011-10-06 | Unomedical A/S | Medical device |
US10194938B2 (en) | 2011-03-14 | 2019-02-05 | UnoMedical, AS | Inserter system with transport protection |
EP3542840B1 (en) | 2011-03-23 | 2023-04-26 | NxStage Medical, Inc. | Peritoneal dialysis systems |
US9861733B2 (en) | 2012-03-23 | 2018-01-09 | Nxstage Medical Inc. | Peritoneal dialysis systems, devices, and methods |
CN106975117A (en) | 2011-09-21 | 2017-07-25 | 拜耳医药保健有限责任公司 | Continuous multiple fluid pump device, driving and actuating system and method |
US11197689B2 (en) | 2011-10-05 | 2021-12-14 | Unomedical A/S | Inserter for simultaneous insertion of multiple transcutaneous parts |
EP2583715A1 (en) | 2011-10-19 | 2013-04-24 | Unomedical A/S | Infusion tube system and method for manufacture |
CN103162710B (en) * | 2011-12-15 | 2015-11-11 | 洛阳理工学院 | Based on MEMS gyro fault detection system and the detection method thereof of Wavelet Entropy |
US9867929B2 (en) * | 2012-08-15 | 2018-01-16 | Becton, Dickinson And Company | Pump engine with metering system for dispensing liquid medication |
US10054115B2 (en) | 2013-02-11 | 2018-08-21 | Ingersoll-Rand Company | Diaphragm pump with automatic priming function |
CN103272304B (en) * | 2013-05-30 | 2016-04-06 | 上海诺斯清生物科技有限公司 | The method of wriggling analgesia pump and flow rate detection and fault diagnosis |
DE102013011752A1 (en) * | 2013-07-13 | 2015-01-15 | Manfred Völker | Chlorine measurement / filter testing / brine tank monitoring of a water treatment plant |
RU2557905C2 (en) * | 2013-10-15 | 2015-07-27 | Александр Васильевич Торговецкий | Pump for pumping liquid medium |
AU2014348700B2 (en) * | 2013-11-15 | 2019-08-15 | Fresenius Kabi Usa, Llc | Fluid control system and disposable assembly |
DE102013113387A1 (en) * | 2013-12-03 | 2015-06-03 | Ulrich Gmbh & Co. Kg | Injector for injecting a fluid and method for controlling an injector |
GB2525838B (en) * | 2014-01-30 | 2020-12-30 | Insulet Netherlands B V | Actuator and actuation method |
US10441717B2 (en) | 2014-04-15 | 2019-10-15 | Insulet Corporation | Monitoring a physiological parameter associated with tissue of a host to confirm delivery of medication |
CN107427411B (en) | 2015-01-09 | 2021-04-02 | 拜耳医药保健有限公司 | Multi-fluid delivery system with multi-use disposable set and features thereof |
WO2016147699A1 (en) | 2015-03-17 | 2016-09-22 | テルモ株式会社 | Infusion state detection system |
US11000646B2 (en) | 2015-09-01 | 2021-05-11 | Fresenius Vial Sas | Infusion device for acting onto a tube set |
DE102015224617B4 (en) * | 2015-12-08 | 2017-07-20 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Free-jet dosing system for the eye |
DE102015224624B3 (en) * | 2015-12-08 | 2017-04-06 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Free-jet metering system for delivering a fluid into or under the skin |
DE102015224622A1 (en) * | 2015-12-08 | 2017-06-08 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | FREISTRAHLDOSIERSYSTEM |
DE102015224619A1 (en) * | 2015-12-08 | 2017-06-08 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | micro-dosing system |
US11357912B2 (en) | 2016-01-19 | 2022-06-14 | Unomedical A/S | Cannula and infusion devices |
US10485926B2 (en) * | 2016-10-07 | 2019-11-26 | Carefusion 303, Inc. | Systems and methods for controlling an infusion pump |
DE102016219959B4 (en) * | 2016-10-13 | 2018-06-21 | Continental Automotive Gmbh | Method for checking a calibration of a pressure sensor of a motor vehicle injection system and control device, high-pressure injection system and motor vehicle |
CA3043021A1 (en) * | 2016-11-09 | 2018-05-17 | The Board Of Trustees Of The University Of Illinois | Microfabricated fractionator for particulate matter monitor |
US11607486B2 (en) * | 2017-03-16 | 2023-03-21 | Novartis Ag | Injector device |
EP3641850B1 (en) | 2017-06-24 | 2024-10-09 | NxStage Medical Inc. | Peritoneal dialysis fluid preparation systems |
TWI666036B (en) * | 2017-10-27 | 2019-07-21 | 研能科技股份有限公司 | Wearable liquid supplying device for human insulin injection |
TWI657842B (en) * | 2017-10-27 | 2019-05-01 | 研能科技股份有限公司 | Liquid supplying device for human insulin injection |
US11359619B2 (en) | 2017-11-14 | 2022-06-14 | Encite Llc | Valve having a first and second obstruction confining the valve from leaving a confining region |
CN107875507B (en) * | 2017-12-28 | 2018-12-21 | 北京灵泽医药技术开发有限公司 | Two-way mechanism and detection device, system, extrusion infusing pipeline and fluid control devices |
EP3527826B1 (en) | 2018-02-16 | 2020-07-08 | ams AG | Pumping structure, particle detector and method for pumping |
AU2019228526B2 (en) | 2018-02-28 | 2021-11-25 | Nxstage Medical, Inc. | Fluid preparation and treatment devices, methods, and systems |
CN110857687B (en) * | 2018-08-24 | 2022-05-13 | 恩格尔机械(上海)有限公司 | Method and device for monitoring the condition of a hydraulic pump |
US11241532B2 (en) | 2018-08-29 | 2022-02-08 | Insulet Corporation | Drug delivery system with sensor having optimized communication and infusion site |
EP3972672A4 (en) | 2019-05-20 | 2023-06-21 | Unomedical A/S | Rotatable infusion device and methods thereof |
CN110368549B (en) * | 2019-09-02 | 2020-08-28 | 巨翊科瑞医疗技术(上海)有限公司 | Portable liquid medicine injection instrument |
CN111120289B (en) * | 2019-12-17 | 2021-11-26 | 重庆南方数控设备股份有限公司 | Detection method for judging working state of pump based on pressure detection |
EP4446587A2 (en) | 2020-06-17 | 2024-10-16 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Micromembrane pumping device |
US11788918B2 (en) | 2020-06-18 | 2023-10-17 | Trevillyan Labs, Llc | Fluid detection fabric |
CN112160901B (en) * | 2020-09-24 | 2021-07-02 | 江南大学 | MEMS micropump testing method and system |
EP4221782A4 (en) * | 2020-10-02 | 2024-10-30 | Sfc Fluidics Inc | Wearable drug infusion device |
KR20220123810A (en) | 2021-03-02 | 2022-09-13 | 삼성전자주식회사 | Reflective photomask and method for fabricating the same |
WO2023239718A1 (en) * | 2022-06-07 | 2023-12-14 | Becton, Dickinson And Company | Drug delivery device with fluid flow path sensing |
WO2024048938A1 (en) * | 2022-08-29 | 2024-03-07 | 주식회사 케어메디 | Drug injection device and method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0248632A2 (en) * | 1986-06-06 | 1987-12-09 | Ivac Corporation | Intravenous fluid flow monitor |
EP0328162A2 (en) * | 1983-04-11 | 1989-08-16 | Ivac Corporation | Fault detection apparatus for parenteral infusion system and method of detecting a fault in a parenteral infusion system |
US5205819A (en) * | 1989-05-11 | 1993-04-27 | Bespak Plc | Pump apparatus for biomedical use |
DE102005058080A1 (en) * | 2005-12-06 | 2007-06-14 | Albert-Ludwigs-Universität Freiburg | Monitoring unit for micro pump, has fluid reservoir arranged between inlet valve and outlet valve, and including flexible reservoir diaphragm area, and strain measuring strip detecting volume and/or pressure in reservoir |
EP1839695A1 (en) * | 2006-03-31 | 2007-10-03 | Debiotech S.A. | Medical liquid injection device |
WO2007123764A2 (en) * | 2006-04-06 | 2007-11-01 | Medtronic, Inc. | Systems and methods of identifying catheter malfunctions using pressure sensing |
Family Cites Families (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6002A (en) * | 1849-01-02 | Screw-wrench for grasping cylindrical forms | ||
ES2036616T3 (en) | 1987-05-01 | 1993-06-01 | Abbott Laboratories | DISPOSABLE CASSETTE OF PUMPING CHAMBER FOR INFUSION OF FLUIDS AND ITS DRIVING MECHANISM. |
JPS6441685A (en) | 1987-08-07 | 1989-02-13 | Toyoda Gosei Kk | Testing device for pump |
US5112196A (en) * | 1990-12-21 | 1992-05-12 | Beta Machinery Analysis Ltd. | Method and apparatus for analyzing the operating condition of a machine |
US5755683A (en) | 1995-06-07 | 1998-05-26 | Deka Products Limited Partnership | Stopcock valve |
US5336053A (en) * | 1993-01-29 | 1994-08-09 | Abbott Laboratories | Method of testing for leakage in a solution pumping system |
US5439355A (en) * | 1993-11-03 | 1995-08-08 | Abbott Laboratories | Method and apparatus to test for valve leakage in a pump assembly |
CH689836A5 (en) | 1994-01-14 | 1999-12-15 | Westonbridge Int Ltd | Micropump. |
US5723795A (en) * | 1995-12-14 | 1998-03-03 | Abbott Laboratories | Fluid handler and method of handling a fluid |
JP3083275B2 (en) * | 1997-09-18 | 2000-09-04 | 株式会社ワイ・テイ・エス | Double diaphragm pump |
RU2261393C2 (en) * | 1999-06-28 | 2005-09-27 | Кэлифорниа Инститьют Оф Текнолоджи | Microprocessed elastomeric valve and pump systems |
KR100754342B1 (en) * | 1999-10-18 | 2007-09-03 | 인터그레이티드 디자인즈 엘.피. | Method and apparatus for dispensing fluids |
EP2230521A3 (en) * | 2000-02-29 | 2013-11-13 | Gen-Probe Incorporated | Fluid dispense and liquid surface verification system and method |
CA2410306C (en) * | 2000-05-25 | 2009-12-15 | Westonbridge International Limited | Micromachined fluidic device and method for making same |
US7241115B2 (en) * | 2002-03-01 | 2007-07-10 | Waters Investments Limited | Methods and apparatus for determining the presence or absence of a fluid leak |
US7104763B2 (en) | 2002-10-16 | 2006-09-12 | Abbott Laboratories | Method for discriminating between operating conditions in medical pump |
US6986649B2 (en) * | 2003-04-09 | 2006-01-17 | Motorola, Inc. | Micropump with integrated pressure sensor |
DE10322220C5 (en) * | 2003-05-16 | 2010-10-14 | Lewa Gmbh | Early fault detection on pump valves |
US7320676B2 (en) * | 2003-10-02 | 2008-01-22 | Medtronic, Inc. | Pressure sensing in implantable medical devices |
DE602004029077D1 (en) | 2003-11-07 | 2010-10-21 | Nxstage Medical Inc | Equipment for the detection of leaks in blood processing systems |
AU2005229489A1 (en) * | 2004-03-30 | 2005-10-13 | Novo Nordisk A/S | Actuator system comprising detection means |
US7484940B2 (en) * | 2004-04-28 | 2009-02-03 | Kinetic Ceramics, Inc. | Piezoelectric fluid pump |
WO2006056967A1 (en) * | 2004-11-29 | 2006-06-01 | Debiotech Sa | Mechanical microfluidic device, method for producing an intermediate stack and this microfluidic device, and a micropump |
FR2881222A1 (en) * | 2005-01-25 | 2006-07-28 | Debiotech Sa | Pumping chamber volume variation measuring method for micropump, involves placing pumping membrane in one position by deformation generated in mechanical manner so that fluid passage in chamber is absent |
US7540469B1 (en) * | 2005-01-25 | 2009-06-02 | Sandia Corporation | Microelectromechanical flow control apparatus |
DE102005017240A1 (en) * | 2005-04-14 | 2006-10-19 | Alldos Eichler Gmbh | Method and device for monitoring a pumped by a pump fluid flow |
US7581449B2 (en) * | 2005-05-16 | 2009-09-01 | Wrds, Inc. | System and method for power pump performance monitoring and analysis |
US8105280B2 (en) * | 2005-05-17 | 2012-01-31 | Medingo, Ltd. | Disposable dispenser for patient infusion |
EP1762263A1 (en) | 2005-09-08 | 2007-03-14 | Hoffman-La Roche AG | Bubble detector, occlusion detector or leak detector for a device for the administration of a liquid product |
US7693684B2 (en) * | 2005-10-17 | 2010-04-06 | I F M Electronic Gmbh | Process, sensor and diagnosis device for pump diagnosis |
US7477997B2 (en) * | 2005-12-19 | 2009-01-13 | Siemens Healthcare Diagnostics Inc. | Method for ascertaining interferants in small liquid samples in an automated clinical analyzer |
EP1813302A1 (en) * | 2006-01-25 | 2007-08-01 | Debiotech S.A. | Fluid volume measurement device for medical use |
US8506262B2 (en) * | 2007-05-11 | 2013-08-13 | Schlumberger Technology Corporation | Methods of use for a positive displacement pump having an externally assisted valve |
CA2591395A1 (en) * | 2007-06-01 | 2008-12-01 | Noralta Controls Ltd. | Method of automated oil well pump control and an automated well pump control system |
EP2352534B1 (en) * | 2008-10-22 | 2021-05-05 | Debiotech S.A. | Mems fluid pump with integrated pressure sensor for dysfunction detection |
WO2019200281A1 (en) * | 2018-04-12 | 2019-10-17 | DiaTech Diabetic Technologies, LLC | Systems and methods for detecting disruptions in fluid delivery devices |
-
2008
- 2008-10-22 EP EP08875830.5A patent/EP2352534B1/en active Active
- 2008-10-22 RU RU2011118233/14A patent/RU2484851C2/en active
- 2008-10-22 CN CN200880130983.3A patent/CN102143775B/en not_active Expired - Fee Related
- 2008-10-22 AU AU2008363189A patent/AU2008363189B2/en not_active Ceased
- 2008-10-22 JP JP2011532727A patent/JP2012506279A/en active Pending
- 2008-10-22 CA CA2741195A patent/CA2741195C/en active Active
- 2008-10-22 US US13/059,507 patent/US9192720B2/en active Active
- 2008-10-22 WO PCT/IB2008/054353 patent/WO2010046728A1/en active Application Filing
-
2015
- 2015-11-23 US US14/949,460 patent/US10316836B2/en active Active
-
2019
- 2019-05-24 US US16/422,668 patent/US11819662B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0328162A2 (en) * | 1983-04-11 | 1989-08-16 | Ivac Corporation | Fault detection apparatus for parenteral infusion system and method of detecting a fault in a parenteral infusion system |
EP0248632A2 (en) * | 1986-06-06 | 1987-12-09 | Ivac Corporation | Intravenous fluid flow monitor |
US5205819A (en) * | 1989-05-11 | 1993-04-27 | Bespak Plc | Pump apparatus for biomedical use |
DE102005058080A1 (en) * | 2005-12-06 | 2007-06-14 | Albert-Ludwigs-Universität Freiburg | Monitoring unit for micro pump, has fluid reservoir arranged between inlet valve and outlet valve, and including flexible reservoir diaphragm area, and strain measuring strip detecting volume and/or pressure in reservoir |
EP1839695A1 (en) * | 2006-03-31 | 2007-10-03 | Debiotech S.A. | Medical liquid injection device |
WO2007123764A2 (en) * | 2006-04-06 | 2007-11-01 | Medtronic, Inc. | Systems and methods of identifying catheter malfunctions using pressure sensing |
Non-Patent Citations (1)
Title |
---|
See also references of EP2352534A1 * |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102402206A (en) * | 2010-09-13 | 2012-04-04 | 常州宇科新技术开发有限公司 | Metal processing process monitor |
EP2469089A1 (en) | 2010-12-23 | 2012-06-27 | Debiotech S.A. | Electronic control method and system for a piezo-electric pump |
WO2012085814A2 (en) | 2010-12-23 | 2012-06-28 | Debiotech S.A. | Electronic control method and system for a piezo-electric pump |
WO2012126744A1 (en) | 2011-03-18 | 2012-09-27 | Gambro Lundia Ab | Infusion system and method of integrity testing and leak detection |
US11433180B2 (en) | 2011-06-23 | 2022-09-06 | Debiotech S.A. | Vented reservoir for medical pump |
WO2012176170A1 (en) | 2011-06-23 | 2012-12-27 | Debiotech S.A. | Method and system for detecting malfunction of a mems micropump |
CN103501837A (en) * | 2011-06-23 | 2014-01-08 | 生物技术公司 | Vented reservoir for medical pump |
US10850027B2 (en) | 2011-06-23 | 2020-12-01 | Debiotech S.A. | Method and system for detecting malfunction of a MEMS micropump |
US9284960B2 (en) | 2011-06-23 | 2016-03-15 | Debiotech S.A. | Vented reservoir for medical pump |
EP2543404A1 (en) | 2011-07-04 | 2013-01-09 | Debiotech S.A. | Method and system for detecting malfunction of a mems micropump |
EP2551523A1 (en) | 2011-07-29 | 2013-01-30 | Debiotech S.A. | Method and device for accurate and low-consumption mems micropump actuation |
WO2013018011A2 (en) | 2011-07-29 | 2013-02-07 | Debiotech S.A. | Method for accurate and low-consumption mems micropump actuation and device for carrying out said method |
JP2014527591A (en) * | 2011-07-29 | 2014-10-16 | デバイオテック・ソシエテ・アノニム | Method for MEMS micropump operation with high accuracy and low consumption, and device for performing the method |
WO2013018011A3 (en) * | 2011-07-29 | 2014-02-13 | Debiotech S.A. | Method for accurate and low-consumption mems micropump actuation and device for carrying out said method |
US10041483B2 (en) | 2011-07-29 | 2018-08-07 | Debiotech S.A. | Method for accurate and low-consumption MEMS micropump actuation and device for carrying out said method |
US20140199181A1 (en) * | 2011-07-29 | 2014-07-17 | Debiotech S.A. | Method for accurate and low-consumption mems micropump actuation and device for carrying out said method |
WO2013114331A2 (en) | 2012-02-01 | 2013-08-08 | Debiotech S.A. | Pumping device having improved emptying detection features |
EP2623142A1 (en) | 2012-02-01 | 2013-08-07 | Debiotech S.A. | Medical liquid injection device having improved emptying detection features |
DE102012218096A1 (en) | 2012-10-04 | 2014-04-24 | Robert Bosch Gmbh | Micro-fluidic layer system for measuring of fluid printings for medical applications, has transparent layer arranged adjacent to tensile layer, and optical path influenced by recess of transparent layer by elongation unit of tensile layer |
DE102012218096B4 (en) * | 2012-10-04 | 2016-01-14 | Robert Bosch Gmbh | Microfluidic layer system for measuring fluid pressures |
US9480794B2 (en) | 2012-10-12 | 2016-11-01 | Becton, Dickinson And Company | System and method for detecting occlusions in a medication infusion system using pulsewise pressure signals |
US9775947B2 (en) | 2012-10-12 | 2017-10-03 | Becton, Dickinson And Company | System and method for detecting occlusions in a medication infusion system using pulsewise pressure signals |
EP3369454A1 (en) * | 2012-10-12 | 2018-09-05 | Becton, Dickinson and Company | System and method for detecting occlusions in a medication infusion system using pulswise pressure signals |
EP2906283A4 (en) * | 2012-10-12 | 2016-06-29 | Becton Dickinson Co | System and method for detecting occlusions in a medication infusion system using pulsewise pressure signals |
DE102012221832A1 (en) | 2012-11-29 | 2014-06-05 | Robert Bosch Gmbh | Metering pump, pump element for the metering pump and method for producing a pump element for a metering pump |
EP2738386A1 (en) | 2012-11-29 | 2014-06-04 | Robert Bosch Gmbh | Metering pump, pump element for the metering pump and method for producing a pump element for a metering pump |
US9833561B2 (en) | 2012-12-31 | 2017-12-05 | Gambro Lundia Ab | Occlusion detection in delivery of fluids |
WO2014136090A1 (en) | 2013-03-07 | 2014-09-12 | Debiotech S.A. | Microfluidic valve having improved tolerance to particles |
US9903508B2 (en) | 2013-03-07 | 2018-02-27 | Debiotech S.A. | Microfluidic valve having improved tolerance to particles |
WO2016030836A1 (en) | 2014-08-26 | 2016-03-03 | Debiotech S.A. | Detection of an infusion anomaly |
US10668212B2 (en) | 2014-08-26 | 2020-06-02 | Debiotech S.A. | Detection of an infusion anomaly |
US10589016B2 (en) | 2015-04-15 | 2020-03-17 | Gambro Lundia Ab | Treatment system with infusion apparatus pressure priming |
US10806866B2 (en) | 2015-07-10 | 2020-10-20 | Novo Nordisk A/S | Pressure based event detection |
WO2018060505A1 (en) * | 2016-09-29 | 2018-04-05 | Koninklijke Philips N.V. | Piezoelectric membrane pump for the infusion of liquids |
US11517669B2 (en) | 2016-09-29 | 2022-12-06 | Koninklijke Philips N.V. | Piezoelectric membrane pump for the infusion of liquids |
US11246984B2 (en) | 2016-11-01 | 2022-02-15 | Sanofi-Aventis Deutschland Gmbh | Volume measuring arrangement |
WO2023104864A1 (en) * | 2021-12-09 | 2023-06-15 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Microfluidic component having means for determining external influencing factors on the basis of the actuation signal |
Also Published As
Publication number | Publication date |
---|---|
EP2352534B1 (en) | 2021-05-05 |
US10316836B2 (en) | 2019-06-11 |
CN102143775A (en) | 2011-08-03 |
US9192720B2 (en) | 2015-11-24 |
RU2484851C2 (en) | 2013-06-20 |
CA2741195A1 (en) | 2010-04-29 |
US20110142688A1 (en) | 2011-06-16 |
AU2008363189A1 (en) | 2010-04-29 |
JP2012506279A (en) | 2012-03-15 |
US20160153444A1 (en) | 2016-06-02 |
CA2741195C (en) | 2017-05-23 |
AU2008363189B2 (en) | 2014-01-16 |
RU2011118233A (en) | 2012-11-27 |
US20190368484A1 (en) | 2019-12-05 |
US11819662B2 (en) | 2023-11-21 |
CN102143775B (en) | 2017-03-08 |
EP2352534A1 (en) | 2011-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11819662B2 (en) | MEMS fluid pump with integrated pressure sensor for dysfunction detection | |
US10850027B2 (en) | Method and system for detecting malfunction of a MEMS micropump | |
CN103727021B (en) | Method for detecting at least one dysfunction in infusion assembly | |
US8448523B2 (en) | Device and method for determining at least one flow parameter | |
JP6309599B2 (en) | Micro dosing system | |
US20100063765A1 (en) | Flow Sensor Calibrated by Volume Changes | |
WO2007098265A2 (en) | Flow sensor calibrated by volume changes | |
JP6081962B2 (en) | Medical pump device | |
JP6666275B2 (en) | Medical pumping equipment | |
EP2543404A1 (en) | Method and system for detecting malfunction of a mems micropump | |
US11596317B2 (en) | Fluid pressure sensor protection | |
Chappel et al. | des brevets (11) EP 2 543 404 A1 (12) LLLLGGG GGGGGGG GGG LLL GGGGGG (43) Date of publication |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880130983.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08875830 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008363189 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref document number: 2008363189 Country of ref document: AU Date of ref document: 20081022 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13059507 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1645/DELNP/2011 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008875830 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2741195 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011532727 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011118233 Country of ref document: RU |