WO2010045852A1 - 同步信号序列的发送方法和装置 - Google Patents

同步信号序列的发送方法和装置 Download PDF

Info

Publication number
WO2010045852A1
WO2010045852A1 PCT/CN2009/074448 CN2009074448W WO2010045852A1 WO 2010045852 A1 WO2010045852 A1 WO 2010045852A1 CN 2009074448 W CN2009074448 W CN 2009074448W WO 2010045852 A1 WO2010045852 A1 WO 2010045852A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal sequence
synchronization signal
data
sequence
value
Prior art date
Application number
PCT/CN2009/074448
Other languages
English (en)
French (fr)
Inventor
夏树强
郁光辉
梁春丽
米德忠
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2010045852A1 publication Critical patent/WO2010045852A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and an apparatus for transmitting a synchronization signal sequence.
  • OFDM technology is a technology that converts a high-speed data stream into a set of low-speed parallel data streams, which can greatly reduce the system's sensitivity to multipath fading channel frequency selectivity, by introducing a loop in OFDM technology. The prefix further enhances the system's ability to resist Inter-Symbol Interference (ISI).
  • ISI Inter-Symbol Interference
  • OFDM technology also has the characteristics of high bandwidth utilization and implementation of the single-chip, which makes OFDM technology widely used in the field of wireless communication. For example, a WLAN system, a Long Term Evolution (LTE) system based on Orthogonal Frequency Division Multiple Access (OFDM) system, an ITU-Advanced system, and the like are all systems based on OFDM technology.
  • LTE Long Term Evolution
  • OFDM Orthogonal Frequency Division Multiple Access
  • ITU-Advanced system ITU-Advanced system
  • the synchronization signal sequence includes two symbols in the time domain, which are a primary synchronization signal sequence and a secondary synchronization signal sequence, respectively, occupying 72 subcarriers in the frequency domain, wherein each subcarrier is 15 kHz.
  • the 72 subcarriers are respectively located on both sides of the center frequency of the carrier frequency (36 subcarriers per side).
  • the LTE standard has the following provisions: Rule 1: When the terminal starts to search for the center frequency of the carrier frequency, it searches in steps of 100 kHz, which is called a channel raster (Channel Raster).
  • the center frequency of the carrier frequency of the LTE system is a multiple of 100 kHz.
  • the minimum bandwidth processing capability (including transmission capability and reception capability) of the LTE terminal is 20 MHz. Therefore, with the above design, as long as the system bandwidth is less than 20 MHz, the LTE terminal can detect the synchronization signal sequence after detecting the center frequency of the system bandwidth without detecting the specific value of the system bandwidth.
  • LTE-Advanced needs to support a larger system bandwidth (up to 100MHz), and can be backward compatible with existing LTE standards, so how LTE terminals access bandwidth is greater than 20MHz
  • the LTE-Advanced system is a problem to be solved.
  • each carrier frequency bandwidth is 20MHz.
  • the two consecutive LTE carrier frequencies are called carrier frequency 0 and carrier frequency 1, respectively, according to the LTE standard.
  • the number of downlink available subcarriers in the 20 MHz is 1201. Therefore, the number of downlink available subcarriers in 40 MHz is 2,402, and the subcarrier index is 0, 1 2401. It can be found that: the center frequency of carrier frequency 0 is on subcarrier No. 600, and the center frequency of carrier frequency 1 is on subcarrier No.
  • Solution 2 Modify the number of downlink available subcarriers in the LTE standard by 20 MHz. For example, modify the current LTE standard, and specify the number of downlink available subcarriers of the 20 MHz carrier frequency to be 1200.
  • the number of downlink available subcarriers of 20 MHz is 1201, minus one DC carrier frequency (the carrier frequency does not transmit data), and the 20 MHz downlink available subcarriers.
  • the number of carriers is 1,200, and the LTE standard specifies that each 12 subcarriers is one resource unit, thus a total of 100 resource units. If the number of downlink available subcarriers modified to 20 MHz is 1200, after subtracting one direct 3 ⁇ 4 ⁇ 4 subcarrier, the number of downlink available subcarriers in 20 MHz is 1199. When jt ⁇ , the resources that can be considered are: 99 resource units extra 11 subcarriers. The 11 subcarriers are not one resource unit.
  • each 12 subcarriers is a resource unit, mainly considering that 12 is a multiple of 2, 3 (smaller prime), which is convenient to leave.
  • the implementation of Discrete Fourier Transformation (DFT), and 11 is a relatively large prime number, which increases the complexity of implementing discrete Fourier transform for LTE-Advanced terminals. It is not available for LTE terminals, but for The advanced LTE-Advanced terminal requires an additional 11 subcarriers or a resource unit, which obviously increases the implementation complexity of the LTE-Advanced terminal.
  • DFT Discrete Fourier Transformation
  • the present invention has been made in view of the problems in the related art that enable a receiving end to access any carrier frequency of an LTE-Advanced system, and the main object of the present invention is to provide an improved The transmission scheme of the synchronization signal sequence is to solve the above problem.
  • a method for transmitting a synchronization signal sequence for transmitting a synchronization signal sequence by a transmitting end including a plurality of carrier frequencies is provided.
  • the method for transmitting a synchronization signal sequence according to the present invention includes: determining, for each carrier frequency, a deviation of at least one frequency sweep point corresponding to a center frequency of a carrier frequency with respect to a center frequency in a predetermined direction
  • Offset _ k shifting the synchronization signal sequence according to the offset value ( £ ⁇ _ , moving at least one data at the end of the reverse direction in the predetermined direction to the end of the predetermined direction of the synchronization signal sequence, so that the synchronization after shifting The signal sequence is aligned with the shifted preamble sequence; the shifted sync signal sequence is transmitted.
  • a synchronizing signal sequence transmitting apparatus is provided, which may be located at the transmitting end.
  • the transmitting device of the synchronization signal sequence includes: an offset value determining module, configured to determine an offset value of the at least one sweep point of the carrier frequency corresponding to the center frequency of the carrier frequency with respect to the center frequency in a predetermined direction O# t _ t And an integer that is greater than 0 and less than or equal to 20; a processing module, configured to shift the synchronization signal sequence according to the offset value, and move at least one data at the end of the reverse direction in the predetermined direction to the synchronization signal sequence At the end of the predetermined direction, the shifted synchronization signal sequence is aligned with the shifted preamble sequence; the transmitting module is used for Transmitting the shifted synchronization signal sequence.
  • the receiving end can access any carrier frequency of the LTE-Advanced system by cyclically shifting the synchronization signal sequence sent by the transmitting end.
  • the method does not need to change the standard, and can meet the upgrade requirement of the system without affecting the performance of the receiving end.
  • FIG. 1 is a flow chart of a method for transmitting a synchronization signal sequence according to an embodiment of the method of the present invention
  • FIG. 2 is a schematic diagram of a receiving end of a system when a system uses a plurality of carrier frequencies for spectrum aggregation to utilize a larger bandwidth.
  • FIG. 3 is a block diagram showing a structure of a transmitting apparatus for synchronizing a signal sequence according to an embodiment of the method of the present invention
  • FIG. 4 is a block diagram showing a preferred configuration of a transmitting apparatus for synchronizing a signal sequence according to an embodiment of the method of the present invention
  • the transmitting end since the transmitting end only transmits a synchronization signal sequence to the receiving end at the center frequency of each carrier frequency, the receiving end only receives the synchronization signal sequence centering on the frequency sweep point, if the center frequency of a certain carrier frequency is not At the sweep point, the receiving end cannot receive the synchronization signal sequence sent by the transmitting end.
  • the carrier frequency of the receiving end is greater than 20 MHz, it cannot be guaranteed that the center frequency of each carrier frequency of the receiving end is at the frequency sweeping point, which may cause the receiving end to fail to correctly receive the synchronization signal sequence transmitted by the transmitting end.
  • the main idea of the present invention is: without modifying the existing standard, by cyclically shifting the sequence of the synchronization signal sent by the transmitting end, it is ensured that the receiving end still receives the synchronization signal sequence at the frequency sweeping point.
  • FIG. 1 is a flowchart of a method for transmitting a synchronization signal sequence according to an embodiment of the present invention. The method is used for transmitting a synchronization signal sequence by a transmitting end including multiple carrier frequencies. As shown in FIG.
  • Step S102 For each carrier frequency, respectively determine an offset value of the at least one sweep point corresponding to the center frequency of the carrier frequency in a predetermined direction with respect to the center frequency, wherein Offset_k is greater than or equal to 0 and less than An integer of 20; step S104, shifting the synchronization signal sequence according to the offset value, moving at least one data at the end of the reverse direction in the predetermined direction to the end of the predetermined direction of the synchronization signal sequence, so that the shifted The synchronization signal sequence is aligned with the shifted preamble sequence; step S106, transmitting the shifted synchronization signal sequence.
  • the receiving end can access any carrier frequency of the LTE-Advanced system by cyclically shifting the synchronization signal sequence sent by the transmitting end.
  • the method does not need to be used.
  • the standard changes to meet the system upgrade needs without affecting the performance of the receiver.
  • the data of the post-shift synchronization signal sequence can be determined by the following formula:
  • the subcarrier index value of the synchronization signal sequence is transmitted
  • (11) is the data of the synchronization signal sequence when 0# ⁇ j is 0,
  • C is the frequency of each sweep point in the predetermined direction relative to the center.
  • the offset value of the frequency M is the number of subcarriers that transmit the synchronization signal sequence when the value is 0, and M is a natural number.
  • C may be any one of the two sweep points that are closest to the center frequency.
  • the offset value of the sweep point from the center frequency may also be the offset value of the sweep point from the center frequency that is closest to the center frequency.
  • the idle subcarriers on the carrier frequency may be filled.
  • the idle subcarriers may be padded to zero, or the data sequence of the preamble sequence after shifting and the end of the postamble sequence of the shifted synchronizing signal sequence may be used.
  • the data is used to fill the free subcarriers to obtain a data sequence, wherein the data sequence of the data sequence is the same as the data sequence of the corresponding data sequence in the shifted preamble sequence, and the data sequence is at least one of the following:
  • K is the data of the synchronization signal sequence when the value is 0
  • c is the offset value of each sweep point relative to the center frequency in the predetermined direction
  • M is the number of subcarriers transmitting the synchronization signal sequence when the value is 0.
  • M is a natural number.
  • C may be an offset value between the sweep point and the center frequency of any one of the two sweep points closest to the center frequency, or may be a sweep closest to the center frequency. The offset between the frequency and the center frequency.
  • the center frequency of at least one of the M carrier frequencies will be on the 100 kHz channel Raster, ie , at least one carrier frequency is offset to zero.
  • each subcarrier is 15 kHz
  • the channel Raster is 100 kHz, the minimum of the two.
  • the common multiple is 300 kHz, which is equivalent to 20 subcarriers. That is, one of the 20 consecutive subcarriers must have one subcarrier on the 100 kHz channel Raster, and the other 19 subcarriers are not on the 100 kHz channel Raster.
  • Raster's partial l 0 set _ k ranges from [1, 19] and the unit is subcarrier. Since the transmitting end transmits the synchronization signal sequence at the center frequency of each carrier frequency, the receiving end only uses The sweeping point is centered to receive the synchronization signal sequence. If the carrier frequency center does not coincide with the sweep point, the receiving end cannot receive the synchronization signal sequence sent by the transmitting end, so the transmitting end needs the subcarrier that coincides with the sweeping point. The synchronization signal sequence is sent on both sides to ensure that the receiving end receives the synchronization signal sequence.
  • the system does not transmit data on the idle subcarriers, that is, the data transmitted by the system on the idle subcarriers is zero.
  • the left side of the transmission synchronization signal sequence subcarrier has ⁇ idle subcarriers, the index of this subcarrier is -, + - P L +2... -1, and the right side of the transmission synchronization signal sequence subcarrier has ⁇
  • the index of this subcarrier is: N, N+1 N+ -l.
  • FIG. 2 is a schematic diagram showing the problem that the original system receiving end access is faced when the system uses multiple carrier frequencies for spectrum aggregation in order to utilize larger bandwidth.
  • the system obtains a bandwidth of 60 MHz by performing spectrum aggregation on three 20 MHz carrier frequencies.
  • the sampling frequency of the LTE receiver is 15*N kHz.
  • the receiving end can read the synchronization signal sequence on the carrier frequency 1 through the center frequency of the carrier frequency 1 to obtain downlink synchronization.
  • the receiving end cannot obtain the DL synchronization by reading the synchronization signal sequence on the corresponding carrier frequency. This is because the center frequency of the carrier frequency 0 is at the two frequency sweeping points 100 kHz channel.
  • the LTE receiver searches in steps of 100 kHz. Regardless of the influence of the wireless channel, according to the principle of Fourier transform, if the LTE receiver selects the sweep point on the right side.
  • the 100 kHz channel raster receives the signal at the center frequency
  • the LTE receiver receives the carrier signal sequence of carrier frequency 0 as ⁇ ⁇
  • the LTE receiver selects the channel kHz channel raster at the left to receive the signal at the center frequency
  • the synchronization signal sequence of carrier frequency 0 received by the terminal is ⁇ e 1 N , but the cross-correlation of the sequence (" ⁇ N , x 1 N and the local reference sequence ⁇ ( n ) is equal to 0, therefore, the LTE receiver cannot The synchronization signal sequence is read on carrier frequency 0 to achieve downlink synchronization.
  • the frequency domain sequence corresponding to ⁇ ⁇ ⁇ is: X (N - 19), (N - 18)....X(N - 1) , (0), X (1), (2)....X (N - 20) , compared to the carrier frequency
  • the synchronization signal sequence of ⁇ the synchronization signal sequence transmitted by the transmitting end through carrier frequency 0 is shifted to the right by 19 bits, that is, The offset of the carrier frequency 0 relative to the sweep point adjacent to the left direction is 19 subcarriers, ⁇ ) the frequency of the sweep is called the first reference sweep point, so if it is to be transmitted at carrier frequency 0 at the transmitting end
  • the synchronization signal sequence is shifted left by 19 bits compared to the synchronization signal sequence transmitted by carrier frequency 0, and the sequence obtained by the terminal at carrier 0 and the sequence obtained by the terminal selecting to synchronize with carrier 1 are the same.
  • the synchronization signal sequence transmitted by the transmitting end through carrier frequency 0 is shifted to the right by 1 bit. That is, the offset of the carrier frequency 0 relative to the sweep point adjacent to the right direction is 1 subcarrier, ⁇ !
  • the sweep point is called the second reference sweep point. Therefore, the sync signal transmitted by the transmitter at carrier frequency 0 is compared with the synchronization signal sequence transmitted by carrier frequency 1 and the synchronization signal transmitted by the transmitter at carrier frequency 0. The sequence is shifted to the left by 1 subcarrier.
  • the sequence of the synchronization signal received by the carrier 0 and the receiving end pass the carrier frequency.
  • the received sync signal sequence is the same.
  • the carrier frequency 0 is offset from the second reference sweep point by 1 subcarrier, and the carrier frequency 0 is offset from the first reference sweep point by 19 subcarriers.
  • the second reference sweep point and the carrier frequency 0 The center frequency is closer, and the receiving end is more convenient to detect. Therefore, it is better to use the second reference sweep point as the sweep point of carrier frequency 0.
  • the method of transmitting the synchronization signal sequence by the transmitting end through the carrier frequency 2 is similar to the method of transmitting by the carrier frequency 0, and details are not described herein again.
  • carrier frequency i has three carrier frequencies, which are called carrier frequency 0, carrier frequency 1, and carrier frequency 2.
  • the offset of the channel raster ⁇ - 2 1 , let the sequence of synchronization signals transmitted by carrier 1 on the carrier index 0, 1, 2, ..., 6 are: a, b, c, d, e, f, g, wherein the carrier index of the transmission synchronization signal sequence is: 0, 1, 2 5 , and the index of the idle subcarrier is -2, -1, 7, 8 , then the formula provided according to the present invention, carrier 0, carrier 2
  • the synchronization signal sequence and its corresponding subcarrier index are shown in Table 1. As shown in Table 1, the data corresponding to the idle subcarriers with indices of -2, -1, 7, and 8 may be 0 or Data sequence. Table 1
  • the present invention is applicable to a system in which a system uses multiple carrier frequencies to perform frequency aggregation to utilize a larger bandwidth, and requires an existing receiving end (the bandwidth capability of the receiving end is smaller than the system bandwidth) to access the system.
  • the transmitting end described in the text may be a base station, and the receiving end may be a terminal.
  • a computer readable medium having stored thereon computer executable instructions for causing a computer or processor to perform, for example, when executed by a computer or processor
  • the processing of steps S102 to S106 shown in Fig. 1 preferably, the above-described embodiments can be performed.
  • a transmitting apparatus for synchronizing a signal sequence is provided.
  • 3 is a block diagram showing a transmitting apparatus of a synchronization signal sequence according to an embodiment of the present invention. As shown in FIG.
  • the apparatus includes an offset value determining module 10, a processing module 20, and a transmitting module 30, wherein an offset value
  • the determining module 10 is configured to determine an offset value O# ⁇ t_t of the at least one sweep point corresponding to the center frequency of the carrier frequency in the predetermined direction with respect to the center frequency, where Offset_k is 0 and less than or An integer equal to 20;
  • the processing module 20 is coupled to the offset value determining module 10, configured to shift the synchronization signal sequence according to the offset value, and move at least one data at the end of the opposite direction in the predetermined direction to the synchronization
  • the end of the predetermined direction of the signal sequence is such that the shifted synchronization signal sequence is aligned with the shifted preamble sequence;
  • the transmitting module 30 is coupled to the processing module 20 for transmitting the shifted synchronization signal sequence.
  • FIG. 4 is a block diagram showing a preferred structure of a transmitting apparatus for a synchronization signal sequence according to an embodiment of the present invention.
  • the processing module 20 may include a first processing sub-module 202.
  • Fig. 5 shows the synchronization signal of the embodiment of the present invention A preferred structural block diagram of the sequence transmitting device, as shown in FIG. 5, on the basis of the device shown in FIG.
  • the processing module 20 may include a second processing sub-module 204 and a third processing sub-module 206.
  • the receiving end can access any carrier frequency of the LTE-Advanced system by cyclically shifting the synchronization signal sequence transmitted by the transmitting end.
  • the method does not need to change the standard, and can meet the upgrade requirements of the system without affecting the performance of the receiving end.
  • the implementation of the present invention does not modify the system architecture and the current processing flow, is easy to implement, facilitates promotion in the technical field, and has strong industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Description

同步信号序列的发送方法和装置
技术领域 本发明涉及通信领域, 尤其涉及一种同步信号序列的发送方法和装置。 背景技术 正交频分复用 ( Orthogonal Frequency Division Multiplexing , 筒称为
OFDM ) 技术是一种将一高速传输的数据流转换为一组低速并行传输的数据 流的技术, 其可以大大降低系统对多径衰落信道频率选择性的敏感度, 通过 在 OFDM 技术中引入循环前缀, 进一步增强了 系统抗符号间干 4尤 ( Inter-Symbol Interference, 筒称为 ISI ) 的能力。 另夕卜, OFDM技术还具有 带宽利用率高、 实现筒单等特点, 使得 OFDM技术在无线通信领域得到广泛 的应用。 例如, WLAN系统、基于正交频分复用多址的长期演进(Long Term Evolution, 筒称为 LTE ) 系统、 ITU- Advanced系统等都是基于 OFDM技术 的系统。 在 LTE 系统中, 同步信号序列在时域上包括两个符号, 分别为主同步 信号序列和辅同步信号序列, 在频域占用 72 个子载波, 其中, 每个子载波 为 15kHz。 为了便于终端对 UE进行检测, 这 72个子载波分别位于载频的中 心频率的两边 (每边 36个子载波)。 另外, LTE标准具有以下规定: 规定一: 当终端开始搜索载频的中心频率时, 会以 100kHz为步长进行 搜索, 该 100 kHz称为信道光栅 ( Channel Raster, 筒称为信道光栅), 即, LTE系统的载频的中心频率都是 100 kHz的倍数。 规定二: LTE终端的最小带宽处理能力(包括发送能力和接收能力)为 20MHz。 因此, 采用上述设计, 只要系统带宽不大于 20MHz, LTE终端在搜 索出系统带宽的中心频率后, 不需要检测出系统带宽的具体值, 就可以进行 同步信号序列的检测。 为了满足 LTE的演进标准 ITU-Advanced的要求, LTE-Advanced需要 支持更大的系统带宽 (最高可达 100MHz ), 并且能够后向兼容 LTE的现有 标准, 这样, LTE终端如何接入带宽大于 20MHz的 LTE-Advanced系统就是 一个待解决的问题。 举例来说, 支如 LTE-Advanced系统带宽为 40MHz, 则 它相当于由两个连续的 LTE载频组成, 每个载频带宽为 20MHz, 为了便于 描述, 夺这两个连续的 LTE载频分别称为载频 0和载频 1 , 才艮据 LTE标准的 规定, 20MHz的下行可用子载波数目为 1201个, 因此, 40MHz的下行可用 子载波数目为 2402个, 其子载波索引为 0、 1 2401。 可以发现: 载频 0的中心频率在第 600号子载波上, 而载频 1的中心频率在第 1801号子载波 上, 如果载频 0的中心频率在 100k Hz channel Raster (即, 扫频点) 上, 则 载频 1的中心频率肯定不在 100k Hz channel Raster上 , 反之亦然。 这样就会 产生一个问题: LTE终端只可以接入 LTE-Advanced 系统的二个载频中的一 个 , 这对 LTE终端接入 LTE-Advanced系统造成了 4艮大的限制 , 并且, 还有 可能降低现有 LTE终端在升级系统中的性能。 因此, 如何让 LTE终端接入 LTE-Advanced系统中的任意一个载频是一个急需解决的问题。 针对于上述技术问题, 目前有两种解决方案。 方案一: 在两个连续的载频中间加入一些空的子载波。 以上述 40MHz 带宽为例, 在载频 0和载频 1 中间插入 19个子载波, 此时, 载频 1 的中心 频率在 1820子载波上 , jt匕时 ,只要载频 0的中心频率在 100kHz channel Raster 上, 则载频 1的中心频率肯定也在 100kHz channel Raster上 ( jt匕时载频 0和 载频 1的中心频率之差为 100kHz的倍数)。 方案二:对 LTE标准中 20MHz的下行可用子载波数目进行修改,例如, 对目前的 LTE标准进行修改,规定 20MHz载频的下行可用子载波数目为 1200 个, jt匕时, 只要载频 0的中心频率在 100kHz channel Raster上, 则载频 1的 中心频率肯定也在 100k Hz channel Raster上。 通过上述说明, 可以看出, 方案一、 方案二的共同缺陷是: 需要对现有 标准进行修改, 并且这些修改只适用于按照新标准制造的 LTE终端, 而按照 现有标准制造的 LTE终端仍然不能接入 LTE-Advanced系统的任意一个载频。 特别地, 方案二会造成系统效率下降, 这是因为在现有标准中, 20MHz的下 行可用子载波数目为 1201 个, 扣除一个直流载频 (该载频不发送数据), 20MHz的下行可用子载波数目为 1200个, 而 LTE标准规定每 12个子载波 为一个资源单位, 这样共有 100个资源单位。 而如果修改为 20MHz的下行 可用子载波数目为 1200个, 扣除一个直¾¾子载波后, 20MHz的下行可用子 载波数目为 1199个, jt匕时, 可以考虑利用的资源为: 99个资源单位额外 11 个子载波。 这 11个子载波不是一个资源单位, LTE标准中规定每 12个子载 波为一个资源单位, 主要是考虑到 12是 2、 3 (较小素数) 的倍数, 便于离 散傅立叶变换 ( Discrete Fourier Transformation, 筒称为 DFT )的实现, 而 11 是一个比较大的素数, 会增加 LTE-Advanced终端实现离散傅立叶变换的复 杂度, 对于 LTE终端是无法利用的 , 而对于更高级的 LTE-Advanced终端, 需要标准额外定义 11 个子载波也可以为一个资源单位, 这显然增加了 LTE-Advanced终端的实现复杂度。 发明内容 考虑到相关技术中存在的能够使接收端可以接入 LTE-Advanced系统任 意一个载频的方法实现比较复杂的问题而提出本发明, 为此, 本发明的主要 目的在于提供一种改进的同步信号序列的发送方案 , 以解决上述问题。 才艮据本发明的一个方面, 提供一种同步信号序列的发送方法, 该方法用 于包括多个载频的发射端发送同步信号序列。 才艮据本发明的同步信号序列的发送方法包括: 对于每个载频 , 分别确定 与载频的中心频率对应的至少一个扫频点在预定方向上相对于中心频率的偏
Offset _ k ; 根据偏移值( £^ _ 将同步信号序列进行移位, 将位于预定方 向的反方向的末尾的至少一个数据移动至同步信号序列的预定方向的末尾 , 使得移位后的同步信号序列与移位前同步信号序列两端对齐; 发送移位后的 同步信号序列。 根据本发明的另一个方面, 提供一种同步信号序列的发送装置, 该装置 可以位于发射端。 根据本发明的同步信号序列的发送装置包括: 偏移值确定模块, 用于确 定载频与载频的中心频率对应的至少一个扫频点在预定方向上相对于中心频 率的偏移值 O# t _ t , 其中, 为大于 0且小于或等于 20的整数; 处 理模块, 用于根据偏移值将同步信号序列进行移位, 将位于预定方向的反方 向的末尾的至少一个数据移动至同步信号序列的预定方向的末尾, 使得移位 后的同步信号序列与移位前同步信号序列两端对齐; 发送模块, 用于发送移 位后的同步信号序列。 通过本发明的上述至少一个技术方案,通过对发射端发送的同步信号序 列进行循环移位, 接收端可以接入 LTE-Advanced 系统任意一个载频, 相比 于现有技术, 该方法不需对标准进行改变, 既能够满足系统的升级需要, 又 不影响接收端的性能。 附图说明 附图用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本 发明的实施例一起用于解释本发明, 并不构成对本发明的限制。 在附图中: 图 1是才艮据本发明方法实施例的同步信号序列的发送方法的流程图; 图 2是系统采用多个载频进行频谱聚集以利用更大带宽时,原系统接收 端的示意图; 图 3是才艮据本发明方法实施例的同步信号序列的发送装置的结构框图; 图 4 是才艮据本发明方法实施例的同步信号序列的发送装置的优选结构 框图; 图 5 是才艮据本发明方法实施例的同步信号序列的发送装置的另一优选 结构框图。 具体实施方式 功能相克述 由于发射端只在每个载频的中心频率上向接收端发送同步信号序列 ,接 收端只是以扫频点为中心接收同步信号序列, 如果某个载频的中心频率不在 扫频点上, 则接收端无法接收到发射端发送的同步信号序列。 根据现有的标 准及方法, 如果接收端的载频大于 20MHz, 不能保证接收端的每个载频的中 心频率 卩在扫频点上, 这样会导致接收端无法正确接收发射端发送的同步信 号序列。 基于此, 本发明的主要思路是: 不对现有的标准进行修改, 通过对 发射端发送同步信号序列进行循环移位, 保证接收端仍在扫频点上接收同步 信号序列。 下面将结合附图详细描述本发明。 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互组合。 方法实施例 才艮据本发明实施例 , 提供了一种同步信号序列的发送方法。 需要说明的是, 为了便于描述, 在下文中以步骤的形式示出并描述了本 发明的方法实施例的技术方案, 在下文中所示出的步骤可以在诸如一组计算 机可执行指令的计算机系统中执行。 虽然在相关的附图中示出了逻辑顺序, 但是在某些情况下 , 可以以不同于此处的顺序执行所示出或描述的步骤。 图 1是根据本发明实施例的同步信号序列的发送方法的流程图 ,该方法 用于包括多个载频的发射端发送同步信号序列, 如图 1所示, 该方法包括以 下步骤 S 102至步骤 S106: 步骤 S102 , 对于每个载频, 分别确定与载频的中心频率对应的至少一 个扫频点在预定方向上相对于中心频率的偏移值 其中, Offset _ k 大于或等于 0且小于 20的整数; 步骤 S104, 才艮据偏移值将同步信号序列进行移位, 将位于预定方向的 反方向的末尾的至少一个数据移动至同步信号序列的预定方向的末尾, 使得 移位后的同步信号序列与移位前同步信号序列两端对齐; 步骤 S 106 , 发送移位后的同步信号序列。 通过本发明实施例提供的技术方案 ,通过对发射端发送的同步信号序列 进行循环移位, 接收端可以接入 LTE-Advanced 系统任意一个载频, 相比于 现有技术, 该方法不需对标准进行改变, 既能够满足系统的升级需要, 又不 影响接收端的性能。 在具体实施过程中 , 在移位的数据为多个的情况下 , 要保证多个数据的 顺序在移位前后不变,并可以利用下述公式确定移位后同步信号序列的数据:
7(n) = [(n + C) modM] 5其中, 为移位后同步信号序列的数据, "为
Qf _k取值为 0时,发送同步信号序列的子载波索引值, (11)为0#^ j取 值为 0时的同步信号序列的数据, C为各扫频点在预定方向相对于中心频率 的偏移值, M为 取值为 0时发送同步信号序列的子载波的数量, M 为自然数, 具体地, C可以为与中心频率 巨离最近的两个扫频点中的任一个 扫频点与中心频率的偏移值, 也可以为与中心频率 巨离最近的一个扫频点与 中心频率的偏移值。 另外, 还可以对载频上的空闲子载波进行填充, 具体地, 可以将空闲子 载波填充为零 , 或者, 才艮据移位前同步信号序列的数据顺序以及移位后同步 信号序列端部的数据, 使用数据对空闲子载波进行填充, 得到数据序列, 其 中 , 数据序列的数据顺序与移位前同步信号序列中的相应数据序列的数据顺 序相同, 上述数据序列为以下至少之一: 同步信号序列、 同步信号序列的一 部分, 并可以利用下述公式之一确定在空闲子载波上填充的数据: 公式一: y(n) = o, 其中, y(n)为在空闲子载波上填充的数据; 公式二: y(n)= [(n + C) modM] , 其中, 为在空闲子载波上填充的 数据, "为 取值为 0时, 发送同步信号序列的子载波索引值, x(n)为
Offset— k取值为 0时的同步信号序列的数据, c为各扫频点在预定方向相对 于中心频率的偏移值, M为 取值为 0时, 发送同步信号序列的子载 波的数量, M为自然数, 具体地, C可以为与中心频率 巨离最近的两个扫频 点中的任一个扫频点与中心频率的偏移值, 也可以为与中心频率 巨离最近的 一个扫频点与中心频率的偏移值。 下面通过举例的方式对本发明的主要思路进行说明。 支设接收端中有 M个载频, 对应的载频索引为 0、 1 M- 1 , 从实 现考虑, 该 M 个载频中至少有一个载频的中心频率会在 100kHz channel Raster上, 即, 至少有一个载频的偏置为 0。 设载频 k ( k=0、 1 M-1 ) 的中心频率相对 100kHz channel Raster的偏置为 Qffset - k 在 LTE 标准中, 每个子载波 15kHz, 而 channel Raster为 100kHz , 二者的最小公倍 数为 300kHz, 相当于 20个子载波, 即, 20个连续子载波中一定会有一个子 载波在 100kHz channel Raster上, 而其它 19个子载波 卩不在 100kHz channel Raster上, 设置这 19个子载波相对 100kHz channel Raster的偏 l 0 set _k的 范围为 [1 , 19] , 单位是子载波。 由于发射端在每个载频的中心频率上发送同步信号序列 ,接收端只是以 扫频点为中心接收该同步信号序列, 如果载频中心频率与扫频点不重合, 则 接收端无法接收到发射端发送的同步信号序列 , 所以发射端需要在与扫频点 重合的子载波两侧发送同步信号序列 ,才能保证接收端接收到同步信号序列。 具体地, 支设载波中心频率相对 100kHz channel Raster的偏置为 0个载波时, 设发送同步信号序列的子载波索引为 n, n=0、 1 M-l, 相应地, 在这 些子载波上发送的同步信号序列为 X (n), n=0、 1 N-l, 其中, M为 自然数。 另外,在发送同步信号序列的子载波两边可能还有若干空闲子载波, 一般地, 系统在空闲子载波上不发送数据, 即, 系统在空闲子载波上发送的 数据为 0。 支设发送同步信号序列子载波的左边有 ^个空闲子载波, 这 个 子载波的索引为 - , + - PL +2...... -1, 发送同步信号序列子载波 的右边有 ^个空载波, 这 个子载波的索引为: N、 N+1 N+ -l。 当 载频 k的中心频率与扫频点不重合, 且中心频率与其中一个相邻扫频点之间 的偏置为 时, 设在空闲子载波和发送同步信号序列的子载波上发送 的数据为 Y (n), 其中 η=_ 、 - + l、 - +2 -1、 0、 1 N+A-l, 贝' J Y (n) 满足如下条件: 当 ne[0,N_l]时,
7(n) = [(n + C)modM] ( 1 ) 而当 ne[— ,— 1]或者 e[M,M + -l]时,
7(n) = 0 或者
Y(n)=X [(η + C) mod M] ( 2 ) c _ {Offset _ k, Offset _k<20- Offset _
其中,
Figure imgf000009_0001
, 可以看出, 公式( 1 )、 (2) 中的 C为与中心频率 巨离最近的一个扫频点与中心频率的偏移值。 下面结合实施例对本发明进行进一步说明。 图 2示出了系统为了利用更大带宽而采用多个载频进行频谱聚集时,原 系统接收端接入面临问题的示意图。 如图 2所示, 系统通过对 3 个 20MHz 的载频进行频谱聚集,获得 60MHz的带宽。为了便于描述,将这 3个 20MHz 的载频分别称为载频 0、 载频 1、 载频 2 , 其中, 载频 1的中心频率和 100kHz 的 channel raster重叠,即, 0ffset― = 0。才艮据 LTE标准,当载频带宽为 20MHz 时, 系统可以支持的下行可用子载波数目为 1201个, 通过计算可知: 载频 0 相对 100kHz channel raster的偏置 ^^ - 0 = 19 , 而载频 2相对 100kHz的 channel raster的偏置 0ffset - 2 = 1。 才艮据现有标准, 发射端在载频的中心频率两侧发射同步信号序列。假设 发射端在三个载频都按照现有 LTE标准发送同步信号序列 ,设该同步信号序 列为 X ( n ) , n=0、 1、 …、 M- 1 , 对应的时 i或序列为 x ( k ), k=0、 1、 …、 L , 其中, L的取值通常为 2的整数次幂, N≥M, 这里隐含的一个设定是 LTE 接收端的采样频率为 15*N kHz。 当 LTE接收端选择在载频 1接入时, 接收 端可以通过载频 1 的中心频率读取载频 1 上的同步信号序列来获得下行同 步。 而当 LTE接收端选择在载频 0接入时, 接收端却无法通过读取相应载频 上的同步信号序列获得 DL同步, 这是因为载频 0的中心频率在两个扫频点 100kHz channel raster的中间, 没有与扫频点重合, 而 LTE接收端都是按照 100kHz为步长进行搜索, 不考虑无线信道的影响, 才艮据傅立叶变换的原理, 如果 LTE接收端选择右边的扫频点 100kHz channel raster为中心频率接收信 号, 则 LTE接收端收到载频 0的同步信号序列为 χ Ν , 而如果 LTE接 收端选择在左边的扫频点 100kHz channel raster为中心频率接收信号,则 LTE 接收端收到的载频 0的同步信号序列为 χ e 1 N , 但是, 序列 ("^ Nx 1 N 与本地参考序列 χ ( n )的互相关性均等于 0 , 因此, LTE接收端无 法在载频 0上读取到同步信号序列来实现下行同步。 考 虑 到 χ ^ Ν 对 应 的 频 域 序 列 为 : X (N - 19), (N - 18)....X(N - 1), (0), X (1), (2)....X (N - 20) , 相比于载频丄的 同步信号序列, 发射端通过载频 0发送的同步信号序列右移了 19位, 即, 载频 0相对其左方向相邻的扫频点的偏置为 19个子载波, ^)夺该扫频点称为 第一参考扫频点, 因此, 如果在发射端将在载频 0发送的同步信号序列相比 载频 0发送的同步信号序列先左移 19位, 则终端在载波 0接收到的序列和 终端选择与载波 1同步而获得的序列是相同的。 考虑到 ^对应的频域序列为: (2)··· J (W-l)J(O) , 相比 载频 1的序列, 发射端通过载频 0发送的同步信号序列右移了 1位, 即, 载 频 0相对其右方向相邻的扫频点的偏置为 1个子载波, ^!夺该扫频点称为第二 参考扫频点 , 因此, 发射端在载频 0发送的同步信号序列与通过载频 1发送 的同步信号序列相比,发射端在载频 0发送的同步信号序列左移 1个子载波, 因 jtb, 如果在发射端发送序列相比载波 0发送的序列先右移 1位, 接^:端通 过载频 0接收到的同步信号序列和接收端通过载频 1接收到的同步信号序列 是相同的。 载频 0相对第二参考扫频点的偏置为 1个子载波,载频 0相对第一参考 扫频点的偏置为 19个子载波, 通过比较, 第二参考扫频点与载频 0的中心 频率更接近, 接收端检测起来更为方便, 因此, 以第二参考扫频点作为载频 0的扫频点是较优的方案。 发射端通过载频 2发送同步信号序列的方法与通过载频 0发射的方法类 似, 这里不再赘述。 i设有三个载频, 这三个载频分别称为载频 0, 载频 1 , 载频 2。 其中 载频 1的中心频率和 100kHz的 channel raster重叠, 即, °ffset -1 = 0, 而载 频 0相对 100kHz的 channel raster的偏置 ^^ ^-0 = 19,而载频 2相对 100kHz 的 channel raster的偏置 ^^^-2 = 1 , 设载波 1在载波索引为 0,1,2.....6上发 送的同步信号序列为: a、 b、 c、 d、 e、 f、 g, 其中, 发送同步信号序列的载 波索引为: 0、 1、 2 5 , 空闲子载波的索引为 -2、 - 1、 7、 8 , 则根据本 发明提供的公式, 载波 0, 载波 2发送的同步信号序列及其对应的子载波索 引由表 1示出, 如表 1所示, 索引为 -2、 - 1、 7、 8的空闲子载波对应的数 据可以为 0 , 也可以为数据序列。 表 1
Figure imgf000012_0001
需要说明的是,本发明适用于系统采用多个载频进行频 i普聚集以利用更 大带宽, 且要求现有接收端 (该类型接收端的带宽能力小于系统带宽) 能够 接入的系统, 上文所述的发射端可以为基站, 接收端可以为终端。 才艮据本发明实施例, 还提供了一种计算机可读介质, 该计算机可读介质 上存储有计算机可执行的指令, 当该指令被计算机或处理器执行时, 使得计 算机或处理器执行如图 1所示的步骤 S 102至步骤 S 106的处理, 优选地, 可 以执行上述的实施例。 装置实施例 才艮据本发明实施例 , 提供一种同步信号序列的发送装置。 图 3示出了根据本发明实施例的同步信号序列的发送装置的框架图,如 图 3所示, 该装置包括偏移值确定模块 10、 处理模块 20和发送模块 30, 其 中, 偏移值确定模块 10, 用于确定载频与载频的中心频率对应的至少一个 扫频点在预定方向上相对于中心频率的偏移值 O#^t_ t , 其中, Offset _k为 于 0且小于或等于 20的整数; 处理模块 20, 连接至偏移值确定模块 10, 用于根据偏移值将同步信号 序列进行移位, 将位于预定方向的反方向的末尾的至少一个数据移动至同步 信号序列的预定方向的末尾, 使得移位后的同步信号序列与移位前同步信号 序列两端对齐; 发送模块 30 , 连接至处理模块 20 , 用于发送移位后的同步信号序列。 图 4 示出了本发明实施例的同步信号序列的发送装置的优选结构框架 图, 如图 4所示, 在图 3所示装置的基础上, 处理模块 20可以包括第一处 理子模块 202。 其中, 第一处理子模块 202 , 用于才艮据公式; T(n) = X[(n + C) mod M]确定 移位后同步信号序列的数据, 其中, ; Γ(η)为移位后同步信号序列的数据, W为
O iet _ k取值为 0时,发送同步信号序列的子载波索引值, X(n)为 (¾^et _ t取 值为 0时的同步信号序列的数据, C为各扫频点在预定方向相对于中心频率 的偏移值, M为0#«^ _ 取值为 0时, 发送同步信号序列的子载波的数量, M为自然数。 图 5 示出了本发明实施例的同步信号序列的发送装置的优选结构框架 图, 如图 5所示, 在图 3所示装置的基础上, 处理模块 20可以包括第二处 理子模块 204和第三处理子模块 206。 第二处理子模块 204 , 用于才艮据公式; Γ(η) = 0确定在空闲子载波上填充 的数据, 其中, ; Γ(η)为在空闲子载波上填充的数据; 第三处理子模块 206,用于才艮据公式;Γ(n)= [(n + C)modM]确定在空闲子 载波上填充的数据, 其中, ; Γ(η)为在空闲子载波上填充的数据, η为 Offset _ k 取值为 0 时, 发送同步信号序列的子载波索引值, 0)为< £^ _ 取值为 0 时的同步信号序列的数据, C为各扫频点在预定方向相对于中心频率的偏移 值, M为O# t _ t取值为 0时, 发送同步信号序列的子载波的数量, M为自 然数。 通过本发明实施例提供的同步信号序列的发送装置,通过对发射端发送 的同步信号序列进行循环移位, 接收端可以接入 LTE-Advanced 系统任意一 个载频, 相比于现有技术, 该方法不需对标准进行改变, 既能够满足系统的 升级需要, 又不影响接收端的性能。 如上所述, 借助于本发明提供的同步信号序列的发送方法和 /或装置, 通过对发射端发送的同步信号序列进行循环移位, 接收端可以接入 LTE-Advanced系统任意一个载频, 相比于现有技术, 该方法不需对标准进行 改变, 既能够满足系统的升级需要, 又不影响接收端的性能。 另外 ,本发明的实现没有对系统架构和目前的处理流程修改,易于实现, 便于在技术领域中进行推广, 具有较强的工业适用性。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的^^申和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书
1. 一种同步信号序列的发送方法, 用于包括多个载频的发射端发送同步信 号序列, 其特征在于, 所述方法包括:
对于每个载频,分别确定与所述载频的中心频率对应的至少一个扫 频点在预定方向上相对于所述中心频率的偏移值 O#^t _ t ; 才艮据所述偏移值 Offset _ A将同步信号序列进行移位, 将位于所述预 定方向的反方向的末尾的至少一个数据移动至所述同步信号序列的预定 方向的末尾, 使得移位后的所述同步信号序列与移位前所述同步信号序 列两端对齐;
发送移位后的所述同步信号序列。
2. 根据权利要求 1 所述的方法, 其特征在于, 所述偏移值 为大于 或等于 0且小于 20的整数。
3. 根据权利要求 1所述的方法, 其特征在于, 在移位的数据为多个的情况 下, 使得所述多个数据的顺序在移位前后保持不变。
4. 根据权利要求 1至 3中任一项所述的方法, 其特征在于, 在进行移位之 后, 还包括:
对所述载频上的空闲子载波进行填充。
5. 才艮据权利要求 4所述的方法, 其特征在于, 对所述空闲子载波进行填充 的方式为以下至少之一:
将所述空闲子载波填充为零;
才艮据移位前所述同步信号序列的数据顺序以及移位后所述同步信 号序列末尾的数据, 使用数据对所述空闲子载波进行填充, 得到数据序 歹1 J , 其中, 所述数据序列的数据顺序与移位前所述同步信号序列中的相 应数据序列的数据顺序相同。
6. 才艮据权利要求 5所述的方法, 其特征在于, 所述数据序列为以下至少之 一: 所述同步信号序列、 所述同步信号序列的一部分。
7. 才艮据权利要求 1所述的方法, 其特征在于, 利用下述公式确定移位后同 步信号序列的数据:
7(n) = [(n + C)modM] , 其中, ; Γ(η)为移位后同步信号序列的数据, η Offset _ k AM 0时,发送所述同步信号序列的子载波索引值, X(n) 为0#«^ _ 取值为 0 时的同步信号序列的数据, C为各扫频点在所述预 定方向相对于所述中心频率的偏移值, M为( #«^ _ ^:取值为 0时, 发送 所述同步信号序列的子载波的数量, M为自然数。
8. 才艮据权利要求 5所述的方法, 其特征在于, 利用下述公式确定在所述空 闲子载波上填充的数据:
7(n) = 0 , 其中, ; Γ(η)为在所述空闲子载波上填充的数据; 或者,
7(n)= [(n + C)modM] , 其中, ; Γ(η)为在所述空闲子载波上填充的数 据, W为 O#^t _ 取值为 0时, 发送所述同步信号序列的子载波索引值, 0)为<¾&^_ 取值为 0时的同步信号序列的数据, c为各扫频点在所 述预定方向相对于所述中心频率的偏移值, M为 Offset— k 为 0时, 发送所述同步信号序列的子载波的数量, M为自然数。
9. 一种同步信号序列的发送装置, 位于发射端, 其特征在于, 包括:
偏移值确定模块,用于确定载频与所述载频的中心频率对应的至少 一个扫频点在预定方向上相对于所述中心频率的偏移值 O#^t _ t , 其中, Offset _ 为大于 0且小于或等于 20的整数; 处理模块, 用于才艮据所述偏移值将同步信号序列进行移位, 将位于 所述预定方向的反方向的末尾的至少一个数据移动至所述同步信号序列 的预定方向的末尾, 使得移位后的所述同步信号序列与移位前所述同步 信号序列两端对齐;
发送模块 , 用于发送移位后的所述同步信号序列。
10. 根据权利要求 9所述的装置, 其特征在于, 所述处理模块包括: 第一处理子模块 , 用于才艮据公式; T(n) = X [(n + C) mod M]确定所述移 位后同步信号序列的数据, 其中, ; Γ(η)为移位后同步信号序列的数据, η 为(¾^£^_ 取值为 0时,发送所述同步信号序列的子载波索引值, Χ(η)为
O# _ 取值为 0 时的同步信号序列的数据, C为各扫频点在所述预定 方向相对于所述中心频率的偏移值, M为(¾ _ ^:取值为 0时, 发送所 述同步信号序列的子载波的数量, M为自然数。
11. 根据权利要求 9所述的装置, 其特征在于, 所述处理模块包括:
第二处理子模块 , 用于根据公式; Γ(η) = 0确定在所述空闲子载波上 填充的数据, 其中, ; Γ(η)为在所述空闲子载波上填充的数据; 或者, 第三处理子模块, 用于根据公式; T(n)= r[(n + C)modM]确定在所述 空闲子载波上填充的数据, 其中, ; Γ(η)为在所述空闲子载波上填充的数 据, "为(¾^^_ 取值为 0时, 发送所述同步信号序列的子载波索引值, Χ(η)为 O#^t_ 取值为 0时的同步信号序列的数据, C为各扫频点在所 述预定方向相对于所述中心频率的偏移值, M为 Offset Ιί Ά 为 0时, 发送所述同步信号序列的子载波的数量, Μ为自然数。
PCT/CN2009/074448 2008-10-24 2009-10-14 同步信号序列的发送方法和装置 WO2010045852A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810171915.3A CN101383802B (zh) 2008-10-24 2008-10-24 同步信号序列的发送方法和装置
CN200810171915.3 2008-10-24

Publications (1)

Publication Number Publication Date
WO2010045852A1 true WO2010045852A1 (zh) 2010-04-29

Family

ID=40463426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/074448 WO2010045852A1 (zh) 2008-10-24 2009-10-14 同步信号序列的发送方法和装置

Country Status (2)

Country Link
CN (1) CN101383802B (zh)
WO (1) WO2010045852A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101383802B (zh) * 2008-10-24 2013-05-08 中兴通讯股份有限公司 同步信号序列的发送方法和装置
CN107872868B (zh) * 2016-09-26 2020-04-03 华为技术有限公司 信号处理的方法、设备和系统
CN110460418B (zh) * 2016-10-10 2020-08-07 华为技术有限公司 同步信号的发送方法、接收方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1968247A (zh) * 2003-06-27 2007-05-23 三星电子株式会社 正交频分复用接收装置及其接收方法
JP2007208442A (ja) * 2006-01-31 2007-08-16 Icom Inc 無線通信装置及び無線システム
CN101267226A (zh) * 2007-03-14 2008-09-17 中兴通讯股份有限公司 一种辅助同步信道的信息发送方法和小区搜索方法
CN101383802A (zh) * 2008-10-24 2009-03-11 中兴通讯股份有限公司 同步信号序列的发送方法和装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1852281B (zh) * 2006-01-23 2010-06-09 北京邮电大学 一种用于正交频分多址系统的同步方法
EP1906686A1 (en) * 2006-09-29 2008-04-02 Nokia Siemens Networks Gmbh & Co. Kg Method, base station and user equipment for cell search in a communications system
CN101075847A (zh) * 2007-06-25 2007-11-21 北京创毅视讯科技有限公司 一种移动多媒体系统中的同步信号发送方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1968247A (zh) * 2003-06-27 2007-05-23 三星电子株式会社 正交频分复用接收装置及其接收方法
JP2007208442A (ja) * 2006-01-31 2007-08-16 Icom Inc 無線通信装置及び無線システム
CN101267226A (zh) * 2007-03-14 2008-09-17 中兴通讯股份有限公司 一种辅助同步信道的信息发送方法和小区搜索方法
CN101383802A (zh) * 2008-10-24 2009-03-11 中兴通讯股份有限公司 同步信号序列的发送方法和装置

Also Published As

Publication number Publication date
CN101383802A (zh) 2009-03-11
CN101383802B (zh) 2013-05-08

Similar Documents

Publication Publication Date Title
CN102438227B (zh) 无线通信基站装置、方法和无线通信用半导体集成电路
EP3632069B1 (en) Doppler mode in a wireless network
KR101511981B1 (ko) 모두 1인 r 매트릭스를 회피함으로써 ieee 802.11ac에서 파일럿 톤들 상에서의 스펙트럼 라인들의 회피
US9439161B2 (en) Physical layer design for uplink (UL) multiuser multiple-input, multiple-output (MU-MIMO) in wireless local area network (WLAN) systems
RU2641673C2 (ru) Система и способ, использующие обратно совместимые форматы преамбулы для беспроводной связи множественного доступа
US8547989B2 (en) Methods and systems for LTE-WIMAX coexistence
CN103392371A (zh) 信道质量指示符报告
WO2012103363A1 (en) Physical layer frame format for long range wlan
WO2010056925A1 (en) Methods and systems with frame structure for improved adjacent channel co-existence
WO2016176877A1 (zh) 物理层协议数据单元的传输方法和装置
WO2009132502A1 (zh) 前导码配置方法以及小区搜索方法
WO2020177674A1 (zh) 信息发送、信息接收方法及装置
WO2012130090A1 (zh) 一种基于ofdm的数据传输方法和系统
JP2022526028A (ja) 複数の周波数セグメントにおける同時伝送
WO2010045850A1 (zh) 同步信号序列的发送方法和装置
CN101369882B (zh) 一种基于发送端预纠正的频率同步方法
CN101102148A (zh) 一种时分双工系统下行链路信号的发送方法
WO2010045852A1 (zh) 同步信号序列的发送方法和装置
CN106899400B (zh) 突发数据帧发送方法及装置
CN1992691B (zh) 一种基于ofdm技术的信道同步方法
CN107872868B (zh) 信号处理的方法、设备和系统
CN1992694B (zh) 一种基于正交频分复用技术的信道同步方法
CN1992692B (zh) 一种采用正交频分复用技术的信道同步方法
WO2012109930A1 (zh) 基带数据的传输方法、装置及系统
WO2016191991A1 (zh) 物理层协议数据单元的传输方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09821573

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09821573

Country of ref document: EP

Kind code of ref document: A1