WO2010044367A1 - Curable composition - Google Patents

Curable composition Download PDF

Info

Publication number
WO2010044367A1
WO2010044367A1 PCT/JP2009/067548 JP2009067548W WO2010044367A1 WO 2010044367 A1 WO2010044367 A1 WO 2010044367A1 JP 2009067548 W JP2009067548 W JP 2009067548W WO 2010044367 A1 WO2010044367 A1 WO 2010044367A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
meth
curable composition
group
vinyl
Prior art date
Application number
PCT/JP2009/067548
Other languages
French (fr)
Japanese (ja)
Inventor
耕太郎 米田
道弘 河合
Original Assignee
東亞合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東亞合成株式会社 filed Critical 東亞合成株式会社
Priority to JP2010533881A priority Critical patent/JP5370369B2/en
Publication of WO2010044367A1 publication Critical patent/WO2010044367A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/062Copolymers with monomers not covered by C08L33/06
    • C08L33/066Copolymers with monomers not covered by C08L33/06 containing -OH groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L43/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing boron, silicon, phosphorus, selenium, tellurium or a metal; Compositions of derivatives of such polymers
    • C08L43/04Homopolymers or copolymers of monomers containing silicon

Definitions

  • the present invention relates to a curable composition, and more particularly relates to a curable composition that cures at room temperature with moisture such as in the air, has high elongation at break, and exhibits excellent heat resistance and weather resistance. is there.
  • a curable composition based on an oxyalkylene polymer having a hydrolyzable silyl group has been well known, Widely used in adhesives, sealants, paints, etc. for electrical and electronic fields and automotive applications. In these applications, since a balance between good workability, high elongation at break, weather resistance, and heat resistance is required, various studies have been made so far.
  • a vinyl polymer having a hydrolyzable silyl group (particularly a (meth) acrylic polymer) has characteristics such as high weather resistance, heat resistance and transparency as compared with the oxyalkylene polymer.
  • Patent Document 1 discloses a method in which an oxyalkylene polymer having a hydrolyzable silyl group and a vinyl polymer having a hydrolyzable silyl group are used in combination.
  • Patent Document 2 discloses that as a vinyl polymer having a hydrolyzable silyl group, a polymer obtained by continuous bulk polymerization at high temperature and high pressure is particularly excellent in weather resistance.
  • Patent Document 3 discloses a curable composition containing a vinyl polymer having a reactive silicon group, a polyoxyalkylene polymer having a reactive silicon group, and a plasticizer having an acrylic component. .
  • Patent Document 4 discloses a method of producing a vinyl polymer by using a living radical polymerization method, modifying both ends thereof to hydrolyzable silyl groups, and a curable composition containing the obtained polymer. It is disclosed.
  • the living radical polymerization method is a method of growing a polymer chain by successive growth, and is a method capable of controlling the molecular weight, molecular weight distribution, terminal group, and block structure. JP 59-122541 A JP 2004-18748 A JP 2004-2604 A JP-A-11-130931
  • An object of the present invention is to provide a highly practical curable composition having good workability, high elongation at break of a cured product, and excellent heat resistance and weather resistance.
  • the present inventors have a hydrolyzable silyl group produced by a living radical polymerization method using a (meth) acrylic copolymer having a specific hydroxyl value and a weight average molecular weight. It has been found that when a specific amount is added to the vinyl polymer, a curable composition exhibiting high breaking elongation and excellent heat resistance and weather resistance can be obtained, and the present invention has been completed.
  • the curable composition according to the present invention has a vinyl copolymer (A) having a hydrolyzable silyl group, a hydroxyl value of 50 to 300 mgKOH / g, and a weight average molecular weight of 1500 to 6000.
  • the content of the (meth) acrylic copolymer (B) is 20 to 200 parts by mass with respect to 100 parts by mass of the vinyl copolymer (A).
  • the living radical polymerization is preferably polymerization using a nitrooxide radical.
  • the (meth) acrylic copolymer (B) is preferably produced by continuous polymerization at a temperature of 150 to 350 ° C.
  • the curable composition according to the present invention has a vinyl copolymer having a hydrolyzable silyl group produced by a living radical polymerization method, a specific hydroxyl value and a weight average molecular weight (meth). Contains a specific amount of an acrylic copolymer. Therefore, it has the effects of being cured at room temperature with moisture in the atmosphere, exhibiting high elongation at break, and having excellent heat resistance and weather resistance. Moreover, since the curable composition of this invention is a moderate viscosity, it is excellent in workability
  • the vinyl copolymer (A) having hydrolyzable silyl groups according to the present invention (hereinafter also referred to as “component (A)”). ] Is an organic polymer containing a silyl group in the molecule, and is a base resin of the curable composition.
  • a vinyl-type monomer used for manufacture of a component (A) It is a (meth) acrylic-acid type copolymer from the point of the mechanical physical property and weather resistance when it is set as a curable composition. It is preferable to use an alkyl acrylate having an alkyl group having 1 to 8 carbon atoms in the ester chain, a vinyl monomer having an alkoxysilyl group, and other vinyl monomers.
  • a preferred ratio of each monomer is an acrylic acid alkyl ester having an alkyl group having 1 to 8 carbon atoms in the ester chain: 40 to 99.5 parts by mass, a vinyl monomer having an alkoxysilyl group as a crosslinkable functional group: 0.5 to 20 parts by mass, other vinyl monomers: 0 to 59.5 parts by mass are preferably used.
  • the more preferable ratio of each monomer is 60 to 99 parts by weight, 0.5 to 7 parts by weight, and 0 to 39 parts by weight (based on 100 parts by weight of all monomers used for producing the vinyl polymer). Ratio).
  • the glass transition temperature may be high and the rubber elasticity may be lowered. If it exceeds 99.5 parts by mass, the glass becomes soft. The strength of the cured product may decrease. If the vinyl monomer having an alkoxysilyl group is less than 0.5 parts by mass, the crosslink density may be low and the strength may be reduced. .
  • alkyl acrylate ester having an alkyl group having 1 to 8 carbon atoms in the ester chain include methyl acrylate, ethyl acrylate, propyl acrylate, isopropyl acrylate, butyl acrylate, isobutyl acrylate, and acrylic acid.
  • vinyl monomers having an alkoxysilyl group examples include vinyl silanes such as vinyl trimethoxysilane, vinyl triethoxysilane, vinylmethyldimethoxysilane, vinyldimethylmethoxysilane, trimethoxysilylpropyl acrylate, triethoxysilyl acrylate.
  • vinyl silanes such as vinyl trimethoxysilane, vinyl triethoxysilane, vinylmethyldimethoxysilane, vinyldimethylmethoxysilane, trimethoxysilylpropyl acrylate, triethoxysilyl acrylate.
  • Silyl group-containing acrylic esters such as propyl and methyldimethoxysilylpropyl acrylate, trimethoxysilylpropyl methacrylate, triethoxysilylpropyl methacrylate, methyldimethoxysilylpropyl methacrylate, and silyl groups such as dimethylmethoxysilylpropyl methacrylate
  • Silyl group-containing vinyl ethers such as methacrylic acid esters, trimethoxysilylpropyl vinyl ether, silicic acid such as vinyl trimethoxysilylundecanoate Group-containing vinyl esters, and the like.
  • a preferable monomer is an acrylic acid ester or a methacrylic acid ester having a methoxysilyl group or an ethoxysilyl group, more preferably methyl methacrylate because of copolymerization with an acrylic acid ester and flexibility of the copolymer. Dimethoxysilylpropyl, trimethoxysilylpropyl methacrylate, methyldiethoxysilylpropyl methacrylate, triethoxysilylpropyl methacrylate.
  • vinyl monomers can be used as long as the physical properties of the component (A) and its blend are not impaired.
  • examples of such monomers include alkyl acrylates having an alkyl group having 12 or more carbon atoms, such as lauryl acrylate, tridecyl acrylate, and stearyl acrylate.
  • methacrylic acid esters specifically, methyl methacrylate, ethyl methacrylate, butyl methacrylate, isobutyl methacrylate, 2-ethylhexyl methacrylate, cyclohexyl methacrylate, tricyclodecynyl methacrylate, lauryl methacrylate, methacrylic acid, Examples include acid stearyl. Among these, methacrylic acid esters are preferable. Those having 4 or more carbon atoms in the alcohol residue of the ester are preferable because the viscosity of the polymer is low and the water resistance and weather resistance of the curable composition are excellent.
  • a monomer having ultraviolet absorbing ability examples include 2- (2′-hydroxy-5′-methacryloxyethylphenyl) -2H-benzotriazole, methacryloxyhydroxypropyl-3- [3- (2H-benzotriazole-2 -Yl) -5-tertiarybutyl-4-hydroxyphenyl] propionate and 2-hydroxy-4- (methacryloxyethoxy) benzophenone.
  • the light-stable monomer include 1,2,2,6,6-pentamethyl-4-piperidyl methacrylate and 2,2,6,6-tetramethyl-4-piperidyl methacrylate.
  • Examples of the functional group-containing monomer include epoxy group-containing monomers such as glycidyl (meth) acrylate and vinyl glycidyl ether, acrylic acid and methacrylic acids, acrylamide, N-methylacrylamide, N, N-dimethylacrylamide, N, N-diethylacrylamide, methacrylamide, N-methylmethacrylamide, N, N-dimethylmethacrylamide and the like can be mentioned.
  • epoxy group-containing monomers such as glycidyl (meth) acrylate and vinyl glycidyl ether, acrylic acid and methacrylic acids, acrylamide, N-methylacrylamide, N, N-dimethylacrylamide, N, N-diethylacrylamide, methacrylamide, N-methylmethacrylamide, N, N-dimethylmethacrylamide and the like can be mentioned.
  • ⁇ -olefins such as ethylene, propylene, 1-butene and isobutylene, chloroethylenes such as vinyl chloride and vinylidene chloride, and fluoroethylenes such as tetrafluoroethylene, trifluoroethylene, chlorotrifluoroethylene and vinylidene fluoride , Vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, butyl vinyl ether, isobutyl vinyl ether and cyclohexyl vinyl ether, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl caproate, vinyl caprylate, Veova 9, Veova 10 (manufactured by Shell Chemical, carbon number 9 and 10 fatty acid vinyl) and vinyl esters such as vinyl laurate, and allyl ethers such as ethyl allyl ether and butyl allyl ether.
  • Preferred monomers are methacrylic acid esters, and particularly preferred are methyl methacrylate, butyl me
  • Component (A) can be produced by a living radical polymerization method.
  • a living radical polymerization method a polymer having a narrow molecular weight distribution and a low viscosity can be obtained, and a monomer having a specific functional group can be introduced into any position of the polymer.
  • Examples of the living radical polymerization method include an ATRP method using copper bromide as a catalyst disclosed in JP-A-11-130931, and a vinyl monomer in the presence of a thiocarbonylthio compound disclosed in JP 2000-515181 A.
  • Examples include an addition-cleavage chain transfer method (RAFT method) for polymerizing a living radical polymerization method using a nitrooxide radical disclosed in JP-T-2003-500378.
  • RAFT method addition-cleavage chain transfer method
  • the living radical polymerization method using a nitrooxide radical is preferable because there is no need to use a highly toxic copper compound unlike the ATRP method.
  • the living radical polymerization can be carried out in the range of 0 to 200 ° C., preferably 50 to 150 ° C.
  • the weight average molecular weight of component (A) is a polystyrene equivalent molecular weight determined by gel permeation chromatography (hereinafter also referred to as “GPC”), and the number average molecular weight (Mn) is preferably 5000 to 50000. More preferred is 8000 to 25000. When Mn is lower than 5000, the crosslink density of the cured product becomes too high, and the elongation of the cured product becomes extremely small. When Mn is higher than 50000, the viscosity becomes very high and workability is remarkably deteriorated.
  • the glass transition temperature of component (A) is preferably ⁇ 70 to 30 ° C., more preferably ⁇ 70 to 10 ° C. If it exceeds 30 ° C., there is a risk that the rubber will not have sufficient rubber elasticity in winter, and the workability will also deteriorate.
  • the hydrolyzable silyl group contained in the component (A) is a group having a hydroxyl group or a hydrolyzable group bonded to a silicon atom and capable of crosslinking by forming a siloxane bond by a reaction with a curing catalyst. Although it does not specifically limit as a hydrolysable silyl group, The thing of the following general formula (1) is preferable at the point which is easy to bridge
  • R represents a hydrocarbon group, preferably an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms or an aralkyl group having 7 to 20 carbon atoms.
  • X is a halogen atom, hydrogen A reactive group selected from an atom, a hydroxyl group, an alkoxy group, an acyloxy group, a ketoximate group, an amide group, an acid amide group, a mercapto group, an alkenyloxy group, and an aminooxy group. (It may be the same group or different groups.
  • X is preferably an alkoxy group.
  • N is an integer of 0, 1 or 2.
  • alkoxysilyl group of component (A) those having a trimethoxysilyl group, a methyldimethoxysilyl group, a dimethylmethoxysilyl group, a triethoxysilyl group, a methyldiethoxysilyl group, or a methyldimethoxyethoxysilyl group are preferable.
  • a trimethoxysilyl group or a methyldimethoxysilyl group is particularly preferred from the viewpoint of the balance between curing speed and flexibility.
  • the number of alkoxysilyl groups in one molecule of component (A) is preferably 0.1 to 4, more preferably 0.3 to 3. If it is less than 0.1, curing is insufficient, and if it exceeds 4, the cured product becomes hard.
  • the radical polymerization initiator used for the production of the component (A) may be any initiator that generates radicals at a predetermined reaction temperature.
  • peroxides such as diisopropyl peroxydicarbonate, di-2-ethoxyethyloxydicarbonate, tertiary butyl peroxypivalate, ditertiary butyl peroxide, benzoyl peroxide and lauroyl peroxide, or 2, Azo compounds such as 2'-azobisisobutyronitrile, 2,2'-azobis (2-methylbutyronitrile) and 2,2'-azobis (2,4-dimethylvaleronitrile), ammonium persulfate and persulfate Examples thereof include inorganic peroxides such as potassium and metal complexes used for living polymerization.
  • a thermally initiated radical generated from styrene or the like may be used.
  • ditertiary butyl peroxide, ditertiary hexyl peroxide, ditertiary amyl peroxide, and azo initiator are inexpensive and the initiator radicals are less likely to cause hydrogen abstraction.
  • the hydrogen abstraction reaction occurs frequently, the molecular weight distribution becomes wide, and a low molecular weight component into which no crosslinkable functional group is introduced is likely to be formed, and the weather resistance may be deteriorated.
  • (Meth) acrylic copolymer (B) according to the present invention [hereinafter also referred to as “component (B)”. ] Is an organic polymer having a hydroxyl value of 50 to 300 mgKOH / g and a weight average molecular weight of 1500 to 6000.
  • the component (B) functions as a plasticizer in the curable composition, and has an effect of adjusting workability and improving workability before the composition is cured. Moreover, after hardening of a composition, it has the effect
  • “(meth) acryl” means “acryl or methacryl”.
  • Component (B) is a copolymer of a hydroxyl group-containing (meth) acrylic monomer and another (meth) acrylic monomer, which is one or two (meth) acrylic monomers When polymerizing more than seeds, a small amount of a hydroxyl group-containing (meth) acrylic monomer is used as a copolymer component. The ratio of the hydroxyl group-containing (meth) acrylic monomer to the total monomers used in the production of component (B) is adjusted so that the hydroxyl value of component (B) falls within the range of 50 to 300 mgKOH / g.
  • Hydroxyl group-containing (meth) acrylic monomers include ⁇ -caprolactone addition reaction of hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate and hydroxyethyl (meth) acrylate And (meth) acrylic acid hydroxyalkyl compounds.
  • hydroxyethyl acrylate is preferable from the viewpoint of elongation at break and workability of the curable composition.
  • the other (meth) acrylic monomers are not particularly limited, but (meth) acrylic acid alkyl esters having an alkyl group having 1 to 8 carbon atoms in the ester chain are preferable from the viewpoint of mechanical properties of the cured product. .
  • (meth) acrylic acid alkyl ester having an alkyl group having 1 to 8 carbon atoms in the ester chain include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, (meth ) Isopropyl acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, s-butyl (meth) acrylate, t-butyl (meth) acrylate, neopentyl (meth) acrylate, (meth) acrylic acid 2 -Aliphatic alkyl (meth) acrylates such as ethylhexyl, cyclohexyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, chloroethyl (meth) acrylate, (meth) acrylic Such as
  • Component (B) can be produced by ordinary radical polymerization, and any of solution polymerization, bulk polymerization, and dispersion polymerization may be used, and a living radical polymerization method developed in recent years may be used.
  • the reaction process may be any of batch, semi-batch and continuous polymerization. However, it is most preferable that it is obtained by a high temperature continuous polymerization method at 150 to 350 ° C. Moreover, it is preferable not to use chain transfer agents such as mercaptans because they lead to a decrease in weather resistance.
  • the component (B) is obtained by ordinary radical polymerization
  • a high temperature continuous polymerization method at 150 to 350 ° C. is preferred.
  • the polymerization temperature is less than 150 ° C.
  • branching reaction occurs and the molecular weight distribution is widened, and a large amount of initiator and chain transfer agent are required to lower the molecular weight, thus adversely affecting durability such as weather resistance and heat resistance. give.
  • production problems such as heat removal may occur.
  • it is higher than 350 ° C., a decomposition reaction occurs and the polymerization solution is colored or the molecular weight is lowered.
  • stirred tank reactor it is preferable to use a stirred tank reactor as the reactor because a (meth) acrylic acid ester copolymer having a relatively narrow composition distribution (distribution of crosslinkable functional groups) and molecular weight distribution can be obtained. Also, a process using a continuous stirred tank reactor is more preferable than a tubular reactor because the composition distribution and molecular weight distribution are narrowed.
  • a known method disclosed in JP-A-57-502171, JP-A-59-6207, JP-A-60-215007, or the like may be used. For example, after filling a pressurizable reactor with a solvent and setting it to a predetermined temperature under pressure, the reactor is charged with a monomer mixture composed of each monomer and, if necessary, a polymerization solvent at a constant supply rate. And a method of extracting a polymerization solution in an amount commensurate with the supply amount of the monomer mixture. Moreover, a polymerization initiator can also be mix
  • the blending amount when blended is preferably 0.001 to 2 parts by mass with respect to 100 parts by mass of the monomer mixture.
  • the pressure depends on the reaction temperature, the monomer mixture used and the boiling point of the solvent, and does not affect the reaction, but may be any pressure that can maintain the reaction temperature.
  • the residence time of the monomer mixture is preferably 1 to 60 minutes. If the residence time is less than 1 minute, the monomer may not sufficiently react, and if the unreacted monomer exceeds 60 minutes, the productivity may deteriorate.
  • the preferred residence time is 2 to 40 minutes.
  • the hydroxyl value of component (B) is 50 to 300 mgKOH / g, preferably 70 to 130 mgKOH / g, more preferably 90 to 120 mgKOH / g. If the hydroxyl value is less than 50 mgKOH / g, the elongation at break is insufficient, and if it exceeds 300 mgKOH / g, the viscosity becomes high, so that the effect as a plasticizer is lowered and the workability of the curable composition is lowered. In addition, the weather resistance also decreases.
  • the hydroxyl value in the present invention is a value determined according to JIS K 0070.
  • the weight average molecular weight of the component (B) is 1500 to 6000, preferably 1500 to 5000, more preferably 1500 to 3000, in terms of polystyrene by GPC.
  • the weight average molecular weight is less than 1500, the weather resistance may be insufficient.
  • the weight average molecular weight exceeds 6000, the viscosity becomes high, so that the effect as a plasticizer is lowered and the workability of the curable composition is lowered.
  • the viscosity of component (B) at 25 ° C. is preferably 500 to 15000 mPa ⁇ s, more preferably 800 to 12000 mPa ⁇ s. If the viscosity is less than 500 mPa ⁇ s, sagging may occur during construction, and if it exceeds 15000 mPa ⁇ s, the workability of the curable composition is deteriorated.
  • the glass transition temperature of component (B) is preferably ⁇ 10 ° C. or lower, more preferably ⁇ 20 ° C. or lower.
  • the glass transition temperature is ⁇ 10 ° C. or higher, the rubber elasticity of the curable composition tends to be insufficient in winter, and the workability also deteriorates.
  • the content of the component (B) in the curable composition according to the present invention is 20 to 200 parts by weight, preferably 30 to 150 parts by weight, more preferably 40 to 40 parts by weight with respect to 100 parts by weight of the component (A). 130 parts by mass.
  • the content of the component (B) is less than 20 parts by mass, the workability of the curable composition is deteriorated, and when it exceeds 200 parts by mass, the crosslinking density of the curable composition is lowered and the durability may be lowered.
  • the curable composition according to the present invention may contain components other than the components (A) and (B).
  • Such components include fillers, thixotropic agents, anti-aging agents, curing accelerators, adhesion enhancing agents, dehydrating agents and the like.
  • Fillers include light calcium carbonate with an average particle size of about 0.02 to 2.0 ⁇ m, heavy calcium carbonate with an average particle size of about 1.0 to 5.0 ⁇ m, titanium oxide, carbon black, synthetic silicic acid, talc, Examples include zeolite, mica, silica, calcined clay, kaolin, bentonite, aluminum hydroxide and barium sulfate, glass balloon, silica balloon, and polymethyl methacrylate balloon. With these fillers, the mechanical properties of the cured product are improved, and the strength and elongation can be improved.
  • an ultraviolet absorber such as a benzophenone compound, a benzotriazole compound and an oxalic acid anilide compound, a light stabilizer such as a hindered amine compound, an antioxidant such as a hindered phenol, or an antioxidant that is a mixture thereof
  • Tin curing accelerators such as dibutyltin dilaurate, dibutyltin diacetate, dibutyltin diacetacetonate, amide wax, silica-based thixotropy imparting agent, adhesion imparting agents such as aminosilane, epoxysilane, vinylsilane, methylsilanes Or a dehydrating agent such as methyl orthoformate and methyl orthoacetate, or an organic solvent.
  • Examples of the ultraviolet absorber include trade names “Tinubin 571”, “Tinubin 1130”, and “Tinubin 327” manufactured by Ciba Specialty Chemicals.
  • Examples of the light stabilizer include trade names “Tinuvin 292”, “Tinuvin 144”, “Tinuvin 123” manufactured by the same company, and a trade name “Sanol 770” manufactured by Sankyo.
  • Examples of the heat stabilizer include trade names “Irganox 1135”, “Irganox 1520”, and “Irganox 1330” manufactured by Ciba Specialty Chemicals. Mixture of ultraviolet absorber / light stabilizer / heat stabilizer; trade name “Tinubin B75” manufactured by Ciba Specialty Chemicals may be used.
  • tin-based catalyst trade names “U28”, “U100”, “U200”, “U220”, “U303”, “SCAT-7”, “SCAT-46A” manufactured by Nitto Kasei Co., Ltd.
  • the product name “No. 918” is exemplified.
  • examples of the thixotropic agent include trade names “Dispalon 3600N”, “Dispalon 3800”, “Dispalon 305”, and “Dispalon 6500” manufactured by Enomoto Kasei Co., Ltd.
  • Anti-tacking agents include trade names “Aronix M8030”, “M8060”, “M8100”, “M309” manufactured by Toagosei Co., Ltd., which are acrylic oligomers, or mixtures with photopolymerization initiators, tung oil, linseed oil Examples include unsaturated fatty acid oils, trade name “R15HT” manufactured by Idemitsu Petrochemical Co., Ltd., trade name “PBB3000” manufactured by Nippon Soda Co., Ltd., and trade name “GOSELAC 500B” manufactured by Nippon Synthetic Chemical.
  • aminosilanes examples include “KBM602”, “KBM603”, “KBE602”, “KBE603”, “KBM903”, and “KBE903” manufactured by Shin-Etsu Silicone.
  • the curable composition according to the present invention contains the above components, but the production method is not particularly limited. Specifically, it can be produced by mixing using a stirrer, a planetary stirrer, or the like.
  • the curable composition of the present invention can also be prepared as a one-component type that cures by preliminarily blending and storing all the blended components and absorbing moisture in the air after coating, and is separately prepared as a curing agent.
  • Components such as a curing catalyst, a filler, a plasticizer, and water may be blended, and the blended material and the polymer composition may be adjusted as a two-component type that is mixed before use.
  • a one-component type that is easy to handle and has few errors during coating is more preferable.
  • the present invention will be described more specifically based on synthesis examples and examples, but the present invention is not limited thereto. Those skilled in the art can make various changes and modifications without departing from the scope of the present invention.
  • the polymer and the curable composition were evaluated as follows. In the following, “parts” means parts by mass.
  • the viscosity in the present invention was measured with an E-type viscometer under the conditions of 25 ° C. and 5 rpm.
  • the jacket temperature was adjusted so that the reaction solution temperature was maintained at 120 ° C.
  • the polymerization rate of BA was 90%.
  • MTMS 3-methacryloxypropyltrimethoxysilane
  • the reaction solution was taken out and dried under reduced pressure with an evaporator at a reduced pressure of 0.3 kPa and 90 ° C. for 5 hours to obtain about 490 parts by mass of a polymer.
  • the properties of the polymer were Mw32400, Mn23100, Mw / Mn1.4, E-type viscosity (25 ° C.) 152000 mPa ⁇ s.
  • the acid value was 0.2 mgKOH / g, and the reaction rate of the carboxyl group of the living polymerization initiator [Formula (2)] was 88%.
  • the number of alkoxysilyl groups f (Si) per one polymer chain of the polymer was 1.7.
  • Polymer B A pressurized stirring tank reactor having a capacity of 1 liter equipped with a soot oil jacket was charged with 360 parts by weight of BA, 9.0 parts by weight of a living polymerization initiator [Formula (2)], and butyl acetate (hereinafter referred to as “BAc”). This was mixed with 108 parts by mass, 6.1 parts by mass of 3-glycidoxypropyltrimethoxysilane, and 1.8 parts by mass of TBAB, and the mixture was sufficiently deaerated by nitrogen bubbling. The jacket temperature was raised to 120 ° C. to initiate the polymerization reaction, and the jacket temperature was adjusted so that the reaction solution temperature was maintained at 120 ° C. After 6 hours, the polymerization rate of BA was 88%.
  • MTMS 6.5 mass part was added there, and it was made to react with it at 120 degreeC for 4 hours.
  • the polymerization rate of BA was 95%
  • the polymerization rate of MTMS was 98%.
  • the reaction solution was taken out and dried under reduced pressure with an evaporator at a reduced pressure of 0.3 kPa and 90 ° C. for 5 hours to obtain about 320 parts by mass of a polymer.
  • the properties of the polymer were Mw 39900, Mn 14800, Mw / Mn 2.7, E-type viscosity (25 ° C.) 354000 mPa ⁇ s.
  • the reaction rate of the carboxyl group of the living polymerization initiator [Formula (2)] was 97%.
  • the number of alkoxysilyl groups f (Si) per one polymer chain of the polymer was 1.9.
  • the acid value was 0.3 mgKOH / g, and the reaction rate of the carboxyl group of the living polymerization initiator [Formula (2)] was 78%.
  • the number of alkoxysilyl groups f (Si) per one polymer chain of the polymer was 1.6.
  • IPA isopropyl alcohol
  • a monomer mixture comprising 1.5 parts of ditertiary butyl peroxide as a polymerization initiator, at a constant feed rate (48 g / Min., Residence time: 12 minutes), continuous supply from the raw material tank to the reactor was started, and a reaction liquid corresponding to the supply amount of the monomer mixture was continuously withdrawn from the outlet.
  • a reaction temperature decreased, a temperature increase due to the heat of polymerization was observed, but the reaction temperature was maintained at 246 to 248 ° C. by controlling the oil jacket temperature.
  • the component (B) obtained by the reaction is referred to as “polymer 1”.
  • polymer 8 The copolymer obtained by the reaction is referred to as “polymer 8”.
  • Synthetic Example 13 Synthetic Example 1 except that the monomer mixture is changed to 80 parts HA, 20 parts HEA, 50 parts IPA, 3 parts ditertiary butyl peroxide as the polymerization initiator, and the reaction temperature is changed to 249-251 ° C. Polymerization and treatment were performed in the same manner to synthesize a copolymer. Mw was 1000. The copolymer obtained by the reaction is referred to as “polymer 13”.
  • Examples 1 to 12 Comparative Examples 1 to 8> The compositions of Examples and Comparative Examples and the evaluation results of the compositions are shown in Tables 2 and 3. In Tables 2 and 3, the following components were used other than the polymer. Synthetic calcium carbonate: Shiraishi Calcium Co., Ltd. Heavy calcium carbonate: Maruo Calcium Co., Ltd. Trade name “Super SS” Titanium oxide: Product name “R-820” manufactured by Ishihara Sangyo Co., Ltd.
  • Anti-aging agent Product name “Tinubin B75” manufactured by Ciba Specialty Chemicals Dehydrating agent: Vinylsilane Adhesion imparting agent: N-2- (aminoethyl) -3-aminopropyltrimethoxysilane Curing accelerator: Dibutyltin diacetylacetonate
  • the composition of the comparative example 3 had too high a viscosity, and could not produce the test piece for evaluation.
  • the curable composition of the present invention includes a vinyl copolymer having a hydrolyzable silyl group produced by a living radical polymerization method, and a (meth) acrylic compound having a specific hydroxyl value and a weight average molecular weight. Since it contains a copolymer, it is cured at room temperature with moisture in the atmosphere and the resulting cured product exhibits high elongation at break and has excellent heat resistance and weather resistance. Therefore, the curable composition of the present invention can be used as a sealing material, an adhesive, a paint, and the like, and can be widely applied in the architectural field, the electric / electronic field, the automobile field, and the like.

Abstract

Provided is a curable composition with high practical utility which has favourable workability, is cured by atmospheric moisture or the like, gives hardened material with a high elongation at break, and has outstanding heat resistance and weather resistance. The curable composition contains a vinyl copolymer (A) having a hydrolysable silyl group and a (meth)acrylic copolymer (B) having a hydroxyl group value of 50-300 mgKOH/g and a weight average molecular weight of 1500-6000, wherein the vinyl copolymer (A) having a hydrolysable silyl group is produced by living free radical polymerization, and the content of the aforementioned (meth)acrylic copolymer (B) is 20-200 parts by mass to 100 parts by mass of the aforementioned vinyl copolymer (A).

Description

硬化性組成物Curable composition
 本発明は、硬化性組成物に関するものであって、より詳しくは、大気中などの水分により室温硬化して破断伸びが高く、優れた耐熱性及び耐候性を発現する硬化性組成物に関するものである。 The present invention relates to a curable composition, and more particularly relates to a curable composition that cures at room temperature with moisture such as in the air, has high elongation at break, and exhibits excellent heat resistance and weather resistance. is there.
 これまで耐候性、耐熱性に優れる室温硬化型の硬化性組成物としては、加水分解性シリル基を有するオキシアルキレン系重合体をベースとする硬化性組成物がよく知られており、建築用途、電気・電子分野関連用途、自動車関連用途等で接着剤、シーリング材、塗料等に幅広く用いられている。これらの用途では、良好な作業性、高い破断伸びと耐候性、耐熱性のバランスが求められるため、これまでにもさまざまな検討がなされている。加水分解性シリル基を有するビニル系重合体(特に(メタ)アクリル系重合体)は、上記オキシアルキレン系重合体と比較して、高い耐候性、耐熱性、透明性等の特性を有していることが知られており、例えば、特許文献1には、加水分解性シリル基を有するオキシアルキレン重合体と加水分解性シリル基を有するビニル系重合体を併用する方法が開示されている。また、特許文献2には、加水分解性シリル基を有するビニル系重合体として、高温・高圧の連続塊状重合により得られるものが特に耐侯性に優れることが開示されている。また、特許文献3には、反応性ケイ素基を有するビニル系重合体、反応性ケイ素基を有するポリオキシアルキレン系重合体及びアクリル成分を有する可塑剤を含有する硬化性組成物が開示されている。さらに、特許文献4には、リビングラジカル重合法を用いてビニル重合体を製造し、その両末端を加水分解性シリル基に変性する方法、及び得られた重合体を含有する硬化性組成物が開示されている。リビングラジカル重合法は、一般のラジカル重合法と異なり逐次生長によって高分子鎖を生長させる方法であり、分子量、分子量分布、末端基、ブロック構造を制御できる方法である。
特開昭59-122541号公報 特開2004-18748号公報 特開2004-2604号公報 特開平11-130931号公報
Conventionally, as a room temperature curable composition having excellent weather resistance and heat resistance, a curable composition based on an oxyalkylene polymer having a hydrolyzable silyl group has been well known, Widely used in adhesives, sealants, paints, etc. for electrical and electronic fields and automotive applications. In these applications, since a balance between good workability, high elongation at break, weather resistance, and heat resistance is required, various studies have been made so far. A vinyl polymer having a hydrolyzable silyl group (particularly a (meth) acrylic polymer) has characteristics such as high weather resistance, heat resistance and transparency as compared with the oxyalkylene polymer. For example, Patent Document 1 discloses a method in which an oxyalkylene polymer having a hydrolyzable silyl group and a vinyl polymer having a hydrolyzable silyl group are used in combination. Patent Document 2 discloses that as a vinyl polymer having a hydrolyzable silyl group, a polymer obtained by continuous bulk polymerization at high temperature and high pressure is particularly excellent in weather resistance. Patent Document 3 discloses a curable composition containing a vinyl polymer having a reactive silicon group, a polyoxyalkylene polymer having a reactive silicon group, and a plasticizer having an acrylic component. . Furthermore, Patent Document 4 discloses a method of producing a vinyl polymer by using a living radical polymerization method, modifying both ends thereof to hydrolyzable silyl groups, and a curable composition containing the obtained polymer. It is disclosed. Unlike the general radical polymerization method, the living radical polymerization method is a method of growing a polymer chain by successive growth, and is a method capable of controlling the molecular weight, molecular weight distribution, terminal group, and block structure.
JP 59-122541 A JP 2004-18748 A JP 2004-2604 A JP-A-11-130931
 しかしながら、近年、上記のような硬化性組成物に対しては、従来のものより高い耐熱性、耐久性が求められるようになってきている。特許文献1に開示されるような加水分解性シリル基を有するオキシアルキレン系重合体と加水分解性シリル基を有するビニル重合体を併用するような系では、市場の要求を満足する耐熱性及び耐候性を達成することはできなくなってきている。その理由は、加水分解性シリル基を有するビニル系重合体を含有する硬化性組成物は耐候性に優れるものの、加水分解性シリル基を有するオキシアルキレン系重合体のみからなる硬化性組成物と比較して破断伸びが低くなるという課題を有しているからである。また、加水分解性シリル基を有するオキシアルキレン重合体と加水分解性シリル基を有するビニル系重合体の混合物にアクリル成分を有する可塑剤を配合した場合も、耐候性は改善されるものの、破断伸びが低い問題は解決されない。さらに、特許文献4に開示されるようなリビングラジカル重合により得られる加水分解性シリル基を有するビニル系重合体を含有する硬化性組成物の場合も、耐候性に優れるものの、破断伸びは不十分であり、これらの改善が求められている。 However, in recent years, higher heat resistance and durability than conventional ones have been demanded for the curable compositions as described above. In a system in which an oxyalkylene polymer having a hydrolyzable silyl group and a vinyl polymer having a hydrolyzable silyl group as disclosed in Patent Document 1 are used in combination, heat resistance and weather resistance satisfying market requirements It is becoming impossible to achieve sex. The reason is that although a curable composition containing a vinyl polymer having a hydrolyzable silyl group is excellent in weather resistance, it is compared with a curable composition comprising only an oxyalkylene polymer having a hydrolyzable silyl group. This is because the elongation at break is low. Also, when a plasticizer having an acrylic component is added to a mixture of an oxyalkylene polymer having a hydrolyzable silyl group and a vinyl polymer having a hydrolyzable silyl group, the weather resistance is improved, but the elongation at break The problem of low is not solved. Further, in the case of a curable composition containing a vinyl polymer having a hydrolyzable silyl group obtained by living radical polymerization as disclosed in Patent Document 4, although it is excellent in weather resistance, the elongation at break is insufficient. These improvements are required.
 本発明の目的は、作業性が良好であり、硬化物の破断伸びが高く、かつ、耐熱性及び耐侯性に優れた実用性の高い硬化性組成物を提供することである。 An object of the present invention is to provide a highly practical curable composition having good workability, high elongation at break of a cured product, and excellent heat resistance and weather resistance.
 本発明者らは、上記課題に鑑み鋭意検討した結果、特定の水酸基価と重量平均分子量を有する(メタ)アクリル系共重合体を、リビングラジカル重合法により製造される加水分解性シリル基を有するビニル系重合体に特定量配合すると、高い破断伸びが発現し、かつ、優れた耐熱性及び耐候性を示す硬化性組成物が得られることを見出し、本発明を完成させるに至った。 As a result of intensive studies in view of the above problems, the present inventors have a hydrolyzable silyl group produced by a living radical polymerization method using a (meth) acrylic copolymer having a specific hydroxyl value and a weight average molecular weight. It has been found that when a specific amount is added to the vinyl polymer, a curable composition exhibiting high breaking elongation and excellent heat resistance and weather resistance can be obtained, and the present invention has been completed.
 すなわち、本発明に係る硬化性組成物は、加水分解性シリル基を有するビニル系共重合体(A)と、水酸基価が50~300mgKOH/gであり、かつ、重量平均分子量が1500~6000である(メタ)アクリル系共重合体(B)とを含有する硬化性組成物であって、加水分解性シリル基を有するビニル系共重合体(A)が、リビングラジカル重合法により製造されるものであり、前記(メタ)アクリル系共重合体(B)の含有量が、前記ビニル系共重合体(A)100質量部に対して、20~200質量部であることを特徴としている。 That is, the curable composition according to the present invention has a vinyl copolymer (A) having a hydrolyzable silyl group, a hydroxyl value of 50 to 300 mgKOH / g, and a weight average molecular weight of 1500 to 6000. A curable composition containing a (meth) acrylic copolymer (B), wherein a vinyl copolymer (A) having a hydrolyzable silyl group is produced by a living radical polymerization method The content of the (meth) acrylic copolymer (B) is 20 to 200 parts by mass with respect to 100 parts by mass of the vinyl copolymer (A).
 また、上記リビングラジカル重合が、ニトロオキサイドラジカルを用いる重合であることが好ましい。 The living radical polymerization is preferably polymerization using a nitrooxide radical.
 さらに、上記(メタ)アクリル系共重合体(B)が、150~350℃の温度で連続重合させて製造されるものであることが好ましい。 Furthermore, the (meth) acrylic copolymer (B) is preferably produced by continuous polymerization at a temperature of 150 to 350 ° C.
 (メタ)アクリル系共重合体(B)の上記製造方法において、メルカプタンを使用しないことが好ましい。 In the above production method of the (meth) acrylic copolymer (B), it is preferable not to use mercaptans.
 本発明に係る硬化性組成物は、以上のように、リビングラジカル重合法により製造される加水分解性シリル基を有するビニル系共重合体と、特定の水酸基価と重量平均分子量を有する(メタ)アクリル系共重合体とを特定量含有する。そのため、大気中の水分などにより室温硬化して、高い破断伸びを発現し、かつ、優れた耐熱性及び耐候性を有するという効果を奏する。また、本発明の硬化性組成物は、適度な粘度であることから、作業性に優れる。 The curable composition according to the present invention, as described above, has a vinyl copolymer having a hydrolyzable silyl group produced by a living radical polymerization method, a specific hydroxyl value and a weight average molecular weight (meth). Contains a specific amount of an acrylic copolymer. Therefore, it has the effects of being cured at room temperature with moisture in the atmosphere, exhibiting high elongation at break, and having excellent heat resistance and weather resistance. Moreover, since the curable composition of this invention is a moderate viscosity, it is excellent in workability | operativity.
 本発明の一実施形態について説明すると以下の通りであるが、本発明はこれに限定されるものではない。 An embodiment of the present invention will be described as follows, but the present invention is not limited to this.
 本発明に係る加水分解性シリル基を有するビニル系共重合体(A)[以下「成分(A)」ともいう。]は、分子内にシリル基を含有する有機重合体であって、硬化性組成物のベース樹脂である。 The vinyl copolymer (A) having hydrolyzable silyl groups according to the present invention (hereinafter also referred to as “component (A)”). ] Is an organic polymer containing a silyl group in the molecule, and is a base resin of the curable composition.
 成分(A)の製造に使用するビニル系単量体としては特に限定されないが、硬化性組成物にしたときの機械的物性、耐侯性の点から、(メタ)アクリル酸系共重合体であることが好ましく、炭素数1~8のアルキル基をエステル鎖に有するアクリル酸アルキルエステル、アルコキシシリル基を有するビニル系単量体及びその他のビニル系単量体を使用することが好ましい。各単量体の好ましい割合は、炭素数1~8のアルキル基をエステル鎖に有するアクリル酸アルキルエステル:40~99.5質量部、架橋性官能基としてアルコキシシリル基を有するビニル単量体:0.5~20質量部、その他のビニル単量体:0~59.5質量部使用することが好ましい。各単量体のより好ましい割合は、それぞれ60~99質量部、0.5~7質量部及び0~39質量部(ビニル重合体の製造に使用する全単量体100質量部を基準とした割合)である。
 炭素数1~8のアルキル基をエステル鎖に有するアクリル酸アルキルエステルが40質量部未満ではガラス転移温度が高くなり、ゴム弾性が低下する場合があり、99.5質量部を超えると柔らかくなり、硬化物の強度が低下する場合がある。アルコキシシリル基を有するビニル単量体が0.5質量部未満では架橋密度が低く強度が低下する場合があり、20質量部を超えると架橋密度が高くなり硬化物の伸びが出ない場合がある。
Although it does not specifically limit as a vinyl-type monomer used for manufacture of a component (A), It is a (meth) acrylic-acid type copolymer from the point of the mechanical physical property and weather resistance when it is set as a curable composition. It is preferable to use an alkyl acrylate having an alkyl group having 1 to 8 carbon atoms in the ester chain, a vinyl monomer having an alkoxysilyl group, and other vinyl monomers. A preferred ratio of each monomer is an acrylic acid alkyl ester having an alkyl group having 1 to 8 carbon atoms in the ester chain: 40 to 99.5 parts by mass, a vinyl monomer having an alkoxysilyl group as a crosslinkable functional group: 0.5 to 20 parts by mass, other vinyl monomers: 0 to 59.5 parts by mass are preferably used. The more preferable ratio of each monomer is 60 to 99 parts by weight, 0.5 to 7 parts by weight, and 0 to 39 parts by weight (based on 100 parts by weight of all monomers used for producing the vinyl polymer). Ratio).
If the alkyl acrylate ester having an alkyl group having 1 to 8 carbon atoms in the ester chain is less than 40 parts by mass, the glass transition temperature may be high and the rubber elasticity may be lowered. If it exceeds 99.5 parts by mass, the glass becomes soft. The strength of the cured product may decrease. If the vinyl monomer having an alkoxysilyl group is less than 0.5 parts by mass, the crosslink density may be low and the strength may be reduced. .
 炭素数1~8のアルキル基をエステル鎖に有するアクリル酸アルキルエステルとしては、具体的にはアクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸イソプロピル、アクリル酸ブチル、アクリル酸イソブチル、アクリル酸s-ブチル、アクリル酸t-ブチル、アクリル酸ネオペンチル、アクリル酸2-エチルヘキシル、アクリル酸シクロヘキシル等のアクリル酸脂肪族アルキル、アクリル酸2-メトキシエチル、アクリル酸ジメチルアミノエチル、アクリル酸クロロエチル、アクリル酸トリフルオロエチル及びアクリル酸テトラヒドロフルフリル等のヘテロ原子含有アクリル酸エステル類が挙げられるが、これらに限らない。また、これらのうちの1種類又は2種類以上を重合してもよい。 Specific examples of the alkyl acrylate ester having an alkyl group having 1 to 8 carbon atoms in the ester chain include methyl acrylate, ethyl acrylate, propyl acrylate, isopropyl acrylate, butyl acrylate, isobutyl acrylate, and acrylic acid. s-Butyl, t-butyl acrylate, neopentyl acrylate, 2-ethylhexyl acrylate, cyclohexyl acrylate, etc., aliphatic alkyl acrylate, 2-methoxyethyl acrylate, dimethylaminoethyl acrylate, chloroethyl acrylate, acrylic acid Examples include, but are not limited to, heteroatom-containing acrylates such as trifluoroethyl and tetrahydrofurfuryl acrylate. Moreover, you may superpose | polymerize 1 type, or 2 or more types of these.
 アルコキシシリル基を有するビニル系単量体としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジメトキシシラン、ビニルジメチルメトキシシランン等のビニルシラン類、アクリル酸トリメトキシシリルプロピル、アクリル酸トリエトキシシリルプロピル及びアクリル酸メチルジメトキシシリルプロピル等のシリル基含有アクリル酸エステル類、メタクリル酸トリメトキシシリルプロピル、メタクリル酸トリエトキシシリルプロピル及びメタクリル酸メチルジメトキシシリルプロピル、メタクリル酸ジメチルメトキシシリルプロピル等のシリル基含有メタクリル酸エステル類、トリメトキシシリルプロピルビニルエーテル等のシリル基含有ビニルエーテル類、トリメトキシシリルウンデカン酸ビニル等のシリル基含有ビニルエステル類等が挙げられる。好ましい単量体は、アクリル酸エステルとの共重合性や、共重合体の柔軟性より、メトキシシリル基またはエトキシシリル基を有するアクリル酸エステルまたはメタクリル酸エステルであり、より好ましくは、メタクリル酸メチルジメトキシシリルプロピル、メタクリル酸トリメトキシシリルプロピル、メタクリル酸メチルジエトキシシリルプロピル、メタクリル酸トリエトキシシリルプロピルである。 Examples of vinyl monomers having an alkoxysilyl group include vinyl silanes such as vinyl trimethoxysilane, vinyl triethoxysilane, vinylmethyldimethoxysilane, vinyldimethylmethoxysilane, trimethoxysilylpropyl acrylate, triethoxysilyl acrylate. Silyl group-containing acrylic esters such as propyl and methyldimethoxysilylpropyl acrylate, trimethoxysilylpropyl methacrylate, triethoxysilylpropyl methacrylate, methyldimethoxysilylpropyl methacrylate, and silyl groups such as dimethylmethoxysilylpropyl methacrylate Silyl group-containing vinyl ethers such as methacrylic acid esters, trimethoxysilylpropyl vinyl ether, silicic acid such as vinyl trimethoxysilylundecanoate Group-containing vinyl esters, and the like. A preferable monomer is an acrylic acid ester or a methacrylic acid ester having a methoxysilyl group or an ethoxysilyl group, more preferably methyl methacrylate because of copolymerization with an acrylic acid ester and flexibility of the copolymer. Dimethoxysilylpropyl, trimethoxysilylpropyl methacrylate, methyldiethoxysilylpropyl methacrylate, triethoxysilylpropyl methacrylate.
 その他のビニル系単量体は、成分(A)及びその配合物の物性を損なわない範囲で使用することができる。係る単量体としては、炭素数12以上のアルキル基を有するアクリル酸アルキルエステル類、具体的には、アクリル酸ラウリル、アクリル酸トリデシル、およびアクリル酸ステアリルなどが例示される。さらに、メタクリル酸エステル類、具体的には、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸イソブチル、メタクリル酸2-エチルヘキシル、メタクリル酸シクロヘキシル、メタクリル酸トリシクロデシニル、メタクリル酸ラウリル、メタクリル酸ステアリルなどが例示される。これらの中でもメタクリル酸エステルが好ましい。エステルのアルコール残基の炭素数が4以上のものは、重合体の粘度が低く、硬化性組成物の耐水性、耐侯性が優れるため好ましい。 Other vinyl monomers can be used as long as the physical properties of the component (A) and its blend are not impaired. Examples of such monomers include alkyl acrylates having an alkyl group having 12 or more carbon atoms, such as lauryl acrylate, tridecyl acrylate, and stearyl acrylate. Further, methacrylic acid esters, specifically, methyl methacrylate, ethyl methacrylate, butyl methacrylate, isobutyl methacrylate, 2-ethylhexyl methacrylate, cyclohexyl methacrylate, tricyclodecynyl methacrylate, lauryl methacrylate, methacrylic acid, Examples include acid stearyl. Among these, methacrylic acid esters are preferable. Those having 4 or more carbon atoms in the alcohol residue of the ester are preferable because the viscosity of the polymer is low and the water resistance and weather resistance of the curable composition are excellent.
 さらに、紫外線吸収能を有する単量体、光安定性を有する単量体、各種の官能基を有する単量体を用いることも可能である。紫外線吸収能を有する単量体としては、2-(2’-ヒドロキシ-5’-メタクリロキシエチルフェニル)-2H-ベンゾトリアゾール、メタクリロキシヒドロキシプロピル-3-〔3-(2H-ベンゾトリアゾール-2-イル)-5-ターシャリーブチル-4-ヒドロキシフェニル〕プロピオネートおよび2-ヒドロキシ-4-(メタクリロキシエトキシ)ベンゾフェノン等が挙げられる。また、光安定性を有する単量体としては、1,2,2,6,6-ペンタメチル-4-ピペリジルメタクリレート及び2,2,6,6-テトラメチル-4-ピペリジルメタクリレート等が挙げられる。 Furthermore, it is also possible to use a monomer having ultraviolet absorbing ability, a monomer having light stability, and a monomer having various functional groups. Examples of the monomer having ultraviolet absorbing ability include 2- (2′-hydroxy-5′-methacryloxyethylphenyl) -2H-benzotriazole, methacryloxyhydroxypropyl-3- [3- (2H-benzotriazole-2 -Yl) -5-tertiarybutyl-4-hydroxyphenyl] propionate and 2-hydroxy-4- (methacryloxyethoxy) benzophenone. Examples of the light-stable monomer include 1,2,2,6,6-pentamethyl-4-piperidyl methacrylate and 2,2,6,6-tetramethyl-4-piperidyl methacrylate.
 官能基含有単量体としては、(メタ)アクリル酸グリシジル及びビニルグリシジルエーテル等のエポキシ基含有単量体、アクリル酸及びメタクリル酸類、アクリルアミド、N-メチルアクリルアミド、N,N-ジメチルアクリルアミド、N,N-ジエチルアクリルアミド、メタクリルアミド、N-メチルメタクリルアミド及びN,N-ジメチルメタクリルアミド等が挙げられる。 Examples of the functional group-containing monomer include epoxy group-containing monomers such as glycidyl (meth) acrylate and vinyl glycidyl ether, acrylic acid and methacrylic acids, acrylamide, N-methylacrylamide, N, N-dimethylacrylamide, N, N-diethylacrylamide, methacrylamide, N-methylmethacrylamide, N, N-dimethylmethacrylamide and the like can be mentioned.
 さらに、エチレン、プロピレン、1-ブテン及びイソブチレンなどのα-オレフィン類、塩化ビニル、塩化ビニリデンなどのクロロエチレン類、テトラフルオロエチレン、トリフルオロエチレン、クロロトリフルオロエチレン、フッ化ビニリデンなどのフルオロエチレン類、メチルビニルエーテル、エチルビニルエーテル、ブチルビニルエーテル、イソブチルビニルエーテル及びシクロヘキシルビニルエーテル等のビニルエーテル類、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、カプロン酸ビニル、カプリル酸ビニル、ベオバ9、ベオバ10(シェル化学製、炭素数が9及び10の脂肪酸ビニル)及びラウリン酸ビニル等のビニルエステル類、エチルアリルエーテル及びブチルアリルエーテル等のアリルエーテル類が挙げられる。
好ましい単量体は、メタクリル酸エステル類であり、特に好ましくは、メタクリル酸メチル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシルである。
Further, α-olefins such as ethylene, propylene, 1-butene and isobutylene, chloroethylenes such as vinyl chloride and vinylidene chloride, and fluoroethylenes such as tetrafluoroethylene, trifluoroethylene, chlorotrifluoroethylene and vinylidene fluoride , Vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, butyl vinyl ether, isobutyl vinyl ether and cyclohexyl vinyl ether, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl caproate, vinyl caprylate, Veova 9, Veova 10 (manufactured by Shell Chemical, carbon number 9 and 10 fatty acid vinyl) and vinyl esters such as vinyl laurate, and allyl ethers such as ethyl allyl ether and butyl allyl ether.
Preferred monomers are methacrylic acid esters, and particularly preferred are methyl methacrylate, butyl methacrylate, and 2-ethylhexyl methacrylate.
 成分(A)は、リビングラジカル重合法により製造することができる。リビングラジカル重合法は、分子量分布が狭く、粘度が低い重合体を得ることができ、また特定の官能基を有するモノマーを重合体の任意の場所に導入することができる。 Component (A) can be produced by a living radical polymerization method. In the living radical polymerization method, a polymer having a narrow molecular weight distribution and a low viscosity can be obtained, and a monomer having a specific functional group can be introduced into any position of the polymer.
 リビングラジカル重合法としては、特開平11-130931号公報に開示される臭化銅を触媒として用いるATRP法や、特表2000-515181号公報に開示されるチオカルボニルチオ化合物存在下にビニル系モノマーを重合する付加開裂型連鎖移動法(RAFT法)、特表2003-500378号公報で示されるニトロオキサイドラジカルを用いるリビングラジカル重合方法等が例として挙げられる。中でもニトロオキサイドラジカルを用いるリビングラジカル重合法は、ATRP法のように毒性の高い銅化合物を使用する必要が無いため好ましい。 Examples of the living radical polymerization method include an ATRP method using copper bromide as a catalyst disclosed in JP-A-11-130931, and a vinyl monomer in the presence of a thiocarbonylthio compound disclosed in JP 2000-515181 A. Examples include an addition-cleavage chain transfer method (RAFT method) for polymerizing a living radical polymerization method using a nitrooxide radical disclosed in JP-T-2003-500378. Among them, the living radical polymerization method using a nitrooxide radical is preferable because there is no need to use a highly toxic copper compound unlike the ATRP method.
 また、リビングラジカル重合は、0~200℃の範囲で行うことができ、好ましくは50~150℃である。 The living radical polymerization can be carried out in the range of 0 to 200 ° C., preferably 50 to 150 ° C.
 成分(A)の重量平均分子量はゲルパーミエーションクロマトグラフィー(以下「GPC」ともいう。)によるポリスチレン換算分子量で、数平均分子量(Mn)が5000~50000であることが好ましい。より好ましいのは8000~25000である。Mnが5000より低いと硬化物の架橋密度が高くなりすぎ、硬化物の伸びが著しく小さくなる。Mnが50000より高いと粘度が非常に高くなり、作業性が著しく悪くなる。また、成分(A)のガラス転移温度は、-70~30℃が好ましく、より好ましくは-70~10℃である。30℃を超えると、冬季に充分なゴム弾性を有しなくなるおそれがあり、また作業性も悪くなる。 The weight average molecular weight of component (A) is a polystyrene equivalent molecular weight determined by gel permeation chromatography (hereinafter also referred to as “GPC”), and the number average molecular weight (Mn) is preferably 5000 to 50000. More preferred is 8000 to 25000. When Mn is lower than 5000, the crosslink density of the cured product becomes too high, and the elongation of the cured product becomes extremely small. When Mn is higher than 50000, the viscosity becomes very high and workability is remarkably deteriorated. The glass transition temperature of component (A) is preferably −70 to 30 ° C., more preferably −70 to 10 ° C. If it exceeds 30 ° C., there is a risk that the rubber will not have sufficient rubber elasticity in winter, and the workability will also deteriorate.
 成分(A)に含有される加水分解性シリル基は、ケイ素原子に結合した水酸基又は加水分解性基を有し、硬化触媒による反応によってシロキサン結合を形成することにより架橋し得る基である。加水分解性シリル基としては、特に限定されないが、架橋し易く製造し易い点で下記一般式(1)のものが好ましい。 The hydrolyzable silyl group contained in the component (A) is a group having a hydroxyl group or a hydrolyzable group bonded to a silicon atom and capable of crosslinking by forming a siloxane bond by a reaction with a curing catalyst. Although it does not specifically limit as a hydrolysable silyl group, The thing of the following general formula (1) is preferable at the point which is easy to bridge | crosslink and is easy to manufacture.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(式中、Rは炭化水素基を示し、好ましくは、炭素数1~20のアルキル基、炭素数6~20のアリール基または炭素数7~20のアラルキル基である。Xはハロゲン原子、水素原子、水酸基、アルコキシ基、アシルオキシ基、ケトキシメート基、アミド基、酸アミド基、メルカプト基、アルケニルオキシ基及びアミノオキシ基より選ばれる反応性基であり、Xが複数存在する場合には、Xは同じ基であるか、あるいは相異なる基であってもよい。Xはアルコキシ基が好ましい。nは0、1又は2の整数である。) (Wherein R represents a hydrocarbon group, preferably an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms or an aralkyl group having 7 to 20 carbon atoms. X is a halogen atom, hydrogen A reactive group selected from an atom, a hydroxyl group, an alkoxy group, an acyloxy group, a ketoximate group, an amide group, an acid amide group, a mercapto group, an alkenyloxy group, and an aminooxy group. (It may be the same group or different groups. X is preferably an alkoxy group. N is an integer of 0, 1 or 2.)
 成分(A)のアルコキシシリル基としては、トリメトキシシリル基、メチルジメトキシシリル基、ジメチルメトキシシリル基、トリエトキシシリル基、メチルジエトキシシリル基、メチルジメトキシエトキシシリル基を有するものが好ましい。硬化速度と柔軟性のバランスからトリメトキシシリル基又はメチルジメトキシシリル基が特に好ましい。
また、成分(A)の1分子中のアルコキシシリル基の数は0.1~4個が好ましく、より好ましくは0.3~3個である。0.1個未満では硬化不十分になり、4個を超えると硬化物が硬くなるからである。
As the alkoxysilyl group of component (A), those having a trimethoxysilyl group, a methyldimethoxysilyl group, a dimethylmethoxysilyl group, a triethoxysilyl group, a methyldiethoxysilyl group, or a methyldimethoxyethoxysilyl group are preferable. A trimethoxysilyl group or a methyldimethoxysilyl group is particularly preferred from the viewpoint of the balance between curing speed and flexibility.
In addition, the number of alkoxysilyl groups in one molecule of component (A) is preferably 0.1 to 4, more preferably 0.3 to 3. If it is less than 0.1, curing is insufficient, and if it exceeds 4, the cured product becomes hard.
 成分(A)の製造に使用するラジカル重合開始剤としては、所定の反応温度でラジカルを発生する開始剤であれば何でもよい。具体的にはジイソプロピルパーオキシジカーボネート、ジ-2-エトキシエチルオキシジカーボネート、ターシャリーブチルパーオキシピバレート、ジターシャリーブチルパーオキサイド、ベンゾイルパーオキサイド及びラウロイルパーオキサイド等の過酸化物、又は2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)及び2,2’-アゾビス(2,4-ジメチルバレロニトリル)等のアゾ化合物、過硫酸アンモニウム及び過硫酸カリウム等の無機過酸化物、リビング重合に用いられる金属錯体等があげられる。またスチレン等から発生する熱開始ラジカルでもよい。
 特に好ましくは、ジターシャリーブチルパーオキサイド、ジターシャリーヘキシルパーオキサイド、ジターシャリーアミルパーオキサイド、アゾ系開始剤は、安価で開始剤ラジカルが水素引抜きを起こしにくいのでよい。水素引き抜き反応を頻度高く起こすと分子量分布が広くなり、架橋性官能基の導入されていない低分子量成分が出来やすく、耐侯性が悪化する場合がある。
The radical polymerization initiator used for the production of the component (A) may be any initiator that generates radicals at a predetermined reaction temperature. Specifically, peroxides such as diisopropyl peroxydicarbonate, di-2-ethoxyethyloxydicarbonate, tertiary butyl peroxypivalate, ditertiary butyl peroxide, benzoyl peroxide and lauroyl peroxide, or 2, Azo compounds such as 2'-azobisisobutyronitrile, 2,2'-azobis (2-methylbutyronitrile) and 2,2'-azobis (2,4-dimethylvaleronitrile), ammonium persulfate and persulfate Examples thereof include inorganic peroxides such as potassium and metal complexes used for living polymerization. Further, a thermally initiated radical generated from styrene or the like may be used.
Particularly preferably, ditertiary butyl peroxide, ditertiary hexyl peroxide, ditertiary amyl peroxide, and azo initiator are inexpensive and the initiator radicals are less likely to cause hydrogen abstraction. When the hydrogen abstraction reaction occurs frequently, the molecular weight distribution becomes wide, and a low molecular weight component into which no crosslinkable functional group is introduced is likely to be formed, and the weather resistance may be deteriorated.
 本発明に係る(メタ)アクリル系共重合体(B)[以下「成分(B)」ともいう。]は、水酸基価が50~300mgKOH/gであり、かつ、重量平均分子量が1500~6000の有機重合体である。成分(B)は、硬化性組成物において可塑剤として機能するものであり、組成物の硬化前は粘度を調整し、作業性を向上させるという作用を有する。また、組成物の硬化後は、硬化物の機械的物性を調整し、耐候性などの耐久性を高める作用を有する。
なお、本明細書において「(メタ)アクリル」とは「アクリル又はメタクリル」を意味する。
(Meth) acrylic copolymer (B) according to the present invention [hereinafter also referred to as “component (B)”. ] Is an organic polymer having a hydroxyl value of 50 to 300 mgKOH / g and a weight average molecular weight of 1500 to 6000. The component (B) functions as a plasticizer in the curable composition, and has an effect of adjusting workability and improving workability before the composition is cured. Moreover, after hardening of a composition, it has the effect | action which adjusts the mechanical physical property of hardened | cured material and improves durability, such as a weather resistance.
In the present specification, “(meth) acryl” means “acryl or methacryl”.
 成分(B)は、水酸基含有(メタ)アクリル系単量体と、その他の(メタ)アクリル系単量体との共重合体であって、(メタ)アクリル系単量体の1種又は2種以上を重合させる際に少量の水酸基含有(メタ)アクリル系単量体を共重合体成分としたものである。成分(B)の製造に使用する全単量体に対する水酸基含有(メタ)アクリル系単量体の割合は、成分(B)の水酸基価が50~300mgKOH/gに入るように調整する。 Component (B) is a copolymer of a hydroxyl group-containing (meth) acrylic monomer and another (meth) acrylic monomer, which is one or two (meth) acrylic monomers When polymerizing more than seeds, a small amount of a hydroxyl group-containing (meth) acrylic monomer is used as a copolymer component. The ratio of the hydroxyl group-containing (meth) acrylic monomer to the total monomers used in the production of component (B) is adjusted so that the hydroxyl value of component (B) falls within the range of 50 to 300 mgKOH / g.
 水酸基含有(メタ)アクリル系単量体としては、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、(メタ)アクリル酸ヒドロキシブチル及び(メタ)アクリル酸ヒドロキシエチルのε-カプロラクトン付加反応物等の(メタ)アクリル酸ヒドロキシアルキル類が挙げられる。この中でも、硬化性組成物の破断伸び、作業性の観点から、アクリル酸ヒドロキシエチルが好ましい。 Hydroxyl group-containing (meth) acrylic monomers include ε-caprolactone addition reaction of hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate and hydroxyethyl (meth) acrylate And (meth) acrylic acid hydroxyalkyl compounds. Among these, hydroxyethyl acrylate is preferable from the viewpoint of elongation at break and workability of the curable composition.
 その他の(メタ)アクリル系単量体としては、特に限定されないが、硬化物の機械的物性の観点から、炭素数1~8のアルキル基をエステル鎖に有する(メタ)アクリル酸アルキルエステルが好ましい。 The other (meth) acrylic monomers are not particularly limited, but (meth) acrylic acid alkyl esters having an alkyl group having 1 to 8 carbon atoms in the ester chain are preferable from the viewpoint of mechanical properties of the cured product. .
 炭素数1~8のアルキル基をエステル鎖に有する(メタ)アクリル酸アルキルエステルとしては、具体的には(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸s-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸ネオペンチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸シクロヘキシル等の(メタ)アクリル酸脂肪族アルキル、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸ジメチルアミノエチル、(メタ)アクリル酸クロロエチル、(メタ)アクリル酸トリフルオロエチル及び(メタ)アクリル酸テトラヒドロフルフリル等のヘテロ原子含有(メタ)アクリル酸エステル類が挙げられるが、これらに限らない。また、これらのうちの1種類又は2種類以上を重合してもよい。 Specific examples of the (meth) acrylic acid alkyl ester having an alkyl group having 1 to 8 carbon atoms in the ester chain include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, (meth ) Isopropyl acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, s-butyl (meth) acrylate, t-butyl (meth) acrylate, neopentyl (meth) acrylate, (meth) acrylic acid 2 -Aliphatic alkyl (meth) acrylates such as ethylhexyl, cyclohexyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, chloroethyl (meth) acrylate, (meth) acrylic Such as trifluoroethyl acid and tetrahydrofurfuryl (meth) acrylate Atom-containing (meth) acrylic acid esters include but are not limited to. Moreover, you may superpose | polymerize 1 type, or 2 or more types of these.
 成分(B)の製造は、通常のラジカル重合によって得ることができ、溶液重合、塊状重合、分散重合いずれの方法でもよく、また、近年開発されたリビングラジカル重合法でもよい。反応プロセスは、バッチ式、セミバッチ式、連続重合のいずれの方法でも良い。しかし、もっとも好ましくは150~350℃の高温連続重合方法により得られるものがよい。また、メルカプタン等の連鎖移動剤は耐候性の低下につながるため、使用しないことが好ましい。 Component (B) can be produced by ordinary radical polymerization, and any of solution polymerization, bulk polymerization, and dispersion polymerization may be used, and a living radical polymerization method developed in recent years may be used. The reaction process may be any of batch, semi-batch and continuous polymerization. However, it is most preferable that it is obtained by a high temperature continuous polymerization method at 150 to 350 ° C. Moreover, it is preferable not to use chain transfer agents such as mercaptans because they lead to a decrease in weather resistance.
 成分(B)を通常のラジカル重合により得る場合には、150~350℃の高温連続重合方法が好ましい。重合温度が150℃に満たない場合は、分岐反応が起こり分子量分布を広くし、分子量を下げるのに多量の開始剤や連鎖移動剤を必要とするため耐候性、耐熱性等の耐久性に悪影響を与える。また、除熱などの生産上の問題がおこることもある。他方350℃より高すぎると、分解反応が発生して重合液が着色したり、分子量が低下する。この温度範囲で重合することにより、分子量が適当で粘度が低く、無着色で夾雑物の少ない共重合体を効率よく製造することができる。すなわち、当該重合方法によれば、極微量の重合開始剤を使用すればよく、メルカプタンのような連鎖移動剤や、重合溶剤を使用する必要がなく、純度の高い共重合体が得られる。一般的に重合体中に均一に架橋性官能基が導入されることが、硬化性や耐侯性等の物性を保つ上で重要である。反応器に攪拌槽型反応器を用いれば組成分布(架橋性官能基の分布)や分子量分布の比較的狭い(メタ)アクリル酸エステル共重合体を得ることができるため好ましい。また、管状型反応器よりも連続攪拌槽型反応器を用いるプロセスが組成分布、分子量分布を狭くするのでより好ましい。 When the component (B) is obtained by ordinary radical polymerization, a high temperature continuous polymerization method at 150 to 350 ° C. is preferred. When the polymerization temperature is less than 150 ° C., branching reaction occurs and the molecular weight distribution is widened, and a large amount of initiator and chain transfer agent are required to lower the molecular weight, thus adversely affecting durability such as weather resistance and heat resistance. give. In addition, production problems such as heat removal may occur. On the other hand, if it is higher than 350 ° C., a decomposition reaction occurs and the polymerization solution is colored or the molecular weight is lowered. By polymerizing in this temperature range, it is possible to efficiently produce a copolymer having an appropriate molecular weight, a low viscosity, no coloration and little impurities. That is, according to the polymerization method, a very small amount of polymerization initiator may be used, and it is not necessary to use a chain transfer agent such as mercaptan or a polymerization solvent, and a highly pure copolymer can be obtained. In general, it is important to uniformly introduce a crosslinkable functional group into a polymer in order to maintain physical properties such as curability and weather resistance. It is preferable to use a stirred tank reactor as the reactor because a (meth) acrylic acid ester copolymer having a relatively narrow composition distribution (distribution of crosslinkable functional groups) and molecular weight distribution can be obtained. Also, a process using a continuous stirred tank reactor is more preferable than a tubular reactor because the composition distribution and molecular weight distribution are narrowed.
 高温連続重合法としては、特開昭57-502171号公報、特開昭59-6207号公報、特開昭60-215007号公報等に開示された公知の方法に従えば良い。例えば、加圧可能な反応機を溶媒で満たし、加圧下で所定温度に設定した後、各単量体、及び必要に応じて重合溶媒とからなる単量体混合物を一定の供給速度で反応機へ供給し、単量体混合物の供給量に見合う量の重合液を抜き出す方法が挙げられる。また、単量体混合物には、必要に応じて重合開始剤を配合することもできる。その配合する場合の配合量としては、単量体混合物100質量部に対して0.001~2質量部であることが好ましい。圧力は、反応温度と使用する単量体混合物及び溶媒の沸点に依存するもので、反応に影響を及ぼさないが、前記反応温度を維持できる圧力であればよい。単量体混合物の滞留時間は、1~60分であることが好ましい。滞留時間が1分に満たない場合は単量体が充分に反応しない恐れがあり、未反応単量体が60分を越える場合は、生産性が悪くなってしまうことがある。好ましい滞留時間は2~40分である。 As the high temperature continuous polymerization method, a known method disclosed in JP-A-57-502171, JP-A-59-6207, JP-A-60-215007, or the like may be used. For example, after filling a pressurizable reactor with a solvent and setting it to a predetermined temperature under pressure, the reactor is charged with a monomer mixture composed of each monomer and, if necessary, a polymerization solvent at a constant supply rate. And a method of extracting a polymerization solution in an amount commensurate with the supply amount of the monomer mixture. Moreover, a polymerization initiator can also be mix | blended with a monomer mixture as needed. The blending amount when blended is preferably 0.001 to 2 parts by mass with respect to 100 parts by mass of the monomer mixture. The pressure depends on the reaction temperature, the monomer mixture used and the boiling point of the solvent, and does not affect the reaction, but may be any pressure that can maintain the reaction temperature. The residence time of the monomer mixture is preferably 1 to 60 minutes. If the residence time is less than 1 minute, the monomer may not sufficiently react, and if the unreacted monomer exceeds 60 minutes, the productivity may deteriorate. The preferred residence time is 2 to 40 minutes.
 成分(B)の水酸基価は、50~300mgKOH/gであり、好ましくは70~130mgKOH/gであり、より好ましくは90~120mgKOH/gである。水酸基価が50mgKOH/g未満では破断伸びが不十分であり、300mgKOH/gを超えると高粘度になるため、可塑剤としての効果が低下し、硬化性組成物の作業性が低下する。また、耐候性も低下する。なお、本願発明における水酸基価は、JIS K 0070によって求めた値である。 The hydroxyl value of component (B) is 50 to 300 mgKOH / g, preferably 70 to 130 mgKOH / g, more preferably 90 to 120 mgKOH / g. If the hydroxyl value is less than 50 mgKOH / g, the elongation at break is insufficient, and if it exceeds 300 mgKOH / g, the viscosity becomes high, so that the effect as a plasticizer is lowered and the workability of the curable composition is lowered. In addition, the weather resistance also decreases. The hydroxyl value in the present invention is a value determined according to JIS K 0070.
 成分(B)の重量平均分子量は、GPCによるポリスチレン換算分子量で1500~6000であり、好ましくは1500~5000であり、より好ましくは1500~3000である。重量平均分子量が1500未満では耐候性が不十分になる場合があり、6000を超えると高粘度になるため、可塑剤としての効果が低下し、硬化性組成物の作業性が低下する。 The weight average molecular weight of the component (B) is 1500 to 6000, preferably 1500 to 5000, more preferably 1500 to 3000, in terms of polystyrene by GPC. When the weight average molecular weight is less than 1500, the weather resistance may be insufficient. When the weight average molecular weight exceeds 6000, the viscosity becomes high, so that the effect as a plasticizer is lowered and the workability of the curable composition is lowered.
 成分(B)の25℃における粘度は、500~15000mPa・sであることが好ましく、より好ましく800~12000mPa・sである。粘度が500mPa・s未満では施工時にタレが生じる場合があり、15000mPa・sを超えると硬化性組成物の作業性が悪くなる。 The viscosity of component (B) at 25 ° C. is preferably 500 to 15000 mPa · s, more preferably 800 to 12000 mPa · s. If the viscosity is less than 500 mPa · s, sagging may occur during construction, and if it exceeds 15000 mPa · s, the workability of the curable composition is deteriorated.
 成分(B)のガラス転移温度は、-10℃以下が好ましく、より好ましくは-20℃以下である。ガラス転移温度が-10℃以上であると、冬季に硬化性組成物のゴム弾性が不足し易く、また作業性も悪くなる。 The glass transition temperature of component (B) is preferably −10 ° C. or lower, more preferably −20 ° C. or lower. When the glass transition temperature is −10 ° C. or higher, the rubber elasticity of the curable composition tends to be insufficient in winter, and the workability also deteriorates.
 本発明に係る硬化性組成物における成分(B)の含有量は、成分(A)100質量部に対し20~200質量部であり、好ましくは30~150質量部であり、より好ましくは40~130質量部である。成分(B)の含有量が20質量部未満では硬化性組成物の作業性が悪くなり、200質量部を超えると硬化性組成物の架橋密度が低下し、耐久性が低くなる場合がある。 The content of the component (B) in the curable composition according to the present invention is 20 to 200 parts by weight, preferably 30 to 150 parts by weight, more preferably 40 to 40 parts by weight with respect to 100 parts by weight of the component (A). 130 parts by mass. When the content of the component (B) is less than 20 parts by mass, the workability of the curable composition is deteriorated, and when it exceeds 200 parts by mass, the crosslinking density of the curable composition is lowered and the durability may be lowered.
 本発明に係る硬化性組成物は、前記成分(A)及び(B)以外の成分を含むことができる。係る成分としては、充填材、チクソ性付与剤、老化防止剤、硬化促進剤、密着増強剤、脱水剤等が含まれる。 The curable composition according to the present invention may contain components other than the components (A) and (B). Such components include fillers, thixotropic agents, anti-aging agents, curing accelerators, adhesion enhancing agents, dehydrating agents and the like.
 充填材としては、平均粒径0.02~2.0μm程度の軽質炭酸カルシウム、平均粒径1.0~5.0μm程度の重質炭酸カルシウム、酸化チタン、カーボンブラック、合成ケイ酸、タルク、ゼオライト、マイカ、シリカ、焼成クレー、カオリン、ベントナイト、水酸化アルミニウム及び硫酸バリウム、ガラスバルーン、シリカバルーン、ポリメタクリル酸メチルバルーンが例示される。これら充填材により、硬化物の機械的な性質が改善され、強度や伸度を向上することができる。
この中でも、物性改善の効果が高い、軽質炭酸カルシウム、重質炭酸カルシウム及び酸化チタンが好ましく、軽質炭酸カルシウムと重質炭酸カルシウムとの混合物がより好ましい。充填材の添加量は、成分(A)及び成分(B)の合計量100質量部を基準として、20~300質量部が好ましく、より好ましくは、50~200質量部である。前記のように軽質炭酸カルシウムと重質炭酸カルシウムの混合物とする場合には、軽質炭酸カルシウム/重質炭酸カルシウム=90/10~50/50であることが好ましい。
充填材の量は、少なすぎても多すぎてもの機械的性質が損なわれることがある。
Fillers include light calcium carbonate with an average particle size of about 0.02 to 2.0 μm, heavy calcium carbonate with an average particle size of about 1.0 to 5.0 μm, titanium oxide, carbon black, synthetic silicic acid, talc, Examples include zeolite, mica, silica, calcined clay, kaolin, bentonite, aluminum hydroxide and barium sulfate, glass balloon, silica balloon, and polymethyl methacrylate balloon. With these fillers, the mechanical properties of the cured product are improved, and the strength and elongation can be improved.
Among these, light calcium carbonate, heavy calcium carbonate, and titanium oxide, which are highly effective in improving physical properties, are preferable, and a mixture of light calcium carbonate and heavy calcium carbonate is more preferable. The amount of filler added is preferably 20 to 300 parts by weight, more preferably 50 to 200 parts by weight, based on 100 parts by weight of the total amount of component (A) and component (B). As described above, when a mixture of light calcium carbonate and heavy calcium carbonate is used, it is preferable that light calcium carbonate / heavy calcium carbonate = 90/10 to 50/50.
If the amount of filler is too small or too large, the mechanical properties may be impaired.
 さらに、ベンゾフェノン系化合物、ベンゾトリアゾール系化合物及び蓚酸アニリド系化合物などの紫外線吸収剤、ヒンダードアミン系化合物などの光安定剤、ヒンダードフェノール系などの酸化防止剤、又はこれらの混合物である老化防止剤、ジブチル錫ジラウレート、ジブチル錫ジアセテート、ジブチル錫ジアセトアセトナート等の錫系硬化促進剤、アマイドワックス系、シリカ系のチクソ性付与剤、アミノシラン、エポキシシラン等の密着性付与剤、ビニルシラン、メチルシラン類やオルト蟻酸メチル及びオルト酢酸メチルなどの脱水剤、さらには有機溶剤を配合しても良い。 Further, an ultraviolet absorber such as a benzophenone compound, a benzotriazole compound and an oxalic acid anilide compound, a light stabilizer such as a hindered amine compound, an antioxidant such as a hindered phenol, or an antioxidant that is a mixture thereof, Tin curing accelerators such as dibutyltin dilaurate, dibutyltin diacetate, dibutyltin diacetacetonate, amide wax, silica-based thixotropy imparting agent, adhesion imparting agents such as aminosilane, epoxysilane, vinylsilane, methylsilanes Or a dehydrating agent such as methyl orthoformate and methyl orthoacetate, or an organic solvent.
 紫外線吸収剤としては、チバスペシャリティケミカルズ社製の商品名「チヌビン571」、「チヌビン1130」、「チヌビン327」が例示される。光安定剤としては、同社製の商品名「チヌビン292」、「チヌビン144」、「チヌビン123」、三共社製の商品名「サノール770」が例示される。熱安定剤としては、チバスペシャリティケミカルズ社製の商品名「イルガノックス1135」、「イルガノックス1520」、「イルガノックス1330」が例示される。紫外線吸収剤/光安定剤/熱安定剤の混合物;チバスペシャリティケミカルズ社製の商品名「チヌビンB75」を使用しても良い。 Examples of the ultraviolet absorber include trade names “Tinubin 571”, “Tinubin 1130”, and “Tinubin 327” manufactured by Ciba Specialty Chemicals. Examples of the light stabilizer include trade names “Tinuvin 292”, “Tinuvin 144”, “Tinuvin 123” manufactured by the same company, and a trade name “Sanol 770” manufactured by Sankyo. Examples of the heat stabilizer include trade names “Irganox 1135”, “Irganox 1520”, and “Irganox 1330” manufactured by Ciba Specialty Chemicals. Mixture of ultraviolet absorber / light stabilizer / heat stabilizer; trade name “Tinubin B75” manufactured by Ciba Specialty Chemicals may be used.
 錫系触媒としては、日東化成社製の商品名「U28」、「U100」、「U200」、「U220」、「U303」、「SCAT-7」、「SCAT-46A」及び三共有機合成社製の商品名「No918」が例示される。チクソ性付与剤としては、楠本化成社製の商品名「ディスパロン3600N」、「ディスパロン3800」、「ディスパロン305」、「ディスパロン6500」が例示される。 As the tin-based catalyst, trade names “U28”, “U100”, “U200”, “U220”, “U303”, “SCAT-7”, “SCAT-46A” manufactured by Nitto Kasei Co., Ltd. The product name “No. 918” is exemplified. Examples of the thixotropic agent include trade names “Dispalon 3600N”, “Dispalon 3800”, “Dispalon 305”, and “Dispalon 6500” manufactured by Enomoto Kasei Co., Ltd.
 タック防止剤としては、アクリル系オリゴマーである東亞合成社製の商品名「アロニックスM8030」、「M8060」、「M8100」、「M309」、又は光重合開始剤との混合物、桐油、亜麻仁油などの不飽和脂肪酸油、出光石油社製の商品名「R15HT」、日本曹達社製の商品名「PBB3000」、日本合成化学社製の商品名「ゴーセラック500B」などが例示される。 Anti-tacking agents include trade names “Aronix M8030”, “M8060”, “M8100”, “M309” manufactured by Toagosei Co., Ltd., which are acrylic oligomers, or mixtures with photopolymerization initiators, tung oil, linseed oil Examples include unsaturated fatty acid oils, trade name “R15HT” manufactured by Idemitsu Petrochemical Co., Ltd., trade name “PBB3000” manufactured by Nippon Soda Co., Ltd., and trade name “GOSELAC 500B” manufactured by Nippon Synthetic Chemical.
 アミノシランとしては、信越シリコーン社製の商品名「KBM602」、「KBM603」、「KBE602」、「KBE603」、「KBM903」、「KBE903」などが例示される。 Examples of aminosilanes include “KBM602”, “KBM603”, “KBE602”, “KBE603”, “KBM903”, and “KBE903” manufactured by Shin-Etsu Silicone.
 本発明に係る硬化性組成物は、以上のような成分を含有するが、その製造方法は、特に限定されるものではない。具体的には、攪拌装置、遊星式攪拌装置等を用いて、混合することにより製造することができる。 The curable composition according to the present invention contains the above components, but the production method is not particularly limited. Specifically, it can be produced by mixing using a stirrer, a planetary stirrer, or the like.
 本発明の硬化性組成物は、すべての配合成分を予め配合密封保存し、塗布後空気中の湿分を吸収することにより硬化する1成分型として調製することも可能であり、硬化剤として別途硬化触媒、充填材、可塑剤、水等の成分を配合しておき、該配合材と重合体組成物を使用前に混合する2成分型として調整することもできる。取り扱いが容易で、塗布時のミスも少ない1成分型がより好ましい。 The curable composition of the present invention can also be prepared as a one-component type that cures by preliminarily blending and storing all the blended components and absorbing moisture in the air after coating, and is separately prepared as a curing agent. Components such as a curing catalyst, a filler, a plasticizer, and water may be blended, and the blended material and the polymer composition may be adjusted as a two-component type that is mixed before use. A one-component type that is easy to handle and has few errors during coating is more preferable.
 本発明について、合成例及び実施例に基づいてより具体的に説明するが、本発明はこれに限定されるものではない。当業者は本発明の範囲を逸脱することなく、種々の変更及び修正を行うことができる。なお、本実施例において、重合体及び硬化性組成物の評価は以下のようにして行った。また、以下において、「部」とは質量部を意味する。 The present invention will be described more specifically based on synthesis examples and examples, but the present invention is not limited thereto. Those skilled in the art can make various changes and modifications without departing from the scope of the present invention. In this example, the polymer and the curable composition were evaluated as follows. In the following, “parts” means parts by mass.
〔分子量〕
 装置: HLC-8120(東ソー社製)
 カラム: TSKgel SuperMultiporeHZ-M 4本(東ソー社製)
 カラム温度: 40℃
 溶離液: テトラヒドロフラン 0.35ml/min
 検出器: RI
 GPCにより測定した分子量をポリスチレンの分子量を基準にして換算した。
[Molecular weight]
Apparatus: HLC-8120 (manufactured by Tosoh Corporation)
Column: 4 TSKgel SuperMultipore HZ-M (manufactured by Tosoh Corporation)
Column temperature: 40 ° C
Eluent: Tetrahydrofuran 0.35ml / min
Detector: RI
The molecular weight measured by GPC was converted based on the molecular weight of polystyrene.
〔水酸基価〕
本発明における水酸基価は、JIS K 0070に準じて測定した。
[Hydroxyl value]
The hydroxyl value in the present invention was measured according to JIS K 0070.
〔粘度〕
本発明における粘度は、25℃、5rpmの条件下にE型粘度計にて測定した。
〔viscosity〕
The viscosity in the present invention was measured with an E-type viscometer under the conditions of 25 ° C. and 5 rpm.
〔作業性〕
 硬化性組成物を塗布する際の作業性(塗布しやすさ)を次の判定基準で評価した。
○:良好、△:やや悪い、×:大変悪い
〔Workability〕
The workability (ease of application) when applying the curable composition was evaluated according to the following criteria.
○: Good, △: Somewhat bad, ×: Very bad
〔引張り試験〕
 硬化性組成物を厚さ2mmで塗布し、23℃、50%RHの条件下で1週間養生して硬化シートを作成した。得られた硬化物より引張り試験用ダンベル(JIS K 6251 3号型)を作成し、引張り試験機(東洋精機社製、テンシロン200)により破断強度、破断伸びを測定した。
 測定環境:23℃、50%RH
 引張速度:50mm/分
[Tensile test]
The curable composition was applied at a thickness of 2 mm, and cured for one week under conditions of 23 ° C. and 50% RH to prepare a cured sheet. A tensile test dumbbell (JIS K 6251 No. 3 type) was prepared from the obtained cured product, and the breaking strength and breaking elongation were measured with a tensile tester (manufactured by Toyo Seiki Co., Ltd., Tensilon 200).
Measurement environment: 23 ° C, 50% RH
Tensile speed: 50 mm / min
〔耐熱性試験〕
 上記硬化シートの一部を150℃のオーブンに入れ、24時間後に取り出し、表面状態を観察した。変化なしを○、変化ありを×とした。
[Heat resistance test]
A part of the cured sheet was put in an oven at 150 ° C., taken out after 24 hours, and the surface state was observed. No change was indicated by ○, and change was indicated by ×.
〔耐候性試験〕
 硬化性組成物を厚さ0.4mmで塗布し、23℃、50%RHの条件下で1週間養生して硬化シートを作製した。メタリングウェザーメーター(DAIPLA METALWEATHER KU-R5NCI-A、ダイプラ・ウィンテス社製)で促進耐候性試験を行い、外観にクラック、ブリード等の異常が生じ始めた時間を記録した。
[Weather resistance test]
The curable composition was applied at a thickness of 0.4 mm, and cured for one week under the conditions of 23 ° C. and 50% RH to prepare a cured sheet. An accelerated weather resistance test was performed with a metering weather meter (DAIPLA METALWEATHER KU-R5NCI-A, manufactured by Daipura Wintes Co., Ltd.), and the time when abnormalities such as cracks and bleeds began to appear was recorded.
〔成分(A)の合成例〕
(重合体A)  オイルジャケットを備えた容量1リットルの加圧式攪拌槽型反応器にアクリル酸ブチル(以下「BA」ともいう。)500質量部、リビング重合開始剤[式(2)]7.5質量部、3-グリシドキシプロピルトリメトキシシラン5.6質量部、テトラブチルアンモニウムブロマイド(以下「TBAB」ともいう。)3.6質量部からなる混合液を仕込み、混合液は窒素バブリングで十分に脱気された。ジャケット温度を120℃に上昇させ重合反応を開始し、反応液温度が120℃保たれるようジャケット温度は調整された。6時間後にBAの重合率は90%であった。そこへ3-メタクリロキシプロピルトリメトキシシラン(以下「MTMS」ともいう。)4.9質量部添加し、120℃のまま4時間反応させた。この時点でのBAの重合率は99%、MTMSの重合率は79%であった。冷却後、反応液を抜き出し、減圧度0.3kPa、90℃で5時間かけ蒸発機で減圧乾燥し、約490質量部の重合体を得た。重合体の性状はMw32400、Mn23100、Mw/Mn1.4、E型粘度(25℃)152000mPa・sであった。また酸価0.2mgKOH/gとなり、リビング重合開始剤[式(2)]のカルボキシル基の反応率は88%となった。重合体の高分子鎖1本あたりのアルコキシシリル基数f(Si)は1.7であった。
[Synthesis Example of Component (A)]
(Polymer A) A 1-liter pressurized stirred tank reactor equipped with an oil jacket is charged with 500 parts by mass of butyl acrylate (hereinafter also referred to as “BA”), a living polymerization initiator [Formula (2)]. A mixed liquid consisting of 5 parts by mass, 5.6 parts by mass of 3-glycidoxypropyltrimethoxysilane, and 3.6 parts by mass of tetrabutylammonium bromide (hereinafter also referred to as “TBAB”) was charged, and the mixed liquid was subjected to nitrogen bubbling. Fully evacuated. The jacket temperature was raised to 120 ° C. to initiate the polymerization reaction, and the jacket temperature was adjusted so that the reaction solution temperature was maintained at 120 ° C. After 6 hours, the polymerization rate of BA was 90%. Thereto was added 4.9 parts by mass of 3-methacryloxypropyltrimethoxysilane (hereinafter also referred to as “MTMS”), and the mixture was reacted at 120 ° C. for 4 hours. At this time, the polymerization rate of BA was 99%, and the polymerization rate of MTMS was 79%. After cooling, the reaction solution was taken out and dried under reduced pressure with an evaporator at a reduced pressure of 0.3 kPa and 90 ° C. for 5 hours to obtain about 490 parts by mass of a polymer. The properties of the polymer were Mw32400, Mn23100, Mw / Mn1.4, E-type viscosity (25 ° C.) 152000 mPa · s. The acid value was 0.2 mgKOH / g, and the reaction rate of the carboxyl group of the living polymerization initiator [Formula (2)] was 88%. The number of alkoxysilyl groups f (Si) per one polymer chain of the polymer was 1.7.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(重合体B)  オイルジャケットを備えた容量1リットルの加圧式攪拌槽型反応器にBA360質量部、リビング重合開始剤[式(2)]9.0質量部、酢酸ブチル(以下「BAc」ともいう。)108質量部、3-グリシドキシプロピルトリメトキシシラン6.1質量部、TBAB1.8質量部からなる混合液を仕込み、混合液は窒素バブリングで十分に脱気された。ジャケット温度を120℃に上昇させ重合反応を開始し、反応液温度が120℃保たれるようジャケット温度は調整された。6時間後にBAの重合率は88%であった。そこへMTMS6.5質量部添加し、120℃のまま4時間反応させた。この時点でのBAの重合率は95%、MTMSの重合率は98%であった。冷却後、反応液を抜き出し、減圧度0.3kPa、90℃で5時間かけ蒸発機で減圧乾燥し、約320質量部の重合体を得た。重合体の性状はMw39900、Mn14800、Mw/Mn2.7、E型粘度(25℃)354000mPa・sであった。リビング重合開始剤[式(2)]のカルボキシル基の反応率は97%となった。重合体の高分子鎖1本あたりのアルコキシシリル基数f(Si)は1.9であった。 (Polymer B) A pressurized stirring tank reactor having a capacity of 1 liter equipped with a soot oil jacket was charged with 360 parts by weight of BA, 9.0 parts by weight of a living polymerization initiator [Formula (2)], and butyl acetate (hereinafter referred to as “BAc”). This was mixed with 108 parts by mass, 6.1 parts by mass of 3-glycidoxypropyltrimethoxysilane, and 1.8 parts by mass of TBAB, and the mixture was sufficiently deaerated by nitrogen bubbling. The jacket temperature was raised to 120 ° C. to initiate the polymerization reaction, and the jacket temperature was adjusted so that the reaction solution temperature was maintained at 120 ° C. After 6 hours, the polymerization rate of BA was 88%. MTMS 6.5 mass part was added there, and it was made to react with it at 120 degreeC for 4 hours. At this time, the polymerization rate of BA was 95%, and the polymerization rate of MTMS was 98%. After cooling, the reaction solution was taken out and dried under reduced pressure with an evaporator at a reduced pressure of 0.3 kPa and 90 ° C. for 5 hours to obtain about 320 parts by mass of a polymer. The properties of the polymer were Mw 39900, Mn 14800, Mw / Mn 2.7, E-type viscosity (25 ° C.) 354000 mPa · s. The reaction rate of the carboxyl group of the living polymerization initiator [Formula (2)] was 97%. The number of alkoxysilyl groups f (Si) per one polymer chain of the polymer was 1.9.
(重合体C)  オイルジャケットを備えた容量1リットルの加圧式攪拌槽型反応器にBA500質量部、リビング重合開始剤[式(2)]7.5質量部、3-グリシドキシプロピルトリメトキシシラン5.6質量部、TBAB1.3質量部からなる混合液を仕込み、混合液は窒素バブリングで十分に脱気された。ジャケット温度を120℃に上昇させ重合反応を開始し、反応液温度が120℃保たれるようジャケット温度は調整された。6時間後にBAの重合率は89%であった。そこへ3-メタクリロキシプロピルメチルジメトキシシラン(以下「MDMS」ともいう。)4.9質量部添加し、120℃のまま4時間反応させた。この時点でのBAの重合率は99%、MDMSの重合率は79%であった。冷却後、反応液を抜き出し、減圧度0.3kPa、90℃で5時間かけ蒸発機で減圧乾燥し、約490質量部の重合体を得た。重合体の性状はMw28100、Mn17000、Mw/Mn1.7、E型粘度(25℃)94000mPa・sであった。また酸価0.3mgKOH/gとなり、リビング重合開始剤[式(2)]のカルボキシル基の反応率は78%となった。重合体の高分子鎖1本あたりのアルコキシシリル基数f(Si)は1.6であった。 (Polymer C) In a 1 liter pressurized stirred tank reactor equipped with a soot oil jacket, 500 parts by mass of BA, 7.5 parts by mass of a living polymerization initiator [Formula (2)], 3-glycidoxypropyltrimethoxy A liquid mixture consisting of 5.6 parts by mass of silane and 1.3 parts by mass of TBAB was charged, and the liquid mixture was sufficiently degassed by nitrogen bubbling. The jacket temperature was raised to 120 ° C. to initiate the polymerization reaction, and the jacket temperature was adjusted so that the reaction solution temperature was maintained at 120 ° C. After 6 hours, the polymerization rate of BA was 89%. 4.9 parts by mass of 3-methacryloxypropylmethyldimethoxysilane (hereinafter also referred to as “MDMS”) was added thereto, and the mixture was reacted at 120 ° C. for 4 hours. At this time, the polymerization rate of BA was 99%, and the polymerization rate of MDMS was 79%. After cooling, the reaction solution was taken out and dried under reduced pressure with an evaporator at a reduced pressure of 0.3 kPa and 90 ° C. for 5 hours to obtain about 490 parts by mass of a polymer. The properties of the polymer were Mw28100, Mn17000, Mw / Mn1.7, E-type viscosity (25 ° C.) 94000 mPa · s. The acid value was 0.3 mgKOH / g, and the reaction rate of the carboxyl group of the living polymerization initiator [Formula (2)] was 78%. The number of alkoxysilyl groups f (Si) per one polymer chain of the polymer was 1.6.
〔成分(B)の合成例〕
<合成例1>
 オイルジャケットを備えた容量1000mlの加圧式攪拌槽型反応器の温度を200℃に保った。次いで、反応器の圧力を一定(2.3MPa)に保ちながら、アクリル酸2-エチルヘキシル(以下「HA」ともいう。)を87.5部、アクリル酸2-ヒドロキシエチル(以下「HEA」ともいう。)12.5部、イソプロピルアルコール(以下「IPA」ともいう。)10部、重合開始剤としてジターシャリーブチルパーオキサイドを1.5部からなる単量体混合物を、一定の供給速度(48g/分、滞留時間:12分)で原料タンクから反応器に連続供給を開始し、単量体混合物の供給量に相当する反応液を出口から連続的に抜き出した。反応開始直後に、一旦反応温度が低下した後、重合熱による温度上昇が認められたが、オイルジャケット温度を制御することにより、反応温度を246~248℃に保持した。
 単量体混合物の供給開始から温度が安定した時点を、反応液の採取開始点とし、これから25分間反応を継続した結果、1.2kgの単量体混合液を供給し、1.2kgの反応液を回収した。その後反応液を薄膜蒸発器に導入して、未反応モノマー等の揮発成分を分離して濃縮液を得た。溶媒としてテトラヒドロフランを使用し、GPCで測定したポリスチレン換算の数平均分子量(以下「Mn」ともいう。)は1310、重量平均分子量(以下「Mw」ともいう。)は2140であった。また、水酸基価は50mgKOH/gであった。反応により得た成分(B)を「重合体1」という。
[Synthesis Example of Component (B)]
<Synthesis Example 1>
The temperature of a 1000 ml capacity pressurized stirred tank reactor equipped with an oil jacket was kept at 200 ° C. Next, while maintaining the reactor pressure constant (2.3 MPa), 87.5 parts of 2-ethylhexyl acrylate (hereinafter also referred to as “HA”) and 2-hydroxyethyl acrylate (hereinafter also referred to as “HEA”) are used. ) 12.5 parts, isopropyl alcohol (hereinafter also referred to as “IPA”) 10 parts, a monomer mixture comprising 1.5 parts of ditertiary butyl peroxide as a polymerization initiator, at a constant feed rate (48 g / Min., Residence time: 12 minutes), continuous supply from the raw material tank to the reactor was started, and a reaction liquid corresponding to the supply amount of the monomer mixture was continuously withdrawn from the outlet. Immediately after the start of the reaction, once the reaction temperature decreased, a temperature increase due to the heat of polymerization was observed, but the reaction temperature was maintained at 246 to 248 ° C. by controlling the oil jacket temperature.
The time when the temperature was stabilized after the start of the monomer mixture supply was taken as the reaction liquid collection start point, and the reaction was continued for 25 minutes. As a result, 1.2 kg of the monomer mixture was supplied and 1.2 kg of the reaction was started. The liquid was collected. Thereafter, the reaction solution was introduced into a thin film evaporator to separate volatile components such as unreacted monomers to obtain a concentrated solution. Tetrahydrofuran was used as the solvent, and the polystyrene-equivalent number average molecular weight (hereinafter also referred to as “Mn”) measured by GPC was 1310, and the weight average molecular weight (hereinafter also referred to as “Mw”) was 2140. The hydroxyl value was 50 mgKOH / g. The component (B) obtained by the reaction is referred to as “polymer 1”.
<合成例2~5、7、9~11>
 表1に示した条件に変更した以外は合成例1と同様に重合および処理を行い、成分(B)を合成した。得られた重合体をそれぞれ重合体2~5、7、9~11という。これら重合体の評価結果を表1に合わせて示した。評価方法は次の通りである。
なお、表1における「4HBA」とは、アクリル酸4-ヒドロキシブチルである。
<Synthesis Examples 2-5, 7, 9-11>
Polymerization and treatment were carried out in the same manner as in Synthesis Example 1 except that the conditions shown in Table 1 were changed, and component (B) was synthesized. The obtained polymers are referred to as polymers 2 to 5, 7, and 9 to 11, respectively. The evaluation results of these polymers are shown in Table 1. The evaluation method is as follows.
In Table 1, “4HBA” is 4-hydroxybutyl acrylate.
<合成例6>
 単量体混合物としてHAを37部、HEAを63部、IPA50部、重合開始剤としてジターシャリーブチルパーオキサイドを3部に変更する以外は合成例1と同様に重合および処理を行い、共重合体を合成した。Mwは1500であった。また、水酸基価は250mgKOH/gであった。反応により得た共重合体を「重合体6」という。
<Synthesis Example 6>
Copolymerization and treatment were carried out in the same manner as in Synthesis Example 1 except that 37 parts of HA as the monomer mixture, 63 parts of HEA, 50 parts of IPA, and 3 parts of ditertiary butyl peroxide as the polymerization initiator were changed. Was synthesized. Mw was 1500. The hydroxyl value was 250 mgKOH / g. The copolymer obtained by the reaction is referred to as “polymer 6”.
<合成例8>
 滴下ロート、窒素導入管、温度計、攪拌機の付いた3リットルフラスコに、溶剤としてメチルエチルケトン(以下「MEK」という。)500部を仕込み、窒素置換しながら80℃まで昇温した。温度が一定になったことを確認後、HA800部、HEA200部、ドデシルメルカプタンを181部、MEK200部及びアゾビスイソブチロニトリル30部の混合物を4時間かけて滴下した。さらに、1時間攪拌後重合を停止して、MEKを留去後に液状の共重合体を1070部得た。Mn=1200、Mw=2200であった。反応により得た共重合体を「重合体8」という。
<Synthesis Example 8>
Into a 3 liter flask equipped with a dropping funnel, a nitrogen introduction tube, a thermometer, and a stirrer, 500 parts of methyl ethyl ketone (hereinafter referred to as “MEK”) was charged as a solvent, and the temperature was raised to 80 ° C. while purging with nitrogen. After confirming that the temperature became constant, a mixture of 800 parts HA, 200 parts HEA, 181 parts dodecyl mercaptan, 200 parts MEK and 30 parts azobisisobutyronitrile was added dropwise over 4 hours. Furthermore, after stirring for 1 hour, the polymerization was stopped, and after MEK was distilled off, 1070 parts of a liquid copolymer was obtained. Mn = 1200 and Mw = 2200. The copolymer obtained by the reaction is referred to as “polymer 8”.
<合成例12>
 単量体混合物としてBAを52部、HAを30部、HEAを18部、IPAを12部、MOA8部、MEKを10部、重合開始剤としてジターシャリーヘキシルパーオキサイドを0.2部に変更し、反応温度を169~171℃に変更する以外は合成例1と同様に重合および処理を行い、共重合体を合成した。Mnは3360、Mwは9800であった。反応により得た共重合体を「重合体12」という。
<Synthesis Example 12>
The monomer mixture was changed to 52 parts BA, 30 parts HA, 18 parts HEA, 12 parts IPA, 8 parts MOA, 10 parts MEK, and 0.2 part ditertiary hexyl peroxide as a polymerization initiator. A copolymer was synthesized by performing polymerization and treatment in the same manner as in Synthesis Example 1 except that the reaction temperature was changed to 169 to 171 ° C. Mn was 3360 and Mw was 9800. The copolymer obtained by the reaction is referred to as “polymer 12”.
<合成例13>
 単量体混合物としてHAを80部、HEAを20部、IPA50部、重合開始剤としてジターシャリーブチルパーオキサイドを3部に変更し、反応温度を249~251℃に変更する以外は合成例1と同様に重合および処理を行い、共重合体を合成した。Mwは1000であった。反応により得た共重合体を「重合体13」という。
<Synthesis Example 13>
Synthetic Example 1 except that the monomer mixture is changed to 80 parts HA, 20 parts HEA, 50 parts IPA, 3 parts ditertiary butyl peroxide as the polymerization initiator, and the reaction temperature is changed to 249-251 ° C. Polymerization and treatment were performed in the same manner to synthesize a copolymer. Mw was 1000. The copolymer obtained by the reaction is referred to as “polymer 13”.
<合成例14>
 単量体混合物としてHAを82部、HEAを18部、MEK10部、IPA3部、重合開始剤としてジターシャリーブチルパーオキサイドを1.5部に変更し、反応温度を204~206℃に変更する以外は合成例1と同様に重合および処理を行い、共重合体を合成した。Mwは5820であった。反応により得た共重合体を「重合体14」という。
<Synthesis Example 14>
82 parts HA as monomer mixture, 18 parts HEA, 10 parts MEK, 3 parts IPA, ditertiary butyl peroxide as polymerization initiator to 1.5 parts, and reaction temperature to 204-206 ° C Was polymerized and treated in the same manner as in Synthesis Example 1 to synthesize a copolymer. Mw was 5820. The copolymer obtained by the reaction is referred to as “polymer 14”.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<実施例1~12、比較例1~8>
 実施例及び比較例の組成、並びに組成物の評価結果を表2、3に示す。
表2、3において、重合体以外の成分は次のものを使用した。
 合成炭酸カルシウム:白石カルシウム社製 商品名「白艶華CCR」
 重質炭酸カルシウム:丸尾カルシウム社製 商品名「スーパーSS」
 酸化チタン:石原産業社製 商品名「R-820」
 老化防止剤:チバスペシャリティケミカルズ社製 商品名「チヌビンB75」
 脱水剤:ビニルシラン
 密着性付与剤:N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン
 硬化促進剤:ジブチル錫ジアセチルアセトナート
以上の組成物につき以下の評価を実施した。
なお、比較例3の組成物は、粘度が高すぎ、評価用の試験片を作成することができなかった。
<Examples 1 to 12, Comparative Examples 1 to 8>
The compositions of Examples and Comparative Examples and the evaluation results of the compositions are shown in Tables 2 and 3.
In Tables 2 and 3, the following components were used other than the polymer.
Synthetic calcium carbonate: Shiraishi Calcium Co., Ltd.
Heavy calcium carbonate: Maruo Calcium Co., Ltd. Trade name “Super SS”
Titanium oxide: Product name “R-820” manufactured by Ishihara Sangyo Co., Ltd.
Anti-aging agent: Product name “Tinubin B75” manufactured by Ciba Specialty Chemicals
Dehydrating agent: Vinylsilane Adhesion imparting agent: N-2- (aminoethyl) -3-aminopropyltrimethoxysilane Curing accelerator: Dibutyltin diacetylacetonate
In addition, the composition of the comparative example 3 had too high a viscosity, and could not produce the test piece for evaluation.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 以上のように、本発明の硬化性組成物は、リビングラジカル重合法により製造される加水分解性シリル基を有するビニル系共重合体及び特定の水酸基価と重量平均分子量を有する(メタ)アクリル系共重合体を含有するため、大気中の水分などによって室温で硬化し、得られた硬化物は高い破断伸びを発現し、優れた耐熱性及び耐候性を有する。そのため、本発明の硬化性組成物は、シーリング材、接着剤、塗料などとして使用可能であり、建築分野、電気・電子分野、自動車分野などで広く応用することができる。 As described above, the curable composition of the present invention includes a vinyl copolymer having a hydrolyzable silyl group produced by a living radical polymerization method, and a (meth) acrylic compound having a specific hydroxyl value and a weight average molecular weight. Since it contains a copolymer, it is cured at room temperature with moisture in the atmosphere and the resulting cured product exhibits high elongation at break and has excellent heat resistance and weather resistance. Therefore, the curable composition of the present invention can be used as a sealing material, an adhesive, a paint, and the like, and can be widely applied in the architectural field, the electric / electronic field, the automobile field, and the like.

Claims (4)

  1.  加水分解性シリル基を有するビニル系共重合体(A)と、水酸基価が50~300mgKOH/gであり、かつ、重量平均分子量が1500~6000である(メタ)アクリル系共重合体(B)とを含有する硬化性組成物であって、
    加水分解性シリル基を有するビニル系共重合体(A)が、リビングラジカル重合法により製造されるものであり、前記(メタ)アクリル系共重合体(B)の含有量が、前記ビニル系共重合体(A)100質量部に対して、20~200質量部であることを特徴とする硬化性組成物。
    A vinyl copolymer (A) having a hydrolyzable silyl group and a (meth) acrylic copolymer (B) having a hydroxyl value of 50 to 300 mgKOH / g and a weight average molecular weight of 1500 to 6000 A curable composition comprising:
    The vinyl copolymer (A) having a hydrolyzable silyl group is produced by a living radical polymerization method, and the content of the (meth) acrylic copolymer (B) is the vinyl copolymer. A curable composition comprising 20 to 200 parts by mass with respect to 100 parts by mass of the polymer (A).
  2.  上記リビングラジカル重合が、ニトロオキサイドラジカルを用いる重合であることを特徴とする請求項1に記載の硬化性組成物。 The curable composition according to claim 1, wherein the living radical polymerization is polymerization using a nitrooxide radical.
  3.  上記(メタ)アクリル系共重合体(B)が、150~350℃の温度で連続重合させて製造されるものであることを特徴とする請求項1又は2に記載の硬化性組成物。 The curable composition according to claim 1 or 2, wherein the (meth) acrylic copolymer (B) is produced by continuous polymerization at a temperature of 150 to 350 ° C.
  4.  (メタ)アクリル系共重合体(B)の上記製造方法において、メルカプタンを使用しないことを特徴とする請求項3に記載の硬化性組成物。 The curable composition according to claim 3, wherein no mercaptan is used in the production method of the (meth) acrylic copolymer (B).
PCT/JP2009/067548 2008-10-16 2009-10-08 Curable composition WO2010044367A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010533881A JP5370369B2 (en) 2008-10-16 2009-10-08 Curable composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008267044 2008-10-16
JP2008-267044 2008-10-16

Publications (1)

Publication Number Publication Date
WO2010044367A1 true WO2010044367A1 (en) 2010-04-22

Family

ID=42106531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067548 WO2010044367A1 (en) 2008-10-16 2009-10-08 Curable composition

Country Status (2)

Country Link
JP (1) JP5370369B2 (en)
WO (1) WO2010044367A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011079994A (en) * 2009-10-08 2011-04-21 Toagosei Co Ltd Moisture-curable composition for coating material
JP2011157409A (en) * 2010-01-29 2011-08-18 Toagosei Co Ltd Thermosetting composition for coating

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000178456A (en) * 1998-10-08 2000-06-27 Kanegafuchi Chem Ind Co Ltd Curable composition
JP2002129097A (en) * 2000-10-20 2002-05-09 Kanegafuchi Chem Ind Co Ltd Curable resin composition for overcoat and coated product composed of applying the same
WO2004069923A1 (en) * 2003-01-22 2004-08-19 Kaneka Corporation Polymer and curable compositions improved in storage stability
JP2008239859A (en) * 2007-03-28 2008-10-09 Toagosei Co Ltd Moisture-curing composition, adhesive composition and sealing agent composition comprising the same
WO2009145245A1 (en) * 2008-05-30 2009-12-03 東亞合成株式会社 Curable composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000178456A (en) * 1998-10-08 2000-06-27 Kanegafuchi Chem Ind Co Ltd Curable composition
JP2002129097A (en) * 2000-10-20 2002-05-09 Kanegafuchi Chem Ind Co Ltd Curable resin composition for overcoat and coated product composed of applying the same
WO2004069923A1 (en) * 2003-01-22 2004-08-19 Kaneka Corporation Polymer and curable compositions improved in storage stability
JP2008239859A (en) * 2007-03-28 2008-10-09 Toagosei Co Ltd Moisture-curing composition, adhesive composition and sealing agent composition comprising the same
WO2009145245A1 (en) * 2008-05-30 2009-12-03 東亞合成株式会社 Curable composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011079994A (en) * 2009-10-08 2011-04-21 Toagosei Co Ltd Moisture-curable composition for coating material
JP2011157409A (en) * 2010-01-29 2011-08-18 Toagosei Co Ltd Thermosetting composition for coating

Also Published As

Publication number Publication date
JP5370369B2 (en) 2013-12-18
JPWO2010044367A1 (en) 2012-03-15

Similar Documents

Publication Publication Date Title
JP5887786B2 (en) Curable composition
JP6108514B2 (en) Curable composition
JP6161103B2 (en) Method for producing curable composition
JP3983228B2 (en) One-component curable composition
JP4754455B2 (en) Curable composition
JP5370369B2 (en) Curable composition
JP5601985B2 (en) Curable composition
JP3953995B2 (en) One-component curable composition
JP5423672B2 (en) Curable composition
JP5222467B2 (en) Composition
JP4161864B2 (en) Sealant composition
JP4905459B2 (en) Sealant composition
JP4834276B2 (en) High weather resistant sealant composition
JPS5978222A (en) Room temperature-curable elastic composition
JP5003686B2 (en) Sealant composition
JP5177131B2 (en) Moisture curable composition, adhesive composition containing the composition, and sealant composition
WO2011108415A1 (en) Curable composition
US20220282014A1 (en) Curable Composition and Cured Product
JP2012046698A (en) Curable composition
JP2015038196A (en) Moisture-curable type curable composition
JP2013129754A (en) Method for manufacturing display device, and electric and electronic equipment, motorcycle and automobile each mounted with the display device
JP5484869B2 (en) Curable composition
JP2005213445A (en) Curable resin composition
JP2016047912A (en) Curable composition having excellent preservation stability
JP2016027088A (en) Curable composition excellent in thixotropic property

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09820545

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010533881

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09820545

Country of ref document: EP

Kind code of ref document: A1