WO2010044257A1 - Sputtering apparatus, method for forming thin film, and method for manufacturing field effect transistor - Google Patents

Sputtering apparatus, method for forming thin film, and method for manufacturing field effect transistor Download PDF

Info

Publication number
WO2010044257A1
WO2010044257A1 PCT/JP2009/005342 JP2009005342W WO2010044257A1 WO 2010044257 A1 WO2010044257 A1 WO 2010044257A1 JP 2009005342 W JP2009005342 W JP 2009005342W WO 2010044257 A1 WO2010044257 A1 WO 2010044257A1
Authority
WO
WIPO (PCT)
Prior art keywords
sputtered
region
substrate
sputtering
target
Prior art date
Application number
PCT/JP2009/005342
Other languages
French (fr)
Japanese (ja)
Inventor
倉田敬臣
清田淳也
新井真
赤松泰彦
石橋暁
斎藤一也
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to JP2010533829A priority Critical patent/JP5309150B2/en
Priority to CN200980140705.0A priority patent/CN102187010B/en
Priority to US13/123,727 priority patent/US20110195562A1/en
Publication of WO2010044257A1 publication Critical patent/WO2010044257A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • H01J37/3408Planar magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/345Magnet arrangements in particular for cathodic sputtering apparatus
    • H01J37/3455Movable magnets

Definitions

  • the present invention relates to a sputtering apparatus for forming a thin film on a substrate, a thin film forming method using the apparatus, and a method for manufacturing a field effect transistor.
  • a sputtering apparatus has been used for forming a thin film on a substrate.
  • the sputtering apparatus has a sputtering target (hereinafter referred to as “target”) disposed inside a vacuum chamber, and a plasma generating means for generating plasma near the surface of the target.
  • a sputtering apparatus forms a thin film by sputtering the surface of a target with ions in plasma and depositing particles (sputtered particles) knocked out of the target on a substrate (see, for example, Patent Document 1).
  • a thin film formed by a sputtering method (hereinafter also referred to as a “sputtered thin film”) has sputtered particles flying from a target incident on the surface of the substrate with high energy, so compared to a thin film formed by a vacuum deposition method or the like, High adhesion to the substrate. Therefore, the base layer (base film or base substrate) on which the sputtered thin film is formed is likely to be greatly damaged by collision with incident sputtered particles. For example, when an active layer of a thin film transistor is formed by a sputtering method, desired film characteristics may not be obtained due to damage to the underlayer.
  • an object of the present invention is to provide a sputtering apparatus, a thin film forming method, and a field effect transistor manufacturing method capable of reducing damage to an underlayer.
  • a sputtering apparatus is a sputtering apparatus that forms a thin film on a surface to be processed of a substrate, and includes a vacuum chamber, a support portion, a target, and plasma generation means.
  • the vacuum chamber maintains a vacuum state.
  • the support portion is disposed inside the vacuum chamber and supports the substrate.
  • the target is disposed in parallel to the surface to be processed of the substrate supported by the support portion, and has a surface to be sputtered.
  • the plasma generating means generates a plasma that forms a region to be sputtered from which sputtered particles are emitted by sputtering the surface to be sputtered, a first position where the region to be sputtered does not face the surface to be processed, and The sputtered region is moved between the sputtered region and the second position facing the processing surface.
  • a substrate having a surface to be processed is placed in a vacuum chamber.
  • a plasma for sputtering the target is generated.
  • the sputtered region of the target is moved between a first position where the sputtered region does not face the treated surface and a second position where the sputtered region faces the treated surface.
  • a gate insulating film is formed over a substrate.
  • the substrate is placed inside a vacuum chamber in which a target having an In—Ga—Zn—O-based composition is placed.
  • Plasma for sputtering the target is generated.
  • the sputtered region of the target is moved between a first position where the sputtered region does not face the surface to be treated and a second position where the sputtered region faces the surface to be treated,
  • An active layer is formed on the gate insulating film.
  • a sputtering apparatus is a sputtering apparatus that forms a thin film on a surface to be processed of a substrate, and includes a vacuum chamber, a support unit, a target, and plasma generation means.
  • the vacuum chamber maintains a vacuum state.
  • the support portion is disposed inside the vacuum chamber and supports the substrate.
  • the target is disposed in parallel to the surface to be processed of the substrate supported by the support portion and has a surface to be sputtered.
  • the plasma generating means generates a plasma for forming a sputtered region from which sputtered particles are emitted by sputtering the sputtered surface, a first position where the sputtered region does not face the treated surface, The sputtered region is moved between the sputtered region and the second position facing the processing surface.
  • the sputtering apparatus changes the incident angle of the sputtered particles with respect to the processing surface of the substrate by moving the sputtered region. Since the sputtered particles incident in the oblique direction with respect to the surface to be processed from the first position have lower incident energy (number of incident particles per unit area) than those incident in the vertical direction, the damage given to the underlying layer is small. After that, by causing the sputtered particles to enter from the second position in the vertical direction, it is possible to achieve film formation with little damage to the underlayer and high film formation speed.
  • the plasma generating means may include a magnet for forming a magnetic field on the surface to be sputtered of the target, and the magnet may be arranged to be movable relative to the support portion.
  • the plasma generating means controls the plasma density by a magnetic field applied by a magnet (magnetron sputtering).
  • a magnet magnet sputtering
  • the sputtered region is unevenly distributed on the surface of the target.
  • the magnet By moving the magnet, the region to be sputtered can be moved, and the incident direction of the sputtered particles with respect to the surface to be processed can be controlled.
  • the sputter surface has a first region that does not face the surface to be treated and a second region that faces the surface to be treated, and the magnet includes the first region and the second region. It may be arranged so as to be movable between the two.
  • the incident direction of the sputtered particles with respect to the surface to be processed can be made oblique. Further, if the second region, that is, the region positioned in the vertical direction from the surface to be processed is the sputtered region, the incident direction can be set to the vertical direction.
  • the target may move with the magnet.
  • a substrate having a surface to be processed is placed in a vacuum chamber.
  • a plasma for sputtering the target is generated.
  • the sputtered region of the target is moved between a first position where the sputtered region does not face the treated surface and a second position where the sputtered region faces the treated surface.
  • a method of manufacturing a field effect transistor includes: forming a gate insulating film on a substrate; and placing the substrate inside a vacuum chamber in which a target having an In—Ga—Zn—O-based composition is disposed. To place. Plasma for sputtering the target is generated. The sputtered region of the target is moved between a first position where the sputtered region does not face the surface to be treated and a second position where the sputtered region faces the surface to be treated, An active layer is formed on the gate insulating film.
  • FIG. 1 is a schematic plan view showing a vacuum processing apparatus 100.
  • the vacuum processing apparatus 100 is an apparatus for processing, for example, a glass substrate (hereinafter simply referred to as a substrate) 10 used for a display as a base material, and is typically a field effect transistor having a so-called bottom gate type transistor structure. It is a device that bears a part of the manufacturing.
  • the vacuum processing apparatus 100 includes a cluster type processing unit 50, an inline type processing unit 60, and an attitude conversion chamber 70. Each of these chambers is formed inside a single vacuum chamber or a combination of a plurality of vacuum chambers.
  • the cluster processing unit 50 includes a plurality of horizontal processing chambers for processing the substrate 10 in a state where the substrate 10 is substantially horizontal.
  • the cluster processing unit 50 includes a load lock chamber 51, a transfer chamber 53, and a plurality of CVD (Chemical Vapor Deposition) chambers 52.
  • CVD Chemical Vapor Deposition
  • the load lock chamber 51 switches the atmospheric pressure and the vacuum state, loads the substrate 10 from the outside of the vacuum processing apparatus 100, and unloads the substrate 10 to the outside.
  • the transfer chamber 53 includes a transfer robot (not shown). Each CVD chamber 52 is connected to the transfer chamber 53 and performs a CVD process on the substrate 10.
  • the transfer robot in the transfer chamber 53 carries the substrate 10 into the load lock chamber 51, each CVD chamber 52, and the posture changing chamber 70 described later, and also carries the substrate 10 out of each chamber.
  • a gate insulating film of a field effect transistor is typically formed.
  • the inside of the transfer chamber 53 and the CVD chamber 52 can be maintained at a predetermined degree of vacuum.
  • the posture conversion chamber 70 converts the posture of the substrate 10 from horizontal to vertical and from vertical to horizontal.
  • a holding mechanism 71 that holds the substrate 10 is provided in the posture change chamber 70, and the holding mechanism 71 is configured to be rotatable about a rotation shaft 72.
  • the holding mechanism 71 holds the substrate 10 by a mechanical chuck or a vacuum chuck.
  • the posture changing chamber 70 can be maintained at substantially the same degree of vacuum as the transfer chamber 53.
  • the holding mechanism 71 may be rotated by driving a driving mechanism (not shown) connected to both ends of the holding mechanism 71.
  • the cluster processing unit 50 may be provided with a heating chamber and a chamber for performing other processes in addition to the CVD chamber 52 and the posture changing chamber 70 connected to the transfer chamber 53.
  • the in-line type processing unit 60 includes a first sputtering chamber 61 (vacuum chamber), a second sputtering chamber 62, and a buffer chamber 63, and processes the substrate 10 in a state where the substrate 10 is set substantially vertically.
  • a thin film (hereinafter simply referred to as an IGZO film) having an In—Ga—Zn—O-based composition is typically formed on the substrate 10 as will be described later.
  • a stopper layer film is formed on the IGZO film.
  • the IGZO film constitutes an active layer of the field effect transistor.
  • the stopper layer film functions as an etching protective layer that protects the channel region of the IGZO film from the etchant in the patterning step of the metal film constituting the source electrode and the drain electrode and the step of etching away the unnecessary region of the IGZO film.
  • the first sputtering chamber 61 has a sputtering cathode Tc containing a target material for forming the IGZO film.
  • the second sputtering chamber 62 has a single sputtering cathode Ts containing a target material for forming a stopper layer film.
  • the first sputtering chamber 61 is configured as a fixed film forming type sputtering apparatus.
  • the second sputtering chamber 62 may be configured as a fixed film forming type sputtering apparatus or may be configured as a through film forming type sputtering apparatus.
  • a two-path transport path for the substrate 10 constituted by an outward path 64 and a return path 65 is prepared, and the substrate 10 is in a vertical state.
  • a support mechanism (not shown) that supports the device in a state slightly tilted from the vertical is provided.
  • the substrate 10 supported by the support mechanism is transported by a mechanism such as a transport roller and a rack and pinion (not shown).
  • a gate valve 54 is provided between the chambers, and these gate valves 54 are individually controlled to open and close.
  • the buffer chamber 63 is connected between the posture changing chamber 70 and the second sputter chamber 62 and functions to be a buffer region for the pressure atmosphere of each of the posture changing chamber 70 and the second sputter chamber 62.
  • the buffer chamber 63 is vacuumed so that the pressure is substantially the same as the pressure in the posture changing chamber 70.
  • the degree is controlled.
  • the buffer is set so that the pressure is substantially the same as the pressure in the second sputtering chamber 62.
  • the degree of vacuum in the chamber 63 is controlled.
  • a special gas such as a cleaning gas may be used to clean the chamber.
  • a support mechanism and a transport mechanism unique to the vertical processing apparatus such as those provided in the second sputtering chamber 62 described above, are made of a special gas.
  • problems such as corrosion.
  • the CVD chamber 52 is composed of a horizontal apparatus, such a problem can be solved.
  • the sputtering apparatus when configured as a horizontal apparatus, for example, when the target is disposed immediately above the substrate, the target material attached to the periphery of the target may fall on the substrate and contaminate the substrate 10. .
  • the target material attached to the deposition preventing plate disposed around the substrate may fall on the electrode and contaminate the electrode.
  • the second sputtering chamber 62 there is concern about abnormal discharge occurring during the sputtering process due to these contaminations.
  • these problems can be solved by configuring the second sputtering chamber 62 as a vertical processing chamber.
  • FIG. 3 is a schematic plan view showing the first sputtering chamber 61.
  • the first sputtering chamber 61 has the sputtering cathode Tc.
  • the sputter cathode Tc includes a target 80, a backing plate 82, and a magnet 83.
  • the first sputtering chamber 61 is connected to a gas introduction line (not shown), and a sputtering gas such as argon and a reactive gas such as oxygen are introduced into the first sputtering chamber 61 through the gas introduction line.
  • the target 80 is composed of an ingot or a sintered body of a film forming material. In this embodiment mode, an alloy ingot or a sintered body material having an In—Ga—Zn—O composition is used.
  • the target 80 is attached so that the surface to be sputtered is parallel to the surface to be processed of the substrate 10.
  • the target 80 has a larger area than the substrate 10.
  • the surface to be sputtered of the target 80 has a region facing the substrate 10 (second region) and a region not facing the first region (first region). Of the surface to be sputtered of the target 80, a region where sputtering proceeds (described later) is a sputtered region 80a.
  • the backing plate 82 is configured as an AC power source (including a high frequency power source) (not shown) or an electrode connected to a DC power source.
  • the backing plate 82 may include a cooling mechanism in which a cooling medium such as cooling water circulates.
  • the backing plate 82 is attached to the back surface of the target 80 (the surface opposite to the surface to be sputtered).
  • the magnet 83 is composed of a combination of a permanent magnet and a yoke, and forms a predetermined magnetic field 84 near the surface of the target 80 (surface to be sputtered).
  • the magnet 83 is attached to the back side of the backing plate 82 (on the side opposite to the target 80), and is parallel to the surface to be sputtered of the target 80 (at the same time parallel to the surface to be processed of the substrate 10) by a driving mechanism (not shown). It is configured to be movable.
  • the sputter cathode Tc configured as described above generates plasma in the first sputter chamber 61 by plasma generating means including the power source, the backing plate 82, the magnet 83, the gas introduction line, and the like. That is, when a predetermined AC power source or DC power source is applied to the backing plate 82, sputtering gas plasma is formed in the vicinity of the surface to be sputtered of the target 80. Then, the sputtering target surface of the target 80 is sputtered by ions in the plasma (a sputtering target region 80a is formed).
  • a high-density plasma (magnetron discharge) is generated by the magnetic field formed on the target surface by the magnet 83, and it becomes possible to obtain a plasma density distribution corresponding to the magnetic field distribution.
  • the plasma density By controlling the plasma density, the entire region of the surface to be sputtered is not sputtered uniformly, and the region that becomes the sputtered region 80a is limited.
  • the sputtered region 80 a depends on the location of the magnet 83 and moves as the magnet 83 moves.
  • the sputtered particles generated from the sputtered region 80a are emitted from the sputtered region 80a over the angular range S.
  • the angle range S is controlled by plasma forming conditions and the like.
  • the sputtered particles include particles that protrude in the vertical direction from the sputtered region 80 a and particles that protrude in an oblique direction from the surface of the target 80.
  • the sputtered particles that have jumped out of the target 80 are deposited on the surface to be processed of the substrate 10 to form a thin film.
  • the substrate 10 is disposed in the first sputtering chamber 61.
  • the substrate 10 is supported by a support portion 93 including a support plate 91 and a clamp mechanism 92, and is stationary (fixed) at a predetermined position on the return path 65 during film formation.
  • the clamp mechanism 92 holds the peripheral portion of the substrate 10 supported by the support region of the support plate 91 facing the sputter cathode Tc.
  • the magnet 83 is disposed at the first position.
  • the first position corresponds to a position where the magnet 83 does not face the substrate 10 through the target 80, that is, the back surface of a region of the surface to be sputtered of the target 80 that does not face the substrate 10.
  • the magnet 83 is driven by the drive mechanism and moves to a second position that is a position facing the substrate 10.
  • FIG. 5 is a flowchart showing the order.
  • the transfer chamber 53, the CVD chamber 52, the posture changing chamber 70, the buffer chamber 63, the first sputter chamber 61, and the second sputter chamber 62 are each maintained in a predetermined vacuum state.
  • the substrate 10 is loaded into the load lock chamber 51 (step 101).
  • the substrate 10 is carried into the CVD chamber 52 through the transfer chamber 53, and a predetermined film, for example, a gate insulating film is formed on the substrate 10 by the CVD process (step 102).
  • a predetermined film for example, a gate insulating film is formed on the substrate 10 by the CVD process (step 102).
  • the substrate 10 is carried into the posture changing chamber 70 through the transfer chamber 53, and the posture of the substrate 10 is changed from the horizontal posture to the vertical posture (step 103).
  • the substrate 10 in a vertical posture is carried into the sputtering chamber through the buffer chamber 63 and is transferred to the end of the first sputtering chamber 61 through the forward path 64. Thereafter, the substrate 10 passes through the return path 65, is stopped in the first sputtering chamber 61, and is subjected to the sputtering process as follows. Thereby, for example, an IGZO film is formed on the surface of the substrate 10 (step 104).
  • the substrate 10 is transported through the first sputtering chamber 61 by the support mechanism and stopped at a position facing the sputtering cathode Tc.
  • a predetermined flow rate of sputtering gas (such as argon gas and oxygen gas) is introduced into the first sputtering chamber 61.
  • sputtering gas such as argon gas and oxygen gas
  • an electric field and a magnetic field are applied to the sputtering gas, and sputtering is started.
  • FIG. 4 is a diagram showing a state of sputtering. Sputtering proceeds in the order of FIGS. 4 (A), (B), and (C).
  • the magnet 83 is disposed at a first position that does not face the substrate 10.
  • the sputtered region 80 a is generated in the vicinity of the magnet 83 on the sputtered surface of the target 80.
  • the sputtered particles emitted from the region to be sputtered 80a are diffused at a certain angle and reach the surface to be processed of the substrate 10 to be deposited.
  • the sputtered particles that reach the surface to be processed at this stage are sputtered particles emitted from the sputtered region 80a in an oblique direction with respect to the sputtered surface. Since the region to be sputtered 80a does not face the substrate 10, the sputtered particles emitted in the direction perpendicular to the surface to be sputtered do not reach the surface to be treated.
  • the magnet 83 When film formation is performed with sputtered particles incident obliquely on a part of the surface to be processed of the substrate 10 that is close to the sputtered region 80a, the magnet 83 is driven by the driving mechanism, and the state shown in FIG. Move as shown. This movement causes the magnet 83 to move from a first position that does not face the substrate 10 to a second position that faces the substrate 10. Even during this movement, sputtering proceeds (an electric field and a magnetic field are applied). The sputtered region 80 a also moves on the sputtered surface together with the magnet 83 and takes a position facing the substrate 10.
  • sputtered particles emitted in an oblique direction and a vertical direction with respect to the sputtered surface reach the processing surface of the substrate 10.
  • a part of the sputtered particles emitted in the oblique direction reaches a (novel) region where the film is not formed on the surface to be processed.
  • the sputtered particles emitted in the vertical direction reach the region where the film has already been formed in the previous stage shown in FIG.
  • the magnet 83 When a film having a predetermined film thickness is formed by the sputtered particles emitted in the vertical direction, the magnet 83 is further moved as shown in FIG. 4B, and emitted in an oblique direction at the stage shown in FIG. 4B. The region formed by the sputtered particles is further formed by the sputtered particles emitted in the vertical direction. Thereafter, the magnet 83 moves in the same manner, and film formation proceeds over the entire region of the surface to be processed of the substrate 10. Although the movement of the magnet 83 is continuous, it may be stepwise (repeating progress and pause).
  • the surface to be processed of the substrate 10 is first formed by the sputtered particles emitted in the oblique direction from the sputtered region 80a, and then formed by the sputtered particles emitted in the vertical direction.
  • the number of sputtered particles emitted in an oblique direction reaches a unit area of the surface to be processed is smaller than that in the vertical direction. Thereby, the incident energy per unit area received by the surface to be processed is also reduced, and the damage received by the surface to be processed is small.
  • the film forming speed is slow. However, the subsequent vertical sputtered particles can be formed without significantly reducing the overall film forming speed. Since the sputtered particles in the vertical direction reach only the region where the surface to be processed is already formed, the existing film serves as a buffer material and does not damage the surface to be processed.
  • the substrate 10 on which the IGZO film is formed in the first sputtering chamber 61 is transferred to the second sputtering chamber 62 together with the support plate 91.
  • a stopper layer made of, for example, a silicon oxide film is formed on the surface of the substrate 10 (step 104).
  • the film formation process in the second sputter chamber 62 employs a fixed film formation method in which the substrate 10 is made to stand still in the second sputter chamber 62 in the same manner as the film formation process in the first sputter chamber 61.
  • the present invention is not limited to this, and a passing film formation method in which the substrate 10 is formed in the process of passing through the second sputtering chamber 62 may be employed.
  • the substrate 10 is carried into the posture changing chamber 70 through the buffer chamber 63, and the posture of the substrate 10 is changed from the vertical posture to the horizontal posture (step 105). Thereafter, the substrate 10 is unloaded outside the vacuum processing apparatus 100 via the transfer chamber 53 and the load lock chamber 51 (step 106).
  • CVD film formation and sputter film formation can be performed consistently within one vacuum processing apparatus 100 without exposing the substrate 10 to the atmosphere. Thereby, productivity can be improved. Further, since moisture and dust in the atmosphere can be prevented from adhering to the substrate 10, it is possible to improve the film quality.
  • the initial IGZO film with low incident energy, damage to the gate insulating film, which is the base layer, can be reduced, so that a field effect thin film transistor with high characteristics can be manufactured. it can.
  • FIG. 12 is a schematic plan view showing the first sputtering chamber 261 according to the second embodiment.
  • the vacuum processing apparatus includes a target plate 281 that moves together with the magnet 283.
  • the first sputtering chamber 261 of the vacuum processing apparatus has a sputtering cathode Td.
  • the sputter cathode Td is configured to be movable with respect to the substrate 210 that is the film formation target, and in particular, configured so that the target plate 281 can take a position that does not face the substrate 210.
  • the sputter cathode Td includes a target plate 281, a backing plate 282, and a magnet 283.
  • the sputter cathode Td is configured to be movable with respect to the substrate 210 that is a film formation target.
  • the target plate 281 is attached so as to be parallel to the surface to be processed of the substrate 210.
  • the target plate 281 faces the substrate 210 or does not face the substrate 210 by the movement of the sputtering cathode Td. Therefore, the size of the target plate 281 is smaller than the size of the substrate 210.
  • a region where sputtering proceeds (described later) is defined as a sputtered region 280 a.
  • the backing plate 282 is attached to the back surface (surface opposite to the surface to be sputtered) of the target plate 281.
  • the magnet 283 is disposed on the back side of the backing plate 282 (the side opposite to the target 280). Unlike the magnet 83 according to the first embodiment, the magnet 283 does not move with respect to the target plate 281 and the backing plate 282, and may be fixed thereto. Note that the magnet 283 may not be fixed to the backing plate 282, and the magnet 283 may be moved by a drive source different from the backing plate 282.
  • the sputter cathode Td is moved in a direction parallel to the surface to be sputtered of the target plate 281 with respect to the substrate 210 by a driving mechanism (not shown).
  • the sputter cathode Td takes a first position where the target plate 281 does not face the substrate 210 and a second position where the target plate 281 faces the substrate 210.
  • the sputtering gas is turned into plasma by the applied electric and magnetic fields.
  • the sputtered region 280a on the target plate 281 does not move on the target plate 281 and is relatively fixed. Note that the size, shape, and the like of the region to be sputtered can be changed depending on sputtering conditions such as magnetic field strength.
  • the sputtering cathode Td exists at a position where the target plate 281 does not face the substrate 210. Therefore, among the sputtered particles emitted from the sputtered region 280a of the target plate 281, only those emitted in the oblique direction with respect to the sputtered surface reach the treated surface of the substrate 210 and are emitted in the vertical direction. Things do not reach the surface to be processed.
  • the sputter cathode Td moves while the target plate 281 is sputtered.
  • the region formed by the sputtered particles incident in the oblique direction is further formed by the sputtered particles incident in the vertical direction, and the region not formed by the sputtered particles is inclined.
  • the film is formed by sputtered particles incident in the direction.
  • the sputter cathode Td moves continuously or intermittently, and the entire region of the surface to be processed of the substrate 210 is formed with sputtered particles.
  • FIG. 6 is a schematic configuration diagram of a sputtering apparatus for explaining an experiment conducted by the present inventors.
  • This sputtering apparatus includes two sputtering cathodes T1 and T2, each having a target 11, a backing plate 12, and a magnet 13.
  • the backing plates 12 of the sputter cathodes T1 and T2 are connected to the electrodes of the AC power source 14, respectively.
  • a substrate having a silicon oxide film formed as a gate insulating film on the surface was disposed opposite to the sputter cathodes T1 and T2.
  • the distance (TS distance) between the sputter cathode and the substrate was 260 mm.
  • the center of the substrate was aligned with the intermediate point (point A) between the sputter cathodes T1 and T2.
  • the distance from this point A to the center (point B) of each target 11 is 100 mm.
  • Each target 11 was sputtered with the generated plasma 15.
  • FIG. 7 shows the measurement results of the film thickness at each position on the substrate with point A as the origin.
  • the film thickness at each point was a relative ratio converted with the film thickness at the point A as 1.
  • the substrate temperature was room temperature.
  • the point C was a position 250 mm away from the point A, and the distance from the outer peripheral side of the magnet 13 of the sputter cathode T2 was 82.5 mm.
  • indicates the film thickness when the oxygen introduction amount is 1 sccm (partial pressure 0.004 Pa)
  • indicates the film thickness when the oxygen introduction amount is 5 sccm (partial pressure 0.02 Pa)
  • indicates The film thickness when the oxygen introduction amount is 25 sccm (partial pressure 0.08 Pa)
  • indicates the film thickness when the oxygen introduction amount is 50 sccm (partial pressure 0.14 Pa).
  • the film thickness at point A where the sputtered particles emitted from the two sputter cathodes T1 and T2 reach is the largest, and the film thickness decreases as the distance from the point A increases.
  • the point C is a deposition region of sputtered particles emitted obliquely from the sputter cathode T2, and thus has a smaller film thickness than the sputtered particle deposition region (point B) incident from the sputter cathode T2 in the vertical direction.
  • the incident angle ⁇ of the sputtered particles at this point C was 72.39 ° as shown in FIG.
  • FIG. 9 is a diagram showing the relationship between the introduced partial pressure and the film formation rate measured at points A, B and C. It was confirmed that the film formation rate decreased as the oxygen partial pressure (oxygen introduction amount) increased regardless of the film formation position.
  • thin film transistors each having an active layer made of an IGZO film formed with different oxygen partial pressures were produced.
  • the active layer was annealed by heating each transistor sample in air at 200 ° C. for 15 minutes.
  • the on-current characteristic and the off-current characteristic were measured about each sample. The result is shown in FIG.
  • the vertical axis represents on-current or off-current
  • the horizontal axis represents oxygen partial pressure during the formation of the IGZO film.
  • the transistor characteristics of a sample in which an IGZO film is formed by a pass film formation method by RF sputtering are also shown.
  • is the off current at point C
  • is the on current at point C
  • is the off current at point A
  • is the on current at point A
  • is the reference sample.
  • the off current, “ ⁇ ”, is the on current of the reference sample.
  • the on-current decreases as the oxygen partial pressure increases in each sample. This is presumably because the conductive properties of the active layer are lowered by the increase in the oxygen concentration in the film. Further, when the samples at point A and point C are compared, the sample at point A has a lower on-current than point C. This is thought to be due to the fact that the underlying film (gate insulating film) suffered significant damage due to collision with sputtered particles during the formation of the active layer (IGZO film), and the desired film quality of the underlying film could not be maintained. It is done. In addition, the sample at the point C had the same on-current characteristics as the reference sample.
  • FIG. 11 shows experimental results obtained by measuring the on-current characteristics and off-current characteristics of the thin film transistor when the annealing conditions of the active layer are 400 ° C. for 15 minutes in the atmosphere. Under this annealing condition, there was no difference in on-current characteristics for each sample. However, regarding the off-current characteristics, it was confirmed that the sample at point A was higher than the sample at point C and each sample for reference. This is presumably because the base film was greatly damaged by collision with the sputtered particles during the formation of the active layer, and the desired insulating properties were lost.
  • the active layer of the thin film transistor is formed by sputtering, the on-current is high and the off-current is low by forming the initial layer of the thin film with sputtered particles incident on the substrate from an oblique direction. Excellent transistor characteristics can be obtained.
  • an active layer having an In—Ga—Zn—O-based composition having desired transistor characteristics can be stably manufactured.
  • the method for manufacturing a thin film transistor using an IGZO film as an active layer has been described as an example.
  • the present invention can also be applied to the case where another film forming material such as a metal material is formed by sputtering. is there.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Thin Film Transistor (AREA)

Abstract

Disclosed is a sputtering apparatus which can reduce damage on a base layer.  Also disclosed are a method for forming a thin film and a method for manufacturing a field effect transistor. An embodiment of the sputtering apparatus is a sputtering apparatus for forming a thin film on a surface to be processed of a substrate (10).  The sputtering apparatus comprises a vacuum chamber (61), a supporting member (93), a target (80) and a magnet (83).  The magnet (83) generates a plasma forming a to-be-sputtered region (80a) and moves the to-be-sputtered region (80a) between a first position where the to-be-sputtered region (80a) does not face the surface to be processed and a second position where the to-be-sputtered region (80a) faces the surface to be processed.  Consequently, the incident energy of sputtering particles, which are incident upon the surface to be processed of the substrate (10) from the to-be-sputtered region (80a), is decreased, thereby enabling protection of a base layer.

Description

スパッタリング装置、薄膜形成方法及び電界効果型トランジスタの製造方法Sputtering apparatus, thin film forming method, and field effect transistor manufacturing method
 本発明は、基板の上に薄膜を形成するためのスパッタリング装置及びこの装置を用いた薄膜形成方法、並びに電界効果型トランジスタの製造方法に関する。 The present invention relates to a sputtering apparatus for forming a thin film on a substrate, a thin film forming method using the apparatus, and a method for manufacturing a field effect transistor.
 従来、基板の上に薄膜を形成する工程にはスパッタリング装置が用いられている。スパッタリング装置は、真空槽の内部に配置されたスパッタリングターゲット(以下「ターゲット」という。)と、ターゲットの表面近傍にプラズマを発生させるためのプラズマ発生手段とを有している。スパッタリング装置は、プラズマ中のイオンでターゲットの表面をスパッタし、当該ターゲットから叩き出された粒子(スパッタ粒子)を基板上に堆積させることで、薄膜を形成する(例えば特許文献1参照)。 Conventionally, a sputtering apparatus has been used for forming a thin film on a substrate. The sputtering apparatus has a sputtering target (hereinafter referred to as “target”) disposed inside a vacuum chamber, and a plasma generating means for generating plasma near the surface of the target. A sputtering apparatus forms a thin film by sputtering the surface of a target with ions in plasma and depositing particles (sputtered particles) knocked out of the target on a substrate (see, for example, Patent Document 1).
特開2007-39712号公報JP 2007-39712 A
 スパッタリング法によって形成された薄膜(以下「スパッタ薄膜」ともいう。)は、ターゲットから飛来するスパッタ粒子が基板の表面に高エネルギーで入射するため、真空蒸着法などで形成された薄膜に比べて、基板との密着性が高い。したがって、スパッタ薄膜が形成される下地層(下地膜あるいは下地基板)は、入射するスパッタ粒子との衝突により大きなダメージを受け易い。例えば、薄膜トランジスタの活性層をスパッタリング法で成膜する場合、下地層のダメージによって所期の膜特性が得られない場合がある。 A thin film formed by a sputtering method (hereinafter also referred to as a “sputtered thin film”) has sputtered particles flying from a target incident on the surface of the substrate with high energy, so compared to a thin film formed by a vacuum deposition method or the like, High adhesion to the substrate. Therefore, the base layer (base film or base substrate) on which the sputtered thin film is formed is likely to be greatly damaged by collision with incident sputtered particles. For example, when an active layer of a thin film transistor is formed by a sputtering method, desired film characteristics may not be obtained due to damage to the underlayer.
 以上のような事情に鑑み、本発明の目的は、下地層のダメージを低減することができるスパッタリング装置、薄膜形成方法及び電界効果型トランジスタの製造方法を提供することにある。 In view of the circumstances as described above, an object of the present invention is to provide a sputtering apparatus, a thin film forming method, and a field effect transistor manufacturing method capable of reducing damage to an underlayer.
 本発明の一形態に係るスパッタリング装置は、基板の被処理面に薄膜を形成するスパッタリング装置であって、真空槽と、支持部と、ターゲットと、プラズマ発生手段とを具備する。
 上記真空槽は、真空状態を維持する。
 上記支持部は、上記真空槽の内部に配置され、上記基板を支持する。
 上記ターゲットは、上記支持部に支持された上記基板の被処理面に平行に配置され、被スパッタ面を有する。
 上記プラズマ発生手段は、上記被スパッタ面をスパッタすることでスパッタ粒子が出射する被スパッタ領域を形成するプラズマを発生させ、上記被スパッタ領域が上記被処理面と対向しない第1の位置と、上記被スパッタ領域が上記被処理面と対向する第2の位置との間にわたって、上記被スパッタ領域を移動させる。
A sputtering apparatus according to one embodiment of the present invention is a sputtering apparatus that forms a thin film on a surface to be processed of a substrate, and includes a vacuum chamber, a support portion, a target, and plasma generation means.
The vacuum chamber maintains a vacuum state.
The support portion is disposed inside the vacuum chamber and supports the substrate.
The target is disposed in parallel to the surface to be processed of the substrate supported by the support portion, and has a surface to be sputtered.
The plasma generating means generates a plasma that forms a region to be sputtered from which sputtered particles are emitted by sputtering the surface to be sputtered, a first position where the region to be sputtered does not face the surface to be processed, and The sputtered region is moved between the sputtered region and the second position facing the processing surface.
 本発明の一形態に係る薄膜形成方法は、被処理面を有する基板を真空槽内に配置する。
 ターゲットをスパッタするプラズマを発生させる。
 上記ターゲットの被スパッタ領域を、上記被スパッタ領域が上記被処理面と対向しない第1の位置と、上記被スパッタ領域が上記被処理面と対向する第2の位置との間にわたって移動させる。
In a thin film forming method according to one embodiment of the present invention, a substrate having a surface to be processed is placed in a vacuum chamber.
A plasma for sputtering the target is generated.
The sputtered region of the target is moved between a first position where the sputtered region does not face the treated surface and a second position where the sputtered region faces the treated surface.
 本発明の一形態に係る電界効果型トランジスタの製造方法は、基板の上にゲート絶縁膜を形成する。
 上記基板をIn-Ga-Zn-O系組成を有するターゲットが配置された真空槽の内部に配置する。
 上記ターゲットをスパッタするプラズマを発生させる。
 上記ターゲットの被スパッタ領域を、上記被スパッタ領域が上記被処理面と対向しない第1の位置と、上記被スパッタ領域が上記被処理面と対向する第2の位置との間にわたって移動させ、上記ゲート絶縁膜上に活性層を形成する。
In a method for manufacturing a field effect transistor according to one embodiment of the present invention, a gate insulating film is formed over a substrate.
The substrate is placed inside a vacuum chamber in which a target having an In—Ga—Zn—O-based composition is placed.
Plasma for sputtering the target is generated.
The sputtered region of the target is moved between a first position where the sputtered region does not face the surface to be treated and a second position where the sputtered region faces the surface to be treated, An active layer is formed on the gate insulating film.
第1の実施形態に係る真空処理装置を示す平面図である。It is a top view which shows the vacuum processing apparatus which concerns on 1st Embodiment. 保持機構を示す平面図である。It is a top view which shows a holding mechanism. 第1のスパッタ室を示す平面図である。It is a top view which shows a 1st sputtering chamber. スパッタの様子を示す模式図である。It is a schematic diagram which shows the mode of a sputter | spatter. 基板処理プロセスを示すフローチャートである。It is a flowchart which shows a substrate processing process. 実験に用いられたスパッタリング装置を示す図である。It is a figure which shows the sputtering device used for experiment. 実験により得られた薄膜の膜厚分布を示す図である。It is a figure which shows the film thickness distribution of the thin film obtained by experiment. スパッタ粒子の入射各を説明する図である。It is a figure explaining each incidence of sputtered particles. 実験により得られた薄膜の成膜レートを示す図であるIt is a figure which shows the film-forming rate of the thin film obtained by experiment 実験により製造された薄膜トランジスタの各サンプルを200℃でアニールしたときのオン電流特性及びオフ電流特性を示す図である。It is a figure which shows the on-current characteristic and off-current characteristic when each sample of the thin-film transistor manufactured by experiment is annealed at 200 degreeC. 実験により製造された薄膜トランジスタの各サンプルを400℃でアニールしたときのオン電流特性及びオフ電流特性を示す図である。It is a figure which shows the on-current characteristic and off-current characteristic when each sample of the thin-film transistor manufactured by experiment is annealed at 400 degreeC. 第2の実施形態に係る第1のスパッタ室を示す平面図である。It is a top view which shows the 1st sputtering chamber which concerns on 2nd Embodiment.
 本発明の一実施形態に係るスパッタリング装置は、基板の被処理面に薄膜を形成するスパッタリング装置であって、真空槽と、支持部と、ターゲットと、プラズマ発生手段とを具備する。
 上記真空槽は、真空状態を維持する。
 上記支持部は、上記真空槽の内部に配置され、上記基板を支持する。
 上記ターゲットは、上記支持部に支持された上記基板の被処理面に平行に配置され、被スパッタ面を有する。
 上記プラズマ発生手段は、上記被スパッタ面をスパッタすることでスパッタ粒子が出射する被スパッタ領域を形成するプラズマを発生させ、上記被スパッタ領域が上記被処理面と対向しない第1の位置と、上記被スパッタ領域が上記被処理面と対向する第2の位置との間にわたって、上記被スパッタ領域を移動させる。
A sputtering apparatus according to an embodiment of the present invention is a sputtering apparatus that forms a thin film on a surface to be processed of a substrate, and includes a vacuum chamber, a support unit, a target, and plasma generation means.
The vacuum chamber maintains a vacuum state.
The support portion is disposed inside the vacuum chamber and supports the substrate.
The target is disposed in parallel to the surface to be processed of the substrate supported by the support portion and has a surface to be sputtered.
The plasma generating means generates a plasma for forming a sputtered region from which sputtered particles are emitted by sputtering the sputtered surface, a first position where the sputtered region does not face the treated surface, The sputtered region is moved between the sputtered region and the second position facing the processing surface.
 上記スパッタリング装置は、被スパッタ領域を移動させることにより、基板の被処理面に対するスパッタ粒子の入射角度を変化させる。第1の位置から、被処理面に対して斜め方向に入射するスパッタ粒子は、垂直方向に入射するものに比べ入射エネルギー(単位面積あたりの入射粒子数)が低いため、下地層に与えるダメージは小さい。その後に、第2の位置からスパッタ粒子を垂直方向に入射させることにより、下地層にダメージが少なく、成膜速度も高い成膜を達成することが可能である。 The sputtering apparatus changes the incident angle of the sputtered particles with respect to the processing surface of the substrate by moving the sputtered region. Since the sputtered particles incident in the oblique direction with respect to the surface to be processed from the first position have lower incident energy (number of incident particles per unit area) than those incident in the vertical direction, the damage given to the underlying layer is small. After that, by causing the sputtered particles to enter from the second position in the vertical direction, it is possible to achieve film formation with little damage to the underlayer and high film formation speed.
 上記プラズマ発生手段は、上記ターゲットの上記被スパッタ面側に磁場を形成するためのマグネットを含み、上記マグネットは、上記支持部に対して相対移動自在に配置されていてもよい。 The plasma generating means may include a magnet for forming a magnetic field on the surface to be sputtered of the target, and the magnet may be arranged to be movable relative to the support portion.
 上記プラズマ発生手段は、マグネットにより印加される磁場によりプラズマ密度を制御する(マグネトロンスパッタ)。マグネトロンスパッタでは、スパッタされる領域(被スパッタ領域)はターゲットの表面上に偏在する。マグネットを移動させることにより、被スパッタ領域を移動させ、スパッタ粒子の被処理面に対する入射方向を制御することが可能である。 The plasma generating means controls the plasma density by a magnetic field applied by a magnet (magnetron sputtering). In magnetron sputtering, the sputtered region (sputtered region) is unevenly distributed on the surface of the target. By moving the magnet, the region to be sputtered can be moved, and the incident direction of the sputtered particles with respect to the surface to be processed can be controlled.
 上記被スパッタ面は、上記被処理面と対向しない第1の領域と上記被処理面と対向する第2の領域とを有し、上記マグネットは、上記第1の領域と上記第2の領域との間を移動自在に配置されていてもよい。 The sputter surface has a first region that does not face the surface to be treated and a second region that faces the surface to be treated, and the magnet includes the first region and the second region. It may be arranged so as to be movable between the two.
 被スパッタ面上の、第1の領域、すなわち、被処理面から斜め方向に位置する領域をスパッタ領域とすれば、スパッタ粒子の被処理面に対する入射方向を斜め方向とすることが可能である。また、第2の領域、すなわち、被処理面から垂直方向に位置する領域を被スパッタ領域とすれば、入射方向を垂直方向とすることが可能である。 If the first region on the surface to be sputtered, that is, the region located obliquely from the surface to be processed is the sputter region, the incident direction of the sputtered particles with respect to the surface to be processed can be made oblique. Further, if the second region, that is, the region positioned in the vertical direction from the surface to be processed is the sputtered region, the incident direction can be set to the vertical direction.
 上記ターゲットは上記マグネットとともに移動してもよい。 The target may move with the magnet.
 ターゲットをマグネットとともに移動させることによって、被処理面から見て被スパッタ領域の方向を制御することが可能である。 ¡By moving the target together with the magnet, it is possible to control the direction of the sputtered region as viewed from the surface to be treated.
 本発明の一実施形態に係る薄膜形成方法は、被処理面を有する基板を真空槽内に配置する。
 ターゲットをスパッタするプラズマを発生させる。
 上記ターゲットの被スパッタ領域を、上記被スパッタ領域が上記被処理面と対向しない第1の位置と、上記被スパッタ領域が上記被処理面と対向する第2の位置との間にわたって移動させる。
In a thin film forming method according to an embodiment of the present invention, a substrate having a surface to be processed is placed in a vacuum chamber.
A plasma for sputtering the target is generated.
The sputtered region of the target is moved between a first position where the sputtered region does not face the treated surface and a second position where the sputtered region faces the treated surface.
 本発明の一実施形態に係る電界効果型トランジスタの製造方法は、基板の上にゲート絶縁膜を形成する
 上記基板をIn-Ga-Zn-O系組成を有するターゲットが配置された真空槽の内部に配置する。
 上記ターゲットをスパッタするプラズマを発生させる。
 上記ターゲットの被スパッタ領域を、上記被スパッタ領域が上記被処理面と対向しない第1の位置と、上記被スパッタ領域が上記被処理面と対向する第2の位置との間にわたって移動させ、上記ゲート絶縁膜上に活性層を形成する。
A method of manufacturing a field effect transistor according to an embodiment of the present invention includes: forming a gate insulating film on a substrate; and placing the substrate inside a vacuum chamber in which a target having an In—Ga—Zn—O-based composition is disposed. To place.
Plasma for sputtering the target is generated.
The sputtered region of the target is moved between a first position where the sputtered region does not face the surface to be treated and a second position where the sputtered region faces the surface to be treated, An active layer is formed on the gate insulating film.
 この電界効果型トランジスタの製造方法によれば、スパッタによる活性層の成膜の際に、その入射エネルギーにより損傷を受け易いゲート絶縁膜を保護することが可能である。 According to this method of manufacturing a field effect transistor, it is possible to protect the gate insulating film that is easily damaged by the incident energy when the active layer is formed by sputtering.
 以下、本発明の実施の形態を図面に基づき説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(第1の実施形態)
 第1の実施形態に係る真空処理装置100について説明する。
 図1は、真空処理装置100を示す模式的な平面図である。
(First embodiment)
A vacuum processing apparatus 100 according to the first embodiment will be described.
FIG. 1 is a schematic plan view showing a vacuum processing apparatus 100.
 真空処理装置100は、基材として例えばディスプレイに用いられるガラス基板(以下、単に基板という。)10を処理する装置であり、典型的には、いわゆるボトムゲート型のトランジスタ構造を有する電界効果型トランジスタの製造の一部を担う装置である。 The vacuum processing apparatus 100 is an apparatus for processing, for example, a glass substrate (hereinafter simply referred to as a substrate) 10 used for a display as a base material, and is typically a field effect transistor having a so-called bottom gate type transistor structure. It is a device that bears a part of the manufacturing.
 真空処理装置100は、クラスタ型処理ユニット50と、インライン型処理ユニット60と、姿勢変換室70とを備える。これらの各室は、単一の真空槽あるいは複数組み合わされた真空槽の内部に形成されている。 The vacuum processing apparatus 100 includes a cluster type processing unit 50, an inline type processing unit 60, and an attitude conversion chamber 70. Each of these chambers is formed inside a single vacuum chamber or a combination of a plurality of vacuum chambers.
 クラスタ型処理ユニット50は、基板10を実質的に水平にした状態で基板10を処理する、複数の横型の処理室を備えている。典型的には、クラスタ型処理ユニット50は、ロードロック室51、搬送室53、複数のCVD(Chemical Vapor Deposition)室52を含む。 The cluster processing unit 50 includes a plurality of horizontal processing chambers for processing the substrate 10 in a state where the substrate 10 is substantially horizontal. Typically, the cluster processing unit 50 includes a load lock chamber 51, a transfer chamber 53, and a plurality of CVD (Chemical Vapor Deposition) chambers 52.
 ロードロック室51は、大気圧及び真空状態を切り替え、真空処理装置100の外部から基板10をロードし、また、当該外部へ基板10をアンロードする。搬送室53は、図示しない搬送ロボットを備えている。各CVD室52は、搬送室53にそれぞれ接続されており、基板10にCVD処理を行う。搬送室53の搬送ロボットは、ロードロック室51、各CVD室52及び後述の姿勢変換室70へ基板10を搬入し、また、それらの各室から基板10を搬出する。 The load lock chamber 51 switches the atmospheric pressure and the vacuum state, loads the substrate 10 from the outside of the vacuum processing apparatus 100, and unloads the substrate 10 to the outside. The transfer chamber 53 includes a transfer robot (not shown). Each CVD chamber 52 is connected to the transfer chamber 53 and performs a CVD process on the substrate 10. The transfer robot in the transfer chamber 53 carries the substrate 10 into the load lock chamber 51, each CVD chamber 52, and the posture changing chamber 70 described later, and also carries the substrate 10 out of each chamber.
 CVD室52では、典型的には、電界効果型トランジスタのゲート絶縁膜が形成される。 In the CVD chamber 52, a gate insulating film of a field effect transistor is typically formed.
 これら搬送室53及びCVD室52内は、所定の真空度に維持することが可能となっている。 The inside of the transfer chamber 53 and the CVD chamber 52 can be maintained at a predetermined degree of vacuum.
 姿勢変換室70は、基板10の姿勢を水平から垂直状態、また、垂直から水平状態へ変換する。例えば、図2に示すように姿勢変換室70内には、基板10を保持する保持機構71が設けられており、保持機構71は、回転軸72を中心に回転可能に構成されている。保持機構71は、メカチャックまたは真空チャック等により基板10を保持する。姿勢変換室70は、搬送室53と実質的に同じ真空度に維持されることが可能となっている。 The posture conversion chamber 70 converts the posture of the substrate 10 from horizontal to vertical and from vertical to horizontal. For example, as shown in FIG. 2, a holding mechanism 71 that holds the substrate 10 is provided in the posture change chamber 70, and the holding mechanism 71 is configured to be rotatable about a rotation shaft 72. The holding mechanism 71 holds the substrate 10 by a mechanical chuck or a vacuum chuck. The posture changing chamber 70 can be maintained at substantially the same degree of vacuum as the transfer chamber 53.
 保持機構71の両端部に接続された図示しない駆動機構の駆動により保持機構71が回転してもよい。 The holding mechanism 71 may be rotated by driving a driving mechanism (not shown) connected to both ends of the holding mechanism 71.
 クラスタ型処理ユニット50は、搬送室53に接続された、CVD室52、姿勢変換室70の他、加熱室やその他の処理を行うための室が設けられてもよい。 The cluster processing unit 50 may be provided with a heating chamber and a chamber for performing other processes in addition to the CVD chamber 52 and the posture changing chamber 70 connected to the transfer chamber 53.
 インライン型処理ユニット60は、第1のスパッタ室61(真空槽)、第2のスパッタ室62及びバッファ室63を含み、基板10を実質的に垂直に立てた状態で基板10を処理する。 The in-line type processing unit 60 includes a first sputtering chamber 61 (vacuum chamber), a second sputtering chamber 62, and a buffer chamber 63, and processes the substrate 10 in a state where the substrate 10 is set substantially vertically.
 第1のスパッタ室61では、典型的には、後述するように基板10上にIn-Ga-Zn-O系組成を有する薄膜(以下、単にIGZO膜という。)が形成される。第2のスパッタ室62では、そのIGZO膜上にストッパ層膜が形成される。IGZO膜は、電界効果型トランジスタの活性層を構成する。ストッパ層膜は、ソース電極及びドレイン電極を構成する金属膜のパターニング工程、及び、IGZO膜の不要領域をエッチング除去する工程において、IGZO膜のチャネル領域をエッチャントから保護するエッチング保護層として機能する。 In the first sputtering chamber 61, a thin film (hereinafter simply referred to as an IGZO film) having an In—Ga—Zn—O-based composition is typically formed on the substrate 10 as will be described later. In the second sputtering chamber 62, a stopper layer film is formed on the IGZO film. The IGZO film constitutes an active layer of the field effect transistor. The stopper layer film functions as an etching protective layer that protects the channel region of the IGZO film from the etchant in the patterning step of the metal film constituting the source electrode and the drain electrode and the step of etching away the unnecessary region of the IGZO film.
 第1のスパッタ室61は、そのIGZO膜を形成するためのターゲット材料を含むスパッタカソードTcを有している。第2のスパッタ室62は、ストッパ層膜を形成するためのターゲット材料を含む単一のスパッタカソードTsを有している。 The first sputtering chamber 61 has a sputtering cathode Tc containing a target material for forming the IGZO film. The second sputtering chamber 62 has a single sputtering cathode Ts containing a target material for forming a stopper layer film.
 第1のスパッタ室61は、後述するように、固定成膜方式のスパッタリング装置として構成されている。一方、第2のスパッタ室62は、固定成膜方式のスパッタリング装置として構成されてもよいし、通過成膜方式のスパッタリング装置として構成されてもよい。 As described later, the first sputtering chamber 61 is configured as a fixed film forming type sputtering apparatus. On the other hand, the second sputtering chamber 62 may be configured as a fixed film forming type sputtering apparatus or may be configured as a through film forming type sputtering apparatus.
 第1のスパッタ室61、第2のスパッタ室62及びバッファ室63内には、例えば往路64及び復路65で構成される2経路の基板10の搬送経路が用意され、基板10を垂直にした状態、あるいは垂直から多少傾けた状態で支持する図示しない支持機構が設けられている。上記支持機構により支持された基板10は、図示しない搬送ローラ、ラックアンドピニオン等の機構により搬送されるようになっている。 In the first sputtering chamber 61, the second sputtering chamber 62, and the buffer chamber 63, for example, a two-path transport path for the substrate 10 constituted by an outward path 64 and a return path 65 is prepared, and the substrate 10 is in a vertical state. Alternatively, a support mechanism (not shown) that supports the device in a state slightly tilted from the vertical is provided. The substrate 10 supported by the support mechanism is transported by a mechanism such as a transport roller and a rack and pinion (not shown).
 各室の間には、ゲートバルブ54が設けられており、これらのゲートバルブ54が個々に独立して開閉制御される。 A gate valve 54 is provided between the chambers, and these gate valves 54 are individually controlled to open and close.
 バッファ室63は、姿勢変換室70と第2のスパッタ室62との間に接続され、姿勢変換室70及び第2のスパッタ室62のそれぞれの圧力雰囲気の緩衝領域となるように機能する。例えば、姿勢変換室70とバッファ室63との間に設けられたゲートバルブ54が開放されるときは、姿勢変換室70内の圧力と実質的に同じ圧力になるように、バッファ室63の真空度が制御される。また、バッファ室63と第2のスパッタ室62との間に設けられたゲートバルブ54が開放されるときは、第2のスパッタ室62内の圧力と実質的に同じ圧力になるように、バッファ室63の真空度が制御される。 The buffer chamber 63 is connected between the posture changing chamber 70 and the second sputter chamber 62 and functions to be a buffer region for the pressure atmosphere of each of the posture changing chamber 70 and the second sputter chamber 62. For example, when the gate valve 54 provided between the posture changing chamber 70 and the buffer chamber 63 is opened, the buffer chamber 63 is vacuumed so that the pressure is substantially the same as the pressure in the posture changing chamber 70. The degree is controlled. Further, when the gate valve 54 provided between the buffer chamber 63 and the second sputtering chamber 62 is opened, the buffer is set so that the pressure is substantially the same as the pressure in the second sputtering chamber 62. The degree of vacuum in the chamber 63 is controlled.
 CVD室52では、クリーニングガス等の特殊ガスが用いられて室内がクリーニングされる場合がある。例えば、CVD室52が縦型の装置で構成される場合、上述した第2のスパッタ室62に設けられているような、縦型の処理装置に特有の支持機構や搬送機構が、特殊ガスにより腐食する等の問題が懸念される。しかし、本実施の形態では、CVD室52は横型の装置で構成されるため、そのような問題を解決することができる。 In the CVD chamber 52, a special gas such as a cleaning gas may be used to clean the chamber. For example, when the CVD chamber 52 is configured by a vertical apparatus, a support mechanism and a transport mechanism unique to the vertical processing apparatus, such as those provided in the second sputtering chamber 62 described above, are made of a special gas. There are concerns about problems such as corrosion. However, in the present embodiment, since the CVD chamber 52 is composed of a horizontal apparatus, such a problem can be solved.
 一方、スパッタ装置が横型の装置として構成される場合において、例えばターゲットが基板の直上に配置される場合、ターゲットの周囲に付着したターゲット材料が基板上に落ちて基板10が汚染されるおそれがある。逆に、ターゲットが基板の下に配置される場合、基板の周囲に配置された防着板に付着したターゲット材料が電極に落ちて電極が汚染されるおそれがある。これらの汚染によりスパッタ処理中に起こる異常放電が懸念される。しかしながら、第2のスパッタ室62が縦型の処理室として構成されることにより、これらの問題を解決することができる。 On the other hand, when the sputtering apparatus is configured as a horizontal apparatus, for example, when the target is disposed immediately above the substrate, the target material attached to the periphery of the target may fall on the substrate and contaminate the substrate 10. . On the other hand, when the target is disposed under the substrate, the target material attached to the deposition preventing plate disposed around the substrate may fall on the electrode and contaminate the electrode. There is concern about abnormal discharge occurring during the sputtering process due to these contaminations. However, these problems can be solved by configuring the second sputtering chamber 62 as a vertical processing chamber.
 次に、第1のスパッタ室61の詳細について説明する。図3は、第1のスパッタ室61を示す概略平面図である。 Next, details of the first sputtering chamber 61 will be described. FIG. 3 is a schematic plan view showing the first sputtering chamber 61.
 第1のスパッタ室61は、上述したように、スパッタカソードTcを有している。スパッタカソードTcは、ターゲット80と、バッキングプレート82と、マグネット83とを含む。第1のスパッタ室61は、図示しないガス導入ラインに接続されており、上記ガス導入ラインを介して第1のスパッタ室61内にアルゴン等のスパッタ用ガス及び酸素等の反応性ガスが導入される。 As described above, the first sputtering chamber 61 has the sputtering cathode Tc. The sputter cathode Tc includes a target 80, a backing plate 82, and a magnet 83. The first sputtering chamber 61 is connected to a gas introduction line (not shown), and a sputtering gas such as argon and a reactive gas such as oxygen are introduced into the first sputtering chamber 61 through the gas introduction line. The
 ターゲット80は、成膜材料のインゴットあるいは焼結体で構成されている。本実施の形態では、In-Ga-Zn-O組成を有する合金インゴットあるいは焼結体材料で形成されている。ターゲット80はその被スパッタ面が、基板10の被処理面と平行となるように取り付けられる。ターゲット80は、基板10よりも大きな面積を有する。ターゲット80の被スパッタ面は基板10と対向する領域(第2の領域)と対向しない領域(第1の領域)とを有する。ターゲット80の被スパッタ面のうち、スパッタが進行する領域(後述)を被スパッタ領域80aとする。 The target 80 is composed of an ingot or a sintered body of a film forming material. In this embodiment mode, an alloy ingot or a sintered body material having an In—Ga—Zn—O composition is used. The target 80 is attached so that the surface to be sputtered is parallel to the surface to be processed of the substrate 10. The target 80 has a larger area than the substrate 10. The surface to be sputtered of the target 80 has a region facing the substrate 10 (second region) and a region not facing the first region (first region). Of the surface to be sputtered of the target 80, a region where sputtering proceeds (described later) is a sputtered region 80a.
 バッキングプレート82は、図示しない交流電源(高周波電源を含む。)あるいは直流電源と接続される電極として構成される。バッキングプレート82は、内部に冷却水等の冷却媒体が循環する冷却機構を備えていてもよい。バッキングプレート82は、ターゲット80の背面(被スパッタ面と反対側の面)に取り付けられている。 The backing plate 82 is configured as an AC power source (including a high frequency power source) (not shown) or an electrode connected to a DC power source. The backing plate 82 may include a cooling mechanism in which a cooling medium such as cooling water circulates. The backing plate 82 is attached to the back surface of the target 80 (the surface opposite to the surface to be sputtered).
 マグネット83は、永久磁石とヨークの組合せ体で構成されており、ターゲット80の表面(被スパッタ面)の近傍に所定の磁場84を形成する。マグネット83は、バッキングプレート82の背面側(ターゲット80と反対側)に取り付けられ、図示しない駆動機構により、ターゲット80の被スパッタ面に平行(同時に基板10の被処理面と平行)な一方向に移動可能に形成されている。 The magnet 83 is composed of a combination of a permanent magnet and a yoke, and forms a predetermined magnetic field 84 near the surface of the target 80 (surface to be sputtered). The magnet 83 is attached to the back side of the backing plate 82 (on the side opposite to the target 80), and is parallel to the surface to be sputtered of the target 80 (at the same time parallel to the surface to be processed of the substrate 10) by a driving mechanism (not shown). It is configured to be movable.
 以上のように構成されるスパッタカソードTcは、上記電源、バッキングプレート82、マグネット83、上記ガス導入ラインなどを含むプラズマ発生手段によって、第1のスパッタ室61内にプラズマを発生させる。すなわち、バッキングプレート82に所定の交流電源または直流電源が印加されると、ターゲット80の被スパッタ面の近傍に、スパッタ用ガスのプラズマが形成される。そして、プラズマ中のイオンによりターゲット80の被スパッタ面がスパッタされる(被スパッタ領域80aが形成される)。また、マグネット83によりターゲット表面に形成された磁場によって高密度プラズマ(マグネトロン放電)が生成され、磁場分布に対応するプラズマの密度分布を得ることが可能となる。プラズマ密度が制御されることにより、被スパッタ面の全領域が均一にスパッタされず、被スパッタ領域80aとなる領域は限定される。被スパッタ領域80aは、マグネット83の場所に依存し、マグネット83の移動にともなって移動する。 The sputter cathode Tc configured as described above generates plasma in the first sputter chamber 61 by plasma generating means including the power source, the backing plate 82, the magnet 83, the gas introduction line, and the like. That is, when a predetermined AC power source or DC power source is applied to the backing plate 82, sputtering gas plasma is formed in the vicinity of the surface to be sputtered of the target 80. Then, the sputtering target surface of the target 80 is sputtered by ions in the plasma (a sputtering target region 80a is formed). Further, a high-density plasma (magnetron discharge) is generated by the magnetic field formed on the target surface by the magnet 83, and it becomes possible to obtain a plasma density distribution corresponding to the magnetic field distribution. By controlling the plasma density, the entire region of the surface to be sputtered is not sputtered uniformly, and the region that becomes the sputtered region 80a is limited. The sputtered region 80 a depends on the location of the magnet 83 and moves as the magnet 83 moves.
 図3に示すように、被スパッタ領域80aから生成されるスパッタ粒子は、被スパッタ領域80aから角度範囲Sにわたって出射する。角度範囲Sは、プラズマの形成条件などによって制御される。スパッタ粒子は、被スパッタ領域80aから垂直方向に飛び出す粒子と、ターゲット80の表面から斜め方向に飛び出す粒子を含む。ターゲット80から飛び出したスパッタ粒子は、基板10の被処理面に堆積し、薄膜を形成する。 As shown in FIG. 3, the sputtered particles generated from the sputtered region 80a are emitted from the sputtered region 80a over the angular range S. The angle range S is controlled by plasma forming conditions and the like. The sputtered particles include particles that protrude in the vertical direction from the sputtered region 80 a and particles that protrude in an oblique direction from the surface of the target 80. The sputtered particles that have jumped out of the target 80 are deposited on the surface to be processed of the substrate 10 to form a thin film.
 第1のスパッタ室61には、基板10が配置される。基板10は、支持板91とクランプ機構92とを備えた支持部93によって支持されており、成膜時は、復路65上の所定位置に静止(固定)される。クランプ機構92は、スパッタカソードTcと対向する支持板91の支持領域に支持された基板10の周縁部を保持する。 The substrate 10 is disposed in the first sputtering chamber 61. The substrate 10 is supported by a support portion 93 including a support plate 91 and a clamp mechanism 92, and is stationary (fixed) at a predetermined position on the return path 65 during film formation. The clamp mechanism 92 holds the peripheral portion of the substrate 10 supported by the support region of the support plate 91 facing the sputter cathode Tc.
 マグネット83と基板10の配置関係について説明する。
 スパッタの開始時点において、マグネット83は第1の位置に配置されている。第1の位置はマグネット83がターゲット80を介して基板10と対向しない位置、すなわちターゲット80の被スパッタ面のうち基板10と対向しない領域の背面に相当する。後述するが、スパッタが進行すると、マグネット83は駆動機構によって駆動され、基板10と対向する位置である第2の位置に移動する。
The arrangement relationship between the magnet 83 and the substrate 10 will be described.
At the start of sputtering, the magnet 83 is disposed at the first position. The first position corresponds to a position where the magnet 83 does not face the substrate 10 through the target 80, that is, the back surface of a region of the surface to be sputtered of the target 80 that does not face the substrate 10. As will be described later, when the sputtering proceeds, the magnet 83 is driven by the drive mechanism and moves to a second position that is a position facing the substrate 10.
 以上のように構成された真空処理装置100における基板10の処理順序について説明する。図5は、その順序を示すフローチャートである。 The processing sequence of the substrate 10 in the vacuum processing apparatus 100 configured as described above will be described. FIG. 5 is a flowchart showing the order.
 搬送室53、CVD室52、姿勢変換室70、バッファ室63、第1のスパッタ室61及び第2のスパッタ室62は、それぞれ所定の真空状態に維持されている。まず、ロードロック室51に基板10がロードされる(ステップ101)。その後、基板10は、搬送室53を介してCVD室52に搬入され、CVD処理により所定の膜、例えばゲート絶縁膜が基板10上に形成される(ステップ102)。CVD処理の後、搬送室53を介して姿勢変換室70に搬入され、基板10の姿勢が水平姿勢から垂直姿勢に変換される(ステップ103)。 The transfer chamber 53, the CVD chamber 52, the posture changing chamber 70, the buffer chamber 63, the first sputter chamber 61, and the second sputter chamber 62 are each maintained in a predetermined vacuum state. First, the substrate 10 is loaded into the load lock chamber 51 (step 101). Thereafter, the substrate 10 is carried into the CVD chamber 52 through the transfer chamber 53, and a predetermined film, for example, a gate insulating film is formed on the substrate 10 by the CVD process (step 102). After the CVD process, the substrate 10 is carried into the posture changing chamber 70 through the transfer chamber 53, and the posture of the substrate 10 is changed from the horizontal posture to the vertical posture (step 103).
 垂直姿勢となった基板10は、バッファ室63を介してスパッタ室に搬入され、往路64を通って第1のスパッタ室61の端部まで搬送される。その後、基板10は復路65を通り、第1のスパッタ室61で停止され、以下のようにしてスパッタリング処理される。これにより、基板10の表面に、例えばIGZO膜が形成される(ステップ104)。 The substrate 10 in a vertical posture is carried into the sputtering chamber through the buffer chamber 63 and is transferred to the end of the first sputtering chamber 61 through the forward path 64. Thereafter, the substrate 10 passes through the return path 65, is stopped in the first sputtering chamber 61, and is subjected to the sputtering process as follows. Thereby, for example, an IGZO film is formed on the surface of the substrate 10 (step 104).
 図3を参照して、基板10は、支持機構によって第1のスパッタ室61内を搬送され、スパッタカソードTcと対向する位置で停止される。第1のスパッタ室61には、所定流量のスパッタガス(アルゴンガスと酸素ガス等)がそれぞれ導入される。上述したように、スパッタガスに電場と磁場が印加され、スパッタが開始される。 Referring to FIG. 3, the substrate 10 is transported through the first sputtering chamber 61 by the support mechanism and stopped at a position facing the sputtering cathode Tc. A predetermined flow rate of sputtering gas (such as argon gas and oxygen gas) is introduced into the first sputtering chamber 61. As described above, an electric field and a magnetic field are applied to the sputtering gas, and sputtering is started.
 図4はスパッタの様子を示す図である。
 スパッタは、図4(A)、(B)、(C)の順に進行する。図4(A)に示すスパッタの開始段階では、マグネット83は基板10と対向しない第1の位置に配置されている。被スパッタ領域80aはターゲット80の被スパッタ面のうち、マグネット83の近傍に発生する。被スパッタ領域80aから出射されたスパッタ粒子は、ある程度の角度を持って拡散して基板10の被処理面に到達し、堆積する。この段階で被処理面に到達するスパッタ粒子は、被スパッタ領域80aから、被スパッタ面に対して斜め方向に出射されたスパッタ粒子である。被スパッタ領域80aは基板10と対向していないため、被スパッタ面に対して垂直方向に出射されたスパッタ粒子は被処理面に到達しない。
FIG. 4 is a diagram showing a state of sputtering.
Sputtering proceeds in the order of FIGS. 4 (A), (B), and (C). At the start stage of sputtering shown in FIG. 4A, the magnet 83 is disposed at a first position that does not face the substrate 10. The sputtered region 80 a is generated in the vicinity of the magnet 83 on the sputtered surface of the target 80. The sputtered particles emitted from the region to be sputtered 80a are diffused at a certain angle and reach the surface to be processed of the substrate 10 to be deposited. The sputtered particles that reach the surface to be processed at this stage are sputtered particles emitted from the sputtered region 80a in an oblique direction with respect to the sputtered surface. Since the region to be sputtered 80a does not face the substrate 10, the sputtered particles emitted in the direction perpendicular to the surface to be sputtered do not reach the surface to be treated.
 基板10の被処理面のうち、被スパッタ領域80aに近い一部の領域に斜め方向に入射したスパッタ粒子による成膜がされると、マグネット83が駆動機構により駆動され、図4(B)に示すように移動する。この移動によってマグネット83は、基板10と対向しない第1の位置から、基板10と対向する第2の位置に移動する。なお、この移動時においても、スパッタは進行する(電場及び磁場が印加されている)。被スパッタ領域80aもマグネット83とともに被スパッタ面上を移動し、基板10と対向する位置をとる。これにより、被スパッタ領域80aから出射されたスパッタ粒子のうち被スパッタ面に対して斜め方向及び垂直方向に出射されたスパッタ粒子が基板10の被処理面に到達する。斜め方向に出射されたスパッタ粒子の一部は、被処理面上の成膜がされていない(新規な)領域に到達する。一方、垂直方向に出射されたスパッタ粒子は、図4(A)に示す前段階において既に成膜されている領域に到達する。 When film formation is performed with sputtered particles incident obliquely on a part of the surface to be processed of the substrate 10 that is close to the sputtered region 80a, the magnet 83 is driven by the driving mechanism, and the state shown in FIG. Move as shown. This movement causes the magnet 83 to move from a first position that does not face the substrate 10 to a second position that faces the substrate 10. Even during this movement, sputtering proceeds (an electric field and a magnetic field are applied). The sputtered region 80 a also moves on the sputtered surface together with the magnet 83 and takes a position facing the substrate 10. As a result, among the sputtered particles emitted from the sputtered region 80a, sputtered particles emitted in an oblique direction and a vertical direction with respect to the sputtered surface reach the processing surface of the substrate 10. A part of the sputtered particles emitted in the oblique direction reaches a (novel) region where the film is not formed on the surface to be processed. On the other hand, the sputtered particles emitted in the vertical direction reach the region where the film has already been formed in the previous stage shown in FIG.
 垂直方向に出射されたスパッタ粒子により所定の膜厚まで成膜されると、図4(B)に示すようにマグネット83はさらに移動され、図4(B)に示す段階において斜め方向に出射されたスパッタ粒子により成膜された領域が垂直方向に出射されたスパッタ粒子によりさらに成膜される。以降、同様にしてマグネット83が移動し、基板10の被処理面の全領域にわたり成膜が進行する。マグネット83の移動は連続的なものとしたが、段階的な(進行と一時停止を繰り返す)ものであってもよい。 When a film having a predetermined film thickness is formed by the sputtered particles emitted in the vertical direction, the magnet 83 is further moved as shown in FIG. 4B, and emitted in an oblique direction at the stage shown in FIG. 4B. The region formed by the sputtered particles is further formed by the sputtered particles emitted in the vertical direction. Thereafter, the magnet 83 moves in the same manner, and film formation proceeds over the entire region of the surface to be processed of the substrate 10. Although the movement of the magnet 83 is continuous, it may be stepwise (repeating progress and pause).
 以上のようにして、基板10の被処理面は、最初に、被スパッタ領域80aから斜め方向に出射されたスパッタ粒子により成膜され、次に、垂直方向に出射されたスパッタ粒子により成膜される。斜め方向に出射されたスパッタ粒子は、垂直方向のもの比較して被処理面の単位面積に到達する数が少ない。それにより被処理面が受ける単位面積あたりの入射エネルギーも小さくなり、被処理面が受けるダメージも小さい。一方で、斜め方向のスパッタ粒子は粒子数少ないため成膜速度が遅いが、後続する垂直方向のスパッタ粒子により、全体の成膜速度をそれほど低下させずに成膜することが可能である。垂直方向のスパッタ粒子は、被処理面の、既に成膜されている領域にのみ到達するため、既成の膜が緩衝材となり、被処理面にダメージ及ぼさない。 As described above, the surface to be processed of the substrate 10 is first formed by the sputtered particles emitted in the oblique direction from the sputtered region 80a, and then formed by the sputtered particles emitted in the vertical direction. The The number of sputtered particles emitted in an oblique direction reaches a unit area of the surface to be processed is smaller than that in the vertical direction. Thereby, the incident energy per unit area received by the surface to be processed is also reduced, and the damage received by the surface to be processed is small. On the other hand, since the number of sputtered particles in the oblique direction is small, the film forming speed is slow. However, the subsequent vertical sputtered particles can be formed without significantly reducing the overall film forming speed. Since the sputtered particles in the vertical direction reach only the region where the surface to be processed is already formed, the existing film serves as a buffer material and does not damage the surface to be processed.
 本実施形態に係るスパッタプロセスにおいては、マグネット83が移動することにより、基板10の被処理面のいずれの領域においても上記プロセスにより成膜が進行し、被処理面の受けるダメージを小さくし、かつ成膜速度を高く維持することが可能である。 In the sputtering process according to the present embodiment, when the magnet 83 moves, film formation proceeds by the above process in any region of the surface to be processed of the substrate 10, reducing the damage received on the surface to be processed, and It is possible to keep the deposition rate high.
 第1のスパッタ室61においてIGZO膜が成膜された基板10は、支持板91とともに第2のスパッタ室62へ搬送される。第2のスパッタ室62において、基板10の表面に、例えばシリコン酸化膜からなるストッパ層が形成される(ステップ104)。 The substrate 10 on which the IGZO film is formed in the first sputtering chamber 61 is transferred to the second sputtering chamber 62 together with the support plate 91. In the second sputtering chamber 62, a stopper layer made of, for example, a silicon oxide film is formed on the surface of the substrate 10 (step 104).
 第2のスパッタ室62における成膜処理は、第1のスパッタ室61における成膜処理と同様に、基板10を第2のスパッタ室62で静止させて成膜する固定成膜方式が採用される。これに限られず、基板10が第2のスパッタ室62を通過する過程で成膜する通過成膜方式が採用されてもよい。 The film formation process in the second sputter chamber 62 employs a fixed film formation method in which the substrate 10 is made to stand still in the second sputter chamber 62 in the same manner as the film formation process in the first sputter chamber 61. . However, the present invention is not limited to this, and a passing film formation method in which the substrate 10 is formed in the process of passing through the second sputtering chamber 62 may be employed.
 スパッタリング処理後、基板10はバッファ室63を介して姿勢変換室70に搬入され、基板10の姿勢が垂直姿勢から水平姿勢に変換される(ステップ105)。その後、基板10は搬送室53及びロードロック室51を介して真空処理装置100の外部へアンロードされる(ステップ106)。 After the sputtering process, the substrate 10 is carried into the posture changing chamber 70 through the buffer chamber 63, and the posture of the substrate 10 is changed from the vertical posture to the horizontal posture (step 105). Thereafter, the substrate 10 is unloaded outside the vacuum processing apparatus 100 via the transfer chamber 53 and the load lock chamber 51 (step 106).
 以上のように、本実施の形態によれば、ひとつの真空処理装置100の内部において、基板10を大気に曝すことなくCVD成膜とスパッタ成膜を一貫して処理することができる。これにより、生産性の向上を図ることができる。また、大気中の水分やダストが基板10に付着することを防止できるので、膜質の向上をも図ることが可能となる。 As described above, according to the present embodiment, CVD film formation and sputter film formation can be performed consistently within one vacuum processing apparatus 100 without exposing the substrate 10 to the atmosphere. Thereby, productivity can be improved. Further, since moisture and dust in the atmosphere can be prevented from adhering to the substrate 10, it is possible to improve the film quality.
 また、上述のように、入射エネルギーが低い状態で初期のIGZO膜を成膜することによって、下地層であるゲート絶縁膜のダメージを低減できるので、高特性の電界効果型薄膜トランジスタを製造することができる。 In addition, as described above, by forming the initial IGZO film with low incident energy, damage to the gate insulating film, which is the base layer, can be reduced, so that a field effect thin film transistor with high characteristics can be manufactured. it can.
 (第2の実施形態)
 第2の実施形態に係る真空処理装置について説明する。
 以下の説明では、上述の実施形態の構成と同様な構成を有する部分に関しては説明を簡略化する。
 図12は、第2の実施形態に係る第1のスパッタ室261を示す模式的な平面図である。
(Second Embodiment)
A vacuum processing apparatus according to the second embodiment will be described.
In the following description, description of parts having the same configuration as that of the above-described embodiment will be simplified.
FIG. 12 is a schematic plan view showing the first sputtering chamber 261 according to the second embodiment.
 第1の実施形態に係る真空処理装置100とは異なり、本実施形態に係る真空処理装置は、マグネット283とともに移動するターゲット板281を有する。 Unlike the vacuum processing apparatus 100 according to the first embodiment, the vacuum processing apparatus according to this embodiment includes a target plate 281 that moves together with the magnet 283.
 真空処理装置の第1のスパッタ室261は、スパッタカソードTdを有する。スパッタカソードTdは、成膜対象物である基板210に対して移動可能に構成され、特に、ターゲット板281が基板210と対向しない位置をとることが可能に構成されている。
 スパッタカソードTdは、ターゲット板281と、バッキングプレート282と、マグネット283とを含む。
The first sputtering chamber 261 of the vacuum processing apparatus has a sputtering cathode Td. The sputter cathode Td is configured to be movable with respect to the substrate 210 that is the film formation target, and in particular, configured so that the target plate 281 can take a position that does not face the substrate 210.
The sputter cathode Td includes a target plate 281, a backing plate 282, and a magnet 283.
 本実施形態に係るスパッタカソードTdは、成膜対象物である基板210に対して移動可能に構成されている。
 ターゲット板281は、基板210の被処理面と平行となるように取り付けられる。ターゲット板281は、スパッタカソードTdの移動により、基板210と対向し、あるいは対向しない位置をとる。そのため、ターゲット板281の大きさは、基板210の大きさに比べ小さいものとなる。ターゲット板281の被スパッタ面のうち、スパッタが進行する領域(後述)を被スパッタ領域280aとする。
The sputter cathode Td according to the present embodiment is configured to be movable with respect to the substrate 210 that is a film formation target.
The target plate 281 is attached so as to be parallel to the surface to be processed of the substrate 210. The target plate 281 faces the substrate 210 or does not face the substrate 210 by the movement of the sputtering cathode Td. Therefore, the size of the target plate 281 is smaller than the size of the substrate 210. Of the surface to be sputtered of the target plate 281, a region where sputtering proceeds (described later) is defined as a sputtered region 280 a.
 バッキングプレート282は、ターゲット板281の背面(被スパッタ面と反対側の面)に取り付けられる。
 マグネット283は、バッキングプレート282の背面側(ターゲット280と反対側)に配置される。第1の実施形態に係るマグネット83とは異なり、マグネット283は、ターゲット板281及びバッキングプレート282に対して移動しないため、これらに対して固定されていてもよい。なお、マグネット283はバッキングプレート282に固定されていなくてもよく、マグネット283をバッキングプレート282とは別の駆動源によって移動させるようにしてもよい。
The backing plate 282 is attached to the back surface (surface opposite to the surface to be sputtered) of the target plate 281.
The magnet 283 is disposed on the back side of the backing plate 282 (the side opposite to the target 280). Unlike the magnet 83 according to the first embodiment, the magnet 283 does not move with respect to the target plate 281 and the backing plate 282, and may be fixed thereto. Note that the magnet 283 may not be fixed to the backing plate 282, and the magnet 283 may be moved by a drive source different from the backing plate 282.
 スパッタカソードTdは、図示しない駆動機構によって、基板210に対して、ターゲット板281の被スパッタ面に平行な方向に移動する。スパッタカソードTdは、ターゲット板281が基板210と対向しない第1の位置と、ターゲット板281が基板210と対向する第2の位置をとる。 The sputter cathode Td is moved in a direction parallel to the surface to be sputtered of the target plate 281 with respect to the substrate 210 by a driving mechanism (not shown). The sputter cathode Td takes a first position where the target plate 281 does not face the substrate 210 and a second position where the target plate 281 faces the substrate 210.
 以上のように構成された真空処理装置によるスパッタについて説明する。
 第1の実施形態に係るスパッタと同様に、印加された電場及び磁場によりスパッタガスがプラズマ化される。ターゲット板281上の被スパッタ領域280aは、ターゲット板281上を移動せず、相対的に固定されている。なお、磁場強度等のスパッタ条件により、被スパッタ領域の大きさ、形状等は変更され得る。
Sputtering by the vacuum processing apparatus configured as described above will be described.
Similar to the sputtering according to the first embodiment, the sputtering gas is turned into plasma by the applied electric and magnetic fields. The sputtered region 280a on the target plate 281 does not move on the target plate 281 and is relatively fixed. Note that the size, shape, and the like of the region to be sputtered can be changed depending on sputtering conditions such as magnetic field strength.
 スパッタの開始時点では、スパッタカソードTdは、そのターゲット板281が基板210と対向しない位置に存在する。そのため、ターゲット板281の被スパッタ領域280aから出射されたスパッタ粒子のうち、被スパッタ面に対して斜め方向に出射されたもののみが基板210の被処理面に到達し、垂直方向に出射されたものは被処理面に到達しない。ターゲット板281がスパッタされながら、スパッタカソードTdは移動する。 At the start of sputtering, the sputtering cathode Td exists at a position where the target plate 281 does not face the substrate 210. Therefore, among the sputtered particles emitted from the sputtered region 280a of the target plate 281, only those emitted in the oblique direction with respect to the sputtered surface reach the treated surface of the substrate 210 and are emitted in the vertical direction. Things do not reach the surface to be processed. The sputter cathode Td moves while the target plate 281 is sputtered.
 これにより、被処理面のうち、斜め方向に入射したスパッタ粒子により成膜されていた領域は、垂直方向に入射するスパッタ粒子によりさらに成膜され、また、成膜されていなかった領域は、斜め方向に入射するスパッタ粒子により成膜される。スパッタカソードTdは連続的、あるいは断続的に移動し、基板210の被処理面の全領域がスパッタ粒子により成膜される。 As a result, in the surface to be processed, the region formed by the sputtered particles incident in the oblique direction is further formed by the sputtered particles incident in the vertical direction, and the region not formed by the sputtered particles is inclined. The film is formed by sputtered particles incident in the direction. The sputter cathode Td moves continuously or intermittently, and the entire region of the surface to be processed of the substrate 210 is formed with sputtered particles.
 以上のようにして、被処理面に及ぼすダメージが小さく、成膜速度が高く維持された成膜が達成される。 As described above, film formation with little damage to the surface to be processed and high film formation speed is achieved.
 以下では、ターゲットの被スパッタ面に対して斜め方向に出射されたスパッタ粒子と、垂直方向に出射されたスパッタ粒子による成膜の、成膜速度及び下地層に与えるダメージの差について言及する。 Hereinafter, the difference in the film formation rate and the damage to the underlying layer between the sputtered particles emitted obliquely with respect to the target sputtering surface and the sputtered particles emitted in the vertical direction will be described.
 図6は、本発明者らが行った実験を説明するスパッタリング装置の概略構成図である。このスパッタリング装置は、2つのスパッタカソードT1及びT2を備え、それぞれがターゲット11と、バッキングプレート12と、マグネット13とを有する。各スパッタカソードT1及びT2のバッキングプレート12は交流電源14の各電極にそれぞれ接続されている。ターゲット11には、In-Ga-Zn-O組成のターゲット材を用いた。 FIG. 6 is a schematic configuration diagram of a sputtering apparatus for explaining an experiment conducted by the present inventors. This sputtering apparatus includes two sputtering cathodes T1 and T2, each having a target 11, a backing plate 12, and a magnet 13. The backing plates 12 of the sputter cathodes T1 and T2 are connected to the electrodes of the AC power source 14, respectively. As the target 11, a target material having an In—Ga—Zn—O composition was used.
 これらスパッタカソードT1及びT2に対向して、表面にゲート絶縁膜としてシリコン酸化膜が形成された基板を配置した。スパッタカソードと基板との間の距離(TS距離)は260mmとした。基板の中心は、スパッタカソードT1及びT2の中間地点(A点)に合わせた。このA点から各ターゲット11の中心(B点)までの距離は100mmである。減圧アルゴン雰囲気(流量230sccm、分圧0.74Pa)に維持された真空槽内部に酸素ガスを所定流量導入し、各スパッタカソードT1及びT2間に交流電力(0.6kW)を印加することで形成されたプラズマ15で各ターゲット11をスパッタした。 A substrate having a silicon oxide film formed as a gate insulating film on the surface was disposed opposite to the sputter cathodes T1 and T2. The distance (TS distance) between the sputter cathode and the substrate was 260 mm. The center of the substrate was aligned with the intermediate point (point A) between the sputter cathodes T1 and T2. The distance from this point A to the center (point B) of each target 11 is 100 mm. Formed by introducing a predetermined flow rate of oxygen gas into a vacuum chamber maintained in a reduced pressure argon atmosphere (flow rate 230 sccm, partial pressure 0.74 Pa) and applying AC power (0.6 kW) between the sputter cathodes T1 and T2. Each target 11 was sputtered with the generated plasma 15.
 図7は、A点を原点とした基板上の各位置における膜厚の測定結果を示す。各点の膜厚は、A点の膜厚を1として換算した相対比とした。基板温度は室温とした。C点は、A点から250mm離れた位置であり、スパッタカソードT2のマグネット13の外周側からの距離は82.5mmであった。図中「◇」は酸素導入量が1sccm(分圧0.004Pa)のときの膜厚、「■」は酸素導入量が5sccm(分圧0.02Pa)のときの膜厚、「△」は酸素導入量が25sccm(分圧0.08Pa)のときの膜厚、「●」は酸素導入量が50sccm(分圧0.14Pa)のときの膜厚をそれぞれ示す。 FIG. 7 shows the measurement results of the film thickness at each position on the substrate with point A as the origin. The film thickness at each point was a relative ratio converted with the film thickness at the point A as 1. The substrate temperature was room temperature. The point C was a position 250 mm away from the point A, and the distance from the outer peripheral side of the magnet 13 of the sputter cathode T2 was 82.5 mm. In the figure, “◇” indicates the film thickness when the oxygen introduction amount is 1 sccm (partial pressure 0.004 Pa), “■” indicates the film thickness when the oxygen introduction amount is 5 sccm (partial pressure 0.02 Pa), and “Δ” indicates The film thickness when the oxygen introduction amount is 25 sccm (partial pressure 0.08 Pa), and “●” indicates the film thickness when the oxygen introduction amount is 50 sccm (partial pressure 0.14 Pa).
 図7に示すように、2つのスパッタカソードT1及びT2から出射するスパッタ粒子が到達するA点の膜厚が最も大きく、A点から離れるにしたがって膜厚は減少する。C点においては、スパッタカソードT2から斜め方向に出射するスパッタ粒子の堆積領域であるため、スパッタカソードT2から垂直方向に入射するスパッタ粒子の堆積領域(B点)に比べて膜厚が小さい。このC点におけるスパッタ粒子の入射角θは、図8に示すように72.39°であった。 As shown in FIG. 7, the film thickness at point A where the sputtered particles emitted from the two sputter cathodes T1 and T2 reach is the largest, and the film thickness decreases as the distance from the point A increases. The point C is a deposition region of sputtered particles emitted obliquely from the sputter cathode T2, and thus has a smaller film thickness than the sputtered particle deposition region (point B) incident from the sputter cathode T2 in the vertical direction. The incident angle θ of the sputtered particles at this point C was 72.39 ° as shown in FIG.
 図9は、A点、B点及びC点において測定した、導入分圧と成膜レートとの関係を示す図である。成膜位置に関係なく、酸素分圧(酸素導入量)が上昇するほど成膜レートが低下することが確認された。 FIG. 9 is a diagram showing the relationship between the introduced partial pressure and the film formation rate measured at points A, B and C. It was confirmed that the film formation rate decreased as the oxygen partial pressure (oxygen introduction amount) increased regardless of the film formation position.
 上記A及びCの各点において、酸素分圧を異ならせて成膜したIGZO膜を活性層とする薄膜トランジスタをそれぞれ作製した。各トランジスタのサンプルを大気中、200℃で15分間加熱することで、活性層をアニールした。そして、各サンプルについてオン電流特性及びオフ電流特性を測定した。その結果を図10に示す。図中縦軸はオン電流またはオフ電流を示し、横軸はIGZO膜の成膜時の酸素分圧を示す。参照用として、IGZO膜をRFスパッタリング法により通過成膜方式で形成したサンプルのトランジスタ特性を併せて示す。図中「△」はC点におけるオフ電流、「▲」はC点におけるオン電流、「◇」はA点におけるオフ電流、「◆」はA点におけるオン電流、「○」は参照用サンプルのオフ電流、「●」は参照用サンプルのオン電流である。 At each of points A and C, thin film transistors each having an active layer made of an IGZO film formed with different oxygen partial pressures were produced. The active layer was annealed by heating each transistor sample in air at 200 ° C. for 15 minutes. And the on-current characteristic and the off-current characteristic were measured about each sample. The result is shown in FIG. In the figure, the vertical axis represents on-current or off-current, and the horizontal axis represents oxygen partial pressure during the formation of the IGZO film. For reference, the transistor characteristics of a sample in which an IGZO film is formed by a pass film formation method by RF sputtering are also shown. In the figure, “△” is the off current at point C, “▲” is the on current at point C, “◇” is the off current at point A, “◆” is the on current at point A, and “◯” is the reference sample. The off current, “●”, is the on current of the reference sample.
 図10の結果から明らかなように、各サンプルともに酸素分圧が増加するにしたがってオン電流が低下する。これは、膜中の酸素濃度が高くなることで活性層の導電特性が低下するからであると考えられる。また、A点及びC点の各サンプルを比較すると、A点のサンプルはC点よりもオン電流が低い。これは、活性層(IGZO膜)の成膜時において、スパッタ粒子との衝突によって下地膜(ゲート絶縁膜)が受けるダメージが大きく、下地膜の所期の膜質を維持できなかったためであると考えられる。また、C点のサンプルは、参照用サンプルと同程度のオン電流特性が得られた。 As is clear from the results in FIG. 10, the on-current decreases as the oxygen partial pressure increases in each sample. This is presumably because the conductive properties of the active layer are lowered by the increase in the oxygen concentration in the film. Further, when the samples at point A and point C are compared, the sample at point A has a lower on-current than point C. This is thought to be due to the fact that the underlying film (gate insulating film) suffered significant damage due to collision with sputtered particles during the formation of the active layer (IGZO film), and the desired film quality of the underlying film could not be maintained. It is done. In addition, the sample at the point C had the same on-current characteristics as the reference sample.
 一方、図11は、活性層のアニール条件を大気中、400℃、15分間としたときの上記薄膜トランジスタのオン電流特性及びオフ電流特性を測定した実験結果である。このアニール条件では、各サンプルについてオン電流特性に大きさ違いは現れなかった。しかし、オフ電流特性に関しては、A点のサンプルがC点及び参照用の各サンプルに比べて高いことが確認された。これは、活性層の成膜時において、スパッタ粒子との衝突によって下地膜が大きなダメージを受け、所期の絶縁特性が失われたためであると考えられる。 On the other hand, FIG. 11 shows experimental results obtained by measuring the on-current characteristics and off-current characteristics of the thin film transistor when the annealing conditions of the active layer are 400 ° C. for 15 minutes in the atmosphere. Under this annealing condition, there was no difference in on-current characteristics for each sample. However, regarding the off-current characteristics, it was confirmed that the sample at point A was higher than the sample at point C and each sample for reference. This is presumably because the base film was greatly damaged by collision with the sputtered particles during the formation of the active layer, and the desired insulating properties were lost.
 また、アニール温度を高温化することによって、酸素分圧の影響を受けずに高いオン電流特性が得られることが確認された。 It was also confirmed that high on-current characteristics can be obtained without being affected by oxygen partial pressure by increasing the annealing temperature.
 以上の結果から明らかなように、薄膜トランジスタの活性層をスパッタ成膜するに際して、斜め方向から基板に入射するスパッタ粒子によって薄膜の初期層を形成することで、オン電流が高く、オフ電流が低いという優れたトランジスタ特性を得ることができる。また、所期のトランジスタ特性を有する、In-Ga-Zn-O系組成の活性層を安定して製造することが可能となる。 As is apparent from the above results, when the active layer of the thin film transistor is formed by sputtering, the on-current is high and the off-current is low by forming the initial layer of the thin film with sputtered particles incident on the substrate from an oblique direction. Excellent transistor characteristics can be obtained. In addition, an active layer having an In—Ga—Zn—O-based composition having desired transistor characteristics can be stably manufactured.
 以上、本発明の実施の形態について説明したが、勿論本発明はこれに限られず、本発明の技術的思想に基づいて種々の変形が可能である。 The embodiment of the present invention has been described above. Of course, the present invention is not limited to this, and various modifications can be made based on the technical idea of the present invention.
 上述した実施形態では、IGZO膜を活性層とする薄膜トランジスタの製造方法を例に挙げて説明したが、金属材料などの他の成膜材料をスパッタ成膜する場合にも、本発明は適用可能である。 In the above-described embodiment, the method for manufacturing a thin film transistor using an IGZO film as an active layer has been described as an example. However, the present invention can also be applied to the case where another film forming material such as a metal material is formed by sputtering. is there.
 10   基板
 11   ターゲット
 13   マグネット
 61   第1のスパッタ室
 71   保持機構
 80   ターゲット
 83   マグネット
 93   支持部
 100  真空処理装置
 210  基板
 261  第1のスパッタ室
 280  ターゲット
 283  マグネット
DESCRIPTION OF SYMBOLS 10 Substrate 11 Target 13 Magnet 61 First sputter chamber 71 Holding mechanism 80 Target 83 Magnet 93 Support part 100 Vacuum processing apparatus 210 Substrate 261 First sputter chamber 280 Target 283 Magnet

Claims (6)

  1.  基板の被処理面に薄膜を形成するスパッタリング装置であって、
     真空状態を維持可能な真空槽と、
     前記真空槽の内部に配置され、前記基板を支持する支持部と、
     前記支持部に支持された前記基板の被処理面に平行に配置され、被スパッタ面を有するターゲットと、
     前記被スパッタ面をスパッタすることでスパッタ粒子が出射する被スパッタ領域を形成するプラズマを発生させ、前記被スパッタ領域が前記被処理面と対向しない第1の位置と、前記被スパッタ領域が前記被処理面と対向する第2の位置との間にわたって、前記被スパッタ領域を移動させるプラズマ発生手段と
     を具備するスパッタリング装置。
    A sputtering apparatus for forming a thin film on a surface to be processed of a substrate,
    A vacuum chamber capable of maintaining a vacuum state;
    A support part disposed inside the vacuum chamber and supporting the substrate;
    A target that is arranged in parallel to the surface to be processed of the substrate supported by the support and has a surface to be sputtered;
    Sputtering the surface to be sputtered generates plasma to form a region to be sputtered from which sputtered particles are emitted, and the region to be sputtered is not opposed to the surface to be processed, and the region to be sputtered is the surface to be sputtered. And a plasma generating means for moving the region to be sputtered between a second position facing the processing surface.
  2.  請求項1に記載のスパッタリング装置であって、
     前記プラズマ発生手段は、前記ターゲットの前記被スパッタ面側に磁場を形成するためのマグネットを含み、
     前記マグネットは、前記支持部に対して相対移動自在に配置されている
     スパッタリング装置。
    The sputtering apparatus according to claim 1,
    The plasma generating means includes a magnet for forming a magnetic field on the surface to be sputtered of the target,
    The said magnet is arrange | positioned so that relative movement with respect to the said support part is possible freely. Sputtering apparatus.
  3.  請求項2に記載のスパッタリング装置であって、
     前記被スパッタ面は、前記被処理面と対向しない第1の領域と前記被処理面と対向する第2の領域とを有し、
     前記マグネットは、前記第1の領域と前記第2の領域との間を移動自在に配置されている
     スパッタリング装置。
    The sputtering apparatus according to claim 2,
    The sputter surface has a first region that does not face the surface to be treated and a second region that faces the surface to be treated.
    The said magnet is arrange | positioned movably between the said 1st area | region and the said 2nd area | region. Sputtering apparatus.
  4.  請求項2に記載のスパッタリング装置であって、
     前記ターゲットは前記マグネットとともに移動する
     スパッタリング装置。
    The sputtering apparatus according to claim 2,
    The target moves together with the magnet. Sputtering apparatus.
  5.  被処理面を有する基板を真空槽内に配置し、
     ターゲットをスパッタするプラズマを発生させ、
     前記ターゲットの被スパッタ領域を、前記被スパッタ領域が前記被処理面と対向しない第1の位置と、前記被スパッタ領域が前記被処理面と対向する第2の位置との間にわたって移動させる
     薄膜形成方法。
    A substrate having a surface to be processed is placed in a vacuum chamber,
    Generate plasma to sputter the target,
    Thin film formation is performed by moving the sputtering area of the target between a first position where the sputtering area does not face the surface to be processed and a second position where the sputtering area faces the surface to be processed. Method.
  6.  基板の上にゲート絶縁膜を形成し、
     前記基板をIn-Ga-Zn-O系組成を有するターゲットが配置された真空槽の内部に配置し、
     前記ターゲットをスパッタするプラズマを発生させ、
     前記ターゲットの被スパッタ領域を、前記被スパッタ領域が前記被処理面と対向しない第1の位置と、前記被スパッタ領域が前記被処理面と対向する第2の位置との間にわたって移動させ、前記ゲート絶縁膜上に活性層を形成する
     電界効果型トランジスタの製造方法。
    A gate insulating film is formed on the substrate,
    The substrate is placed inside a vacuum chamber in which a target having an In—Ga—Zn—O-based composition is placed,
    Generating plasma to sputter the target;
    Moving the sputtered region of the target between a first position where the sputtered region does not face the treated surface and a second position where the sputtered region faces the treated surface; A method of manufacturing a field effect transistor, wherein an active layer is formed on a gate insulating film.
PCT/JP2009/005342 2008-10-16 2009-10-14 Sputtering apparatus, method for forming thin film, and method for manufacturing field effect transistor WO2010044257A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010533829A JP5309150B2 (en) 2008-10-16 2009-10-14 Sputtering apparatus and method of manufacturing field effect transistor
CN200980140705.0A CN102187010B (en) 2008-10-16 2009-10-14 Method for forming thin film, and method for manufacturing field effect transistor
US13/123,727 US20110195562A1 (en) 2008-10-16 2009-10-14 Sputtering Apparatus, Thin-Film Forming Method, and Manufacturing Method for a Field Effect Transistor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-267918 2008-10-16
JP2008267918 2008-10-16

Publications (1)

Publication Number Publication Date
WO2010044257A1 true WO2010044257A1 (en) 2010-04-22

Family

ID=42106428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/005342 WO2010044257A1 (en) 2008-10-16 2009-10-14 Sputtering apparatus, method for forming thin film, and method for manufacturing field effect transistor

Country Status (6)

Country Link
US (1) US20110195562A1 (en)
JP (1) JP5309150B2 (en)
KR (1) KR20110042217A (en)
CN (1) CN102187010B (en)
TW (1) TWI428464B (en)
WO (1) WO2010044257A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011152482A1 (en) * 2010-06-03 2011-12-08 株式会社アルバック Sputter deposition device
WO2011152481A1 (en) * 2010-06-03 2011-12-08 株式会社アルバック Sputter film forming device
JP5328995B2 (en) * 2011-02-08 2013-10-30 シャープ株式会社 Magnetron sputtering apparatus, method for controlling magnetron sputtering apparatus, and film forming method
JP2013545163A (en) * 2010-09-23 2013-12-19 株式会社ソニー・コンピュータエンタテインメント User interface system and method using thermal imaging
KR20170017004A (en) 2013-09-26 2017-02-14 가부시키가이샤 알박 Substrate processing device and film forming device
WO2019004351A1 (en) * 2017-06-28 2019-01-03 株式会社アルバック Sputtering device
JP2022525225A (en) * 2019-03-19 2022-05-11 アプライド マテリアルズ イタリア エス. アール. エル. Depositing device, deposition method on substrate, substrate structure and substrate support

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI589717B (en) 2011-11-03 2017-07-01 海帝斯科技公司 Sputerring method using of sputerring device
JP5801500B2 (en) * 2013-08-29 2015-10-28 株式会社アルバック Reactive sputtering equipment
CN103572240B (en) * 2013-11-20 2016-01-06 京东方科技集团股份有限公司 A kind of film coating apparatus
WO2019004359A1 (en) 2017-06-29 2019-01-03 株式会社アルバック Film deposition device
WO2019216003A1 (en) * 2018-05-11 2019-11-14 株式会社アルバック Sputtering method
KR102334224B1 (en) * 2018-06-19 2021-12-02 가부시키가이샤 아루박 sputtering method, sputtering device
CN112179931B (en) * 2020-09-24 2021-10-19 长江存储科技有限责任公司 Physical failure analysis sample and preparation method thereof
CN113481478A (en) * 2021-06-23 2021-10-08 合肥联顿恪智能科技有限公司 Sputtering coating device and film forming method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1161401A (en) * 1997-08-21 1999-03-05 Matsushita Electric Ind Co Ltd Sputtering and device therefor
JPH11189873A (en) * 1997-12-26 1999-07-13 Matsushita Electric Ind Co Ltd Sputtering device and method
JP2001335930A (en) * 2000-05-25 2001-12-07 Matsushita Electric Ind Co Ltd Thin film deposition system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04318164A (en) * 1991-04-18 1992-11-09 Sharp Corp Thin film forming method
JPH0681145A (en) * 1992-08-31 1994-03-22 Shimadzu Corp Magnetron sputtering device
US7504006B2 (en) * 2002-08-01 2009-03-17 Applied Materials, Inc. Self-ionized and capacitively-coupled plasma for sputtering and resputtering
JP4246547B2 (en) * 2003-05-23 2009-04-02 株式会社アルバック Sputtering apparatus and sputtering method
US20050274610A1 (en) * 2004-05-25 2005-12-15 Victor Company Of Japan, Limited Magnetron sputtering apparatus
JP4789535B2 (en) * 2005-08-01 2011-10-12 株式会社アルバック Sputtering apparatus, film forming method
JP4609797B2 (en) * 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 Thin film device and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1161401A (en) * 1997-08-21 1999-03-05 Matsushita Electric Ind Co Ltd Sputtering and device therefor
JPH11189873A (en) * 1997-12-26 1999-07-13 Matsushita Electric Ind Co Ltd Sputtering device and method
JP2001335930A (en) * 2000-05-25 2001-12-07 Matsushita Electric Ind Co Ltd Thin film deposition system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011152482A1 (en) * 2010-06-03 2011-12-08 株式会社アルバック Sputter deposition device
WO2011152481A1 (en) * 2010-06-03 2011-12-08 株式会社アルバック Sputter film forming device
CN102906302A (en) * 2010-06-03 2013-01-30 株式会社爱发科 Sputter deposition device
JP5265811B2 (en) * 2010-06-03 2013-08-14 株式会社アルバック Sputter deposition system
JP5282167B2 (en) * 2010-06-03 2013-09-04 株式会社アルバック Sputter deposition system
JP2013545163A (en) * 2010-09-23 2013-12-19 株式会社ソニー・コンピュータエンタテインメント User interface system and method using thermal imaging
JP5328995B2 (en) * 2011-02-08 2013-10-30 シャープ株式会社 Magnetron sputtering apparatus, method for controlling magnetron sputtering apparatus, and film forming method
TWI550118B (en) * 2011-02-08 2016-09-21 Sharp Kk Magnetron sputtering device, magnetron sputtering device control method and film forming method
KR20170017004A (en) 2013-09-26 2017-02-14 가부시키가이샤 알박 Substrate processing device and film forming device
WO2019004351A1 (en) * 2017-06-28 2019-01-03 株式会社アルバック Sputtering device
JPWO2019004351A1 (en) * 2017-06-28 2019-06-27 株式会社アルバック Sputtering equipment
US11473188B2 (en) 2017-06-28 2022-10-18 Ulvac, Inc. Sputtering apparatus
JP2022525225A (en) * 2019-03-19 2022-05-11 アプライド マテリアルズ イタリア エス. アール. エル. Depositing device, deposition method on substrate, substrate structure and substrate support
JP7254206B2 (en) 2019-03-19 2023-04-07 アプライド マテリアルズ イタリア エス. アール. エル. Deposition Apparatus, Method for Deposition on Substrate, Substrate Structure and Substrate Support

Also Published As

Publication number Publication date
JP5309150B2 (en) 2013-10-09
TWI428464B (en) 2014-03-01
KR20110042217A (en) 2011-04-25
US20110195562A1 (en) 2011-08-11
JPWO2010044257A1 (en) 2012-03-15
TW201024443A (en) 2010-07-01
CN102187010B (en) 2014-09-03
CN102187010A (en) 2011-09-14

Similar Documents

Publication Publication Date Title
JP5309150B2 (en) Sputtering apparatus and method of manufacturing field effect transistor
US9472384B2 (en) Electronic device manufacturing method and sputtering method
JP4537479B2 (en) Sputtering equipment
US6641702B2 (en) Sputtering device
JP5480290B2 (en) Sputtering apparatus and electronic device manufacturing method
KR19990066676A (en) Sputter Chemical Vapor Deposition
JP5334984B2 (en) Sputtering apparatus, thin film forming method, and field effect transistor manufacturing method
KR101279214B1 (en) Sputtering apparatus, thin film forming method and method for manufacturing field effect transistor
US20070138009A1 (en) Sputtering apparatus
WO2009157228A1 (en) Sputtering apparatus, sputtering method and light emitting element manufacturing method
JP4858492B2 (en) Sputtering equipment
KR20190005929A (en) Method and apparatus for vacuum processing
JP2001185598A (en) Substrate processor
JP2594935B2 (en) Sputter film forming method and apparatus
JP2009224799A (en) Substrate treatment device and substrate treatment method using same
TW201437397A (en) Physical vapor deposition system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980140705.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09820435

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010533829

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117005635

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13123727

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09820435

Country of ref document: EP

Kind code of ref document: A1