WO2010044163A1 - 風力発電システム、及びその制御方法 - Google Patents

風力発電システム、及びその制御方法 Download PDF

Info

Publication number
WO2010044163A1
WO2010044163A1 PCT/JP2008/068764 JP2008068764W WO2010044163A1 WO 2010044163 A1 WO2010044163 A1 WO 2010044163A1 JP 2008068764 W JP2008068764 W JP 2008068764W WO 2010044163 A1 WO2010044163 A1 WO 2010044163A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
control
rated
wind
pitch angle
Prior art date
Application number
PCT/JP2008/068764
Other languages
English (en)
French (fr)
Inventor
有永 真司
強志 若狭
崇俊 松下
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN200880129023.5A priority Critical patent/CN102017392B/zh
Priority to PCT/JP2008/068764 priority patent/WO2010044163A1/ja
Priority to KR1020107025398A priority patent/KR101253854B1/ko
Priority to BRPI0822536-2A priority patent/BRPI0822536A2/pt
Priority to EP08877421.1A priority patent/EP2339743B1/en
Priority to CA2722848A priority patent/CA2722848A1/en
Priority to AU2008363040A priority patent/AU2008363040B2/en
Publication of WO2010044163A1 publication Critical patent/WO2010044163A1/ja
Priority to US12/916,196 priority patent/US7982327B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/043Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0272Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor by measures acting on the electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/028Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/321Wind directions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/327Rotor or generator speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/70Type of control algorithm
    • F05B2270/706Type of control algorithm proportional-integral-differential
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/15Special adaptation of control arrangements for generators for wind-driven turbines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/45Special adaptation of control arrangements for generators for motor vehicles, e.g. car alternators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a wind power generation system and a control method thereof, and more particularly to control of output power and pitch angle of a wind power generation system adopting a variable speed variable pitch control method.
  • variable-speed variable-pitch control method in which the rotational speed of the wind turbine rotor (ie, the rotational speed of the generator) is variable and the pitch angle of the blades is variable. is there.
  • the variable-speed variable-pitch control method has the advantage of being able to obtain more energy from the wind and having smaller output fluctuations.
  • JP 2001-512804 A discloses a control method of controlling the torque of the generator by magnetic field orientation control while controlling the pitch angle independently of the torque of the generator.
  • the target output power of the generator is determined using the look-up table in response to the number of revolutions of the generator, and the torque command of the generator is determined from the target output power.
  • the torque of the generator is controlled by the magnetic field orientation control.
  • the pitch angle of the blade is controlled by PID control, PI control or PD control according to the deviation between the rotational speed of the generator and the target rotational speed.
  • Wind power generation systems are generally designed to generate a rated power when the rotational speed of the wind turbine rotor is equal to or higher than the rated rotational speed.
  • the output power becomes smaller than the rated power. This causes fluctuations in output power and a decrease in power generation efficiency.
  • an object of the present invention is to provide a wind power generation system in which fluctuations in output power and reduction in power generation efficiency are unlikely to occur even when short passages occur.
  • a wind power generation system is responsive to the number of revolutions of a wind turbine rotor or a generator driven by the wind turbine rotor and a wind turbine rotor comprising blades having variable pitch angles, and generating power. And a controller for controlling the output power of the machine and the pitch angle of the blades.
  • the controller performs the first control for controlling the output power according to the predetermined power-rotational speed curve until the rotational speed increases and reaches the predetermined rated rotational speed, and the rotational speed exceeds the rated rotation speed
  • the pitch angle is an angle between the chord of the blade and the rotor rotation surface. That is, when the pitch angle is small, the wind turbine rotor takes more energy from the wind, and when the pitch angle is larger, the wind turbine rotor takes less energy from the wind.
  • the fluctuation of the output power can be suppressed by using the rotational energy of the wind turbine rotor.
  • the rotation speed becomes smaller than the rated rotation speed
  • the output power is maintained at a predetermined rated power according to the pitch angle of the blade.
  • the rotational energy of the wind turbine rotor is effectively extracted by maintaining the output power at the rated power, and the output power Of the power generation and the decrease in the power generation efficiency.
  • the control device performs the second control when the pitch angle is larger than a predetermined pitch angle when the rotation speed becomes smaller than the rated rotation speed after being set in the state of performing the second control. It is preferable to maintain the state and transition to the state in which the first control is performed only when the pitch angle reaches a predetermined pitch angle. In this case, when the rotation speed becomes smaller than a predetermined threshold rotation speed smaller than the rated rotation speed after the control device is once set in the state of performing the second control, It is desirable to make a transition to the state of performing the first control independently.
  • control device controls the pitch angle in response to the difference between the rotation speed of the wind turbine rotor or generator and the predetermined rated rotation speed, and the difference between the output power and the rated power.
  • the controller preferably controls the pitch angle such that the pitch angle is reduced when the output power is smaller than the rated power.
  • control device increases the output power of the generator in response to the rotational speed when detecting a gust.
  • the wind power generation system further includes a turning mechanism that turns the direction of the rotation surface of the wind turbine rotor, and a wind direction detector that detects the upwind direction, and the wind turbine rotor includes a pitch drive mechanism that drives the blades.
  • the control device controls the turning mechanism so that the rotational surface of the wind turbine rotor is retracted from the upwind direction when a failure of the pitch drive mechanism is detected.
  • control device controls reactive power output from the generator to the power grid in response to the voltage of the power grid connected to the generator, and controls the pitch angle according to the reactive power. .
  • the wind power generation system further comprises an emergency battery and a charging device for charging the emergency battery with power received from the power system, and the wind turbine rotor comprises a pitch drive mechanism for driving the blade, the emergency battery If the power supply to the pitch drive mechanism and the controller is supplied when the voltage of the power system connected to the generator drops, the controller increases the output power while the emergency battery is being charged. Preferably, the output power is controlled.
  • a control method of a wind power generation system is a control method of a wind power generation system including a wind turbine rotor including blades having variable pitch angles, and a generator driven by the wind turbine rotor.
  • the control method comprises controlling the output power of the generator and the pitch angle of the blades in response to the rotational speed of the wind turbine rotor or generator.
  • the controlling step comprises (A) a first control step of controlling the output power in accordance with a predetermined power-rotation number curve until the rotation number increases and reaches a predetermined rated rotation number; (B) performing a second control to control the output power to a predetermined rated power when the rotational speed exceeds the rated rotational speed; (C) maintaining the state of performing the second control in response to the pitch angle when the rotation speed becomes smaller than the rated rotation speed after being set to the state of performing the second control Or transitioning to a state in which the first control is performed.
  • the present invention provides a wind power generation system in which fluctuations in output power and reduction in power generation efficiency are unlikely to occur even if short passages occur.
  • FIG. 1 is a side view showing the configuration of a wind power generation system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing the configuration of the pitch drive mechanism of the wind turbine generator system of the present embodiment.
  • FIG. 3 is a block diagram showing the configuration of the wind power generation system of the present embodiment.
  • FIG. 4 is a graph showing a method of power control performed in the wind power generation system of the present embodiment.
  • FIG. 5 is a block diagram showing an example of the configuration of the main control device of the wind turbine generator system of the present embodiment.
  • FIG. 6 is a table for explaining the operation of the power control unit and the pitch control unit of the wind power generation system of the present embodiment.
  • FIG. 7 is a graph showing an example of the operation of the wind power generation system according to the present embodiment.
  • FIG. 1 is a side view showing the configuration of a wind power generation system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing the configuration of the pitch drive mechanism of the wind turbine generator system
  • FIG. 8 is a block diagram showing another configuration of the wind power generation system of the present embodiment.
  • FIG. 9 is a flowchart of preferable control performed by the wind turbine generator system of the present embodiment.
  • FIG. 10 is a flowchart of another suitable control performed by the wind power generation system of the present embodiment.
  • FIG. 11 is a flowchart of still another preferable control performed in the wind turbine generator system of the present embodiment.
  • FIG. 12 is a flowchart of still another preferable control performed in the wind turbine generator system of the present embodiment.
  • FIG. 1 is a side view showing the configuration of a wind power generation system 1 according to an embodiment of the present invention.
  • the wind power generation system 1 includes a tower 2 and a nacelle 3 provided at the upper end of the tower 2.
  • the nacelle 3 is pivotable in the yaw direction and is directed by the nacelle pivot mechanism 4 in a desired direction.
  • a winding induction generator 5 and a gear 6 are mounted on the nacelle 3.
  • the rotor of the winding induction generator 5 is joined to the wind turbine rotor 7 via the gear 6.
  • the wind turbine rotor 7 comprises a blade 8 and a hub 9 supporting the blade 8.
  • the blades 8 are provided such that the pitch angle thereof is variable.
  • the hub 9 accommodates a hydraulic cylinder 11 that drives the blade 8 and a servo valve 12 that supplies hydraulic pressure to the hydraulic cylinder 11.
  • the degree of opening of the servo valve 12 controls the hydraulic pressure supplied to the hydraulic cylinder 11, whereby the blade 8 is controlled to a desired pitch angle.
  • the nacelle 3 is further provided with an anemometer 10.
  • the anemometer 10 measures the wind speed and the wind direction. As described below, the nacelle 3 is turned in response to the wind speed and the wind direction measured by the anemometer 10.
  • FIG. 3 is a block diagram showing the details of the configuration of the wind power generation system 1.
  • the wind power generation system 1 of the present embodiment is a kind of doubly-fed variable speed wind turbine system. That is, the wind power generation system 1 of this embodiment is configured such that the power generated by the winding induction generator 5 can be output to the power system 13 from both the stator winding and the rotor winding. Specifically, the stator winding of the winding induction generator 5 is directly connected to the power system 13, and the rotor winding is connected to the power system 13 via the AC-DC-AC converter 17.
  • the AC-DC-AC converter 17 is composed of an active rectifier 14, a DC bus 15, and an inverter 16, and converts AC power received from the rotor winding into AC power adapted to the frequency of the power system 13.
  • the active rectifier 14 converts AC power generated in the rotor winding into DC power, and outputs the DC power to the DC bus 15.
  • the inverter 16 converts DC power received from the DC bus 15 into AC power of the same frequency as that of the power system 13, and outputs the AC power to the power system 13.
  • the output power output from the winding induction generator 5 to the power system 13 is controlled by the active rectifier 14 and the inverter 16.
  • the AC-DC-AC converter 17 also has a function of converting the AC power received from the power system 13 into AC power adapted to the frequency of the rotor winding. It is also used to excite the line.
  • the inverter 16 converts AC power into DC power and outputs the DC power to the DC bus 15.
  • Active rectifier 14 converts the DC power received from DC bus 15 into AC power adapted to the frequency of the rotor winding, and supplies the AC power to the rotor winding of winding induction generator 5.
  • the control system of the wind power generation system 1 includes a pulse logic generator (PLG) 18, a main controller 19, a voltage / current sensor 20, a converter drive controller 21, a pitch controller 22, and a yaw controller 23. It is configured.
  • PLG pulse logic generator
  • the PLG 18 measures the rotation speed ⁇ of the winding induction generator 5 (hereinafter, referred to as “generator rotation speed ⁇ ”).
  • Main controller 19 generates active power command P * , reactive power command Q * , and pitch command ⁇ * in response to generator rotational speed ⁇ measured by PLG 18, and is further measured by anemometer 10.
  • the yaw command is generated in response to the wind speed and the wind direction.
  • one of the features of the wind turbine generator system 1 of the present embodiment is a control algorithm for generating the active power command P * and the pitch command ⁇ * .
  • the voltage / current sensor 20 is provided on a power line connecting the winding induction generator 5 to the power system 13, and a voltage V grid (system voltage) of the power system 13 and the winding system generator 5 to the power system 13. And the output current I grid output to.
  • Converter drive control device 21 controls active power P and reactive power Q output to electric power system 13 in response to active power command P * and reactive power command Q * . It controls on / off of power transistors of the active rectifier 14 and the inverter 16. Specifically, converter drive control device 21 generates active power P and reactive power Q output to power system 13 from voltage V grid and output current I grid of power system 13 measured by voltage / current sensor 20. calculate. Furthermore, converter drive control device 21 performs PWM control in response to the difference between active power P and active power command P *, and the difference between reactive power Q and reactive power command Q * , to generate and generate a PWM signal. The supplied PWM signal is supplied to the active rectifier 14 and the inverter 16. Thereby, the active power P and the reactive power Q output to the power system 13 are controlled.
  • the pitch controller 22 controls the pitch angle ⁇ of the blade 8 in response to the pitch command ⁇ * sent from the main controller 19.
  • the pitch angle ⁇ of the blade 8 is controlled to coincide with the pitch command ⁇ * .
  • the yaw control device 23 controls the nacelle turning mechanism 4 in response to the yaw command sent from the main control device 19.
  • the nacelle 3 is directed in the direction instructed by the yaw command.
  • An AC / DC converter 24 is connected to a power line connecting the power system 13 and the winding induction generator 5.
  • the AC / DC converter 24 is used to generate DC power from AC power received from the power system 13 and to control the DC power in the control system of the wind power generation system 1, in particular, to control the pitch angle ⁇ of the blades 8. Supply to the servo valve 12, the main controller 19, and the pitch controller 22.
  • the wind power generation system 1 includes an uninterruptible power supply including a charging device 27 and an emergency battery 28.
  • a system 26 is provided. Due to the requirements of the specifications of the wind power generation system, it is necessary to maintain the state in which the winding induction generator 5 is connected to the power grid 13 even if the grid voltage V grid is lowered. For this purpose, it is necessary to properly control the pitch angle of the blades 8 even when the voltage of the power system 13 is reduced, and thereby to maintain the rotation speed of the winding induction generator 5 at a desired value.
  • the uninterruptible power supply system 26 is connected to the servo valve 12, the main controller 19 and the pitch controller 22 by the switch 25, Electric power is supplied from the emergency battery 28 to the servo valve 12, the main controller 19 and the pitch controller 22. Thereby, control of the pitch angle of the blade 8 is maintained.
  • the emergency battery 28 is connected to the charging device 27.
  • the charging device 27 charges the emergency battery 28 with DC power supplied from the AC / DC converter 24.
  • FIG. 4 is a graph showing the relationship between the active power command P * and the rotation speed ⁇ of the winding induction generator 5, showing a method of controlling the output power P performed in the wind power generation system 1 of the present embodiment. There is.
  • the minimum rotation speed ⁇ min is the minimum rotation speed at which power is generated by the winding induction generator 5, and is determined according to the characteristics of the wind power generation system 1.
  • the active power command P * is controlled in one of two control modes: the optimum curve control mode and the rated value control mode. Ru.
  • the optimum curve control mode is mainly used in a range where the generator rotational speed ⁇ is larger than the minimum rotational speed ⁇ min and smaller than the rated rotational speed ⁇ max .
  • the rated rotational speed ⁇ max is the rotational speed at which the winding induction generator 5 is operated steadily.
  • the generator rotational speed ⁇ is controlled to the rated rotational speed ⁇ max (as long as it is possible) by controlling the pitch angle of the blade 8.
  • the output power P is made equal to the rated power P rated .
  • the rated value control mode is mainly used in the range where the generator rotational speed ⁇ is equal to or higher than the rated rotational speed ⁇ max . In the steady state in which the wind is blowing at the rated wind speed, the generator rotational speed ⁇ is controlled to be the rated rotational speed ⁇ max while the output power P is controlled to be the rated power P rated .
  • An important characteristic of the wind turbine generator system 1 of the present embodiment is that the transition from the rated value control mode to the optimum curve control mode is performed according to the pitch angle ⁇ of the blade 8.
  • the generator rotational speed ⁇ increases and reaches the rated rotational speed ⁇ max
  • the power control transitions from the optimal curve control mode to the rated value control mode.
  • the generator rotational speed ⁇ decreases and becomes smaller than the rated rotational speed ⁇ max , first, the pitch angle ⁇ is decreased, and the power is not increased until the pitch angle ⁇ reaches the minimum value ⁇ min.
  • the control transitions from the rated value control mode to the optimum curve control mode.
  • the active power command P * is switched from the rated power P rated to the optimized power value P opt .
  • active power command P * is maintained at rated power P rated as long as pitch angle ⁇ does not reach minimum value ⁇ min (ie, pitch command ⁇ * does not reach minimum value ⁇ min ).
  • the pitch angle ⁇ is the angle between the chord of the blade 8 and the rotor rotation surface, so that the pitch angle ⁇ is the minimum value ⁇ min means that the pitch angle ⁇ is set to the limit value on the fine side. Note that this means that the output factor of 7 is the largest.
  • the control of maintaining the output power P at the rated power P rated until the pitch angle ⁇ reaches the minimum value ⁇ min suppresses the fluctuation of the output power when a short gap occurs, and further prevents the reduction of the power generation efficiency It is advantageous for In the above control, even if the generator rotational speed ⁇ becomes smaller than the rated rotational speed ⁇ max , the active power command P * is maintained at the rated power P rated if this is not continued only for a short time. , Fluctuation of the output power P is suppressed.
  • the output coefficient of the wind turbine rotor 7 can not be increased due to the decrease of the pitch angle ⁇ . Since the output power P is reduced from the rated power P rated for the first time, the rotational energy of the wind turbine rotor 7 is effectively utilized, and the power generation efficiency can be effectively improved.
  • FIG. 5 is a block diagram showing an example of the configuration of main controller 19 for realizing the control as shown in FIG. It should be noted that FIG. 5 only shows an example of the configuration of main controller 19, and main controller 19 may be realized by any of hardware, software, and a combination of hardware and software.
  • Main controller 19 includes a power control unit 31 that generates active power command P * and reactive power command Q *, and a pitch control unit 32 that generates pitch command ⁇ * .
  • the power control unit 31 includes a selector 33, a subtractor 34, a PI control unit 35, a power limiting unit 36, and a power setting calculation unit 37.
  • the pitch control unit 32 includes a subtractor 38, a PI control unit 39, a subtractor 40, a PI control unit 41, and an adder 42.
  • the selector 33, the subtractor 34, the PI control unit 35, the power limiting unit 36, the power setting calculation unit 37, the subtracter 38, the PI control unit 39, the subtracter 40, the PI control unit 41, and the adder 42 perform main control
  • the operation steps are respectively executed in synchronization with the clock used in the device 19, whereby the active power command P * , the reactive power command Q * and the pitch command ⁇ * are generated.
  • the selector 33 selects one of the minimum rotational speed ⁇ min and the rated rotational speed ⁇ max as the power control rotational speed command ⁇ P * . More specifically, when the generator rotational speed ⁇ is equal to or less than the intermediate rotational speed ⁇ M , the selector 33 sets the power control rotational speed command ⁇ P * to the minimum rotational speed ⁇ min , and the generator rotational speed ⁇ Is larger than the intermediate rotation speed ⁇ M , the power control rotation speed command ⁇ P * is set to the rated rotation speed ⁇ max .
  • the subtractor 34 subtracts the power control rotational speed command ⁇ P * from the generator rotational speed ⁇ to calculate the deviation ⁇ P.
  • PI control unit 35 performs PI control in response to deviation ⁇ P to generate active power command P * .
  • the range of the generated active power command P * is limited by the power command lower limit P min and the power command upper limit P max supplied from the power limiting unit 36. That is, active power command P * is limited to power command lower limit P min or more and power command lower limit P max .
  • Power limiting unit 36 determines power command lower limit P min and power command lower limit P max supplied to PI control unit 35 in response to generator rotational speed ⁇ and pitch command ⁇ * .
  • the power limiter 36 further supplies the rated power P rated to the subtractor 40 of the pitch controller 32. As described later, appropriately determining the power command lower limit P min and the power command lower limit P max generated by the power limiting unit 36 and the power control rotational speed command ⁇ P * determined by the selector 33 described above Thus, power control as shown in FIG. 4 is performed.
  • Power setting calculation unit 37 generates reactive power command Q * from active power command P * generated by PI control unit 35 and a power factor command specifying the power factor of AC power output from wind power generation system 1. Outputs an active power command P * and a reactive power command Q * . As described above, the active power command P * and the reactive power command Q * are used to control the active power P and the reactive power Q output from the wind power generation system 1.
  • the subtractor 38 of the pitch control unit 32 calculates a deviation [Delta] [omega beta from the generator rotational speed omega subtracting the pitch control rotational speed command omega beta *.
  • the pitch control rotational speed command ⁇ ⁇ * corresponds to the rated rotational speed ⁇ max , so the deviation ⁇ ⁇ represents the difference between the generator rotational speed ⁇ and the rated rotational speed ⁇ max .
  • the PI control unit 39 performs PI control in response to the deviation ⁇ ⁇ to generate a pitch command basic value ⁇ in * .
  • Pitch angle command baseline value ⁇ in * is to dominate the pitch angle command ⁇ * that is ultimately generated mainly, do not completely match the pitch angle command ⁇ *.
  • the pitch angle command base value ⁇ in * is determined such that the generator rotational speed ⁇ is controlled to the rated rotational speed ⁇ max .
  • the subtractor 40 subtracts the rated power P rated from the active power command P * to generate a deviation ⁇ P, and the PI control unit 41 performs PI control in response to the deviation ⁇ P to generate a correction value ⁇ * .
  • Adder 42 to generate the pitch angle command ⁇ * by adding the correction value ⁇ * and the pitch angle command baseline value ⁇ in *.
  • the subtractor 40 of the pitch control unit 32 and the PI control unit 41 The control unit 32 has a role of suppressing undesired interference with power control.
  • the PI control unit 39 of the pitch control unit 32 tries to adjust the generator rotational speed ⁇ to the rated rotational speed ⁇ max . For this reason, aerodynamic energy which should be taken out as electric power may be thrown away undesirably.
  • the PI control unit 41 generates the correction value ⁇ * in response to the difference between the rated power P rated and the active power command P *, and the pitch command ⁇ * is corrected by the correction value ⁇ * .
  • Such control prevents the pitch angle ⁇ from being on the feather side immediately before the active power command P * reaches the rated power P rated .
  • the deviation ⁇ P is zero, and the correction value ⁇ * is also zero.
  • FIG. 6 is a table showing operations of the power control unit 31 and the pitch control unit 32 of the main control device 19. Hereinafter, operations of the power control unit 31 and the pitch control unit 32 will be described in the following five cases.
  • the pitch command ⁇ * is controlled by the pitch control unit 32 so that the generator rotation speed ⁇ becomes the rated rotation speed ⁇ max, and as a result, the pitch command ⁇ * becomes the limit value on the fine side That is, the minimum pitch angle ⁇ min is set.
  • Pitch command beta * corrected by the above-correction value [Delta] [beta] * functions effectively in the case (2).
  • the active power command P * is smaller than the rated power P rated , the deviation ⁇ P is negative, and hence the correction value ⁇ * is also negative. Therefore, the pitch command ⁇ * becomes smaller than the pitch angle command base value ⁇ in * , that is, the pitch angle ⁇ becomes finer. Thereby, aerodynamic energy is more effectively converted to electric power.
  • the pitch command ⁇ * is rated at the generator rotational speed ⁇ by PI control. Since the rotation speed ⁇ max is controlled, as a result, the pitch command ⁇ * is set to the limit value on the fine side, that is, the minimum pitch angle ⁇ min .
  • the pitch angle command beta * is a generator rotational speed omega a threshold rotational speed omega 'M or more, and, when in a range smaller than the rated rotational speed omega max is rated generator rotational speed omega by PI control Since the rotation speed ⁇ max is controlled, as a result, the pitch command ⁇ * is set to the limit value on the fine side, that is, the minimum pitch angle ⁇ min .
  • FIG. 7 is a graph showing an example of the operation of the wind power generation system 1 in the present embodiment.
  • the active power command P * is set to the optimized power value P opt until the generator rotational speed ⁇ reaches the rated rotational speed ⁇ max (the above-mentioned case (2 )).
  • the output effective power P is increased with the increase of the generator rotational speed ⁇ .
  • the pitch command ⁇ * is set to the minimum pitch angle ⁇ min .
  • the active power command P * is set to the rated power Pr ated (case (3) described above). As a result, the output active power P is maintained at the rated power Pr ated . Since the generator rotational speed ⁇ exceeds the rated rotational speed ⁇ max , the pitch command ⁇ * increases, and the pitch angle ⁇ shifts to the feather side.
  • the generator rotational speed ⁇ sharply decreases.
  • the pitch control unit 32 decreases the pitch command ⁇ * in an attempt to maintain the generator rotational speed ⁇ at the rated rotational speed ⁇ max , thereby reducing the pitch angle ⁇ , that is, shifting to the fine side.
  • Active power command P * is maintained at rated power P rated as long as pitch angle ⁇ does not reach minimum pitch angle ⁇ min even when generator rotational speed ⁇ becomes smaller than rated rotational speed ⁇ max . Therefore, the output active power P is also maintained at the rated power P rated .
  • the generator rotational speed ⁇ is restored to the rated rotational speed ⁇ max again before the pitch angle ⁇ reaches the minimum pitch angle ⁇ min . Therefore, the active power P becomes the rated power P rated . Maintained.
  • the fluctuation of the output power in the case where the short passage occurs is suppressed.
  • the generator rotational speed ⁇ becomes smaller than the rated rotational speed ⁇ max, it is not possible to increase the output coefficient of the wind turbine rotor 7 due to the decrease of the pitch angle ⁇ . Since the output power P is reduced from the rated power P rated , the rotational energy of the wind turbine rotor 7 is effectively utilized, and the power generation efficiency can be effectively improved.
  • the wind power generation system 1 is further configured to execute various control methods according to various operating conditions.
  • FIG. 8 shows a preferred configuration of a wind power generation system 1 that performs control according to various operating conditions.
  • the main control device 19 detects the occurrence of gust (gust) by the wind speed and the wind direction measured by the anemometer 10. Instead of the wind speed and the wind direction, the generation of gust may be detected based on the generator rotational speed.
  • the active power command P * is controlled so that the number of revolutions of the wind turbine rotor 7 does not increase excessively.
  • the acceleration (rotor acceleration) of the wind turbine rotor 7 or the number of rotations of the wind turbine rotor 7 rotor The rotation speed is monitored.
  • step S02 When the rotor acceleration or the rotor rotational speed exceeds a predetermined limit value (step S02), active power command P * is increased (step S03).
  • the active power command P * is controlled to the rated power P rated until just before, the active power command P * is controlled to be larger than the rated power P rated .
  • the rotational energy of the wind turbine rotor 7 is converted to electrical energy and consumed by the power grid 13. Thereby, the wind turbine rotor 7 is decelerated.
  • the pitch controller 22 is configured to be able to detect failure of the hydraulic cylinder 11 and / or the servo valve 12 of FIG.
  • Main controller 19 generates a yaw command in response to the detection of the failure of hydraulic cylinder 11 and / or servo valve 12.
  • FIG. 10 shows a procedure in which the rotational surface of the wind turbine rotor 7 is retracted from the upwind direction.
  • the pitch controller 22 detects a failure of the hydraulic cylinder 11 and / or the servo valve 12 (step S06)
  • the pitch failure signal is activated.
  • Main controller 19 controls the yaw angle of nacelle 3 in response to the activation of the pitch failure signal, thereby retracting the rotational surface of wind turbine rotor 7 from the upwind direction (step S07).
  • the upwind direction can be determined by the wind direction measured by the anemometer 10.
  • FIG. 11 is a flowchart showing the procedure of such control.
  • step S11 When system voltage V grid exceeds X% of predetermined rated voltage V rated (X is a predetermined value larger than 100) or smaller than Y% of predetermined rated voltage V rated (Y is , And a predetermined value smaller than 100 (step S11), the power factor command given to the power control unit 31 is corrected (step S12).
  • the corrected power factor command can be given from the control system of electric power system 13, and main controller 19 itself can also correct the power factor command according to system voltage V grid .
  • the reactive power command Q * is reduced when the grid voltage V grid exceeds X% of the predetermined rated voltage V rated, if grid voltage V grid exceeds Y% of the predetermined rated voltage V rated
  • the reactive power command Q * is increased.
  • the active power command P * is increased when the reactive power command Q * is decreased, and the reactive power command Q * is increased. Active power command P * will be reduced.
  • the AC-DC-AC converter 17 is controlled in response to the active power command P * and the reactive power command Q * , whereby the reactive power Q supplied to the power system 13 is controlled (step S13).
  • the wind power generation system 1 of FIG. 8 is configured to increase the active power P to be output while the emergency battery 28 is charged. This is to compensate for the amount of power used to charge the emergency battery 28.
  • the charging device 27 starts charging the emergency battery 28 (step S21)
  • the charging device 27 activates a charge start signal.
  • Main controller 19 responds to activation of the charge start signal to increase active power command P * (step S22).
  • the amount of increase of active power command P * is set to be equal to the amount of power used to charge emergency battery 28.
  • active power command P * generated by PI control unit 35 is used to control AC-DC-AC converter 17.
  • the present invention should not be construed as being limited to the embodiments described above.
  • the wind power generation system 1 of the present embodiment is a dual supply variable speed wind turbine system
  • the present invention relates to another type of wind power generation system in which both the rotation speed and pitch angle of the wind turbine rotor are variable. Is also applicable.
  • the present invention is applicable to a wind power generation system in which all AC power generated by a generator is converted by the AC-DC-AC converter into AC power tuned to the frequency of the power system.
  • charging of the emergency battery 28 can be performed not by the power received from the power system but by the power output from the generator.
  • the rotation speed of the wind turbine rotor 7 depends on the generator rotation speed ⁇
  • the rotation speed of the wind turbine rotor 7 may be used instead of the generator rotation speed ⁇ .
  • the rotational speed of the wind turbine rotor 7 corresponds to the generator rotational speed ⁇ one to one.
  • the generator rotational speed ⁇ is increased with the increase of the rotational speed of the wind turbine rotor 7, so the generator rotational speed
  • the rotational speed of the wind turbine rotor 7 can be used instead of ⁇ .

Abstract

 風力発電システムが、ピッチ角が可変であるブレードを備える風車ロータと、風車ロータによって駆動される発電機と、風車ロータ又は発電機の回転数に応答して、発電機の出力電力とブレードのピッチ角とを制御する制御装置とを具備している。制御装置は、回転数が増大して所定の定格回転数に到達するまでの間、所定の電力-回転数曲線に従って出力電力を制御する第1制御を行い、回転数が定格回転数を超えたとき出力電力を所定の定格電力に制御する第2制御を行う。制御装置は、一旦、第2制御を行う状態に設定された後で回転数が定格回転数よりも小さくなったとき、ピッチ角に応答して第2制御を行う状態を維持し、又は第1制御を行う状態に遷移する。

Description

風力発電システム、及びその制御方法
 本発明は、風力発電システム、及びその制御方法に関しており、特に、可変速可変ピッチ制御方式を採用する風力発電システムの出力電力及びピッチ角の制御に関する。
 風力発電システムの有力な制御方式の一つは、風車ロータの回転数(即ち、発電機の回転数)が可変であり、且つ、ブレードのピッチ角が可変である、可変速可変ピッチ制御方式である。可変速可変ピッチ制御方式は、風からエネルギーをより多く取得することができ、且つ、出力変動が小さいという利点がある。
 可変速可変ピッチ制御方式では、発電機の出力電力及びブレードのピッチ角の制御の最適化が重要である。特表2001-512804号公報は、磁界オリエンテーション制御によって発電機のトルクを制御する一方、発電機のトルクと独立してピッチ角を制御する制御方法を開示している。開示された制御方法では、発電機の回転数に応答して発電機の目標出力電力がルックアップテーブルを用いて決定され、その目標出力電力から発電機のトルク指令が決定される。このトルク指令に応答して、磁界オリエンテーション制御によって発電機のトルクが制御される。一方、ブレードのピッチ角は、発電機の回転数と目標回転数との偏差に応じたPID制御、PI制御、又はPD制御によって制御される。
 風力発電システムの制御における一つの問題は、短いなぎ(transient wind null)が発生した場合、すなわち、風速が短時間だけ低下した場合に対する対応である。風力発電システムは、一般に、風車ロータの回転数が定格回転数以上である場合に定格電力を発生するように設計される。このような風力発電システムでは、短いなぎが発生して風車ロータの回転数が定格回転数よりも小さくなると、出力電力が定格電力よりも小さくなってしまう。これは、出力電力の変動や発電効率の低下を招く。
 従って、本発明の目的は、短いなぎが発生しても出力電力の変動や発電効率の低下が起こりにくい風力発電システムを提供することにある。
 本発明の一の観点では、風力発電システムは、ピッチ角が可変であるブレードを備える風車ロータと、風車ロータによって駆動される発電機と、風車ロータ又は発電機の回転数に応答して、発電機の出力電力とブレードのピッチ角とを制御する制御装置とを具備する。制御装置は、回転数が増大して所定の定格回転数に到達するまでの間、所定の電力-回転数曲線に従って出力電力を制御する第1制御を行い、回転数が定格回転数を超えたとき出力電力を所定の定格電力に制御する第2制御を行い、制御装置は、一旦、第2制御を行う状態に設定された後で回転数が定格回転数よりも小さくなったとき、ピッチ角に応答して第2制御を行う状態を維持し、又は第1制御を行う状態に遷移する。ここで、ピッチ角とは、ブレードの翼弦とロータ回転面のなす角度である。即ち、ピッチ角が小さいと、風車ロータは、より多くのエネルギーを風から取り出し、ピッチ角が大きいと、風車ロータは、より少ないエネルギーを風から取り出すことになる。
 このような構成の風力発電システムでは、短時間だけしか風速が低下していない場合には、風車ロータの回転エネルギーを利用することによって出力電力の変動を抑制することができる。これは、本発明の風力発電システムでは、前記回転数が前記定格回転数よりも小さくなった場合に、出力電力がブレードのピッチ角に応じて所定の定格電力に維持されるからである。ブレードのピッチ角から出力電力を所定の定格電力に維持可能な状態であると判断される場合には出力電力を定格電力に維持することにより、風車ロータの回転エネルギーが有効に取り出され、出力電力の変動と発電効率の低下とを抑制することができる。
 制御装置は、一旦、第2制御を行う状態に設定された後で回転数が定格回転数よりも小さくなったとき、ピッチ角が所定のピッチ角よりも大きい場合には前記第2制御を行う状態を維持し、ピッチ角が所定のピッチ角に到達して初めて第1制御を行う状態に遷移することが好ましい。この場合、前記制御装置は、一旦、前記第2制御を行う状態に設定された後で前記回転数が前記定格回転数よりも小さい所定の閾値回転数よりも小さくなったとき、前記ピッチ角に無関係に前記第1制御を行う状態に遷移することが望ましい。
 制御装置は、風車ロータ又は発電機の回転数と所定の定格回転数との差、及び出力電力と定格電力との差に応答して前記ピッチ角を制御することが好ましい。
 この場合、制御装置は、出力電力が定格電力よりも小さい場合、ピッチ角が減少されるようにピッチ角を制御することが好ましい。
 制御装置は、ガストを検出した場合、前記回転数に応答して発電機の出力電力を増加させることが好ましい。
 また、当該風力発電システムが、更に、風車ロータの回転面の向きを旋回させる旋回機構と、風上方向を検出する風向検出器とを備え、風車ロータが、ブレードを駆動するピッチ駆動機構を備えている場合、制御装置は、ピッチ駆動機構の故障を検出したとき、風車ロータの回転面が風上方向から退避されるように旋回機構を制御することが好ましい。
 制御装置は、発電機に接続された電力系統の電圧に応答して発電機から電力系統に出力される無効電力を制御し、且つ、前記無効電力に応じて前記ピッチ角を制御することが好ましい。
 当該風力発電システムが、更に、非常用バッテリと、電力系統から受け取った電力によって非常用バッテリを充電する充電装置とを具備し、風車ロータが、ブレードを駆動するピッチ駆動機構を備え、非常用バッテリが、発電機に接続された電力系統の電圧が低下したときにピッチ駆動機構と制御装置に電力を供給する場合、制御装置は、非常用バッテリが充電されている間、出力電力を増加させるように出力電力を制御することが好ましい。
 本発明による風力発電システムの制御方法は、ピッチ角が可変であるブレードを備える風車ロータと、風車ロータによって駆動される発電機とを備える風力発電システムの制御方法である。当該制御方法は、風車ロータ又は発電機の回転数に応答して、発電機の出力電力と前記ブレードのピッチ角とを制御するステップを具備する。前記制御するステップは、
(A)前記回転数が増大して所定の定格回転数に到達するまでの間、所定の電力-回転数曲線に従って前記出力電力を制御する第1制御が行うステップと、
(B)前記回転数が前記定格回転数を超えたとき前記出力電力を所定の定格電力に制御する第2制御を行うステップと、
(C)一旦、前記第2制御を行う状態に設定された後で前記回転数が前記定格回転数よりも小さくなったとき、前記ピッチ角に応答して前記第2制御を行う状態を維持し、又は前記第1制御を行う状態に遷移するステップ
とを備える。
 本発明により、短いなぎが発生しても出力電力の変動や発電効率の低下が起こりにくい風力発電システムが提供される。
図1は、本発明の一実施形態における風力発電システムの構成を示す側面図である。 図2は、本実施形態の風力発電システムのピッチ駆動機構の構成を示すブロック図である。 図3は、本実施形態の風力発電システムの構成を示すブロック図である。 図4は、本実施形態の風力発電システムにおいて行われる電力制御の方法を示すグラフである。 図5は、本実施形態の風力発電システムの主制御装置の構成の一例を示すブロック図である。 図6は、本実施形態の風力発電システムの電力制御部及びピッチ制御部の動作を説明する表である。 図7は、本実施形態の風力発電システムの動作の一例を示すグラフである。 図8は、本実施形態の風力発電システムの他の構成を示すブロック図である。 図9は、本実施形態の風力発電システムで行われる好適な制御のフローチャートである。 図10は、本実施形態の風力発電システムで行われる他の好適な制御のフローチャートである。 図11は、本実施形態の風力発電システムで行われる更に他の好適な制御のフローチャートである。 図12は、本実施形態の風力発電システムで行われる更に他の好適な制御のフローチャートである。
 図1は、本発明の一実施形態における風力発電システム1の構成を示す側面図である。風力発電システム1は、タワー2と、タワー2の上端に設けられたナセル3とを備えている。ナセル3は、ヨー方向に旋回可能であり、ナセル旋回機構4によって所望の方向に向けられる。ナセル3には、巻線誘導発電機5とギア6とが搭載されている。巻線誘導発電機5のロータは、ギア6を介して風車ロータ7に接合されている。
 風車ロータ7は、ブレード8と、ブレード8を支持するハブ9とを備えている。ブレード8は、そのピッチ角が可変であるように設けられている。詳細には、図2に示されているように、ハブ9には、ブレード8を駆動する油圧シリンダ11と、油圧シリンダ11に油圧を供給するサーボバルブ12とが収容されている。サーボバルブ12の開度によって油圧シリンダ11に供給される油圧が制御され、これにより、ブレード8が、所望のピッチ角に制御される。
 図1に戻り、ナセル3には、更に、風速計10が設けられている。風速計10は、風速と風向とを測定する。後述されるように、ナセル3は、風速計10によって測定された風速と風向に応答して旋回される。
 図3は、風力発電システム1の構成の詳細を示すブロック図である。本実施形態の風力発電システム1は、2重供給可変速風力タービンシステム(doubly-fed variable speed wind turbine system)の一種である。即ち、本実施形態の風力発電システム1は、巻線誘導発電機5が発生する電力がステータ巻線及びロータ巻線の両方から電力系統13に出力可能であるように構成されている。具体的には、巻線誘導発電機5は、そのステータ巻線が電力系統13に直接に接続され、ロータ巻線がAC-DC-ACコンバータ17を介して電力系統13に接続されている。
 AC-DC-ACコンバータ17は、能動整流器14、DCバス15、及びインバータ16から構成されており、ロータ巻線から受け取った交流電力を電力系統13の周波数に適合した交流電力に変換する。能動整流器14は、ロータ巻線に発生された交流電力を直流電力に変換し、その直流電力をDCバス15に出力する。インバータ16は、DCバス15から受け取った直流電力を電力系統13と同一の周波数の交流電力に変換し、その交流電力を電力系統13に出力する。巻線誘導発電機5が電力系統13に出力する出力電力は、能動整流器14及びインバータ16によって制御される。
 AC-DC-ACコンバータ17は、電力系統13から受け取った交流電力をロータ巻線の周波数に適合した交流電力に変換する機能も有しており、風力発電システム1の運転の状況によってはロータ巻線を励起するためにも使用される。この場合、インバータ16は、交流電力を直流電力に変換し、その直流電力をDCバス15に出力する。能動整流器14は、DCバス15から受け取った直流電力をロータ巻線の周波数に適合した交流電力に変換し、その交流電力を巻線誘導発電機5のロータ巻線に供給する。
 風力発電システム1の制御系は、PLG(pulse logic generator)18と、主制御装置19と、電圧/電流センサ20と、コンバータ駆動制御装置21と、ピッチ制御装置22と、ヨー制御装置23とで構成されている。
 PLG18は、巻線誘導発電機5の回転数ω(以下、「発電機回転数ω」という。)を測定する。
 主制御装置19は、PLG18によって測定された発電機回転数ωに応答して有効電力指令P、無効電力指令Q、及びピッチ指令βを生成し、更に、風速計10によって測定された風速及び風向に応答してヨー指令を生成する。後に詳細に記述されるように、本実施形態の風力発電システム1の特徴の一つは、有効電力指令P及びピッチ指令βを生成するための制御アルゴリズムにある。
 電圧/電流センサ20は、巻線誘導発電機5を電力系統13に接続する電力線に設けられており、電力系統13の電圧Vgrid(系統電圧)と、巻線誘導発電機5から電力系統13に出力される出力電流Igridとを測定する。
 コンバータ駆動制御装置21は、有効電力指令P、無効電力指令Qに応答して電力系統13に出力される有効電力Pと無効電力Qを制御する。能動整流器14及びインバータ16のパワートランジスタのオンオフを制御する。具体的には、コンバータ駆動制御装置21は、電圧/電流センサ20によって測定された電力系統13の電圧Vgrid及び出力電流Igridから、電力系統13に出力される有効電力Pと無効電力Qを算出する。更にコンバータ駆動制御装置21は、有効電力Pと有効電力指令Pとの差、及び無効電力Qと無効電力指令Qとの差に応答してPWM制御を行ってPWM信号を生成し、生成されたPWM信号を能動整流器14及びインバータ16に供給する。これにより、電力系統13に出力される有効電力Pと無効電力Qが制御される。
 ピッチ制御装置22は、主制御装置19から送られるピッチ指令βに応答して、ブレード8のピッチ角βを制御する。ブレード8のピッチ角βは、ピッチ指令βに一致するように制御される。
 ヨー制御装置23は、主制御装置19から送られるヨー指令に応答して、ナセル旋回機構4を制御する。ナセル3は、ヨー指令によって指示された方向に向けられる。
 電力系統13と巻線誘導発電機5とを接続する電力線には、AC/DCコンバータ24が接続されている。このAC/DCコンバータ24は、電力系統13から受け取った交流電力から直流電力を生成し、その直流電力を風力発電システム1の制御系、特に、ブレード8のピッチ角βを制御するために使用されるサーボバルブ12、主制御装置19、及びピッチ制御装置22に供給する。
 更に、サーボバルブ12、主制御装置19、及びピッチ制御装置22に安定的に直流電力を供給するために、風力発電システム1には、充電装置27と非常用バッテリ28とを備えた無停電電源システム26が設けられている。風力発電システムの規格の要求により、たとえ系統電圧Vgridが低下した場合でも、巻線誘導発電機5が電力系統13に接続された状態が維持される必要がある。このためには、電力系統13の電圧が低下した場合でもブレード8のピッチ角が適切に制御され、これにより巻線誘導発電機5の回転数が所望値に維持される必要がある。このような要求を満足するために、系統電圧Vgridが所定の電圧まで低下した場合、無停電電源システム26がスイッチ25によってサーボバルブ12、主制御装置19、及びピッチ制御装置22に接続され、電力が、非常用バッテリ28からサーボバルブ12、主制御装置19、及びピッチ制御装置22に供給される。これにより、ブレード8のピッチ角の制御が維持される。非常用バッテリ28は、充電装置27に接続されている。充電装置27は、AC/DCコンバータ24から供給される直流電力によって非常用バッテリ28を充電する。
 本実施形態の風力発電システム1の特徴の一つは、巻線誘導発電機5の出力電力Pの制御の最適化にある。図4は、有効電力指令Pと巻線誘導発電機5の回転数ωの間の関係を示すグラフであり、本実施形態の風力発電システム1において行われる出力電力Pの制御方法を示している。
 発電機回転数ωが最小回転数ωminよりも小さい場合、巻線誘導発電機5の有効電力指令Pは、0に制御される。最小回転数ωminとは、巻線誘導発電機5によって発電が行われる最小の回転数であり、風力発電システム1の特性に応じて決定される。
 発電機回転数ωが最小回転数ωminよりも大きい場合には、有効電力指令Pは、2つの制御モード:最適カーブ制御モードと定格値制御モードから選択された一方の制御モードで制御される。
 最適カーブ制御モードでは、有効電力指令Pが、下記式:
 Popt=Kω,     ・・・(1)
で定義される最適化電力値Poptに一致するように制御される。Kは、所定の定数である。風力発電システム1では、出力電力を発電機の回転数の3乗に比例して制御することが最適であることが知られており、第1の制御モードでは、出力電力Pが巻線誘導発電機5の発電機回転数ωの3乗に比例するように制御される。
 最適カーブ制御モードは、主として、発電機回転数ωが最小回転数ωminよりも大きく、定格回転数ωmaxよりも小さい範囲で使用される。ここで、定格回転数ωmaxとは、巻線誘導発電機5が定常的に運転される回転数である。発電機回転数ωは、ブレード8のピッチ角の制御により、(それが可能である限り)定格回転数ωmaxに制御される。
 一方、定格値制御モードでは、出力電力Pが定格電力Pratedに一致される。定格値制御モードは、主として、発電機回転数ωが定格回転数ωmax以上の範囲で使用される。定格風速で風が吹いている定常状態では、発電機回転数ωが定格回転数ωmaxになるように制御される一方、出力電力Pは定格電力Pratedになるように制御される。
 本実施形態の風力発電システム1の重要な特性は、定格値制御モードから最適カーブ制御モードへの遷移が、ブレード8のピッチ角βに応じて行われる点にある。発電機回転数ωが増加して定格回転数ωmaxに到達した場合には、電力制御が最適カーブ制御モードから定格値制御モードに遷移する。その一方で、発電機回転数ωが減少して定格回転数ωmaxよりも小さくなった場合には、まずピッチ角βが減少され、更にピッチ角βが最小値βminになって初めて、電力制御が定格値制御モードから最適カーブ制御モードに遷移される。即ち、有効電力指令Pが定格電力Pratedから最適化電力値Poptに切り換えられる。言い換えれば、ピッチ角βが最小値βminに到達しない限り(即ち、ピッチ指令βが最小値βminに到達しない限り)、有効電力指令Pが定格電力Pratedに維持される。ピッチ角βとは、ブレード8の翼弦とロータ回転面のなす角度であるから、ピッチ角βが最小値βminであるとは、ピッチ角βがファイン側の限界値に設定され、風車ロータ7の出力係数が最大である場合を意味していることに留意されたい。
 ピッチ角βが最小値βminに到達するまで出力電力Pを定格電力Pratedに維持する制御は、短いなぎが発生した場合における出力電力の変動を抑制し、更に、発電効率の低下を防止するために有利である。上記のような制御では、発電機回転数ωが定格回転数ωmaxよりも小さくなっても、それが短時間しか継続されなければ有効電力指令Pが定格電力Pratedに維持され、これにより、出力電力Pの変動が抑制される。加えて、本実施形態の風力発電システム1では、発電機回転数ωが定格回転数ωmaxよりも小さくなったときに、ピッチ角βの減少による風車ロータ7の出力係数の増大ができなくなって初めて出力電力Pが定格電力Pratedから減少されるため、風車ロータ7の回転エネルギーが有効に活用され、発電効率を有効に向上させることができる。
 ただし、発電機回転数ωが定格回転数ωmaxよりも低い所定の閾値回転数ω’よりも小さくなった場合には、ピッチ角β(又はピッチ指令β)に無関係に、電力制御が定格値制御モードから最適カーブ制御モードに切り換えられる。発電機回転数ωが過小である場合に出力電力Pを定格電力Pratedに維持しようとすることは、制御の安定性を保つために好ましくない。好適には、閾値回転数ω’は、下記式:
 ω’=(ω+ωmax)/2,
によって定められる回転数であることが好ましい。ここで、ωは、中間回転数であり、
 ω=(ωmin+ωmax)/2,
として定義される。
 図5は、図4に示されているような制御を実現するための主制御装置19の構成の例を示すブロック図である。図5は、主制御装置19の構成の一例を示しているに過ぎず、主制御装置19はハードウェア、ソフトウェア、及びハードウェアとソフトウェアの組み合わせの何れによって実現されてもよいことに留意されたい。主制御装置19は、有効電力指令P及び無効電力指令Qを生成する電力制御部31と、ピッチ指令βを生成するピッチ制御部32とを備えている。
 電力制御部31は、選択器33と、減算器34と、PI制御部35と、パワー制限部36と、電力設定計算部37とを備えている。一方、ピッチ制御部32は、減算器38と、PI制御部39と、減算器40と、PI制御部41と加算器42を備えている。選択器33、減算器34、PI制御部35、パワー制限部36、電力設定計算部37、減算器38、PI制御部39、減算器40、PI制御部41、及び加算器42は、主制御装置19において使用されるクロックに同期してそれぞれに演算ステップを実行し、これにより、有効電力指令P、無効電力指令Q、及びピッチ指令βが生成される。
 詳細には、選択器33は、発電機回転数ωに応答して、最小回転数ωminと定格回転数ωmaxとのうちの一方を電力制御回転数指令ω として選択する。より具体的には、選択器33は、発電機回転数ωが中間回転数ω以下である場合、電力制御回転数指令ω を最小回転数ωminに設定し、発電機回転数ωが中間回転数ωよりも大きい場合、電力制御回転数指令ω を定格回転数ωmaxに設定する。
 減算器34は、発電機回転数ωから電力制御回転数指令ω を減じて偏差Δωを算出する。
 PI制御部35は、偏差Δωに応答してPI制御を行い、有効電力指令Pを生成する。ただし、生成される有効電力指令Pの範囲は、パワー制限部36から供給される電力指令下限Pminと電力指令上限Pmaxによって制限される。即ち、有効電力指令Pは、電力指令下限Pmin以上、電力指令下限Pmax以下に制限される。
 パワー制限部36は、発電機回転数ω及びピッチ指令βに応答して、PI制御部35に供給される電力指令下限Pmin及び電力指令下限Pmaxを決定する。パワー制限部36は、更に、定格電力Pratedをピッチ制御部32の減算器40に供給する。後述されるように、パワー制限部36によって生成される電力指令下限Pmin、電力指令下限Pmax、及び上述の選択器33によって決定される電力制御回転数指令ω を適切に決定することにより、図4に示されているような電力制御が行われる。
 電力設定計算部37は、PI制御部35によって生成された有効電力指令Pと、風力発電システム1から出力される交流電力の力率を指定する力率指令とから無効電力指令Qを生成し、有効電力指令Pと無効電力指令Qとを出力する。上述されているように、有効電力指令Pと無効電力指令Qは、風力発電システム1から出力される有効電力P及び無効電力Qの制御に使用される。
 一方、ピッチ制御部32の減算器38は、発電機回転数ωからピッチ制御回転数指令ωβ を減じて偏差Δωβを算出する。ピッチ制御回転数指令ωβ は、定格回転数ωmaxに一致しており、従って、偏差Δωβは、発電機回転数ωと定格回転数ωmaxとの差を表している。
 PI制御部39は、偏差Δωβに応答してPI制御を行い、ピッチ指令基礎値βin を生成する。ピッチ角指令基礎値βin は、最終的に生成されるピッチ指令βを主として支配するが、ピッチ指令βに完全に一致するわけではない。ピッチ角指令基礎値βin は、発電機回転数ωが定格回転数ωmaxに制御されるように決定される。
 減算器40は、有効電力指令Pから定格電力Pratedを減じて偏差ΔPを生成し、PI制御部41は、偏差ΔPに応答してPI制御を行い、補正値Δβを生成する。加算器42は、ピッチ角指令基礎値βin と補正値Δβとを加算してピッチ指令βを生成する。
 ピッチ制御部32の減算器40、及びPI制御部41は、発電機回転数ωが定格回転数ωmaxまで増加して電力制御が最適カーブ制御モードから定格値制御モードに切り換えられるときに、ピッチ制御部32が電力制御に不所望に干渉することを抑制する役割を有している。ピッチ制御部32のPI制御部39は、発電機回転数ωを定格回転数ωmaxに調整しようとする。このため、電力として取り出すべき空力エネルギーが不所望に捨てられてしまう場合がある。そこで、本実施形態では、定格電力Pratedと有効電力指令Pとの差に応答してPI制御部41によって補正値Δβを生成し、この補正値Δβによってピッチ指令βが補正される。補正値Δβは、有効電力指令Pが定格電力Pratedよりも小さい場合に、即ち、偏差ΔP(=P-Prated)が負であると、ピッチ指令βがピッチ角指令基礎値βin よりも小さくなるように、即ち、ピッチ角βがよりファイン側になるように決定される。このような制御により、有効電力指令Pが定格電力Pratedに到達する直前では、ピッチ角βがフェザー側になることが抑制される。有効電力指令Pが定格電力Pratedに到達した後は、偏差ΔPは0となり、補正値Δβも0となる。
 図6は、主制御装置19の電力制御部31及びピッチ制御部32の動作を示す表である。以下では、電力制御部31及びピッチ制御部32の動作が、以下の5つのケースに分けて説明される。
ケース(1):発電機回転数ωが最小回転数ωmin以上、中間回転数ω(=(ωmin+ωmax)/2)以下である場合
 この場合、電力制御回転数指令ω は、選択器33によって最小回転数ωminに設定され、更に、電力指令下限Pmin及び電力指令上限Pmaxが、それぞれ、0、Popt(=Kω)に設定される。加えて、偏差Δω(=ω-ωmin)が正であり、且つ、発電機回転数ωが定格回転数ωmaxになるように制御されるので、有効電力指令Pは、常に電力指令上限Pmaxに張り付くことになる。電力指令上限PmaxはPoptであるので、結果として、有効電力指令Pは、最適化電力値Poptに設定される。言い換えれば、電力制御は、最適カーブ制御モードに設定される。
 この場合、ピッチ指令βは、ピッチ制御部32によって発電機回転数ωが定格回転数ωmaxになるように制御されるので、結果として、ピッチ指令βは、ファイン側の限界値に、即ち、最小ピッチ角βminに設定されることになる。
ケース(2):発電機回転数ωが、中間回転数ωを超えることによって、中間回転数ωより大きく回転数ω’よりも小さい範囲にある場合
 この場合、電力制御回転数指令ω は、選択器33によって定格回転数ωmaxに設定され、更に、電力指令下限Pmin及び電力指令上限Pmaxが、それぞれ、Popt、Pratedに設定される。この場合、偏差Δω(=ω-ωmax)が負であり、且つ、発電機回転数ωがピッチ制御部32によって定格回転数ωmaxになるように制御されるので、有効電力指令Pは、常に電力指令下限Pminに張り付くことになる。電力指令下限PmaxはPoptであるので、結果として、有効電力指令Pは、最適化電力値Poptに設定される。言い換えれば、電力制御は、最適カーブ制御モードに設定される。
 上述された補正値Δβによるピッチ指令βの補正は、ケース(2)において有効に機能する。ケース(2)では、有効電力指令Pが定格電力Pratedよりも小さいから、偏差ΔPが負になり、従って、補正値Δβも負になる。よって、ピッチ指令βがピッチ角指令基礎値βin よりも小さくなる、即ち、ピッチ角βがよりファイン側になる。これにより、空力エネルギーが、より有効に電力に変換される。
ケース(3):発電機回転数ωが閾値回転数ω’以上で、且つ、ピッチ角βが最小ピッチ角βminに到達している場合
 この場合、電力制御回転数指令ω が選択器33によって定格回転数ωmaxに設定され、電力指令下限Pmin及び電力指令上限Pmaxが、それぞれ、Popt、定格電力Pratedに設定される。
 発電機回転数ωが閾値回転数ω’以上で、且つ、定格回転数ωmaxよりも小さい範囲にある場合には、偏差Δω(=ω-ωmax)が負であり、有効電力指令Pは、常に電力指令下限Pminに張り付くことになる。電力指令下限PmaxはPoptであるので、結果として、有効電力指令Pは、最適化電力値Poptに設定される。
 発電機回転数ωが定格回転数ωmaxよりも大きくなると、偏差Δω(=ω-ωmax)が正であり、有効電力指令Pは、常に電力指令上限Pmaxに張り付くことになる。従って、有効電力指令Pは、定格電力Pratedに設定される。言い換えれば、電力制御は、定格値制御モードに設定される。
 一方、ピッチ指令βは、発電機回転数ωが定格回転数ω’M以上で、且つ、定格回転数ωmaxよりも小さい範囲にある場合には、PI制御によって発電機回転数ωが定格回転数ωmaxになるように制御されるので、結果として、ピッチ指令βは、ファイン側の限界値に、即ち、最小ピッチ角βminに設定されることになる。
 発電機回転数ωが定格回転数ωmaxよりも大きくなり、且つ、有効電力指令Pが、定格電力Pratedに到達していないときには、上述された補正値Δβによるピッチ指令βの補正が、有効に機能する。有効電力指令Pが定格電力Pratedよりも小さいから、偏差ΔPが負になり、従って、補正値Δβも負になる。よって、ピッチ指令βがピッチ角指令基礎値βin よりも小さくなる、即ち、ピッチ角βがよりファイン側になる。これにより、空力エネルギーが、より有効に電力に変換される。有効電力指令Pが、定格電力Pratedに到達すれば、PI制御によって発電機回転数ωが定格回転数ωmaxになるように制御される。
ケース(4):発電機回転数ωが閾値回転数ω’以上で、且つ、ピッチ角βが最小ピッチ角βminに到達していない場合
 この場合、電力制御回転数指令ω が選択器33によって定格回転数ωmaxに設定される。更に、電力指令下限Pminが、1演算ステップ前の有効電力指令Pと、現演算ステップの電力指令上限Pmaxとのうちの小さい方に設定され、電力指令上限Pmaxが定格電力Pratedに設定される。この結果、有効電力指令Pは、定格電力Pratedに設定される。言い換えれば、電力制御は、定格回転数ωmaxよりも小さなっても定格値制御モードに維持される。ピッチ角βが最小ピッチ角βminに到達しているか否かは、ピッチ指令βが最小ピッチ角βminに一致しているか否かに基づいて判断される。
 一方、ピッチ指令βは、発電機回転数ωが閾値回転数ω’以上で、且つ、定格回転数ωmaxよりも小さい範囲にある場合には、PI制御によって発電機回転数ωが定格回転数ωmaxになるように制御されるので、結果として、ピッチ指令βは、ファイン側の限界値に、即ち、最小ピッチ角βminに設定されることになる。
 発電機回転数ωが定格回転数ωmaxよりも大きくなり、且つ、有効電力指令Pが、定格電力Pratedに到達していないときには、上述された補正値Δβによるピッチ指令βの補正が、有効に機能する。有効電力指令Pが定格電力Pratedよりも小さいから、偏差ΔPが負になり、従って、補正値Δβも負になる。よって、ピッチ指令βがピッチ角指令基礎値βin よりも小さくなる、即ち、ピッチ角βがよりファイン側になる。これにより、空力エネルギーが、より有効に電力に変換される。有効電力指令Pが、定格電力Pratedに到達すれば、PI制御によって発電機回転数ωが定格回転数ωmaxになるように制御される。
ケース(5):発電機回転数ωが、閾値回転数ω’よりも小さくなって、中間回転数ωよりも大きい範囲にある場合
 この場合、電力制御回転数指令ω は、選択器33によって定格回転数ωmaxに設定され、更に、電力指令下限Pmin及び電力指令上限Pmaxが、それぞれ、Popt、Pratedに設定される。この場合、偏差Δω(=ω-ωmax)が負であり、且つ、発電機回転数ωがピッチ制御部32によって定格回転数ωmaxになるように制御されるので、有効電力指令Pは、常に電力指令下限Pminに張り付くことになる。電力指令下限PmaxはPoptであるので、結果として、有効電力指令Pは、最適化電力値Poptに設定される。言い換えれば、電力制御は、定格値制御モードから最適カーブ制御モードに設定される。
 図7は、本実施形態における風力発電システム1の動作の一例を示すグラフである。風力発電システム1の動作が開始された後、発電機回転数ωが定格回転数ωmaxに到達するまで、有効電力指令Pは最適化電力値Poptに設定される(上述のケース(2))。これにより、出力される有効電力Pは、発電機回転数ωの増加と共に増加される。発電機回転数ωを定格回転数ωmaxに到達させるために、ピッチ指令βは最小ピッチ角βminに設定される。
 発電機回転数ωが定格回転数ωmaxを超えると、有効電力指令Pは定格電力Pratedに設定される(上述のケース(3))。これにより、出力される有効電力Pは、定格電力Pratedに維持される。発電機回転数ωが定格回転数ωmaxを超えているので、ピッチ指令βが増加し、ピッチ角βがフェザー側に移行する。
 短いなぎが発生すると、発電機回転数ωが急減する。ピッチ制御部32は、発電機回転数ωを定格回転数ωmaxに維持しようとして、ピッチ指令βを減少させ、これにより、ピッチ角βを減少させる、即ち、ファイン側に移行させる。有効電力指令Pは、発電機回転数ωが定格回転数ωmaxよりも小さくなってもピッチ角βが最小ピッチ角βminに到達しない限り定格電力Pratedに維持される。従って、出力される有効電力Pも定格電力Pratedに維持される。
 図7の動作では、ピッチ角βが最小ピッチ角βminに到達する前に発電機回転数ωが定格回転数ωmaxに再度に復帰しており、従って、有効電力Pは定格電力Pratedに維持される。このように、本実施形態の風力発電システム1では、短いなぎが発生した場合における出力電力の変動が抑制される。更に、本実施形態の風力発電システム1では、発電機回転数ωが定格回転数ωmaxよりも小さくなったときに、ピッチ角βの減少による風車ロータ7の出力係数の増大ができなくなって初めて出力電力Pが定格電力Pratedから減少されるため、風車ロータ7の回転エネルギーが有効に活用され、発電効率を有効に向上させることができる。
 本実施形態の風力発電システム1は、更に、様々な運転状況に応じた様々な制御方法を実行するように構成されることが好ましい。図8は、様々な運転状況に応じた制御を行う風力発電システム1の好適な構成を示している。
 第1に、図8の風力発電システム1では、主制御装置19は、風速計10によって計測された風速及び風向によってガスト(突風)の発生を検知する。風速及び風向の代わりに、発電機回転数に基づいてガストの発生を検出してもよい。ガストの発生が検知された場合には、風車ロータ7の回転数が過剰に増大しないように、有効電力指令Pが制御される。具体的には、図9に示されているように、風速及び風向によってガストの発生が検知されると(ステップS01)、風車ロータ7の加速度(ロータ加速度)又は風車ロータ7の回転数(ロータ回転数)が監視される。ロータ加速度又はロータ回転数が所定の制限値を超えると(ステップS02)、有効電力指令Pが増大される(ステップS03)。有効電力指令Pが直前まで定格電力Pratedに制御されていた場合には、有効電力指令Pは、定格電力Pratedよりも大きくなるように制御される。これにより、風車ロータ7の回転エネルギーが電気エネルギーに変換されて電力系統13で消費される。これにより、風車ロータ7が減速される。
 また、図8の風力発電システム1は、ブレード8を駆動するピッチ駆動機構に故障が検知された場合には、ナセル旋回機構4によって風車ロータ7の回転面を風上方向から退避させ、これにより、風車ロータ7を停止させるように構成されている。この目的を達成するために、ピッチ制御装置22が、図2の油圧シリンダ11及び/又はサーボバルブ12の故障を検出することができるように構成されている。主制御装置19は、油圧シリンダ11及び/又はサーボバルブ12の故障が検出されると、それに応答してヨー指令を生成する。
 図10は、風車ロータ7の回転面が風上方向から退避される手順を示している。ピッチ制御装置22によって油圧シリンダ11及び/又はサーボバルブ12の故障が検出されると(ステップS06)ピッチ故障信号が活性化される。主制御装置19は、ピッチ故障信号の活性化に応答してヨー指令をナセル3のヨー角を制御し、これにより、風車ロータ7の回転面を風上方向から退避させる(ステップS07)。風上方向は、風速計10によって計測された風向によって判断可能である。風車ロータ7の回転面が風上方向から退避されることによって、風車ロータ7に流入する風の風速が減少され、回転トルクが減少される(ステップS08)。この結果、風車ロータ7が減速されて停止される。
 加えて、図8の風力発電システム1は、系統電圧Vgridの過剰な増加及び減少が発生したときに電力系統13に供給される無効電力Qを制御し、更に、その無効電力Qに応じてピッチ制御が行われるように構成されている。図11は、このような制御の手順を示すフローチャートである。
 系統電圧Vgridが所定の定格電圧VratedのX%を超えた場合(Xは、100よりも大きい所定値)、又は、所定の定格電圧VratedのY%よりも小さくなった場合(Yは、100よりも小さい所定値)(ステップS11)、電力制御部31に与えられる力率指令が修正される(ステップS12)。修正された力率指令は、電力系統13の制御システムから与えられることが可能であり、また、主制御装置19自身が系統電圧Vgridに応じて力率指令を修正することも可能である。これにより、系統電圧Vgridが所定の定格電圧VratedのX%を超えた場合には無効電力指令Qが減少され、系統電圧Vgridが所定の定格電圧VratedのY%を超えた場合には無効電力指令Qが増加される。風力発電システム1から電力系統13に供給される皮相電力Sは一定であるから、無効電力指令Qが減少されるときには有効電力指令Pが増加され、無効電力指令Qが増加されるときには有効電力指令Pが減少されることになる。AC-DC-ACコンバータ17が有効電力指令P及び無効電力指令Qに応答して制御されることにより、電力系統13に供給される無効電力Qが制御される(ステップS13)。
 無効電力指令Qが大きく増大された場合には、有効電力指令Pが減少されることになり、これは、風力発電システム1の出力を低下させる。このような不都合を回避するために、無効電力指令Qの増大が所定の増加量よりも大きい場合には、ピッチ指令βを減少させることにより(即ち、ピッチ指令βがファイン側に移行されることにより)、有効電力Pが増大される(ステップS15)。
 無効電力指令Qが大きく減少された場合には、有効電力指令Pが増加されることになり、これは、風力発電システム1の出力を不必要に増加させる。このような不都合を回避するために、無効電力指令Qの減少が所定の減少量よりも大きい場合には、ピッチ指令βを増加せることにより(即ち、ピッチ指令βがフェザー側に移行されることにより)、有効電力Pが減少される。
 更に、図8の風力発電システム1は、非常用バッテリ28が充電される間、出力する有効電力Pを増大するように構成されている。これは、非常用バッテリ28の充電に使用される電力の分を補償するためである。具体的には、図12に示されているように、充電装置27が非常用バッテリ28の充電を開始すると(ステップS21)、充電装置27は、充電開始信号を活性化する。主制御装置19は、充電開始信号の活性化に応答して、有効電力指令Pを増加させる(ステップS22)。有効電力指令Pの増加量は、非常用バッテリ28の充電に使用される電力の量と同じに設定される。充電が行われない場合には、PI制御部35によって生成された有効電力指令PがAC-DC-ACコンバータ17の制御に使用される。
 なお、本発明は、上述されている実施形態に限定されて解釈されてはならない。例えば、本実施形態の風力発電システム1は、2重供給可変速風力タービンシステムであるが、本発明は、風車ロータの回転数及びピッチ角の両方が可変である他の形式の風力発電システムにも適用可能である。例えば、本発明は、発電機によって発電された交流電力の全てが、AC-DC-ACコンバータによって電力系統の周波数に合わせた交流電力に変換されるような風力発電システムに適用可能である。
 また、非常用バッテリ28の充電は、電力系統から受け取った電力ではなく、発電機から出力される電力によって行われることも可能である。
 更に、風車ロータ7の回転数は、発電機回転数ωに依存しているから、発電機回転数ωの代わりに風車ロータ7の回転数を使用してもよいことは、当業者には自明的である。例えば、本実施形態のように、風車ロータ7がギア6を介して巻線誘導発電機5に接続される場合には、風車ロータ7の回転数は、発電機回転数ωに一対一に対応している。また、ギア6の代わりにトロイダル変速機のような無段階変速機が使用される場合でも、発電機回転数ωが風車ロータ7の回転数の増大に伴って増大されるから、発電機回転数ωの代わりに風車ロータ7の回転数を使用することができる。

Claims (10)

  1.  ピッチ角が可変であるブレードを備える風車ロータと、
     前記風車ロータによって駆動される発電機と、
     前記風車ロータ又は前記発電機の回転数に応答して、前記発電機の出力電力と前記ブレードの前記ピッチ角とを制御する制御装置
    とを具備し、
     前記制御装置は、前記回転数が増大して所定の定格回転数に到達するまでの間、所定の電力-回転数曲線に従って前記出力電力を制御する第1制御を行い、前記回転数が前記定格回転数を超えたとき前記出力電力を所定の定格電力に制御する第2制御を行い、
     前記制御装置は、一旦、前記第2制御を行う状態に設定された後で前記回転数が前記定格回転数よりも小さくなったとき、前記ピッチ角に応答して前記第2制御を行う状態を維持し、又は前記第1制御を行う状態に遷移する
     風力発電システム。
  2.  請求の範囲1に記載の風力発電システムであって、
     前記制御装置は、一旦、前記第2制御を行う状態に設定された後で前記回転数が前記定格回転数よりも小さくなったとき、前記ピッチ角が所定のピッチ角よりも大きい場合には前記第2制御を行う状態を維持し、前記ピッチ角が前記所定のピッチ角に到達して初めて前記第1制御を行う状態に遷移する
     風力発電システム。
  3.  請求の範囲2に記載の風力発電システムであって、
     前記制御装置は、一旦、前記第2制御を行う状態に設定された後で前記回転数が前記定格回転数よりも小さい所定の閾値回転数よりも小さくなったとき、前記ピッチ角に無関係に前記第1制御を行う状態に遷移する
     風力発電システム。
  4.  請求の範囲1に記載の風力発電システムであって、
     前記制御装置は、前記回転数と所定の定格回転数との差、及び前記出力電力と前記定格電力との差に応答して前記ピッチ角を制御する
     風力発電システム。
  5.  請求の範囲4に記載の風力発電システムであって、
     前記制御装置は、前記出力電力が前記定格電力よりも小さい場合に前記ピッチ角が減少されるように前記ピッチ角を制御する
     風力発電システム。
  6.  請求の範囲1に記載の風力発電システムであって、
     前記制御装置は、ガストを検出した場合、前記回転数に応答して前記発電機の出力電力を増加させる
     風力発電システム。
  7.  請求の範囲1に記載の風力発電システムであって、
     更に、
     風車ロータの回転面の向きを旋回させる旋回機構と、
     風上方向を検出する風向検出器
    とを備え、
     前記風車ロータは、前記ブレードを駆動するピッチ駆動機構を備え、
     前記制御装置は、前記ピッチ駆動機構の故障を検出したとき、前記風車ロータの回転面が前記風上方向から退避されるように前記旋回機構を制御する
     風力発電システム。
  8.  請求の範囲1に記載の風力発電システムであって、
     前記制御装置は、前記発電機に接続された電力系統の電圧に応答して前記発電機から前記電力系統に出力される無効電力を制御し、且つ、前記無効電力に応じて前記ピッチ角を制御する
     風力発電システム。
  9.  請求の範囲1に記載の風力発電システムであって、
     更に、
     非常用バッテリと、
     前記電力系統から受け取った電力によって前記非常用バッテリを充電する充電装置
    とを具備し、
     前記風車ロータは、前記ブレードを駆動するピッチ駆動機構を備え、
     前記非常用バッテリは、発電機に接続された電力系統の電圧が低下したときに前記ピッチ駆動機構と前記制御装置に電力を供給し、
     前記制御装置は、前記非常用バッテリが充電されている間、前記出力電力を増加させるように前記出力電力を制御する
     風力発電システム。
  10.  ピッチ角が可変であるブレードを備える風車ロータと、
     前記風車ロータによって駆動される発電機
    とを備える風力発電システムの制御方法であって、
     前記風車ロータ又は前記発電機の回転数に応答して、前記発電機の出力電力と前記ブレードの前記ピッチ角とを制御するステップ
    を具備し、
     前記制御するステップは、
    (A)前記回転数が増大して所定の定格回転数に到達するまでの間、所定の電力-回転数曲線に従って前記出力電力を制御する第1制御が行うステップと、
    (B)前記回転数が前記定格回転数を超えたとき前記出力電力を所定の定格電力に制御する第2制御を行うステップと、
    (C)一旦、前記第2制御を行う状態に設定された後で前記回転数が前記定格回転数よりも小さくなったとき、前記ピッチ角に応答して前記第2制御を行う状態を維持し、又は前記第1制御を行う状態に遷移するステップ
    とを備える
     風力発電システムの制御方法。
PCT/JP2008/068764 2008-10-16 2008-10-16 風力発電システム、及びその制御方法 WO2010044163A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN200880129023.5A CN102017392B (zh) 2008-10-16 2008-10-16 风力发电系统及其控制方法
PCT/JP2008/068764 WO2010044163A1 (ja) 2008-10-16 2008-10-16 風力発電システム、及びその制御方法
KR1020107025398A KR101253854B1 (ko) 2008-10-16 2008-10-16 풍력 발전 시스템 및 그 제어 방법
BRPI0822536-2A BRPI0822536A2 (pt) 2008-10-16 2008-10-16 Sistema de gerador de turbina eólica, e, método para controlar o mesmo
EP08877421.1A EP2339743B1 (en) 2008-10-16 2008-10-16 Wind power generation system, and its control method
CA2722848A CA2722848A1 (en) 2008-10-16 2008-10-16 Wind power generator system and control method of the same
AU2008363040A AU2008363040B2 (en) 2008-10-16 2008-10-16 Wind power generation system, and its control method
US12/916,196 US7982327B2 (en) 2008-10-16 2010-10-29 Wind turbine generator system and control method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/068764 WO2010044163A1 (ja) 2008-10-16 2008-10-16 風力発電システム、及びその制御方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/916,196 Continuation US7982327B2 (en) 2008-10-16 2010-10-29 Wind turbine generator system and control method of the same

Publications (1)

Publication Number Publication Date
WO2010044163A1 true WO2010044163A1 (ja) 2010-04-22

Family

ID=42106341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/068764 WO2010044163A1 (ja) 2008-10-16 2008-10-16 風力発電システム、及びその制御方法

Country Status (8)

Country Link
US (1) US7982327B2 (ja)
EP (1) EP2339743B1 (ja)
KR (1) KR101253854B1 (ja)
CN (1) CN102017392B (ja)
AU (1) AU2008363040B2 (ja)
BR (1) BRPI0822536A2 (ja)
CA (1) CA2722848A1 (ja)
WO (1) WO2010044163A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103362735A (zh) * 2012-04-05 2013-10-23 北京能高自动化技术股份有限公司 变速变桨风力发电机组基于最优阻力矩跟踪的最大功率追踪控制方法
JP2018007458A (ja) * 2016-07-05 2018-01-11 株式会社日立製作所 風力発電設備とその運転方法およびウィンドファーム

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2008313747A1 (en) * 2007-10-15 2009-04-23 Suzlon Energy Gmbh Wind energy installation with enhanced overvoltage protection
US8215906B2 (en) * 2008-02-29 2012-07-10 General Electric Company Variable tip speed ratio tracking control for wind turbines
JP5320311B2 (ja) * 2010-01-18 2013-10-23 三菱重工業株式会社 可変速発電装置及びその制御方法
DK2535574T3 (en) * 2010-02-08 2015-09-21 Mitsubishi Heavy Ind Ltd A wind-driven power generator and the method for controlling the blade pitch regulation thereof
DK2365215T3 (da) * 2010-03-10 2013-01-28 Siemens Ag Styring af rotationshastigheden af en vindmølle baseret på rotoracceleration
US8664787B2 (en) * 2010-04-05 2014-03-04 Northern Power Systems, Inc. Speed setting system and method for a stall-controlled wind turbine
KR101130320B1 (ko) 2010-07-06 2012-03-28 삼성중공업 주식회사 풍력발전장치의 대기전력 공급장치
DK2572426T3 (da) * 2010-08-13 2014-07-21 Siemens Ag Anordning til generering af et styresignal til styring af et effektoutput fra et effektgenereringssystem
JP5455890B2 (ja) * 2010-12-28 2014-03-26 三菱重工業株式会社 風力発電装置の制御装置、風力発電システム、及び風力発電装置の制御方法
JP2012143079A (ja) 2010-12-28 2012-07-26 Mitsubishi Heavy Ind Ltd ケーブル支持具
WO2012153185A1 (en) * 2011-05-11 2012-11-15 Condor Wind Energy Limited Power management system
CN102305875B (zh) * 2011-05-20 2012-08-15 哈尔滨工业大学 风力发电机组有效风速的测量方法及实现该方法的测量装置
KR101363516B1 (ko) * 2012-03-23 2014-02-17 삼성중공업 주식회사 풍력 발전기용 발전기의 제어 방법
TWI488425B (zh) * 2012-07-16 2015-06-11 Univ Nat Sun Yat Sen 風力發電系統及其激磁式同步發電機的控制方法
KR20140025716A (ko) * 2012-08-22 2014-03-05 현대중공업 주식회사 풍력발전기 제어 시스템
EP2872775B1 (en) * 2012-09-28 2016-05-25 Siemens Aktiengesellschaft Method and arrangement for controlling a wind turbine
KR101466080B1 (ko) * 2013-05-03 2014-11-27 삼성중공업 주식회사 풍력 터빈 제어 장치 및 방법
CN103410660B (zh) * 2013-05-14 2016-08-03 湖南工业大学 基于支持向量机的风力发电变桨距自学习控制方法
US10197042B2 (en) * 2013-06-03 2019-02-05 Vestas Wind Systems A/S Wind power plant controller
CN103457528B (zh) * 2013-08-22 2016-01-20 国家电网公司 一种提高直驱动风电机组机械传动链运行稳定性的方法
EP2851558B1 (en) * 2013-09-18 2017-07-19 Siemens Aktiengesellschaft Method of controlling a wind turbine
CN104074679B (zh) * 2014-07-02 2017-02-22 国电联合动力技术有限公司 一种变速变桨距风电机组全风速限功率优化控制方法
US10054108B2 (en) 2014-10-10 2018-08-21 General Electric Company Wind turbine system and method for controlling a wind turbine system by power monitoring
US20160160839A1 (en) * 2014-12-09 2016-06-09 State Grid Corporation Of China Method for controlling inertia response of variable-speed wind turbine generator
KR101652230B1 (ko) * 2014-12-19 2016-08-30 삼성중공업 주식회사 풍력 발전기 및 그 제어방법
DK3109461T3 (da) * 2015-06-25 2023-10-16 Siemens Gamesa Renewable Energy As Drift af en vindmølle
WO2017135657A1 (ko) * 2016-02-04 2017-08-10 한밭대학교 산학협력단 풍력터빈의 정격출력 유지를 위한 토크모드스위치 제어방법 및 그 시스템
KR101716074B1 (ko) * 2016-02-04 2017-03-14 한밭대학교 산학협력단 정격출력 유지를 위한 풍력터빈의 출력제어방법 및 그 시스템
KR101716073B1 (ko) * 2016-02-04 2017-03-14 한밭대학교 산학협력단 풍력터빈의 토크모드스위치 제어방법 및 그 시스템
DE102016103254A1 (de) 2016-02-24 2017-08-24 Wobben Properties Gmbh Verfahren zum Bestimmen einer äquivalenten Windgeschwindigkeit
CN105781876A (zh) * 2016-02-26 2016-07-20 内蒙古久和能源装备有限公司 风力发电机组限功率限转速运行的控制方法
JP6979620B2 (ja) * 2016-05-09 2021-12-15 パナソニックIpマネジメント株式会社 発電設備監視システム、発電設備監視方法、及びプログラム
CN107528511B (zh) * 2017-08-17 2020-01-31 许继电气股份有限公司 一种风力发电机恒功率控制方法与装置
JP6476250B1 (ja) * 2017-08-29 2019-02-27 三菱重工業株式会社 風力発電装置の診断方法及び診断システム
US10998760B2 (en) * 2018-09-27 2021-05-04 General Electric Company System and method for controlling uninterruptible power supply of electrical power systems
CN111637025B (zh) * 2020-06-12 2022-05-03 云南省能源研究院有限公司 一种风力发电机的检测方法
KR102395863B1 (ko) * 2020-10-27 2022-05-06 공태영 풍력발전시스템
CN112523941B (zh) * 2020-11-25 2021-11-09 明阳智慧能源集团股份公司 一种防止风力发电机组超速的控制方法与模块
CN113090456A (zh) * 2021-04-25 2021-07-09 中国华能集团清洁能源技术研究院有限公司 一种在大风条件下风电机组桨距角控制方法、系统和设备
US20230049606A1 (en) * 2021-08-10 2023-02-16 General Electric Company System and method for controlling an electrical power system using a dynamic regulator maximum limit
CN113790130B (zh) * 2021-09-23 2022-10-14 风脉能源(武汉)股份有限公司 风力发电机组转速波动平稳性的评估方法
CN114439682B (zh) * 2022-01-10 2023-04-18 华能大理风力发电有限公司 风力发电机组的控制方法及装置
CN114623042B (zh) * 2022-03-16 2023-07-11 新疆大学 一种激光测风雷达的永磁风力发电机变桨控制系统及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60240882A (ja) * 1984-05-15 1985-11-29 Yamaha Motor Co Ltd 風力発電装置
JPS62123999A (ja) * 1985-11-22 1987-06-05 Yamaha Motor Co Ltd 風力発電装置
JP2007231778A (ja) * 2006-02-28 2007-09-13 Mitsubishi Heavy Ind Ltd 風力発電システム、及びその制御方法

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4161658A (en) * 1978-06-15 1979-07-17 United Technologies Corporation Wind turbine generator having integrator tracking
US4160170A (en) * 1978-06-15 1979-07-03 United Technologies Corporation Wind turbine generator pitch control system
US4420692A (en) * 1982-04-02 1983-12-13 United Technologies Corporation Motion responsive wind turbine tower damping
US4584486A (en) * 1984-04-09 1986-04-22 The Boeing Company Blade pitch control of a wind turbine
US4703189A (en) 1985-11-18 1987-10-27 United Technologies Corporation Torque control for a variable speed wind turbine
JPS62123994A (ja) 1985-11-22 1987-06-05 Yamaha Motor Co Ltd 風力発電装置
EP0227407A3 (en) * 1985-12-16 1987-10-21 Kabushiki Kaisha Toshiba A protection circuit for a power converter apparatus
US4700081A (en) * 1986-04-28 1987-10-13 United Technologies Corporation Speed avoidance logic for a variable speed wind turbine
US6137187A (en) 1997-08-08 2000-10-24 Zond Energy Systems, Inc. Variable speed wind turbine generator
US7015595B2 (en) * 2002-02-11 2006-03-21 Vestas Wind Systems A/S Variable speed wind turbine having a passive grid side rectifier with scalar power control and dependent pitch control
DK1562281T3 (en) * 2002-11-15 2018-02-05 Zephyr Corp Wind Generator
US7042110B2 (en) * 2003-05-07 2006-05-09 Clipper Windpower Technology, Inc. Variable speed distributed drive train wind turbine system
US7233129B2 (en) * 2003-05-07 2007-06-19 Clipper Windpower Technology, Inc. Generator with utility fault ride-through capability
CA2531770C (en) * 2003-08-07 2010-02-16 Vestas Wind Systems A/S Method of controlling a wind turbine connected to an electric utility grid during malfunction in said electric utility grid, control system, wind turbine and family hereof
EP1665494B2 (de) * 2003-09-03 2023-06-28 Siemens Gamesa Renewable Energy Service GmbH Verfahren zum betrieb bzw. regelung einer windenergieanlage sowie verfahren zur bereitstellung von primärregelleistung mit windenergieanlagen
DE10357292B4 (de) * 2003-12-05 2006-02-02 Voith Turbo Gmbh & Co. Kg Verfahren für die Steuerung eines Antriebsstrangs für eine Strömungskraftmaschine mit Drehzahlführung, Kraftstoßreduktion und Kurzzeitenergiespeicherung
JP3918837B2 (ja) * 2004-08-06 2007-05-23 株式会社日立製作所 風力発電装置
DE102004054608B4 (de) * 2004-09-21 2006-06-29 Repower Systems Ag Verfahren zur Regelung einer Windenergieanlage und Windenergieanlage mit einem Rotor
US8649911B2 (en) * 2005-06-03 2014-02-11 General Electric Company System and method for operating a wind farm under high wind speed conditions
DE102005029000B4 (de) * 2005-06-21 2007-04-12 Repower Systems Ag Verfahren und System zur Regelung der Drehzahl eines Rotors einer Windenergieanlage
US7372174B2 (en) * 2005-11-11 2008-05-13 Converteam Ltd Power converters
US7511385B2 (en) * 2005-11-11 2009-03-31 Converteam Ltd Power converters
US7420288B2 (en) * 2006-01-20 2008-09-02 Southwest Windpower Stall controller and triggering condition control features for a wind turbine
US7613548B2 (en) * 2006-01-26 2009-11-03 General Electric Company Systems and methods for controlling a ramp rate of a wind farm
US7355294B2 (en) * 2006-05-22 2008-04-08 General Electric Company Method and system for wind turbine blade movement
DE102006040929B4 (de) * 2006-08-31 2009-11-19 Nordex Energy Gmbh Verfahren zum Betrieb einer Windenergieanlage mit einem Synchrongenerator und einem Überlagerungsgetriebe
WO2008031433A1 (en) * 2006-09-14 2008-03-20 Vestas Wind Systems A/S Methods for controlling a wind turbine connected to the utility grid, wind turbine and wind park
JP4501958B2 (ja) * 2007-05-09 2010-07-14 株式会社日立製作所 風力発電システムおよびその制御方法
CN101054951A (zh) * 2007-05-24 2007-10-17 上海交通大学 基于最大能量捕获的大型风力机控制方法
US7709972B2 (en) * 2007-08-30 2010-05-04 Mitsubishi Heavy Industries, Ltd. Wind turbine system for satisfying low-voltage ride through requirement
CN101196165A (zh) * 2007-12-13 2008-06-11 苏州市南极风能源设备有限公司 风力发电机组的调节控制
US7956482B2 (en) * 2008-01-18 2011-06-07 General Electric Company Speed controlled pitch system
JP5550283B2 (ja) * 2009-08-06 2014-07-16 三菱重工業株式会社 風力発電装置、風力発電装置の制御方法、風力発電システム及び風力発電システムの制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60240882A (ja) * 1984-05-15 1985-11-29 Yamaha Motor Co Ltd 風力発電装置
JPS62123999A (ja) * 1985-11-22 1987-06-05 Yamaha Motor Co Ltd 風力発電装置
JP2007231778A (ja) * 2006-02-28 2007-09-13 Mitsubishi Heavy Ind Ltd 風力発電システム、及びその制御方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103362735A (zh) * 2012-04-05 2013-10-23 北京能高自动化技术股份有限公司 变速变桨风力发电机组基于最优阻力矩跟踪的最大功率追踪控制方法
CN103362735B (zh) * 2012-04-05 2015-10-28 北京能高自动化技术股份有限公司 变速变桨风力发电机组基于最优阻力矩跟踪的最大功率追踪控制方法
JP2018007458A (ja) * 2016-07-05 2018-01-11 株式会社日立製作所 風力発電設備とその運転方法およびウィンドファーム

Also Published As

Publication number Publication date
EP2339743A1 (en) 2011-06-29
US7982327B2 (en) 2011-07-19
EP2339743A4 (en) 2016-12-21
CN102017392A (zh) 2011-04-13
CN102017392B (zh) 2014-06-25
AU2008363040B2 (en) 2012-12-20
US20110089694A1 (en) 2011-04-21
KR20110028256A (ko) 2011-03-17
AU2008363040A1 (en) 2010-04-22
CA2722848A1 (en) 2010-04-22
KR101253854B1 (ko) 2013-04-12
BRPI0822536A2 (pt) 2015-06-23
EP2339743B1 (en) 2018-07-25

Similar Documents

Publication Publication Date Title
WO2010044163A1 (ja) 風力発電システム、及びその制御方法
JP4738206B2 (ja) 風力発電システム、及びその制御方法
JP4885096B2 (ja) 風力発電システム、及びその制御方法
JP5473592B2 (ja) 励磁機及び系統に接続されていない電力変換器を有する可変速風力タービン
CA2666743C (en) Wind turbine generator system and method of controlling output of the same
PL196763B1 (pl) Układ turbiny wiatrowej o zmiennej prędkości
JP5470091B2 (ja) 風力発電システムおよびその制御方法
US20190093634A1 (en) Fault ride through method for load impact minimization
US11952980B2 (en) Method for controlling a wind power installation
US20180171974A1 (en) Ramping power in a wind turbine dependent on an estimated available wind power
AU2009201457B2 (en) Wind turbine generator system and method of controlling output of the same
KR101011558B1 (ko) 풍력 발전 장치 및 그 출력 제어 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880129023.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08877421

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2722848

Country of ref document: CA

Ref document number: 6951/CHENP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2008877421

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008363040

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 20107025398

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2008363040

Country of ref document: AU

Date of ref document: 20081016

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

ENP Entry into the national phase

Ref document number: PI0822536

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20101029