WO2010041626A1 - Composition for forming resist underlayer film for lithography, which contains fluorene-containing resin - Google Patents

Composition for forming resist underlayer film for lithography, which contains fluorene-containing resin Download PDF

Info

Publication number
WO2010041626A1
WO2010041626A1 PCT/JP2009/067338 JP2009067338W WO2010041626A1 WO 2010041626 A1 WO2010041626 A1 WO 2010041626A1 JP 2009067338 W JP2009067338 W JP 2009067338W WO 2010041626 A1 WO2010041626 A1 WO 2010041626A1
Authority
WO
WIPO (PCT)
Prior art keywords
underlayer film
group
resist
resist underlayer
integer
Prior art date
Application number
PCT/JP2009/067338
Other languages
French (fr)
Japanese (ja)
Inventor
徹也 新城
軍 孫
圭祐 橋本
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2010532903A priority Critical patent/JPWO2010041626A1/en
Publication of WO2010041626A1 publication Critical patent/WO2010041626A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/091Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by antireflection means or light filtering or absorbing means, e.g. anti-halation, contrast enhancement
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C243/00Compounds containing chains of nitrogen atoms singly-bound to each other, e.g. hydrazines, triazanes
    • C07C243/40Hydrazines having nitrogen atoms of hydrazine groups being quaternised
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G10/00Condensation polymers of aldehydes or ketones with aromatic hydrocarbons or halogenated aromatic hydrocarbons only
    • C08G10/02Condensation polymers of aldehydes or ketones with aromatic hydrocarbons or halogenated aromatic hydrocarbons only of aldehydes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/423Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof containing an atom other than oxygen belonging to a functional groups to C08G59/42, carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/092Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by backside coating or layers, by lubricating-slip layers or means, by oxygen barrier layers or by stripping-release layers or means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/094Multilayer resist systems, e.g. planarising layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers

Definitions

  • the present invention relates to a resist underlayer film forming composition for lithography effective at the time of processing a semiconductor substrate, and a resist underlayer film for lithography formed therefrom.
  • the present invention also relates to a resist pattern forming method including the resist underlayer film forming composition, and a semiconductor device manufacturing method including a step of processing a semiconductor substrate with the resist pattern.
  • the fine processing is, for example, forming a thin film made of a photoresist composition on a substrate to be processed such as a silicon wafer, and irradiating the thin film with actinic rays such as ultraviolet rays through a mask pattern in which a pattern of a semiconductor device is drawn.
  • This is a processing method in which a substrate to be processed such as a silicon wafer is subjected to an etching process using a photoresist having a pattern formed by development as a protective film.
  • a resist underlayer film forming composition using a fluorenephenol novolac resin see, for example, Patent Document 1
  • a resist underlayer film forming composition using a fluorene naphthol novolak resin for example, refer patent document 2
  • the resist underlayer film forming composition (for example, refer patent document 3 and patent document 4) containing resin which has fluorene phenol and aryl alkylene as a repeating unit structure is disclosed.
  • these lower layer films also do not satisfy all of the performance as a resist lower layer film as a mask during substrate processing, for example, solvent resistance, heat resistance, light absorbency, and selectivity of etching rate.
  • Another object of the present invention is to provide lithography having performance as an antireflection film that effectively absorbs reflected light from a substrate when fine processing of a resist underlayer film is performed by irradiation light having a wavelength of 248 nm, 193 nm, 157 nm, or the like.
  • An object of the present invention is to provide a resist underlayer film and a composition for forming the same.
  • the subject of this invention is providing the formation method of the resist pattern containing the resist underlayer film formed from a resist underlayer film formation composition. And it is providing the resist underlayer film which also has heat resistance, and the resist underlayer film forming composition for forming it.
  • R 1 and R 2 are substituents on the fluorene ring
  • R 3 , R 4 , OR 5 , OR 6 are substituents on the naphthalene ring.
  • R 1 , R 2 , R 3 , and R 4 is an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, a halogen group, a nitro group, or an amino group
  • R 5 and R 6 are a hydrogen atom and 1 carbon atom, respectively.
  • Ar is an arylene group having 6 to 20 carbon atoms
  • n1 and n2 are each an integer of 0 to 4
  • n3 is an integer of 0 to (6-n5)
  • N4 is an integer from 0 to (6-n6)
  • n5 and n6 are each an integer from 1 to 6
  • n3 + n5 is an integer from 1 to 6
  • n4 + n6 is an integer from 1 to 6
  • a resist underlayer film-forming composition comprising
  • the resist underlayer film forming composition according to the first aspect in which Ar represents a substituted or unsubstituted phenylene group, naphthylene group, biphenylene group, anthrylene group, or pyrene group
  • the resist underlayer film forming composition according to the first aspect or the second aspect further containing a crosslinking agent
  • the resist underlayer film forming composition according to the third aspect As a sixth aspect, the resist underlayer film forming composition according to any one of the first aspect to the fifth aspect, which further contains an acid or an acid generator, As a seventh aspect, a resist underlayer film obtained by applying and baking the resist underlayer film forming composition according to any one of the first to sixth aspects on a semiconductor substrate, As an eighth aspect, the resist underlayer film forming composition according to any one of the first to sixth aspects is applied on a semiconductor substrate and baked to form a lower layer film.
  • a method for manufacturing a semiconductor device As a tenth aspect, a step of forming an underlayer film made of the resist underlayer film forming composition according to any one of the first to sixth aspects on a semiconductor substrate, a step of forming a hard mask on the underlayer film, Further, a step of forming a resist film on the hard mask, a step of forming a resist pattern on the resist film by light and electron beam irradiation and development, a step of etching the hard mask with the resist pattern, the patterned
  • the present invention relates to a method for manufacturing a semiconductor device
  • the resist underlayer film formed from the resist underlayer film forming composition of the present invention can form a good resist pattern shape without causing intermixing with the upper layer portion of the resist underlayer film.
  • the resist underlayer film formed from the resist underlayer film forming composition of the present invention can be provided with the ability to efficiently absorb the reflected light from the substrate, and can also have an effect as an antireflection film. .
  • the resist underlayer film forming composition of the present invention has an excellent dry etching rate selectivity close to that of the resist, a low dry etching rate selectivity compared to the resist, and a low dry etching rate selectivity compared to the semiconductor substrate.
  • a resist underlayer film can be formed.
  • the resist pattern As the resist pattern is miniaturized, the resist is thinned to prevent the resist pattern from falling after development.
  • the resist pattern is transferred to the lower layer film by an etching process, and the substrate processing is performed using the lower layer film to which the pattern is transferred as a mask, or the resist pattern is etched.
  • the process includes transferring the pattern to the lower layer film in the process, and further transferring the pattern transferred to the lower layer film to the lower layer film using a different gas composition, and finally processing the substrate.
  • the resist underlayer film and the composition for forming the same of the present invention are effective as an underlayer film for this process.
  • a processed substrate for example, a thermal silicon oxide film on the substrate). , Silicon nitride film, polysilicon film, and the like).
  • the resist underlayer film of the present invention can be used as a planarizing film, a resist underlayer film, a resist layer antifouling film, or a film having dry etch selectivity. Thereby, by using the resist underlayer film of the present invention, a resist pattern can be easily and accurately formed in the lithography process of semiconductor manufacturing.
  • a resist underlayer film formed from the resist underlayer film forming composition according to the present invention is formed on a substrate, a hard mask is formed thereon, a resist film is formed thereon, and the resist film is exposed and developed by exposure and development.
  • the hard mask used in this process may be formed by applying a composition containing an organic polymer and / or an inorganic polymer and a solvent, or may be formed by vacuum deposition of an inorganic substance.
  • an inorganic substance for example, silicon nitride oxide
  • the temperature of the resist underlayer film surface rises to around 400 ° C. when the deposit is deposited on the resist underlayer film surface. Therefore, the resist underlayer film used in the vacuum deposition method needs heat resistance.
  • the polymer constituting the resist underlayer film forming composition of the present invention is a copolymer containing a repeating unit structure of fluorene naphthol and arylene alkylene. Therefore, the heat resistance is extremely high, and thermal deterioration does not occur when depositing a deposit in the vacuum deposition method.
  • the present invention is a resist underlayer film forming composition for lithography containing a polymer containing a repeating unit structure represented by the formula (1).
  • the said polymer and a solvent are included.
  • a crosslinking agent and an acid can be included, and additives such as an acid generator and a surfactant can be included as necessary.
  • the solid content of the composition is 0.1 to 70% by mass, or 0.1 to 60% by mass. Solid content is the content rate of all the components remove
  • the polymer can be contained in the solid content in a proportion of 1 to 100% by mass, or 1 to 99% by mass, or 50 to 99% by mass.
  • the polymer used in the present invention has a weight average molecular weight of 600 to 1000000, preferably 1000 to 200000. If the average molecular weight is less than 600, sufficient hardness may not be obtained at the time of curing, and if the average molecular weight is greater than 1000000, the viscosity may become high and handling may be difficult.
  • the polymer used in the present invention includes a repeating unit structure represented by the following formula (1).
  • R 1 and R 2 represent substituents on the fluorene ring
  • R 3 , R 4 , OR 5 , and OR 6 represent substituents on the naphthalene ring.
  • R 1 , R 2 , R 3 , and R 4 each represent an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, a halogen group, a nitro group, or an amino group
  • R 5 , R 6 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a glycidyl group
  • Ar represents an arylene group having 6 to 20 carbon atoms
  • n1 and n2 are each an integer of 0 to 4
  • n3 is an integer from 0 to (6-n5)
  • n4 is an integer from 0 to (6-n6)
  • n5 and n6 are each an integer from 1 to 6
  • n3 + n5 is an integer from 1 to 6 N4 + n6 is an integer from 1 to 6.
  • alkyl group having 1 to 10 carbon atoms examples include methyl group, ethyl group, n-propyl group, i-propyl group, cyclopropyl group, n-butyl group, i-butyl group, s-butyl group, t- Butyl, cyclobutyl, 1-methyl-cyclopropyl, 2-methyl-cyclopropyl, n-pentyl, 1-methyl-n-butyl, 2-methyl-n-butyl, 3-methyl-n -Butyl group, 1,1-dimethyl-n-propyl group, 1,2-dimethyl-n-propyl group, 2,2-dimethyl-n-propyl group, 1-ethyl-n-propyl group, cyclopentyl group, 1 -Methyl-cyclobutyl group, 2-methyl-cyclobutyl group, 3-methyl-cyclobutyl group, 1,2-dimethyl-cyclopropyl group, 2,3
  • Examples of the aryl group having 6 to 20 carbon atoms include phenyl group, o-methylphenyl group, m-methylphenyl group, p-methylphenyl group, o-chlorophenyl group, m-chlorophenyl group, and p-chlorophenyl group.
  • the halogen group includes fluorine, chlorine, bromine, iodine and the like.
  • Examples of the arylene group having 6 to 20 carbon atoms include phenylene group, naphthylene group, biphenylene group, anthrylene group, pyrene group and derivatives thereof.
  • Examples of the arylene group derivative include arylene group derivatives substituted with an alkyl group having 1 to 10 carbon atoms, a halogen group, a nitro group, or an amino group.
  • the polymer containing the repeating unit structure represented by the formula (1) is prepared by reacting, for example, a fluorene compound having a naphthol group and dimethoxymethylbenzene in the presence of an acid catalyst (for example, paratoluenesulfonic acid) at a temperature of about 130 to 180 ° C. For 1 to 10 hours.
  • an acid catalyst for example, paratoluenesulfonic acid
  • Particularly preferred polymers containing a repeating unit structure represented by the formula (1) are obtained by reacting 9,9-bis [(poly) hydroxynaphthyl] fluorenes, bisalkoxyalkylbenzenes, or dihalogenated methylanthracenes. And polymers that can be used.
  • 9,9-bis [(poly) hydroxynaphthyl] fluorenes include 9,9-bis (hydroxynaphthyl) fluorenes such as 9,9-bis [6- (2-hydroxynaphthyl)] fluorene (6, 6- (9-fluorenylidene) -di (2-naphthol)), 9,9-bis [1- (5-hydroxynaphthyl)] fluorene (5,5- (9-fluorenylidene) -di (1-naphthol)) Etc.
  • bisalkoxyalkylbenzenes include 1,4-bismethoxymethylbenzene.
  • dihalogenated methylanthracenes include 9,10-bis (chloromethyl) anthracene.
  • Polymers that can be mixed include polyacrylic acid ester compounds, polymethacrylic acid ester compounds, polyacrylamide compounds, polymethacrylamide compounds, polyvinyl compounds, polystyrene compounds, polymaleimide compounds, polymaleic anhydrides, and polyacrylonitrile compounds. Can be mentioned.
  • Examples of the raw material monomer for the polyacrylate compound include methyl acrylate, ethyl acrylate, isopropyl acrylate, benzyl acrylate, naphthyl acrylate, anthryl acrylate, anthryl methyl acrylate, phenyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2,2,2-trifluoroethyl acrylate, 4-hydroxybutyl acrylate, isobutyl acrylate, tert-butyl acrylate, cyclohexyl acrylate, isobornyl acrylate, 2-methoxyethyl acrylate, methoxytriethylene glycol acrylate, 2-ethoxyethyl acrylate , Tetrahydrofurfuryl acrylate, 3-methoxybutyl acrylate 2-methyl-2-adamantyl acrylate, 2-ethyl-2-adamantyl acrylate, 2-propyl-2
  • the raw material monomers for the polymethacrylic acid ester compound include ethyl methacrylate, normal propyl methacrylate, normal pentyl methacrylate, cyclohexyl methacrylate, benzyl methacrylate, naphthyl methacrylate, anthryl methacrylate, anthryl methyl methacrylate, phenyl methacrylate, 2-phenylethyl methacrylate, 2 -Hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 2,2,2-trifluoroethyl methacrylate, 2,2,2-trichloroethyl methacrylate, methyl acrylate, isobutyl methacrylate, 2-ethylhexyl methacrylate, isodecyl methacrylate, normal lauryl methacrylate Normal stearyl methacrylate Methoxydiethylene glycol methacrylate, methoxypolyethylene glycol
  • Examples of the raw material monomer for the polyvinyl compound include vinyl ether, methyl vinyl ether, benzyl vinyl ether, 2-hydroxyethyl vinyl ether, phenyl vinyl ether, and propyl vinyl ether.
  • Examples of the raw material monomer for the polystyrene compound include styrene, methylstyrene, chlorostyrene, bromostyrene, and hydroxystyrene.
  • Examples of the raw material monomer of the polymaleimide compound include maleimide, N-methylmaleimide, N-phenylmaleimide, and N-cyclohexylmaleimide.
  • the above polymer dissolves an addition polymerizable monomer and a chain transfer agent added as necessary in an organic solvent, and then adds a polymerization initiator to conduct a polymerization reaction, and then adds a polymerization terminator to stop the polymerization reaction.
  • the addition amount of the chain transfer agent is 10% or less with respect to the mass of the monomer
  • the addition amount of the polymerization initiator is 1 to 10% with respect to the mass of the monomer
  • the addition amount of the polymerization terminator is 0. 0.01 to 0.2% by mass.
  • Examples of the organic solvent used include propylene glycol monomethyl ether, propylene glycol monopropyl ether, ethyl lactate, cyclohexanone, methyl ethyl ketone, and dimethylformamide.
  • Examples of the chain transfer agent include dodecane thiol and dodecyl thiol.
  • Examples of the agent include azobisisobutyronitrile and azobiscyclohexanecarbonitrile, and examples of the polymerization terminator include 4-methoxyphenol.
  • the reaction conditions are appropriately selected from a temperature of 30 to 100 ° C. and a reaction time of 1 to 48 hours.
  • a crosslinking agent having high heat resistance As the crosslinking agent having high heat resistance, a compound containing a crosslinking forming substituent having an aromatic ring (for example, a benzene ring or a naphthalene ring) in the molecule can be used. Examples thereof include a compound represented by the following formula (2), or a polymer or oligomer having a repeating unit structure represented by the following formula (3).
  • R 7 and R 8 each represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms
  • n7 is an integer of 1 to 4
  • Is an integer from 1 to (5-n7)
  • n7 + n8 is an integer from 2 to 5.
  • R 9 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • R 10 represents an alkyl group having 1 to 10 carbon atoms
  • n9 is an integer of 1 to 4
  • n9 + n10 is an integer of 1 to 4.
  • the number m of the repeating unit structure of the oligomer and polymer is in the range of 2 to 100, preferably 2 to 50.
  • the amount of the crosslinking agent to be added varies depending on the coating solvent used, the base substrate used, the required solution viscosity, the required film shape, etc., but is 0.001 to 80% by mass with respect to the total solid content, preferably The amount is 0.01 to 50% by mass, more preferably 0.05 to 40% by mass. If the addition amount of the crosslinking agent is less than 0.01% by mass, a sufficient number of crosslinking points may not be generated, and intermixing with the resist layer may occur. Moreover, when the addition amount of a crosslinking agent exceeds 80 mass%, sufficient antireflection effect may not be obtained.
  • cross-linking agents may cause a cross-linking reaction by self-condensation, but when a cross-linkable substituent is present in the polymer of the present invention, it can cause a cross-linking reaction with those cross-linkable substituents.
  • a catalyst for promoting the crosslinking reaction p-toluenesulfonic acid, trifluoromethanesulfonic acid, pyridinium p-toluenesulfonic acid, salicylic acid, sulfosalicylic acid, citric acid, benzoic acid, hydroxybenzoic acid, and naphthalene are used.
  • Mix acidic compounds such as carboxylic acids or thermal acid generators such as 2,4,4,6-tetrabromocyclohexadienone, benzoin tosylate, 2-nitrobenzyl tosylate, and other organic sulfonic acid alkyl esters.
  • the blending amount is 0.0001 to 20% by mass, preferably 0.0005 to 10% by mass, preferably 0.01 to 3% by mass, based on the total solid content.
  • a photoacid generator can be added in order to match the acidity with the photoresist coated on the upper layer in the lithography process.
  • Preferred photoacid generators include, for example, onium salt photoacid generators such as bis (4-t-butylphenyl) iodonium trifluoromethanesulfonate, triphenylsulfonium trifluoromethanesulfonate, and phenyl-bis (trichloromethyl) -s.
  • -Halogen-containing compound photoacid generators such as triazine, and sulfonic acid photoacid generators such as benzoin tosylate and N-hydroxysuccinimide trifluoromethanesulfonate.
  • the amount of the photoacid generator is 0.2 to 10% by weight, preferably 0.4 to 5% by weight, based on the total solid content.
  • a light absorber a rheology modifier, an adhesion aid, a surfactant, and the like can be further added to the resist underlayer film forming composition of the present invention as necessary.
  • the light absorber is added mainly for the purpose of further improving the light absorbency of the resist underlayer film and further enhancing the effect as an antireflection film.
  • Examples of the light absorber include commercially available light absorbers described in “Technical Dye Technology and Market” (published by CMC) or “Dye Handbook” (edited by the Society of Synthetic Organic Chemistry), for example, C.I. I. Disperse Yellow 1, 3, 4, 5, 7, 8, 13, 23, 31, 49, 50, 51, 54, 60, 64, 66, 68, 79, 82, 88, 90, 93, 102, 114 and 124; C.I. I. Disperse Orange 1, 5, 13, 25, 29, 30, 31, 44, 57, 72 and 73; C.I. I.
  • the above light-absorbing agent is usually blended at a ratio of 10% by mass or less, preferably 5% by mass or less, based on the total solid content of the resist underlayer film forming composition for lithography.
  • phthalic acid derivatives such as dimethyl phthalate, diethyl phthalate, diisobutyl phthalate, dihexyl phthalate, and butyl isodecyl phthalate; adipic acid derivatives such as dinormal butyl adipate, diisobutyl adipate, diisooctyl adipate, and octyl decyl adipate , Maleic acid derivatives such as dinormal butyl maleate, diethyl maleate, and dinonyl maleate, oleic acid derivatives such as methyl oleate, butyl oleate, and tetrahydrofurfuryl oleate, and stearic acid derivatives such as normal butyl stearate and glyceryl stearate Can be mentioned. These rheology modifiers are usually blended at a ratio of less than 30% by mass with respect to the total solid content of the resist underlayer film forming
  • the adhesion auxiliary agent is added mainly for the purpose of improving the adhesion between the substrate or resist and the resist underlayer film, and for preventing the resist from peeling particularly during the development process.
  • Specific examples include chlorosilanes such as trimethylchlorosilane, dimethylvinylchlorosilane, methyldiphenylchlorosilane, and chloromethyldimethylchlorosilane, trimethylmethoxysilane, dimethyldiethoxysilane, methyldimethoxysilane, dimethylvinylethoxysilane, diphenyldimethoxysilane, And alkoxysilanes such as phenyltriethoxysilane, hexamethyldisilazane, N, N′-bis (trimethylsilyl) urea, silazanes such as dimethyltrimethylsilylamine, and trimethylsilylimidazole, vinyltrichlorosilane, ⁇ -chloropropyl
  • a surfactant can be blended in order to further improve the coating property against surface unevenness.
  • the surfactant include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, and polyoxyethylene alkyl ethers such as polyoxyethylene oleyl ether, polyoxyethylene octyl phenol ether, and polyoxyethylene Polyoxyethylene alkyl allyl ethers such as ethylene nonylphenol ether, polyoxyethylene / polyoxypropylene block copolymers, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan trioleate, and Sorbitan fatty acid esters such as sorbitan tristearate, polyoxyethylene sorbitan monolaurate, polyoxy Nonionic surfactants such as polyoxyethylene sorbititit
  • the compounding amount of these surfactants is usually 2.0% by mass or less, preferably 1.0% by mass or less, based on the total solid content of the resist underlayer film forming composition for lithography of the present invention.
  • These surfactants may be added alone or in combination of two or more.
  • the solvent for dissolving the polymer, the crosslinking agent component, the crosslinking formation catalyst and the like include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether.
  • a high boiling point solvent can be mixed and used as a solvent.
  • examples thereof include propylene glycol monobutyl ether, propylene glycol monobutyl ether acetate, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, ethyl lactate, butyl lactate, and cyclohexanone.
  • Use of these high-boiling solvents is preferable for improving the leveling property.
  • the resist used in the present invention is a photoresist or an electron beam resist.
  • a positive type photoresist composed of novolak resin and 1,2-naphthoquinonediazide sulfonic acid ester, acid
  • a chemically amplified photoresist comprising a binder having a group that increases the alkali dissolution rate by decomposition by a photoacid generator, a low molecular weight compound that increases the alkali dissolution rate of the photoresist by decomposition with an alkali-soluble binder and acid, and light
  • Chemically amplified photoresist comprising an acid generator, a binder having a group that is decomposed by an acid to increase the alkali dissolution rate, and a low molecular weight compound and a photoacid generator that are decomposed by an acid to increase the alkali dissolution rate of the photoresist Chemically amplified photoresist and bone Photoresist or
  • composition for forming an electron beam resist formed on the upper layer of the resist underlayer film for lithography in the present invention includes, for example, irradiation with a resin containing a Si—Si bond in the main chain and an aromatic ring at the terminal and an electron beam.
  • a composition comprising an acid generator that generates an acid, or a poly (p-hydroxystyrene) having a hydroxyl group substituted with an organic group containing N-carboxyamine and an acid generator that generates an acid upon irradiation with an electron beam Examples thereof include compositions.
  • the site substituted with N-carboxyamine of the polymer side chain by the acid generated from the acid generator by electron beam irradiation becomes a hydroxyl group and exhibits alkali solubility. Therefore, the portion irradiated with the electron beam is dissolved in the alkaline developer to form a resist pattern.
  • Examples of acid generators that generate an acid upon irradiation with this electron beam include 1,1-bis [p-chlorophenyl] -2,2,2-trichloroethane, 1,1-bis [p-methoxyphenyl] -2,2, Halogenated organic compounds such as 2-trichloroethane, 1,1-bis [p-chlorophenyl] -2,2-dichloroethane, and 2-chloro-6- (trichloromethyl) pyridine, triphenylsulfonium salts, and diphenyliodonium Examples thereof include onium salts such as salts, and sulfonic acid esters such as nitrobenzyl tosylate and dinitrobenzyl tosylate.
  • Examples of the developer used in the present invention include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, inorganic alkalis such as aqueous ammonia, ethylamine, and n-propylamine.
  • Primary amines secondary amines such as diethylamine and di-n-butylamine, tertiary amines such as triethylamine and methyldiethylamine, alcohol amines such as dimethylethanolamine and triethanolamine, tetramethylammonium hydroxy
  • An aqueous solution of an alkali such as quaternary ammonium salts such as copper, tetraethylammonium hydroxide and choline, and cyclic amines such as pyrrole and piperidine can be used.
  • an appropriate amount of an alcohol such as isopropyl alcohol or a nonionic surfactant may be added to the alkaline aqueous solution.
  • preferred developers are quaternary ammonium salts, more preferably tetramethylammonium hydroxide and choline.
  • the resist pattern forming method of the present invention will be described.
  • a substrate eg, a transparent substrate such as a silicon / silicon dioxide coating, a glass substrate, an ITO substrate
  • an appropriate coating method such as a spinner or a coater.
  • the thickness of the resist underlayer film is preferably 0.01 to 3.0 ⁇ m.
  • the conditions for baking after coating are 80 to 350 ° C. and 0.5 to 120 minutes.
  • a resist composition is applied and cured to form a resist film.
  • a good resist pattern can be obtained by irradiating the resist with light or an electron beam through a predetermined mask, developing, rinsing and drying. If necessary, post-irradiation heating (PEB: Post Exposure Bake) may be performed. Then, using the resist in which the pattern is formed, the resist underlayer film is removed by dry etching to form a pattern, and using the resist underlayer film in which the pattern is formed, a desired pattern can be formed on the substrate. .
  • PEB Post Exposure Bake
  • a resist underlayer film forming composition is formed on a semiconductor substrate, a resist underlayer film is formed on the resist underlayer film, and a resist pattern is formed on the resist film by light or electron beam irradiation and development.
  • a semiconductor device can be manufactured through a step of etching, a step of etching the resist underlayer film with a resist pattern, and a step of processing a semiconductor substrate with the patterned resist underlayer film.
  • a resist underlayer film for such a process unlike a conventional high etch rate resist underlayer film, a resist underlayer film for lithography having a selectivity of a dry etching rate close to that of a resist, a dry etching rate lower than that of a resist. Therefore, a lithography resist underlayer film having a selection ratio of ## EQU2 ## or a lithography resist underlayer film having a selectivity of a dry etching rate smaller than that of a semiconductor substrate is required. Further, such a resist underlayer film can be provided with an antireflection ability, and can also have a function of a conventional antireflection film.
  • the substrate after forming the resist underlayer film of the present invention on a substrate, one or several coating film materials are applied directly on the resist underlayer film or on the resist underlayer film as necessary. Thereafter, a resist composition can be applied to form a resist.
  • the substrate can be processed by selecting an appropriate etching gas even when the resist is thinly coated to prevent pattern collapse.
  • a step of forming a resist underlayer film composed of a resist underlayer film forming composition on a semiconductor substrate, a step of forming a hard mask with a coating material containing a silicon component or the like thereon, and a resist film formed thereon A step, a step of forming a resist pattern by light and electron beam irradiation and development on the resist film, a step of etching the hard mask with the resist pattern, a step of etching the resist underlayer film with the patterned hard mask
  • a semiconductor device can be manufactured through a step of processing the semiconductor substrate with the patterned resist underlayer film.
  • the resist underlayer film for lithography of the present invention has a high effect as an antireflection film because a light absorption site having sufficient light absorption performance is incorporated into the skeleton. Further, unlike an antireflection film to which a conventional light absorber is added, there is also an advantage that there is no diffused material in the photoresist during heating and drying.
  • the resist underlayer film for lithography of the present invention has high thermal stability, can prevent contamination of the upper layer film by decomposition products during baking, and can provide a margin for the temperature margin of the baking process. is there.
  • the resist underlayer film for lithography has a function of preventing reflection of light depending on process conditions, and further prevents the interaction between the substrate and the photoresist or applies to the material used for the photoresist or the photoresist. It can be used as a film having a function of preventing an adverse effect on a substrate of a substance generated during exposure.
  • Synthesis example 1 Into a reactor equipped with a stirrer, a cooler, and a nitrogen gas introduction tube, 16.6 g (0.1 mol) of 1,4-bis-methoxymethylbenzene and 6,6- (9-fluorenylidene) -di (2-naphthol) 45 0.1 g (0.1 mol) was added and 0.35 g of paratoluenesulfonic acid was added, followed by reaction at 160 ° C. for 5 hours. Methanol produced during the reaction was removed out of the system. After the reaction, it was washed with water and then dried under heating and reduced pressure to remove moisture and unreacted monomers. The residue was dissolved in propylene glycol monomethyl ether acetate and dropped into methanol for reprecipitation to obtain a fluorene resin represented by the following formula (5-1). The weight average molecular weight was 10,000.
  • Synthesis example 2 A reactor equipped with a stirrer, a cooler, and a nitrogen gas inlet tube was charged with 16 g of methyl isobutyl ketone, 27.5 g (0.1 mol) of 9,10-bis (chloromethyl) anthracene and 6,6- (9-fluorenylidene) as solvents. ) -Di (2-naphthol) 45.1 g (0.1 mol) was added, and 4.5 g of 35% hydrochloric acid was added, followed by reaction under reflux for 20 hours with stirring. After the reaction, it was washed with water and then dried under heating and reduced pressure to remove moisture and unreacted monomers. The residue was dissolved in propylene glycol monomethyl ether acetate, dropped into methanol and reprecipitated to obtain a fluorene resin represented by the following formula (5-2). The weight average molecular weight was 4000.
  • Synthesis example 3 To the reactor, 180 g of 4,4 ′-(9H-fluorene-9-ylidene) bisphenol, 75 g of 37% formalin aqueous solution, and 5 g of oxalic acid were added and stirred at 100 ° C. for 24 hours with stirring. After the reaction, the product was dissolved in 500 ml of methyl isobutyl ketone, the catalyst was removed by washing with sufficient water, and the solvent, water and unreacted monomers were removed by drying under reduced pressure to obtain a fluorene resin represented by the following formula (5-3). The weight average molecular weight was 11000.
  • Example 1 To 5 g of the fluorene resin represented by the formula (5-1) obtained in Synthesis Example 1 was mixed 0.015 g of Megafac R-30 (trade name, manufactured by Dainippon Ink & Chemicals, Inc.) as a surfactant. A solution was prepared by dissolving in 58 g of propylene glycol monomethyl ether acetate. Thereafter, the solution is filtered using a polyethylene microfilter having a pore size of 0.10 ⁇ m, and further filtered using a polyethylene microfilter having a pore size of 0.05 ⁇ m, so that the resist underlayer film forming composition solution used in the lithography process using a multilayer film is used.
  • Megafac R-30 trade name, manufactured by Dainippon Ink & Chemicals, Inc.
  • Example 2 To 5 g of the fluorene resin represented by the formula (5-1) obtained in Synthesis Example 1, a compound represented by the formula (4-21) as a crosslinking agent (manufactured by Asahi Organic Materials Co., Ltd., trade name: TM- BIP-A) 0.5 g, pyridinium p-toluenesulfonate 0.005 g as a catalyst, and MegaFac R-30 (trade name, manufactured by Dainippon Ink Chemical Co., Ltd.) 0.015 g as a surfactant are mixed with propylene glycol. A solution was prepared by dissolving in 58 g of monomethyl ether acetate.
  • the solution is filtered using a polyethylene microfilter having a pore size of 0.10 ⁇ m, and further filtered using a polyethylene microfilter having a pore size of 0.05 ⁇ m, so that the resist underlayer film forming composition solution used in the lithography process using a multilayer film is used.
  • a polyethylene microfilter having a pore size of 0.10 ⁇ m is filtered using a polyethylene microfilter having a pore size of 0.10 ⁇ m, and further filtered using a polyethylene microfilter having a pore size of 0.05 ⁇ m, so that the resist underlayer film forming composition solution used in the lithography process using a multilayer film is used.
  • Example 3 To 5 g of the fluorene resin represented by the formula (5-1) obtained in Synthesis Example 1, 0.5 g of tetramethoxymethyl glycoluril (trade name Powder Link 1174, manufactured by Mitsui Cytec Co., Ltd.) as a crosslinking agent and pyridinium as a catalyst 0.005 g of paratoluene sulfonate and 0.015 g of Megafac R-30 (trade name, manufactured by Dainippon Ink Chemical Co., Ltd.) as a surfactant were mixed and dissolved in 58 g of propylene glycol monomethyl ether acetate to obtain a solution.
  • tetramethoxymethyl glycoluril trade name Powder Link 1174, manufactured by Mitsui Cytec Co., Ltd.
  • pyridinium pyridinium
  • Megafac R-30 trade name, manufactured by Dainippon Ink Chemical Co., Ltd.
  • the solution is filtered using a polyethylene microfilter having a pore size of 0.10 ⁇ m, and further filtered using a polyethylene microfilter having a pore size of 0.05 ⁇ m, so that the resist underlayer film forming composition solution used in the lithography process using a multilayer film is used.
  • a polyethylene microfilter having a pore size of 0.10 ⁇ m is filtered using a polyethylene microfilter having a pore size of 0.10 ⁇ m, and further filtered using a polyethylene microfilter having a pore size of 0.05 ⁇ m, so that the resist underlayer film forming composition solution used in the lithography process using a multilayer film is used.
  • Example 4 To 5 g of the fluorene resin represented by the formula (5-2) obtained in Synthesis Example 2, 0.015 g of Megafac R-30 (trade name, manufactured by Dainippon Ink Chemical Co., Ltd.) as a surfactant was mixed. A solution was prepared by dissolving in 58 g of propylene glycol monomethyl ether acetate. Thereafter, the solution is filtered using a polyethylene microfilter having a pore size of 0.10 ⁇ m, and further filtered using a polyethylene microfilter having a pore size of 0.05 ⁇ m, so that the resist underlayer film forming composition solution used in the lithography process using a multilayer film is used.
  • Megafac R-30 trade name, manufactured by Dainippon Ink Chemical Co., Ltd.
  • Comparative Example 1 To a mixture of 1 g of phenol novolak resin (weight average molecular weight 15000) represented by the following formula (5-4), 1 g of bisphenol fluorenediglycidyl ether represented by the following formula (5-5), and 0.06 g of triphenylphosphine, 39.14 g of cyclohexanone was added and dissolved to obtain a solution. Thereafter, the solution was filtered using a polyethylene microfilter having a pore size of 0.10 ⁇ m, and further filtered using a polyethylene microfilter having a pore size of 0.05 ⁇ m to prepare a resist underlayer film forming composition solution used for the lithography process.
  • phenol novolak resin weight average molecular weight 15000
  • 5-5 bisphenol fluorenediglycidyl ether represented by the following formula (5-5)
  • triphenylphosphine 39.14 g of cyclohexanone was added and dissolved to obtain a solution. Thereafter, the solution was
  • the resist underlayer film forming compositions prepared in Examples 1 to 4 and Comparative Example 1 or 2 were each applied onto a silicon wafer using a spinner. Heating was performed at 240 ° C. for 1 minute on a hot plate to form a resist underlayer film (film thickness: 0.25 ⁇ m). Using a spectroscopic ellipsometer, the refractive index (n value) and optical absorption coefficient (k value, also called attenuation coefficient) of these resist underlayer films at a wavelength of 248 nm and a wavelength of 193 nm were measured. The results are shown in Table 1.
  • a phenol novolac resin solution was formed on a silicon wafer using a spinner.
  • the film was heated on a hot plate at 205 ° C. for 1 minute to form a coating film (film thickness: 0.25 ⁇ m).
  • the dry etching rate was measured using CF 4 gas as an etching gas, and the dry etching rates of the resist underlayer films of Examples 1 to 4 and Comparative Examples 1 and 2 were compared. The results are shown in Table 2.
  • the speed ratio (1) is a dry etching speed ratio of (resist underlayer film after heating at 240 ° C. for 1 minute) / (phenol novolac resin film after heating at 205 ° C. for 1 minute).
  • the speed ratio (2) is a dry etching speed ratio of (resist underlayer film after heating at 400 ° C. for 2 minutes) / (phenol novolak resin film after heating at 205 ° C. for 1 minute).
  • the polymers used in the present invention have high heat resistance, and the resist underlayer film forming composition using these polymers has heat stability even in the step of forming a hard mask by vapor deposition on the upper layer in a multilayer lithography process.

Abstract

A composition for forming a resist underlayer film which has heat resistance required for use in a lithography process during production of a semiconductor device. The composition for forming a resist underlayer film contains a polymer which contains a unit structure represented by formula (1). (In the formula, R1, R2, R3 and R4 each represents an alkyl group having 1-10 carbon atoms, an aryl group having 6-20 carbon atoms, a halogen group, a nitro group or an amino group; R5 and R6 each represents a hydrogen atom, an alkyl group having 1-10 carbon atoms or a glycidyl group; Ar represents an arylene group having 6-20 carbon atoms; and n1 and n2 each represents an integer of 0-4, n3 represents an integer from 0 to (6-n5), n4 represents an integer from 0 to (6-n6), and n5 and n6 each represents an integer of 1-6, with n3 + n5 being an integer of 1-6 and n4 + n6 being an integer of 1-6.)

Description

フルオレンを含有する樹脂を含むリソグラフィー用レジスト下層膜形成組成物Lithographic resist underlayer film forming composition comprising a resin containing fluorene
 本発明は、半導体基板加工時に有効なリソグラフィー用レジスト下層膜形成組成物、及びそれから形成されるリソグラフィー用レジスト下層膜に関する。また、本発明は前記該レジスト下層膜形成組成物を含むレジストパターン形成方法、及び該レジストパターンにより半導体基板を加工する工程を含む半導体装置の製造方法に関する。 The present invention relates to a resist underlayer film forming composition for lithography effective at the time of processing a semiconductor substrate, and a resist underlayer film for lithography formed therefrom. The present invention also relates to a resist pattern forming method including the resist underlayer film forming composition, and a semiconductor device manufacturing method including a step of processing a semiconductor substrate with the resist pattern.
 従来から半導体装置の製造において、フォトレジスト組成物を用いたリソグラフィーによる半導体基板の微細加工が行われている。前記微細加工とは、例えばシリコンウェハー等の被加工基板上にフォトレジスト組成物からなる薄膜を形成し、その薄膜に半導体装置のパターンが描かれたマスクパターンを介して紫外線などの活性光線を照射し、現像してパターンが形成されたフォトレジストを保護膜としてシリコンウェハー等の被加工基板をエッチング処理する加工法である。ところが、近年、半導体装置の高集積度化が進み、使用される活性光線もKrFエキシマレーザ(248nm)からArFエキシマレーザ(193nm)及びF2エキシマレーザ(157nm)へと短波長化される傾向にある。これに伴い、活性光線の基板からの乱反射や定在波の影響により大きな問題が生じた。そこでフォトレジストと被加工基板の間に反射防止膜(Bottom Anti-Reflective Coating、BARC)を設ける方法が広く検討されるようになってきた。 Conventionally, in the manufacture of semiconductor devices, fine processing of a semiconductor substrate by lithography using a photoresist composition has been performed. The fine processing is, for example, forming a thin film made of a photoresist composition on a substrate to be processed such as a silicon wafer, and irradiating the thin film with actinic rays such as ultraviolet rays through a mask pattern in which a pattern of a semiconductor device is drawn. This is a processing method in which a substrate to be processed such as a silicon wafer is subjected to an etching process using a photoresist having a pattern formed by development as a protective film. However, in recent years, the degree of integration of semiconductor devices has increased, and the actinic rays used tend to be shortened from KrF excimer laser (248 nm) to ArF excimer laser (193 nm) and F 2 excimer laser (157 nm). is there. Along with this, a serious problem has occurred due to the influence of diffuse reflection of active rays from the substrate and standing waves. Therefore, a method of providing an antireflection film (Bottom Anti-Reflective Coating, BARC) between the photoresist and the substrate to be processed has been widely studied.
 今後、さらにレジストパターンの微細化が進行すると、現行のレジストの膜厚では解像度の問題及びレジストパターンが現像後に倒れるという問題が生じるため、さらにレジストの薄膜化が望まれてくる。そのため、基板加工に充分なレジストパターン膜厚を得ることが難しくなり、レジストパターンだけではなく、レジストと加工する半導体基板との間に作成されるレジスト下層膜にも基板加工時のマスクとしての機能を持たせるプロセスが必要となる。このようなプロセス用のレジスト下層膜として従来の高エッチレート性(エッチング速度の早い)レジスト下層膜とは異なり、レジストに近いドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜、レジストに比べて小さいドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜や半導体基板に比べて小さいドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜の要求が高まってきている。 In the future, when the resist pattern is further miniaturized, the resolution of the current resist film and the problem that the resist pattern collapses after development occur. Therefore, it is desired to further reduce the resist thickness. Therefore, it is difficult to obtain a resist pattern film thickness sufficient for substrate processing, and not only the resist pattern but also the resist underlayer film created between the resist and the semiconductor substrate to be processed functions as a mask during substrate processing. A process for providing Unlike conventional resist underlayer films with high etch rate (fast etching speed) as resist underlayer films for such processes, compared to resist underlayer films and resists for lithography, which have a selectivity of dry etching rate close to that of resist There is an increasing demand for a resist underlayer film for lithography having a low dry etching rate selection ratio and a resist underlayer film for lithography having a low dry etching rate selection ratio compared to a semiconductor substrate.
 上記のような、レジスト下層膜を形成する組成物として、フルオレンフェノールノボラック樹脂を用いたレジスト下層膜形成組成物(例えば、特許文献1参照)、フルオレンナフトールノボラック樹脂を用いたレジスト下層膜形成組成物(例えば、特許文献2参照)、フルオレンフェノールとアリールアルキレンを繰り返し単位構造とする樹脂を含むレジスト下層膜形成組成物(例えば、特許文献3、特許文献4参照)が開示されている。
 しかしこれら下層膜も、基板加工時のマスクとしてのレジスト下層膜としての性能、例えば、耐溶剤性、耐熱性、吸光性及びエッチング速度の選択性の全てを満たすものではなかった。
As a composition for forming a resist underlayer film as described above, a resist underlayer film forming composition using a fluorenephenol novolac resin (see, for example, Patent Document 1), a resist underlayer film forming composition using a fluorene naphthol novolak resin (For example, refer patent document 2) The resist underlayer film forming composition (for example, refer patent document 3 and patent document 4) containing resin which has fluorene phenol and aryl alkylene as a repeating unit structure is disclosed.
However, these lower layer films also do not satisfy all of the performance as a resist lower layer film as a mask during substrate processing, for example, solvent resistance, heat resistance, light absorbency, and selectivity of etching rate.
特開2005-128509JP 2005-128509 A 特開2007-199653JP2007-199653A 特開2007-178974JP2007-178974 米国特許第7378217US Pat. No. 7,378,217
 本発明の課題は、半導体装置製造のリソグラフィープロセスに用いるためのレジスト下層膜形成組成物を提供することである。また本発明の課題は、レジスト層とのインターミキシングが起こらず、優れたレジストパターンが得られ、レジストに近いドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜、レジストに比べて小さいドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜、及び半導体基板に比べて小さいドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜を提供することにある。また本発明の課題は、248nm、193nm、157nm等の波長の照射光によるレジスト下層膜の微細加工を行う際の、基板からの反射光を効果的に吸収する反射防止膜としての性能を有するリソグラフィー用レジスト下層膜及びそれを形成する組成物を提供することにある。さらに、本発明の課題はレジスト下層膜形成組成から形成されるレジスト下層膜を含むレジストパターンの形成法を提供することにある。そして、耐熱性も兼ね備えたレジスト下層膜及び、それを形成するためのレジスト下層膜形成組成物を提供することである。 An object of the present invention is to provide a resist underlayer film forming composition for use in a lithography process for manufacturing a semiconductor device. Another object of the present invention is to provide an excellent resist pattern without intermixing with the resist layer, and has a dry etching rate close to that of the resist. It is an object of the present invention to provide a resist underlayer film for lithography having a selectivity ratio of 2 and a resist underlayer film for lithography having a selectivity ratio of a dry etching rate smaller than that of a semiconductor substrate. Another object of the present invention is to provide lithography having performance as an antireflection film that effectively absorbs reflected light from a substrate when fine processing of a resist underlayer film is performed by irradiation light having a wavelength of 248 nm, 193 nm, 157 nm, or the like. An object of the present invention is to provide a resist underlayer film and a composition for forming the same. Furthermore, the subject of this invention is providing the formation method of the resist pattern containing the resist underlayer film formed from a resist underlayer film formation composition. And it is providing the resist underlayer film which also has heat resistance, and the resist underlayer film forming composition for forming it.
 本願発明は第1観点として、下記式(1):
Figure JPOXMLDOC01-appb-C000003
(式中、R1及びR2はフルオレン環上の置換基であり、R3、R4、OR5、OR6はナフタレン環上の置換基である。R1、R2、R3、及びR4はそれぞれ炭素原子数1乃至10のアルキル基、炭素原子数6乃至20のアリール基、ハロゲン基、ニトロ基、又はアミノ基であり、R5、R6はそれぞれ水素原子、炭素原子数1乃至10のアルキル基、又はグリシジル基であり、Arは炭素原子数6乃至20のアリーレン基であり、n1及びn2はそれぞれ0乃至4の整数であり、n3は0乃至(6-n5)の整数であり、n4は0乃至(6-n6)の整数であり、n5及びn6はそれぞれ1乃至6の整数であり、かつ、n3+n5は1乃至6の整数であり、n4+n6は1乃至6の整数である。)で表される繰り返し単位構造を含むポリマーを含むレジスト下層膜形成組成物、
 第2観点として、前記式(1)中、Arが置換又は非置換のフェニレン基、ナフチレン基、ビフェニレン基、アントリレン基、又はピレン基を表す第1観点に記載のレジスト下層膜形成組成物、
 第3観点として、更に架橋剤を含有する第1観点又は第2観点に記載のレジスト下層膜形成組成物、
 第4観点として、前記架橋剤が芳香族環を有する化合物である第3観点に記載のレジスト下層膜形成組成物、
 第5観点として、前記架橋剤が下記式(2)で表される化合物又は下記式(3)の繰り返し単位構造を有するポリマー又はオリゴマー:
Figure JPOXMLDOC01-appb-C000004
(式(2)中、R7及びR8はそれぞれ水素原子、炭素原子数1乃至10のアルキル基、又は炭素原子数6乃至20のアリール基を表し、n7は1乃至4の整数であり、n8は1乃至(5-n7)の整数であり、n7+n8は2乃至5の整数である。式(3)中、R9は水素原子又は炭素原子数1乃至10のアルキル基を表し、R10は炭素原子数1乃至10のアルキル基であり、n9は1乃至4の整数であり、n10は0乃至(4-n9)であり、n9+n10は1乃至4の整数である。オリゴマー及びポリマーの繰り返し単位構造の数mは2乃至100である。)である第3観点に記載のレジスト下層膜形成組成物、
 第6観点として、更に酸、又は酸発生剤を含むものである第1観点乃至第5観点のいずれか一つに記載のレジスト下層膜形成組成物、
 第7観点として、第1観点乃至第6観点のいずれか一つに記載のレジスト下層膜形成組成物を半導体基板上に塗布し焼成することによって得られるレジスト下層膜、
 第8観点として、第1観点乃至第6観点のいずれか一つに記載のレジスト下層膜形成組成物を半導体基板上に塗布し焼成して下層膜を形成する工程を含む半導体の製造に用いられるレジストパターンの形成方法、
 第9観点として、半導体基板上に第1観点乃至第6観点のいずれか一つに記載のレジスト下層膜形成組成物からなる下層膜を形成する工程、該下層膜の上にレジスト膜を形成する工程、該レジスト膜に光又は電子線の照射と現像によりレジストパターンを形成する工程、該レジストパターンにより該下層膜をエッチングする工程、及びパターン化された該下層膜により半導体基板を加工する工程を含む半導体装置の製造方法、
 第10観点として、半導体基板に第1観点乃至第6観点のいずれか一つに記載のレジスト下層膜形成組成物からなる下層膜を形成する工程、該下層膜上にハードマスクを形成する工程、更に該ハードマスク上にレジスト膜を形成する工程、該レジスト膜に光又は電子線の照射と現像によりレジストパターンを形成する工程、該レジストパターンにより該ハードマスクをエッチングする工程、パターン化された該ハードマスクにより該下層膜をエッチングする工程、及びパターン化された該下層膜により半導体基板を加工する工程を含む半導体装置の製造方法に関する。
As a first aspect of the present invention, the following formula (1):
Figure JPOXMLDOC01-appb-C000003
(Wherein R 1 and R 2 are substituents on the fluorene ring, and R 3 , R 4 , OR 5 , OR 6 are substituents on the naphthalene ring. R 1 , R 2 , R 3 , and R 4 is an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, a halogen group, a nitro group, or an amino group, and R 5 and R 6 are a hydrogen atom and 1 carbon atom, respectively. To an alkyl group of 10 to 10 or glycidyl group, Ar is an arylene group having 6 to 20 carbon atoms, n1 and n2 are each an integer of 0 to 4, and n3 is an integer of 0 to (6-n5) N4 is an integer from 0 to (6-n6), n5 and n6 are each an integer from 1 to 6, n3 + n5 is an integer from 1 to 6, and n4 + n6 is an integer from 1 to 6 A polymer containing a repeating unit structure represented by: A resist underlayer film-forming composition comprising
As a second aspect, in the formula (1), the resist underlayer film forming composition according to the first aspect, in which Ar represents a substituted or unsubstituted phenylene group, naphthylene group, biphenylene group, anthrylene group, or pyrene group,
As a third aspect, the resist underlayer film forming composition according to the first aspect or the second aspect further containing a crosslinking agent,
As a fourth aspect, the resist underlayer film forming composition according to the third aspect, wherein the crosslinking agent is a compound having an aromatic ring,
As a fifth aspect, the cross-linking agent is a compound represented by the following formula (2) or a polymer or oligomer having a repeating unit structure of the following formula (3):
Figure JPOXMLDOC01-appb-C000004
(In the formula (2), R 7 and R 8 each represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms, n7 is an integer of 1 to 4, n8 is an integer of 1 to (5-n7), and n7 + n8 is an integer of 2 to 5. In formula (3), R 9 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 10 Is an alkyl group having 1 to 10 carbon atoms, n9 is an integer of 1 to 4, n10 is 0 to (4-n9), and n9 + n10 is an integer of 1 to 4. Repeating oligomers and polymers The number m of unit structures is 2 to 100.) The resist underlayer film forming composition according to the third aspect,
As a sixth aspect, the resist underlayer film forming composition according to any one of the first aspect to the fifth aspect, which further contains an acid or an acid generator,
As a seventh aspect, a resist underlayer film obtained by applying and baking the resist underlayer film forming composition according to any one of the first to sixth aspects on a semiconductor substrate,
As an eighth aspect, the resist underlayer film forming composition according to any one of the first to sixth aspects is applied on a semiconductor substrate and baked to form a lower layer film. Forming a resist pattern;
As a ninth aspect, a step of forming an underlayer film made of the resist underlayer film forming composition according to any one of the first to sixth aspects on a semiconductor substrate, and forming a resist film on the underlayer film Forming a resist pattern by light and electron beam irradiation and development on the resist film, etching the lower layer film with the resist pattern, and processing a semiconductor substrate with the patterned lower layer film A method for manufacturing a semiconductor device,
As a tenth aspect, a step of forming an underlayer film made of the resist underlayer film forming composition according to any one of the first to sixth aspects on a semiconductor substrate, a step of forming a hard mask on the underlayer film, Further, a step of forming a resist film on the hard mask, a step of forming a resist pattern on the resist film by light and electron beam irradiation and development, a step of etching the hard mask with the resist pattern, the patterned The present invention relates to a method for manufacturing a semiconductor device, including a step of etching the lower layer film with a hard mask and a step of processing a semiconductor substrate with the patterned lower layer film.
 本発明のレジスト下層膜形成組成物から形成されるレジスト下層膜は、レジスト下層膜の上層部とインターミキシングを起こすことなく、良好なレジストのパターン形状を形成することができる。
 本発明のレジスト下層膜形成組成物から形成されるレジスト下層膜には基板からの反射光を効率的に吸収する性能を付与することも可能であり、反射防止膜としての効果を併せ持つこともできる。
 本発明のレジスト下層膜形成組成物は、レジストに近いドライエッチング速度の選択比、レジストに比べて小さいドライエッチング速度の選択比及び半導体基板に比べて小さいドライエッチング速度の選択比を持つ、優れたレジスト下層膜を形成することができる。
The resist underlayer film formed from the resist underlayer film forming composition of the present invention can form a good resist pattern shape without causing intermixing with the upper layer portion of the resist underlayer film.
The resist underlayer film formed from the resist underlayer film forming composition of the present invention can be provided with the ability to efficiently absorb the reflected light from the substrate, and can also have an effect as an antireflection film. .
The resist underlayer film forming composition of the present invention has an excellent dry etching rate selectivity close to that of the resist, a low dry etching rate selectivity compared to the resist, and a low dry etching rate selectivity compared to the semiconductor substrate. A resist underlayer film can be formed.
 レジストパターンの微細化に伴い、レジストパターンが現像後に倒れることを防止するためにレジストの薄膜化が行われている。そのような薄膜レジストを備えた半導体基板装置の製造には、レジストパターンをエッチングプロセスでその下層膜に転写し、そのパターンを転写した下層膜をマスクとして基板加工を行うプロセス又は、レジストパターンをエッチングプロセスでその下層膜に転写し、さらに下層膜に転写されたパターンを異なるガス組成を用いてその下層膜に転写するという行程を繰り返し、最終的に基板加工を行うプロセスが含まれる。本発明のレジスト下層膜及びその形成組成物はこのプロセスの下層膜として有効であり、本発明のレジスト下層膜を用いて基板を加工する時は、加工基板(例えば、基板上の熱酸化ケイ素膜、窒化珪素膜、ポリシリコン膜等)と比較して十分にエッチング耐性を有するものである。 As the resist pattern is miniaturized, the resist is thinned to prevent the resist pattern from falling after development. In the manufacture of a semiconductor substrate device having such a thin film resist, the resist pattern is transferred to the lower layer film by an etching process, and the substrate processing is performed using the lower layer film to which the pattern is transferred as a mask, or the resist pattern is etched. The process includes transferring the pattern to the lower layer film in the process, and further transferring the pattern transferred to the lower layer film to the lower layer film using a different gas composition, and finally processing the substrate. The resist underlayer film and the composition for forming the same of the present invention are effective as an underlayer film for this process. When a substrate is processed using the resist underlayer film of the present invention, a processed substrate (for example, a thermal silicon oxide film on the substrate). , Silicon nitride film, polysilicon film, and the like).
 そして、本発明のレジスト下層膜は、平坦化膜、レジスト下層膜、レジスト層の汚染防止膜、ドライエッチ選択性を有する膜として用いることができる。これにより、本発明のレジスト下層膜を使用すことで半導体製造のリソグラフィープロセスにおけるレジストパターン形成を、容易に、精度良く行うことができるようになる。
 本願発明によるレジスト下層膜形成組成物から形成されるレジスト下層膜を基板上に形成し、その上にハードマスクを形成し、その上にレジスト膜を形成し、そのレジスト膜に露光と現像によりレジストパターンを形成し、そのレジストパターンをハードマスクに転写し、そのハードマスクに転写されたレジストパターンをレジスト下層膜に転写し、そのレジスト下層膜に転写されたレジストパターンで半導体基板の加工を行うプロセスがある。このプロセスで使用されるハードマスクは有機ポリマー及び/又は無機ポリマーと溶剤とを含む組成物を塗布し形成される場合、又は無機物を真空蒸着し形成される場合がある。無機物(例えば、窒化酸化ケイ素)を真空蒸着させる方法では、蒸着物がレジスト下層膜表面に堆積する際にレジスト下層膜表面の温度が400℃前後に上昇する。そのため、真空蒸着方法に使用されるレジスト下層膜は耐熱性を必要とする。本発明のレジスト下層膜形成組成物を構成するポリマーはフルオレンナフトールとアリーレンアルキレンの繰り返し単位構造を含む共重合体である。そのため極めて耐熱性が高く、前記真空蒸着方法時の蒸着物を堆積する際にも熱劣化が生じない。
The resist underlayer film of the present invention can be used as a planarizing film, a resist underlayer film, a resist layer antifouling film, or a film having dry etch selectivity. Thereby, by using the resist underlayer film of the present invention, a resist pattern can be easily and accurately formed in the lithography process of semiconductor manufacturing.
A resist underlayer film formed from the resist underlayer film forming composition according to the present invention is formed on a substrate, a hard mask is formed thereon, a resist film is formed thereon, and the resist film is exposed and developed by exposure and development. Process for forming a pattern, transferring the resist pattern to a hard mask, transferring the resist pattern transferred to the hard mask to the resist underlayer film, and processing the semiconductor substrate with the resist pattern transferred to the resist underlayer film There is. The hard mask used in this process may be formed by applying a composition containing an organic polymer and / or an inorganic polymer and a solvent, or may be formed by vacuum deposition of an inorganic substance. In the method of vacuum-depositing an inorganic substance (for example, silicon nitride oxide), the temperature of the resist underlayer film surface rises to around 400 ° C. when the deposit is deposited on the resist underlayer film surface. Therefore, the resist underlayer film used in the vacuum deposition method needs heat resistance. The polymer constituting the resist underlayer film forming composition of the present invention is a copolymer containing a repeating unit structure of fluorene naphthol and arylene alkylene. Therefore, the heat resistance is extremely high, and thermal deterioration does not occur when depositing a deposit in the vacuum deposition method.
 本発明は式(1)で表される繰り返し単位構造を含むポリマーを含むリソグラフィー用レジスト下層膜形成組成物である。本発明では上記ポリマーと溶剤とを含む。さらに、架橋剤と酸を含むことができ、必要に応じて酸発生剤、界面活性剤等の添加剤も含むことができる。この組成物の固形分は0.1乃至70質量%、または0.1乃至60質量%である。固形分とはレジスト下層膜形成組成物から溶剤を除いた全成分の含有割合である。固形分中に上記ポリマーを1乃至100質量%、または1乃至99質量%、または50乃至99質量%の割合で含有することができる。 The present invention is a resist underlayer film forming composition for lithography containing a polymer containing a repeating unit structure represented by the formula (1). In this invention, the said polymer and a solvent are included. Furthermore, a crosslinking agent and an acid can be included, and additives such as an acid generator and a surfactant can be included as necessary. The solid content of the composition is 0.1 to 70% by mass, or 0.1 to 60% by mass. Solid content is the content rate of all the components remove | excluding the solvent from the resist underlayer film forming composition. The polymer can be contained in the solid content in a proportion of 1 to 100% by mass, or 1 to 99% by mass, or 50 to 99% by mass.
 本発明に用いられるポリマーは、重量平均分子量が600乃至1000000、好ましくは1000乃至200000である。平均分子量が600より少ないと、硬化時に十分な硬度を得られない場合があり、また、平均分子量が1000000より大きいと、高粘度となり取り扱いが困難になる場合がある。 The polymer used in the present invention has a weight average molecular weight of 600 to 1000000, preferably 1000 to 200000. If the average molecular weight is less than 600, sufficient hardness may not be obtained at the time of curing, and if the average molecular weight is greater than 1000000, the viscosity may become high and handling may be difficult.
 本願発明に用いられるポリマーは下記式(1)で表される繰り返し単位構造を含む。
Figure JPOXMLDOC01-appb-C000005
式中、R1及びR2はフルオレン環上の置換基を表し、R3、R4、OR5、OR6はナフタレン環上の置換基を表す。R1、R2、R3、及びR4はそれぞれ炭素原子数1乃至10のアルキル基、炭素原子数6乃至20のアリール基、ハロゲン基、ニトロ基、又はアミノ基を表し、R5、R6はそれぞれ水素原子、炭素原子数1乃至10のアルキル基、又はグリシジル基を表しり、Arは炭素原子数6乃至20のアリーレン基を表し、n1及びn2はそれぞれ0乃至4の整数であり、n3は0乃至(6-n5)の整数であり、n4は0乃至(6-n6)の整数であり、n5及びn6はそれぞれ1乃至6の整数であり、かつ、n3+n5は1乃至6の整数であり、n4+n6は1乃至6の整数である。
The polymer used in the present invention includes a repeating unit structure represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000005
In the formula, R 1 and R 2 represent substituents on the fluorene ring, and R 3 , R 4 , OR 5 , and OR 6 represent substituents on the naphthalene ring. R 1 , R 2 , R 3 , and R 4 each represent an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, a halogen group, a nitro group, or an amino group, and R 5 , R 6 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a glycidyl group, Ar represents an arylene group having 6 to 20 carbon atoms, and n1 and n2 are each an integer of 0 to 4, n3 is an integer from 0 to (6-n5), n4 is an integer from 0 to (6-n6), n5 and n6 are each an integer from 1 to 6, and n3 + n5 is an integer from 1 to 6 N4 + n6 is an integer from 1 to 6.
 上記の炭素原子数1乃至10のアルキル基としてはメチル基、エチル基、n-プロピル基、i-プロピル基、シクロプロピル基、n-ブチル基、i-ブチル基、s-ブチル基、t-ブチル基、シクロブチル基、1-メチル-シクロプロピル基、2-メチル-シクロプロピル基、n-ペンチル基、1-メチル-n-ブチル基、2-メチル-n-ブチル基、3-メチル-n-ブチル基、1,1-ジメチル-n-プロピル基、1,2-ジメチル-n-プロピル基、2,2-ジメチル-n-プロピル基、1-エチル-n-プロピル基、シクロペンチル基、1-メチル-シクロブチル基、2-メチル-シクロブチル基、3-メチル-シクロブチル基、1,2-ジメチル-シクロプロピル基、2,3-ジメチル-シクロプロピル基、1-エチル-シクロプロピル基、2-エチル-シクロプロピル基、n-ヘキシル基、1-メチル-n-ペンチル基、2-メチル-n-ペンチル基、3-メチル-n-ペンチル基、4-メチル-n-ペンチル基、1,1-ジメチル-n-ブチル基、1,2-ジメチル-n-ブチル基、1,3-ジメチル-n-ブチル基、2,2-ジメチル-n-ブチル基、2,3-ジメチル-n-ブチル基、3,3-ジメチル-n-ブチル基、1-エチル-n-ブチル基、2-エチル-n-ブチル基、1,1,2-トリメチル-n-プロピル基、1,2,2-トリメチル-n-プロピル基、1-エチル-1-メチル-n-プロピル基、1-エチル-2-メチル-n-プロピル基、シクロヘキシル基、1-メチル-シクロペンチル基、2-メチル-シクロペンチル基、3-メチル-シクロペンチル基、1-エチル-シクロブチル基、2-エチル-シクロブチル基、3-エチル-シクロブチル基、1,2-ジメチル-シクロブチル基、1,3-ジメチル-シクロブチル基、2,2-ジメチル-シクロブチル基、2,3-ジメチル-シクロブチル基、2,4-ジメチル-シクロブチル基、3,3-ジメチル-シクロブチル基、1-n-プロピル-シクロプロピル基、2-n-プロピル-シクロプロピル基、1-i-プロピル-シクロプロピル基、2-i-プロピル-シクロプロピル基、1,2,2-トリメチル-シクロプロピル基、1,2,3-トリメチル-シクロプロピル基、2,2,3-トリメチル-シクロプロピル基、1-エチル-2-メチル-シクロプロピル基、2-エチル-1-メチル-シクロプロピル基、2-エチル-2-メチル-シクロプロピル基及び2-エチル-3-メチル-シクロプロピル基等が挙げられる。 Examples of the alkyl group having 1 to 10 carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, cyclopropyl group, n-butyl group, i-butyl group, s-butyl group, t- Butyl, cyclobutyl, 1-methyl-cyclopropyl, 2-methyl-cyclopropyl, n-pentyl, 1-methyl-n-butyl, 2-methyl-n-butyl, 3-methyl-n -Butyl group, 1,1-dimethyl-n-propyl group, 1,2-dimethyl-n-propyl group, 2,2-dimethyl-n-propyl group, 1-ethyl-n-propyl group, cyclopentyl group, 1 -Methyl-cyclobutyl group, 2-methyl-cyclobutyl group, 3-methyl-cyclobutyl group, 1,2-dimethyl-cyclopropyl group, 2,3-dimethyl-cyclopropyl group, 1-ethyl-cyclo Propyl, 2-ethyl-cyclopropyl, n-hexyl, 1-methyl-n-pentyl, 2-methyl-n-pentyl, 3-methyl-n-pentyl, 4-methyl-n-pentyl 1,1-dimethyl-n-butyl group, 1,2-dimethyl-n-butyl group, 1,3-dimethyl-n-butyl group, 2,2-dimethyl-n-butyl group, 2,3- Dimethyl-n-butyl group, 3,3-dimethyl-n-butyl group, 1-ethyl-n-butyl group, 2-ethyl-n-butyl group, 1,1,2-trimethyl-n-propyl group, 1 , 2,2-trimethyl-n-propyl group, 1-ethyl-1-methyl-n-propyl group, 1-ethyl-2-methyl-n-propyl group, cyclohexyl group, 1-methyl-cyclopentyl group, 2- Methyl-cyclopentyl group, 3-methyl-thio Lopentyl group, 1-ethyl-cyclobutyl group, 2-ethyl-cyclobutyl group, 3-ethyl-cyclobutyl group, 1,2-dimethyl-cyclobutyl group, 1,3-dimethyl-cyclobutyl group, 2,2-dimethyl-cyclobutyl group 2,3-dimethyl-cyclobutyl group, 2,4-dimethyl-cyclobutyl group, 3,3-dimethyl-cyclobutyl group, 1-n-propyl-cyclopropyl group, 2-n-propyl-cyclopropyl group, 1- i-propyl-cyclopropyl group, 2-i-propyl-cyclopropyl group, 1,2,2-trimethyl-cyclopropyl group, 1,2,3-trimethyl-cyclopropyl group, 2,2,3-trimethyl- Cyclopropyl group, 1-ethyl-2-methyl-cyclopropyl group, 2-ethyl-1-methyl-cyclopropyl group, 2-ethyl Examples include a -2-methyl-cyclopropyl group and a 2-ethyl-3-methyl-cyclopropyl group.
 上記炭素原子数6乃至20のアリール基としてはフェニル基、o-メチルフェニル基、m-メチルフェニル基、p-メチルフェニル基、o-クロルフェニル基、m-クロルフェニル基、p-クロルフェニル基、o-フルオロフェニル基、p-フルオロフェニル基、o-メトキシフェニル基、p-メトキシフェニル基、p-ニトロフェニル基、p-シアノフェニル基、α-ナフチル基、β-ナフチル基、o-ビフェニリル基、m-ビフェニリル基、p-ビフェニリル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基及び9-フェナントリル基等が挙げられる。 Examples of the aryl group having 6 to 20 carbon atoms include phenyl group, o-methylphenyl group, m-methylphenyl group, p-methylphenyl group, o-chlorophenyl group, m-chlorophenyl group, and p-chlorophenyl group. O-fluorophenyl group, p-fluorophenyl group, o-methoxyphenyl group, p-methoxyphenyl group, p-nitrophenyl group, p-cyanophenyl group, α-naphthyl group, β-naphthyl group, o-biphenylyl Group, m-biphenylyl group, p-biphenylyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4-phenanthryl group and 9-phenanthryl group Groups and the like.
 また上記ハロゲン基としては、フッ素、塩素、臭素、ヨウ素等が挙げられる。 The halogen group includes fluorine, chlorine, bromine, iodine and the like.
 上記炭素原子数6乃至20のアリーレン基としては、フェニレン基、ナフチレン基、ビフェニレン基、アントリレン基、ピレン基及びその誘導体が挙げられる。前記アリーレン基誘導体としては、上記の炭素原子数1乃至10のアルキル基、ハロゲン基、ニトロ基、又はアミノ基等で置換されているアリーレン基誘導体が挙げられる。 Examples of the arylene group having 6 to 20 carbon atoms include phenylene group, naphthylene group, biphenylene group, anthrylene group, pyrene group and derivatives thereof. Examples of the arylene group derivative include arylene group derivatives substituted with an alkyl group having 1 to 10 carbon atoms, a halogen group, a nitro group, or an amino group.
 式(1)で表される繰り返し単位構造を含むポリマーは、例えばナフトール基を有するフルオレン化合物と、ジメトキシメチルベンゼン等を酸触媒(例えばパラトルエンスルホン酸)の存在下に約130乃至180℃の温度で1乃至10時間の反応を行うことによって得られる。 The polymer containing the repeating unit structure represented by the formula (1) is prepared by reacting, for example, a fluorene compound having a naphthol group and dimethoxymethylbenzene in the presence of an acid catalyst (for example, paratoluenesulfonic acid) at a temperature of about 130 to 180 ° C. For 1 to 10 hours.
 特に好ましい式(1)で表される繰り返し単位構造を含むポリマーとしては、9,9-ビス[(ポリ)ヒドロキシナフチル]フルオレン類、ビスアルコキシアルキルベンゼン類、又はジハロゲン化メチルアントラセン類を反応させて得られるポリマーが挙げられる。
 9,9-ビス[(ポリ)ヒドロキシナフチル]フルオレン類としては、9,9-ビス(ヒドロキシナフチル)フルオレン類、例えば、9,9-ビス[6-(2-ヒドロキシナフチル)]フルオレン(6,6-(9-フルオレニリデン)-ジ(2-ナフトール))、9,9-ビス[1-(5-ヒドロキシナフチル)]フルオレン(5,5-(9-フルオレニリデン)-ジ(1-ナフトール))等が挙げられる。
 ビスアルコキシアルキルベンゼン類としては、例えば1,4-ビスメトキシメチルベンゼン等が挙げられる。
 ジハロゲン化メチルアントラセン類としては、例えば9,10-ビス(クロロメチル)アントラセンが挙げられる。
Particularly preferred polymers containing a repeating unit structure represented by the formula (1) are obtained by reacting 9,9-bis [(poly) hydroxynaphthyl] fluorenes, bisalkoxyalkylbenzenes, or dihalogenated methylanthracenes. And polymers that can be used.
Examples of 9,9-bis [(poly) hydroxynaphthyl] fluorenes include 9,9-bis (hydroxynaphthyl) fluorenes such as 9,9-bis [6- (2-hydroxynaphthyl)] fluorene (6, 6- (9-fluorenylidene) -di (2-naphthol)), 9,9-bis [1- (5-hydroxynaphthyl)] fluorene (5,5- (9-fluorenylidene) -di (1-naphthol)) Etc.
Examples of bisalkoxyalkylbenzenes include 1,4-bismethoxymethylbenzene.
Examples of the dihalogenated methylanthracenes include 9,10-bis (chloromethyl) anthracene.
 上記ポリマーは、他の繰り返し単位構造からなるポリマーを全ポリマー中に30質量%以内で混合することができる。 The above polymer can be mixed with a polymer composed of another repeating unit structure within 30% by mass in the whole polymer.
 混合することのできるポリマーとしてはポリアクリル酸エステル化合物、ポリメタクリル酸エステル化合物、ポリアクリルアミド化合物、ポリメタクリルアミド化合物、ポリビニル化合物、ポリスチレン化合物、ポリマレイミド化合物、ポリマレイン酸無水物、及びポリアクリロニトリル化合物等が挙げられる。 Polymers that can be mixed include polyacrylic acid ester compounds, polymethacrylic acid ester compounds, polyacrylamide compounds, polymethacrylamide compounds, polyvinyl compounds, polystyrene compounds, polymaleimide compounds, polymaleic anhydrides, and polyacrylonitrile compounds. Can be mentioned.
 ポリアクリル酸エステル化合物の原料モノマーとしては、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、ベンジルアクリレート、ナフチルアクリレート、アントリルアクリレート、アントリルメチルアクリレート、フェニルアクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、2,2,2-トリフルオロエチルアクリレート、4-ヒドロキシブチルアクリレート、イソブチルアクリレート、tert-ブチルアクリレート、シクロヘキシルアクリレート、イソボルニルアクリレート、2-メトキシエチルアクリレート、メトキシトリエチレングリコールアクリレート、2-エトキシエチルアクリレート、テトラヒドロフルフリルアクリレート、3-メトキシブチルアクリレート、2-メチル-2-アダマンチルアクリレート、2-エチル-2-アダマンチルアクリレート、2-プロピル-2-アダマンチルアクリレート、2-メトキシブチル-2-アダマンチルアクリレート、8-メチル-8-トリシクロデシルアクリレート、8-エチル-8-トリシクロデシルアクリレート、及び5-アクリロイルオキシ-6-ヒドロキシノルボルネン-2-カルボキシリック-6-ラクトン等が挙げられる。 Examples of the raw material monomer for the polyacrylate compound include methyl acrylate, ethyl acrylate, isopropyl acrylate, benzyl acrylate, naphthyl acrylate, anthryl acrylate, anthryl methyl acrylate, phenyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2,2,2-trifluoroethyl acrylate, 4-hydroxybutyl acrylate, isobutyl acrylate, tert-butyl acrylate, cyclohexyl acrylate, isobornyl acrylate, 2-methoxyethyl acrylate, methoxytriethylene glycol acrylate, 2-ethoxyethyl acrylate , Tetrahydrofurfuryl acrylate, 3-methoxybutyl acrylate 2-methyl-2-adamantyl acrylate, 2-ethyl-2-adamantyl acrylate, 2-propyl-2-adamantyl acrylate, 2-methoxybutyl-2-adamantyl acrylate, 8-methyl-8-tricyclodecyl acrylate, Examples include 8-ethyl-8-tricyclodecyl acrylate and 5-acryloyloxy-6-hydroxynorbornene-2-carboxyl-6-lactone.
 ポリメタクリル酸エステル化合物の原料モノマーとしては、エチルメタクリレート、ノルマルプロピルメタクリレート、ノルマルペンチルメタクリレート、シクロヘキシルメタクリレート、ベンジルメタクリレート、ナフチルメタクリレート、アントリルメタクリレート、アントリルメチルメタクリレート、フェニルメタクリレート、2-フェニルエチルメタクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、2,2,2-トリフルオロエチルメタクリレート、2,2,2-トリクロロエチルメタクリレート、メチルアクリレート、イソブチルメタクリレート、2-エチルヘキシルメタクリレート、イソデシルメタクリレート、ノルマルラウリルメタクリレート、ノルマルステアリルメタクリレート、メトキシジエチレングリコールメタクリレート、メトキシポリエチレングリコールメタクリレート、テトラヒドロフルフリルメタクリレート、イソボルニルメタクリレート、tert-ブチルメタクリレート、イソステアリルメタクリレート、ノルマルブトキシエチルメタクリレート、3-クロロ-2-ヒドロキシプロピルメタクリレート、2-メチル-2-アダマンチルメタクリレート、2-エチル-2-アダマンチルメタクリレート、2-プロピル-2-アダマンチルメタクリレート、2-メトキシブチル-2-アダマンチルメタクリレート、8-メチル-8-トリシクロデシルメタクリレート、8-エチル-8-トリシクロデシルメタクリレート、5-メタクリロイルオキシ-6-ヒドロキシノルボルネン-2-カルボキシリック-6-ラクトン、及び2,2,3,3,4,4,4-ヘプタフルオロブチルメタクリレート等が挙げられる。 The raw material monomers for the polymethacrylic acid ester compound include ethyl methacrylate, normal propyl methacrylate, normal pentyl methacrylate, cyclohexyl methacrylate, benzyl methacrylate, naphthyl methacrylate, anthryl methacrylate, anthryl methyl methacrylate, phenyl methacrylate, 2-phenylethyl methacrylate, 2 -Hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 2,2,2-trifluoroethyl methacrylate, 2,2,2-trichloroethyl methacrylate, methyl acrylate, isobutyl methacrylate, 2-ethylhexyl methacrylate, isodecyl methacrylate, normal lauryl methacrylate Normal stearyl methacrylate Methoxydiethylene glycol methacrylate, methoxypolyethylene glycol methacrylate, tetrahydrofurfuryl methacrylate, isobornyl methacrylate, tert-butyl methacrylate, isostearyl methacrylate, normal butoxyethyl methacrylate, 3-chloro-2-hydroxypropyl methacrylate, 2-methyl-2 -Adamantyl methacrylate, 2-ethyl-2-adamantyl methacrylate, 2-propyl-2-adamantyl methacrylate, 2-methoxybutyl-2-adamantyl methacrylate, 8-methyl-8-tricyclodecyl methacrylate, 8-ethyl-8-tri Cyclodecyl methacrylate, 5-methacryloyloxy-6-hydroxynorbornene-2-carboxyl 6-lactone, and 2,2,3,3,4,4,4-heptafluoro-butyl methacrylate, and the like.
 アクリルアミド化合物としては、アクリルアミド、N-メチルアクリルアミド、N-エチルアクリルアミド、N-ベンジルアクリルアミド、N-フェニルアクリルアミド、及びN,N-ジメチルアクリルアミド等が挙げられる。 Examples of the acrylamide compound include acrylamide, N-methylacrylamide, N-ethylacrylamide, N-benzylacrylamide, N-phenylacrylamide, and N, N-dimethylacrylamide.
 ポリメタクリル酸アミド化合物の原料モノマーとしては、メタクリルアミド、N-メチルメタクリルアミド、N-エチルメタクリルアミド、N-ベンジルメタクリルアミド、N-フェニルメタクリルアミド、及びN,N-ジメチルメタクリルアミド等が挙げられる。 Examples of the raw material monomer of the polymethacrylic acid amide compound include methacrylamide, N-methyl methacrylamide, N-ethyl methacrylamide, N-benzyl methacrylamide, N-phenyl methacrylamide, and N, N-dimethyl methacrylamide. .
 ポリビニル化合物の原料モノマーとしては、ビニルエーテル、メチルビニルエーテル、ベンジルビニルエーテル、2-ヒドロキシエチルビニルエーテル、フェニルビニルエーテル、及びプロピルビニルエーテル等が挙げられる。 Examples of the raw material monomer for the polyvinyl compound include vinyl ether, methyl vinyl ether, benzyl vinyl ether, 2-hydroxyethyl vinyl ether, phenyl vinyl ether, and propyl vinyl ether.
 ポリスチレン化合物の原料モノマーとしては、スチレン、メチルスチレン、クロロスチレン、ブロモスチレン、及びヒドロキシスチレン等が挙げられる。 Examples of the raw material monomer for the polystyrene compound include styrene, methylstyrene, chlorostyrene, bromostyrene, and hydroxystyrene.
 ポリマレイミド化合物の原料モノマーとしては、マレイミド、N-メチルマレイミド、N-フェニルマレイミド、及びN-シクロヘキシルマレイミド等が挙げられる。 Examples of the raw material monomer of the polymaleimide compound include maleimide, N-methylmaleimide, N-phenylmaleimide, and N-cyclohexylmaleimide.
 上記ポリマーは、有機溶剤に付加重合性モノマー及び必要に応じて添加される連鎖移動剤を溶解した後、重合開始剤を加えて重合反応を行い、その後、重合停止剤を添加し重合反応を止めることにより製造することができる。連鎖移動剤の添加量としてはモノマーの質量に対して10%以下であり、重合開始剤の添加量としてはモノマーの質量に対して1乃至10%であり、重合停止剤の添加量としては0.01乃至0.2質量%である。
 使用される有機溶剤としてはプロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、乳酸エチル、シクロヘキサノン、メチルエチルケトン、及びジメチルホルムアミド等が挙げられ、連鎖移動剤としてはドデカンチオール及びドデシルチオール等が挙げられ、重合開始剤としてはアゾビスイソブチロニトリル及びアゾビスシクロヘキサンカルボニトリル等が挙げられ、並びに重合停止剤としては4-メトキシフェノール等が挙げられる。反応条件は温度30乃至100℃、及び反応時間1乃至48時間から適宜選択される。
The above polymer dissolves an addition polymerizable monomer and a chain transfer agent added as necessary in an organic solvent, and then adds a polymerization initiator to conduct a polymerization reaction, and then adds a polymerization terminator to stop the polymerization reaction. Can be manufactured. The addition amount of the chain transfer agent is 10% or less with respect to the mass of the monomer, the addition amount of the polymerization initiator is 1 to 10% with respect to the mass of the monomer, and the addition amount of the polymerization terminator is 0. 0.01 to 0.2% by mass.
Examples of the organic solvent used include propylene glycol monomethyl ether, propylene glycol monopropyl ether, ethyl lactate, cyclohexanone, methyl ethyl ketone, and dimethylformamide. Examples of the chain transfer agent include dodecane thiol and dodecyl thiol. Examples of the agent include azobisisobutyronitrile and azobiscyclohexanecarbonitrile, and examples of the polymerization terminator include 4-methoxyphenol. The reaction conditions are appropriately selected from a temperature of 30 to 100 ° C. and a reaction time of 1 to 48 hours.
 本願発明のレジスト下層膜形成組成物は架橋剤を含むことができる。その架橋剤としては、メラミン系、置換尿素系、またはそれらのポリマー系等が挙げられる。好ましくは、少なくとも2個の架橋形成置換基を有する架橋剤であり、例えばメトキシメチル化グリコールウリル、ブトキシメチル化グリコールウリル、メトキシメチル化メラミン、ブトキシメチル化メラミン、メトキシメチル化ベンゾグアナミン、ブトキシメチル化ベンゾグアナミン、メトキシメチル化尿素、ブトキシメチル化尿素、メトキシメチル化チオ尿素、またはメトキシメチル化チオ尿素等の化合物である。また、これらの化合物の縮合体も使用することができる。 The resist underlayer film forming composition of the present invention can contain a crosslinking agent. Examples of the cross-linking agent include melamine-based, substituted urea-based, or polymer systems thereof. Preferably, a cross-linking agent having at least two cross-linking substituents, such as methoxymethylated glycoluril, butoxymethylated glycoluril, methoxymethylated melamine, butoxymethylated melamine, methoxymethylated benzoguanamine, butoxymethylated benzoguanamine , Methoxymethylated urea, butoxymethylated urea, methoxymethylated thiourea, or methoxymethylated thiourea. Moreover, the condensate of these compounds can also be used.
 また、上記架橋剤としては耐熱性の高い架橋剤を用いることが好ましい。耐熱性の高い架橋剤としては分子内に芳香族環(例えば、ベンゼン環、ナフタレン環)を有する架橋形成置換基を含有する化合物を用いることができる。例えば下記式(2)で表される化合物、又は下記式(3)で表される繰り返し単位構造を有するポリマー又はオリゴマーが挙げられる。 Moreover, it is preferable to use a crosslinking agent having high heat resistance as the crosslinking agent. As the crosslinking agent having high heat resistance, a compound containing a crosslinking forming substituent having an aromatic ring (for example, a benzene ring or a naphthalene ring) in the molecule can be used. Examples thereof include a compound represented by the following formula (2), or a polymer or oligomer having a repeating unit structure represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000006
 式(2)中、R7及びR8はそれぞれ水素原子、炭素原子数1乃至10のアルキル基、又は炭素原子数6乃至20のアリール基を表し、n7は1乃至4の整数であり、n8は1乃至(5-n7)の整数であり、n7+n8は2乃至5の整数である。
 式(3)中、R9は水素原子又は炭素原子数1乃至10のアルキル基を表し、R10は炭素原子数1乃至10のアルキル基を表し、n9は1乃至4の整数であり、n10は0乃至(4-n9)であり、n9+n10は1乃至4の整数である。オリゴマー及びポリマーの繰り返し単位構造の数mは2乃至100、好ましくは2乃至50の範囲である。
Figure JPOXMLDOC01-appb-C000006
In the formula (2), R 7 and R 8 each represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms, n7 is an integer of 1 to 4, Is an integer from 1 to (5-n7), and n7 + n8 is an integer from 2 to 5.
In formula (3), R 9 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, R 10 represents an alkyl group having 1 to 10 carbon atoms, n9 is an integer of 1 to 4, and n10 Is 0 to (4-n9), and n9 + n10 is an integer of 1 to 4. The number m of the repeating unit structure of the oligomer and polymer is in the range of 2 to 100, preferably 2 to 50.
 式(2)及び式(3)中、炭素原子数1乃至10のアルキル基及び炭素原子数6乃至20のアリール基としては、上記式(1)で定義したアルキル基及びアリール基を例示することができる。
 式(2)で表される化合物及び式(3)で表されるポリマー又はオリゴマーは以下に例示される。
In formula (2) and formula (3), examples of the alkyl group having 1 to 10 carbon atoms and the aryl group having 6 to 20 carbon atoms include the alkyl group and aryl group defined in formula (1) above. Can do.
The compound represented by the formula (2) and the polymer or oligomer represented by the formula (3) are exemplified below.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 上記化合物は旭有機材工業(株)、本州化学工業(株)の製品として入手することができる。例えば上記架橋剤の中で式(4-21)の化合物は旭有機材工業(株)、商品名TM-BIP-Aとして入手することができる。 The above compounds can be obtained as products of Asahi Organic Materials Industry Co., Ltd. and Honshu Chemical Industry Co., Ltd. For example, among the above-mentioned crosslinking agents, the compound of the formula (4-21) can be obtained as Asahi Organic Materials Co., Ltd., trade name TM-BIP-A.
 架橋剤の添加量は、使用する塗布溶剤、使用する下地基板、要求される溶液粘度、要求される膜形状などにより変動するが、全固形分に対して0.001乃至80質量%、好ましくは0.01乃至50質量%、さらに好ましくは0.05乃至40質量%である。架橋剤の添加量が0.01質量%未満となると十分な数の架橋点が生じず、レジスト層とのインターミキシングが生じる場合がある。また、架橋剤の添加量が80質量%を超えると十分な反射防止効果を得ることができない場合がある。 The amount of the crosslinking agent to be added varies depending on the coating solvent used, the base substrate used, the required solution viscosity, the required film shape, etc., but is 0.001 to 80% by mass with respect to the total solid content, preferably The amount is 0.01 to 50% by mass, more preferably 0.05 to 40% by mass. If the addition amount of the crosslinking agent is less than 0.01% by mass, a sufficient number of crosslinking points may not be generated, and intermixing with the resist layer may occur. Moreover, when the addition amount of a crosslinking agent exceeds 80 mass%, sufficient antireflection effect may not be obtained.
 これら架橋剤は自己縮合による架橋反応を起こすこともあるが、本発明の上記ポリマー中に架橋性置換基が存在する場合は、それらの架橋性置換基と架橋反応を起こすことができる。 These cross-linking agents may cause a cross-linking reaction by self-condensation, but when a cross-linkable substituent is present in the polymer of the present invention, it can cause a cross-linking reaction with those cross-linkable substituents.
 本発明では上記架橋反応を促進するための触媒としてとして、p-トルエンスルホン酸、トリフルオロメタンスルホン酸、ピリジニウムp-トルエンスルホン酸、サリチル酸、スルホサリチル酸、クエン酸、安息香酸、ヒドロキシ安息香酸、及びナフタレンカルボン酸等の酸性化合物、又は2,4,4,6-テトラブロモシクロヘキサジエノン、ベンゾイントシレート、2-ニトロベンジルトシレート、及びその他有機スルホン酸アルキルエステル等の熱酸発生剤を配合する事ができる。配合量は全固形分に対して、0.0001乃至20質量%、好ましくは0.0005乃至10質量%、好ましくは0.01乃至3質量%である。 In the present invention, as a catalyst for promoting the crosslinking reaction, p-toluenesulfonic acid, trifluoromethanesulfonic acid, pyridinium p-toluenesulfonic acid, salicylic acid, sulfosalicylic acid, citric acid, benzoic acid, hydroxybenzoic acid, and naphthalene are used. Mix acidic compounds such as carboxylic acids or thermal acid generators such as 2,4,4,6-tetrabromocyclohexadienone, benzoin tosylate, 2-nitrobenzyl tosylate, and other organic sulfonic acid alkyl esters. Can do. The blending amount is 0.0001 to 20% by mass, preferably 0.0005 to 10% by mass, preferably 0.01 to 3% by mass, based on the total solid content.
 本発明のレジスト下層膜形成組成物は、リソグラフィー工程で上層に被覆されるフォトレジストとの酸性度を一致させる為に、光酸発生剤を添加する事ができる。好ましい光酸発生剤としては、例えば、ビス(4-t-ブチルフェニル)ヨードニウムトリフルオロメタンスルホネート、及びトリフェニルスルホニウムトリフルオロメタンスルホネート等のオニウム塩系光酸発生剤、フェニル-ビス(トリクロロメチル)-s-トリアジン等のハロゲン含有化合物系光酸発生剤、並びにベンゾイントシレート、及びN-ヒドロキシスクシンイミドトリフルオロメタンスルホネート等のスルホン酸系光酸発生剤等が挙げられる。上記光酸発生剤の配合量は全固形分に対して、0.2乃至10重量%、好ましくは0.4乃至5重量%である。 In the resist underlayer film forming composition of the present invention, a photoacid generator can be added in order to match the acidity with the photoresist coated on the upper layer in the lithography process. Preferred photoacid generators include, for example, onium salt photoacid generators such as bis (4-t-butylphenyl) iodonium trifluoromethanesulfonate, triphenylsulfonium trifluoromethanesulfonate, and phenyl-bis (trichloromethyl) -s. -Halogen-containing compound photoacid generators such as triazine, and sulfonic acid photoacid generators such as benzoin tosylate and N-hydroxysuccinimide trifluoromethanesulfonate. The amount of the photoacid generator is 0.2 to 10% by weight, preferably 0.4 to 5% by weight, based on the total solid content.
 本発明のレジスト下層膜形成組成物には、上記以外に必要に応じて更に吸光剤、レオロジー調整剤、接着補助剤、界面活性剤などを添加することができる。 In addition to the above, a light absorber, a rheology modifier, an adhesion aid, a surfactant, and the like can be further added to the resist underlayer film forming composition of the present invention as necessary.
 吸光剤は、主にレジスト下層膜の吸光性をさらに向上させ、反射防止膜としての効果をさらに高める目的で添加される。吸光剤としては例えば、「工業用色素の技術と市場」(CMC出版)又は「染料便覧」(有機合成化学協会編)に記載の市販の吸光剤、例えば、C.I.Disperse Yellow 1,3,4,5,7,8,13,23,31,49,50,51,54,60,64,66,68,79,82,88,90,93,102,114及び124;C.I.Disperse Orange 1,5,13,25,29,30,31,44,57,72及び73;C.I.Disperse Red 1,5,7,13,17,19,43,50,54,58,65,72,73,88,117,137,143,199及び210;C.I.Disperse Violet 43;C.I.Disperse Blue 96;C.I.Fluorescent Brightening Agent 112,135及び163;C.I.Solvent Orange2及び45;C.I.Solvent Red 1,3,8,23,24,25,27及び49;C.I.Pigment Green 10;並びにC.I.Pigment Brown 2等を好適に用いることができる。上記吸光剤は通常、リソグラフィー用レジスト下層膜形成組成物の全固形分に対して10質量%以下、好ましくは5質量%以下の割合で配合される。 The light absorber is added mainly for the purpose of further improving the light absorbency of the resist underlayer film and further enhancing the effect as an antireflection film. Examples of the light absorber include commercially available light absorbers described in “Technical Dye Technology and Market” (published by CMC) or “Dye Handbook” (edited by the Society of Synthetic Organic Chemistry), for example, C.I. I. Disperse Yellow 1, 3, 4, 5, 7, 8, 13, 23, 31, 49, 50, 51, 54, 60, 64, 66, 68, 79, 82, 88, 90, 93, 102, 114 and 124; C.I. I. Disperse Orange 1, 5, 13, 25, 29, 30, 31, 44, 57, 72 and 73; C.I. I. Disperse Red 1, 5, 7, 13, 17, 19, 43, 50, 54, 58, 65, 72, 73, 88, 117, 137, 143, 199 and 210; I. Disperse Violet 43; C.I. I. Disperse Blue 96; C.I. I. Fluorescent Brightening Agent 112, 135 and 163; C.I. I. Solvent Orange 2 and 45; C.I. I. Solvent Red 1, 3, 8, 23, 24, 25, 27 and 49; I. Pigment Green 10; and C.I. I. Pigment Brown 2 etc. can be used suitably. The above light-absorbing agent is usually blended at a ratio of 10% by mass or less, preferably 5% by mass or less, based on the total solid content of the resist underlayer film forming composition for lithography.
 レオロジー調整剤は、主にレジスト下層膜形成組成物の流動性を向上させ、特にベーキング工程において、レジスト下層膜の膜厚均一性の向上やホール内部へのレジスト下層膜形成組成物の充填性を高める目的で添加される。具体例としては、ジメチルフタレート、ジエチルフタレート、ジイソブチルフタレート、ジヘキシルフタレート、及びブチルイソデシルフタレート等のフタル酸誘導体、ジノルマルブチルアジペート、ジイソブチルアジペート、ジイソオクチルアジペート、及びオクチルデシルアジペート等のアジピン酸誘導体、ジノルマルブチルマレート、ジエチルマレート、及びジノニルマレート等のマレイン酸誘導体、メチルオレート、ブチルオレート、及びテトラヒドロフルフリルオレート等のオレイン酸誘導体、並びにノルマルブチルステアレート及びグリセリルステアレート等のステアリン酸誘導体を挙げることができる。これらのレオロジー調整剤は、リソグラフィー用レジスト下層膜形成組成物の全固形分に対して通常30質量%未満の割合で配合される。 The rheology modifier mainly improves the fluidity of the resist underlayer film forming composition, and improves the film thickness uniformity of the resist underlayer film and the fillability of the resist underlayer film forming composition inside the hole, particularly in the baking process. It is added for the purpose of enhancing. Specific examples include phthalic acid derivatives such as dimethyl phthalate, diethyl phthalate, diisobutyl phthalate, dihexyl phthalate, and butyl isodecyl phthalate; adipic acid derivatives such as dinormal butyl adipate, diisobutyl adipate, diisooctyl adipate, and octyl decyl adipate , Maleic acid derivatives such as dinormal butyl maleate, diethyl maleate, and dinonyl maleate, oleic acid derivatives such as methyl oleate, butyl oleate, and tetrahydrofurfuryl oleate, and stearic acid derivatives such as normal butyl stearate and glyceryl stearate Can be mentioned. These rheology modifiers are usually blended at a ratio of less than 30% by mass with respect to the total solid content of the resist underlayer film forming composition for lithography.
 接着補助剤は、主に基板あるいはレジストとレジスト下層膜との密着性を向上させ、特に現像工程の際にレジストが剥離しないようにするための目的で添加される。具体例としては、トリメチルクロロシラン、ジメチルビニルクロロシラン、メチルジフエニルクロロシラン、及びクロロメチルジメチルクロロシラン等のクロロシラン類、トリメチルメトキシシラン、ジメチルジエトキシシラン、メチルジメトキシシラン、ジメチルビニルエトキシシラン、ジフエニルジメトキシシラン、及びフエニルトリエトキシシラン等のアルコキシシラン類、ヘキサメチルジシラザン、N,N’ービス(トリメチルシリル)ウレア、ジメチルトリメチルシリルアミン、及びトリメチルシリルイミダゾール等のシラザン類、ビニルトリクロロシラン、γークロロプロピルトリメトキシシラン、γーアミノプロピルトリエトキシシラン、及びγーグリシドキシプロピルトリメトキシシラン等のシラン類、ベンゾトリアゾール、ベンズイミダゾール、インダゾール、イミダゾール、2-メルカプトベンズイミダゾール、2-メルカプトベンゾチアゾール、2-メルカプトベンゾオキサゾール、ウラゾール、チオウラシル、及びメルカプトイミダゾール、メルカプトピリミジン等の複素環式化合物、並びに1,1ージメチルウレア、及び1,3-ジメチルウレア等の尿素、またはチオ尿素化合物を挙げることができる。これらの接着補助剤は、リソグラフィー用レジスト下層膜形成組成物の全固形分に対して通常5質量%未満、好ましくは2質量%未満の割合で配合される。 The adhesion auxiliary agent is added mainly for the purpose of improving the adhesion between the substrate or resist and the resist underlayer film, and for preventing the resist from peeling particularly during the development process. Specific examples include chlorosilanes such as trimethylchlorosilane, dimethylvinylchlorosilane, methyldiphenylchlorosilane, and chloromethyldimethylchlorosilane, trimethylmethoxysilane, dimethyldiethoxysilane, methyldimethoxysilane, dimethylvinylethoxysilane, diphenyldimethoxysilane, And alkoxysilanes such as phenyltriethoxysilane, hexamethyldisilazane, N, N′-bis (trimethylsilyl) urea, silazanes such as dimethyltrimethylsilylamine, and trimethylsilylimidazole, vinyltrichlorosilane, γ-chloropropyltrimethoxysilane , Silanes such as γ-aminopropyltriethoxysilane and γ-glycidoxypropyltrimethoxysilane, benzotriazole, Imidazole, indazole, imidazole, 2-mercaptobenzimidazole, 2-mercaptobenzothiazole, 2-mercaptobenzoxazole, urazole, thiouracil, and heterocyclic compounds such as mercaptoimidazole, mercaptopyrimidine, and 1,1-dimethylurea and 1 And urea such as 1,3-dimethylurea, and thiourea compounds. These adhesion assistants are usually blended in a proportion of less than 5% by mass, preferably less than 2% by mass, based on the total solid content of the resist underlayer film forming composition for lithography.
 本発明のリソグラフィー用レジスト下層膜には、ピンホールやストレーション等の発生がなく、表面むらに対する塗布性をさらに向上させるために、界面活性剤を配合することができる。界面活性剤としては、例えばポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンセチルエーテル、及びポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル類、ポリオキシエチレンオクチルフエノールエーテル、及びポリオキシエチレンノニルフエノールエーテル等のポリオキシエチレンアルキルアリルエーテル類、ポリオキシエチレン・ポリオキシプロピレンブロツクコポリマー類、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンモノオレエート、ソルビタントリオレエート、及びソルビタントリステアレート等のソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリオレエート、及びポリオキシエチレンソルビタントリステアレート等のポリオキシエチレンソルビタン脂肪酸エステル類等のノニオン系界面活性剤、並びに、エフトツプEF301、EF303、EF352((株)トーケムプロダクツ製、商品名)、メガファックF171、F173、R-30(大日本インキ(株)製、商品名)、フロラードFC430、FC431(住友スリーエム(株)製、商品名)、アサヒガードAG710、及びサーフロンSー382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子(株)製、商品名)等のフッ素系界面活性剤、オルガノシロキサンポリマーKP341(信越化学工業(株)製)等を挙げることができる。これらの界面活性剤の配合量は、本発明のリソグラフィー用レジスト下層膜形成組成物の全固形分に対して通常2.0質量%以下、好ましくは1.0質量%以下である。これらの界面活性剤は単独で添加してもよいし、また2種以上の組合せで添加することもできる。 In the resist underlayer film for lithography of the present invention, there is no occurrence of pinholes or installations, and a surfactant can be blended in order to further improve the coating property against surface unevenness. Examples of the surfactant include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, and polyoxyethylene alkyl ethers such as polyoxyethylene oleyl ether, polyoxyethylene octyl phenol ether, and polyoxyethylene Polyoxyethylene alkyl allyl ethers such as ethylene nonylphenol ether, polyoxyethylene / polyoxypropylene block copolymers, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan trioleate, and Sorbitan fatty acid esters such as sorbitan tristearate, polyoxyethylene sorbitan monolaurate, polyoxy Nonionic surfactants such as polyoxyethylene sorbitan fatty acid esters such as tylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan trioleate, and polyoxyethylene sorbitan tristearate, and EFTOP EF301 , EF303, EF352 (trade name, manufactured by Tochem Products Co., Ltd.), MegaFuck F171, F173, R-30 (trade name, manufactured by Dainippon Ink Co., Ltd.), Fluorard FC430, FC431 (manufactured by Sumitomo 3M Co., Ltd.) ), Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (trade name, manufactured by Asahi Glass Co., Ltd.), etc., organosiloxy Nporima KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.), and the like. The compounding amount of these surfactants is usually 2.0% by mass or less, preferably 1.0% by mass or less, based on the total solid content of the resist underlayer film forming composition for lithography of the present invention. These surfactants may be added alone or in combination of two or more.
 本発明で、上記のポリマー及び架橋剤成分、架橋形成触媒等を溶解させる溶剤としては、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、トルエン、キシレン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2ーヒドロキシプロピオン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、エトシキ酢酸エチル、ヒドロキシ酢酸エチル、2-ヒドロキシ-3-メチルブタン酸メチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、ピルビン酸メチル、ピルビン酸エチル、酢酸エチル、酢酸ブチル、乳酸エチル、乳酸ブチル等を用いることができる。これらの有機溶剤は単独で、または2種以上を組合せて使用することができる。 In the present invention, the solvent for dissolving the polymer, the crosslinking agent component, the crosslinking formation catalyst and the like include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether. , Propylene glycol, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether, propylene glycol monoethyl ether acetate, propylene glycol propyl ether acetate, toluene, xylene, methyl ethyl ketone, cyclopentanone, cyclohexanone, 2-hydroxypropion Ethyl acetate, 2-hydroxy -Ethyl 2-methylpropionate, ethyl ethoxyacetate, ethyl hydroxyacetate, methyl 2-hydroxy-3-methylbutanoate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, ethyl 3-ethoxypropionate, 3-ethoxy Methyl propionate, methyl pyruvate, ethyl pyruvate, ethyl acetate, butyl acetate, ethyl lactate, butyl lactate and the like can be used. These organic solvents can be used alone or in combination of two or more.
 さらに、溶剤として高沸点溶剤を混合して使用することができる。例えば、プロピレングリコールモノブチルエーテル、プロピレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル、乳酸ブチル、及びシクロヘキサノン等が挙げられる。これら高沸点溶剤を使用することは、レベリング性の向上に対して好ましい。 Furthermore, a high boiling point solvent can be mixed and used as a solvent. Examples thereof include propylene glycol monobutyl ether, propylene glycol monobutyl ether acetate, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, ethyl lactate, butyl lactate, and cyclohexanone. Use of these high-boiling solvents is preferable for improving the leveling property.
 本発明に用いられるレジストとはフォトレジスト又は電子線レジストである。 The resist used in the present invention is a photoresist or an electron beam resist.
 本発明におけるリソグラフィー用レジスト下層膜の上部に形成されるフォトレジストとしてはネガ型、ポジ型いずれも使用でき、例えばノボラック樹脂と1,2-ナフトキノンジアジドスルホン酸エステルとからなるポジ型フォトレジスト、酸により分解してアルカリ溶解速度を上昇させる基を有するバインダーと光酸発生剤からなる化学増幅型フォトレジスト、アルカリ可溶性バインダーと酸により分解してフォトレジストのアルカリ溶解速度を上昇させる低分子化合物と光酸発生剤とからなる化学増幅型フォトレジスト、酸により分解してアルカリ溶解速度を上昇させる基を有するバインダーと酸により分解してフォトレジストのアルカリ溶解速度を上昇させる低分子化合物と光酸発生剤とからなる化学増幅型フォトレジスト、及び骨格にSi原子を有するフォトレジスト等が挙げられる。例えば、ロームアンドハーツ社製、商品名APEX-Eが挙げられる。 As the photoresist formed on the upper part of the resist underlayer film for lithography in the present invention, either negative type or positive type can be used. For example, a positive type photoresist composed of novolak resin and 1,2-naphthoquinonediazide sulfonic acid ester, acid A chemically amplified photoresist comprising a binder having a group that increases the alkali dissolution rate by decomposition by a photoacid generator, a low molecular weight compound that increases the alkali dissolution rate of the photoresist by decomposition with an alkali-soluble binder and acid, and light Chemically amplified photoresist comprising an acid generator, a binder having a group that is decomposed by an acid to increase the alkali dissolution rate, and a low molecular weight compound and a photoacid generator that are decomposed by an acid to increase the alkali dissolution rate of the photoresist Chemically amplified photoresist and bone Photoresist or the like having a Si atom. For example, trade name APEX-E manufactured by Rohm and Hearts may be mentioned.
 また本発明におけるリソグラフィー用レジスト下層膜の上部に形成される電子線レジストを形成する組成物としては、例えば主鎖にSi-Si結合を含み末端に芳香族環を含んだ樹脂と電子線の照射により酸を発生する酸発生剤から成る組成物、又は水酸基がN-カルボキシアミンを含む有機基で置換されたポリ(p-ヒドロキシスチレン)と電子線の照射により酸を発生する酸発生剤から成る組成物等が挙げられる。 In addition, the composition for forming an electron beam resist formed on the upper layer of the resist underlayer film for lithography in the present invention includes, for example, irradiation with a resin containing a Si—Si bond in the main chain and an aromatic ring at the terminal and an electron beam. A composition comprising an acid generator that generates an acid, or a poly (p-hydroxystyrene) having a hydroxyl group substituted with an organic group containing N-carboxyamine and an acid generator that generates an acid upon irradiation with an electron beam Examples thereof include compositions.
 また、上記電子線レジストでは、電子線照射よって酸発生剤から生じた酸によりポリマー側鎖のN-カルボキシアミンで置換された部位が水酸基となりアルカリ可溶性を示す。そのため、電子線照射された部位がアルカリ現像液に溶解し、レジストパターンを形成するものである。この電子線の照射により酸を発生する酸発生剤としては1,1-ビス[p-クロロフェニル]-2,2,2-トリクロロエタン、1,1-ビス[p-メトキシフェニル]-2,2,2-トリクロロエタン、1,1-ビス[p-クロロフェニル]-2,2-ジクロロエタン、及び2-クロロ-6-(トリクロロメチル)ピリジン等のハロゲン化有機化合物、トリフェニルスルフォニウム塩、及びジフェニルヨウドニウム塩等のオニウム塩、並びにニトロベンジルトシレート、及びジニトロベンジルトシレート等のスルホン酸エステル等が挙げられる。 Further, in the electron beam resist, the site substituted with N-carboxyamine of the polymer side chain by the acid generated from the acid generator by electron beam irradiation becomes a hydroxyl group and exhibits alkali solubility. Therefore, the portion irradiated with the electron beam is dissolved in the alkaline developer to form a resist pattern. Examples of acid generators that generate an acid upon irradiation with this electron beam include 1,1-bis [p-chlorophenyl] -2,2,2-trichloroethane, 1,1-bis [p-methoxyphenyl] -2,2, Halogenated organic compounds such as 2-trichloroethane, 1,1-bis [p-chlorophenyl] -2,2-dichloroethane, and 2-chloro-6- (trichloromethyl) pyridine, triphenylsulfonium salts, and diphenyliodonium Examples thereof include onium salts such as salts, and sulfonic acid esters such as nitrobenzyl tosylate and dinitrobenzyl tosylate.
 また、本発明に使用される現像液としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、及びメタケイ酸ナトリウム、アンモニア水等の無機アルカリ類、エチルアミン、及びn-プロピルアミン等の第一アミン類、ジエチルアミン、及びジ-n-ブチルアミン等の第二アミン類、トリエチルアミン、及びメチルジエチルアミン等の第三アミン類、ジメチルエタノールアミン、及びトリエタノールアミン等のアルコールアミン類、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、及びコリン等の第4級アンモニウム塩、並びにピロール、及びピペリジン等の環状アミン類、等のアルカリ類の水溶液を使用することができる。さらに、上記アルカリ類の水溶液にイソプロピルアルコール等のアルコール類、ノニオン系等の界面活性剤を適当量添加して使用することもできる。これらの中で好ましい現像液は第四級アンモニウム塩、さらに好ましくはテトラメチルアンモニウムヒドロキシド及びコリンである。 Examples of the developer used in the present invention include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, inorganic alkalis such as aqueous ammonia, ethylamine, and n-propylamine. Primary amines, secondary amines such as diethylamine and di-n-butylamine, tertiary amines such as triethylamine and methyldiethylamine, alcohol amines such as dimethylethanolamine and triethanolamine, tetramethylammonium hydroxy An aqueous solution of an alkali such as quaternary ammonium salts such as copper, tetraethylammonium hydroxide and choline, and cyclic amines such as pyrrole and piperidine can be used. Furthermore, an appropriate amount of an alcohol such as isopropyl alcohol or a nonionic surfactant may be added to the alkaline aqueous solution. Of these, preferred developers are quaternary ammonium salts, more preferably tetramethylammonium hydroxide and choline.
 次に本発明のレジストパターン形成法について説明する。精密集積回路素子の製造に使用される基板(例えばシリコン/二酸化シリコン被覆、ガラス基板、ITO基板などの透明基板)上にスピナー、コーター等の適当な塗布方法によりレジスト下層膜形成組成物を塗布後、ベークして硬化させレジスト下層膜を作成する。ここで、レジスト下層膜の膜厚としては0.01乃至3.0μmが好ましい。また塗布後ベーキングする条件としては80乃至350℃で0.5乃至120分間である。その後レジスト下層膜上に直接、または必要に応じて1層乃至数層の塗膜材料を用いてレジスト下層膜上に成膜した後、レジスト組成物を塗布し硬化させ、レジスト膜を形成する。このレジストに対して所定のマスクを通して光又は電子線の照射を行い、現像、リンス、乾燥することにより良好なレジストパターンを得ることができる。必要に応じて光又は電子線の照射後加熱(PEB:Post Exposure Bake)を行うこともできる。そして、パターンが形成されたレジストを用いて、レジスト下層膜をドライエッチングにより除去してパターンを形成し、パターンを形成したレジスト下層膜を用いて、所望のパターンを基板上に形成することができる。 Next, the resist pattern forming method of the present invention will be described. After applying a resist underlayer film forming composition on a substrate (eg, a transparent substrate such as a silicon / silicon dioxide coating, a glass substrate, an ITO substrate) used for manufacturing a precision integrated circuit element by an appropriate coating method such as a spinner or a coater. Bake and cure to create a resist underlayer film. Here, the thickness of the resist underlayer film is preferably 0.01 to 3.0 μm. The conditions for baking after coating are 80 to 350 ° C. and 0.5 to 120 minutes. Then, after forming a film on the resist underlayer film directly on the resist underlayer film or using one to several layers as required, a resist composition is applied and cured to form a resist film. A good resist pattern can be obtained by irradiating the resist with light or an electron beam through a predetermined mask, developing, rinsing and drying. If necessary, post-irradiation heating (PEB: Post Exposure Bake) may be performed. Then, using the resist in which the pattern is formed, the resist underlayer film is removed by dry etching to form a pattern, and using the resist underlayer film in which the pattern is formed, a desired pattern can be formed on the substrate. .
 上記フォトレジストで使用される露光光は、近紫外線、遠紫外線、又は極外紫外線(例えば、EUV)等の化学線であり、例えば248nm(KrFレーザー光)、193nm(ArFレーザー光)、又は157nm(F2レーザー光)等の波長の光が用いられる。光照射には、光酸発生剤から酸を発生させることができる方法であれば、特に制限なく使用することができ、露光量としては1乃至2000mJ/cm2、または10乃至1500mJ/cm2、または50乃至1000mJ/cm2である。
 また電子線レジストへの電子線照射には、例えば電子線照射装置を用いることができる。
The exposure light used in the photoresist is actinic radiation such as near ultraviolet light, far ultraviolet light, or extreme ultraviolet light (for example, EUV), for example, 248 nm (KrF laser light), 193 nm (ArF laser light), or 157 nm. Light having a wavelength such as (F 2 laser light) is used. The light irradiation can be used without particular limitation as long as it is a method capable of generating an acid from a photoacid generator, and the exposure amount is 1 to 2000 mJ / cm 2 , or 10 to 1500 mJ / cm 2 , Or 50 to 1000 mJ / cm 2 .
Further, for example, an electron beam irradiation apparatus can be used for electron beam irradiation to the electron beam resist.
 本発明では、半導体基板にレジスト下層膜形成組成物によりレジスト下層膜を形成する工程、該レジスト下層膜上にレジスト膜を形成する工程、レジスト膜に光又は電子線照射と現像によりレジストパターンを形成する工程、レジストパターンにより該レジスト下層膜をエッチングする工程、及びパターン化されたレジスト下層膜により半導体基板を加工する工程を経て半導体装置を製造することができる。 In the present invention, a resist underlayer film forming composition is formed on a semiconductor substrate, a resist underlayer film is formed on the resist underlayer film, and a resist pattern is formed on the resist film by light or electron beam irradiation and development. A semiconductor device can be manufactured through a step of etching, a step of etching the resist underlayer film with a resist pattern, and a step of processing a semiconductor substrate with the patterned resist underlayer film.
 今後、レジストパターンの微細化が進行すると、解像度の問題及びレジストパターンが現像後に倒れるという問題が生じるため、レジストの薄膜化が望まれてくる。そのため、基板加工に充分なレジストパターン膜厚を得ることが難しく、レジストだけではなく、レジストと加工する半導体基板との間に作成されるレジスト下層膜にも基板加工時のマスクとしての機能を持たせる必要がでてきた。そのため、新たに、レジスト下層膜にパターンを形成するプロセスが必要となる。このようなプロセス用のレジスト下層膜としては、従来の高エッチレート性レジスト下層膜とは異なり、レジストに近いドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜、レジストに比べて小さいドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜、又は半導体基板に比べて小さいドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜が要求される。また、このようなレジスト下層膜には反射防止能を付与することも可能であり、従来の反射防止膜の機能を併せ持つことができる。 In the future, as the miniaturization of the resist pattern progresses, there arises a problem of resolution and a problem that the resist pattern collapses after development. Therefore, it is desired to reduce the thickness of the resist. For this reason, it is difficult to obtain a resist pattern film thickness sufficient for substrate processing, and not only the resist but also the resist underlayer film formed between the resist and the semiconductor substrate to be processed has a function as a mask during substrate processing. It was necessary to make it. Therefore, a new process for forming a pattern on the resist underlayer film is required. As a resist underlayer film for such a process, unlike a conventional high etch rate resist underlayer film, a resist underlayer film for lithography having a selectivity of a dry etching rate close to that of a resist, a dry etching rate lower than that of a resist. Therefore, a lithography resist underlayer film having a selection ratio of ## EQU2 ## or a lithography resist underlayer film having a selectivity of a dry etching rate smaller than that of a semiconductor substrate is required. Further, such a resist underlayer film can be provided with an antireflection ability, and can also have a function of a conventional antireflection film.
 本発明では基板上に本発明のレジスト下層膜を成膜した後、レジスト下層膜上に直接、または必要に応じてレジスト下層膜上に1層乃至数層の塗膜材料を塗布し成膜した後、レジスト組成物を塗布しレジストを形成することができる。これによりレジストに微細なパターンを形成する際に、パターン倒れを防ぐ為にレジストを薄く被覆した場合でも、適切なエッチングガスを選択することにより基板の加工が可能になる。 In the present invention, after forming the resist underlayer film of the present invention on a substrate, one or several coating film materials are applied directly on the resist underlayer film or on the resist underlayer film as necessary. Thereafter, a resist composition can be applied to form a resist. Thus, when a fine pattern is formed on the resist, the substrate can be processed by selecting an appropriate etching gas even when the resist is thinly coated to prevent pattern collapse.
 即ち、半導体基板にレジスト下層膜形成組成物からなるレジスト下層膜を形成する工程、その上にケイ素成分等を含有する塗膜材料によるハードマスクを形成する工程、更にその上にレジスト膜を形成する工程、該レジスト膜に光又は電子線の照射と現像によりレジストパターンを形成する工程、該レジストパターンにより該ハードマスクをエッチングする工程、パターン化された該ハードマスクにより該レジスト下層膜をエッチングする工程、及びパターン化された該レジスト下層膜により該半導体基板を加工する工程を経て半導体装置を製造することができる。 That is, a step of forming a resist underlayer film composed of a resist underlayer film forming composition on a semiconductor substrate, a step of forming a hard mask with a coating material containing a silicon component or the like thereon, and a resist film formed thereon A step, a step of forming a resist pattern by light and electron beam irradiation and development on the resist film, a step of etching the hard mask with the resist pattern, a step of etching the resist underlayer film with the patterned hard mask A semiconductor device can be manufactured through a step of processing the semiconductor substrate with the patterned resist underlayer film.
 本発明のリソグラフィー用レジスト下層膜は、十分な吸光性能を有している光吸収部位が骨格に取り込まれているため、反射防止膜としての高い効果を有する。また、従来の光吸収剤が添加されている反射防止膜とは異なり、加熱乾燥時にフォトレジスト中への拡散物がない点でも有利である。 The resist underlayer film for lithography of the present invention has a high effect as an antireflection film because a light absorption site having sufficient light absorption performance is incorporated into the skeleton. Further, unlike an antireflection film to which a conventional light absorber is added, there is also an advantage that there is no diffused material in the photoresist during heating and drying.
 本発明のリソグラフィー用レジスト下層膜は、熱安定性が高く、焼成時の分解物による上層膜への汚染が防ぐことができ、また、焼成工程の温度マージンに余裕を持たせることもできるものである。 The resist underlayer film for lithography of the present invention has high thermal stability, can prevent contamination of the upper layer film by decomposition products during baking, and can provide a margin for the temperature margin of the baking process. is there.
 さらに、本発明のリソグラフィー用レジスト下層膜は、プロセス条件によっては、光の反射を防止する機能と、更には基板とフォトレジストとの相互作用の防止或いはフォトレジストに用いられる材料又はフォトレジストへの露光時に生成する物質の基板への悪作用を防ぐ機能とを有する膜としての使用が可能である。 Furthermore, the resist underlayer film for lithography according to the present invention has a function of preventing reflection of light depending on process conditions, and further prevents the interaction between the substrate and the photoresist or applies to the material used for the photoresist or the photoresist. It can be used as a film having a function of preventing an adverse effect on a substrate of a substance generated during exposure.
 合成例1
 攪拌機、冷却器、窒素ガス導入管を取り付けた反応器に1,4-ビス-メトキシメチルベンゼン16.6g(0.1mol)及び6,6-(9-フルオレニリデン)-ジ(2-ナフトール)45.1g(0.1mol)を仕込み、パラトルエンスルホン酸0.35gを加えた後、160℃で5時間反応させた。反応中に生成するメタノールは系外に除去した。反応後、水で洗浄した後に加熱減圧下で乾燥し、水分や未反応モノマーを除去した。残留物をプロピレングリコールモノメチルエーテルアセテートで溶解し、メタノールへ滴下して再沈殿を行い、下記式(5-1)で表されるフルオレン樹脂を得た。重量平均分子量は10000であった。
Synthesis example 1
Into a reactor equipped with a stirrer, a cooler, and a nitrogen gas introduction tube, 16.6 g (0.1 mol) of 1,4-bis-methoxymethylbenzene and 6,6- (9-fluorenylidene) -di (2-naphthol) 45 0.1 g (0.1 mol) was added and 0.35 g of paratoluenesulfonic acid was added, followed by reaction at 160 ° C. for 5 hours. Methanol produced during the reaction was removed out of the system. After the reaction, it was washed with water and then dried under heating and reduced pressure to remove moisture and unreacted monomers. The residue was dissolved in propylene glycol monomethyl ether acetate and dropped into methanol for reprecipitation to obtain a fluorene resin represented by the following formula (5-1). The weight average molecular weight was 10,000.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 合成例2
 攪拌機、冷却器、窒素ガス導入管を取り付けた反応器に、溶剤としてメチルイソブチルケトン16g、9,10-ビス(クロロメチル)アントラセン27.5g(0.1mol)及び6,6-(9-フルオレニリデン)-ジ(2-ナフトール)45.1g(0.1mol)を仕込み、35%塩酸4.5gを加えた後、攪拌しながら還流下で20時間反応させた。反応後、水で洗浄した後に加熱減圧下で乾燥し、水分や未反応モノマーを除去した。残留物をプロピレングリコールモノメチルエーテルアセテートで溶解し、メタノールへ滴下して再沈殿を行い、下記式(5-2)で表されるフルオレン樹脂を得た。重量平均分子量は4000であった。
Synthesis example 2
A reactor equipped with a stirrer, a cooler, and a nitrogen gas inlet tube was charged with 16 g of methyl isobutyl ketone, 27.5 g (0.1 mol) of 9,10-bis (chloromethyl) anthracene and 6,6- (9-fluorenylidene) as solvents. ) -Di (2-naphthol) 45.1 g (0.1 mol) was added, and 4.5 g of 35% hydrochloric acid was added, followed by reaction under reflux for 20 hours with stirring. After the reaction, it was washed with water and then dried under heating and reduced pressure to remove moisture and unreacted monomers. The residue was dissolved in propylene glycol monomethyl ether acetate, dropped into methanol and reprecipitated to obtain a fluorene resin represented by the following formula (5-2). The weight average molecular weight was 4000.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
合成例3
 反応器に4,4’-(9H-フルオレン-9-イリデン)ビスフェノール180g、37%ホルマリン水溶液75g、及びシュウ酸5gを加え、撹拌しながら100℃で24時間撹拌させた。反応後メチルイソブチルケトン500mlに溶解し、十分な水洗により触媒を除去し、減圧乾燥によって溶媒、水分、未反応モノマーを除き、下記式(5-3)で表されるフルオレン樹脂を得た。重量平均分子量は、11000であった。
Synthesis example 3
To the reactor, 180 g of 4,4 ′-(9H-fluorene-9-ylidene) bisphenol, 75 g of 37% formalin aqueous solution, and 5 g of oxalic acid were added and stirred at 100 ° C. for 24 hours with stirring. After the reaction, the product was dissolved in 500 ml of methyl isobutyl ketone, the catalyst was removed by washing with sufficient water, and the solvent, water and unreacted monomers were removed by drying under reduced pressure to obtain a fluorene resin represented by the following formula (5-3). The weight average molecular weight was 11000.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 実施例1
 合成例1で得た式(5-1)で表されるフルオレン樹脂5gに、界面活性剤としてメガファックR-30(大日本インキ化学(株)製、商品名)0.015gを混合し、プロピレングリコールモノメチルエーテルアセテート58gに溶解させ溶液とした。その後、孔径0.10μmのポリエチレン製ミクロフィルターを用いて濾過し、更に、孔径0.05μmのポリエチレン製ミクロフィルターを用いて濾過して、多層膜によるリソグラフィープロセスに用いるレジスト下層膜形成組成物の溶液を調製した。
Example 1
To 5 g of the fluorene resin represented by the formula (5-1) obtained in Synthesis Example 1 was mixed 0.015 g of Megafac R-30 (trade name, manufactured by Dainippon Ink & Chemicals, Inc.) as a surfactant. A solution was prepared by dissolving in 58 g of propylene glycol monomethyl ether acetate. Thereafter, the solution is filtered using a polyethylene microfilter having a pore size of 0.10 μm, and further filtered using a polyethylene microfilter having a pore size of 0.05 μm, so that the resist underlayer film forming composition solution used in the lithography process using a multilayer film is used. Was prepared.
 実施例2
 合成例1で得た式(5-1)で表されるフルオレン樹脂5gに、架橋剤として式(4-21)で表される化合物(旭有機材工業(株)製、商品名:TM-BIP-A)0.5g、触媒としてピリジニウムパラトルエンスルホネート0.005g、及び界面活性剤としてメガファックR-30(大日本インキ化学(株)製、商品名)0.015gを混合し、プロピレングリコールモノメチルエーテルアセテート58gに溶解させ溶液とした。その後、孔径0.10μmのポリエチレン製ミクロフィルターを用いて濾過し、更に、孔径0.05μmのポリエチレン製ミクロフィルターを用いて濾過して、多層膜によるリソグラフィープロセスに用いるレジスト下層膜形成組成物の溶液を調製した。
Example 2
To 5 g of the fluorene resin represented by the formula (5-1) obtained in Synthesis Example 1, a compound represented by the formula (4-21) as a crosslinking agent (manufactured by Asahi Organic Materials Co., Ltd., trade name: TM- BIP-A) 0.5 g, pyridinium p-toluenesulfonate 0.005 g as a catalyst, and MegaFac R-30 (trade name, manufactured by Dainippon Ink Chemical Co., Ltd.) 0.015 g as a surfactant are mixed with propylene glycol. A solution was prepared by dissolving in 58 g of monomethyl ether acetate. Thereafter, the solution is filtered using a polyethylene microfilter having a pore size of 0.10 μm, and further filtered using a polyethylene microfilter having a pore size of 0.05 μm, so that the resist underlayer film forming composition solution used in the lithography process using a multilayer film is used. Was prepared.
 実施例3
 合成例1で得た式(5-1)で表されるフルオレン樹脂5gに、架橋剤としてテトラメトキシメチルグリコールウリル(三井サイテック(株)製、商品名パウダーリンク1174)0.5g、触媒としてピリジニウムパラトルエンスルホネート0.005g、及び界面活性剤としてメガファックR-30(大日本インキ化学(株)製、商品名)0.015gを混合し、プロピレングリコールモノメチルエーテルアセテート58gに溶解させ溶液とした。その後、孔径0.10μmのポリエチレン製ミクロフィルターを用いて濾過し、更に、孔径0.05μmのポリエチレン製ミクロフィルターを用いて濾過して、多層膜によるリソグラフィープロセスに用いるレジスト下層膜形成組成物の溶液を調製した。
Example 3
To 5 g of the fluorene resin represented by the formula (5-1) obtained in Synthesis Example 1, 0.5 g of tetramethoxymethyl glycoluril (trade name Powder Link 1174, manufactured by Mitsui Cytec Co., Ltd.) as a crosslinking agent and pyridinium as a catalyst 0.005 g of paratoluene sulfonate and 0.015 g of Megafac R-30 (trade name, manufactured by Dainippon Ink Chemical Co., Ltd.) as a surfactant were mixed and dissolved in 58 g of propylene glycol monomethyl ether acetate to obtain a solution. Thereafter, the solution is filtered using a polyethylene microfilter having a pore size of 0.10 μm, and further filtered using a polyethylene microfilter having a pore size of 0.05 μm, so that the resist underlayer film forming composition solution used in the lithography process using a multilayer film is used. Was prepared.
 実施例4
 合成例2で得た式(5-2)で表されるフルオレン樹脂5gに、界面活性剤としてメガファックR-30(大日本インキ化学(株)製、商品名)0.015gを混合し、プロピレングリコールモノメチルエーテルアセテート58gに溶解させ溶液とした。その後、孔径0.10μmのポリエチレン製ミクロフィルターを用いて濾過し、更に、孔径0.05μmのポリエチレン製ミクロフィルターを用いて濾過して、多層膜によるリソグラフィープロセスに用いるレジスト下層膜形成組成物の溶液を調製した。
Example 4
To 5 g of the fluorene resin represented by the formula (5-2) obtained in Synthesis Example 2, 0.015 g of Megafac R-30 (trade name, manufactured by Dainippon Ink Chemical Co., Ltd.) as a surfactant was mixed. A solution was prepared by dissolving in 58 g of propylene glycol monomethyl ether acetate. Thereafter, the solution is filtered using a polyethylene microfilter having a pore size of 0.10 μm, and further filtered using a polyethylene microfilter having a pore size of 0.05 μm, so that the resist underlayer film forming composition solution used in the lithography process using a multilayer film is used. Was prepared.
 比較例1
 下記式(5-4)で表されるフェノールノボラック樹脂(重量平均分子量15000)1g、下記式(5-5)で表されるビスフェノールフルオレンジグリシジルエーテル1g、トリフェニルホスフィン0.06gの混合物に、シクロヘキサノン39.14gを加えて溶解させ溶液とした。その後、孔径0.10μmのポリエチレン製ミクロフィルターを用いて濾過し、更に、孔径0.05μmのポリエチレン製ミクロフィルターを用いて濾過してリソグラフィープロセスに用いるレジスト下層膜形成組成物の溶液を調製した。
Comparative Example 1
To a mixture of 1 g of phenol novolak resin (weight average molecular weight 15000) represented by the following formula (5-4), 1 g of bisphenol fluorenediglycidyl ether represented by the following formula (5-5), and 0.06 g of triphenylphosphine, 39.14 g of cyclohexanone was added and dissolved to obtain a solution. Thereafter, the solution was filtered using a polyethylene microfilter having a pore size of 0.10 μm, and further filtered using a polyethylene microfilter having a pore size of 0.05 μm to prepare a resist underlayer film forming composition solution used for the lithography process.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 比較例2
 合成例3で得た式(5-3)で表されるフルオレン樹脂5gに、界面活性剤としてメガファックR-30(大日本インキ化学(株)製、商品名)0.015gを混合し、プロピレングリコールモノメチルエーテルアセテート58gに溶解させ溶液とした。その後、孔径0.10μmのポリエチレン製ミクロフィルターを用いて濾過し、更に、孔径0.05μmのポリエチレン製ミクロフィルターを用いて濾過して、多層膜によるリソグラフィープロセスに用いるレジスト下層膜形成組成物の溶液を調製した。
Comparative Example 2
To 5 g of the fluorene resin represented by the formula (5-3) obtained in Synthesis Example 3, 0.015 g of Megafac R-30 (trade name, manufactured by Dainippon Ink & Chemicals, Inc.) as a surfactant was mixed. A solution was prepared by dissolving in 58 g of propylene glycol monomethyl ether acetate. Thereafter, the solution is filtered using a polyethylene microfilter having a pore size of 0.10 μm, and further filtered using a polyethylene microfilter having a pore size of 0.05 μm, so that the resist underlayer film forming composition solution used in the lithography process using a multilayer film is used. Was prepared.
(光学パラメータの測定)
 実施例1乃至4及び比較例1又は2で調製したレジスト下層膜形成組成物をスピナーを用い、それぞれシリコンウェハー上に塗布した。ホットプレート上で240℃で1分間加熱し、レジスト下層膜(膜厚0.25μm)を形成した。分光エリプソメーターを用いて、これらのレジスト下層膜の波長248nm及び波長193nmでの屈折率(n値)及び光学吸光係数(k値、減衰係数とも呼ぶ)を測定した。結果を表1に示す。
(Measurement of optical parameters)
The resist underlayer film forming compositions prepared in Examples 1 to 4 and Comparative Example 1 or 2 were each applied onto a silicon wafer using a spinner. Heating was performed at 240 ° C. for 1 minute on a hot plate to form a resist underlayer film (film thickness: 0.25 μm). Using a spectroscopic ellipsometer, the refractive index (n value) and optical absorption coefficient (k value, also called attenuation coefficient) of these resist underlayer films at a wavelength of 248 nm and a wavelength of 193 nm were measured. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
(フォトレジスト溶剤への溶出試験)
 実施例1~4及び比較例1~2で調製したレジスト下層膜形成組成物をスピナーを用いて、それぞれシリコンウェハー上に塗布した。ホットプレート上で240℃で1分間加熱し、レジスト下層膜(膜厚0.25μm)を形成した。このレジスト下層膜をレジスト形成組成物に使用する溶剤である乳酸エチル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、及びシクロヘキサノンに浸漬した。その結果、全てのレジスト下層膜は、前記溶剤に不溶であった。
(Elution test for photoresist solvent)
The resist underlayer film forming compositions prepared in Examples 1 to 4 and Comparative Examples 1 and 2 were each applied onto a silicon wafer using a spinner. Heating was performed at 240 ° C. for 1 minute on a hot plate to form a resist underlayer film (film thickness: 0.25 μm). This resist underlayer film was immersed in ethyl lactate, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, and cyclohexanone, which are solvents used for the resist forming composition. As a result, all resist underlayer films were insoluble in the solvent.
(ドライエッチング速度の測定)
 ドライエッチング速度の測定に用いたエッチャー及びエッチングガスは以下のものを用いた。
 ES401(日本サイエンティフィック製):CF4
 実施例1~4及び比較例1~2で調製したレジスト下層膜形成組成物をスピナーを用い、それぞれシリコンウェハー上に塗布した。ホットプレート上で240℃で1分間加熱し、レジスト下層膜(膜厚0.25μm)を形成した。エッチングガスとしてCF4ガスを使用してドライエッチング速度を測定した。
(Measurement of dry etching rate)
The following etchers and etching gases were used to measure the dry etching rate.
ES401 (Nippon Scientific): CF 4
The resist underlayer film forming compositions prepared in Examples 1 to 4 and Comparative Examples 1 and 2 were each applied onto a silicon wafer using a spinner. Heating was performed at 240 ° C. for 1 minute on a hot plate to form a resist underlayer film (film thickness: 0.25 μm). The dry etching rate was measured using CF 4 gas as the etching gas.
 また、実施例1及び比較例2で調製したレジスト下層膜形成組成物をスピナーを用いて、それぞれシリコンウェハー上に塗布した。ホットプレート上で400℃で2分間加熱し、レジスト下層膜(膜厚0.25μm)を形成した。エッチングガスとしてCF4ガスを使用してドライエッチング速度を測定した。 Moreover, the resist underlayer film forming composition prepared in Example 1 and Comparative Example 2 was applied onto a silicon wafer using a spinner. Heating was performed at 400 ° C. for 2 minutes on a hot plate to form a resist underlayer film (film thickness: 0.25 μm). The dry etching rate was measured using CF 4 gas as the etching gas.
 また、同様にフェノールノボラック樹脂溶液をスピナーを用い、シリコンウェハー上に塗膜を形成した。ホットプレート上で205℃1分間加熱し、塗膜(膜厚0.25μm)を形成した。エッチングガスとしてCF4ガスを使用してドライエッチング速度を測定し、実施例1~4、比較例1~2のレジスト下層膜のドライエッチング速度との比較を行った。結果を表2に示す。 Similarly, a phenol novolac resin solution was formed on a silicon wafer using a spinner. The film was heated on a hot plate at 205 ° C. for 1 minute to form a coating film (film thickness: 0.25 μm). The dry etching rate was measured using CF 4 gas as an etching gas, and the dry etching rates of the resist underlayer films of Examples 1 to 4 and Comparative Examples 1 and 2 were compared. The results are shown in Table 2.
 速度比(1)は(240℃1分間加熱後のレジスト下層膜)/(205℃1分間加熱後のフェノールノボラック樹脂膜)のドライエッチング速度比である。
 速度比(2)は(400℃2分間加熱後のレジスト下層膜)/(205℃1分間加熱後のフェノールノボラック樹脂膜)のドライエッチング速度比である。
The speed ratio (1) is a dry etching speed ratio of (resist underlayer film after heating at 240 ° C. for 1 minute) / (phenol novolac resin film after heating at 205 ° C. for 1 minute).
The speed ratio (2) is a dry etching speed ratio of (resist underlayer film after heating at 400 ° C. for 2 minutes) / (phenol novolak resin film after heating at 205 ° C. for 1 minute).
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
(膜の耐熱性試験)
 実施例1~4及び比較例2で調製したレジスト下層膜形成組成物をスピナーを用い、シリコンウェハー上に塗布した。ホットプレート上で240℃で1分間もしくは400℃で2分間加熱し、レジスト下層膜(膜厚0.25μm)を形成した。得られた膜を室温(約20℃)から一分間に10℃ずつの割合で昇温加熱して大気中で熱重量分析を行い、質量が5パーセント減少する温度を測定した。結果を表3に示す。
(Heat resistance test of membrane)
The resist underlayer film forming compositions prepared in Examples 1 to 4 and Comparative Example 2 were applied onto a silicon wafer using a spinner. Heating was performed at 240 ° C. for 1 minute or 400 ° C. for 2 minutes on a hot plate to form a resist underlayer film (film thickness 0.25 μm). The obtained film was heated from room temperature (about 20 ° C.) at a rate of 10 ° C. per minute and subjected to thermogravimetric analysis in the atmosphere, and the temperature at which the mass decreased by 5 percent was measured. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
  上記結果より、本発明の多層膜によるリソグラフィープロセスに用いるレジスト下層膜は、従来の高エッチレート性反射防止膜とは異なり、フォトレジストに近い又はフォトレジストに比べて小さいドライエッチング速度の選択比、半導体基板に比べて小さいドライエッチング速度の選択比を持ち、さらに反射防止膜としての効果も併せ持つことができるレジスト下層膜を提供することができる。
 また、レジスト組成物に使用される溶媒に対して溶解しないため、レジスト層とのインターミキシングをおこさないレジスト下層膜を形成するレジスト下層膜形成組成物を提供することができる。
 また、本発明のレジスト下層膜は5%質量減少温度が高温であることから、上層に蒸着でハードマスクを形成可能な耐熱性を有することが判った。
From the above results, the resist underlayer film used in the lithography process by the multilayer film of the present invention is different from the conventional high etch rate antireflection film, and the selectivity ratio of the dry etching rate close to the photoresist or small compared to the photoresist, It is possible to provide a resist underlayer film that has a lower dry etching rate selection ratio than a semiconductor substrate and can also have an effect as an antireflection film.
Moreover, since it does not melt | dissolve with respect to the solvent used for a resist composition, the resist underlayer film forming composition which forms the resist underlayer film which does not intermix with a resist layer can be provided.
Moreover, since the resist lower layer film of the present invention has a high 5% mass reduction temperature, it was found that the resist lower layer film has heat resistance capable of forming a hard mask on the upper layer by vapor deposition.
 本願発明も用いられるポリマーは高い耐熱性を有し、これらのポリマーを用いたレジスト下層膜形成組成物は多層リソグラフィープロセスにおいて上層に蒸着でハードマスクを形成する工程においても耐熱安定性を有する。 The polymers used in the present invention have high heat resistance, and the resist underlayer film forming composition using these polymers has heat stability even in the step of forming a hard mask by vapor deposition on the upper layer in a multilayer lithography process.

Claims (10)

  1. 下記式(1):
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1及びR2はフルオレン環上の置換基であり、R3、R4、OR5、OR6はナフタレン環上の置換基である。R1、R2、R3、及びR4はそれぞれ炭素原子数1乃至10のアルキル基、炭素原子数6乃至20のアリール基、ハロゲン基、ニトロ基、又はアミノ基を表し、R5、R6はそれぞれ水素原子、炭素原子数1乃至10のアルキル基、又はグリシジル基を表し、Arは炭素原子数6乃至20のアリーレン基を表し、n1及びn2はそれぞれ0乃至4の整数であり、n3は0乃至(6-n5)の整数であり、n4は0乃至(6-n6)の整数であり、n5及びn6はそれぞれ1乃至6の整数であり、かつ、n3+n5は1乃至6の整数であり、n4+n6は1乃至6の整数である。)で表される繰り返し単位構造を含むポリマーを含むレジスト下層膜形成組成物。
    Following formula (1):
    Figure JPOXMLDOC01-appb-C000001
    (Wherein R 1 and R 2 are substituents on the fluorene ring, and R 3 , R 4 , OR 5 , OR 6 are substituents on the naphthalene ring. R 1 , R 2 , R 3 , and R 4 represents an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, a halogen group, a nitro group, or an amino group, and R 5 and R 6 represent a hydrogen atom and 1 carbon atom, respectively. Represents an alkyl group of 10 to 10 or glycidyl group, Ar represents an arylene group of 6 to 20 carbon atoms, n1 and n2 are each an integer of 0 to 4, and n3 is an integer of 0 to (6-n5) N4 is an integer from 0 to (6-n6), n5 and n6 are each an integer from 1 to 6, n3 + n5 is an integer from 1 to 6, and n4 + n6 is an integer from 1 to 6 A polymer containing a repeating unit structure represented by: A resist underlayer film forming composition comprising
  2. 前記式(1)中、Arは置換された又は非置換のフェニレン基、ナフチレン基、ビフェニレン基、アントリレン基、又はピレン基を表す、請求項1に記載のレジスト下層膜形成組成物。 2. The resist underlayer film forming composition according to claim 1, wherein Ar in the formula (1) represents a substituted or unsubstituted phenylene group, naphthylene group, biphenylene group, anthrylene group, or pyrene group.
  3. 更に架橋剤を含有する、請求項1又は請求項2に記載のレジスト下層膜形成組成物。 Furthermore, the resist underlayer film forming composition of Claim 1 or Claim 2 containing a crosslinking agent.
  4. 前記架橋剤が芳香族環を有する化合物である、請求項3に記載のレジスト下層膜形成組成物。 The resist underlayer film forming composition according to claim 3, wherein the crosslinking agent is a compound having an aromatic ring.
  5. 前記架橋剤が下記式(2)で表される化合物又は下記式(3)で表される繰り返し単位構造を有するポリマー又はオリゴマー:
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、R7及びR8はそれぞれ水素原子、炭素原子数1乃至10のアルキル基、又は炭素原子数6乃至20のアリール基を表し、n7は1乃至4の整数であり、n8は1乃至(5-n7)の整数であり、n7+n8は2乃至5の整数である。式(3)中、R9は水素原子又は炭素原子数1乃至10のアルキル基を表し、R10は炭素原子数1乃至10のアルキル基を表し、n9は1乃至4の整数であり、n10は0乃至(4-n9)の整数であり、n9+n10は1乃至4の整数である。オリゴマー及びポリマーの繰り返し単位構造の数mは2乃至100である。)である請求項3に記載のレジスト下層膜形成組成物。
    The cross-linking agent is a compound represented by the following formula (2) or a polymer or oligomer having a repeating unit structure represented by the following formula (3):
    Figure JPOXMLDOC01-appb-C000002
    (In the formula (2), R 7 and R 8 each represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms, n7 is an integer of 1 to 4, n8 is an integer of 1 to (5-n7), and n7 + n8 is an integer of 2 to 5. In formula (3), R 9 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 10 Represents an alkyl group having 1 to 10 carbon atoms, n9 is an integer of 1 to 4, n10 is an integer of 0 to (4-n9), and n9 + n10 is an integer of 1 to 4. Oligomers and polymers The number m of repeating unit structures is from 2 to 100.) The resist underlayer film forming composition according to claim 3.
  6. 更に酸、又は酸発生剤を含むものである請求項1乃至請求項5のいずれか1項に記載のレジスト下層膜形成組成物。 The resist underlayer film forming composition according to any one of claims 1 to 5, further comprising an acid or an acid generator.
  7. 請求項1乃至請求項6のいずれか1項に記載のレジスト下層膜形成組成物を半導体基板上に塗布し焼成することによって得られるレジスト下層膜。 A resist underlayer film obtained by applying the resist underlayer film forming composition according to claim 1 onto a semiconductor substrate and baking the composition.
  8. 請求項1乃至請求項6のいずれか1項に記載のレジスト下層膜形成組成物を半導体基板上に塗布し焼成して下層膜を形成する工程を含む半導体の製造に用いられるレジストパターンの形成方法。 A method for forming a resist pattern, which is used for manufacturing a semiconductor, comprising a step of applying the resist underlayer film forming composition according to any one of claims 1 to 6 on a semiconductor substrate and baking the composition to form an underlayer film. .
  9. 半導体基板上に請求項1乃至請求項6のいずれか1項に記載のレジスト下層膜形成組成物からなる下層膜を形成する工程、該下層膜上にレジスト膜を形成する工程、該レジスト膜に光又は電子線の照射と現像によりレジストパターンを形成する工程、該レジストパターンにより該下層膜をエッチングする工程、及びパターン化された該下層膜により半導体基板を加工する工程を含む半導体装置の製造方法。 A step of forming an underlayer film comprising the resist underlayer film forming composition according to any one of claims 1 to 6 on a semiconductor substrate, a step of forming a resist film on the underlayer film, A method of manufacturing a semiconductor device, comprising: a step of forming a resist pattern by light and electron beam irradiation and development; a step of etching the lower layer film with the resist pattern; and a step of processing a semiconductor substrate with the patterned lower layer film .
  10. 半導体基板に請求項1乃至請求項6のいずれか1項に記載のレジスト下層膜形成組成物からなる下層膜を形成する工程、該下層膜上にハードマスクを形成する工程、更に該ハードマスク上にレジスト膜を形成する工程、該レジスト膜に光又は電子線の照射と現像によりレジストパターンを形成する工程、該レジストパターンにより該ハードマスクをエッチングする工程、パターン化された該ハードマスクにより該下層膜をエッチングする工程、及びパターン化された該下層膜により半導体基板を加工する工程を含む半導体装置の製造方法。 A step of forming an underlayer film comprising the resist underlayer film forming composition according to any one of claims 1 to 6 on a semiconductor substrate, a step of forming a hard mask on the underlayer film, and further on the hard mask Forming a resist film on the resist film, forming a resist pattern on the resist film by light and electron beam irradiation and development, etching the hard mask with the resist pattern, and forming the lower layer with the patterned hard mask. A method for manufacturing a semiconductor device, comprising: a step of etching a film; and a step of processing a semiconductor substrate with the patterned underlayer film.
PCT/JP2009/067338 2008-10-10 2009-10-05 Composition for forming resist underlayer film for lithography, which contains fluorene-containing resin WO2010041626A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010532903A JPWO2010041626A1 (en) 2008-10-10 2009-10-05 Lithographic resist underlayer film forming composition comprising a resin containing fluorene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008263725 2008-10-10
JP2008-263725 2008-10-10

Publications (1)

Publication Number Publication Date
WO2010041626A1 true WO2010041626A1 (en) 2010-04-15

Family

ID=42100576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067338 WO2010041626A1 (en) 2008-10-10 2009-10-05 Composition for forming resist underlayer film for lithography, which contains fluorene-containing resin

Country Status (4)

Country Link
JP (1) JPWO2010041626A1 (en)
KR (1) KR20110086812A (en)
TW (1) TW201019048A (en)
WO (1) WO2010041626A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010122656A (en) * 2008-10-20 2010-06-03 Shin-Etsu Chemical Co Ltd Method for forming resist underlayer film, patterning process using the same, and resist underlayer film material
JP2010271654A (en) * 2009-05-25 2010-12-02 Shin-Etsu Chemical Co Ltd Resist underlayer film material and pattern forming method using the same
WO2011132641A1 (en) * 2010-04-21 2011-10-27 日産化学工業株式会社 Composition for formation of lithographic resist underlayer film which contains resin containing polyimide structure
US20110311920A1 (en) * 2010-06-21 2011-12-22 Shin-Etsu Chemical Co., Ltd Naphthalene derivative, resist bottom layer material, resist bottom layer forming method, and patterning process
US20120064725A1 (en) * 2010-09-10 2012-03-15 Shin-Etsu Chemical Co., Ltd. Naphthalene derivative, resist bottom layer material, and patterning process
WO2013100409A1 (en) * 2011-12-30 2013-07-04 제일모직 주식회사 Monomer for a hardmask composition, hardmask composition comprising the monomer, and method for forming a pattern using the hardmask composition
KR20130129915A (en) 2010-10-14 2013-11-29 닛산 가가쿠 고교 가부시키 가이샤 Lithographic resist underlayer film-forming compound that comprises resin including polyether structure
US9195136B2 (en) 2013-04-25 2015-11-24 Cheil Industries, Inc. Resist underlayer composition, method of forming patterns and semiconductor integrated circuit device including the patterns
WO2016072316A1 (en) * 2014-11-04 2016-05-12 日産化学工業株式会社 Resist underlayer film-forming composition including polymer provided with arylene groups
JP2016094612A (en) * 2012-06-18 2016-05-26 信越化学工業株式会社 Organic membrane-forming compound, organic membrane material using thereof, method of forming organic membrane and method of forming pattern
WO2017154924A1 (en) * 2016-03-08 2017-09-14 日産化学工業株式会社 Method for manufacturing semiconductor substrate having group-iii nitride compound layer
KR101909222B1 (en) 2010-12-09 2018-10-17 닛산 가가쿠 가부시키가이샤 Composition for forming resist underlayer film containing hydroxyl group-containing carbazole novolac resin
WO2018198960A1 (en) * 2017-04-25 2018-11-01 日産化学株式会社 Resist underlayer film formation composition in which fluorene compound is used
WO2022034831A1 (en) * 2020-08-14 2022-02-17 三菱瓦斯化学株式会社 Composition for forming underlayer film for lithography, underlayer film, and pattern forming method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9240327B2 (en) * 2011-08-04 2016-01-19 Nissan Chemical Industries, Ltd. Resist underlayer film-forming composition for EUV lithography containing condensation polymer
JP6256719B2 (en) * 2013-02-25 2018-01-10 日産化学工業株式会社 Aryl sulfonate-containing resist underlayer film forming composition having a hydroxyl group
WO2014185335A1 (en) * 2013-05-13 2014-11-20 日産化学工業株式会社 Novolac-resin-containing composition for forming resist underlayer film using bisphenol aldehyde
CN104253024B (en) 2013-06-27 2017-07-28 第一毛织株式会社 Hard mask compositions, the method using its formation pattern and the conductor integrated circuit device including the pattern
KR101754901B1 (en) 2014-05-16 2017-07-06 제일모직 주식회사 Hardmask composition and method of forming patterns using the hardmask composition
US9908990B2 (en) 2015-04-17 2018-03-06 Samsung Sdi Co., Ltd. Organic layer composition, organic layer, and method of forming patterns
WO2018030198A1 (en) * 2016-08-08 2018-02-15 日産化学工業株式会社 Photocurable composition and method for manufacturing semiconductor device
KR101984867B1 (en) * 2017-11-28 2019-06-03 로움하이텍 주식회사 Resist underlayer film composition used in semiconductor production process comprising fluorene compounds
JP7465679B2 (en) * 2020-03-05 2024-04-11 信越化学工業株式会社 Coating-type organic film-forming composition, pattern forming method, polymer, and method for producing polymer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005128509A (en) * 2003-10-03 2005-05-19 Shin Etsu Chem Co Ltd Material for forming photoresist lower layer film and method for forming pattern
JP2007099741A (en) * 2005-10-07 2007-04-19 Osaka Gas Co Ltd Compound having fluorene skeleton and method for producing the same
JP2007199653A (en) * 2005-12-27 2007-08-09 Shin Etsu Chem Co Ltd Photoresist underlayer film forming material and pattern forming method
JP2008274250A (en) * 2007-04-06 2008-11-13 Osaka Gas Co Ltd Phenolic resin and process for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005128509A (en) * 2003-10-03 2005-05-19 Shin Etsu Chem Co Ltd Material for forming photoresist lower layer film and method for forming pattern
JP2007099741A (en) * 2005-10-07 2007-04-19 Osaka Gas Co Ltd Compound having fluorene skeleton and method for producing the same
JP2007199653A (en) * 2005-12-27 2007-08-09 Shin Etsu Chem Co Ltd Photoresist underlayer film forming material and pattern forming method
JP2008274250A (en) * 2007-04-06 2008-11-13 Osaka Gas Co Ltd Phenolic resin and process for producing the same

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8652757B2 (en) 2008-10-20 2014-02-18 Shin-Etsu Chemical Co., Ltd. Method for forming resist underlayer film, patterning process using the same, and composition for the resist underlayer film
JP2010122656A (en) * 2008-10-20 2010-06-03 Shin-Etsu Chemical Co Ltd Method for forming resist underlayer film, patterning process using the same, and resist underlayer film material
US8450048B2 (en) 2008-10-20 2013-05-28 Shin-Etsu Chemical Co., Ltd. Method for forming resist underlayer film, patterning process using the same, and composition for the resist underlayer film
JP2010271654A (en) * 2009-05-25 2010-12-02 Shin-Etsu Chemical Co Ltd Resist underlayer film material and pattern forming method using the same
WO2011132641A1 (en) * 2010-04-21 2011-10-27 日産化学工業株式会社 Composition for formation of lithographic resist underlayer film which contains resin containing polyimide structure
KR20110139118A (en) * 2010-06-21 2011-12-28 신에쓰 가가꾸 고교 가부시끼가이샤 Naphthalene derivative, resist bottom layer material, resist bottom layer forming method, and patterning process
KR101645746B1 (en) 2010-06-21 2016-08-04 신에쓰 가가꾸 고교 가부시끼가이샤 Naphthalene derivative, resist bottom layer material, resist bottom layer forming method, and patterning process
US20110311920A1 (en) * 2010-06-21 2011-12-22 Shin-Etsu Chemical Co., Ltd Naphthalene derivative, resist bottom layer material, resist bottom layer forming method, and patterning process
US20120064725A1 (en) * 2010-09-10 2012-03-15 Shin-Etsu Chemical Co., Ltd. Naphthalene derivative, resist bottom layer material, and patterning process
US8846846B2 (en) * 2010-09-10 2014-09-30 Shin-Etsu Chemical Co., Ltd. Naphthalene derivative, resist bottom layer material, and patterning process
US9045587B2 (en) 2010-09-10 2015-06-02 Shin-Etsu Chemical Co., Ltd. Naphthalene derivative, resist bottom layer material, and patterning process
KR20130129915A (en) 2010-10-14 2013-11-29 닛산 가가쿠 고교 가부시키 가이샤 Lithographic resist underlayer film-forming compound that comprises resin including polyether structure
US9746772B2 (en) 2010-10-14 2017-08-29 Nissan Chemical Industries, Ltd. Resist underlayer film forming composition for lithography containing polyether structure-containing resin
KR101909222B1 (en) 2010-12-09 2018-10-17 닛산 가가쿠 가부시키가이샤 Composition for forming resist underlayer film containing hydroxyl group-containing carbazole novolac resin
US9725389B2 (en) 2011-12-30 2017-08-08 Cheil Industries, Inc. Monomer for a hardmask composition, hardmask composition comprising the monomer, and method for forming a pattern using the hardmask composition
WO2013100409A1 (en) * 2011-12-30 2013-07-04 제일모직 주식회사 Monomer for a hardmask composition, hardmask composition comprising the monomer, and method for forming a pattern using the hardmask composition
JP2016094612A (en) * 2012-06-18 2016-05-26 信越化学工業株式会社 Organic membrane-forming compound, organic membrane material using thereof, method of forming organic membrane and method of forming pattern
US9195136B2 (en) 2013-04-25 2015-11-24 Cheil Industries, Inc. Resist underlayer composition, method of forming patterns and semiconductor integrated circuit device including the patterns
US10394124B2 (en) 2014-11-04 2019-08-27 Nissan Chemical Industries, Ltd. Resist underlayer film-forming composition containing polymer having arylene group
WO2016072316A1 (en) * 2014-11-04 2016-05-12 日産化学工業株式会社 Resist underlayer film-forming composition including polymer provided with arylene groups
US20170315445A1 (en) * 2014-11-04 2017-11-02 Nissan Chemical Industries, Ltd. Resist underlayer film-forming composition containing polymer having arylene group
JPWO2016072316A1 (en) * 2014-11-04 2017-09-14 日産化学工業株式会社 Resist underlayer film forming composition comprising a polymer having an arylene group
JP7101353B2 (en) 2016-03-08 2022-07-15 日産化学株式会社 Method for manufacturing a semiconductor substrate having a group III nitride compound layer
CN109075060A (en) * 2016-03-08 2018-12-21 日产化学株式会社 The manufacturing method of semiconductor substrate with group III-nitride based compound layer
JPWO2017154924A1 (en) * 2016-03-08 2019-01-10 日産化学株式会社 Method for manufacturing semiconductor substrate having group III nitride compound layer
US11339242B2 (en) 2016-03-08 2022-05-24 Nissan Chemical Corporation Method for manufacturing semiconductor substrate having group-III nitride compound layer
WO2017154924A1 (en) * 2016-03-08 2017-09-14 日産化学工業株式会社 Method for manufacturing semiconductor substrate having group-iii nitride compound layer
CN109075060B (en) * 2016-03-08 2024-03-29 日产化学株式会社 Method for manufacturing semiconductor substrate having group III nitride compound layer
WO2018198960A1 (en) * 2017-04-25 2018-11-01 日産化学株式会社 Resist underlayer film formation composition in which fluorene compound is used
CN110546570A (en) * 2017-04-25 2019-12-06 日产化学株式会社 composition for forming resist underlayer film using fluorene compound
JPWO2018198960A1 (en) * 2017-04-25 2020-03-12 日産化学株式会社 Resist underlayer film forming composition using fluorene compound
JP7056651B2 (en) 2017-04-25 2022-04-19 日産化学株式会社 Resist underlayer film forming composition using fluorene compound
US11506980B2 (en) 2017-04-25 2022-11-22 Nissan Chemical Corporation Resist underlayer film forming composition using a fluorene compound
CN110546570B (en) * 2017-04-25 2023-07-25 日产化学株式会社 Composition for forming resist underlayer film using fluorene compound
WO2022034831A1 (en) * 2020-08-14 2022-02-17 三菱瓦斯化学株式会社 Composition for forming underlayer film for lithography, underlayer film, and pattern forming method

Also Published As

Publication number Publication date
KR20110086812A (en) 2011-08-01
JPWO2010041626A1 (en) 2012-03-08
TW201019048A (en) 2010-05-16

Similar Documents

Publication Publication Date Title
JP6041104B2 (en) Resist underlayer film forming composition containing alicyclic skeleton-containing carbazole resin
WO2010041626A1 (en) Composition for forming resist underlayer film for lithography, which contains fluorene-containing resin
KR101909222B1 (en) Composition for forming resist underlayer film containing hydroxyl group-containing carbazole novolac resin
JP5440755B6 (en) Lithographic resist underlayer film forming composition comprising a resin containing an aromatic condensed ring
JP6206677B2 (en) Resist underlayer film forming composition containing carbonyl group-containing polyhydroxy aromatic ring novolak resin
JP6974799B2 (en) A composition for forming a resist underlayer film having an improved film density.
JP2014157169A (en) Composition for forming resist underlay film containing polyhydroxybenzene novolak resin
WO2013115097A1 (en) Resist underlayer film forming composition containing copolymer resin having heterocyclic ring
KR20140144207A (en) Resist underlayer film-forming composition which contains phenylindole-containing novolac resin
JPWO2008069047A6 (en) Lithographic resist underlayer film forming composition comprising a resin containing an aromatic condensed ring
JP5660330B2 (en) Lithographic resist underlayer film forming composition comprising a resin containing an aliphatic ring and an aromatic ring
WO2011132641A1 (en) Composition for formation of lithographic resist underlayer film which contains resin containing polyimide structure
JP5988050B2 (en) Composition for forming an organic hard mask layer for lithography comprising a polymer containing an acrylamide structure
JP5212666B2 (en) Lithographic resist underlayer film forming composition comprising a resin containing an aromatic condensed ring
JP6338048B2 (en) Iminostilbene polymer and resist underlayer film forming composition containing the same
WO2014203757A1 (en) Resist underlayer film forming composition containing trihydroxynaphthalene novolac resin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09819160

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010532903

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117010173

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09819160

Country of ref document: EP

Kind code of ref document: A1