WO2014203757A1 - Resist underlayer film forming composition containing trihydroxynaphthalene novolac resin - Google Patents

Resist underlayer film forming composition containing trihydroxynaphthalene novolac resin Download PDF

Info

Publication number
WO2014203757A1
WO2014203757A1 PCT/JP2014/065228 JP2014065228W WO2014203757A1 WO 2014203757 A1 WO2014203757 A1 WO 2014203757A1 JP 2014065228 W JP2014065228 W JP 2014065228W WO 2014203757 A1 WO2014203757 A1 WO 2014203757A1
Authority
WO
WIPO (PCT)
Prior art keywords
underlayer film
resist underlayer
group
resist
forming composition
Prior art date
Application number
PCT/JP2014/065228
Other languages
French (fr)
Japanese (ja)
Inventor
涼 柄澤
顕司 高瀬
徹也 新城
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Publication of WO2014203757A1 publication Critical patent/WO2014203757A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/094Multilayer resist systems, e.g. planarising layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/091Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by antireflection means or light filtering or absorbing means, e.g. anti-halation, contrast enhancement

Definitions

  • the present invention relates to a resist underlayer film forming composition for lithography effective at the time of processing a semiconductor substrate, a resist pattern forming method using the resist underlayer film forming composition, and a method for manufacturing a semiconductor device.
  • BARC Bottom Anti-Reflective Coating
  • a novolak resin of dihydroxynaphthalene and benzaldehyde or naphthaldehyde is disclosed (see Patent Document 1).
  • Polyhydroxybenzene novolak resin is disclosed as a polymer used in the resist underlayer film forming composition (see Patent Document 2).
  • An object of the present invention is to provide a resist underlayer film forming composition for use in a lithography process for manufacturing a semiconductor device. Another object of the present invention is to provide an excellent resist pattern without intermixing with the resist layer, and has a dry etching rate close to that of the resist. There is also a need to provide a resist underlayer film for lithography having a selectivity ratio of 2 and a resist underlayer film for lithography having a selectivity ratio of a dry etching rate smaller than that of a semiconductor substrate.
  • the present invention can also impart to the resist underlayer film the ability to effectively absorb the reflected light from the substrate when irradiation light having a wavelength of 248 nm, 193 nm, 157 nm or the like is used for fine processing. Furthermore, this invention is providing the formation method of the resist pattern using the resist underlayer film forming composition of this invention. Further, the present invention provides a resist underlayer film forming composition for forming a resist underlayer film that also has heat resistance.
  • the formula (1) (In the formula (1), A is a hydroxy-substituted naphthylene group derived from trihydroxynaphthalene, has 3 hydroxy groups, and B is a monovalent condensed aromatic carbonized with 2 to 4 benzene rings condensed.
  • a composition for forming a resist underlayer film for lithography comprising a polymer having a unit structure represented by:
  • the resist underlayer film forming composition according to the first aspect wherein the condensed aromatic hydrocarbon ring group of B is a naphthalene ring group, an anthracene ring group, or a pyrene ring group
  • the condensed aromatic hydrocarbon ring group of B has a halogen group, a hydroxy group, a nitro group, an amino group, a carboxyl group, a carboxylic acid ester group, a nitrile group, or a combination thereof as a substituent.
  • the resist underlayer film forming composition according to the first aspect or the second aspect As a fourth aspect, the resist underlayer film forming composition according to any one of the first aspect to the third aspect, further including a crosslinking agent, As a fifth aspect, the resist underlayer film forming composition according to any one of the first to fourth aspects, further comprising an acid and / or an acid generator, As a sixth aspect, a resist underlayer film obtained by applying and baking the resist underlayer film forming composition according to any one of the first to fifth aspects on a semiconductor substrate, As a seventh aspect, the resist underlayer film forming composition according to any one of the first to fifth aspects is applied to a semiconductor substrate and baked to form a resist underlayer film.
  • a step of forming a resist underlayer film on the semiconductor substrate with the resist underlayer film forming composition according to any one of the first to fifth aspects, a step of forming a resist film thereon, light Or a step of forming a resist pattern by electron beam irradiation and development, a step of etching the resist underlayer film with the formed resist pattern, and a step of processing a semiconductor substrate with the patterned resist underlayer film.
  • a step of forming a resist underlayer film on the semiconductor substrate with the resist underlayer film forming composition according to any one of the first to fifth aspects, a step of forming a hard mask thereon, and A step of forming a resist film thereon, a step of forming a resist pattern by irradiation and development with light or an electron beam, a step of etching a hard mask with the formed resist pattern, and forming the resist underlayer film with a patterned hard mask
  • a manufacturing method of a semiconductor device including a step of etching and a step of processing a semiconductor substrate with a patterned resist underlayer film, and as a tenth aspect, a hard mask is formed by applying inorganic material or depositing inorganic material It is a manufacturing method given in the 9th viewpoint.
  • the resist underlayer film forming composition of the present invention does not cause intermixing between the upper layer portion of the formed resist underlayer film and the layer coated thereon, a good resist pattern shape can be formed. it can.
  • the resist underlayer film forming composition of the present invention can also impart to the resist underlayer film the ability to efficiently suppress reflection from the substrate, and the formed resist underlayer film can serve as an antireflection film for exposure light. You can also have the effect of.
  • the resist underlayer film forming composition of the present invention has an excellent dry etching rate selection ratio close to the resist, a low dry etching rate selection ratio compared to the resist, and a low dry etching rate selection ratio compared to the semiconductor substrate.
  • a resist underlayer film can be provided.
  • the resist is thinned.
  • the resist pattern is transferred to the lower layer film by an etching process, the substrate processing is performed using the lower layer film as a mask, or the resist pattern is transferred to the lower layer film by an etching process, and further to the lower layer film.
  • the resist underlayer film and the composition for forming the resist of the present invention are effective for this process.
  • a processed substrate for example, a thermal silicon oxide film on the substrate, silicon nitride) Film, polysilicon film, etc. having sufficient etching resistance.
  • the resist underlayer film of the present invention can be used as a planarizing film, a resist underlayer film, a resist layer antifouling film, or a film having dry etch selectivity. This makes it possible to easily and accurately form a resist pattern in a lithography process for manufacturing a semiconductor.
  • a resist underlayer film is formed on a substrate by a resist underlayer film forming composition according to the present invention, a hard mask is formed thereon, a resist film is formed thereon, a resist pattern is formed by exposure and development, and dry etching is performed.
  • the resist pattern is transferred to a hard mask by the above, the resist pattern transferred to the hard mask by dry etching is transferred to the resist underlayer film, and the semiconductor substrate is processed by the resist underlayer film.
  • the pattern formed by the resist underlayer film of the present invention is a pattern excellent in pattern bending resistance (anti-wiggling).
  • the hard mask may be formed by a coating type composition containing an organic polymer or inorganic polymer (silicon polymer) and a solvent, or by vacuum deposition of an inorganic substance.
  • an inorganic material for example, silicon nitride oxide
  • the deposited material is deposited on the resist underlayer film surface.
  • the temperature of the resist underlayer film surface rises to around 400 ° C.
  • the polymer used is a polymer having many benzene-based unit structures, so that the heat resistance is extremely high, and thermal degradation does not occur even by deposition of a deposit.
  • the present invention is a resist underlayer film forming composition for lithography containing a polymer having a unit structure represented by the formula (1).
  • the above polymer can be used as a novolak resin obtained by condensing trihydroxynaphthalene and aldehyde.
  • the resist underlayer film forming composition for lithography includes the polymer and a solvent. And it can contain a crosslinking agent and an acid, and can contain additives, such as an acid generator and surfactant, as needed.
  • the solid content of the composition is 0.1 to 70% by mass, or 0.1 to 60% by mass.
  • the solid content is the content ratio of all components excluding the solvent from the resist underlayer film forming composition. 1 to 100% by mass, or 1 to 99.9% by mass, or 50 to 99.9% by mass, or 50 to 95% by mass, or 50 to 90% by mass in the solid content Can do.
  • the polymer used in the present invention has a weight average molecular weight of 600 to 1,000,000, or 600 to 200,000, 600 to 100,000, or 600 to 10,000, or 1000 to 5000, or 1500 to 3000.
  • A is a hydroxy group-substituted naphthylene group derived from trihydroxynaphthalene
  • B is a monovalent condensed aromatic hydrocarbon ring group in which 2 to 4 benzene rings are condensed.
  • the condensed aromatic hydrocarbon ring group of B can be a naphthalene ring group, an anthracene ring group, or a pyrene ring group.
  • a naphthalene ring group and a pyrene ring group can be preferably used.
  • a pyrene ring group can be preferably used.
  • Examples of the carboxylic acid ester group as a substituent of the condensed aromatic hydrocarbon ring group of B include an ethyl acetate group, an n-butyl acetate group, an i-butyl acetate group, and a methyl propionate group.
  • Examples of the halogen group as a substituent include a fluorine group, a chlorine group, a bromine group, and an iodine group.
  • a novolak resin having a repeating unit structure represented by the formula (1) obtained by condensing trihydroxynaphthalene and aldehyde can be used as a polymer.
  • Aldehydes are aldehydes having condensed aromatic hydrocarbon ring groups such as naphthalene, anthracene, and pyrene, and include naphthaldehyde, anthracene carboxaldehyde, pyrene carboxaldehyde, and the like.
  • the aldehyde can be reacted at a ratio of 0.1 to 10 mol, preferably 0.8 to 2.2 mol, and more preferably 1.0 mol with respect to 1 mol of the phenol.
  • Examples of the acid catalyst used in the above condensation reaction include mineral acids such as sulfuric acid, phosphoric acid and perchloric acid, organic sulfonic acids such as p-toluenesulfonic acid and p-toluenesulfonic acid monohydrate, formic acid and oxalic acid. Carboxylic acids such as are used.
  • the amount of the acid catalyst used is variously selected depending on the type of acids used. The amount used is usually 0.001 to 10000 parts by weight, preferably 0.01 to 1000 parts by weight, more preferably 0.1 to 100 parts by weight, based on 100 parts by weight of the total of the phenols and aldehydes. Part.
  • the above condensation reaction is carried out without a solvent, but is usually carried out using a solvent. Any solvent that does not inhibit the reaction can be used. Examples thereof include cyclic ethers such as tetrahydrofuran and dioxane.
  • the acid catalyst used is a liquid such as formic acid, it can also serve as a solvent.
  • the reaction temperature during the condensation is usually 40 ° C to 200 ° C.
  • the reaction time is variously selected depending on the reaction temperature, but is usually about 30 minutes to 50 hours.
  • the weight average molecular weight Mw of the polymer obtained as described above is usually 600 to 1,000,000, or 600 to 200,000, 600 to 100,000, 600 to 10,000, 1000 to 5000, or 1500 to 3000.
  • the said polymer can mix and use another polymer within 30 mass% in all the polymers.
  • polymers examples include polyacrylic acid ester compounds, polymethacrylic acid ester compounds, polyacrylamide compounds, polymethacrylamide compounds, polyvinyl compounds, polystyrene compounds, polymaleimide compounds, polymaleic anhydride compounds, and polyacrylonitrile compounds.
  • Examples of the raw material monomer for the polyacrylate compound include methyl acrylate, ethyl acrylate, isopropyl acrylate, benzyl acrylate, naphthyl acrylate, anthryl acrylate, anthryl methyl acrylate, phenyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2,2,2-trifluoroethyl acrylate, 4-hydroxybutyl acrylate, isobutyl acrylate, tert-butyl acrylate, cyclohexyl acrylate, isobornyl acrylate, 2-methoxyethyl acrylate, methoxytriethylene glycol acrylate, 2-ethoxyethyl acrylate , Tetrahydrofurfuryl acrylate, 3-methoxybutyl acrylate 2-methyl-2-adamantyl acrylate, 2-ethyl-2-adamantyl acrylate, 2-propyl-2
  • Examples of the raw material monomer for the polymethacrylate compound include ethyl methacrylate, normal propyl methacrylate, normal pentyl methacrylate, cyclohexyl methacrylate, benzyl methacrylate, naphthyl methacrylate, anthryl methacrylate, anthryl methyl methacrylate, phenyl methacrylate, 2-phenylethyl methacrylate, 2 -Hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 2,2,2-trifluoroethyl methacrylate, 2,2,2-trichloroethyl methacrylate, methyl acrylate, isobutyl methacrylate, 2-ethylhexyl methacrylate, isodecyl methacrylate, normal lauryl methacrylate Normal stearyl methacrylate , Methoxydiethylene glycol methacrylate, methoxypolyethylene glyco
  • Examples of the raw material monomer for the polyacrylamide compound include acrylamide, N-methylacrylamide, N-ethylacrylamide, N-benzylacrylamide, N-phenylacrylamide, and N, N-dimethylacrylamide.
  • Examples of the raw material monomer of the polymethacrylic acid amide compound include methacrylamide, N-methyl methacrylamide, N-ethyl methacrylamide, N-benzyl methacrylamide, N-phenyl methacrylamide, and N, N-dimethyl methacrylamide. .
  • Examples of the raw material monomer for the polyvinyl compound include vinyl ether, methyl vinyl ether, benzyl vinyl ether, 2-hydroxyethyl vinyl ether, phenyl vinyl ether, and propyl vinyl ether.
  • Examples of the raw material monomer monomer for the polystyrene compound include styrene, methylstyrene, chlorostyrene, bromostyrene, and hydroxystyrene.
  • Examples of the raw material monomer for the polymaleimide compound include maleimide, N-methylmaleimide, N-phenylmaleimide, and N-cyclohexylmaleimide.
  • polymers are produced by dissolving an addition polymerizable monomer and an optionally added chain transfer agent (10% or less based on the mass of the monomer) in an organic solvent, and then adding a polymerization initiator to perform a polymerization reaction. Thereafter, it can be produced by adding a polymerization terminator.
  • the addition amount of the polymerization initiator is 1 to 10% with respect to the mass of the monomer, and the addition amount of the polymerization terminator is 0.01 to 0.2% by mass with respect to the mass of the monomer.
  • organic solvent used examples include propylene glycol monomethyl ether, propylene glycol monopropyl ether, ethyl lactate, cyclohexanone, methyl ethyl ketone, and dimethylformamide, chain transfer agents such as dodecane thiol and dodecyl thiol, and polymerization initiators such as azo Examples thereof include bisisobutyronitrile and azobiscyclohexanecarbonitrile, and examples of the polymerization terminator include 4-methoxyphenol.
  • the reaction temperature is appropriately selected from 30 to 100 ° C.
  • the reaction time is appropriately selected from 1 to 48 hours.
  • the resist underlayer film forming composition of the present invention can contain a crosslinking agent component.
  • the cross-linking agent include melamine type, substituted urea type, or polymer type thereof.
  • a cross-linking agent having at least two cross-linking substituents methoxymethylated glycoluril, butoxymethylated glycoluril, methoxymethylated melamine, butoxymethylated melamine, methoxymethylated benzogwanamine, butoxymethylated benzogwanamine, Compounds such as methoxymethylated urea, butoxymethylated urea, methoxymethylated thiourea, or methoxymethylated thiourea.
  • the condensate of these compounds can also be used.
  • crosslinking agent a crosslinking agent having high heat resistance
  • a compound containing a crosslinking-forming substituent having an aromatic ring (for example, a benzene ring or a naphthalene ring) in the molecule can be preferably used.
  • R 10 and R 11 are each a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms, n10 is an integer of 1 to 4, and n11 is 1 To (5-n10), and (n10 + n11) represents an integer of 2 to 5.
  • R 12 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • R 13 is an alkyl group having 1 to 10 carbon atoms
  • n12 is an integer of 1 to 4
  • n13 is 0 To (4-n12)
  • (n12 + n13) represents an integer of 1 to 4.
  • the oligomer and polymer can be used in the range of 2 to 100 or 2 to 50 repeating unit structures.
  • alkyl group having 1 to 10 carbon atoms in R 10 to R 13 examples include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, a cyclopropyl group, an n-butyl group, an i-butyl group, s -Butyl, t-butyl, cyclobutyl, 1-methyl-cyclopropyl, 2-methyl-cyclopropyl, n-pentyl, 1-methyl-n-butyl, 2-methyl-n-butyl 3-methyl-n-butyl group, 1,1-dimethyl-n-propyl group, 1,2-dimethyl-n-propyl group, 2,2-dimethyl-n-propyl group, 1-ethyl-n-propyl group Group, cyclopentyl group, 1-methyl-cyclobutyl group, 2-methyl-cyclobutyl group, 3-methyl-cyclobutyl group, 1,2-dimethyl-but
  • Examples of the aryl group having 6 to 20 carbon atoms in R 10 and R 11 include a phenyl group, an o-methylphenyl group, an m-methylphenyl group, a p-methylphenyl group, an o-chlorophenyl group, and an m-chlorophenyl group.
  • the above compounds can be obtained as products of Asahi Organic Materials Co., Ltd. and Honshu Chemical Industry Co., Ltd.
  • the compound of the formula (2-21) can be obtained as Asahi Organic Materials Co., Ltd., trade name TM-BIP-A.
  • the amount of the crosslinking agent to be added varies depending on the coating solvent used, the base substrate used, the required solution viscosity, the required film shape, etc., but is 0.001 to 80% by mass with respect to the total solid content, preferably It can be used in an amount of 0.01 to 50 mass%, more preferably 0.05 to 40 mass%.
  • cross-linking agents may cause a cross-linking reaction by self-condensation, but when a cross-linkable substituent is present in the above-mentioned polymer of the present invention, it can cause a cross-linking reaction with those cross-linkable substituents.
  • p-toluenesulfonic acid as a catalyst for promoting the crosslinking reaction, p-toluenesulfonic acid, trifluoromethanesulfonic acid, pyridinium p-toluenesulfonic acid, salicylic acid, sulfosalicylic acid, citric acid, benzoic acid, hydroxybenzoic acid, naphthalenecarboxylic acid Acidic compounds such as acids or / and thermal acid generators such as 2,4,4,6-tetrabromocyclohexadienone, benzoin tosylate, 2-nitrobenzyl tosylate, and other organic sulfonic acid alkyl esters may be added. I can do it.
  • the blending amount can be 0.0001 to 20% by mass, preferably 0.0005 to 10% by mass, preferably 0.01 to 3% by mass, based on the total solid content.
  • a photoacid generator can be added in order to match the acidity with the photoresist coated on the upper layer in the lithography process.
  • Preferred photoacid generators include, for example, onium salt photoacid generators such as bis (4-t-butylphenyl) iodonium trifluoromethanesulfonate, triphenylsulfonium trifluoromethanesulfonate, and phenyl-bis (trichloromethyl) -s.
  • -Halogen-containing compound photoacid generators such as triazine, and sulfonic acid photoacid generators such as benzoin tosylate and N-hydroxysuccinimide trifluoromethanesulfonate.
  • the photoacid generator is 0.2 to 10% by mass, preferably 0.4 to 5% by mass, based on the total solid content.
  • further light absorbers examples include commercially available light absorbers described in “Technical dye technology and market” (published by CMC) and “Dye Handbook” (edited by the Society of Synthetic Organic Chemistry), such as C.I. I. Disperse Yellow 1, 3, 4, 5, 7, 8, 13, 23, 31, 49, 50, 51, 54, 60, 64, 66, 68, 79, 82, 88, 90, 93, 102, 114 and 124; C. I.
  • the above light-absorbing agent is usually blended at a ratio of 10% by mass or less, preferably 5% by mass or less, based on the total solid content of the resist underlayer film forming composition for lithography.
  • the rheology modifier mainly improves the fluidity of the resist underlayer film forming composition, and improves the film thickness uniformity of the resist underlayer film and the fillability of the resist underlayer film forming composition inside the hole, particularly in the baking process. It is added for the purpose of enhancing.
  • phthalic acid derivatives such as dimethyl phthalate, diethyl phthalate, diisobutyl phthalate, dihexyl phthalate, butyl isodecyl phthalate, adipic acid derivatives such as dinormal butyl adipate, diisobutyl adipate, diisooctyl adipate, octyl decyl adipate
  • maleic acid derivatives such as normal butyl maleate, diethyl maleate and dinonyl maleate
  • oleic acid derivatives such as methyl oleate, butyl oleate and tetrahydrofurfuryl oleate
  • stearic acid derivatives such as normal butyl stearate and glyceryl stearate. it can.
  • These rheology modifiers are usually blended at a ratio of less than 30% by mass with respect to the total solid content of the resist underlayer film forming
  • the adhesion assistant is added mainly for the purpose of improving the adhesion between the substrate or the resist and the resist underlayer film forming composition, and preventing the resist from peeling particularly during development.
  • Specific examples include chlorosilanes such as trimethylchlorosilane, dimethylvinylchlorosilane, methyldiphenylchlorosilane, chloromethyldimethylchlorosilane, trimethylmethoxysilane, dimethyldiethoxysilane, methyldimethoxysilane, dimethylvinylethoxysilane, diphenyldimethoxysilane, Alkoxysilanes such as enyltriethoxysilane, hexamethyldisilazane, N, N'-bis (trimethylsilyl) urea, silazanes such as dimethyltrimethylsilylamine, trimethylsilylimidazole, vinyltrichlorosilane, ⁇ -chloropropyltrimethoxy
  • a surfactant can be blended in order to further improve the applicability to surface unevenness without occurrence of pinholes and setups.
  • the surfactant include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, polyoxyethylene alkyl ethers such as polyoxyethylene oleyl ether, polyoxyethylene octylphenol ether, polyoxyethylene nonyl Polyoxyethylene alkyl allyl ethers such as phenol ether, polyoxyethylene / polyoxypropylene block copolymers, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan trioleate, sorbitan tristearate Sorbitan fatty acid esters such as rate, polyoxyethylene sorbitan monolaurate, polyoxyethylene sol
  • Nonionic surfactants such as polyoxyethylene sorbitan
  • the compounding amount of these surfactants is usually 2.0% by mass or less, preferably 1.0% by mass or less, based on the total solid content of the resist underlayer film forming composition for lithography of the present invention.
  • These surfactants may be added alone or in combination of two or more.
  • ethylene glycol monomethyl ether ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, Propylene glycol, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether, propylene glycol monoethyl ether acetate, propylene glycol propyl ether acetate, toluene, xylene, methyl ethyl ketone, cyclopentanone, cyclohexanone, 2-hydroxypropionic acid Ethyl, 2-hydroxy -2-Ethyl 2-methylpropionate, ethyl ethoxyacetate, ethyl hydroxyacetate, 2-hydroxypropionic acid Ethyl, 2-hydroxy -2-Ethyl 2-methylpropionate, ethyl e
  • organic solvents are used alone or in combination of two or more.
  • high boiling point solvents such as propylene glycol monobutyl ether and propylene glycol monobutyl ether acetate can be mixed and used.
  • propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, ethyl lactate, butyl lactate, cyclohexanone and the like are preferable for improving the leveling property.
  • the resist used in the present invention is a photoresist or an electron beam resist.
  • the photoresist applied on the upper part of the resist underlayer film for lithography in the present invention either negative type or positive type can be used, and a positive type photoresist composed of a novolak resin and 1,2-naphthoquinonediazide sulfonic acid ester, depending on the acid.
  • Chemically amplified photoresist comprising a binder having a group that decomposes to increase the alkali dissolution rate and a photoacid generator, a low molecular weight compound and photoacid that increases the alkali dissolution rate of the photoresist by decomposition with an alkali-soluble binder and acid
  • Chemically amplified photoresist comprising a generator, comprising a binder having a group that decomposes with acid to increase the alkali dissolution rate, a low-molecular compound that decomposes with acid to increase the alkali dissolution rate of the photoresist, and a photoacid generator Chemically amplified photoresist with Si atoms in the skeleton
  • a photoresist or the like which, for example, Rohm & Hearts Co., Ltd., and trade name APEX-E.
  • an acid is generated by irradiation of a resin containing an Si-Si bond in the main chain and an aromatic ring at the terminal and an electron beam.
  • a composition comprising an acid generator, or a composition comprising a poly (p-hydroxystyrene) having a hydroxy group substituted with an organic group containing N-carboxyamine, and an acid generator that generates an acid upon irradiation with an electron beam.
  • the acid generated from the acid generator by electron beam irradiation reacts with the N-carboxyaminoxy group of the polymer side chain, and the polymer side chain decomposes into a hydroxy group and exhibits alkali solubility, thus exhibiting alkali development. It dissolves in the liquid to form a resist pattern.
  • Acid generators that generate an acid upon irradiation with this electron beam are 1,1-bis [p-chlorophenyl] -2,2,2-trichloroethane, 1,1-bis [p-methoxyphenyl] -2,2,2 -Halogenated organic compounds such as trichloroethane, 1,1-bis [p-chlorophenyl] -2,2-dichloroethane, 2-chloro-6- (trichloromethyl) pyridine, triphenylsulfonium salts, diphenyliodonium salts, etc. Examples thereof include sulfonic acid esters such as onium salts, nitrobenzyl tosylate, and dinitrobenzyl tosylate.
  • sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, aqueous ammonia Inorganic amines such as ethylamine, primary amines such as n-propylamine, secondary amines such as diethylamine and di-n-butylamine, tertiary amines such as triethylamine and methyldiethylamine, dimethylethanolamine, triethanolamine Alcohol amines such as alcohol amines, tetramethylammonium hydroxide, tetraethylammonium hydroxide, quaternary ammonium salts such as choline, and cyclic amines such as pyrrole and piperidine, and alkaline aqueous solutions can be used.
  • aqueous ammonia Inorganic amines such as ethylamine, primary amines such as n-propylamine, secondary amines such as diethylamine and di-n-buty
  • an appropriate amount of an alcohol such as isopropyl alcohol or a nonionic surfactant may be added to the alkaline aqueous solution.
  • preferred developers are quaternary ammonium salts, more preferably tetramethylammonium hydroxide and choline.
  • a spinner, a coater, etc. are suitably used on a substrate (for example, a transparent substrate such as a silicon / silicon dioxide coating, a glass substrate, an ITO substrate) used for manufacturing a precision integrated circuit device.
  • a substrate for example, a transparent substrate such as a silicon / silicon dioxide coating, a glass substrate, an ITO substrate
  • the resist underlayer film forming composition After applying the resist underlayer film forming composition by a simple coating method, it is baked and cured to form a coating type underlayer film.
  • the thickness of the resist underlayer film is preferably 0.01 to 3.0 ⁇ m.
  • the conditions for baking after coating are 80 to 350 ° C. and 0.5 to 120 minutes.
  • the resist underlayer film directly or on the resist underlayer film, if necessary, coat one or several layers of coating material on the resist underlayer film, then apply the resist, and irradiate with light or electron beam through a predetermined mask.
  • a good resist pattern can be obtained by developing, rinsing and drying. If necessary, post-irradiation heating (PEB: Post Exposure Bake) can be performed. Then, the resist underlayer film where the resist has been developed and removed by the above process is removed by dry etching, and a desired pattern can be formed on the substrate.
  • PEB Post Exposure Bake
  • the exposure light in the photoresist is actinic radiation such as near ultraviolet, far ultraviolet, or extreme ultraviolet (for example, EUV, wavelength 13.5 nm), for example, 248 nm (KrF laser light), 193 nm (ArF laser light), Light having a wavelength such as 157 nm (F 2 laser light) is used.
  • the light irradiation can be used without particular limitation as long as it can generate an acid from a photoacid generator, and the exposure dose is 1 to 2000 mJ / cm 2 , or 10 to 1500 mJ / cm 2 , or 50. To 1000 mJ / cm 2 .
  • the electron beam irradiation of an electron beam resist can be performed using an electron beam irradiation apparatus, for example.
  • the semiconductor device can be manufactured through a step of etching the resist underlayer film with the formed resist pattern and a step of processing the semiconductor substrate with the patterned resist underlayer film.
  • the resist underlayer film for lithography which has a selection ratio of dry etching rates close to that of resist, is selected as a resist underlayer film for such processes, and a lower dry etching rate than resist.
  • the resist underlayer film by the resist underlayer film forming composition of the present invention satisfies these requirements, and such resist underlayer film can be provided with antireflection ability, and functions as a conventional antireflection film. Can have both.
  • a process of making the resist pattern and the resist underlayer film narrower than the pattern width at the time of developing the resist during dry etching of the resist underlayer film has begun to be used.
  • a resist underlayer film having a selectivity of a dry etching rate close to that of the resist has been required as a resist underlayer film for such a process.
  • the resist underlayer film by the resist underlayer film forming composition of the present invention satisfies these requirements, and such resist underlayer film can be provided with antireflection ability, and functions as a conventional antireflection film. Can have both.
  • the substrate after forming the resist underlayer film of the present invention on the substrate, directly or on the resist underlayer film as needed, after forming one to several layers of coating material on the resist underlayer film, A resist can be applied. As a result, the pattern width of the resist becomes narrow, and even when the resist is thinly coated to prevent pattern collapse, the substrate can be processed by selecting an appropriate etching gas.
  • a step of forming a resist underlayer film on a semiconductor substrate with a resist underlayer film forming composition, and a hard mask made of a coating material containing a silicon component or the like or a hard mask (for example, silicon nitride oxide) is formed thereon
  • a semiconductor device can be manufactured through a step of etching the resist underlayer film with an oxygen-based gas or a hydrogen-based gas with a hard mask and a step of processing a semiconductor substrate with a halogen-based gas with a patterned resist underlayer film.
  • the resist underlayer film forming composition for lithography of the present invention has a light absorption site incorporated into the skeleton, so there is no diffused material in the photoresist during heating and drying. Moreover, since the light absorption site has a sufficiently large light absorption performance, the effect of preventing reflected light is high.
  • the resist underlayer film forming composition for lithography of the present invention has high thermal stability, can prevent contamination of the upper layer film by decomposition products during baking, and can provide a margin for the temperature margin of the baking process. Is.
  • the resist underlayer film forming composition for lithography of the present invention has a function of preventing reflection of light depending on process conditions, and further prevents the interaction between the substrate and the photoresist or the material used for the photoresist or the photo resist.
  • the film can be used as a film having a function of preventing an adverse effect on a substrate of a substance generated upon exposure of the resist.
  • Synthesis example 1 In a 50 ml eggplant flask, 0.90 g of 1,4,5-trihydroxynaphthalene, 0.78 g of 1-naphthaldehyde (Tokyo Chemical Industry Co., Ltd.), 0.061 g of methanesulfonic acid (Tokyo Chemical Industry Co., Ltd.), propylene glycol 2.63 g of monomethyl ether was added. Thereafter, the mixture was heated to 110 ° C. and stirred at reflux for about 14 hours. After completion of the reaction, the reaction mixture was diluted with 3.00 g of tetrahydrofuran (manufactured by Kanto Chemical), and the precipitate was removed by filtration. The collected filtrate was dropped into a hexane solution and reprecipitated.
  • the obtained precipitate was suction filtered, and the filtrate was dried under reduced pressure at 85 ° C. overnight.
  • 1.26 g of 1,4,5-trihydroxynaphthalene resin as amber powder was obtained.
  • the obtained polymer corresponded to the formula (1-11).
  • the weight average molecular weight measured in terms of polystyrene by GPC was Mw 2,200, and the polydispersity Mw / Mn was 1.75.
  • Synthesis example 2 In a 50 ml eggplant flask, 0.88 g of 1,4,5-trihydroxynaphthalene, 1.62 g of 1-pyrenecarboxaldehyde (manufactured by Aldrich), 10.52 g of 1,4-dioxane (manufactured by Kanto Chemical), one p-toluenesulfonic acid Hydrate (Tokyo Chemical Industry Co., Ltd.) 0.14g was put. Thereafter, the mixture was heated to 110 ° C. and stirred at reflux for about 16 hours. After completion of the reaction, the reaction mixture was diluted with 5.26 g of tetrahydrofuran (manufactured by Kanto Chemical), and the precipitate was removed by filtration.
  • the collected filtrate was dropped into a hexane solution and reprecipitated.
  • the obtained precipitate was suction filtered, and the filtrate was dried under reduced pressure at 85 ° C. overnight.
  • the obtained polymer corresponded to the formula (1-41).
  • the weight average molecular weight Mw measured in terms of polystyrene by GPC was 1,500, and the polydispersity Mw / Mn was 1.54.
  • Synthesis example 3 In a 50 ml eggplant flask, 0.88 g of 1,4,5-trihydroxynaphthalene, 0.81 g of 1-pyrenecarboxaldehyde (manufactured by Aldrich), 0.55 g of 1-naphthaldehyde (manufactured by Tokyo Chemical Industry Co., Ltd.), 1,4- 7.31 g of dioxane (manufactured by Kanto Chemical) and 0.14 g of p-toluenesulfonic acid monohydrate (manufactured by Tokyo Chemical Industry Co., Ltd.) were added. Thereafter, the mixture was heated to 110 ° C. and stirred at reflux for about 16 hours.
  • the reaction mixture was diluted with 4.74 g of tetrahydrofuran (manufactured by Kanto Chemical), and the precipitate was removed by filtration.
  • the collected filtrate was dropped into a methanol / water mixed solution and reprecipitated.
  • the obtained precipitate was suction filtered, and the filtrate was dried under reduced pressure at 85 ° C. overnight.
  • 1.28 g of 1,4,5-trihydroxynaphthalene resin as amber powder was obtained.
  • the obtained polymer corresponded to the formula (1-46).
  • the weight average molecular weight Mw measured in terms of polystyrene by GPC was 2,500, and the polydispersity Mw / Mn was 1.67.
  • the reaction mixture was diluted with 22.5 g of tetrahydrofuran (manufactured by Kanto Chemical), and the precipitate was removed by filtration.
  • the collected filtrate was dropped into a methanol / water mixed solution and reprecipitated.
  • the obtained precipitate was suction filtered, and the filtrate was dried under reduced pressure at 85 ° C. overnight.
  • 8.03 g of 1,5-dihydroxynaphthalene resin as amber powder was obtained.
  • the obtained polymer corresponded to the formula (3-1).
  • the weight average molecular weight Mw measured in terms of polystyrene by GPC was 1,900, and the polydispersity Mw / Mn was 1.35.
  • the reaction mixture was diluted with 24.80 g of tetrahydrofuran (manufactured by Kanto Chemical), and the precipitate was removed by filtration.
  • the collected filtrate was dropped into a methanol / water mixed solution and reprecipitated.
  • the obtained precipitate was suction filtered, and the filtrate was dried under reduced pressure at 85 ° C. overnight.
  • 25.26g of phloroglucinol resin of the brown powder was obtained.
  • the obtained polymer corresponded to the formula (3-2).
  • the weight average molecular weight Mw measured by GPC in terms of polystyrene was 2,800, and the polydispersity Mw / Mn was 2.18.
  • Example 1 1 g of the resin obtained in Synthesis Example 1 is dissolved in 1.15 g of propylene glycol monomethyl ether acetate, 1.15 g of propylene glycol monomethyl ether and 9.19 g of cyclohexanone, and a solution of a resist underlayer film forming composition used in a lithography process using a multilayer film Was prepared.
  • Example 2 1 g of the resin obtained in Synthesis Example 2 is dissolved in 1.15 g of propylene glycol monomethyl ether acetate, 1.15 g of propylene glycol monomethyl ether, and 9.19 g of cyclohexanone, and a solution of a resist underlayer film forming composition used in a lithography process using a multilayer film Was prepared.
  • Example 3 1 g of the resin obtained in Synthesis Example 3 is dissolved in 1.15 g of propylene glycol monomethyl ether acetate, 1.15 g of propylene glycol monomethyl ether, and 9.19 g of cyclohexanone, and a solution of a resist underlayer film forming composition used in a lithography process using a multilayer film was prepared.
  • Comparative Example 1 1 g of cresol novolak resin (commercial product, weight average molecular weight is 4000) was dissolved in 10.34 g of propylene glycol monomethyl ether and 2.59 g of cyclohexanone to prepare a solution of a resist underlayer film forming composition used in a lithography process using a multilayer film. .
  • Comparative Example 2 Resist used in lithography process with multilayer film by dissolving 2 g of resin (Formula 3-1) obtained in Comparative Synthesis Example 1 in 9.19 g of propylene glycol monomethyl ether acetate, 9.19 g of propylene glycol monomethyl ether, and 4.59 g of cyclohexanone A solution of the underlayer film forming composition was prepared.
  • Comparative Example 3 1 g of the resin (formula 3-2) obtained in Comparative Synthesis Example 2 is dissolved in 10.34 g of propylene glycol monomethyl ether and 2.59 g of cyclohexanone to prepare a solution of a resist underlayer film forming composition for use in a lithography process using a multilayer film. did.
  • the resist underlayer film solutions prepared in Examples 1 to 3 and Comparative Example 1 were applied onto a silicon wafer using a spin coater. Baking was performed on a hot plate at 240 ° C. for 1 minute, 250 ° C. for 1 minute or 400 ° C. for 2 minutes (205 ° C. for 1 minute in Comparative Example 1) to form a resist underlayer film (film thickness 0.05 ⁇ m).
  • the refractive index (n value) and optical absorption coefficient (k value, also referred to as attenuation coefficient) at a wavelength of 193 nm using a spectroscopic ellipsometer of these resist underlayer films were measured. The results are shown in Table 1.
  • the speed ratio (1) in the table is a dry etching speed ratio of (each dry etching speed of the resist underlayer film used in Examples 1 to 3) / (dry etching speed of Comparative Example 1).
  • the solutions of the resist underlayer film forming compositions prepared in Examples 2 to 3 and Comparative Examples 2 to 3 were each applied onto a silicon oxide-coated silicon wafer using a spin coater.
  • a resist underlayer film (film thickness 200 nm) was formed by baking on a hot plate at 240 ° C. for 1 minute or 400 ° C. for 2 minutes.
  • a silicon hard mask forming composition solution (polyorganosiloxane solution) was applied on the resist underlayer film and baked at 240 ° C. for 1 minute to form a silicon hard mask layer (polyorganosiloxane condensate, film thickness 45 nm).
  • a resist solution was applied thereon and baked at 100 ° C.
  • a resist layer (film thickness 120 nm).
  • Exposure was performed using a mask at a wavelength of 193 nm, post-exposure heating PEB (1 minute at 105 ° C.) was performed, and development was performed to obtain a resist pattern.
  • dry etching was performed with a fluorine-based gas (component is CF 4 ), and the resist pattern was transferred to a hard mask.
  • dry etching was performed with an oxygen-based gas (component is O 2 ), and the resist pattern was transferred to the resist underlayer film.
  • dry etching was performed with a fluorine-based gas (component is C 4 F 8 ) to remove the silicon oxide film on the silicon wafer.
  • the resist underlayer film forming composition used in the lithography process using the multilayer film according to the present invention is different from the conventional high etch rate antireflection film, and has a dry etching rate selection ratio close to or smaller than that of the photoresist, semiconductor It is possible to provide a resist underlayer film that has a lower dry etching rate selection ratio than that of the substrate and can also have an effect as an antireflection film. Moreover, it turned out that the lower-layer film formation composition of this invention has heat resistance which can form a hard mask by vapor deposition in an upper layer. Further, even when the firing temperature is low, it is difficult to generate pattern bending, and a good pattern can be obtained. With a pattern width of at least around 36 nm, a good pattern without bending can be obtained.

Abstract

[Problem] To provide a resist underlayer film forming composition which has heat resistance and resistance to pattern bending, and which is used in a lithography process for the production of a semiconductor device. [Solution] A resist underlayer film forming composition for lithography, which contains a polymer that has a unit structure represented by formula (1). (In formula (1), A represents a hydroxy group-substituted naphthylene group that is derived from trihydroxynaphthalene and has three hydroxy groups; and B represents a monovalent fused aromatic hydrocarbon ring group wherein from two to four benzene rings are fused.)

Description

トリヒドロキシナフタレンノボラック樹脂を含むレジスト下層膜形成組成物Resist underlayer film forming composition containing trihydroxynaphthalene novolak resin
 本発明は、半導体基板加工時に有効なリソグラフィー用レジスト下層膜形成組成物、並びに該レジスト下層膜形成組成物を用いるレジストパターン形成法、及び半導体装置の製造方法に関するものである。 The present invention relates to a resist underlayer film forming composition for lithography effective at the time of processing a semiconductor substrate, a resist pattern forming method using the resist underlayer film forming composition, and a method for manufacturing a semiconductor device.
 従来から半導体デバイスの製造において、フォトレジスト組成物を用いたリソグラフィーによる微細加工が行われている。前記微細加工はシリコンウェハー等の被加工基板上にフォトレジスト組成物の薄膜を形成し、その上に半導体デバイスのパターンが描かれたマスクパターンを介して紫外線などの活性光線を照射し、現像し、得られたフォトレジストパターンを保護膜としてシリコンウェハー等の被加工基板をエッチング処理する加工法である。ところが、近年、半導体デバイスの高集積度化が進み、使用される活性光線もKrFエキシマレーザ(248nm)からArFエキシマレーザ(193nm)へと短波長化される傾向にある。これに伴い活性光線の基板からの乱反射や定在波の影響が大きな問題であった。そこでフォトレジストと被加工基板の間に反射防止膜(BottomAnti-ReflectiveCoating、BARC)を設ける方法が広く検討されるようになってきた。 Conventionally, fine processing by lithography using a photoresist composition has been performed in the manufacture of semiconductor devices. In the fine processing, a thin film of a photoresist composition is formed on a substrate to be processed such as a silicon wafer, and irradiated with actinic rays such as ultraviolet rays through a mask pattern on which a semiconductor device pattern is drawn, and developed. This is a processing method for etching a substrate to be processed such as a silicon wafer using the obtained photoresist pattern as a protective film. However, in recent years, the degree of integration of semiconductor devices has increased, and the actinic rays used tend to be shortened from KrF excimer laser (248 nm) to ArF excimer laser (193 nm). Accordingly, the influence of diffuse reflection of active rays from the substrate and standing waves has been a serious problem. Therefore, a method of providing an antireflection film (Bottom Anti-Reflective Coating, BARC) between the photoresist and the substrate to be processed has been widely studied.
今後、レジストパターンの微細化が進行すると、解像度の問題やレジストパターンが現像後に倒れるという問題が生じ、レジストの薄膜化が望まれてくる。そのため、基板加工に充分なレジストパターン膜厚を得ることが難しく、レジストパターンだけではなく、レジストと加工する半導体基板との間に作成されるレジスト下層膜にも基板加工時のマスクとしての機能を持たせるプロセスが必要になってきた。このようなプロセス用のレジスト下層膜として従来の高エッチレート性(エッチング速度の早い)レジスト下層膜とは異なり、レジストに近いドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜、レジストに比べて小さいドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜や半導体基板に比べて小さいドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜が要求されるようになってきている。 In the future, as the miniaturization of the resist pattern proceeds, there arises a problem of resolution and a problem that the resist pattern collapses after development, and it is desired to reduce the thickness of the resist. For this reason, it is difficult to obtain a resist pattern film thickness sufficient for substrate processing, and not only the resist pattern but also the resist underlayer film formed between the resist and the semiconductor substrate to be processed functions as a mask during substrate processing. The process to have it has become necessary. Unlike conventional resist underlayer films with high etch rate (fast etching speed) as resist underlayer films for such processes, compared to resist underlayer films and resists for lithography, which have a selectivity of dry etching rate close to that of resist There has been a demand for a resist underlayer film for lithography having a low dry etching rate selection ratio and a resist underlayer film for lithography having a low dry etching rate selection ratio compared to a semiconductor substrate.
 上記レジスト下層膜形成組成物に用いられるポリマーとして、ジヒドロキシナフタレンと、ベンズアルデヒドやナフトアルデヒドとのノボラック樹脂が開示されている(特許文献1を参照)。 As a polymer used for the resist underlayer film forming composition, a novolak resin of dihydroxynaphthalene and benzaldehyde or naphthaldehyde is disclosed (see Patent Document 1).
 上記レジスト下層膜形成組成物に用いられるポリマーとして、ポリヒドロキシベンゼンノボラック樹脂が開示されている(特許文献2を参照)。 Polyhydroxybenzene novolak resin is disclosed as a polymer used in the resist underlayer film forming composition (see Patent Document 2).
特開2009-229666JP2009-229666 国際特許出願WO2012/176767号パンフレットInternational Patent Application WO2012 / 176767 Pamphlet
 本発明の課題は、半導体装置製造のリソグラフィープロセスに用いるためのレジスト下層膜形成組成物を提供することである。また本発明の課題は、レジスト層とのインターミキシングが起こらず、優れたレジストパターンが得られ、レジストに近いドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜、レジストに比べて小さいドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜や半導体基板に比べて小さいドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜を提供ことにもある。また本発明は、248nm、193nm、157nm等の波長の照射光を微細加工に使用する際に基板からの反射光を効果的に吸収する性能をレジスト下層膜に付与することもできる。さらに、本発明は本発明のレジスト下層膜形成組成物を用いたレジストパターンの形成法を提供することにある。そして、さらに本発明は耐熱性も兼ね備えたレジスト下層膜を形成するためのレジスト下層膜形成組成物を提供する。 An object of the present invention is to provide a resist underlayer film forming composition for use in a lithography process for manufacturing a semiconductor device. Another object of the present invention is to provide an excellent resist pattern without intermixing with the resist layer, and has a dry etching rate close to that of the resist. There is also a need to provide a resist underlayer film for lithography having a selectivity ratio of 2 and a resist underlayer film for lithography having a selectivity ratio of a dry etching rate smaller than that of a semiconductor substrate. The present invention can also impart to the resist underlayer film the ability to effectively absorb the reflected light from the substrate when irradiation light having a wavelength of 248 nm, 193 nm, 157 nm or the like is used for fine processing. Furthermore, this invention is providing the formation method of the resist pattern using the resist underlayer film forming composition of this invention. Further, the present invention provides a resist underlayer film forming composition for forming a resist underlayer film that also has heat resistance.
本発明は第1観点として、式(1):
Figure JPOXMLDOC01-appb-C000002














(式(1)中、Aはトリヒドロキシナフタレンに由来するヒドロキシ基置換ナフチレン基であり3個のヒドロキシ基を有し、Bは2乃至4個のベンゼン環が縮合した1価の縮合芳香族炭化水素環基である。)で表される単位構造を有するポリマーを含むリソグラフィー用レジスト下層膜形成組成物、
第2観点として、Bの縮合芳香族炭化水素環基がナフタレン環基、アントラセン環基、又はピレン環基である第1観点に記載のレジスト下層膜形成組成物、
第3観点として、Bの縮合芳香族炭化水素環基がハロゲン基、ヒドロキシ基、ニトロ基、アミノ基、カルボキシル基、カルボン酸エステル基、ニトリル基、又はこれらの組み合わせを置換基として有するものである第1観点又は第2観点に記載のレジスト下層膜形成組成物、
第4観点として、更に架橋剤を含む第1観点乃至第3観点のいずれか一つに記載のレジスト下層膜形成組成物、
第5観点として、更に酸及び/又は酸発生剤を含む第1観点乃至第4観点のいずれか一つに記載のレジスト下層膜形成組成物、
第6観点として、第1観点乃至第5観点のいずれか一つに記載のレジスト下層膜形成組成物を半導体基板上に塗布し焼成することによって得られるレジスト下層膜、
第7観点として、第1観点乃至第5観点のいずれか一つに記載のレジスト下層膜形成組成物を半導体基板上に塗布し焼成してレジスト下層膜を形成する工程を含む半導体の製造に用いられるレジストパターンの形成方法、
第8観点として、半導体基板上に第1観点乃至第5観点のいずれか一つに記載のレジスト下層膜形成組成物によりレジスト下層膜を形成する工程、その上にレジスト膜を形成する工程、光又は電子線の照射と現像によりレジストパターンを形成する工程、形成されたレジストパターンにより該レジスト下層膜をエッチングする工程、及びパターン化されたレジスト下層膜により半導体基板を加工する工程を含む半導体装置の製造方法、
第9観点として、半導体基板に第1観点乃至第5観点のいずれか一つに記載のレジスト下層膜形成組成物によりレジスト下層膜を形成する工程、その上にハードマスクを形成する工程、更にその上にレジスト膜を形成する工程、光又は電子線の照射と現像によりレジストパターンを形成する工程、形成されたレジストパターンによりハードマスクをエッチングする工程、パターン化されたハードマスクにより該レジスト下層膜をエッチングする工程、及びパターン化されたレジスト下層膜により半導体基板を加工する工程を含む半導体装置の製造方法、及び
第10観点として、ハードマスクが無機物の塗布又は無機物の蒸着により形成されたものである第9観点に記載の製造方法である。
As a first aspect of the present invention, the formula (1):
Figure JPOXMLDOC01-appb-C000002














(In the formula (1), A is a hydroxy-substituted naphthylene group derived from trihydroxynaphthalene, has 3 hydroxy groups, and B is a monovalent condensed aromatic carbonized with 2 to 4 benzene rings condensed. A composition for forming a resist underlayer film for lithography comprising a polymer having a unit structure represented by:
As a second aspect, the resist underlayer film forming composition according to the first aspect, wherein the condensed aromatic hydrocarbon ring group of B is a naphthalene ring group, an anthracene ring group, or a pyrene ring group,
As a third aspect, the condensed aromatic hydrocarbon ring group of B has a halogen group, a hydroxy group, a nitro group, an amino group, a carboxyl group, a carboxylic acid ester group, a nitrile group, or a combination thereof as a substituent. The resist underlayer film forming composition according to the first aspect or the second aspect,
As a fourth aspect, the resist underlayer film forming composition according to any one of the first aspect to the third aspect, further including a crosslinking agent,
As a fifth aspect, the resist underlayer film forming composition according to any one of the first to fourth aspects, further comprising an acid and / or an acid generator,
As a sixth aspect, a resist underlayer film obtained by applying and baking the resist underlayer film forming composition according to any one of the first to fifth aspects on a semiconductor substrate,
As a seventh aspect, the resist underlayer film forming composition according to any one of the first to fifth aspects is applied to a semiconductor substrate and baked to form a resist underlayer film. Forming a resist pattern,
As an eighth aspect, a step of forming a resist underlayer film on the semiconductor substrate with the resist underlayer film forming composition according to any one of the first to fifth aspects, a step of forming a resist film thereon, light Or a step of forming a resist pattern by electron beam irradiation and development, a step of etching the resist underlayer film with the formed resist pattern, and a step of processing a semiconductor substrate with the patterned resist underlayer film. Production method,
As a ninth aspect, a step of forming a resist underlayer film on the semiconductor substrate with the resist underlayer film forming composition according to any one of the first to fifth aspects, a step of forming a hard mask thereon, and A step of forming a resist film thereon, a step of forming a resist pattern by irradiation and development with light or an electron beam, a step of etching a hard mask with the formed resist pattern, and forming the resist underlayer film with a patterned hard mask A manufacturing method of a semiconductor device including a step of etching and a step of processing a semiconductor substrate with a patterned resist underlayer film, and as a tenth aspect, a hard mask is formed by applying inorganic material or depositing inorganic material It is a manufacturing method given in the 9th viewpoint.
 本発明のレジスト下層膜形成組成物により、形成されたレジスト下層膜の上層部とその上に被覆される層とはインターミキシングを起こすことがないため、良好なレジストのパターン形状を形成することができる。 Since the resist underlayer film forming composition of the present invention does not cause intermixing between the upper layer portion of the formed resist underlayer film and the layer coated thereon, a good resist pattern shape can be formed. it can.
 また、本発明のレジスト下層膜形成組成物は基板からの反射を効率的に抑制する性能をレジスト下層膜に付与することも可能であり、形成されたレジスト下層膜は露光光の反射防止膜としての効果を併せ持つこともできる。 In addition, the resist underlayer film forming composition of the present invention can also impart to the resist underlayer film the ability to efficiently suppress reflection from the substrate, and the formed resist underlayer film can serve as an antireflection film for exposure light. You can also have the effect of.
 さらに本発明のレジスト下層膜形成組成物により、レジストに近いドライエッチング速度の選択比、レジストに比べて小さいドライエッチング速度の選択比や半導体基板に比べて小さいドライエッチング速度の選択比を持つ、優れたレジスト下層膜を提供することができる。 Furthermore, the resist underlayer film forming composition of the present invention has an excellent dry etching rate selection ratio close to the resist, a low dry etching rate selection ratio compared to the resist, and a low dry etching rate selection ratio compared to the semiconductor substrate. A resist underlayer film can be provided.
 レジストパターンの微細化に伴いレジストパターンが現像後に倒れることを防止するためにレジストの薄膜化が行われている。そのような薄膜レジストでは、レジストパターンをエッチングプロセスでその下層膜に転写し、その下層膜をマスクとして基板加工を行うプロセスや、レジストパターンをエッチングプロセスでその下層膜に転写し、さらに下層膜に転写されたパターンを異なるガス組成を用いてその下層膜に転写するという行程を繰り返し、最終的に基板加工を行うプロセスがある。本発明のレジスト下層膜及びその形成組成物はこのプロセスに有効であり、本発明のレジスト下層膜を用いて基板を加工する時は、加工基板(例えば、基板上の熱酸化ケイ素膜、窒化珪素膜、ポリシリコン膜等)に対して十分にエッチング耐性を有するものである。 In order to prevent the resist pattern from collapsing after development as the resist pattern becomes finer, the resist is thinned. In such a thin film resist, the resist pattern is transferred to the lower layer film by an etching process, the substrate processing is performed using the lower layer film as a mask, or the resist pattern is transferred to the lower layer film by an etching process, and further to the lower layer film. There is a process in which the process of transferring the transferred pattern to the lower layer film using a different gas composition is repeated to finally process the substrate. The resist underlayer film and the composition for forming the resist of the present invention are effective for this process. When a substrate is processed using the resist underlayer film of the present invention, a processed substrate (for example, a thermal silicon oxide film on the substrate, silicon nitride) Film, polysilicon film, etc.) having sufficient etching resistance.
 そして、本発明のレジスト下層膜は、平坦化膜、レジスト下層膜、レジスト層の汚染防止膜、ドライエッチ選択性を有する膜として用いることができる。これにより、半導体製造のリソグラフィープロセスにおけるレジストパターン形成を、容易に、精度良く行うことができるようになる。 The resist underlayer film of the present invention can be used as a planarizing film, a resist underlayer film, a resist layer antifouling film, or a film having dry etch selectivity. This makes it possible to easily and accurately form a resist pattern in a lithography process for manufacturing a semiconductor.
 本発明によるレジスト下層膜形成組成物によるレジスト下層膜を基板上に形成し、その上にハードマスクを形成し、その上にレジスト膜を形成し、露光と現像によりレジストパターンを形成し、ドライエッチングによりレジストパターンをハードマスクに転写し、ドライエッチングによりハードマスクに転写されたレジストパターンをレジスト下層膜に転写し、そのレジスト下層膜で半導体基板の加工を行うプロセスがある。このプロセスにおいてドライエッチングガスでドライエッチングする時に本発明のレジスト下層膜によるパターンはパターンの曲がり耐性(anti-wiggling)に優れたパターンとなる。 A resist underlayer film is formed on a substrate by a resist underlayer film forming composition according to the present invention, a hard mask is formed thereon, a resist film is formed thereon, a resist pattern is formed by exposure and development, and dry etching is performed. There is a process in which the resist pattern is transferred to a hard mask by the above, the resist pattern transferred to the hard mask by dry etching is transferred to the resist underlayer film, and the semiconductor substrate is processed by the resist underlayer film. In this process, when dry etching is performed with a dry etching gas, the pattern formed by the resist underlayer film of the present invention is a pattern excellent in pattern bending resistance (anti-wiggling).
 また、このプロセスでハードマスクは有機ポリマーや無機ポリマー(ケイ素ポリマー)と溶剤を含む塗布型の組成物によって行われる場合と、無機物の真空蒸着によって行われる場合がある。無機物(例えば、窒化酸化ケイ素)の真空蒸着では蒸着物がレジスト下層膜表面に堆積するが、その際にレジスト下層膜表面の温度が400℃前後に上昇する。本発明では用いられるポリマーが多くのベンゼン系の単位構造を有するポリマーであるため極めて耐熱性が高く、蒸着物の堆積によっても熱劣化を生じない。 In this process, the hard mask may be formed by a coating type composition containing an organic polymer or inorganic polymer (silicon polymer) and a solvent, or by vacuum deposition of an inorganic substance. In the vacuum deposition of an inorganic material (for example, silicon nitride oxide), the deposited material is deposited on the resist underlayer film surface. At this time, the temperature of the resist underlayer film surface rises to around 400 ° C. In the present invention, the polymer used is a polymer having many benzene-based unit structures, so that the heat resistance is extremely high, and thermal degradation does not occur even by deposition of a deposit.
 本発明は式(1)で表される単位構造を有するポリマーを含むリソグラフィー用レジスト下層膜形成組成物である。 The present invention is a resist underlayer film forming composition for lithography containing a polymer having a unit structure represented by the formula (1).
 上記ポリマーはトリヒドロキシナフタレンとアルデヒドとを縮合したノボラック樹脂として用いることができる。 The above polymer can be used as a novolak resin obtained by condensing trihydroxynaphthalene and aldehyde.
 本発明において上記のリソグラフィー用レジスト下層膜形成組成物は上記ポリマーと溶剤を含む。そして、架橋剤と酸を含むことができ、必要に応じて酸発生剤、界面活性剤等の添加剤を含むことができる。この組成物の固形分は0.1乃至70質量%、または0.1乃至60質量%である。ここで固形分はレジスト下層膜形成組成物から溶剤を除いた全成分の含有割合である。固形分中に上記ポリマーを1乃至100質量%、または1乃至99.9質量%、または50乃至99.9質量%、または50乃至95質量%、または50乃至90質量%の割合で含有することができる。
本発明に用いられるポリマーは、重量平均分子量が600乃至1000000、又は600乃至200000、600乃至100000、又は600乃至10000、又は1000乃至5000、又は1500乃至3000である。
In the present invention, the resist underlayer film forming composition for lithography includes the polymer and a solvent. And it can contain a crosslinking agent and an acid, and can contain additives, such as an acid generator and surfactant, as needed. The solid content of the composition is 0.1 to 70% by mass, or 0.1 to 60% by mass. Here, the solid content is the content ratio of all components excluding the solvent from the resist underlayer film forming composition. 1 to 100% by mass, or 1 to 99.9% by mass, or 50 to 99.9% by mass, or 50 to 95% by mass, or 50 to 90% by mass in the solid content Can do.
The polymer used in the present invention has a weight average molecular weight of 600 to 1,000,000, or 600 to 200,000, 600 to 100,000, or 600 to 10,000, or 1000 to 5000, or 1500 to 3000.
 式(1)中、Aはトリヒドロキシナフタレンに由来するヒドロキシ基置換ナフチレン基であり、Bは2乃至4個のベンゼン環が縮合した1価の縮合芳香族炭化水素環基である。 In the formula (1), A is a hydroxy group-substituted naphthylene group derived from trihydroxynaphthalene, and B is a monovalent condensed aromatic hydrocarbon ring group in which 2 to 4 benzene rings are condensed.
 また、Bの縮合芳香族炭化水素環基はナフタレン環基、アントラセン環基、又はピレン環基とすることができる。ナフタレン環基、及びピレン環基を好ましく用いることができる。またピレン環基を好ましく用いることができる。Bの縮合芳香族炭化水素環基の置換基としてのカルボン酸エステル基は酢酸エチル基、酢酸n-ブチル基、酢酸i-ブチル基、プロピオン酸メチル基等が挙げられる。また、置換基としてのハロゲン基としては、フッ素基、塩素基、臭素基、ヨウ素基が挙げられる。 The condensed aromatic hydrocarbon ring group of B can be a naphthalene ring group, an anthracene ring group, or a pyrene ring group. A naphthalene ring group and a pyrene ring group can be preferably used. A pyrene ring group can be preferably used. Examples of the carboxylic acid ester group as a substituent of the condensed aromatic hydrocarbon ring group of B include an ethyl acetate group, an n-butyl acetate group, an i-butyl acetate group, and a methyl propionate group. Examples of the halogen group as a substituent include a fluorine group, a chlorine group, a bromine group, and an iodine group.
 上記式(1)で表される単位構造としては以下に例示することができる。
Figure JPOXMLDOC01-appb-C000003






Examples of the unit structure represented by the above formula (1) are shown below.
Figure JPOXMLDOC01-appb-C000003






Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004






Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005






Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006






 本発明ではトリヒドロキシナフタレンとアルデヒドとを縮合した式(1)で表される繰り返し単位構造を有するノボラック樹脂をポリマーとして用いることができる。 In the present invention, a novolak resin having a repeating unit structure represented by the formula (1) obtained by condensing trihydroxynaphthalene and aldehyde can be used as a polymer.
 アルデヒドはナフタレン、アントラセン、ピレン等の縮合芳香族炭化水素環基を有するアルデヒドであり、ナフトアルデヒド、アントラセンカルボキシアルデヒド、ピレンカルボキシアルデヒド等が挙げられる。 Aldehydes are aldehydes having condensed aromatic hydrocarbon ring groups such as naphthalene, anthracene, and pyrene, and include naphthaldehyde, anthracene carboxaldehyde, pyrene carboxaldehyde, and the like.
 この反応では上記フェノール類1モルに対して、アルデヒド類を0.1乃至10モル、好ましくは0.8乃至2.2モル、更に好ましくは1.0モルの割合で反応させることができる。 In this reaction, the aldehyde can be reacted at a ratio of 0.1 to 10 mol, preferably 0.8 to 2.2 mol, and more preferably 1.0 mol with respect to 1 mol of the phenol.
上記縮合反応で用いられる酸触媒としては、例えば硫酸、リン酸、過塩素酸等の鉱酸類、p-トルエンスルホン酸、p-トルエンスルホン酸一水和物等の有機スルホン酸類、蟻酸、シュウ酸等のカルボン酸類が使用される。酸触媒の使用量は、使用する酸類の種類によって種々選択される。その使用量は、通常、上記フェノール類とアルデヒドの合計の100質量部に対して、0.001乃至10000質量部、好ましくは、0.01乃至1000質量部、より好ましくは0.1乃至100質量部である。 Examples of the acid catalyst used in the above condensation reaction include mineral acids such as sulfuric acid, phosphoric acid and perchloric acid, organic sulfonic acids such as p-toluenesulfonic acid and p-toluenesulfonic acid monohydrate, formic acid and oxalic acid. Carboxylic acids such as are used. The amount of the acid catalyst used is variously selected depending on the type of acids used. The amount used is usually 0.001 to 10000 parts by weight, preferably 0.01 to 1000 parts by weight, more preferably 0.1 to 100 parts by weight, based on 100 parts by weight of the total of the phenols and aldehydes. Part.
上記の縮合反応は無溶剤でも行われるが、通常溶剤を用いて行われる。溶剤としては反応を阻害しないものであれば全て使用することができる。例えばテトラヒドロフラン、ジオキサン等の環状エーテル類が挙げられる。また、使用する酸触媒が例えば蟻酸のような液状のものであるならば溶剤としての役割を兼ねさせることもできる。 The above condensation reaction is carried out without a solvent, but is usually carried out using a solvent. Any solvent that does not inhibit the reaction can be used. Examples thereof include cyclic ethers such as tetrahydrofuran and dioxane. In addition, if the acid catalyst used is a liquid such as formic acid, it can also serve as a solvent.
縮合時の反応温度は通常40℃乃至200℃である。反応時間は反応温度によって種々選択されるが、通常30分乃至50時間程度である。
以上のようにして得られる重合体の重量平均分子量Mwは、通常600乃至1000000、又は600乃至200000、600乃至100000、又は600乃至10000、又は1000乃至5000、又は1500乃至3000である。
The reaction temperature during the condensation is usually 40 ° C to 200 ° C. The reaction time is variously selected depending on the reaction temperature, but is usually about 30 minutes to 50 hours.
The weight average molecular weight Mw of the polymer obtained as described above is usually 600 to 1,000,000, or 600 to 200,000, 600 to 100,000, 600 to 10,000, 1000 to 5000, or 1500 to 3000.
上記ポリマーは他のポリマーを全ポリマー中に30質量%以内で混合して用いることができる。 The said polymer can mix and use another polymer within 30 mass% in all the polymers.
 それらポリマーとしてはポリアクリル酸エステル化合物、ポリメタクリル酸エステル化合物、ポリアクリルアミド化合物、ポリメタクリルアミド化合物、ポリビニル化合物、ポリスチレン化合物、ポリマレイミド化合物、ポリマレイン酸無水物、及びポリアクリロニトリル化合物が挙げられる。 Examples of these polymers include polyacrylic acid ester compounds, polymethacrylic acid ester compounds, polyacrylamide compounds, polymethacrylamide compounds, polyvinyl compounds, polystyrene compounds, polymaleimide compounds, polymaleic anhydride compounds, and polyacrylonitrile compounds.
 ポリアクリル酸エステル化合物の原料モノマーとしては、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、ベンジルアクリレート、ナフチルアクリレート、アントリルアクリレート、アントリルメチルアクリレート、フェニルアクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、2,2,2-トリフルオロエチルアクリレート、4-ヒドロキシブチルアクリレート、イソブチルアクリレート、tert-ブチルアクリレート、シクロヘキシルアクリレート、イソボルニルアクリレート、2-メトキシエチルアクリレート、メトキシトリエチレングリコールアクリレート、2-エトキシエチルアクリレート、テトラヒドロフルフリルアクリレート、3-メトキシブチルアクリレート、2-メチル-2-アダマンチルアクリレート、2-エチル-2-アダマンチルアクリレート、2-プロピル-2-アダマンチルアクリレート、2-メトキシブチル-2-アダマンチルアクリレート、8-メチル-8-トリシクロデシルアクリレート、8-エチル-8-トリシクロデシルアクリレート、及び5-アクリロイルオキシ-6-ヒドロキシノルボルネン-2-カルボキシリック-6-ラクトン等が挙げられる。 Examples of the raw material monomer for the polyacrylate compound include methyl acrylate, ethyl acrylate, isopropyl acrylate, benzyl acrylate, naphthyl acrylate, anthryl acrylate, anthryl methyl acrylate, phenyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2,2,2-trifluoroethyl acrylate, 4-hydroxybutyl acrylate, isobutyl acrylate, tert-butyl acrylate, cyclohexyl acrylate, isobornyl acrylate, 2-methoxyethyl acrylate, methoxytriethylene glycol acrylate, 2-ethoxyethyl acrylate , Tetrahydrofurfuryl acrylate, 3-methoxybutyl acrylate 2-methyl-2-adamantyl acrylate, 2-ethyl-2-adamantyl acrylate, 2-propyl-2-adamantyl acrylate, 2-methoxybutyl-2-adamantyl acrylate, 8-methyl-8-tricyclodecyl acrylate, Examples include 8-ethyl-8-tricyclodecyl acrylate and 5-acryloyloxy-6-hydroxynorbornene-2-carboxyl-6-lactone.
ポリメタクリル酸エステル化合物の原料モノマーとしては、エチルメタクリレート、ノルマルプロピルメタクリレート、ノルマルペンチルメタクリレート、シクロヘキシルメタクリレート、ベンジルメタクリレート、ナフチルメタクリレート、アントリルメタクリレート、アントリルメチルメタクリレート、フェニルメタクリレート、2-フェニルエチルメタクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、2,2,2-トリフルオロエチルメタクリレート、2,2,2-トリクロロエチルメタクリレート、メチルアクリレート、イソブチルメタクリレート、2-エチルヘキシルメタクリレート、イソデシルメタクリレート、ノルマルラウリルメタクリレート、ノルマルステアリルメタクリレート、メトキシジエチレングリコールメタクリレート、メトキシポリエチレングリコールメタクリレート、テトラヒドロフルフリルメタクリレート、イソボルニルメタクリレート、tert-ブチルメタクリレート、イソステアリルメタクリレート、ノルマルブトキシエチルメタクリレート、3-クロロ-2-ヒドロキシプロピルメタクリレート、2-メチル-2-アダマンチルメタクリレート、2-エチル-2-アダマンチルメタクリレート、2-プロピル-2-アダマンチルメタクリレート、2-メトキシブチル-2-アダマンチルメタクリレート、8-メチル-8-トリシクロデシルメタクリレート、8-エチル-8-トリシクロデシルメタクリレート、5-メタクリロイルオキシ-6-ヒドロキシノルボルネン-2-カルボキシリック-6-ラクトン、及び2,2,3,3,4,4,4-ヘプタフルオロブチルメタクリレート等が挙げられる。 Examples of the raw material monomer for the polymethacrylate compound include ethyl methacrylate, normal propyl methacrylate, normal pentyl methacrylate, cyclohexyl methacrylate, benzyl methacrylate, naphthyl methacrylate, anthryl methacrylate, anthryl methyl methacrylate, phenyl methacrylate, 2-phenylethyl methacrylate, 2 -Hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 2,2,2-trifluoroethyl methacrylate, 2,2,2-trichloroethyl methacrylate, methyl acrylate, isobutyl methacrylate, 2-ethylhexyl methacrylate, isodecyl methacrylate, normal lauryl methacrylate Normal stearyl methacrylate , Methoxydiethylene glycol methacrylate, methoxypolyethylene glycol methacrylate, tetrahydrofurfuryl methacrylate, isobornyl methacrylate, tert-butyl methacrylate, isostearyl methacrylate, normal butoxyethyl methacrylate, 3-chloro-2-hydroxypropyl methacrylate, 2-methyl-2- Adamantyl methacrylate, 2-ethyl-2-adamantyl methacrylate, 2-propyl-2-adamantyl methacrylate, 2-methoxybutyl-2-adamantyl methacrylate, 8-methyl-8-tricyclodecyl methacrylate, 8-ethyl-8-tricyclo Decyl methacrylate, 5-methacryloyloxy-6-hydroxynorbornene-2-carboxylic 6-lactone, and 2,2,3,3,4,4,4-heptafluoro-butyl methacrylate, and the like.
 ポリアクリルアミド化合物の原料モノマーとしては、アクリルアミド、N-メチルアクリルアミド、N-エチルアクリルアミド、N-ベンジルアクリルアミド、N-フェニルアクリルアミド、及びN,N-ジメチルアクリルアミド等が挙げられる。
 ポリメタクリル酸アミド化合物の原料モノマーとしては、メタクリルアミド、N-メチルメタクリルアミド、N-エチルメタクリルアミド、N-ベンジルメタクリルアミド、N-フェニルメタクリルアミド、及びN,N-ジメチルメタクリルアミド等が挙げられる。
ポリビニル化合物の原料モノマーとしては、ビニルエーテル、メチルビニルエーテル、ベンジルビニルエーテル、2-ヒドロキシエチルビニルエーテル、フェニルビニルエーテル、及びプロピルビニルエーテル等が挙げられる。
ポリスチレン化合物の原料モノマーとしては、スチレン、メチルスチレン、クロロスチレン、ブロモスチレン、及びヒドロキシスチレン等が挙げられる。
ポリマレイミド化合物の原料モノマーとしては、マレイミド、N-メチルマレイミド、N-フェニルマレイミド、及びN-シクロヘキシルマレイミド等が挙げられる。
Examples of the raw material monomer for the polyacrylamide compound include acrylamide, N-methylacrylamide, N-ethylacrylamide, N-benzylacrylamide, N-phenylacrylamide, and N, N-dimethylacrylamide.
Examples of the raw material monomer of the polymethacrylic acid amide compound include methacrylamide, N-methyl methacrylamide, N-ethyl methacrylamide, N-benzyl methacrylamide, N-phenyl methacrylamide, and N, N-dimethyl methacrylamide. .
Examples of the raw material monomer for the polyvinyl compound include vinyl ether, methyl vinyl ether, benzyl vinyl ether, 2-hydroxyethyl vinyl ether, phenyl vinyl ether, and propyl vinyl ether.
Examples of the raw material monomer for the polystyrene compound include styrene, methylstyrene, chlorostyrene, bromostyrene, and hydroxystyrene.
Examples of the raw material monomer for the polymaleimide compound include maleimide, N-methylmaleimide, N-phenylmaleimide, and N-cyclohexylmaleimide.
 これらポリマーの製造は、有機溶剤に付加重合性モノマー及び必要に応じて添加される連鎖移動剤(モノマーの質量に対して10%以下)を溶解した後、重合開始剤を加えて重合反応を行い、その後、重合停止剤を添加することにより製造することができる。重合開始剤の添加量としてはモノマーの質量に対して1乃至10%であり、重合停止剤の添加量としてはモノマーの質量に対して0.01乃至0.2質量%である。使用される有機溶剤としてはプロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、乳酸エチル、シクロヘキサノン、メチルエチルケトン、及びジメチルホルムアミド等が、連鎖移動剤としてはドデカンチオール及びドデシルチオール等が、重合開始剤としてはアゾビスイソブチロニトリル及びアゾビスシクロヘキサンカルボニトリル等が、そして、重合停止剤としては4-メトキシフェノール等が挙げられる。反応温度としては30乃至100℃、反応時間としては1乃至48時間から適宜選択される。 These polymers are produced by dissolving an addition polymerizable monomer and an optionally added chain transfer agent (10% or less based on the mass of the monomer) in an organic solvent, and then adding a polymerization initiator to perform a polymerization reaction. Thereafter, it can be produced by adding a polymerization terminator. The addition amount of the polymerization initiator is 1 to 10% with respect to the mass of the monomer, and the addition amount of the polymerization terminator is 0.01 to 0.2% by mass with respect to the mass of the monomer. Examples of the organic solvent used include propylene glycol monomethyl ether, propylene glycol monopropyl ether, ethyl lactate, cyclohexanone, methyl ethyl ketone, and dimethylformamide, chain transfer agents such as dodecane thiol and dodecyl thiol, and polymerization initiators such as azo Examples thereof include bisisobutyronitrile and azobiscyclohexanecarbonitrile, and examples of the polymerization terminator include 4-methoxyphenol. The reaction temperature is appropriately selected from 30 to 100 ° C., and the reaction time is appropriately selected from 1 to 48 hours.
本発明のレジスト下層膜形成組成物は架橋剤成分を含むことができる。その架橋剤としては、メラミン系、置換尿素系、またはそれらのポリマー系等が挙げられる。好ましくは、少なくとも2個の架橋形成置換基を有する架橋剤であり、メトキシメチル化グリコールウリル、ブトキシメチル化グリコールウリル、メトキシメチル化メラミン、ブトキシメチル化メラミン、メトキシメチル化ベンゾグワナミン、ブトキシメチル化ベンゾグワナミン、メトキシメチル化尿素、ブトキシメチル化尿素、メトキシメチル化チオ尿素、またはメトキシメチル化チオ尿素等の化合物である。また、これらの化合物の縮合体も使用することができる。
また、上記架橋剤としては耐熱性の高い架橋剤を用いることができる。耐熱性の高い架橋剤としては分子内に芳香族環(例えば、ベンゼン環、ナフタレン環)を有する架橋形成置換基を含有する化合物を好ましく用いることができる。
The resist underlayer film forming composition of the present invention can contain a crosslinking agent component. Examples of the cross-linking agent include melamine type, substituted urea type, or polymer type thereof. Preferably, a cross-linking agent having at least two cross-linking substituents, methoxymethylated glycoluril, butoxymethylated glycoluril, methoxymethylated melamine, butoxymethylated melamine, methoxymethylated benzogwanamine, butoxymethylated benzogwanamine, Compounds such as methoxymethylated urea, butoxymethylated urea, methoxymethylated thiourea, or methoxymethylated thiourea. Moreover, the condensate of these compounds can also be used.
Moreover, as the crosslinking agent, a crosslinking agent having high heat resistance can be used. As the crosslinking agent having high heat resistance, a compound containing a crosslinking-forming substituent having an aromatic ring (for example, a benzene ring or a naphthalene ring) in the molecule can be preferably used.
これらの化合物としては下記式(2)で表される部分構造を有する化合物や、下記式(3)で表される繰り返し単位を有するポリマー又はオリゴマーが挙げられる。
Figure JPOXMLDOC01-appb-C000007












式(2)中、R10及びR11はそれぞれ水素原子、炭素数1乃至10のアルキル基、又は炭素数6乃至20のアリール基であり、n10は1乃至4の整数であり、n11は1乃至(5-n10)の整数であり、(n10+n11)は2乃至5の整数を示す。
式(3)中、R12は水素原子又は炭素数1乃至10のアルキル基であり、R13は炭素数1乃至10のアルキル基であり、n12は1乃至4の整数であり、n13は0乃至(4-n12)であり、(n12+n13)は1乃至4の整数を示す。オリゴマー及びポリマーは繰り返し単位構造の数が2乃至100、又は2乃至50の範囲で用いることができる。
Examples of these compounds include compounds having a partial structure represented by the following formula (2), and polymers or oligomers having a repeating unit represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000007












In Formula (2), R 10 and R 11 are each a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms, n10 is an integer of 1 to 4, and n11 is 1 To (5-n10), and (n10 + n11) represents an integer of 2 to 5.
In Formula (3), R 12 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, R 13 is an alkyl group having 1 to 10 carbon atoms, n12 is an integer of 1 to 4, and n13 is 0 To (4-n12), and (n12 + n13) represents an integer of 1 to 4. The oligomer and polymer can be used in the range of 2 to 100 or 2 to 50 repeating unit structures.
上記R10乃至R13における炭素数1乃至10のアルキル基としては、例えばメチル基、エチル基、n-プロピル基、i-プロピル基、シクロプロピル基、n-ブチル基、i-ブチル基、s-ブチル基、t-ブチル基、シクロブチル基、1-メチル-シクロプロピル基、2-メチル-シクロプロピル基、n-ペンチル基、1-メチル-n-ブチル基、2-メチル-n-ブチル基、3-メチル-n-ブチル基、1,1-ジメチル-n-プロピル基、1,2-ジメチル-n-プロピル基、2,2-ジメチル-n-プロピル基、1-エチル-n-プロピル基、シクロペンチル基、1-メチル-シクロブチル基、2-メチル-シクロブチル基、3-メチル-シクロブチル基、1,2-ジメチル-シクロプロピル基、2,3-ジメチル-シクロプロピル基、1-エチル-シクロプロピル基、2-エチル-シクロプロピル基、n-ヘキシル基、1-メチル-n-ペンチル基、2-メチル-n-ペンチル基、3-メチル-n-ペンチル基、4-メチル-n-ペンチル基、1,1-ジメチル-n-ブチル基、1,2-ジメチル-n-ブチル基、1,3-ジメチル-n-ブチル基、2,2-ジメチル-n-ブチル基、2,3-ジメチル-n-ブチル基、3,3-ジメチル-n-ブチル基、1-エチル-n-ブチル基、2-エチル-n-ブチル基、1,1,2-トリメチル-n-プロピル基、1,2,2-トリメチル-n-プロピル基、1-エチル-1-メチル-n-プロピル基、1-エチル-2-メチル-n-プロピル基、シクロヘキシル基、1-メチル-シクロペンチル基、2-メチル-シクロペンチル基、3-メチル-シクロペンチル基、1-エチル-シクロブチル基、2-エチル-シクロブチル基、3-エチル-シクロブチル基、1,2-ジメチル-シクロブチル基、1,3-ジメチル-シクロブチル基、2,2-ジメチル-シクロブチル基、2,3-ジメチル-シクロブチル基、2,4-ジメチル-シクロブチル基、3,3-ジメチル-シクロブチル基、1-n-プロピル-シクロプロピル基、2-n-プロピル-シクロプロピル基、1-i-プロピル-シクロプロピル基、2-i-プロピル-シクロプロピル基、1,2,2-トリメチル-シクロプロピル基、1,2,3-トリメチル-シクロプロピル基、2,2,3-トリメチル-シクロプロピル基、1-エチル-2-メチル-シクロプロピル基、2-エチル-1-メチル-シクロプロピル基、2-エチル-2-メチル-シクロプロピル基及び2-エチル-3-メチル-シクロプロピル基等が挙げられる。
 上記R10及びR11における炭素数6乃至20のアリール基としては、例えばフェニル基、o-メチルフェニル基、m-メチルフェニル基、p-メチルフェニル基、o-クロルフェニル基、m-クロルフェニル基、p-クロルフェニル基、o-フルオロフェニル基、p-フルオロフェニル基、o-メトキシフェニル基、p-メトキシフェニル基、p-ニトロフェニル基、p-シアノフェニル基、α-ナフチル基、β-ナフチル基、o-ビフェニリル基、m-ビフェニリル基、p-ビフェニリル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基及び9-フェナントリル基が挙げられる。
Examples of the alkyl group having 1 to 10 carbon atoms in R 10 to R 13 include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, a cyclopropyl group, an n-butyl group, an i-butyl group, s -Butyl, t-butyl, cyclobutyl, 1-methyl-cyclopropyl, 2-methyl-cyclopropyl, n-pentyl, 1-methyl-n-butyl, 2-methyl-n-butyl 3-methyl-n-butyl group, 1,1-dimethyl-n-propyl group, 1,2-dimethyl-n-propyl group, 2,2-dimethyl-n-propyl group, 1-ethyl-n-propyl group Group, cyclopentyl group, 1-methyl-cyclobutyl group, 2-methyl-cyclobutyl group, 3-methyl-cyclobutyl group, 1,2-dimethyl-cyclopropyl group, 2,3-dimethyl-cyclopropyl group, 1 Ethyl-cyclopropyl group, 2-ethyl-cyclopropyl group, n-hexyl group, 1-methyl-n-pentyl group, 2-methyl-n-pentyl group, 3-methyl-n-pentyl group, 4-methyl- n-pentyl group, 1,1-dimethyl-n-butyl group, 1,2-dimethyl-n-butyl group, 1,3-dimethyl-n-butyl group, 2,2-dimethyl-n-butyl group, 2 1,3-dimethyl-n-butyl group, 3,3-dimethyl-n-butyl group, 1-ethyl-n-butyl group, 2-ethyl-n-butyl group, 1,1,2-trimethyl-n-propyl 1,2,2-trimethyl-n-propyl group, 1-ethyl-1-methyl-n-propyl group, 1-ethyl-2-methyl-n-propyl group, cyclohexyl group, 1-methyl-cyclopentyl group 2-methyl-cyclopentyl group, 3-methyl- Clopentyl group, 1-ethyl-cyclobutyl group, 2-ethyl-cyclobutyl group, 3-ethyl-cyclobutyl group, 1,2-dimethyl-cyclobutyl group, 1,3-dimethyl-cyclobutyl group, 2,2-dimethyl-cyclobutyl group 2,3-dimethyl-cyclobutyl group, 2,4-dimethyl-cyclobutyl group, 3,3-dimethyl-cyclobutyl group, 1-n-propyl-cyclopropyl group, 2-n-propyl-cyclopropyl group, 1- i-propyl-cyclopropyl group, 2-i-propyl-cyclopropyl group, 1,2,2-trimethyl-cyclopropyl group, 1,2,3-trimethyl-cyclopropyl group, 2,2,3-trimethyl- Cyclopropyl group, 1-ethyl-2-methyl-cyclopropyl group, 2-ethyl-1-methyl-cyclopropyl group, 2-ethyl-2-methyl- Black propyl and 2-ethyl-3-methyl - cyclopropyl group and the like.
Examples of the aryl group having 6 to 20 carbon atoms in R 10 and R 11 include a phenyl group, an o-methylphenyl group, an m-methylphenyl group, a p-methylphenyl group, an o-chlorophenyl group, and an m-chlorophenyl group. Group, p-chlorophenyl group, o-fluorophenyl group, p-fluorophenyl group, o-methoxyphenyl group, p-methoxyphenyl group, p-nitrophenyl group, p-cyanophenyl group, α-naphthyl group, β -Naphthyl group, o-biphenylyl group, m-biphenylyl group, p-biphenylyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4 -Phenanthryl group and 9-phenanthryl group are mentioned.
式(2)で表される化合物、式(3)で表されるポリマー又は、オリゴマーは以下に例示される。
Figure JPOXMLDOC01-appb-C000008












Examples of the compound represented by the formula (2), the polymer or the oligomer represented by the formula (3) are given below.
Figure JPOXMLDOC01-appb-C000008












Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009












Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010












上記化合物は旭有機材工業(株)、本州化学工業(株)の製品として入手することができる。例えば上記架橋剤の中で式(2-21)の化合物は旭有機材工業(株)、商品名TM-BIP-Aとして入手することができる。
架橋剤の添加量は、使用する塗布溶剤、使用する下地基板、要求される溶液粘度、要求される膜形状などにより変動するが、全固形分に対して0.001乃至80質量%、好ましくは0.01乃至50質量%、さらに好ましくは0.05乃至40質量%で用いることができる。これら架橋剤は自己縮合による架橋反応を起こすこともあるが、本発明の上記のポリマー中に架橋性置換基が存在する場合は、それらの架橋性置換基と架橋反応を起こすことができる。
The above compounds can be obtained as products of Asahi Organic Materials Co., Ltd. and Honshu Chemical Industry Co., Ltd. For example, among the above-mentioned crosslinking agents, the compound of the formula (2-21) can be obtained as Asahi Organic Materials Co., Ltd., trade name TM-BIP-A.
The amount of the crosslinking agent to be added varies depending on the coating solvent used, the base substrate used, the required solution viscosity, the required film shape, etc., but is 0.001 to 80% by mass with respect to the total solid content, preferably It can be used in an amount of 0.01 to 50 mass%, more preferably 0.05 to 40 mass%. These cross-linking agents may cause a cross-linking reaction by self-condensation, but when a cross-linkable substituent is present in the above-mentioned polymer of the present invention, it can cause a cross-linking reaction with those cross-linkable substituents.
本発明では上記架橋反応を促進するための触媒としてとして、p-トルエンスルホン酸、トリフルオロメタンスルホン酸、ピリジニウムp-トルエンスルホン酸、サリチル酸、スルホサリチル酸、クエン酸、安息香酸、ヒドロキシ安息香酸、ナフタレンカルボン酸等の酸性化合物又は/及び2,4,4,6-テトラブロモシクロヘキサジエノン、ベンゾイントシレート、2-ニトロベンジルトシレート、その他有機スルホン酸アルキルエステル等の熱酸発生剤を配合する事が出来る。配合量は全固形分に対して、0.0001乃至20質量%、好ましくは0.0005乃至10質量%、好ましくは0.01乃至3質量%とすることができる。 In the present invention, as a catalyst for promoting the crosslinking reaction, p-toluenesulfonic acid, trifluoromethanesulfonic acid, pyridinium p-toluenesulfonic acid, salicylic acid, sulfosalicylic acid, citric acid, benzoic acid, hydroxybenzoic acid, naphthalenecarboxylic acid Acidic compounds such as acids or / and thermal acid generators such as 2,4,4,6-tetrabromocyclohexadienone, benzoin tosylate, 2-nitrobenzyl tosylate, and other organic sulfonic acid alkyl esters may be added. I can do it. The blending amount can be 0.0001 to 20% by mass, preferably 0.0005 to 10% by mass, preferably 0.01 to 3% by mass, based on the total solid content.
本発明のリソグラフィー用塗布型下層膜形成組成物は、リソグラフィー工程で上層に被覆されるフォトレジストとの酸性度を一致させる為に、光酸発生剤を添加する事が出来る。好ましい光酸発生剤としては、例えば、ビス(4-t-ブチルフェニル)ヨードニウムトリフルオロメタンスルホネート、トリフェニルスルホニウムトリフルオロメタンスルホネート等のオニウム塩系光酸発生剤類、フェニル-ビス(トリクロロメチル)-s-トリアジン等のハロゲン含有化合物系光酸発生剤類、ベンゾイントシレート、N-ヒドロキシスクシンイミドトリフルオロメタンスルホネート等のスルホン酸系光酸発生剤類等が挙げられる。上記光酸発生剤は全固形分に対して、0.2乃至10質量%、好ましくは0.4乃至5質量%である。 In the coating type lower layer film forming composition for lithography of the present invention, a photoacid generator can be added in order to match the acidity with the photoresist coated on the upper layer in the lithography process. Preferred photoacid generators include, for example, onium salt photoacid generators such as bis (4-t-butylphenyl) iodonium trifluoromethanesulfonate, triphenylsulfonium trifluoromethanesulfonate, and phenyl-bis (trichloromethyl) -s. -Halogen-containing compound photoacid generators such as triazine, and sulfonic acid photoacid generators such as benzoin tosylate and N-hydroxysuccinimide trifluoromethanesulfonate. The photoacid generator is 0.2 to 10% by mass, preferably 0.4 to 5% by mass, based on the total solid content.
本発明のリソグラフィー用レジスト下層膜形成組成物には、上記以外に必要に応じて更なる吸光剤、レオロジー調整剤、接着補助剤、界面活性剤などを添加することができる。
更なる吸光剤としては例えば、「工業用色素の技術と市場」(CMC出版)や「染料便覧」(有機合成化学協会編)に記載の市販の吸光剤、例えば、C.I.DisperseYellow1,3,4,5,7,8,13,23,31,49,50,51,54,60,64,66,68,79,82,88,90,93,102,114及び124;C.I.DisperseOrange1,5,13,25,29,30,31,44,57,72及び73;C.I.DisperseRed1,5,7,13,17,19,43,50,54,58,65,72,73,88,117,137,143,199及び210;C.I.DisperseViolet43;C.I.DisperseBlue96;C.I.FluorescentBrighteningAgent112,135及び163;C.I.SolventOrange2及び45;C.I.SolventRed1,3,8,23,24,25,27及び49;C.I.PigmentGreen10;C.I.PigmentBrown2等を好適に用いることができる。上記吸光剤は通常、リソグラフィー用レジスト下層膜形成組成物の全固形分に対して10質量%以下、好ましくは5質量%以下の割合で配合される。
To the resist underlayer film forming composition for lithography of the present invention, in addition to the above, further light absorbers, rheology adjusting agents, adhesion assistants, surfactants, and the like can be added as necessary.
Examples of further light absorbers include commercially available light absorbers described in “Technical dye technology and market” (published by CMC) and “Dye Handbook” (edited by the Society of Synthetic Organic Chemistry), such as C.I. I. Disperse Yellow 1, 3, 4, 5, 7, 8, 13, 23, 31, 49, 50, 51, 54, 60, 64, 66, 68, 79, 82, 88, 90, 93, 102, 114 and 124; C. I. Disperse Orange 1, 5, 13, 25, 29, 30, 31, 44, 57, 72 and 73; I. Disperse Red 1, 5, 7, 13, 17, 19, 43, 50, 54, 58, 65, 72, 73, 88, 117, 137, 143, 199 and 210; I. DisperseViolet 43; C.I. I. DisperseBlue 96; C.I. I. Fluorescent Brightening Agents 112, 135 and 163; C.I. I. Solvent Orange 2 and 45; C.I. I. Solvent Red 1, 3, 8, 23, 24, 25, 27 and 49; I. Pigment Green 10; C.I. I. Pigment Brown 2 etc. can be used suitably. The above light-absorbing agent is usually blended at a ratio of 10% by mass or less, preferably 5% by mass or less, based on the total solid content of the resist underlayer film forming composition for lithography.
 レオロジー調整剤は、主にレジスト下層膜形成組成物の流動性を向上させ、特にベーキング工程において、レジスト下層膜の膜厚均一性の向上やホール内部へのレジスト下層膜形成組成物の充填性を高める目的で添加される。具体例としては、ジメチルフタレート、ジエチルフタレート、ジイソブチルフタレート、ジヘキシルフタレート、ブチルイソデシルフタレート等のフタル酸誘導体、ジノルマルブチルアジペート、ジイソブチルアジペート、ジイソオクチルアジペート、オクチルデシルアジペート等のアジピン酸誘導体、ジノルマルブチルマレート、ジエチルマレート、ジノニルマレート等のマレイン酸誘導体、メチルオレート、ブチルオレート、テトラヒドロフルフリルオレート等のオレイン酸誘導体、またはノルマルブチルステアレート、グリセリルステアレート等のステアリン酸誘導体を挙げることができる。これらのレオロジー調整剤は、リソグラフィー用レジスト下層膜形成組成物の全固形分に対して通常30質量%未満の割合で配合される。 The rheology modifier mainly improves the fluidity of the resist underlayer film forming composition, and improves the film thickness uniformity of the resist underlayer film and the fillability of the resist underlayer film forming composition inside the hole, particularly in the baking process. It is added for the purpose of enhancing. Specific examples include phthalic acid derivatives such as dimethyl phthalate, diethyl phthalate, diisobutyl phthalate, dihexyl phthalate, butyl isodecyl phthalate, adipic acid derivatives such as dinormal butyl adipate, diisobutyl adipate, diisooctyl adipate, octyl decyl adipate, Mention may be made of maleic acid derivatives such as normal butyl maleate, diethyl maleate and dinonyl maleate, oleic acid derivatives such as methyl oleate, butyl oleate and tetrahydrofurfuryl oleate, or stearic acid derivatives such as normal butyl stearate and glyceryl stearate. it can. These rheology modifiers are usually blended at a ratio of less than 30% by mass with respect to the total solid content of the resist underlayer film forming composition for lithography.
接着補助剤は、主に基板あるいはレジストとレジスト下層膜形成組成物の密着性を向上させ、特に現像においてレジストが剥離しないようにするための目的で添加される。具体例としては、トリメチルクロロシラン、ジメチルビニルクロロシラン、メチルジフエニルクロロシラン、クロロメチルジメチルクロロシラン等のクロロシラン類、トリメチルメトキシシラン、ジメチルジエトキシシラン、メチルジメトキシシラン、ジメチルビニルエトキシシラン、ジフエニルジメトキシシラン、フエニルトリエトキシシラン等のアルコキシシラン類、ヘキサメチルジシラザン、N,N’ービス(トリメチルシリル)ウレア、ジメチルトリメチルシリルアミン、トリメチルシリルイミダゾール等のシラザン類、ビニルトリクロロシラン、γークロロプロピルトリメトキシシラン、γーアミノプロピルトリエトキシシラン、γーグリシドキシプロピルトリメトキシシラン等のシラン類、ベンゾトリアゾール、ベンズイミダゾール、インダゾール、イミダゾール、2ーメルカプトベンズイミダゾール、2ーメルカプトベンゾチアゾール、2ーメルカプトベンゾオキサゾール、ウラゾール、チオウラシル、メルカプトイミダゾール、メルカプトピリミジン等の複素環式化合物や、1,1ージメチルウレア、1,3ージメチルウレア等の尿素、またはチオ尿素化合物を挙げることができる。これらの接着補助剤は、リソグラフィー用レジスト下層膜形成組成物の全固形分に対して通常5質量%未満、好ましくは2質量%未満の割合で配合される。 The adhesion assistant is added mainly for the purpose of improving the adhesion between the substrate or the resist and the resist underlayer film forming composition, and preventing the resist from peeling particularly during development. Specific examples include chlorosilanes such as trimethylchlorosilane, dimethylvinylchlorosilane, methyldiphenylchlorosilane, chloromethyldimethylchlorosilane, trimethylmethoxysilane, dimethyldiethoxysilane, methyldimethoxysilane, dimethylvinylethoxysilane, diphenyldimethoxysilane, Alkoxysilanes such as enyltriethoxysilane, hexamethyldisilazane, N, N'-bis (trimethylsilyl) urea, silazanes such as dimethyltrimethylsilylamine, trimethylsilylimidazole, vinyltrichlorosilane, γ-chloropropyltrimethoxysilane, γ- Silanes such as aminopropyltriethoxysilane and γ-glycidoxypropyltrimethoxysilane, benzotriazole, benzimidazole , Indazole, imidazole, 2-mercaptobenzimidazole, 2-mercaptobenzothiazole, 2-mercaptobenzoxazole, urazole, thiouracil, mercaptoimidazole, mercaptopyrimidine, etc., 1,1-dimethylurea, 1,3-dimethylurea, etc. And urea or thiourea compounds. These adhesion assistants are usually blended in a proportion of less than 5% by mass, preferably less than 2% by mass, based on the total solid content of the resist underlayer film forming composition for lithography.
 本発明のリソグラフィー用レジスト下層膜形成組成物には、ピンホールやストレーション等の発生がなく、表面むらに対する塗布性をさらに向上させるために、界面活性剤を配合することができる。界面活性剤としては、例えばポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル類、ポリオキシエチレンオクチルフエノールエーテル、ポリオキシエチレンノニルフエノールエーテル等のポリオキシエチレンアルキルアリルエーテル類、ポリオキシエチレン・ポリオキシプロピレンブロツクコポリマー類、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンモノオレエート、ソルビタントリオレエート、ソルビタントリステアレート等のソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリオレエート、ポリオキシエチレンソルビタントリステアレート等のポリオキシエチレンソルビタン脂肪酸エステル類等のノニオン系界面活性剤、エフトツプEF301、EF303、EF352((株)トーケムプロダクツ製、商品名)、メガファックF171、F173、R-30(大日本インキ(株)製、商品名)、フロラードFC430、FC431(住友スリーエム(株)製、商品名)、アサヒガードAG710、サーフロンSー382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子(株)製、商品名)等のフッ素系界面活性剤、オルガノシロキサンポリマーKP341(信越化学工業(株)製)等を挙げることができる。これらの界面活性剤の配合量は、本発明のリソグラフィー用レジスト下層膜形成組成物の全固形分に対して通常2.0質量%以下、好ましくは1.0質量%以下である。これらの界面活性剤は単独で添加してもよいし、また2種以上の組合せで添加することもできる。 In the resist underlayer film forming composition for lithography of the present invention, a surfactant can be blended in order to further improve the applicability to surface unevenness without occurrence of pinholes and setups. Examples of the surfactant include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, polyoxyethylene alkyl ethers such as polyoxyethylene oleyl ether, polyoxyethylene octylphenol ether, polyoxyethylene nonyl Polyoxyethylene alkyl allyl ethers such as phenol ether, polyoxyethylene / polyoxypropylene block copolymers, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan trioleate, sorbitan tristearate Sorbitan fatty acid esters such as rate, polyoxyethylene sorbitan monolaurate, polyoxyethylene sol Nonionic surfactants such as polyoxyethylene sorbitan fatty acid esters such as tan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan trioleate, polyoxyethylene sorbitan tristearate, EFTTOP EF301, EF303, EF352 (Trade name, manufactured by Tochem Products Co., Ltd.), MegaFuck F171, F173, R-30 (trade name, manufactured by Dainippon Ink Co., Ltd.), Florad FC430, FC431 (trade name, manufactured by Sumitomo 3M Co., Ltd.) Fluorine surfactants such as Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (trade name, manufactured by Asahi Glass Co., Ltd.), organosiloxane polymer KP341 (Shin-Etsu) Mention may be made of the academic Kogyo Co., Ltd.), and the like. The compounding amount of these surfactants is usually 2.0% by mass or less, preferably 1.0% by mass or less, based on the total solid content of the resist underlayer film forming composition for lithography of the present invention. These surfactants may be added alone or in combination of two or more.
 本発明において、上記のポリマー及び架橋剤成分、架橋触媒等を溶解させる溶剤としては、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、トルエン、キシレン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2ーヒドロキシプロピオン酸エチル、2ーヒドロキシー2ーメチルプロピオン酸エチル、エトシキ酢酸エチル、ヒドロキシ酢酸エチル、2ーヒドロキシー3ーメチルブタン酸メチル、3ーメトキシプロピオン酸メチル、3ーメトキシプロピオン酸エチル、3ーエトキシプロピオン酸エチル、3ーエトキシプロピオン酸メチル、ピルビン酸メチル、ピルビン酸エチル、酢酸エチル、酢酸ブチル、乳酸エチル、乳酸ブチル等を用いることができる。これらの有機溶剤は単独で、または2種以上の組合せで使用される。
さらに、プロピレングリコールモノブチルエーテル、プロピレングリコールモノブチルエーテルアセテート等の高沸点溶剤を混合して使用することができる。これらの溶剤の中でプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル、乳酸ブチル、及びシクロヘキサノン等がレベリング性の向上に対して好ましい。
In the present invention, as a solvent for dissolving the polymer and the crosslinking agent component, the crosslinking catalyst, etc., ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, Propylene glycol, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether, propylene glycol monoethyl ether acetate, propylene glycol propyl ether acetate, toluene, xylene, methyl ethyl ketone, cyclopentanone, cyclohexanone, 2-hydroxypropionic acid Ethyl, 2-hydroxy -2-Ethyl 2-methylpropionate, ethyl ethoxyacetate, ethyl hydroxyacetate, 2-hydroxy-3-methylbutanoate, methyl 3-methoxypropionate, 3-methoxyethyl propionate, 3-ethyl ethyl ethoxypropionate, methyl 3-ethoxypropionate Methyl pyruvate, ethyl pyruvate, ethyl acetate, butyl acetate, ethyl lactate, butyl lactate and the like can be used. These organic solvents are used alone or in combination of two or more.
Furthermore, high boiling point solvents such as propylene glycol monobutyl ether and propylene glycol monobutyl ether acetate can be mixed and used. Among these solvents, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, ethyl lactate, butyl lactate, cyclohexanone and the like are preferable for improving the leveling property.
 本発明に用いられるレジストとはフォトレジストや電子線レジストである。 The resist used in the present invention is a photoresist or an electron beam resist.
 本発明におけるリソグラフィー用レジスト下層膜の上部に塗布されるフォトレジストとしてはネガ型、ポジ型いずれも使用でき、ノボラック樹脂と1,2-ナフトキノンジアジドスルホン酸エステルとからなるポジ型フォトレジスト、酸により分解してアルカリ溶解速度を上昇させる基を有するバインダーと光酸発生剤からなる化学増幅型フォトレジスト、アルカリ可溶性バインダーと酸により分解してフォトレジストのアルカリ溶解速度を上昇させる低分子化合物と光酸発生剤からなる化学増幅型フォトレジスト、酸により分解してアルカリ溶解速度を上昇させる基を有するバインダーと酸により分解してフォトレジストのアルカリ溶解速度を上昇させる低分子化合物と光酸発生剤からなる化学増幅型フォトレジスト、骨格にSi原子を有するフォトレジスト等があり、例えば、ロームアンドハーツ社製、商品名APEX-Eが挙げられる。 As the photoresist applied on the upper part of the resist underlayer film for lithography in the present invention, either negative type or positive type can be used, and a positive type photoresist composed of a novolak resin and 1,2-naphthoquinonediazide sulfonic acid ester, depending on the acid. Chemically amplified photoresist comprising a binder having a group that decomposes to increase the alkali dissolution rate and a photoacid generator, a low molecular weight compound and photoacid that increases the alkali dissolution rate of the photoresist by decomposition with an alkali-soluble binder and acid Chemically amplified photoresist comprising a generator, comprising a binder having a group that decomposes with acid to increase the alkali dissolution rate, a low-molecular compound that decomposes with acid to increase the alkali dissolution rate of the photoresist, and a photoacid generator Chemically amplified photoresist with Si atoms in the skeleton There is a photoresist or the like which, for example, Rohm & Hearts Co., Ltd., and trade name APEX-E.
 また本発明におけるリソグラフィー用レジスト下層膜の上部に塗布される電子線レジストとしては、例えば主鎖にSi-Si結合を含み末端に芳香族環を含んだ樹脂と電子線の照射により酸を発生する酸発生剤から成る組成物、又はヒドロキシ基がN-カルボキシアミンを含む有機基で置換されたポリ(p-ヒドロキシスチレン)と電子線の照射により酸を発生する酸発生剤から成る組成物等が挙げられる。後者の電子線レジスト組成物では、電子線照射によって酸発生剤から生じた酸がポリマー側鎖のN-カルボキシアミノキシ基と反応し、ポリマー側鎖がヒドロキシ基に分解しアルカリ可溶性を示しアルカリ現像液に溶解し、レジストパターンを形成するものである。この電子線の照射により酸を発生する酸発生剤は1,1-ビス[p-クロロフェニル]-2,2,2-トリクロロエタン、1,1-ビス[p-メトキシフェニル]-2,2,2-トリクロロエタン、1,1-ビス[p-クロロフェニル]-2,2-ジクロロエタン、2-クロロ-6-(トリクロロメチル)ピリジン等のハロゲン化有機化合物、トリフェニルスルフォニウム塩、ジフェニルヨウドニウム塩等のオニウム塩、ニトロベンジルトシレート、ジニトロベンジルトシレート等のスルホン酸エステルが挙げられる。 In addition, as the electron beam resist applied on the upper part of the resist underlayer film for lithography in the present invention, for example, an acid is generated by irradiation of a resin containing an Si-Si bond in the main chain and an aromatic ring at the terminal and an electron beam. A composition comprising an acid generator, or a composition comprising a poly (p-hydroxystyrene) having a hydroxy group substituted with an organic group containing N-carboxyamine, and an acid generator that generates an acid upon irradiation with an electron beam. Can be mentioned. In the latter electron beam resist composition, the acid generated from the acid generator by electron beam irradiation reacts with the N-carboxyaminoxy group of the polymer side chain, and the polymer side chain decomposes into a hydroxy group and exhibits alkali solubility, thus exhibiting alkali development. It dissolves in the liquid to form a resist pattern. Acid generators that generate an acid upon irradiation with this electron beam are 1,1-bis [p-chlorophenyl] -2,2,2-trichloroethane, 1,1-bis [p-methoxyphenyl] -2,2,2 -Halogenated organic compounds such as trichloroethane, 1,1-bis [p-chlorophenyl] -2,2-dichloroethane, 2-chloro-6- (trichloromethyl) pyridine, triphenylsulfonium salts, diphenyliodonium salts, etc. Examples thereof include sulfonic acid esters such as onium salts, nitrobenzyl tosylate, and dinitrobenzyl tosylate.
本発明のリソグラフィー用レジスト下層膜形成組成物を使用して形成したレジスト下層膜を有するレジストの現像液としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア水等の無機アルカリ類、エチルアミン、n-プロピルアミン等の第一アミン類、ジエチルアミン、ジーn-ブチルアミン等の第二アミン類、トリエチルアミン、メチルジエチルアミン等の第三アミン類、ジメチルエタノールアミン、トリエタノールアミン等のアルコールアミン類、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、コリン等の第4級アンモニウム塩、ピロール、ピペリジン等の環状アミン類、等のアルカリ類の水溶液を使用することができる。さらに、上記アルカリ類の水溶液にイソプロピルアルコール等のアルコール類、ノニオン系等の界面活性剤を適当量添加して使用することもできる。これらの中で好ましい現像液は第四級アンモニウム塩、さらに好ましくはテトラメチルアンモニウムヒドロキシド及びコリンである。 As a resist developer having a resist underlayer film formed using the resist underlayer film forming composition for lithography of the present invention, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, aqueous ammonia Inorganic amines such as ethylamine, primary amines such as n-propylamine, secondary amines such as diethylamine and di-n-butylamine, tertiary amines such as triethylamine and methyldiethylamine, dimethylethanolamine, triethanolamine Alcohol amines such as alcohol amines, tetramethylammonium hydroxide, tetraethylammonium hydroxide, quaternary ammonium salts such as choline, and cyclic amines such as pyrrole and piperidine, and alkaline aqueous solutions can be used. Furthermore, an appropriate amount of an alcohol such as isopropyl alcohol or a nonionic surfactant may be added to the alkaline aqueous solution. Of these, preferred developers are quaternary ammonium salts, more preferably tetramethylammonium hydroxide and choline.
次に本発明のレジストパターン形成法について説明すると、精密集積回路素子の製造に使用される基板(例えばシリコン/二酸化シリコン被覆、ガラス基板、ITO基板などの透明基板)上にスピナー、コーター等の適当な塗布方法によりレジスト下層膜形成組成物を塗布後、ベークして硬化させ塗布型下層膜を作成する。ここで、レジスト下層膜の膜厚としては0.01乃至3.0μmが好ましい。また塗布後ベーキングする条件としては80乃至350℃で0.5乃至120分間である。その後レジスト下層膜上に直接、または必要に応じて1層乃至数層の塗膜材料をレジスト下層膜上に成膜した後、レジストを塗布し、所定のマスクを通して光又は電子線の照射を行い、現像、リンス、乾燥することにより良好なレジストパターンを得ることができる。必要に応じて光又は電子線の照射後加熱(PEB:PostExposureBake)を行うこともできる。そして、レジストが前記工程により現像除去された部分のレジスト下層膜をドライエッチングにより除去し、所望のパターンを基板上に形成することができる。 Next, the resist pattern forming method of the present invention will be described. A spinner, a coater, etc. are suitably used on a substrate (for example, a transparent substrate such as a silicon / silicon dioxide coating, a glass substrate, an ITO substrate) used for manufacturing a precision integrated circuit device. After applying the resist underlayer film forming composition by a simple coating method, it is baked and cured to form a coating type underlayer film. Here, the thickness of the resist underlayer film is preferably 0.01 to 3.0 μm. The conditions for baking after coating are 80 to 350 ° C. and 0.5 to 120 minutes. Then, directly or on the resist underlayer film, if necessary, coat one or several layers of coating material on the resist underlayer film, then apply the resist, and irradiate with light or electron beam through a predetermined mask. A good resist pattern can be obtained by developing, rinsing and drying. If necessary, post-irradiation heating (PEB: Post Exposure Bake) can be performed. Then, the resist underlayer film where the resist has been developed and removed by the above process is removed by dry etching, and a desired pattern can be formed on the substrate.
上記フォトレジストでの露光光は、近紫外線、遠紫外線、又は極端紫外線(例えば、EUV、波長13.5nm)等の化学線であり、例えば248nm(KrFレーザー光)、193nm(ArFレーザー光)、157nm(Fレーザー光)等の波長の光が用いられる。光照射には、光酸発生剤から酸を発生させることができる方法であれば、特に制限なく使用することができ、露光量1乃至2000mJ/cm、または10乃至1500mJ/cm、または50乃至1000mJ/cmによる。
また電子線レジストの電子線照射は、例えば電子線照射装置を用い照射することができる。
The exposure light in the photoresist is actinic radiation such as near ultraviolet, far ultraviolet, or extreme ultraviolet (for example, EUV, wavelength 13.5 nm), for example, 248 nm (KrF laser light), 193 nm (ArF laser light), Light having a wavelength such as 157 nm (F 2 laser light) is used. The light irradiation can be used without particular limitation as long as it can generate an acid from a photoacid generator, and the exposure dose is 1 to 2000 mJ / cm 2 , or 10 to 1500 mJ / cm 2 , or 50. To 1000 mJ / cm 2 .
Moreover, the electron beam irradiation of an electron beam resist can be performed using an electron beam irradiation apparatus, for example.
本発明では、半導体基板上に本発明のレジスト下層膜形成組成物によりレジスト下層膜を形成する工程、その上にレジスト膜を形成する工程、光又は電子線照射と現像によりレジストパターンを形成する工程、形成されたレジストパターンにより該レジスト下層膜をエッチングする工程、及びパターン化されたレジスト下層膜により半導体基板を加工する工程を経て半導体装置を製造することができる。
今後、レジストパターンの微細化が進行すると、解像度の問題やレジストパターンが現像後に倒れるという問題が生じ、レジストの薄膜化が望まれてくる。そのため、基板加工に充分なレジストパターン膜厚を得ることが難しく、レジストパターンだけではなく、レジストと加工する半導体基板との間に作成されるレジスト下層膜にも基板加工時のマスクとしての機能を持たせるプロセスが必要になってきた。このようなプロセス用のレジスト下層膜として従来の高エッチレート性レジスト下層膜とは異なり、レジストに近いドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜、レジストに比べて小さいドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜や半導体基板に比べて小さいドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜が要求されるようになってきている。本発明のレジスト下層膜形成組成物によるレジスト下層膜はこれらの要求を満たし、また、このようなレジスト下層膜には反射防止能を付与することも可能であり、従来の反射防止膜の機能を併せ持つことができる。
In the present invention, a step of forming a resist underlayer film with a resist underlayer film forming composition of the present invention on a semiconductor substrate, a step of forming a resist film thereon, a step of forming a resist pattern by light or electron beam irradiation and development The semiconductor device can be manufactured through a step of etching the resist underlayer film with the formed resist pattern and a step of processing the semiconductor substrate with the patterned resist underlayer film.
In the future, as the miniaturization of the resist pattern proceeds, there arises a problem of resolution and a problem that the resist pattern collapses after development, and it is desired to reduce the thickness of the resist. For this reason, it is difficult to obtain a resist pattern film thickness sufficient for substrate processing, and not only the resist pattern but also the resist underlayer film formed between the resist and the semiconductor substrate to be processed functions as a mask during substrate processing. The process to have it has become necessary. Unlike conventional high-etch-rate resist underlayer films, the resist underlayer film for lithography, which has a selection ratio of dry etching rates close to that of resist, is selected as a resist underlayer film for such processes, and a lower dry etching rate than resist. There has been a growing demand for a resist underlayer film for lithography having a higher ratio and a resist underlayer film for lithography having a lower dry etching rate selection ratio than a semiconductor substrate. The resist underlayer film by the resist underlayer film forming composition of the present invention satisfies these requirements, and such resist underlayer film can be provided with antireflection ability, and functions as a conventional antireflection film. Can have both.
一方、微細なレジストパターンを得るために、レジスト下層膜ドライエッチング時にレジストパターンとレジスト下層膜をレジスト現像時のパターン幅より細くするプロセスも使用され始めている。このようなプロセス用のレジスト下層膜として従来の高エッチレート性反射防止膜とは異なり、レジストに近いドライエッチング速度の選択比を持つレジスト下層膜が要求されるようになってきている。本発明のレジスト下層膜形成組成物によるレジスト下層膜はこれらの要求を満たし、また、このようなレジスト下層膜には反射防止能を付与することも可能であり、従来の反射防止膜の機能を併せ持つことができる。 On the other hand, in order to obtain a fine resist pattern, a process of making the resist pattern and the resist underlayer film narrower than the pattern width at the time of developing the resist during dry etching of the resist underlayer film has begun to be used. Unlike the conventional high etch rate antireflection film, a resist underlayer film having a selectivity of a dry etching rate close to that of the resist has been required as a resist underlayer film for such a process. The resist underlayer film by the resist underlayer film forming composition of the present invention satisfies these requirements, and such resist underlayer film can be provided with antireflection ability, and functions as a conventional antireflection film. Can have both.
 本発明では基板上に本発明のレジスト下層膜を成膜した後、レジスト下層膜上に直接、または必要に応じて1層乃至数層の塗膜材料をレジスト下層膜上に成膜した後、レジストを塗布することができる。これによりレジストのパターン幅が狭くなり、パターン倒れを防ぐ為にレジストを薄く被覆した場合でも、適切なエッチングガスを選択することにより基板の加工が可能になる。 In the present invention, after forming the resist underlayer film of the present invention on the substrate, directly or on the resist underlayer film as needed, after forming one to several layers of coating material on the resist underlayer film, A resist can be applied. As a result, the pattern width of the resist becomes narrow, and even when the resist is thinly coated to prevent pattern collapse, the substrate can be processed by selecting an appropriate etching gas.
 即ち、半導体基板上にレジスト下層膜形成組成物によりレジスト下層膜を形成する工程、その上にケイ素成分等を含有する塗膜材料によるハードマスク又は蒸着によるハードマスク(例えば、窒化酸化ケイ素)を形成する工程、更にその上にレジスト膜を形成する工程、光又は電子線の照射と現像によりレジストパターンを形成する工程、形成されたレジストパターンによりハードマスクをハロゲン系ガスでエッチングする工程、パターン化されたハードマスクにより該レジスト下層膜を酸素系ガス又は水素系ガスでエッチングする工程、及びパターン化されたレジスト下層膜によりハロゲン系ガスで半導体基板を加工する工程を経て半導体装置を製造することができる。 That is, a step of forming a resist underlayer film on a semiconductor substrate with a resist underlayer film forming composition, and a hard mask made of a coating material containing a silicon component or the like or a hard mask (for example, silicon nitride oxide) is formed thereon A step of forming a resist film thereon, a step of forming a resist pattern by light and electron beam irradiation and development, a step of etching a hard mask with a halogen-based gas by the formed resist pattern, A semiconductor device can be manufactured through a step of etching the resist underlayer film with an oxygen-based gas or a hydrogen-based gas with a hard mask and a step of processing a semiconductor substrate with a halogen-based gas with a patterned resist underlayer film. .
 本発明のリソグラフィー用レジスト下層膜形成組成物は、反射防止膜としての効果を考慮した場合、光吸収部位が骨格に取りこまれているため、加熱乾燥時にフォトレジスト中への拡散物がなく、また、光吸収部位は十分に大きな吸光性能を有しているため反射光防止効果が高い。 When considering the effect as an antireflection film, the resist underlayer film forming composition for lithography of the present invention has a light absorption site incorporated into the skeleton, so there is no diffused material in the photoresist during heating and drying. Moreover, since the light absorption site has a sufficiently large light absorption performance, the effect of preventing reflected light is high.
また、本発明のリソグラフィー用レジスト下層膜形成組成物では、熱安定性が高く、焼成時の分解物による上層膜への汚染が防げ、また、焼成工程の温度マージンに余裕を持たせることができるものである。 In addition, the resist underlayer film forming composition for lithography of the present invention has high thermal stability, can prevent contamination of the upper layer film by decomposition products during baking, and can provide a margin for the temperature margin of the baking process. Is.
 さらに、本発明のリソグラフィー用レジスト下層膜形成組成物は、プロセス条件によっては、光の反射を防止する機能と、更には基板とフォトレジストとの相互作用の防止或いはフォトレジストに用いられる材料又はフォトレジストへの露光時に生成する物質の基板への悪作用を防ぐ機能とを有する膜としての使用が可能である。 Furthermore, the resist underlayer film forming composition for lithography of the present invention has a function of preventing reflection of light depending on process conditions, and further prevents the interaction between the substrate and the photoresist or the material used for the photoresist or the photo resist. The film can be used as a film having a function of preventing an adverse effect on a substrate of a substance generated upon exposure of the resist.
(原料の準備)トリヒドロキシナフタレンの合成
500mlナスフラスコに、5-ヒドロキシ-1,4-ナフトキノン(東京化成工業株式会社製)15.0g(86.1mmol)、酢酸エチル(関東化学製)150g、純水150gに溶かした亜ジチオン酸ナトリウム(関東化学製)29.99g(129.2mmol)を入れ、25℃で20時間攪拌した。反応液から水相を除去し、純水にて洗浄を行った後、エバポレーターにて酢酸エチルを除去することで、1,4,5-トリヒドロキシナフタレン14.29g(81.1mmol)を褐色固体として得た。
H-NMR(500MHz、DMSO-d):6.55ppm(d、1H)、6.65ppm(d、1H)、6.71ppm(d、1H)、7.22ppm(t、1H)、7.50ppm(d、1H)、9.33ppm(s、1H)、10.32ppm(s、1H)、10.69ppm(s、1H)
(Preparation of raw materials) Synthesis of trihydroxynaphthalene In a 500 ml eggplant flask, 15.0 g (86.1 mmol) of 5-hydroxy-1,4-naphthoquinone (manufactured by Tokyo Chemical Industry Co., Ltd.), 150 g of ethyl acetate (manufactured by Kanto Chemical), 29.9 g (129.2 mmol) of sodium dithionite (manufactured by Kanto Kagaku) dissolved in 150 g of pure water was added and stirred at 25 ° C. for 20 hours. The aqueous phase was removed from the reaction solution, washed with pure water, and then ethyl acetate was removed with an evaporator to obtain 14.29 g (81.1 mmol) of 1,4,5-trihydroxynaphthalene as a brown solid. Got as.
1 H-NMR (500 MHz, DMSO-d 6 ): 6.55 ppm (d, 1 H), 6.65 ppm (d, 1 H), 6.71 ppm (d, 1 H), 7.22 ppm (t, 1 H), 7 .50 ppm (d, 1H), 9.33 ppm (s, 1H), 10.32 ppm (s, 1H), 10.69 ppm (s, 1H)
合成例1
 50mlナスフラスコに1,4,5-トリヒドロキシナフタレン0.90g、1-ナフトアルデヒド(東京化成工業株式会社製)0.78g、メタンスルホン酸(東京化成工業株式会社製)0.061g、プロピレングリコールモノメチルエーテル2.63gを入れた。その後110℃まで加熱し、約14時間還流撹拌した。反応終了後、テトラヒドロフラン(関東化学製)3.00gで希釈し、沈殿物をろ過により除去した。回収したろ液をヘキサン溶液中に滴下し、再沈殿させた。得られた沈殿物を吸引ろ過し、ろ物を85℃で一晩減圧乾燥した。そして、紺色粉末の1、4、5-トリヒドロキシナフタレン樹脂を1.26g得た。得られたポリマーは式(1-11)に相当した。GPCによりポリスチレン換算で測定される重量平均分子量はMw2,200、多分散度Mw/Mnは1.75であった。
Synthesis example 1
In a 50 ml eggplant flask, 0.90 g of 1,4,5-trihydroxynaphthalene, 0.78 g of 1-naphthaldehyde (Tokyo Chemical Industry Co., Ltd.), 0.061 g of methanesulfonic acid (Tokyo Chemical Industry Co., Ltd.), propylene glycol 2.63 g of monomethyl ether was added. Thereafter, the mixture was heated to 110 ° C. and stirred at reflux for about 14 hours. After completion of the reaction, the reaction mixture was diluted with 3.00 g of tetrahydrofuran (manufactured by Kanto Chemical), and the precipitate was removed by filtration. The collected filtrate was dropped into a hexane solution and reprecipitated. The obtained precipitate was suction filtered, and the filtrate was dried under reduced pressure at 85 ° C. overnight. As a result, 1.26 g of 1,4,5-trihydroxynaphthalene resin as amber powder was obtained. The obtained polymer corresponded to the formula (1-11). The weight average molecular weight measured in terms of polystyrene by GPC was Mw 2,200, and the polydispersity Mw / Mn was 1.75.
合成例2
 50mlナスフラスコに1,4,5-トリヒドロキシナフタレン0.88g、1-ピレンカルボキシアルデヒド(アルドリッチ製)1.62g、1,4-ジオキサン(関東化学製)10.52g、p-トルエンスルホン酸一水和物(東京化成工業株式会社製)0.14gを入れた。その後110℃まで加熱し、約16時間還流撹拌した。反応終了後、テトラヒドロフラン(関東化学製)5.26gで希釈し、沈殿物をろ過により除去した。回収したろ液をヘキサン溶液中に滴下し、再沈殿させた。得られた沈殿物を吸引ろ過し、ろ物を85℃で一晩減圧乾燥した。そして、紺色粉末の1、4、5-トリヒドロキシナフタレン樹脂を1.48g得た。得られたポリマーは式(1-41)に相当した。GPCによりポリスチレン換算で測定される重量平均分子量Mwは1,500、多分散度Mw/Mnは1.54であった。
Synthesis example 2
In a 50 ml eggplant flask, 0.88 g of 1,4,5-trihydroxynaphthalene, 1.62 g of 1-pyrenecarboxaldehyde (manufactured by Aldrich), 10.52 g of 1,4-dioxane (manufactured by Kanto Chemical), one p-toluenesulfonic acid Hydrate (Tokyo Chemical Industry Co., Ltd.) 0.14g was put. Thereafter, the mixture was heated to 110 ° C. and stirred at reflux for about 16 hours. After completion of the reaction, the reaction mixture was diluted with 5.26 g of tetrahydrofuran (manufactured by Kanto Chemical), and the precipitate was removed by filtration. The collected filtrate was dropped into a hexane solution and reprecipitated. The obtained precipitate was suction filtered, and the filtrate was dried under reduced pressure at 85 ° C. overnight. As a result, 1.48 g of 1,4,5-trihydroxynaphthalene resin as amber powder was obtained. The obtained polymer corresponded to the formula (1-41). The weight average molecular weight Mw measured in terms of polystyrene by GPC was 1,500, and the polydispersity Mw / Mn was 1.54.
合成例3
 50mlナスフラスコに1,4,5-トリヒドロキシナフタレン0.88g、1-ピレンカルボキシアルデヒド(アルドリッチ製)0.81g、1-ナフトアルデヒド(東京化成工業株式会社製)0.55g、1,4-ジオキサン(関東化学製)7.31g、p-トルエンスルホン酸一水和物(東京化成工業株式会社製)0.14gを入れた。その後110℃まで加熱し、約16時間還流撹拌した。反応終了後、テトラヒドロフラン(関東化学製)4.74gで希釈し、沈殿物をろ過により除去した。回収したろ液をメタノール/水混合溶液中に滴下し、再沈殿させた。得られた沈殿物を吸引ろ過し、ろ物を85℃で一晩減圧乾燥した。そして、紺色粉末の1,4,5-トリヒドロキシナフタレン樹脂を1.28g得た。得られたポリマーは式(1-46)に相当した。GPCによりポリスチレン換算で測定される重量平均分子量Mwは2,500、多分散度Mw/Mnは1.67であった。
Synthesis example 3
In a 50 ml eggplant flask, 0.88 g of 1,4,5-trihydroxynaphthalene, 0.81 g of 1-pyrenecarboxaldehyde (manufactured by Aldrich), 0.55 g of 1-naphthaldehyde (manufactured by Tokyo Chemical Industry Co., Ltd.), 1,4- 7.31 g of dioxane (manufactured by Kanto Chemical) and 0.14 g of p-toluenesulfonic acid monohydrate (manufactured by Tokyo Chemical Industry Co., Ltd.) were added. Thereafter, the mixture was heated to 110 ° C. and stirred at reflux for about 16 hours. After completion of the reaction, the reaction mixture was diluted with 4.74 g of tetrahydrofuran (manufactured by Kanto Chemical), and the precipitate was removed by filtration. The collected filtrate was dropped into a methanol / water mixed solution and reprecipitated. The obtained precipitate was suction filtered, and the filtrate was dried under reduced pressure at 85 ° C. overnight. As a result, 1.28 g of 1,4,5-trihydroxynaphthalene resin as amber powder was obtained. The obtained polymer corresponded to the formula (1-46). The weight average molecular weight Mw measured in terms of polystyrene by GPC was 2,500, and the polydispersity Mw / Mn was 1.67.
比較合成例1
 100mlナスフラスコに1,5-ジヒドロキシナフタレン11.21g、1-ナフトアルデヒド(東京化成工業株式会社製)5.48g、1,4-ジオキサン(関東化学製)45.04g、p-トルエンスルホン酸一水和物(東京化成工業株式会社製)1.34gを入れた。その後110℃まで加熱し、約23時間還流撹拌した。反応終了後、テトラヒドロフラン(関東化学製)22.5gで希釈し、沈殿物をろ過により除去した。回収したろ液をメタノール/水混合溶液中に滴下し、再沈殿させた。得られた沈殿物を吸引ろ過し、ろ物を85℃で一晩減圧乾燥した。そして、紺色粉末の1,5-ジヒドロキシナフタレン樹脂を8.03g得た。得られたポリマーは式(3-1)に相当した。GPCによりポリスチレン換算で測定される重量平均分子量Mwは1,900、多分散度Mw/Mnは1.35であった。
Figure JPOXMLDOC01-appb-C000011












Comparative Synthesis Example 1
In a 100 ml eggplant flask, 11.21 g of 1,5-dihydroxynaphthalene, 5.48 g of 1-naphthaldehyde (manufactured by Tokyo Chemical Industry Co., Ltd.), 45.04 g of 1,4-dioxane (manufactured by Kanto Chemical), one p-toluenesulfonic acid 1.34 g of hydrate (Tokyo Chemical Industry Co., Ltd.) was added. Thereafter, the mixture was heated to 110 ° C. and stirred at reflux for about 23 hours. After completion of the reaction, the reaction mixture was diluted with 22.5 g of tetrahydrofuran (manufactured by Kanto Chemical), and the precipitate was removed by filtration. The collected filtrate was dropped into a methanol / water mixed solution and reprecipitated. The obtained precipitate was suction filtered, and the filtrate was dried under reduced pressure at 85 ° C. overnight. As a result, 8.03 g of 1,5-dihydroxynaphthalene resin as amber powder was obtained. The obtained polymer corresponded to the formula (3-1). The weight average molecular weight Mw measured in terms of polystyrene by GPC was 1,900, and the polydispersity Mw / Mn was 1.35.
Figure JPOXMLDOC01-appb-C000011












比較合成例2
200ml三口フラスコにフロログルシノール(東京化成工業株式会社製)10.09g、1-ピレンカルボキシアルデヒド(アルドリッチ製)18.42g、1,4-ジオキサン(関東化学製)49.61g、p-トルエンスルホン酸一水和物(東京化成工業株式会社製)4.56gを入れた。その後110℃まで加熱し、約5時間還流撹拌した。反応終了後、テトラヒドロフラン(関東化学製)24.80gで希釈し、沈殿物をろ過により除去した。回収したろ液をメタノール/水混合溶液中に滴下し、再沈殿させた。得られた沈殿物を吸引ろ過し、ろ物を85℃で一晩減圧乾燥した。そして、茶褐色粉末のフロログルシノール樹脂を25.26g得た。得られたポリマーは式(3-2)に相当した。GPCによりポリスチレン換算で測定される重量平均分子量Mwは2,800、多分散度Mw/Mnは2.18であった。
Figure JPOXMLDOC01-appb-C000012












Comparative Synthesis Example 2
In a 200 ml three-necked flask, 10.09 g of phloroglucinol (manufactured by Tokyo Chemical Industry Co., Ltd.), 18.42 g of 1-pyrenecarboxaldehyde (manufactured by Aldrich), 49.61 g of 1,4-dioxane (manufactured by Kanto Chemical), p-toluenesulfone 4.56 g of acid monohydrate (manufactured by Tokyo Chemical Industry Co., Ltd.) was added. Thereafter, the mixture was heated to 110 ° C. and stirred at reflux for about 5 hours. After completion of the reaction, the reaction mixture was diluted with 24.80 g of tetrahydrofuran (manufactured by Kanto Chemical), and the precipitate was removed by filtration. The collected filtrate was dropped into a methanol / water mixed solution and reprecipitated. The obtained precipitate was suction filtered, and the filtrate was dried under reduced pressure at 85 ° C. overnight. And 25.26g of phloroglucinol resin of the brown powder was obtained. The obtained polymer corresponded to the formula (3-2). The weight average molecular weight Mw measured by GPC in terms of polystyrene was 2,800, and the polydispersity Mw / Mn was 2.18.
Figure JPOXMLDOC01-appb-C000012












実施例1
合成例1で得た樹脂1gを、プロピレングリコールモノメチルエーテルアセテート1.15g、プロピレングリコールモノメチルエーテル1.15g、シクロヘキサノン9.19gに溶解し、多層膜によるリソグラフィープロセスに用いるレジスト下層膜形成組成物の溶液を調製した。
実施例2
合成例2で得た樹脂1gを、プロピレングリコールモノメチルエーテルアセテート1.15g、プロピレングリコールモノメチルエーテル1.15g、シクロヘキサノン9.19gに溶解し、多層膜によるリソグラフィープロセスに用いるレジスト下層膜形成組成物の溶液を調製した。
実施例3
合成例3で得た樹脂1gを、プロピレングリコールモノメチルエーテルアセテート1.15g、プロピレングリコールモノメチルエーテル1.15g、シクロヘキサノン9.19gに溶解し、多層膜によるリソグラフィープロセスに用いるレジスト下層膜形成組成物の溶液を調製した。
Example 1
1 g of the resin obtained in Synthesis Example 1 is dissolved in 1.15 g of propylene glycol monomethyl ether acetate, 1.15 g of propylene glycol monomethyl ether and 9.19 g of cyclohexanone, and a solution of a resist underlayer film forming composition used in a lithography process using a multilayer film Was prepared.
Example 2
1 g of the resin obtained in Synthesis Example 2 is dissolved in 1.15 g of propylene glycol monomethyl ether acetate, 1.15 g of propylene glycol monomethyl ether, and 9.19 g of cyclohexanone, and a solution of a resist underlayer film forming composition used in a lithography process using a multilayer film Was prepared.
Example 3
1 g of the resin obtained in Synthesis Example 3 is dissolved in 1.15 g of propylene glycol monomethyl ether acetate, 1.15 g of propylene glycol monomethyl ether, and 9.19 g of cyclohexanone, and a solution of a resist underlayer film forming composition used in a lithography process using a multilayer film Was prepared.
比較例1
 クレゾールノボラック樹脂(市販品、重量平均分子量は4000)1gを、プロピレングリコールモノメチルエーテル10.34g、シクロヘキサノン2.59gに溶解し、多層膜によるリソグラフィープロセスに用いるレジスト下層膜形成組成物の溶液を調製した。
比較例2
比較合成例1で得た樹脂(式3-1)2gを、プロピレングリコールモノメチルエーテルアセテート9.19g、プロピレングリコールモノメチルエーテル9.19g、シクロヘキサノン4.59gに溶解し、多層膜によるリソグラフィープロセスに用いるレジスト下層膜形成組成物の溶液を調製した。
比較例3
比較合成例2で得た樹脂(式3-2)1gを、プロピレングリコールモノメチルエーテル10.34g、シクロヘキサノン2.59gに溶解し、多層膜によるリソグラフィープロセスに用いるレジスト下層膜形成組成物の溶液を調製した。
Comparative Example 1
1 g of cresol novolak resin (commercial product, weight average molecular weight is 4000) was dissolved in 10.34 g of propylene glycol monomethyl ether and 2.59 g of cyclohexanone to prepare a solution of a resist underlayer film forming composition used in a lithography process using a multilayer film. .
Comparative Example 2
Resist used in lithography process with multilayer film by dissolving 2 g of resin (Formula 3-1) obtained in Comparative Synthesis Example 1 in 9.19 g of propylene glycol monomethyl ether acetate, 9.19 g of propylene glycol monomethyl ether, and 4.59 g of cyclohexanone A solution of the underlayer film forming composition was prepared.
Comparative Example 3
1 g of the resin (formula 3-2) obtained in Comparative Synthesis Example 2 is dissolved in 10.34 g of propylene glycol monomethyl ether and 2.59 g of cyclohexanone to prepare a solution of a resist underlayer film forming composition for use in a lithography process using a multilayer film. did.
(光学パラメータの測定)
 実施例1乃至3、比較例1で調製したレジスト下層膜溶液を、スピンコーターを用いてシリコンウェハー上に塗布した。ホットプレート上で240℃1分間、250℃1分間または400℃2分間(比較例1は205℃1分間)焼成し、レジスト下層膜(膜厚0.05μm)を形成した。これらのレジスト下層膜の、分光エリプソメーターを用いた波長193nmでの屈折率(n値)及び光学吸光係数(k値、減衰係数とも呼ぶ)を測定した。結果を表1に示した。
(Measurement of optical parameters)
The resist underlayer film solutions prepared in Examples 1 to 3 and Comparative Example 1 were applied onto a silicon wafer using a spin coater. Baking was performed on a hot plate at 240 ° C. for 1 minute, 250 ° C. for 1 minute or 400 ° C. for 2 minutes (205 ° C. for 1 minute in Comparative Example 1) to form a resist underlayer film (film thickness 0.05 μm). The refractive index (n value) and optical absorption coefficient (k value, also referred to as attenuation coefficient) at a wavelength of 193 nm using a spectroscopic ellipsometer of these resist underlayer films were measured. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013












(フォトレジスト溶剤への溶出試験)
 実施例1乃至3で調製したレジスト下層膜形成組成物の溶液を、スピンコーターを用いてシリコンウェハー上に塗布した。ホットプレート上で240℃1分間、または400℃2分間焼成し、レジスト下層膜(膜厚0.20μm)を形成した。これらのレジスト下層膜の、レジストに使用する溶剤、例えば乳酸エチル、ならびにプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、シクロヘキサノンに対する浸漬試験を行った。
実施例1乃至3の溶液を240℃1分間、または400℃2分間焼成した膜はそれらの溶剤に不溶であることを確認した。
(Elution test for photoresist solvent)
The resist underlayer film forming composition solutions prepared in Examples 1 to 3 were applied onto a silicon wafer using a spin coater. Baking was performed on a hot plate at 240 ° C. for 1 minute or at 400 ° C. for 2 minutes to form a resist underlayer film (film thickness 0.20 μm). These resist underlayer films were subjected to an immersion test in a solvent used for the resist, such as ethyl lactate, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, and cyclohexanone.
It was confirmed that the films obtained by baking the solutions of Examples 1 to 3 at 240 ° C. for 1 minute or 400 ° C. for 2 minutes were insoluble in these solvents.
(ドライエッチング速度の測定)
ドライエッチング速度の測定に用いたエッチャー及びエッチングガスは以下のものを用いた。
RIE-10NR(サムコ製):CF
 実施例1乃至3、比較例1で調製したレジスト下層膜形成組成物の溶液を、スピンコーターを用いてシリコンウェハー上に塗布した。ホットプレート上で240℃1分間、250℃1分間または400℃2分間焼成し(比較例1は205℃1分間焼成)、レジスト下層膜(膜厚0.20μm)を形成した。エッチングガスとしてCFガスを使用してドライエッチング速度を測定した。
得られた測定値から比較例1と実施例1乃至3のレジスト下層膜のドライエッチング速度との比較を行った。結果を表2に示した。表中の速度比(1)は(実施例1乃至3で用いたレジスト下層膜のそれぞれのドライエッチング速度)/(比較例1のドライエッチング速度)のドライエッチング速度比である。
(Measurement of dry etching rate)
The following etchers and etching gases were used to measure the dry etching rate.
RIE-10NR (Samco): CF 4
The resist underlayer film forming composition solutions prepared in Examples 1 to 3 and Comparative Example 1 were applied onto a silicon wafer using a spin coater. Baking was performed on a hot plate at 240 ° C. for 1 minute, 250 ° C. for 1 minute, or 400 ° C. for 2 minutes (Comparative Example 1 was baked at 205 ° C. for 1 minute) to form a resist underlayer film (film thickness 0.20 μm). The dry etching rate was measured using CF 4 gas as the etching gas.
Comparison was made between the dry etching rates of the resist underlayer films of Comparative Example 1 and Examples 1 to 3 from the obtained measured values. The results are shown in Table 2. The speed ratio (1) in the table is a dry etching speed ratio of (each dry etching speed of the resist underlayer film used in Examples 1 to 3) / (dry etching speed of Comparative Example 1).
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014












(パターンの曲がり耐性の測定)
実施例2乃至3、及び比較例2乃至3で調整した各レジスト下層膜形成組成物の溶液を、スピンコーターを用いてそれぞれ酸化ケイ素被膜付きシリコンウエハー上に塗布した。ホットプレート上で240℃1分間、または400℃2分間焼成しレジスト下層膜(膜厚200nm)を形成した。レジスト下層膜上にシリコンハードマスク形成組成物溶液(ポリオルガノシロキサン溶液)を塗布し、240℃で1分間焼成しシリコンハードマスク層(ポリオルガノシロキサン縮合物、膜厚45nm)を形成した。その上にレジスト溶液を塗布し、100℃で1分間焼成しレジスト層(膜厚120nm)を形成した。マスクを用いて波長193nmで露光し、露光後加熱PEB(105℃で1分間)を行った後、現像してレジストパターンを得た。その後、フッ素系ガス(成分はCF)でドライエッチングを行い、レジストパターンをハードマスクに転写した。その後、酸素系ガス(成分はO)でドライエッチングを行い、レジストパターンを本件レジスト下層膜に転写した。その後、フッ素系ガス(成分はC)でドライエッチングを行い、シリコンウエハー上の酸化ケイ素被膜の除去を行った。その時のそれぞれのパターン形状を電子顕微鏡で観察した。
パターン幅が狭まるにしたがいウイグリング(wiggling)という不規則なパターンの曲がりが発生しやすくなるが、上記の実施例のレジスト下層膜形成組成物を用いて上述工程を行いパターンの曲がり(wiggling)を生じ始めるパターン幅を電子顕微鏡で観測した。
パターンの曲がり(wiggling)が発生することで忠実なパターンに基づく基板加工ができなくなるため、パターンの曲がり(wiggling)が発生する直前のパターン幅(限界パターン幅)により基板加工をする必要がある。パターンの曲がり(wiggling)が発生し始める限界パターン幅は、その値が狭ければ狭いほど微細な基板の加工が可能となる。
解像度の測定には測長走査型電子顕微鏡(日立製作所製)を用いた。測定結果を表3、表4に示した。
(Measurement of pattern bending resistance)
The solutions of the resist underlayer film forming compositions prepared in Examples 2 to 3 and Comparative Examples 2 to 3 were each applied onto a silicon oxide-coated silicon wafer using a spin coater. A resist underlayer film (film thickness 200 nm) was formed by baking on a hot plate at 240 ° C. for 1 minute or 400 ° C. for 2 minutes. A silicon hard mask forming composition solution (polyorganosiloxane solution) was applied on the resist underlayer film and baked at 240 ° C. for 1 minute to form a silicon hard mask layer (polyorganosiloxane condensate, film thickness 45 nm). A resist solution was applied thereon and baked at 100 ° C. for 1 minute to form a resist layer (film thickness 120 nm). Exposure was performed using a mask at a wavelength of 193 nm, post-exposure heating PEB (1 minute at 105 ° C.) was performed, and development was performed to obtain a resist pattern. Thereafter, dry etching was performed with a fluorine-based gas (component is CF 4 ), and the resist pattern was transferred to a hard mask. Thereafter, dry etching was performed with an oxygen-based gas (component is O 2 ), and the resist pattern was transferred to the resist underlayer film. Thereafter, dry etching was performed with a fluorine-based gas (component is C 4 F 8 ) to remove the silicon oxide film on the silicon wafer. Each pattern shape at that time was observed with an electron microscope.
As the pattern width narrows, irregular pattern bending called wiggling is likely to occur. However, the above-described steps are performed using the resist underlayer film forming composition of the above-described embodiment, and pattern wiggling occurs. The starting pattern width was observed with an electron microscope.
Since the processing of the substrate based on the faithful pattern becomes impossible due to the occurrence of pattern bending, it is necessary to process the substrate with the pattern width (limit pattern width) immediately before the occurrence of the pattern bending. The narrower the limit pattern width at which pattern bending starts to occur, the finer the substrate can be processed.
A length-measuring scanning electron microscope (manufactured by Hitachi, Ltd.) was used for measuring the resolution. The measurement results are shown in Tables 3 and 4.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015












Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016












本発明の多層膜によるリソグラフィープロセスに用いるレジスト下層膜形成組成物は、従来の高エッチレート性反射防止膜とは異なり、フォトレジストに近い又はフォトレジストに比べて小さいドライエッチング速度の選択比、半導体基板に比べて小さいドライエッチング速度の選択比を持ち、さらに反射防止膜としての効果も併せ持つことが出来るレジスト下層膜を提供することができる。また、本発明の下層膜形成組成物は上層に蒸着でハードマスクを形成可能な耐熱性を有することが判った。また、焼成温度が低い場合でもパターンの曲がり(wiggling)が発生し難く良好なパターンが得られ、少なくとも36nm付近のパターン幅では曲がりのない良好なパターンが得られる。 The resist underlayer film forming composition used in the lithography process using the multilayer film according to the present invention is different from the conventional high etch rate antireflection film, and has a dry etching rate selection ratio close to or smaller than that of the photoresist, semiconductor It is possible to provide a resist underlayer film that has a lower dry etching rate selection ratio than that of the substrate and can also have an effect as an antireflection film. Moreover, it turned out that the lower-layer film formation composition of this invention has heat resistance which can form a hard mask by vapor deposition in an upper layer. Further, even when the firing temperature is low, it is difficult to generate pattern bending, and a good pattern can be obtained. With a pattern width of at least around 36 nm, a good pattern without bending can be obtained.

Claims (10)

  1. 式(1):
    Figure JPOXMLDOC01-appb-C000001













    (式(1)中、Aはトリヒドロキシナフタレンに由来するヒドロキシ基置換ナフチレン基であり3個のヒドロキシ基を有し、Bは2乃至4個のベンゼン環が縮合した1価の縮合芳香族炭化水素環基である。)で表される単位構造を有するポリマーを含むリソグラフィー用レジスト下層膜形成組成物。
    Formula (1):
    Figure JPOXMLDOC01-appb-C000001













    (In the formula (1), A is a hydroxy-substituted naphthylene group derived from trihydroxynaphthalene, has 3 hydroxy groups, and B is a monovalent condensed aromatic carbonized with 2 to 4 benzene rings condensed. A composition for forming a resist underlayer film for lithography comprising a polymer having a unit structure represented by: a hydrogen ring group.
  2. Bの縮合芳香族炭化水素環基がナフタレン環基、アントラセン環基、又はピレン環基である請求項1に記載のレジスト下層膜形成組成物。 The resist underlayer film forming composition according to claim 1, wherein the condensed aromatic hydrocarbon ring group of B is a naphthalene ring group, an anthracene ring group, or a pyrene ring group.
  3. Bの縮合芳香族炭化水素環基がハロゲン基、ヒドロキシ基、ニトロ基、アミノ基、カルボキシル基、カルボン酸エステル基、ニトリル基、又はこれらの組み合わせを置換基として有するものである請求項1又は請求項2に記載のレジスト下層膜形成組成物。 The condensed aromatic hydrocarbon ring group of B has a halogen group, a hydroxy group, a nitro group, an amino group, a carboxyl group, a carboxylic acid ester group, a nitrile group, or a combination thereof as a substituent. Item 3. The resist underlayer film forming composition according to Item 2.
  4. 更に架橋剤を含む請求項1乃至請求項3のいずれか1項に記載のレジスト下層膜形成組成物。 The composition for forming a resist underlayer film according to any one of claims 1 to 3, further comprising a crosslinking agent.
  5. 更に酸及び/又は酸発生剤を含む請求項1乃至請求項4のいずれか1項に記載のレジスト下層膜形成組成物。 The resist underlayer film forming composition according to any one of claims 1 to 4, further comprising an acid and / or an acid generator.
  6. 請求項1乃至請求項5のいずれか1項に記載のレジスト下層膜形成組成物を半導体基板上に塗布し焼成することによって得られるレジスト下層膜。 A resist underlayer film obtained by applying the resist underlayer film forming composition according to any one of claims 1 to 5 on a semiconductor substrate and baking the composition.
  7. 請求項1乃至請求項5のいずれか1項に記載のレジスト下層膜形成組成物を半導体基板上に塗布し焼成してレジスト下層膜を形成する工程を含む半導体の製造に用いられるレジストパターンの形成方法。 Formation of a resist pattern used for manufacturing a semiconductor including a step of applying a resist underlayer film forming composition according to any one of claims 1 to 5 on a semiconductor substrate and baking the composition to form a resist underlayer film Method.
  8. 半導体基板上に請求項1乃至請求項5のいずれか1項に記載のレジスト下層膜形成組成物によりレジスト下層膜を形成する工程、その上にレジスト膜を形成する工程、光又は電子線の照射と現像によりレジストパターンを形成する工程、形成されたレジストパターンによりレジスト下層膜をエッチングする工程、及びパターン化されたレジスト下層膜により半導体基板を加工する工程を含む半導体装置の製造方法。 A step of forming a resist underlayer film on the semiconductor substrate with the resist underlayer film forming composition according to any one of claims 1 to 5, a step of forming a resist film thereon, irradiation with light or an electron beam And a step of forming a resist pattern by development, a step of etching a resist underlayer film with the formed resist pattern, and a step of processing a semiconductor substrate with the patterned resist underlayer film.
  9. 半導体基板に請求項1乃至請求項5のいずれか1項に記載のレジスト下層膜形成組成物によりレジスト下層膜を形成する工程、その上にハードマスクを形成する工程、更にその上にレジスト膜を形成する工程、光又は電子線の照射と現像によりレジストパターンを形成する工程、形成されたレジストパターンによりハードマスクをエッチングする工程、パターン化されたハードマスクにより該レジスト下層膜をエッチングする工程、及びパターン化されたレジスト下層膜により半導体基板を加工する工程を含む半導体装置の製造方法。 A step of forming a resist underlayer film on the semiconductor substrate with the resist underlayer film forming composition according to any one of claims 1 to 5, a step of forming a hard mask thereon, and a resist film thereon A step of forming, a step of forming a resist pattern by light and electron beam irradiation and development, a step of etching a hard mask with the formed resist pattern, a step of etching the resist underlayer film with a patterned hard mask, and A method for manufacturing a semiconductor device, comprising a step of processing a semiconductor substrate with a patterned resist underlayer film.
  10. ハードマスクが無機物の塗布又は無機物の蒸着により形成されたものである請求項9に記載の製造方法。 The manufacturing method according to claim 9, wherein the hard mask is formed by applying inorganic material or depositing inorganic material.
PCT/JP2014/065228 2013-06-17 2014-06-09 Resist underlayer film forming composition containing trihydroxynaphthalene novolac resin WO2014203757A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013126459A JP2016145849A (en) 2013-06-17 2013-06-17 Composition for forming resist underlay film containing trihydroxynaphthalene novolac resin
JP2013-126459 2013-06-17

Publications (1)

Publication Number Publication Date
WO2014203757A1 true WO2014203757A1 (en) 2014-12-24

Family

ID=52104495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065228 WO2014203757A1 (en) 2013-06-17 2014-06-09 Resist underlayer film forming composition containing trihydroxynaphthalene novolac resin

Country Status (3)

Country Link
JP (1) JP2016145849A (en)
TW (1) TW201512296A (en)
WO (1) WO2014203757A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110809738A (en) * 2017-06-23 2020-02-18 日产化学株式会社 Composition for forming resist underlayer film with improved planarization

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6981945B2 (en) 2018-09-13 2021-12-17 信越化学工業株式会社 Pattern formation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010117629A (en) * 2008-11-14 2010-05-27 Jsr Corp Composition for forming resist lower-layer film, method of forming the resist lower-layer film, and pattern forming method using the same
WO2011034062A1 (en) * 2009-09-15 2011-03-24 三菱瓦斯化学株式会社 Aromatic hydrocarbon resin and composition for forming underlayer film for lithography
WO2012077640A1 (en) * 2010-12-09 2012-06-14 日産化学工業株式会社 Composition for forming resist underlayer film containing hydroxyl group-containing carbazole novolac resin
JP2012145897A (en) * 2011-01-14 2012-08-02 Shin Etsu Chem Co Ltd Resist underlayer film material and pattern forming method using the same
JP2013156627A (en) * 2012-01-04 2013-08-15 Shin Etsu Chem Co Ltd Resist underlayer film material, production method of polymer for resist underlayer film material and pattern forming method using resist underlayer film material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010117629A (en) * 2008-11-14 2010-05-27 Jsr Corp Composition for forming resist lower-layer film, method of forming the resist lower-layer film, and pattern forming method using the same
WO2011034062A1 (en) * 2009-09-15 2011-03-24 三菱瓦斯化学株式会社 Aromatic hydrocarbon resin and composition for forming underlayer film for lithography
WO2012077640A1 (en) * 2010-12-09 2012-06-14 日産化学工業株式会社 Composition for forming resist underlayer film containing hydroxyl group-containing carbazole novolac resin
JP2012145897A (en) * 2011-01-14 2012-08-02 Shin Etsu Chem Co Ltd Resist underlayer film material and pattern forming method using the same
JP2013156627A (en) * 2012-01-04 2013-08-15 Shin Etsu Chem Co Ltd Resist underlayer film material, production method of polymer for resist underlayer film material and pattern forming method using resist underlayer film material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110809738A (en) * 2017-06-23 2020-02-18 日产化学株式会社 Composition for forming resist underlayer film with improved planarization
CN110809738B (en) * 2017-06-23 2021-04-20 日产化学株式会社 Composition for forming resist underlayer film with improved planarization

Also Published As

Publication number Publication date
TW201512296A (en) 2015-04-01
JP2016145849A (en) 2016-08-12

Similar Documents

Publication Publication Date Title
JP5867732B2 (en) Resist underlayer film forming composition containing hydroxyl group-containing carbazole novolak resin
JP6137486B2 (en) Resist underlayer film forming composition containing copolymer resin containing heterocycle
JP6041104B2 (en) Resist underlayer film forming composition containing alicyclic skeleton-containing carbazole resin
JP6206677B2 (en) Resist underlayer film forming composition containing carbonyl group-containing polyhydroxy aromatic ring novolak resin
JP6004172B2 (en) Lithographic resist underlayer film forming composition containing carbonyl group-containing carbazole novolak
JP6436313B2 (en) Resist underlayer film forming composition containing pyrrole novolac resin
JP6583630B2 (en) Resist underlayer film forming composition containing novolak polymer having secondary amino group
WO2013146670A1 (en) Resist underlayer film-forming composition which contains phenylindole-containing novolac resin
WO2010147155A1 (en) Carbazole novolak resin
WO2010041626A1 (en) Composition for forming resist underlayer film for lithography, which contains fluorene-containing resin
JP6974799B2 (en) A composition for forming a resist underlayer film having an improved film density.
JP2014157169A (en) Composition for forming resist underlay film containing polyhydroxybenzene novolak resin
WO2014030579A1 (en) Composition for forming resist underlayer film, which contains novolac resin having polynuclear phenol
WO2011132641A1 (en) Composition for formation of lithographic resist underlayer film which contains resin containing polyimide structure
WO2017094780A1 (en) Resist underlayer film forming composition containing indolocarbazole novolak resin
JP6338048B2 (en) Iminostilbene polymer and resist underlayer film forming composition containing the same
WO2014203757A1 (en) Resist underlayer film forming composition containing trihydroxynaphthalene novolac resin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14813919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14813919

Country of ref document: EP

Kind code of ref document: A1